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De I’échantillonnage optimal en grande et petite dimension

Résumé

Pendant ma these, j’ai eu la chance d’apprendre et de travailler sous la supervision de mon
directeur de these Rémi, et ce dans deux domaines qui me sont particulierement chers. Je veux
parler de la Théorie des Bandits et du Compressed Sensing. Je les vois comme intimement
liés non par les méthodes mais par leur objectif commun: 1’échantillonnage optimal de I’espace.
Tous deux sont centrés sur les manieres d’échantillonner I'espace efficacement : la Théorie des
Bandits en petite dimension et le Compressed Sensing en grande dimension.

Dans cette dissertation, je présente la plupart des travaux que mes co-auteurs et moi-méme

avons écrit durant les trois années qu’a duré ma these.

Mots-clefs

Théorie des bandits, Compressed Sensing, Echantillonnage adaptatif, Monte-Carlo

On optimal Sampling in low and high dimension

Abstract

During my PhD, I had the chance to learn and work under the great supervision of my advisor
Rémi (Munos) in two fields that are of particular interest to me. These domains are Bandit
Theory and Compressed Sensing. While studying these domains I came to the conclusion that
they are connected if one looks at them trough the prism of optimal sampling. Both these fields
are concerned with strategies on how to sample the space in an efficient way: Bandit Theory in
low dimension, and Compressed Sensing in high dimension.

In this Dissertation, I present most of the work my co-authors and I produced during the three
years that my PhD lasted.
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Bandit Theory, Compressed Sensing, Adaptive Sampling, Monte-Carlo
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Chapter 1
Résumé en francais de cette these

Ce travail de these se situe a la frontiere entre les domaines du machine learning et des statis-
tiques. Pendant ces trois ans, sous la supervision intelligente de Rémi Munos, je me suis plus
spécifiquement attachée a un probléme qui réunit élégamment ces deux domaines, c’est a dire
I’échantillonnage adaptatif.

Afin de m’intéresser aux problemes posés par 1’échantillonnage adaptatif, je me suis con-
centrée sur deux thémes qui résument simplement les deux grands cas de figure qui peuvent
se poser au praticien. Le premier est celui de I’échantillonnage en petite dimension. Afin de
I’étudier, j’ai travaillé sur les techniques de modélisation par des bandits. Le second concerne
les problemes posés par le passage en dimension plus élevée. Récemment, des méthodes simples
mais efficaces ayant attiré beaucoup d’attention ont été réunies sous ’acronyme compressed
sensing. Je me suis intéressée a mieux comprendre ces récentes avancées. Je me suis plus parti-
culierement intéressée aux différentes facons d’échantillonner dans ces deux circonstances. Par
I’étude de ces deux littératures, nous avons été, avec mes co-auteurs, capables de contribuer aux
deux domaines par les différents travaux qui composent cette dissertation.

Mon objectif au cours de cette introduction sera d’essayer d’expliquer aussi clairement et
succinctement que possible quelles sont les principales contributions de cette these, et surtout
d’expliquer quelle en a été la démarche. Pour ce faire, je rappellerai également, brievement,
quel est ’état de I’art en bandits aussi bien qu’en compressed sensing, et je suivrais le plan du

document principal. J’essaierai surtout de rester aussi peu technique que possible.

Contents
1.1 Théoriedes bandits . . . . . . . . . i i i i i i i e e e e e e e e e e e e e 2

1.1.1 Les bandits : un outil efficace en petite dimension . . . . .. ... .. ...

1.1.2 Upper Confidence Bounds Algorithms for Active Learning in Multi-Armed

Bandits . . . . . .. 4
1.1.3 Finite time analysis of stratified sampling for Monte Carlo . . . . . . . . .. 6
1.1.4 Minimax Number of Strata for Online Stratified Sampling given Noisy Samples 8
1.1.5 Online Stratified Sampling for Monte-Carlo integration of Differentiable func-

BIOMS . . . e 9



1. RESUME EN FRANCAIS DE CETTE THESE
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Figure 1.1: Domaines abordés pendant mes trois ans de these.

1.1.6 Toward optimal stratification for stratified Monte-Carlo integration . . . . . 10
1.2 Compressed Sensing . . . . . . . . v v i v it e e e e e e e e e 10
1.2.1 Compressed Sensing : L’échantillonnage optimal en grande dimension . . . 11
1.2.2 Sparse Recovery with Brownian Sensing . . . . . . . ... ... ... .... 12

1.2.3 Bandit Theory meets Compressed Sensing for high dimensional linear bandit 13

1.1 Théorie des bandits

1.1.1 Les bandits : un outil efficace en petite dimension

Le domaine principal auquel cette these peut étre rattachée est tout de méme celui des bandits.
Ce théme de recherche existe sous ce nom depuis plus de 50 ans, et a été introduit par Robbins
[1952]. Les bandits posent simplement le probleme de choix dans un environnement incertain.
On peut voir chaque probléme de bandit comme un jeu répété ou au cours duquel un joueur joue
a un jeu séquentiel contre un environnement, qui peut étre aléatoire ou malicieux. A chaque
itération du jeu, le joueur doit prendre une décision (choisir un bras, ou bras fait référence au bras

d’un bandit manchot dans un casino). Cette décision influe non seulement sur la récompense



Parameétres inconnus du jeux (caractérisation de ’environnement) : Dis-
tributions (bras) (vy,...,vk) des récompenses quand le joueur choisit les différentes
actions
Parameétres connus : Nombre d’actions K et budget n
fort=1,...,ndo
Le joueur choisi k; € {1,... K}
L’environnement donne au joueur la récompense Y; ~ v, qui est indépendante
des autres récompenses
end for
Le joueur renvoie, a la fin du jeu: > | V;

Figure 1.2: Le jeu de bandit stochastique a plusieurs bras.

du joueur, mais aussi sur ce que le joueur observe (apprend) de I’environnement. Le schéma 1.2
reprend les grandes lignes du jeu de bandit stochastique a plusieurs bras, comme il a été posé
initialement par Robbins [1952]. Dans ce schéma, il est important de noter que le jeu considéré
est un jeu a horizon fini et connu, c’est a dire que le joueur sait qu’il devra choisir n fois une
action. Dans ce cas, on dit que le joueur dispose d’un budget n. L’objectif pour le joueur est, par
un choix judicieux d’actions, de réussir & maximiser la somme de ses récompenses (Y ;- ; Y; si
on reprend les notations de la Figure 1.2). Pour ce faire, il est nécessaire que le joueur réussisse
a bien répartir son budget entre 1’exploration de chaque bras afin d’avoir une meilleure idée de
chaque distribution, et I’exploitation des informations obtenues, et ce afin de choisir plus souvent
les meilleurs bras. En effet, les algorithmes intéressants pour résoudre des problémes de bandits
sont ceux qui essaient de comprendre la forme cachée du probleme statistique et de s’y adapter
le mieux possible. Il est important de bien se rappeler que la plupart des résultats actuels en
bandits sont sous formes de bornes a distance finie entre ce qu’un oracle aurait pu faire de mieux
et ce que fait concretement ’algorithme proposé. C’est pourquoi, & mon sens, les bandits sont si
bien situés a la frontiere entre les statistiques et le domaine du machine learning : la confection
des bornes nécessite des outils, parfois pointus de la théorie des statistiques, et comme elles sont

a distance finie, elles sont directement informatives pour ’application concrete de 'algorithme.

De nombreux et intelligents algorithmes ont été proposés pour répondre le mieux possible
a ce dilemme. Le lecteur intéressé peut se reporter au Chapitre 3 de la présente these pour
une revue de littérature sur le bandit stochastique et quelque-unes de ses principales variantes.
Pour une description plus complete de la littérature existante, il peut aussi, entre autres, lire les
excellents états de l'art présents dans les theses de Bubeck [2010] et Maillard [2011].

J’aime a voir cette fagon de penser I’échantillonnage (la vision bandit) comme étant partic-
ulierement pertinente en petite dimension. Par la je ne veux pas dire que le nombre d’actions est
“petit”, premierement car ce n’est pas précis, et deuxiemement car de nombreuses variantes de
bandits sont utilisées pour modéliser des situations dans lesquelles le nombre d’actions est infini
(bandits linéaires, bandits continus... voir Chapitre 3). Je veux plutdt dire que, d’une certaine
facon, il est pertinent de penser en termes de bandits les problémes pour lesquels il est possible

d’avoir une idée de 'effet de chaque action en utilisant un budget relativement limité. En effet,
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quand l’ensemble des actions est grand, des hypotheses de régularité sont faites de sorte que
I'inférence est tout de méme possible. Prenons par exemple les bandits linéaires. Le nombre
d’actions dans ce cas peut étre infini. Par contre, la dimension de ’espace des actions quant
a elle est bien finie, et petite devant le budget. Il est donc possible de parcourir une base de
I’ensemble des actions avec peu de budget, puis d’utiliser ’hypothese de linéarité pour estimer
effet de chaque action. Pour les bandits continus (par exemple pour optimiser des fonctions,
comme décrit dans les articles [Stoltz et al., 2011] et [Munos, 2011]), des hypotheses de régularité
(connues ou inconnues) sont toujours faites pour justifier que le fait de choisir une action n’est
pas tres différent du fait de choisir une autre action “proche” en un certain sens. Ainsi, méme
si ces problemes concernent effectivement un trés grand espace d’actions, des hypotheses sont
toujours faites pour que, en approximant, il soit possible de diminuer la taille de cet espace.
Grace a cela, il est non seulement possible de s’adapter au probleme, mais du coup salutaire de
le faire.

Je vais maintenant décrire les différentes contributions que mes co-auteurs et moi-méme avons
apporté dans ce domaine. Elles sont au nombre de cing, et toutes concernent des problemes
légerement différents du probléme de bandit initial exposé préalablement. Toutefois, elles sont
tres fortement inspirées des grandes idées développées pour ce probleme. Parmi ces contribu-
tions, quatre d’entre elles forment un travail continu et cohérent sur I'intégration adaptative de
fonctions par Monte-Carlo stratifié. Celle que je vais présenter en premier concerne un probleme
trés proche de ce theme et a été en quelque sorte un travail préliminaire a Monte-Carlo stratifié.

Je présente ici ces travaux dans le méme ordre que celui de cette dissertation.

1.1.2 Upper Confidence Bounds Algorithms for Active Learning in Multi-
Armed Bandits

Le premier travail que je présente s’intitule " Upper Confidence Bounds Algorithms for Active
Learning in Multi-Armed Bandits”. C’est un travail commun avec Alessandro Lazaric, Moham-
mad Ghavamzadeh, Rémi Munos et Peter Auer, et nous avons déja publié une premiére version
de cet article pour la conférence “Algorithmic Learning Theory” en 2011 (disponible sous [Car-
pentier et al., 2011a]). Une version plus longue est en en train de se faire évaluer par le journal
“Theoretical Computer Science”.

Dans cet article, nous reprenons le probleme, déja posé par Antos et al. [2010], d’apprendre
avec une méme précision les moyennes py; de plusieurs distributions (bras) quand les variances
al% de ces distributions different entre elles, donc quand le bruit est hétéroscédastique. Les
algorithmes que ’on construit ne connaissent pas les uy et les ai, mais ils peuvent les apprendre
en répartissant séquentiellement un budget de n observations entre les différentes distributions.

L’objectif est de construire un algorithme qui minimise le regret, qui s’exprime comme

K
_ 2 ket Ui?;
)

max [ [(ﬁkz,n - mc)Q] -

k<K



ou l'espérance est mesurée sur les échantillons, et ﬁk,n est la moyenne empirique construite
sur les T}, ,, échantillons prélevés sur la distribution k. La quantité % est la plus petite
(sur les allocations) variance maximale (sur les distributions) qu’'une stratégie statique ora-
cle qui connalt les o peut atteindre, et on la trouve en résolvant le probleme d’optimisation
min(7y),:s°, T=n MaXp<k E [(ﬁkn — ,uk)Q}. L’objectif est d’obtenir un regret en o(1/n), de sorte
que la stratégie atteignant ce regret est quasiment aussi efficace que la stratégie optimale “oracle”
statique.

Produire des méthodes efficaces pour résoudre ce genre de probleme est intéressant en pra-
tique. Par exemple, pour le controle de risque industriel. Si les machines utilisées pour la
production sont composés de nombreuses pieces que 'on peut tester séparément et qui ont
des probabilités hétérogenes et inconnues de tomber en panne (voire Figure 1.3, surtout car
I'image est jolie), si le dysfonctionnement d’une seule piece entraine 'arrét des machines, alors
le probleme de garantir le bon fonctionnement de la machine sans utiliser trop de ressources

correspond assez bien a la forme du regret que nous proposons.

Figure 1.3: Machine a cigarettes. Source : James Albert Bonsack (1859 a 1924)

L’article [Antos et al., 2010] présente un algorithme appelé GAFS-MAX qui fonctionne, pour
un budget n fixé, en deux phases successives d’exploration et d’exploitation. Les auteurs prou-
vent une borne sur le regret de cet algorithme, en O(n=%/2) (ott O(.) est un O(.) & poly(log(.).)

prét). Il faut également noter ici que la borne sur le regret de GAFS-MAX comporte une
2

dépendance inverse en miny< g ﬁ : plus cette quantité est petite, plus le regret est grand.
1=1"1
Notre travail dans I'article “Upper Confidence Bounds Algorithms for Active Learning in

Multi-Armed Bandits” reprend donc le méme probléeme. Notre objectif était d’étudier plus
2

finement cette dépendance en ming<g > Igi ol Nous proposons un premier algorithme, CHAS,

qui s’appuie sur des idées maintenant classiques dans la littérature des bandits, et qui sont

celles de borne de confiance supérieures (voir [Auer et al., 2002]). Une analyse assez simple de
cet algorithme permet de retrouver les mémes résultats que pour GAFS-MAX. Le deuxieme

algorithme que nous proposons, BAS, est proche de CHAS mais est construit avec des bornes
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de confiance plus fines. Grace a cela, nous somme capables de prouver, quand les distributions
2

sont gaussiennes, des bornes toujours en O(n*?’/ 2), mais ne dépendant pas de ming< g ;(77’“2
Malheureusement, nous n’avons pas été capable de généraliser ce type de bornes pour unézf)hils
large classe de distributions. Nous nous sommes donc posé la question de l'origine de cette
dépendance, et avons conclu par quelques intuitions que, bizarrement, elle pouvait bien naitre
de la forme des distributions. Nous avons donc présenté quelques expériences corroborant cette
intuition. Je parle plus longuement de ce travail au cours du Chapitre 4 qui lui est dédié.

