A. Antoniadis, Analysis of variance on function spaces, Series Statistics, vol.6, issue.1, pp.59-71, 1984.
DOI : 10.1080/02331888408801747

N. Aronszajn, Theory of reproducing kernels. Transaction of the, pp.337-404, 1950.

M. Avalos, Y. Grandvalet, and C. Ambroise, Parsimonious additive models, Computational Statistics & Data Analysis, vol.51, issue.6, pp.2851-2870, 2007.
DOI : 10.1016/j.csda.2006.10.007

URL : https://hal.archives-ouvertes.fr/inserm-00402444

F. Bach, High-dimensional non-linear variable selection through hierarchical kernel learning, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00413473

S. Baillargeon, Le krigeage : revue de la théorie et application à l'interpolation spatiale de données de précipitations. Mémoire présenté à la Faculté des études supérieures de l'Université Laval dans le cadre du programme de maîtrise en statistique pour l'obtention du grade de maître ès sciences, 2002.

R. Bellman and R. Kalaba, On adaptive control processes, IRE Transactions on Automatic Control, vol.4, issue.2, pp.1-9, 1959.
DOI : 10.1109/TAC.1959.1104847

A. Berlinet and C. Thomas-agnan, Reproducing kernel Hilbert spaces in probability and statistics, 2004.
DOI : 10.1007/978-1-4419-9096-9

A. Buja, T. Hastie, and R. Tibshirani, Linear Smoothers and Additive Models, The Annals of Statistics, vol.17, issue.2, pp.453-510, 1989.
DOI : 10.1214/aos/1176347115

R. Carnell, lhs : Latin Hypercube Samples. R package version 0, 2009.

W. Chen, R. Jin, and A. Sudjianto, Analytical variance-based global sensitivity analysis in simulation-based design under uncertainty, Journal of mechanical design, vol.127, 2005.

M. Driscoll, The reproducing kernel hilbert space structure of the sample paths of a gaussian process. Probability Theory and Related Fields, pp.309-316, 1973.

B. Efron and C. Stein, The Jackknife Estimate of Variance, The Annals of Statistics, vol.9, issue.3, pp.586-596, 1981.
DOI : 10.1214/aos/1176345462

L. Bibliographie-fausett, Fundamentals of neural networks : architectures, algorithms, and applications, 1994.

R. Fortet, Les opérateurs intégraux dont le noyau est une covariance. Trabajos de estadisticas y de investigacion operativa, Num, vol.36, issue.3, pp.133-144, 1985.
DOI : 10.1007/bf02888548

J. Friedman, Multivariate adaptive regression splines. The annals of statistics, pp.1-67, 1991.
DOI : 10.1214/aos/1176347963

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.382.970

B. Gauthier, Approche spectrale pour l'interpolation optimale à noyaux et positivité conditionnelle, 2011.

D. Ginsbourger, Métamodèles multiples pour l'approximation et l'optimisation de fonctions numériques multivariables, 2009.

C. Gu, Smoothing spline ANOVA models, 2002.

S. Gunn and J. Kandola, Structural modelling with sparse kernels, Machine Learning, vol.48, issue.1/3, pp.137-163, 2002.
DOI : 10.1023/A:1013903804720

T. Hastie, gam : Generalized Additive Models, 2010.

T. Hastie and R. Tibshirani, Generalized Additive Models, 1990.

B. Iooss and A. Marrel, Benchmark gdr mascot num " construction de métamodèles prédictifs " : Données marthe, 2008.

J. Jacques, Contributions à l'analyse de sensibilité et à l'analyse discriminante généralisée, 2005.

S. Janson, Gaussian Hilbert Spaces, 1997.
DOI : 10.1017/CBO9780511526169

J. Kandola, Interpretable Modelling with Sparse Kernels, 2001.

P. Krée, Produits tensoriels complétés d'espaces de Hilbert, Séminaire Paul Krée, vol.1, issue.7, 1974.

A. Marrel, B. Iooss, B. Laurent, R. , and O. , Calculations of Sobol indices for the Gaussian process metamodel, Reliability Engineering & System Safety, vol.94, issue.3, pp.742-751, 2009.
DOI : 10.1016/j.ress.2008.07.008

URL : https://hal.archives-ouvertes.fr/hal-00239494

A. Marrel, B. Iooss, F. Van-dorpe, and E. Volkova, An efficient methodology for modeling complex computer codes with Gaussian processes, Computational Statistics & Data Analysis, vol.52, issue.10, pp.524731-4744, 2008.
DOI : 10.1016/j.csda.2008.03.026