Les quatre articles suivants concernant les contributions en bandit de cette dissertation sont
toutes sur un seul et méme sujet, qui est celui de trouver des stratégies adaptatives pour intégrer
des fonctions. La prochaine Sous-section sera notablement plus longue que les trois suivantes,

essentiellement car elle me sert aussi a poser le probleme commun a toutes.

1.1.3 Finite time analysis of stratified sampling for Monte Carlo

Le premier travail de cet série s’intitule ”Finite time analysis of stratified sampling for Monte
Carlo”. Nous avons publié avec Rémi Munos une version courte de ce travail dans le rapport
de la conférence Advances in Neural Information Processing Systems en 2011 (voir Carpentier
and Munos [2011a]). Une version longue de ce travail a été effectuée en coopération avec Rémi
Munos et Andras Antos. Le Chapitre 5 de la présente these lui est dédié.

L’objectif de ce travail ainsi que des trois travaux suivants est de trouver des méthodes
efficaces pour intégrer des fonctions, en supposant qu’il est possible de choisir ou échantillonner.
Pour ce travail en particulier, nous supposons que le domaine de la fonction a intégrer est découpé
en strates (régions de I'espace), et qu'il est possible non seulement d’échantillonner aléatoirement
dans chacune des strates, mais qu’en plus on a acces a la mesure exacte de chaque strate. Nous
indexons chaque strate par k et nous appelons w; leur mesure respective. Echantillonner des
points aléatoirement dans la strate k résulte en la collection de T}, ,, réalisations d'une variable
aléatoire v, de moyenne uy, et de variance 0,3 (nous supposons ici comme dans la suite que ces
moments existent). L’objectif est d’approximer aussi bien que possible I'intégrale de la fonction
par rapport & la mesure d’échantillonnage, c’est a dire pu = Ele Wik, PAT [y = Ele Wik s
ol [i, est la moyenne empirique construite sur les T}, échantillons prélevés sur la strate
k. 1II est intuitif qu’il est préférable pour ce probleme d’allouer plus d’échantillons dans les
strates ayant une plus grande variance. J’illustre trois exemples d’allocation possibles a I’aide du
graphique 1.4. Si on considere la norme \/IW comme étant une bonne mesure de performance
d’un estimateur, il est cohérent de considérer le regret d’une stratégie comme étant

(> g wko k)2

E[(71n — %) — AT

2
N WL O,
ol 07 nk k)

est la plus petite variance que peut obtenir une stratégie statique oracle (qui a
acces aux o). L’objectif est de construire une stratégie qui minimise ce regret. Ce contexte

est tres classique dans la littérature sur les méthodes de réduction de variance pour Monte-



Carlo, et est connu comme “Monte-Carlo stratifié” (voir [Rubinstein and Kroese, 2008] pour
une présentation exhaustive).
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Figure 1.4: Gauche : Allocation Monte-Carlo. Milieu : Allocation uniforme pour Monte-Carlo
stratifié. Droite : Allocation optimale pour Monte-Carlo stratifié.

Ce qui est moins standard est de construire des stratégies adaptatives pour ce probleme,
qui réussissent a arbitrer efficacement entre exploration des distributions et exploitation de
I'information, donc allouer plus d’échantillons dans les strates ou la variance est plus grande.
Il y a toutefois des articles sur ce sujet, notamment dans le domaine de I'ingénierie financiere
et de la finance mathématique : étre capable d’intégrer rapidement des fonctions est un défi
important de ce domaine. Je vais parler ici de deux articles récents et qui représentaient autant
que je sache I’état de l'art de ce domaine au moment ou nous avons publié notre article. Le
premier papier est un travail de Etoré and Jourdain [2010] et propose une stratégie asymptotique,
SSAA, pour résoudre ce probleme. Les auteurs démontrent que l’estimateur renvoyé par leur
algorithme converge vers l'intégrale de la fonction, et que de plus la variance de cet estimateur
est asymptotiquement optimale, donc que le regret décroit asymptotiquement plus vite que
1/n. Comme ce genre de probleme concerne l'efficacité concrete de méthodes, il est également
tres important d’avoir des stratégies efficaces en temps fini, ainsi que des garanties théoriques
associées. C’est pour cela que Grover [2009] a repris ce probleme en le posant cette fois sous la
forme d’un probleme de bandit. Grace aux idées de ce domaine, il arrive a prouver qu’un proxy
sur le regret est d’ordre O(n‘3/ 2), ot1 cet ordre de grandeur cache une dépendance inverse en

ming< g Z}}"% : plus cette quantité est petite, plus le regret est grand. Toutefois, comme il

i=1 Wi0i

ne relie pas son proxy au vrai regret, il n’est pas capable de démontrer 'optimalité asymptotique
de son algorithme comme dans [Etoré and Jourdain, 2010].
Trois questions se posent naturellement, questions auxquelles nous répondons du moins par-

tiellement au cours du Chapitre 5 de cette dissertation. La premiere concerne la dépendance

en ming< g Z:Kw’fiaka du (proxy sur le) regret, la seconde porte sur le lien entre le regret et le
i=1 Widi

proxy sur le regret défini dans [Grover, 2009], et enfin la derniére est de savoir quelle serait
une borne inférieure sur ce probleme (que peut faire de mieux la meilleure stratégie adaptative

qui ne connait pas les variances sur les strates), et quel serait du coup un algorithme optimal

1

en termes de regret cette fois*. Nous proposons un algorithme appelé MC-UCB, et reposant

! Jusque 13, nous avons appelé stratégie asymptotiquement optimale une stratégie qui est asymptotiquement

7
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de nouveau sur des idées de bornes de confiance supérieures. Nous prouvons, pour cet algo-

rithme, deux vitesses pour le proxy de Grover [2009] sur le regret, une premiere en O(n~3/2)

comme dans [Grover, 2009], avec une dépendance inverse en ming< g Z;}%’ et une seconde
- i=1Wi%i
~  11/3 , . . . .
en O(%) sans aucune dépendance en ming< Z}}"% cette fois. Par ailleurs, nous exhibons
- i=1WiTi

également une borne inférieure, minimax, pour les algorithmes adaptatif sur ce probleme : pour

tout algorithme, il existe un probleme tel que le proxy du regret de 'algorithme sur ce probleme

1/3
54/3 )

minimax-optimal. Enfin, nous relions, toujours pour notre algorithme, le proxy sur le regret avec

soit d’ordre au moins Q( . Forts de cela, nous savons que notre algorithme MC-UCB est
le vrai regret et sommes donc capables de montrer asymptotiquement aussi bien qu’a distance
finie la décroissance dudit regret vers 0, et plus vite que 1/n.

Il est a noter que jusqu’a présent, aucune mention n’a été faite de comment choisir la strat-
ification. On suppose qu’elle est fournie a l'algorithme. Il est toutefois tres important, si I’'on
souhaite étre vraiment efficace, de se poser ce probleme en détail. C’est ce que nous avons
essayé de faire dans les trois articles suivants. Nous ne sommes toutefois pas les premiers a
nous étre posé cette question. En effet, ce probleme a intéressé, encore une fois, les chercheurs
en statistiques et finance mathématique. Il y a eu des réponses apportées par exemple par les
articles [Arouna, 2004; Etoré et al., 2011; Kawai, 2010]. Dans le plus récent des travaux que
j’al pu trouver a ce sujet, [Etoré et al., 2011], les auteurs étudient, sous des hypothéses faibles,
le comportement de ’allocation optimale quand le diametre des strates tend vers 0, et ce sous
deux hypotheses bien distinctes : quand la stratification couvre un sous-espace vectoriel de
lespace total (cas “bruité) et quand la stratification couvre tout l'espace (cas "non bruité“).
Ils proposent ensuite un algorithme qui stratifie ’espace intelligemment, mais sans proposer
de garanties théoriques. Par ailleurs, leur algorithme est congu pour fonctionner dans le cas
asymptotique. Distinguer entre les cas ”bruités“ et ceux "non bruités“ est tres important, car
les ordres de vitesses d’approximation different beaucoup entre les deux.

Les bornes a distance finies obtenues pour MC-UCB, ainsi que notre connaissance du fait qu’il
est minimax-optimal, nous a permis de nous poser plus en détail la question de la stratification
de D’espace. Dans les trois Sous-parties suivantes nous présentons trois de nos travaux sur ce

sujet, dans les divers cas de figure ”bruités“ et "non bruités“.

1.1.4 Minimax Number of Strata for Online Stratified Sampling given Noisy
Samples

Le second travail sur Monte-Carlo stratifié s’intitule “Minimax Number of Strata for Online
Stratified Sampling given Noisy Samples et est un travail commun avec Rémi Munos. Nous
avons publié une version courte de ce travail dans le rapport de la conférence Algorithmic

Learning Theory en 2012.

équivalente a la meilleure stratégie. Nous appelons stratégie optimale une stratégie tendant & un objectif plus
ambitieux, c’est & dire a 'objectif de minimiser de fagon optimale (aussi bien qu’une potentielle borne inférieure)
a distance finie le regret lui-méme.



L’objectif de ce travail est de déterminer de fagon minimax optimale le nombre de strates en
lesquelles il est pertinent de diviser I’espace, étant donné un budget n et la connaissance du fait
que la fonction que 'on veut intégrer est bruitée et a—Holder. La force de notre approche est de
nous appuyer sur le fait que MC-UCB est minimax optimal dans la classe des algorithmes adap-
tatifs?. En exhibant une vitesse de décroissance, en fonction du nombre de strates, de la variance
“oracle” vers la plus petite variance sur la meilleure partition, nous sommes donc capables de
fournir un algorithme qui est minimax-optimal (parmi les algorithmes adaptatifs) en termes de
pseudo-regret, sur la classe des fonctions Holder, pour le probleme de I'intégration adaptative :
il n’est pas venu a notre connaissance que d’autres travaux fournissaient des résultats similaires.

Nous décrivons plus en détail notre procédure au cours du Chapitre 6.

1.1.5 Online Stratified Sampling for Monte-Carlo integration of Differen-
tiable functions

Le troisiéme travail sur Monte-Carlo stratifié s’intitule “Online Stratified Sampling for Monte-
Carlo integration of Differentiable functions” et est un travail commun avec Rémi Munos. Nous
avons publié une version courte de ce travail dans le rapport de la conférence Advances in Neural
Information Processing Systems en 2012.

L’objectif de ce travail est de proposer des méthodes efficaces pour intégrer des fonctions
non bruitées et dérivables. Comme expliqué dans 'article [Etoré et al., 2011], les vitesses de
convergence dans le cas bruité et non bruité different beaucoup. En effet, il est possible, dans
le cas non bruité, de construire facilement un estimateur de I'intégrale d’une fonction dérivable

1-2/d (et donc plus petite que 1/n) ot d est la dimension du

dont la variance est d’ordre n~
domaine de la fonction. Cela est possible en utilisant des idées de quasi Monte-Carlo (voir
notamment [Niederreiter, 1978]) ou, autrement dit, en divisant I’espace en n strates de diametre
minimal, contenant chacune un point tiré aléatoirement.

Il ne faut toutefois pas oublier que méme dans ce cas, s’adapter a la forme de la fonction
reste important pour optimiser la vitesse d’approximation. Nous nous sommes donc attelés a la
tache de mélanger deux ingrédients essentiels a la bonne intégration de notre fonction réguliere
: quasi Monte-Carlo et adaptation.

Nous avons tout d’abord déterminé, en fonction du gradient de la fonction, quelle est la
meilleure stratification oracle de l’espace en petits hypercubes de taille hétérogéne. Si nous
n’imposons pas une forme a notre classe de stratification, alors nous devons nous comparer
aussi a des stratifications suivant les lignes de niveau. A notre sens, le probléme de trouver de
bonnes lignes de niveau d’une fonction est nettement plus dur que celui de calculer son intégrale.
Par ailleurs, la classe des stratifications en petits hypercubes arbitraires est déja vaste. Nous
exhibons une borne inférieure asymptotique sur ce qu'une stratégie oracle peut faire de mieux,

en stratifiant en hypercubes arbitraires, pour ce probléme.

2En fait, c’est ce travail qui, le premier, a présenté note borne inférieure minimax sur le probléme de Monte-
Carlo stratifié, et donc établi la minimax optimalité de MC-UCB.
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Ensuite, nous avons construit un algorithme, LMC-UCB, qui alloue en un temps fini les
échantillons quasiment aussi efficacement que cette stratégie oracle. Nous présentons ce travail
au Chapitre 7. A notre sens, borne inférieure aussi bien que stratégie quasi-optimale & distance
finie sont de nouveaux résultats. Il est toutefois & noter que nous ne prouvons pas, et ne pensons
d’ailleurs pas, que cette stratégie est minimaz-optimale en terme de pseudo-regret, comme celle

présentée a la Subsection précédente.

1.1.6 Toward optimal stratification for stratified Monte-Carlo integration

Au cours de la Subsection 1.1.4, nous avons introduit une méthode pour choisir de fagon
minimax-optimale la stratification de l'’espace. Nous avons donc démontré qu’il n’était pas
possible de faire mieux de facon simultanée sur toutes les fonctions bruitées a—Holder. Mais
nous n’avons pas exclu la possibilité d’un algorithme plus performant dans certains cas. Au
cours du quatrieme et dernier de nos travaux sur Monte-Carlo, nous nous sommes posé la ques-
tion de la sélection, dans une vaste classe de partitions, de la meilleure partition, ou meilleure
dépend ici de la fonction a intégrer elle-méme. En d’autres termes, nous voulons adapter la par-
tition elle-méme, aussi bien que ’allocation, a la fonction. Ce travail, intitulé “Toward optimal
stratification for stratified Monte-Carlo integration”, est commun avec Rémi Munos.

Nous avons choisi comme classe de partitions un partitionnement hiérarchique de I'espace.
Nous avons fourni deux algorithmes, Deep-MC-UCB, et MC-ULCB, dont I'objectif est donc de
faire “presque® (& une constante prét) aussi bien que MC-UCB sur la meilleure partition pour
la fonction qu’ils essaient d’intégrer. Le premier, Deep-MC-UCB, est relativement simple et
est capable de faire aussi bien que MC-UCB, & une constante prét sur la meilleure partition
de profondeur homogene. Le second, MC-ULCB, est plus tortueux, mais atteint notre objectif
de, simultanément, sélectionner la meilleure partition, et de réaliser la meilleure allocation des
ressources sur cette partition.

Nous pensons que ce résultat est nouveau en son genre car nous utilisons de fagon extensive,
pour le démontrer, des bornes a distance finie : elles sont essentielles pour savoir ou raffiner la
partition avec un budget limité.

Pour conclure ce travail sur nos travaux en Monte-Carlo il ne faut pas oublier de mention-
ner que beaucoup de questions restent ouvertes, notamment celle, tres intéressante, de bornes
inférieures dépendant de la fonction pour le regret de MC-UCB. Cela nous permettrait de
réfléchir a un algorithme optimal en ce sens, et donc d’aller plus loin dans la compréhension

du partitionnement adaptatif de ’espace.

1.2 Compressed Sensing

Je vais maintenant parler du second domaine auquel je me suis intéressée pendant ma these : le
Compressed Sensing (connu sous de multiples autres noms). Ce domaine a connu une explosion

récemment a tous les niveaux, aussi bien en ce qui est des contributions théoriques que du
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cOté des applications. Ce qui est particulierement intéressant avec le Compressed Sensing est
qu’il repose sur des domaines extrémement variés, et les lie entre eux : le traitement du signal,

I’optimisation, la sélection de modele, les statistiques et probabilités, la théorie des groupes...

1.2.1 Compressed Sensing : L’échantillonnage optimal en grande dimension

Le cadre dans lequel se situe ce champs de recherche est toutefois assez simple : il s’agit de celui
de la régression linéaire, a cela pres que la dimension d de I'espace du régresseur est supposée
étre tres grande, bien plus grande que le nombre n d’observations. On observe n combinaisons

linéaires bruitées du signal/régresseur, c’est a dire
Y =Xa+ce,

ou Y est le vector n—dimensionnel d’observations, « est le régresseur/signal en dimension d, et
X est la matrice d’observations (qui précise quelles sont les combinaisons linéaires du signal qui
sont observées), et € est le bruit.

Il n’est du coup plus possible d’utiliser les techniques usuelles, comme les moindres carrés.
Et il est par ailleurs clair qu’en toute généralité, il n’est pas possible de construire un estimateur
ayant une "bonne“ vitesse de convergence, car quoi qu’il en soit, ’erreur en norme 2 commise
sur ’estimateur est bornée inférieurement, pour au moins un probleme, par O(\/%) (et d>n)
car cette vitesse est minimax-optimale sur la classe de tous les problemes.

Il est nécessaire par conséquent de restreindre 1’espace des solutions. Une hypothese par-
ticulierement adéquate pour de nombreuses réalités est celle de sparsité : on suppose que le
signal /régresseur «, de dimension d, est en fait nul quasiment partout sauf en S coordonnées.
Cela étant, sous certaines conditions sur la matrice X, le vecteur « est bien identifié (voir [Tao,
2003] par exemple). Toutefois, comme identifié ne signifie pas forcément (et justement pas dans
ce cas 1a) identifiable en pratique, il est nécessaire de restreindre encore plus la classe des matri-
ces X acceptables afin qu’un bon estimateur de « soit donné en résolvant un probleme conveze
et donc facile (voir [Candes et al., 2004]).

Tout cela est expliqué bien plus en détail au cours du Chapitre 9, dédié aux grands résultats
du Compressed Sensing. Pour une étude bien plus complete et précise, le lecteur peut également
se reporter au livre [Fornasier and Rauhut, to appear]. Ce domaine est le pendant ”grande
dimension“ de I’échantillonnage optimal. En effet, en tres grande dimension, il faut penser
I’échantillonnage différemment afin de parvenir & des résultats intéressants. L’idée derriere le
Compressed Sensing est radicalement différente de celle qui domine en bandit et qui est 1’idée
d’essayer d’apprendre en s’adaptant. Pour réussir en grande dimension, il faut littéralement
capturer I'information en construisant une sorte de ”grille“ (par exemple la base de Fourier)
dans toutes les directions de ’espace : chaque mesure donne de l'informations sur toutes les
coordonnées de « a la fois.

Ce qui m’a donc plus particulierement intéressé au cours de cette these, toujours dans ma

problématique d’échantillonnage optimal, est de comprendre comment construire, dans différents
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cas de figure, cette "grille”. J’ai a vrai dire davantage appris sur ces thématiques que je n’ai
contribué, mais nous avons, avec mes co-auteurs, publié deux articles concernant le Compressed
Sensing. Le premier décrit une facon originale d’échantillonner I’espace quand on veut recon-
struire une fonction sparse sur une base de fonctions donnée. Le second mélange des idées de
Compressed Sensing et de Bandits, et, en prenant le meilleur des deux, propose une solution au
difficile probléme qu’est le bandit linéaire en grande dimension. Il est a noter que résoudre ce
probleme permet, entre autres, de rendre efficace la descente de gradient en tres grande dimen-
sion quand le gradient est sparse (par exemple quand une fonction d’un tres grand nombre de

variables ne dépend en réalité que d’un tres petit nombre d’entre elles).

1.2.2 Sparse Recovery with Brownian Sensing

Au cours du Chapitre 10, je présente un travail commun que nous avons effectué avec Odalric
Ambrym Maillard et Rémi Munos, et qui s’intitule “Sparse Recovery with Brownian Sensing”.
Nous 'avons publié lors de la Conférence “Neural Information Processing Systems”, en 2011
(voir Carpentier et al. [2011D]).

Holger Rauhut, dans son livre [Rauhut, 2010], présente des résultats pour le probléeme
d’échantillonner une fonction sparse sur une base fonctionnelle bornée et orthonormale. 11
démontre que si on échantillonne les points uniformément et aléatoirement dans le domaine de
définition de la fonction, alors avec forte probabilité, en résolvant un probleme d’optimisation
convexe, on trouve un estimateur qui est seulement a O(%) du vrai parametre sparse a.
Toutefois cela ne fonctionne que si la base fonctionnelle est bornée et orthonormale.

Nous nous sommes posé la question de la possibilité d’étendre ce résultat a des bases plus
générales. Pour ce faire, nous avons tout d’abord remarqué que, pour que les échantillons de la
fonction, observés dans une base, soient informatif, il faut que cette base d’observation soit tres
incohérente avec la base dans laquelle la fonction est sparse. Ici, incohérent signifie grossierement
que des vecteurs “pointus” dans une des deux bases seront forcément “plats” dans 'autre, ou
encore que le plus grand produit scalaire entre deux membres de ces deux bases est petit.
L’intuition derriere ce besoin d’incohérence est qu’échantillonner dans une base trés incohérente
avec la base pour laquelle le vecteur est sparse est informatif pour toutes les coordonnées de la
base pour laquelle le vecteur est sparse.

Nous avons ensuite remarqué qu’il y a une base dans laquelle toutes les bases sont incohérentes
: la base formée par des trajectoires Browniennes (si, bien sur, les autres bases ne sont pas
corrélées a ces trajectoires). Il est donc intéressant d’observer, au lieu de la fonction elle-méme
en un point, la convolée de cette fonction avec des mouvements Browniens. Par ailleurs, il est
possible, étant donné quelques échantillons de la fonction, d’approximer la convolution avec les
trajectoires Browniennes. En faisant cela et en résolvant un probléme convexe d’optimisation,
on peut donc estimer le paramétre sparse a qui détermine le fonction. Le fait que I’on approxime
la convolution avec des trajectoires Browniennes est la raison pour laquelle nous avons choisi le

nom Brownian Sensing.
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Nous proposons également dans cet article une fagcon de traiter le cas ou la fonction est
définie dans un espace de grande dimension : il faut échantillonner uniquement sur une courbe
bien choisie. Nous proposons des exemples concrets de courbe.

Nous proposons des bornes théoriques, pour le cas orthonormal du méme ordre que celles
présentées dans [Rauhut, 2010]. Elles sont aussi valables pour des bases arbitrairement non-
orthonormales, mais se dégradent avec la non-orthonormalité de la base. Nous pensons que, du
moins a I’époque de leur publication, ces résultats étaient nouveaux. Le détail de cet article est

fourni au Chapitre 10.

1.2.3 Bandit Theory meets Compressed Sensing for high dimensional linear
bandit

Finalement, dans le Chapitre 11, je présente un article de Rémi Munos et moi-méme, intitulé
“Bandit Theory meets Compressed Sensing for high dimensional linear bandit”. Nous ’avons
publié lors de la conférence Artificial Intelligence and Statistics en 2012.

Ce papier était important pour moi car il me permet de lier les deux domaines sur lesquels
j’ai travaillé pendant ma these. Je pense toutefois qu’il y a beaucoup de travail a faire dans
ce domaine. L’idée de ce travail est de combiner les idées de Compressed Sensing et de Ban-
dits pour des problemes en grande dimension. Les idées de Compressed Sensing permettent
d’échantillonner efficacement pour localiser I'information. Une fois cela fait, les Bandits nous
disent comment s’adapter a cette information pour mieux ’exploiter.

Nous prouvons des bornes théoriques pour le bandit linéaire en grande dimension, qui sont,
a un logarithme de la dimension prét, les mémes que celles du bandit linéaires qui connaitrait
le support du vecteur sparse. Nous expliquons ensuite pourquoi ce probleme peut étre utilisé

pour penser la descente de gradient en grande dimension quand le gradient est sparse.

Conclusion

Ainsi, j’ai réuni pour cette dissertation les contributions que nous avons produites avec mes
co-auteurs pendant les trois ans qu’ont duré ma these. Je pense que, vues sous 1’éclairage de
I’échantillonnage optimal, elles forment une suite cohérente.

Je n’ai toutefois pas inclus tous les travaux que j’ai fait sous la supervision de Rémi pendant
cette these. Nous avons aussi travaillé, avec Johan Fruitet et Maureen Clerc, sur le théme
des interfaces cerveau-machine. L’objectif de ce travail est d’utiliser des techniques de Bandit
pour accélérer les interactions entre humains et ordinateurs. Nous avons rendu publique une
version préliminaire de notre article “Sélection automatique de tache moteur via un algorithme
de bandit pour un bouton controlé par le cerveau”® (voir Fruitet et al. [2011], larticle a été
accepté a NIPS 2012).

3«Automatic motor task selection via a bandit algorithm for a brain-controlled button”en Anglais.
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1. RESUME EN FRANCAIS DE CETTE THESE

J’espere que le présent document sera facilement lisible et qu’il intéressera le lecteur autant

que ce sujet m’a moi-méme intéressé.
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Chapter 2

Introduction

During my PhD I had the chance to learn and work under the supervision of my advisor Rémi
Munos in two fields that are of particular interest to me: Bandit Theory and Compressed
Sensing. While studying these domains I came to the conclusion that they are connected if
one looks at them from the perspective of optimal sampling. Both fields are concerned with

strategies which aim to sample efficiently.

Part | Part Ii
Chapter 9:
Chapter 3: Compressed
Bandit Theory -, Sensing
$~~
§‘~~
ss
) Chapter 5: A .
fjl;:aBpft:rr:c.tive Minimax strat./Chapter 11: ghapte_r B
learnin for stratified |Sparse Bandits Srow_nlan
9 sampling MC ensing
Chapter 6: Chapter 7: Chapter 8:
Minimax number Integration of a Toward optimal
of strata for a Differentiable stratification
noisy function function

Figure 2.1: Domains that I worked on during my PhD.
In the following I explain some details of and similarities between my fields of interest.
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2. INTRODUCTION

Adaptive sampling:

Underlying any statistical or machine learning study, there is data. The objective of a prac-
titioner consists in performing operations on the dataset, which will vary depending on his
objectives, in order to output a result. The work of a statistician is to prove that, under cer-
tain conditions on the data structure, the obtained result is interesting, that is to say that it is
relevant and well-behaved. This is what the two fundamental theorems in statistics, the Law of
Large Number and the Central Limit Theorem, are all about.

The data is crucial, but luckily there are many ways to acquire it. The first and most popular
way is to collect it all at once, and receive it as a block. The set of techniques that refer to
Learning on such data are called batch learning. Most works in statistics and machine learning
are concerned with this setting. There are however many problems where it is relevant to consider
other ways to acquire data. In online learning, data comes in a stream to the practitioner,
either naturally or by choice: for instance meteorological data, or very large datasets which it
is unrealistic to expect to arrive in one block.

In an online learning context, it often makes sense to use information from previously gath-
ered data to make better sample choices in the future (depending on the objective). I refer to
the collection of such sampling methods as adaptive sampling. This is the focus of my thesis.
Depending on the practitioner’s objective, on the nature of the feedback, on the topology of the
data domain, etc., there are infinitely many possible variations on this setting, in many of which
freedom to adapt the dataset to the problem could be a true advantage (by freedom to adapt,
what I really mean is the possibility, up to a certain extent, to choose where in the domain to
sample).

Although there are countless possibilities for casting interesting problems in this setting, I
believe that there is a fundamental parameter that determines the type of methodology that
ought to be used for solving a given problem. This parameter is the dimension of the problem.
On the one hand, if the dimension of the domain is not too large, then it is probably a good
idea to adapt the samples to the problem sequentially!. To some extent it is possible to learn
the features of the problem from a small number of samples, as there are far fewer actions than
the actual number of times the domain gets sampled. On the other hand, if the dimension of
the domain is of very large, then it is probably more difficult to adapt to the specific shape of
the problem. It is however crucial to carefully allocate the samples, and to do that in the most
informative way possible. Indeed, as the dimension is high, no sample should be wasted.

The efficient techniques for these two settings are actually very different but complementary.
The focus during my PhD was to understand the possibilities and limitations in these two cases.
My personal preference was to study very simple instances of these two settings. It has given
me a better understanding of what is possible in terms of sampling, what are the efficient ways
to sample, and, finally, what are the fundamental differences and similarities between these two

settings.

IThis is true at least when the data collected from the system have a certain form of stationarity.
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Low dimension: Bandit Theory.

I first describe my work on Bandit Theory that corresponds to the low-dimensional aspect
of adaptive sampling. It is detailed in Part I of this dissertation. Bandit problems are simple
settings for formalizing exploration/exploitation dilemmas in low-dimensional adaptive sampling
problems, i.e. where one has to take actions in a random environment to simultaneously learn
a model and meet an objective. I first give, in Chapter 3, a short review of results concerning
Bandit Theory that are particularly relevant and inspirational for the contributions of this
Thesis. This allows me to draw some pointers to the vast and interesting literature of Bandit.

I then present the contributions that my co-authors and I produced during these 3 years of
my PhD, on the topic of Bandits. All the works in this Chapter are organized in chronological
order, as in this case chronological is also the most logical order for presenting this work.

The first work “Upper Confidence Bounds Algorithms for Active Learning in Multi-Armed
Bandits”, presented in Chapter 4, is on adaptive sampling for active learning. It is more easily
understandable when explained in the context of histogram regression, although the formaliza-
tion in Chapter 4 is more general than that. In a nutshell, the objective is to sample the domain
of the function in order to output the best histogram on this partition in an uniform sense given
a partition of the domain. We provide finite-time regret bounds for this problem, and improve
on existing results, that is to say Antos et al. [2010]. In the Gaussian case the improvement is
much more pronounced. We also provide an heuristic on why the bounds for this problem could
depend on the shape of the function in the strata of the partition. This is a joint work with
Alessandro Lazaric, Mohammad Ghavamzadeh, Rémi Munos and Peter Auer. It was published
in the proceedings of Algorithmic Learning Theory in 2011 (see Carpentier et al. [2011a]).