URL : https://hal.archives-ouvertes.fr/hal-00239492

G. Matheron and F. Blondel, Traité de géostatistique appliquée, Editions Technip, vol.1, 1962.

M. Minoux, Mathematical Programming : Theory and Algorithm, 1986.

D. Montgomery, E. Peck, G. Vining, and J. Vining, Introduction to linear regression analysis, 2001.

T. Muehlenstaedt, O. Roustant, L. Carraro, and S. Kuhnt, Data-driven Kriging models based on FANOVA-decomposition, Statistics and Computing, vol.34, issue.4
DOI : 10.1007/s11222-011-9259-7

URL : https://hal.archives-ouvertes.fr/emse-00699673

W. Newey, Kernel Estimation of Partial Means and a General Variance Estimator, Econometric Theory, vol.56, issue.02, pp.233-253, 1994.
DOI : 10.2307/1913713

J. Oakley, O. Hagan, and A. , Probabilistic sensitivity analysis of complex models: a Bayesian approach, Journal of the Royal Statistical Society: Series B (Statistical Methodology), vol.34, issue.3, pp.751-769, 2004.
DOI : 10.1214/ss/1009213004

O. Hagan, A. Forster, J. Kendall, and M. , Bayesian inference, 2004.

T. Plate, ACCURACY VERSUS INTERPRETABILITY IN FLEXIBLE MODELING : IMPLEMENTING A TRADEOFF USING GAUSSIAN PROCESS MODELS, Behaviormetrika, vol.26, issue.1, pp.29-50, 1999.
DOI : 10.2333/bhmk.26.29

R. Development and C. Team, R : A Language and Environment for Statistical Computing . R Foundation for Statistical Computing, 2010.

C. Rasmussen and C. Williams, Gaussian Processes in Machine Learning, 2006.
DOI : 10.1162/089976602317250933

O. Roustant, D. Ginsbourger, and Y. Deville, DiceKriging : Kriging methods for computer experiments, 2010.

J. Sacks, W. Welch, T. Mitchell, W. , and H. , Design and Analysis of Computer Experiments, Statistical Science, vol.4, issue.4, pp.409-423, 1989.
DOI : 10.1214/ss/1177012413

T. Santner, B. Williams, and W. Notz, The design and analysis of computer experiments, 2003.
DOI : 10.1007/978-1-4757-3799-8

B. Schölkopf and A. Smola, Learning with kernels, 2002.

L. Schwartz, Sous-espaces hilbertiens d'espaces vectoriels topologiques et noyaux associés, pp.115-256, 1964.

I. Sobol, Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates, Mathematics and Computers in Simulation, vol.55, issue.1-3, pp.271-280, 2001.
DOI : 10.1016/S0378-4754(00)00270-6

M. O. Stitson, A. Gammerman, V. Vapnik, V. Vovk, C. Watkins et al., Support vector regression with anova decomposition kernels, 1997.

C. Stone, Additive regression and other nonparametric models. The annals of Statistics, pp.689-705, 1985.

R. Tibshirani, Regression shrinkage and selection via the lasso, Journal of the Royal Statistical Society. Series B (Methodological), pp.267-288, 1996.

S. Touzani, Response surface methods based on analysis of variance expansion for sensitivity analysis, 2011.
URL : https://hal.archives-ouvertes.fr/tel-00614038

G. Wahba, Spline models for observational data, Society for Industrial Mathematics, vol.59, 1990.
DOI : 10.1137/1.9781611970128

G. Wahba, Y. Wang, C. Gu, R. Klein, and B. Klein, Smoothing spline anova for exponential families, with application to the wisconsin epidemiological study of diabetic retinopathy. The Annals of Statistics, pp.1865-1895, 1995.