The next four works concern adaptive sampling for stratified Monte-Carlo. It is a coherent
block of work, that treats complementary aspects of the problem.

The first work of this block, “Finite time analysis of stratified sampling for Monte Carlo”
is about performing stratified sampling Monte-Carlo (for integrating a function) using bandit
ideas. It is a joint work with Rémi Munos, and a first version was published in the proceedings
of Advances in Neural Information Processing Systems in 2011 (see Carpentier and Munos
[2011a]). A longer version of this paper, containing many important extensions, is a joint work
with Rémi Munos and Andras Antos, and is presented in Chapter 5. In this version, we provide
an efficient algorithm for the problem and prove a “fast” problem dependent, and a slower
problem independent regret? bound, which is a new result for this problem. We also prove for
this problem a minimax lower-bound, which to the best of my knowledge has not been done.
Additionally, as a corollary on the regret bound, our algorithm is asymptotically optimal for
a careful choice of the parameter. Most of the previous work in this setting, like Etoré and
Jourdain [2010], prove asymptotic optimality of algorithms: for this problem, it is however very
important to have finite-time bounds as the problem is mainly motivated by computational

issues. The work of Grover [2009] provides only problem dependent finite-time bound and no

2The regret is a measure on how much we deviate from the optimal “oracle” strategy.
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2. INTRODUCTION

problem independent bound. The results are not in terms of the mean squared error of the
estimator but in terms of a proxy on this quantity: it is thus not proven that the algorithm

in Grover [2009] is asymptotically optimal.

This work is the foundation on which all the three other works on stratified Monte-Carlo
that I included in this PhD are built. The three other papers on this topic are on how to stratify
the domain of the function in an efficient way. We were inspired by ideas in [Etoré et al., 2011],
in which the authors notably distinguishes different behaviors of the estimate depending on

whether the samples collected from the function are noisy or not?.

The second work on stratified Sampling Monte-Carlo, “Minimax Number of Strata for Online
Stratified Sampling given Noisy Samples”, is a joint work with Rémi Munos and we present it
in Chapter 6. The objective of this work is to determine what is the optimal number of strata
into which it is minimax optimal to divide the domain on the class of noisy a«—Holder functions.
It was originally in this version that the minimax lower-bound for the problem of stratified
Monte-Carlo was first presented. We also prove that with this number of strata, the estimate
is almost as efficient up to a negligible term, as the best “oracle” estimate on the best possible
partition. Providing a way to stratify the domain in a minimax optimal way on the class of

a—Holder continuous functions is a new result to the best of our knowledge.

The third work on optimal sampling strategies for Monte-Carlo, “Adaptive Stratified Sam-
pling for Monte-Carlo integration of Differentiable functions”, is also a joint work with Rémi
Munos and we present it in Chapter 7. This article proposes an innovative way to mix adaptive
sampling and quasi Monte-Carlo techniques for estimating the integral of a differentiable func-
tion. We first provide an asymptotic problem dependent lower bound on what an oracle strategy
can achieve at best on the best partition in small hyper-cubes. We then provide an algorithm
that achieves, by mixing ideas from quasi Monte-Carlo and from bandit theory, a regret with
respect to the asymptotic problem dependent lower bound that is negligible when compared
to n!*t2/4 where d is the dimension of the domain on which the integration is performed?. We

believe that both the lower bound and the algorithm are new in this field.

Finally, the fourth and last work on this topic, “Toward Optimal Stratification for Stratified
Monte-Carlo Integration”, proposes algorithms whose aim is to fully adapt the partition of the
space, and select the “best” partition of the space. We managed to build an algorithm that
achieves a regret that is of the same order as the regret of MC-UCB launched on the best
partition of a hierarchical partitioning of the space. This is a joint work with Rémi Munos and

we present it in Chapter 8.

3In [Etoré et al., 2011], they in fact do not distinguish on the presence/absence of noise but on whether the
stratification is on the whole domain of the function, or only on a vectorial subspace of this domain. These two
notions are however essentially equivalent.

4And note that n'*?/? is also the rate of the asymptotic problem dependent lower bound for this problem.
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High dimension: Compressed Sensing.

As announced previously, the other aspect of adaptive sampling that has been studied in this
dissertation is sampling in very high dimensional spaces. There were recently some very inter-
esting results concerning the unintuitive, yet real possibility of perfectly sampling and recovering
an object of very high dimension with only a few, well-chosen, measurements. More precisely,
I have been very interested in Compressed Sensing techniques, and above all on how to sample
in Compressed Sensing.

In Chapter 9, I review some results of Compressed Sensing Theory, with an emphasis on
how to sample in very high dimension. I thus focus in particular on the Uniform Uncertainty
Principle, and the quadratic bottleneck for non-prime dimensional spaces. I also review how it
has been proposed to use randomness to overcome this problem.

I then present in Chapter 10 a joint work with Odalric Ambrym Maillard and Rémi Munos,
“Sparse Recovery with Brownian Sensing”. We published it in the proceedings of Neural In-
formation Processing Systems, in 2011 (see Carpentier et al. [2011b]). This paper is about
functional regression in very high dimension and provides an original deterministic sampling
technique for which if the sampled function is sparse on a given basis, one will recover the
function with very few measurements. The aim of this work is to extend the results of Rauhut
[2010], who proves that when the basis is orthonormal and bounded, then sampling randomly
(according to the measure for which the basis is orthonormal) in the domain is an efficient sam-
pling strategy for recovering the function with very few measurements. The idea of our work is
to approximate the convolution of the function with Brownian motions to force the regression
matrix to have a property that is close to RIP. We are able to show some bound on the approx-
imation error of the sparse parameter for arbitrarily non-orthonormal basis, which is new to the
best of my knowledge.

Finally, I present in Chapter 11 the last contribution I include in this dissertation, “Bandit
Theory meets Compressed Sensing for high dimensional linear bandit”. It is a joint work with
Rémi Munos and we published it in the proceedings of Artificial Intelligence and Statistics in
2012 (see [Carpentier and Munos, 2012a]). In this paper, we combine ideas from Compressed
Sensing and Bandit Theory for minimizing a function in very high dimension, when its gradient
is sparse. The initial motivation was to find a first combination of these two very complementary

approaches, and for me to draw some links between these two parts of my PhD.

Last word before starting

I did not have room for including all the work I did under Rémi’s supervision. We did also
some work with Joan Fruitet and Maureen Clerc on the topic of Brain Computer Interface.
Working on this topic has allowed me to stay somewhat close to applications. The objective of
this work is to apply Active Learning techniques to facilitate the interactions between humans

and machines. A preliminary version of our paper “Automatic motor task selection via a bandit
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2. INTRODUCTION

algorithm for a brain-controlled button” Fruitet et al. [2011] is available as a Technical Report.
I hope that I have been able to communicate through this document some of the enthusiasm

I had while learning and thinking on Bandit Theory and Compressed Sensing.
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Chapter 3

The Bandit Setting

Introduction

In this Chapter, we remind quite briefly some elements of Bandit Theory. This PhD is mainly
focused on Bandit Theory, and we believe it is important to be able to clearly situate the context

of the works we are going to present.

What we present in the following of this Chapter is however not a classically “balanced”
exposition of the bandit setting: indeed, we focus on some extensions of this setting rather
than on the historical, classic, cumulative bandit setting. This choice is motivated by the
contributions of this Dissertation. We focus more on how bandits can be used to model the
needs of adaptive sampling, and detail in particular two interesting examples which are active
learning and Monte-Carlo integration.

We however remind in the first Section quickly the historical bandit setting, as it is a very
well understood and deeply studied setting. There are some very nice results and ideas that

have been developed for this setting, and they were quite inspirational for this dissertation.
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3.1.1 The classical bandit setting: cumulative regret . . . . . ... .. ... ... 24
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3.2 Adaptive allocation with partial feedback . . . . . ... ... ... .... 28
3.2.1 Adaptive allocation with partial feedback . . . . ... ... ... ... ... 29
3.2.2 Active learning . . . . . ... 30
3.2.3 Monte-Carlo integration . . . . . . . . . .. ... 32
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3. THE BANDIT SETTING

3.1 The historical Bandit Setting

In this Section, we state the historical cumulative bandit setting: it is a simple setting for
decision making in an uncertain environment.

The very graphical name of Bandit does not refer to the Dalton or other crime geniuses, but
originally to a Casino slot machine. The idea behind this subtle metaphor is the following. In
a Casino, a player faces different slot machines. Some of these machines are “better” than the
others, in the sense that they output more money, and they have also various characteristics.
If the player is normally venal, he will try to win as much money as possible: this is the
historical cumulative bandit setting. But depending on his objectives in life in general and
casino in particular, he can have many other various objectives. In order to do so, he disposes
of an amount of money that depends on his wealthiness, and also on his level of addiction to
gambling. Note that each time he plays on a machine, he only observes what he wins on this
machine (and not what he would have obtained, had he played any other arm), so he only
observes partial feedback.

Very importantly, and this is a specificity of bandit setting in particular and reinforcement
learning in general, his choice of action, i.e. of slot machine, determines his payoff but also the
information he receives.

Assume that the player is not a mechanical genius: unluckily, he has no idea of the underlying
mechanism of the slot machines. He only observes their output, and no additional context as
for instance the fact that all the small red lights are lighten, or that the machine is half broken.
He has no context information, and this is the particularity of bandit setting when compared
to reinforcement learning. This is why the bandit setting is the simplest setting for decision
making in an uncertain environment, or reinforcement learning.

In the course of this Section, we precisely state this setting, and remind some well-known
algorithms and results. We then provide some pointers on important extensions of this setting.
I used a large amount of material to write this overview. It was in particular very helpful to read
the excellent and more complete surveys in the PhD Dissertations [Bubeck, 2010] and [Maillard,
2011].

3.1.1 The classical bandit setting: cumulative regret

The stochastic multi-armed bandit was first introduced in [Robbins, 1952]. More precisely, the
K —armed bandit setting can be formulated as a repeated game as follows. Assume that there
is a set of arms indexed by {1,..., K}. Each of these arms corresponds to a a distribution v
of mean ug. The player (also noted forecaster, learner,...) chooses at each time ¢ > 1 an action,
i.e. pulls an arm in k; € {1,..., K}. She then observes an independent reward Y; ~ vy,. It is
very important to note that she does not observe the rewards of the other arms. Assume that

the process is repeated n times (with n either available or unavailable from the beginning of the
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Unknown parameters: parameter (v1,...,vr)

Known parameters: K and n

fort=1,...,ndo
The player chooses k; € {1,... K}
The environment outputs Y; ~ v, independently from the past observations and
actions

end for

Output: > ;' | Y

Figure 3.1: The stochastic multi-armed bandit game.

game, in which case the game is called anytime). Then the objective is to maximize the sum
of rewards up to time n, that is to say > ;' ; ¥;. The full process of the game is summarized in
Figure 3.1.

We define the cumulative pseudo-regret, as

n

i =E P s LaL ;Yt} ’
where the expectation is taken over the random pulls of the rewards. An important remark is
the following. If we denote by (F;)1<i<yn the filtration associated to (Xi,...,X,) where X; is
the vector of samples that would be collected from all arms at time ¢ by an oracle player that
has access to all the rewards, then k; is F; measurable: indeed, the player has no access to the
future rewards.

The objective of the player in this setting is to design a strategy that minimizes R,. If
the player had access to the distributions (v)r<k, she would always play the optimal arm
k* = argmaxy<x p. But as the distributions are unknown, she has to learn the distributions
(vk)k<k to have an idea of what the best arm is. In order to do so, she should pull a certain
number of time also sub-optimal arms and perform ezploration. An effective strategy should
find a good trade-off between exploration and exploitation.

The historical motivation of this setting comes from [Thompson, 1933], and is about medical
trial. The objective is to select which drug to administrate to a patient in order to cure him.
Since then, there are many motivating examples for this setting. For instance, on could use it to

model strategies for ads placement on a web-page, packets routing, brain computer interface...

3.1.2 Lower and upper bounds

Lower bounds A first interesting question to ask is what can be done at best. Indeed, as the
distributions are unknown, even an optimal algorithm can not achieve a pseudo-regret of 0. We

state the following lower bounds for the pseudo-regret.

Theorem 1 (Lower bounds for cumulative stochastic bandits) We recall the problem de-

pendent and a problem independent lower-bounds.
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3. THE BANDIT SETTING

e Problem dependent lower bound Let us consider a consistent strategy, i.e. such that
for any stochastic bandit, any sub-optimal arm k, any budget n and any o > 0, there is
E(T,(k)) = o(n®). Then for any stochastic bandit with Bernouilli distribution of parameter
smaller than 1, the following holds true:

K

. Nk* -
1 f
R log Zl KL(B (1), B(uk*»
where KL(.,.) is the Kullback-Leibler divergence and B(p) is a Bernouilli distribution of

parameter p.

o Minimax lower bound Let sup represent the supremum over all stochastic bandits and
inf the infimum taken over all strategies, then the following problem independent (minimazx)
bound holds true:

inf sup R,, > %\/n?

The problem dependent lower bound is adapted from [Lai and Robbins, 1985]. A more general
version is to be found in [Burnetas and Katehakis, 1996], and holds for known finite-dimensional
parametric classes of distribution (and not only Bernouilli). The minimax lower bound is ex-
tracted from [Auer et al., 2003].

The problem independent lower bound roughly suggests us that an efficient consistent strat-
egy should sample the sub-optimal arms approximately m log(n) times with prob-
ability higher than 1 — E' This way, the expected cumulative pseudo-regret is also logarithmic,
and the closer an arm is to the optimal arm, the more often it is sampled so that it is possible
to distinguish it from the optimal arm. However, when there is 1 arm whose mean is “very
close but not too close” to the optimal arm, then the pseudo-regret is not logarithmic anymore,
but in y/n, as displayed in the problem independent lower-bound. The idea is that if there is a

%, it is impossible to distinguish it from

sub-optimal arm whose means is of order pg- —
the best arm with probability of order 1 — % without sampling it a number of time of order n.
As the gap between the mean of the best arm and the mean of this sub-optimal arms is of order
f’ then the minimax bound on the pseudo-regret holds.

Upper bounds There are many algorithms that have been proposed in order to solve the
stochastic cumulative bandit problem. Without stating precisely neither the algorithms nor the

associated Theorems, we distinguish three main steps in the building of efficient strategies.

o Asymptotically optimal strategies: The first historical algorithms are asymptotically consis-
tent. The paper [Lai and Robbins, 1985] provides an algorithm for Bernouilli distributions
that matches the problem dependent lower-bound in Theorem 1 (which they also stated).
This result has been extended in an algorithm provided in Burnetas and Katehakis [1996]

to a specific class of finite-dimensional parametric distributions. Finally, in the recent
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Known parameters: The distributions are in [0, 1]
Initialization: Play each arm once
fort=K+1,...,ndo

Compute for all arm k By = fig ¢ + QI%OZK)
Play arm k; = arg maxy, By, ; and observe Y; ~ v,

end for
Output: > ;' | Y,

Figure 3.2: Algorithm UCB.
paper [Honda and Takemura, 2010], the authors extend once again this result to arbitrary

distributions with finite support.

e Finite time strategies: The previous works are asymptotically optimal, but a very inter-
esting direction of research is to design efficient strategies that perform well even with
a finite budget. A very popular class of algorithms for doing that are based on Upper
Confidence Bounds on the mean of the arms. The first instance of those algorithms was
introduced in [Auer et al., 2002]. Although it does not match the lower bounds, its regret
is of same order log(n) when the arms have bouded-support distributions. We provide the
pseudo-code of this algorithm in Figure 3.2. An interesting variant of this algorithm has
been introduced in [Audibert et al., 2009b], and uses the empirical variance of the arms to

refine the Upper Confidence Bound on the means, and thus the regret of the algorithm .

e [inite time, optimal, strategies: A last, important question, concerns the possibility of
building algorithms which are optimal with a finite budget. In the paper [Audibert and
Bubeck, 2009], the author fill a first gap by providing a strategy that matches the minimax
lower-bound in Theorem 1 in finite-time when the arms have finite-support distributions.
And in the papers [Maillard et al., 2011] and [Garivier and Cappé, 2011] (published at the
same time), the authors provide finite-time bounds for algorithms that are asymptotically

optimal for problems with finite-support distributions.

3.1.3 Direct extensions of the classical bandit problem with cumulative regret

There are many popular and very interesting extensions of this setting. We provide a quick
overview of three extensions which are either particularly popular, or of particular interest for

the reading of this document.

Adversarial bandits: A first setting which is particularly popular, and which can be consid-
ered as the “twin” of the stochastic multi-armed bandit, is the adversarial setting. The difference
with the stochastic bandit setting is that the rewards received from the arms are not assumed to
be i.i.d. anymore and can be chosen by an adversary. The regret is assessed with respect to the
best constant strategy, i.e. the arm that has the highest sum of rewards. An efficient algorithm

is called Exp3 and was introduced in [Auer et al., 2003]. It constructs an exponentially weighted
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forecaster (introduced in [Littlestone and Warmuth, 1989] in the case of predication with expert
advice in full information) and adapts it to the specific case of bandit information. Unlike the
algorithms designed for stochastic bandits, this algorithm is randomized so that a malicious ad-
versary can not take advantage of it. It is, surprisingly, possible to prove that the pseudo-regret
of this strategy (assessed in terms of the best constant strategy for the rewards actually provided
by the adversary), even against the most malicious adversary, is of order y/nK log(K) when the
rewards are bounded. This almost matches the minimax lower bound of stochastic multi-armed
bandits.

Linear bandits: Another setting which has been gaining much attention is the cumulative
linear bandit setting. Instead of considering a finite set of actions {1,..., K}, one considers
a set A C R% The regret is measured according to the best action in this set. The problem
was introduced in [Awerbuch and Kleinberg, 2004] in the adversarial setting. The authors
in [Abernethy et al., 2008] and [Bartlett et al., 2008] propose efficient algorithms for solving this
problem in the adversarial setting, and achieve a regret in poly(d) \/Wg(n) . In the stochastic
setting, the papers [Dani et al., 2008] and [Abbasi-Yadkori et al., 2011] propose efficient and
computationally tractable algorithms that achieve a regret of order ah/ﬁg(n) . In the special
case of the set of action A being the unit ball, the authors of [Rusmevichientong and Tsitsiklis,
2008] prove that the regret is of order \/W . An important specific case of this setting is
Combinatorial bandits (see e.g. [Audibert et al., 2011, 2012; Cesa-Bianchi and Lugosi, 2012]).

Bandits for simple regret (best arm identification): Finally, we think that it is important
to talk about an instance of bandits that does not have as objective the cumulative loss. We
present here stochastic bandits for simple regret minimization. Although it is not the same
setting as cumulative bandits, it is a good transition for the second Section. The objective of
the player in this setting is not to maximize the cumulative sum of rewards, but to, at the end
of the bandit game, output a prediction of recommendation for the best arm. Some ideas for
this setting have been formalized in [Maron and Moore, 1993] under the name of Hoeffding race
and precised in [Even-Dar et al., 2006]. These algorithms are very efficient if they can choose
when to stop, but their performances are limited if the budget is fixed. In the papers [Audibert
et al., 2010; Bubeck et al., 2009], the authors make a breakthrough in this domain by proposing
strategies that are efficient with a fixed budget n. The first of the two algorithms they propose,
namely UCB — A, re-uses the ideas of the upper confidence bound algorithms by adapting them

to the specific case of simple regret.

3.2 Adaptive allocation with partial feedback

There are several problems that can be modeled and better understood by seeing them through
bandit formalism. We consider here a large class of problems where the player wants to allocate

the samples according to proportions depending on the unknown distributions. In the specific
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case of best arm identification, which we rapidly evocate in the last Section, the objective is to
select the best arm. In order to have a good precision on the estimate of the best arm, it is
necessary to sample more often the arms that are close to the optimal arm. It is indeed more
likely to confuse these arms with the optimal one. As a consequence, the algorithm UCB-A
in [Audibert et al., 2010] aims at allocating the pulls to each arm k proportional to m
(as a consequence of Chernoff-Hoeffding bound on the deviations of random variables).

It is however not the only setting where it is interesting to allocate the samples to the arms
proportional to proportions depending on the unknown distributions (v ). In this Section, we
first describe this general setting, and then detail two examples of particular interest, namely

active learning and stratified Monte-Carlo integration.

3.2.1 Adaptive allocation with partial feedback

We consider a K-armed stochastic bandit: when a sample is collected at time ¢t from an arm
k < K, the player receives an independent observation Y; ~ vg.

We first define the loss function as:
Loss, = Loss(X1,...,X,).

For instance, in the case of cumulative bandits, Loss,, = 2?21 Y.
In many problems, if the number of samples collected from arm k at the end of the n rounds
of the algorithm, noted T}, ,,, are deterministic, then the expectation of the loss depends only on

the number of pulls for each arms. We define a pseudo-loss function as:
L,=L(Th,....Tk, (Vg)k),

where £ is such that when the (7} ,); are deterministic, then L, = E[Loss,]. In the specific
case of cumulative stochastic bandit, if the (7} )i are fixed, then we set L,, = Zle px Ty n, and
L, =E[}; Y] = E[Lossy]. In the case of cumulative bandit (the (T}, ,)x are not deterministic,
but depend on the samples), it also holds that E[L,] = E[Y ;" , Y;] = E[Loss,], but this is very

specific and comes from Wald’s identity".

Assume that £ is a strictly convex, continuous function on (T7,...,Tx) C [0,4+o0o[X. The
problem
inf  O(TY,...,Tx, 3.1
o o AT K5 (Ve )k) (3.1)
K
st Tin=n and Yk, Ty >0,
k=1

admits an unique solution and attains it because of the function is strictly convex on the compact

! As mentioned in Subsection 3.1.1, (k¢)¢<, is adapted to the filtration (F)¢<,. From that, we deduce the
equality.
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simplex of constraints. Let us call (17, ...,T} ) the arg of System 3.1. We refer to this allocation
as optimal allocation in the sequel. Let us also note L} the solution of System 3.1. The
expectation of this quantity is the smallest possible pseudo loss under a deterministic allocation
that can depend of the true unknown distribution. It is thus a very efficient allocation, and thus
a good point of comparison.

We can now define the notion of pseudo-regret in this context. As in the cumulative bandit
setting, it is the additional loss that we incur from not knowing the true distributions of the

arms. We note this pseudo-regret
R,=L,—L;. (3.2)

The objective is to minimize this pseudo-regret by allocating the number of samples to each arm
that is as close as possible to the optimal static allocations (77, ...,Tj).

There are many instances where this very general formulation actually makes sense: for any
type of stochastic bandit earlier described, it holds. We are now going to precise two particular

examples of this setting, as they are very relevant to the sequel of this document.

3.2.2 Active learning

Setting: A problem which is interesting to model as a K —armed bandit is the problem of
active learning of the mean of distributions. Unlike in the cumulative bandit setting, the aim
is to learn with equal precision the mean of all arms of the bandit. We consider here the mean
squared error as the measure of precision.

For each arm k, we define the loss function is thus

Lossn = (Fikn — 1),

where [iy, ,, is the classic empirical estimate of the mean of arm k, computed with 7}, ,, samples,
and outputted by the strategy at the end of the game.

In this case, the pseudo-loss for arm k is defined as

2

g
k
Ln,k = T,
kn

where a,% is the variance of distribution v 2. Note that if the T} n are deterministic, we indeed
have L, = E[Loss,, ;]. Unfortunately, if the T}, ,, are random and depend on the samples, this
does not hold anymore.

We define the pseudo-loss as the maximum over k of each of these losses, that is to say

L, = m]?X Ln,k7

2We assume throughout this document that it exists, as well as the mean. We often even make stronger
assumptions for the good functioning of the algorithms, e.g. that the v are sub-Gaussian.
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Input: o
Initialization: Pull each arm twice
fort=1,...do

=2

N kgt
Let /\k’t - Zf(:l 31'2,1&
Let Uy = argming T}, 4
U, if T < avi+1
Let k‘t+1 = Xk,t

arg maxy 7., otherwise
Pull k441 and observe the sample
end for
Output: Output (fig )k

Figure 3.3: Pseudo code for algorithm GAFS-MAX.

For this pseudo-loss function, the solution of System 3.1 is to allocate the samples propor-

tionally to the (unknown) variances of the distributions of the arms. More precisely, the optimal
K 2

static allocation is T};, = —xt—n. The resulting optimal pseudo-loss is L’ = % The

. 2i=10;
regret is thus defined as

R,=L,—-L;.
The objective is to minimize this regret.

Existing results and algorithms: This problem is an instance of active learning problems
(see [Cohn et al., 1996]), and is very close to experimental design (see [Fedorov, 1972]). It has
first been formalized as a bandit problem in [Antos et al., 2010] (long version of [Antos et al.,
2008]).

The authors of [Antos et al., 2010] propose an algorithm called GAFS-MAX. This algorithm
is anytime, i.e. it does not need to know the time horizon. We describe it in Figure 3.3. In this
Figure, fig+ = ﬁ ZZ’;E X} 1s the empirical mean at time ¢, and 6y, 4 = ﬁ kazfl (ka—ﬁk,t) ?
is the empirical variance.

Assume that the horizon n is available to the algorithm. Then GAFS-MAX is equivalent to
an algorithm that pulls each arm a/n times, and then pulls the arms according to the empirical

proportions. The authors prove the following results for the algorithm.

Theorem 2 (Convergence rate of GAFS-MAX) Assume that the distributions of all arms
are in [0,1]. For algorithm GAFS-MAX, the loss is bounded as

Loss, < L +O0(n=%/?),

2
Tk

5.
2207

where O hides a term of order poly(log(n)) and displays an inverse dependency on miny,

2
9k

When reading the analysis of this bound, it appears that the quantity ming S 57 appears

in the bound and plays a crucial role. The smaller this quantity, the harder the problem, as
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the more disparity there is between the arms. This explains why the bound displays an inverse
2
Tk

Zi”?.

dependency in Ay, = ming

Application to histogram regression: This setting can be used to model histogram regres-
sion for functions on a domain X € R%. Consider a measure v over X. Assume that the domain
is partitioned in K strata X, and that all these strata are measurable. Assume also that for
any k, it is possible to sample according to vy, , i.e. the measure v restricted to stratum Xj.
Consider a function f : X — R.

The objective in histogram regression is to approximate the function f uniformly as well
as possible by a constant on each stratum Xj. If we choose to measure precision by the mean
squared error, then the loss defined for the bandit problem is the right quantity to minimize.

If it is possible to observe n samples, such that one can choose in which stratum to sample
uniformly, then the setting of histogram regression is exactly the same as the bandit problem

casted previously.

3.2.3 Monte-Carlo integration

Setting: We consider a K—armed bandit problem. We additionally assume that there is a

weight wy, associated to each arm k. These weights are positive and such that 212(:1 wg = 1.

We are interested in learning as well as possible the weighted mean of the means of the

K —armed bandit. We consider here the mean squared error as the measure of precision.

The loss function is thus
. 2
Lossy, = E[(fn — 1),

where [y, = Zle W[y is the weighted empirical estimate of the weighted mean p =
K
Zk:1 Wk k-

In this case, the pseudo-loss is defined as

K 0_2
§ : 2 Yk
Ln = Wy, T )
=1 k.n

where a]% is the variance of distribution 1. Note that if the T} , are deterministic, we have
L, = E[Lossy]. Unfortunately, if the T}, ,, are random and depend on the samples, we do not

have anymore E[L, | = E[Loss,], as for the active learning setting.

For this loss function, the solution of System 3.1 is to allocate the samples proportionally to
the (unknown) weighted standard deviations of the distributions of the arms. More precisely,

the optimal static allocation is 7, ,;‘n = —x2%—n. The resulting optimal pseudo-loss is L} =

X wioi

32



(Zfil wmz‘)Q

n

. The regret is thus defined as
R,=L,—L;.

The objective is to minimize this regret.

Relations with stratified Monte-Carlo integration: Consider a function f : X € RY — R.
Consider a measure v over X. Assume that the domain is partitioned in K strata X, and that
all these strata are measurable. Assume also that for any k, it is possible to sample according to
vy, i.e. the measure v restricted to stratum Xj. We write wy, = (X)) the measure of stratum
Xg. We write u = wik ka f(x)dx the (rescaled) integral of the function on stratum Xj and

2
of = wik ka ( f(z) — ,uk) dx the (rescaled) mean squared deviations of the function f around

its mean in stratum Xj.

We dispose of a budget of n potentially noisy accesses to the function Assume that it is
possible to sample sequentially these points and to, at each time, choose in which stratum to
sample.

The objective of Monte-Carlo methods for integration is to estimate as precisely as possible
the integral of a function (see e.g. [Rubinstein and Kroese, 2008]). A classic criterion (when the
estimate is random, the randomness coming from the samples) is the mean squared error of the
variations of the empirical mean around the true mean. It is exactly the loss considered in the
bandit setting.