W. Welch, R. Buck, J. Sacks, H. Wynn, T. Mitchell et al., Screening, Predicting, and Computer Experiments, Technometrics, vol.34, issue.1, pp.15-25, 1992.
DOI : 10.2307/1269548

J. Wyatt, Nervous about artficial neural networks ? The Lancet, pp.1175-1177, 1995.

]. T. Muehlenstaedt, O. Roustant, L. Carraro, and S. Kuhnt, Data-driven Kriging models based on FANOVA-decomposition, Statistics and Computing, vol.34, issue.4
DOI : 10.1007/s11222-011-9259-7

URL : https://hal.archives-ouvertes.fr/emse-00699673

N. Cressie, Statistics for Spatial Data, Wiley Series in Probability and Mathematical Statistics, 1993.

K. Fang, R. Li, and A. Sudjianto, Design and modeling for computer experiments, 2006.
DOI : 10.1201/9781420034899

A. Ohagan, Bayesian analysis of computer code outputs: A tutorial, Reliability Engineering and System Safety 91

C. Stone, Additive regression and other nonparametric models, The annals of Statistics, pp.689-705, 1985.

W. Newey, Kernel Estimation of Partial Means and a General Variance Estimator, Econometric Theory, vol.56, issue.02, pp.233-253, 1994.
DOI : 10.2307/1913713

T. Hastie and R. Tibshirani, Generalized Additive Models, Monographs on Statistics and Applied Probability, 1990.

A. Buja, T. Hastie, and R. Tibshirani, Linear Smoothers and Additive Models, The Annals of Statistics, vol.17, issue.2, pp.453-510, 1989.
DOI : 10.1214/aos/1176347115

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.143.1113

W. J. Welch, R. J. Buck, J. Sacks, H. P. Wynn, T. J. Mitchell et al., Screening, Predicting, and Computer Experiments, Screening, predicting, and computer experiments, pp.15-25, 1992.
DOI : 10.2307/1269548

D. Ginsbourger, D. Dupuy, A. Badea, O. Roustant, and L. Carraro, A note on the choice and the estimation of Kriging models for the analysis of deterministic computer experiments, Applied Stochastic Models in Business and Industry, vol.21, issue.7, pp.115-131, 2009.
DOI : 10.1002/asmb.741

URL : https://hal.archives-ouvertes.fr/hal-00270173

T. J. Santner, B. Williams, and W. Notz, The Design and Analysis of Computer Experiments, 2003.
DOI : 10.1007/978-1-4757-3799-8

M. Minoux, Mathematical Programming: Theory and Algorithm, 1986.

R. Development and . Team, R: A Language and Environment for Statistical Computing, 2010.

A. Marrel, B. Iooss, F. Van-dorpe, and E. Volkova, An efficient methodology for modeling complex computer codes with Gaussian processes, Computational Statistics & Data Analysis, vol.52, issue.10, pp.52-4731, 2008.
DOI : 10.1016/j.csda.2008.03.026

URL : https://hal.archives-ouvertes.fr/hal-00239492

A. Berlinet and C. Thomas-agnan, Reproducing kernel Hilbert spaces in probability and statistics, 2004.
DOI : 10.1007/978-1-4419-9096-9

W. Chen, R. Jin, and A. Sudjianto, Analytical variance-based global sensitivity analysis in simulation-based design under uncertainty, Journal of mechanical design, vol.127, 2005.

B. Efron and C. Stein, The Jackknife Estimate of Variance, The Annals of Statistics, vol.9, issue.3, pp.586-596, 1981.
DOI : 10.1214/aos/1176345462

S. R. Gunn and J. S. Kandola, Structural modelling with sparse kernels, Machine Learning, vol.48, issue.1/3, pp.137-163, 2002.
DOI : 10.1023/A:1013903804720

P. Krée, Produits tensoriels complétés d'espaces de Hilbert, Séminaire Paul Krée, vol.1, issue.7, pp.1974-1975

A. Marrel, B. Iooss, B. Laurent, and O. Roustant, Calculations of Sobol indices for the Gaussian process metamodel, Reliability Engineering & System Safety, vol.94, issue.3, pp.742-751, 2009.
DOI : 10.1016/j.ress.2008.07.008

URL : https://hal.archives-ouvertes.fr/hal-00239494

C. E. Rasmussen and C. Williams, Gaussian Processes in Machine Learning, 2006.
DOI : 10.1162/089976602317250933

URL : http://hdl.handle.net/11858/00-001M-0000-0013-F365-A

I. M. Sobol, Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates, Mathematics and Computers in Simulation, vol.55, issue.1-3, pp.271-280, 2001.
DOI : 10.1016/S0378-4754(00)00270-6

G. Wahba, Y. Wang, C. Gu, R. Klein, and B. Klein, Smoothing spline anova for exponential families, with application to the wisconsin epidemiological study of diabetic retinopathy, The Annals of Statistics, vol.23, pp.1865-1895, 1995.