From this loss, we can immediately prove the superiority of stratified Monte-Carlo over crude
Monte-Carlo. Indeed, the loss of crude Monte-Carlo is

o TE Ny (1 1)
Lossp(cMC) = Zwk;’“ + ZwkT7
k=1 k=1

while the loss of uniform stratified Monte-Carlo, i.e. when sampling a number of points propor-

tional to the size of each stratum, is

K 2
Lossp(uM — C) = Zwk%.
n

k=1

The variability that comes from the variability in the means of each stratum disappears, and
uniform stratified Monte-Carlo is always more or equally efficient that crude Monte-Carlo. Note
that uniform stratified Monte-Carlo can be performed without having any informations on the
function f. The optimal allocation defined in the last paragraph is even more efficient, as it is
the most efficient static allocation. It is intuitive too because it aims at putting more samples
in strata where there is a higher variability, and where it is thus more difficult to estimate the

mean. See [Glasserman, 2004] for more details.
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Figure 3.4: Left: Crude Monte-Carlo. Middle: Uniform stratified Monte-Carlo. Right: Stratified
Monte-Carlo with optimal allocation.

Input: «
Initialization: Pull each arm twice
fort=1,...do _

Let Ak,t = 7nggk’t

i=1 wia\i,t
Let Uy = argming T}, 4
Ut7 Zf TUt,t < CM\/?E+ 1
Let kt+1 = Ak,t

arg maxy, %, otherwise
Pull k¢4+1 and observe the7sample
end for
Output: Output i,

Figure 3.5: Pseudo code for algorithm GAFS-WL.

Existing results and algorithms: This problem is an important challenge in financial engi-
neering, and has already been casted since a long time without the bandit formalism, for instance
in [Glasserman et al., 1999].

There are some very interesting papers on asymptotically optimal algorithms. In [Etoré and
Jourdain, 2010], the authors introduce SSAA, an algorithm which works by phases of exploration
and of exploitation. It samples uniformly in the strata during the exploration phases. Then it
exploits the informations collected during the exploitation phases, and samples in the strata
proportionally to the weighted empirical standard deviations. The authors prove that if the
exploration phase are asymptotically of infinite length, but still of negligible duration when
compared to the exploitation phases, then the algorithm SSAA is asymptotically optimal.

In [Etoré et al., 2011], the authors investigate the asymptotic behavior of the optimal static
estimate when the number of strata goes to infinity. They state two results with different rates,
depending on whether the stratification is operated in every direction of the space, or only in a
vectorial subspace of this space. They also propose an algorithm that stratifies adaptively the
space, but without providing a theoretical analysis for it.

The first finite-time analysis has been provided in [Grover, 2009]. The authors of this pa-
per propose an algorithm called GAFS-WL. This algorithm is similar in spirit to GAFS-MAX
introduced in Figure 3.3. We describe it in Figure 3.5.

Assume that the horizon n is available to the algorithm. Then GAFS-Wl is, as GAFS-MAX,
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equivalent to an algorithm that pulls each arm «+/n times, and then pulls the arms according

to the empirical proportions. The authors prove the following results for the algorithm.

Theorem 3 (Convergence rate of GAFS-WL) Assume that the distributions of all arms
are in [0,1]. For algorithm GAFS-WL, the pseudo-loss is bounded as

Ln < LY +0(n=3/?),

where O hides a term of order poly(log(n)) and displays an inverse dependency on miny, i‘f’i,’;,

A very important fact is that the results provided in [Grover, 2009] provide a bound on the
pseudo-loss and not on the loss. As the author does not provide bridges between the two
quantities, the performance on the pseudo-loss can not be used as the loss, and for instance,
asymptotic optimality can not be established, as it concerns the convergence of the loss.

When reading the analysis of this bound, the quantity miny i‘f’“g_’; plays also a crucial role.

The smaller this quantity, the harder the problem, as the more disparity there is between the

arms. This explains why the bound displays an inverse dependency in Ay, = ming i"k%

Conclusion

This Chapter is a rapid overview of the world of bandits with a huge emphasize on the problems
of adaptive sampling. The presentation of the world of bandits is in no ways exhaustive. There
is a huge and highly interesting literature on this field, with many interesting variations on
the exposed settings. We also did not mention the generalization of bandit theory, which is
reinforcement learning. All these areas contain interesting challenges, and various applications.

The choice that we made in the presentation of bandit theory is motivated by the con-
tributions in bandits of this Thesis. We extend in the following chapters of the analysis of
Subsections 3.2.3 and 3.2.2. We propose new algorithms and analyses for both these settings.
In the second part of this PhD, we also provide an algorithm for solving a problem of stochas-
tic linear bandit in very high dimension, and this is why we recalled also the setting of linear
regression. We chose to place this work in the Compressed Sensing part of this dissertation and
not in the Bandit part, because it mixes ideas from Bandit Theory and Compressed Sensing,
and is to our minds more relevant for the field of Compressed Sensing, although it bridges these
two fields.
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Chapter 4

Upper-Confidence-Bound
Algorithms for Active Learning in
Multi-Armed Bandits

This Chapter is the product of a joint work with Alessandro Lazaric, Mohammad Ghavamzadeh,
Rémi Munos and Peter Auer. A short (not including proofs) version of it was published in the
Conference of Algorithmic Theory in 2011 (see [Carpentier et al., 2011a]).

In this work, we study the problem of estimating uniformly well the mean values of several
distributions given a finite budget of samples. If the variance of the distributions were known,
one could design an optimal sampling strategy by collecting a number of independent samples
per distribution that is proportional to their variance. However, in the more realistic case where
the distributions are not known in advance, one needs to design adaptive sampling strategies
in order to select which distribution to sample from according to the previously observed sam-
ples. We describe two strategies based on pulling the distributions a number of times that is
proportional to a high-probability upper-confidence-bound on their variance (built from previ-
ous observed samples) and report a finite-sample performance analysis on the excess estimation
error compared to the optimal allocation. We show that the performance of these allocation

strategies depends not only on the variances but also on the full shape of the distributions.
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4.1 Introduction

Consider a marketing problem where the objective is to estimate the potential impact of several
new products or services. A common approach to this problem is to design active online polling
systems, where at each time a product is presented (e.g., via a web banner on Internet) to
random customers from a population of interest, and feedbacks are collected (e.g., whether the
customer clicks on the ad or not) and used to estimate the average preference of all the products.
It is often the case that some products have a general consensus of opinion (low variance) while
others have a large variability (high variance). While in the former case very few votes would
be enough to have an accurate estimate of the value of the product, in the latter the system
should present the product to more customers in order to achieve the same accuracy. Since the
variability of the opinions for different products is not known in advance, the objective is to
design an active strategy that selects which product to display at each time step in order to
estimate the values of all the products uniformly well.

The problem of online polling can be seen as an online allocation problem with several
options, where the accuracy of the estimation of the quality of each option depends on the
quantity of the resources allocated to it and also on some (initially unknown) intrinsic variability
of the option. This general problem is closely related to the problems of active learning [Castro
et al., 2005; Cohn et al., 1996], sampling and Monte-Carlo methods [Etoré and Jourdain, 2010],
and optimal experimental design [Chaudhuri and Mykland, 1995; Fedorov, 1972]. A particular
instance of this problem is introduced in Antos et al. [2010] as an active learning problem in

the framework of stochastic multi-armed bandits. More precisely, the problem is modeled as a
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repeated game between a learner and a stochastic environment, defined by a set of K unknown
distributions {v4}X |, where at each round ¢, the learner selects an action (or arm) k; and as
a consequence receives a random sample from v, (independent of the past samples). Given
a total budget of n samples, the goal is to define an allocation strategy over arms so as to
estimate their expected values uniformly well. Note that if the variances {o2}5 | of the arms
were initially known, the optimal allocation strategy would be to sample the arms proportionally
to their variances, or more accurately, proportionally to A\ = a,% / Zj 0]2-. However, since the
distributions are initially unknown, the learner should follow an active allocation strategy which
adapts its behavior as samples are collected. The performance of this strategy is measured by its
regret (defined precisely by Equation 4.4) that is the difference between the maximal expected
quadratic estimation error of the algorithm and the maximal expected error of the optimal
allocation.

Antos et al. [2010] presented an algorithm, called GAFS-MAX, that allocates samples pro-
portionally to the empirical variances of the arms, while imposing that each arm should be
pulled at least y/n times (to guarantee good estimation of the true variances), where n is the to-
tal budget of pulls. They proved that for large enough n, the regret of their algorithm scales with
O(n_3/ 2) and conjectured that this rate is optimal.! However, the performance displays both
an implicit (in the condition for large enough n) and explicit (in the regret bound) dependency
on the inverse of the smallest optimal allocation proportion, i.e., Apin = ming Ag. This suggests
that the algorithm is expected to have a poor performance whenever an arm has a very small
variance compared to the others. Whether this dependency is due to the analysis of GAFS-
MAX, to the specific class of algorithms, or to an intrinsic characteristic of the problem is an
interesting open question. One of the main objectives of this Chapter is to investigate this issue
and identify under which conditions this dependency can be avoided. Our main contributions

and findings are as follows:

e We introduce two new algorithms based on upper-confidence-bounds (UCB) on the vari-

ance.

e The first algorithm, called CH-AS, is based on Chernoff-Hoeffding’s bound, whose regret
has the rate O(n_3/ 2) and inverse dependency on Apyi,, similar to GAFS-MAX. The main
differences are: the bound for CH-AS holds for any n (and not only for large enough n),
multiplicative constants are made explicit, and finally, the proof is simpler and relies on

very simple tools.

e The second algorithm, called B-AS, uses an empirical Bernstein’s inequality, and has a
better performance (in terms of the number of pulls) in targeting the optimal allocation
strategy without any dependency on Anin. However, moving from the number of pulls to

the regret causes the inverse dependency on Apin to appear in the bound again. We show

!The notation u, = O(v,) means that there exist C' > 0 and a > 0 such that u,, < C(logn)*v, for sufficiently
large n.
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that this might be due to specific shape of the distributions {Vk}szl and derive a regret

bound independent of Anin for the case of Gaussian arms.

e We show empirically that while the performance of CH-AS depends on Apj, in the case of
Gaussian arms, this dependence does not exist for B-AS and GAFS-MAX, as they perform
well in this case. This suggests that 1) it is not possible to remove Apiy from the regret
bound of CH-AS, independent of the arms’ distributions, and 2) GAFS-MAX’s analysis
could be improved along the same line as the proof of B-AS for the Gaussian arms. We
also report experiments providing insights on the (somehow unexpected) fact that the
full shapes of the distributions, and not only their variances, impact the regret of these

algorithms.

4.2 Preliminaries

The allocation problem studied in this Chapter is formalized as the standard K-armed stochastic
bandit setting, where each arm k = 1,..., K is characterized by a distribution v, with mean
i and non—zero variance 0,% > 0. At each round ¢ > 1, the learner (algorithm A) selects an
arm k; and receives a sample drawn from v, independently of the past. The objective is to
estimate the mean values of all the arms uniformly well given a total budget of n pulls. An
adaptive algorithm defines its allocation strategy as a function of the samples observed in the
past (i.e., at time ¢, the selected arm k; is a function of all the observations up to time ¢ — 1).

After n rounds and observing T, = >, I{k = k;} samples from each arm k, the algorithm

Tkxn
—~ 1 : .
A returns the empirical estimates fiy , = T g Xp,t, where Xy ; denotes the sample received
k.n
M=

when we pull arm £ for the ¢-th time. The accuracy of the estimation of each arm k is measured

according to its expected squared estimation error, or loss
Lin = E(w) i<k (g — fign). (4.1)
The global performance or loss of A is defined as the worst loss of the arms

L,(A) = Lip . 4.2

n(A) 12%)&{ kmn (4.2)

If the variance of the arms were known in advance, one could design an optimal static
allocation (i.e., the number of pulls does not depend on the observed samples) by pulling the
arms proportionally to their variances. In the case of static allocation, if an arm k is pulled a

fixed number of times 77, , its loss is computed as’

2

(o
k
Ly, = T
k,n

(4.3)

2This equality does not hold when the number of pulls is random, e.g., in adaptive algorithms where the
strategy depends on the random observed samples.
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By choosing T}, so as to minimize L, under the constraint that Zszl T, = n, the optimal
2
static allocation strategy A* pulls each arm & (up to rounding effects) T}, = % times, and
’ i=19;
T*
achieves a global performance L, (A*) = ¥/n, where ¥ = Zfi 102, We denote by Ay = & =

n

%i, the optimal allocation proportion for arm k, and by Apin = min;<i<x Ax, the smallest such
proportion.

In our setting where the variances of the arms are not known in advance, the exploration-
exploitation trade-off is inevitable: an adaptive algorithm A should estimate the variances of
the arms (ezploration) at the same time as it tries to sample the arms proportionally to these
estimates (ezploitation). In order to measure how well the adaptive algorithm A performs, we
compare its performance to that of the optimal allocation algorithm A*, which requires the
knowledge of the variances of the arms. For this purpose, we define the notion of regret of an

adaptive algorithm A as the difference between its loss L, (A) and the optimal loss L, (A*), i.e.,

Rp(A) = Ly(A) — Ly(AY). (4.4)

It is important to note that unlike the standard multi-armed bandit problems, we do not consider
the notion of cumulative regret, and instead, use the excess-loss suffered by the algorithm at
the end of the n rounds. This notion of regret is closely related to the pure exploration setting
(e.g., Audibert et al. [2010]; Bubeck et al. [2011]). An interesting feature that is shared between
this setting and the problem of active learning considered in this Chapter is that good strategies
should play all the arms as a linear function of n. This is in contrast with the standard stochastic

bandit setting, at which the sub-optimal arms should be played logarithmically in n.

4.3 Allocation Strategy Based on Chernoff-Hoeffding UCB

The first algorithm, called Chernoff-Hoeffding Allocation Strategy (CH-AS), is based on a Chernoff-
Hoeffding high-probability bound on the difference between the estimated and true variances of
the arms. Each arm is simply pulled proportionally to an upper-confidence-bound (UCB) on its
variance. This algorithm deals with the exploration-exploitation trade-off by pulling more the

arms with higher estimated variances or higher uncertainty in these estimates.
4.3.1 The CH-AS Algorithm

The CH-AS algorithm Ac g in Fig. 4.1 takes a confidence parameter ¢ as input and after n pulls

returns an empirical mean fiq,, for each arm ¢q. At each time step t, i.e., after having pulled arm

k¢, the algorithm computes the empirical mean i, and variance 82,15 of each arm ¢ as®
| Do ;Do
T . ~2 2 ~2
Pat = Xgi and  0g, = T E Xoi = Hai (4.5)
ot =1 @t =1

Notice that this is a biased estimator of the variance even if the numbers of pulls T; ; were not random.
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Input: parameter §
Initialize: Pull each arm twice
fort =2K +1,...,ndo

_ 1 ~ log(1/6
Compute By = T <0q,t,1 +3 #) foreach arm 1 < ¢ < K
Pull an arm k; € arg max;<,<x Byt
end for

Output: i, for allarms 1 < ¢ < K

Figure 4.1: The pseudo-code of the CH-AS algorithm, with Gg’t computed as in Equation 4.5.

where X, ; is the i-th sample of v, and T ; is the number of pulls allocated to arm ¢ up to time
t. After pulling each arm twice (rounds ¢ = 1 to 2K), from round ¢ = 2K + 1 on, the algorithm

computes the By ; values based on a Chernoff-Hoeffding’s bound on the variances of the arms:

L og(1/0)
=———\0 41+ 3] "),
Tq,tfl 7t-1 2qu,tfl

and then pulls the arm k; with the largest B, ;. This bound relies on the assumption that the
support of the distributions {vy} | are in [0, 1].

4.3.2 Regret Bound and Discussion

Before reporting a regret bound for the CH-AS algorithm, we first analyze its performance in
targeting the optimal allocation strategy in terms of the number of pulls. As it will be discussed
later, the distinction between the performance in terms of the number of pulls and the regret
will allow us to stress the potential dependency of the regret on the distribution of the arms
(see Section 4.4.3).

Lemma 1 Assume that the support of the distributions {vi} | are in [0,1] and let § > 0.
Define

t

t

o= 0 {6 4 w) - <oy 500 L
1<k<K i1 P
1<t<n

The probability of 5%;]2(6) 18 higher or equal than 1 — 4nK¢. If n > 4K, the number of pulls by
the CH-AS algorithm launched with parameter 6 satisfies on 5%1;{(6)

124/nlog(1/6 124/nlog(1/6
Y (jz(/) +AK) < T = T < # 14K, (4.6)
min E)\min
forany arm 1 <k < K.
Proof: The proof is reported in 4.A.2. O

We now show how the bound on the number of pulls translates into a regret bound for the
CH-AS algorithm.
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Theorem 4 Assume that the support of the distributions {vp}i_| are in [0,1]. If the fived
budget is such that n > 4K, the regret of Acm, when it runs with the parameter 6 = K—1n=5/2

1s bounded as

Y 64y/log(nK) = 16.8 x 10* (log nk)3/? 1
<z i
R, (Acr) < - + RYICE + 2 e max (1, 22>> . (4.7)
Proof: The proof is reported in 4.A.3. 0

Remark 1 As discussed in Section 4.2, our objective is to design a sampling strategy capable
of estimating the mean values of the arms almost as accurately as the estimations by the optimal
allocation strategy, which assumes that the variances of the arms are known. In fact, Theorem 4
shows that the CH-AS algorithm provides a uniformly accurate estimation of the expected values
of the arms with a regret R, (Acy) of order O(n=3/2). This regret rate is the same as the one
for the GAFS-MAX algorithm in Antos et al. [2010].

Remark 2 The bound displays an inverse dependency on the smallest optimal allocation
proportion Amin. As a result, the bound scales poorly when an arm has a very small variance
relative to the others, i.e., o < 3. Note that GAFS-MAX (see Antos et al. [2010]) has also a
similar dependency on the inverse of Api,. Moreover, Theorem 4 holds for a budget n > 4K,
whereas the regret bound of GAFS-MAX in Antos et al. [2010] requires a condition n > ng, in
which ng is a constant that scales with 1/A\pi,. Finally, note that this UCB type of algorithm
(CH-AS) enables a much simpler regret analysis than that of GAFS-MAX.

Remark 3 It is clear from Lemma 1 that the inverse dependency on An;, appears in the
bound on the number of pulls and then is propagated to the regret bound. We now show with
a simple example that this dependency is not an artifact of the analysis and is intrinsic in the
performance of the algorithm. Consider a two-arm problem with o = 1/4 and o3 = 0. Here
the optimal allocation is 77, = n —1, T3, = 1 (only one sample is enough to estimate the
mean of the second arm), and Ap;, = 0, which makes the bound in Theorem 4 vacuous. This
does not mean that CH-AS has a linear regret, it indicates that it minimizes the regret with a
poorer rate (see 4.A.4 for a sketch of the proof of a lower bound for the regret of CH-AS). In
fact, the Chernoff-Hoeffding’s bound used in the upper-confidence term forces the algorithm to
pull the arm with zero variance at least Q(nz/ 3) times with high probability, which results in
under-pulling the first arm by the same amount, and thus, in worsening its estimate. It can be
shown that the resulting regret has the rate O(n_4/ 3) and no dependency on Apmi,. So, it still
decreases to zero faster than 1 (so in o(1)), but with a slower rate than the one in Theorem 4.
Merging these two results, we deduce in the general setting that the regret of CH-AS is in
fact R,(Acy) = min {)\;15420(71*3/2),O~(n*4/3)}. Note that, for Apin = 0, GAFS-MAX is

more efficient than CH-AS. It over-pulls the arms with zero-variance only by O(n'/?) and has
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Input: parameters cq, ¢,
Let a = /2c; log(CQ/(S) 4 \/c15(1+cz+log(cz/5))n1/2

(1-8)+/210g(2/95)

Initialize: Pull each arm twice
fort=2K+1,...,ndo

Compute B, ; = ﬁ (837t+4a8q¢_1, / Tq,Ll +4a? Tq’l ) foreacharm1 < ¢ < K

t—1

Pull an arm k; € arg max;<,<x Byt
end for
Output: i, for all the arms 1 < ¢ < K

Figure 4.2: The pseudo-code of the B-AS algorithm. The empirical variances o ; are computed
according to Equation 4.8.

a regret of order O(n_?’/ 2). We will further study how the regret of CH-AS changes with n in
Section 4.5.1.

The reason for the poor performance in Lemma 1 is that Chernoff-Hoeffding’s inequality is
not tight for small-variance random variables. In Section 4.4, we propose an algorithm based on a
tighter inequality for small-variance random variables, and prove that this algorithm under-pulls

all the arms by at most O(n'/?), without a dependency on A, (see Equations 4.10 and 4.11).

4.4 Allocation Strategy Based on Bernstein UCB

In this section, we present another UCB-like algorithm, called Bernstein Allocation Strategy
(B-AS) 4, based on a tighter variance confidence bound that enables us to improve the bound
on T, — T,j’n| by removing the inverse dependency on Ay, (compare the bounds in Eqgs. 4.10
and 4.11 to the one for CH-AS in Equation 4.6). However this result itself is not sufficient to
derive a better regret bound than CH-AS. This finding is interesting since it shows that even an
adaptive algorithm which implements a strategy close to the optimal allocation strategy may
still incur a regret that poorly scales with the smallest proportion Ani,. We further investigate
this issue by showing that the way the bound on the number of pulls translates into a regret
bound depends on the specific distributions of the arms. In fact, when the distributions of the
arms are Gaussian, we can exploit the property that the empirical variance o} ; is independent
of the empirical mean fiy;, and show that the regret of B-AS no longer depends on 1/Amin. The
numerical simulations in Section 4.5 further illustrate how the full shape of the distributions (and
not only their first two moments) plays an important role in the regret of adaptive allocation

algorithms.

4.4.1 The B-AS Algorithm

The algorithm is based on the use of a high-probability bound (empirical Bernstein’s in-
equality), reported in Maurer and Pontil [2009] (a similar bound can be found in Audibert et al.

[2009a]), on the variance of each arm. Like in the previous section, the arm sampling strategy is

4We refer to this algorithm as Bernstein Allocation Strategy because the inequality on the variance is derived
from an empirical Bernstein’s inequality on the empirical mean.
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proportional to those bounds. The B-AS algorithm, Ap, is described in Figure 4.2. It requires
three parameters as input (see Remark 4 in Section 4.4.2 for a discussion on how to reduce the
number of parameters from three to one) ¢; and cg, which are related to the shape of the dis-
tributions (see Assumption 4.4.2), and ¢, which defines the confidence level of the bound. The
amount of exploration of the algorithm can be adapted by properly tuning these parameters.

The algorithm is similar to CH-AS except that the bound for each arm B, ; is computed as

1 1 1
By = (82, +4aG4— + 4a® )
q;t Tyet q,t—1 g,t—1 Tyit Tyit
where a = /2¢ log(c2/d) + \/6(116_(;; CQ;:;g(;CZS/) D p1/2, andd
1 i 1 Tt
~2 ~ \2 . ~
== Xpi— th = — Xk - 4.8
Okt Ths— 1 ;( ki — Hh,t)s w1 Mt Thos ; ki (4.8)

4.4.2 Regret Bound and Discussion

The B-AS algorithm is designed to overcome the limitations of CH-AS, especially in the case
of arms with small variances (Berstein’s bound is tighter than Chernoff-Hoeffding’s bound for
distributions with small variance). Here we consider a more general assumption than in the

previous section, namely that the distributions are sub-Gaussian.

Assumption [Sub-Gaussian distributions] There exist ¢1, ¢y > 0 such that for all 1 < k < K
and any € > 0,
P, (|1 X — i > €) < exexp(—?/cn) . (4.9)

We first state a bound in Lemma 2 on the difference between the B-AS and optimal allocation

strategies.

Lemma 2 Assume that Assumption 4.4.2 is verified for (c1,co > 1) and let § > 0. Define the

event

t t
1 1 2 log(2/d
§IB<,n(5) = ﬂ ‘ —1 Z (le‘ 7 ZXk,j> —ok| < 2a g(t/)
1<k<K i=1 j=
2<t<n

The probability of fﬁyn(é) is higher or equal to 1 — 2nK 6. The B-AS algorithm launched with

parameters c1, ca, and 8, satisfies on £ (8)

5 . . . .
°We consider the unbiased estimator of the variance here.
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b c(d) 2/c(0)

16a+/1 I
Tpn > T — Ky [6a 08(2/9) (x/i 4 2aylos(2/0) Og(2/5)>n1/2 + 64y B2 g

(4.10)

and

Typn < Tin+ K . (4.11)

e (\/iJrWW) w24 64y/3Ra? 0820 /g

z c(6) (8)

for any arm 1 < p < K and for a budhet such thatn > %6(5)_2, where ¢(§) = 2a/10g(2/9)

VK (VE+4a4/10g(2/6))
Proof: The proof is reported in 4.B.2. O

Remark 1 Unlike the bounds for CH-AS in Lemma 1, B-AS allocates the pulls on the arms
so that the difference between T}, , and T}, grows with the rate O(y/n) without dependency on
Amin. This is an advantage over CH-AS that may over-sample (thus also under-sample) some
arms by Q(n%?) whenever Ay is small (see Remark 3 of Section 4.3.2). We further note that
the lower bound in Equation 4.10 is of order A\,O(y/n), which implies that the gap between T}, ,,
and T, decreases as A\, becomes smaller. This is not the case in the upper bound, where the
gap is of order O(y/n), but is independent of the value of A,. This explains why in the case of
general distributions, B-AS has a regret bound with an inverse dependency on Apiy, similar to
CH-AS, as shown in Theorem 5.

Theorem 5 Assume all the distributions {Vk}le are sub-Gaussians with parameters c1 and

_ 2a+/log(2/6
co. For any n > max(3¢(6)72,4K), where c(5) = \/F(\/E+4ag\(/li>g)(2/5))

it runs with parameters c1, ca, and § = n~"/2 is bounded as

, the regret of Ap, when

54 x 103c1(ca + 1) K?log(n)? log(n)SK™
Rn(AB) = )\minng/2 * O< n7/4)\min )

Proof: 'The proof is reported in 4.B.3. U

Similar to Theorem 4, the bound on the number of pulls translates into a regret bound
through Equation 4.25, found in 4.A.3. Note that in order to remove the dependency on Apin,
a symmetric bound on [T}, — Ty, | < ApO(y/n) is needed. While the lower bound in Equa-
tion 4.10 already decreases with \,, the upper bound scales with O(y/n). Whether there exists
an algorithm with a tighter upper bound scaling with A, is still an open question. Nonetheless,
in the next section, we show that an improved loss bound can be achieved in the special case of

Gaussian distributions, which leads to a regret bound without the dependency on Apin.

4.4.3 Regret for Gaussian Distributions

In the case of Gaussian distributions, the loss of Equation 4.25 can be improved using the

following lemma.
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Lemma 3 Assume that all the distributions {vi}_| are Gaussian. Then the loss for arm k

satisfies

~ 1
Lin = E[(fikn — 1)?] = o, [ﬁ} : (4.12)

Proof: 'The proof is reported in 4.C. U

Remark Note that the loss bound in Equation 4.12 does not require any upper bound on
T} n- It is actually similar to the case of deterministic allocation. When Tkm is the deterministic
number of pulls, the corresponding loss resulting from pulling arm k, Tk,n times, is Ly, =
a,% /Tk,n- In general, when T}, is a random variable depending on the empirical variances
{62}K | (like in our adaptive algorithms CH-AS and B-AS), we have

E[(fikg — 1)) = Y E[(fkn — 1)’ | Thn = t|P(Thn = 1),
t=1

which might be different than J%E{ﬁ] In fact, the empirical average iy, depends on T},
through {3;@”}5:1, and E[(ﬁkn - uk)Q’\Tk,n = t] is no longer equal to o7 /t. However, Gaussian
distributions have the property that the empirical mean [ , is independent of the empirical
variance 0y, (and thus also from T}, ), which allows us to obtain the property reported in
Lemma 3.

We now report a regret bound in the case of Gaussian distributions. Note that in this case
Assumption 4.4.2 holds for ¢; = 2% and ¢; = 1.5

Theorem 6 Assume that all distributions {vi}1_| are Gaussian and that an upper-bound ¥ on

. . S 16 _9 _ 2a+/log(2/6) 3
¥ is known. If the budget n > max(gc(0)™%,4K), where c(J) TR/ a0 log @) the B-AS
algorithm launched with parameters ¢1 = 2%, ¢o = 1, and & = n~"/2 has the following regret
bound

12 x 10? 14 x 10?
R,(Ap) < TKQ(l + c1(ez + 1)) log?(n) + TKQ(l +c1(ea + 1)) log?(n) . (4.13)
n n

Proof: 'The proof is reported in 4.C. O

Remark 1 In the case of Gaussian distributions, the regret bound for B-AS has the rate
O(n=3/?) without dependency on Amin, which represents a significant improvement over the
regret bounds of the CH-AS and GAFS-MAX algorithms.

Remark 2 In practice, there is no need to tune the three parameters ¢y, co, and § separately.

In fact, it is enough to tune the algorithm for a single parameter a (see Fig. 4.2). Using the

SNote that for a single Gaussian distribution ¢; = 202, where ¢ is the standard deviation of the distribution.
Here we use ¢; = 2% in order for the assumption to be satisfied for all the K distributions simultaneously.
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proof of Theorem 6 and the optimized value of d, it is possible to show that the expected regret
is minimized by choosing a = O(max{fg/ Q,EU 2} log n), which only requires an upper bound
on the value of 3. This is a reasonable assumption whenever a rough estimate of the magnitude

of the variances is available.

4.5 Experimental Results
4.5.1 CH-AS, B-AS, and GAFS-MAX with Gaussian Arms

In this section, we compare the performance of CH-AS, B-AS, and GAFS-MAX on a two-
armed problem with Gaussian distributions v; = N(0,0? = 4) and v, = N(0,05 = 1) (note that
Amin=1/5). Figure 4.3- (left) shows the rescaled regret, n®/2R,,, for the three algorithms averaged
over 50,000 runs. The results indicate that while the rescaled regret is almost constant with
respect to. n in B-AS and GAFS-MAX, it increases for small (relative to )\r;iln
CH-AS.

The robust behavior of B-AS when the distributions of the arms are Gaussian may be easily

) values of n in

explained by the bound of Theorem 6 (Equation 4.13). Note though that this experiment seems
to imply that there is no additional dependency in log(n): it could be just an artifact of the
proof. The initial increase in the CH-AS curve is also consistent with the bound of Theorem 4
(Equation 4.7). As discussed in Remark 3 of Section 4.3.2, the regret bound for CH-AS is of
the form R, < min {\,/?0(n=3/2),0(n*/3)}, and thus, the algorithm behaves as O(n~%/3) and

mn

/\_.5/20~(n*3/2) for small and large (relative to A_ L

min min

) values of n, respectively. It is important
to note that the behavior of CH-AS is independent of the arms’ distributions and is intrinsic in
the allocation mechanism, as shown in Lemma 1. Finally, the behavior of GAFS-MAX indicates
that although its analysis shows an inverse dependency on Ay, and yields a regret bounds
similar to CH-AS, its rescaled regret in fact does not grow with n when the distributions of the
arms are Gaussian. This is why we believe that it would be possible to improve the GAFS-MAX
analysis by bounding the standard deviation using Bernstein’s inequality. This would remove the
inverse dependency on Ay, and provide a regret bound similar to B-AS in the case of Gaussian

distributions.

4.5.2 B-AS with Non-Gaussian Arms

In Section 4.4.3, we showed that when the arms have Gaussian distributions, the regret bound of
the B-AS algorithm does not depend on Ay, anymore. We also discussed on why we conjecture
that it is not possible to remove this dependency in case of general distributions unless tighter
upper bounds on the number of pulls can be derived. Although we do not yet have a lower
bound on the regret showing the dependency on Anji,, in this section we empirically show that
the shape of the distributions directly impacts the regret of the B-AS algorithm.

As discussed in Section 4.4.3, the property of Gaussian distributions that allows us to remove
the Amin dependency in the regret bound of B-AS is that the empirical mean i, of each arm

k is independent of its empirical variance 8,% ,, conditioned on T} ,. Although this property
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Figure 4.3: (left) The rescaled regret of CH-AS, B-AS, and GAFS-MAX algorithms on a two-
armed problem, where the distributions of the arms are Gaussian. (right) The rescaled regret
of B-AS for two bandit problems, one with two Gaussian arms and one with a Gaussian and a
Rademacher arms.

might approximately hold for a larger family of distributions, there are distributions, such as
Rademacher, for which these quantities are negatively correlated. In the case of Rademacher
distribution,” the loss (fig; — ux)? is equal to ﬁzt and we have 81%,t = ﬁ(z;ﬁif X,%yi —
Tk’tﬁ%’» = TZ’:fl (1 — ﬁi’t>, as a result, the larger a,‘it, the smaller ﬁ%t We know that the
allocation strategies in CH-AS, B-AS, and GAFS-MAX are based on the empirical variance

which is used as a substitute for the true variance. As a result, the larger 8,% ;» the more often

arm k is pulled. In case of Rademacher distributions, this means that an arm is pulled more
than its optimal allocation exactly when its mean is accurately estimated (the loss is small).
This may result in a poorer estimation of the arm, and thus, negatively affect the regret of the
algorithm.

In the experiments of this section, we use B-AS in two different bandit problems: one with
two Gaussian arms v; = N(0,07) (with o1 > 1) and 15 = N(0,1), and one with a Gaussian
v1 = N(0, a%) and a Rademacher vy = R arms. Note that in both cases A\pin = Ao = 1/(1 + O'%).
Figure 4.3-(right) shows the rescaled regret (n3?R,) of the B-AS algorithm as a function of
/\;ﬁln for n = 1000. As expected, while the rescaled regret of B-AS is constant in the first
problem, it increases with o2 in the second one. As explained above, this behavior is due to
the poor approximation of the Rademacher arm which is over-pulled whenever its estimated
mean is accurate. This result illustrates the fact that in this active learning problem (where
the goal is to estimate the mean values of the arms), the performance of the algorithms that
rely on the empirical-variances (e.g., CH-AS, B-AS, and GAFS-MAX) crucially depends on
the shape of the distributions, and not only on their variances. This may be surprising since
according to the central limit theorem the distribution of the empirical mean should tend to
a Gaussian. However, it seems that what is important is not the distribution of the empirical
mean or variance, but the correlation of these two quantities: this is why we believe that any

algorithm that is based on empirical standard deviations might be subject to the same problem.

"X is Rademacher if X € {—1,1} and admits values —1 and 1 with equal probability.
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Then when Api, becomes very small, the rescaled regret stabilizes. This illustrates the fact that
-1

for very large A_: compared to n (e.g. large o1, which implies a large ¥), the leading term in

the upper confidence bound of the Rademacher arm will be —&

, as a scales with ¥ (and X is
ot
not small when compared to n), and as o2 < 1/2. The Rademacher arm will thus be pulled a

number of time of order O(nl/ 2), and thus not damage the regret of the algorithm.

4.6 Conclusions and Open Questions

In this Chapter, we studied the problem of adaptive allocation for the uniformly good estimation
of the mean values of K independent distributions. This problem first studied by Antos et al.
[2010]. Although the algorithm proposed in Antos et al. [2010] achieves a small regret of order
O(n=3/2), it displays an inverse dependency on the smallest proportion Ayin. In this Chapter, we
first introduced a novel class of algorithms based on upper-confidence-bounds on the (unknown)
variances of the arms, and analyzed the two such algorithms: Chernoff-Hoeffding allocation strat-
egy (CH-AS) and Bernstein allocation strategy (B-AS). For CH-AS we derived a regret similar
to Antos et al. [2010], scaling as O(n~3/2) and with the dependence on Ayi,. Unlike in Antos
et al. [2010], this result holds for any n and the constants in the bound are made explicit. We
then introduced a more refined algorithm, B-AS, which performs an allocation strategy similar
to the optimal one. Nonetheless, its general regret bound still depends on Api,. We show that
this dependency may be related to the specific distributions of the arms and can be removed for
the case of Gaussian distributions. Finally, we report numerical simulations supporting the idea

that the shape of the distributions has an impact on the performance of the allocation strategies.

This work opens a number of questions.

o Upper bound on the number of pulls. As mentioned in the Remark of Section 4.4.2, an open
question is whether it is possible to devise an allocation algorithm such that [T, — T}, is
of order )\p(j(\/ﬁ). Such a symmetric bound on the number of pulls would translate into

a regret bound without any dependency on Api, for any distribution.

e Distribution dependency. Another open question is to which extent the result of B-AS in
the case of Gaussian distributions can be extended to more general families of distributions.
As illustrated in the case of Rademacher, the correlation between the empirical mean
and variance may cause the algorithm to over-pull arms even when their estimation is
accurate, thus incurring a large regret. On the other hand, if the distributions of the
arms are Gaussian, their empirical mean and variance are uncorrelated and the allocation
algorithms such as B-AS achieve a better regret. Further investigation is needed to identify

whether this result can be extended to other distributions.

e Lower bound. The results of Sections 4.4.3 and 4.5.2 suggest that the dependency on the

distributions of the arms could be intrinsic in the allocation problem. If this is the case,
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it should be possible to derive a lower bound for this problem showing such dependency

(a lower-bound with dependency on 1/Apin).
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Appendices for Chapter 4

4.A Regret Bound for the CH-AS Algorithm

4.A.1 Basic Tools

Since the basic tools used in the proof of Theorem 4 are similar to those used in the work

by Antos et al. [2010], we begin this section by restating two results from that paper. Let £ be

the event
! 5
£=¢10) = ﬂ {‘(12 ZX’” >—0”_ log(;t/)} (4.14)
1<k<K i=1
1<t<n

Note that the first term in the absolute value in Equation 4.14 is the sample variance of arm
k computed as in Equation 4.5 for ¢ samples. It can be shown using an analogy of Hoeffding’s
inequality (see Hoeffding [1963]) that Pr(§) > 1 — 4nK 4, and this is shown by directly reusing
the elements of the proof of Lemma 2 in Antos et al. [2010]. The event & plays an important
role in the proofs of this section and several statements will be proved on this event. We now

report the following proposition which is analog to Lemma 2 in Antos et al. [2010].

Proposition 1 For any k =1,...,K andt =1,...,n, let {Xy;}i=1,. 7, be Te € {1,...,t}

i.i.d. random wvariables bounded in [0,1] from the distribution vy with variance O',%, and Ezt be

-----

the sample variance computed as in Equation 4.5. Then the following statement holds on the

event £:

Ghe — okl <3 (4.15)
We also need to draw a connection between the allocation and stopping time problems. Thus,

we report the following proposition which is a special case of Lemma 10 in Antos et al. [2010].

Proposition 2 Let {X;}i=1,. n be i.i.d. random variables with expectation p and variance a2,

and let {fft}t:l,_._m be filtration associated to the process (Xi)i=1,.n. Let T < n be a stopping
time w.r.t. {F;} with a finite expected value. If E[X?] < oo then

E[(i){i—Tﬂ)z

= E[T] ¢% (4.16)

4.A.2 Allocation Performance

In this Sub-section, we first provide the proof of Lemma 1 and then use the result in the next

Sub-section to prove Theorem 4.
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Proof: [Proof of Lemma 1] The proof consists of the following three main steps. We assume
that £ holds until the end of this proof.

Step 1. Mechanism of the algorithm. Recall the definition of the upper bound used in Acgy
at a time t + 1 > 2K:

1 (. log(1/6)
B = = 1<q¢<K.
q,t+1 Tq7t (0q,t +3 2Tq,t ) 4=

From Proposition 1, we obtain the following upper and lower bounds for B, ;1 on the event :
2

o 1 log(1/9)

L < By < — |02 +6y =2 ). 417

Tq,t - e = Tq7t 9 2Tq,t ( )
Note that as n > 4K, there is at least one arm k that is pulled after the initialization. Let k be a
given such arm and ¢t +1 > 2K be the time when it is pulled for the last time, i.e., Ty ; = T}, , — 1
and Ty 441 = T} . Since Acpy chooses to pull arm k at time ¢ + 1, for any arm p, we have

Bpt+1 < Bip1 - (4.18)

From Equation 4.17 and the fact that T} ; = T}, ,, — 1, we obtain

B < L 9 _ = I 4.1
ka1 < s (O’k +6 2Ths Tom—1 o, +6 2(Typ — 1) (4.19)

Using the lower bound in Equation 4.17 and the fact that T}, ; < T}, ,,, we may lower bound B, ;

as
O'2 0’2
Bpii1 > =2 > 2. (4.20)
Dt Tp,n
Combining Equations 4.18, 4.19, and 4.20, we obtain
ol 1 log(1/96)
P < 02 4 6] B0 ) 421
Ty =~ Thm— 1\ F 2Ty — 1) (4.21)

Note that at this point there is no dependency on ¢, and thus, Equation 4.21 holds with proba-
bility at least 1 — 4nK§ (this is because Equation 4.21 holds on the event &) for any arm k that

is pulled at least once after the initialization, and for any arm p.

Step 2. Lower bound on 7}, ,. If an arm ¢ is under-pulled without taking into account the
initialization phase, i.e., Ty, —2 < Ag(n—2K), then from the constraint » , (T}, —2) = n—2K,
we deduce that there must be at least one arm & that is over-pulled, i.e., T}, —2 > Agp(n — 2K).
Note that for this arm, Ty, —2 > Ay(n — 2K) > 0, so we know that this specific arm is
pulled at least once after the initialization phase and that it satisfies Equation 4.21. Using the

93



4. UPPER-CONFIDENCE-BOUND ALGORITHMS FOR ACTIVE LEARNING
IN MULTI-ARMED BANDITS

definition of the optimal (up to rounding effects) allocation T}, = nA\x = noz/¥ and the fact
that Ty, > Ap(n — 2K) + 2, Equation 4.21 may be written as

2
o1 (. +6\/ log(1/)
Ty ~ Tj,n—2K 2(M\k(n —2K)+2-1)

) n 124/log(1/6)
~n-2K (Aminn)3/2
¥ 124/log(1/6) 4KX

<= 4.22
<ot O T (4.22)

since \g(n —2K)+1> \e(n/2 —2K +2K)+ 1> %, as n > 4K (thus also n(TQLIEQEK) < 4nKQE).

By reordering the terms in the previous equation, we obtain the lower bound

T,, > % sy 2vnlos/o) (4.23)
P=g 12 log(1/8) | axs PP 5)3/2 P '
n + (NAmin)3/2 + n2 min

where in the second inequality we used 1/(1 4+ x) > 1 — x (for x > —1). Note that the lower
bound 4.23 holds on ¢ for any arm p.

Step 3. Upper bound on T, ,,. Using Equation 4.23 and the fact that >, Ty, = > ;. Ty, =n,

we obtain the upper bound

12
Tpn=n—Y Tin < Ty, + EA73/2\/n log(1/6) 4 4K . (4.24)

k#p min

The claim follows by combining the lower and upper bounds in Equations 4.23 and 4.24. (Il

4.A.3 Regret Bound

We now show how the bound on the allocation over arms translates into a bound on the regret

of the algorithm as stated in Theorem 4.
Proof: [Proof of Theorem 4] The proof consists of the following two main steps.

Step 1. T}, is a stopping time. For each arm 1 < k < K, let {X},;}:<, be all the samples
collected from pulling that arm. We write Q = {X}/;}i<n w2k the set of events generated by
any potential realizations of the other arms. Let, for a given event w € €, (F¢)i<n be the
filtration with respect to the process {Xj}i<n|Q? = w. It is a filtration for every event w € 2

since { X} +}i<n is independent of { Xy ; bty t<n-
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Let w € Q be the event associated to given realizations of the arms k’ # k. We first show that
T), is a stopping time with respect to the filtration (F);<p. At each time step ¢, the CH-AS
algorithm decides which arm to pull only according to the current values of the upper-bounds
{ By ¢}k Thus for any arm k, T}, (441 depends only on the values {7} ;}x and {Ei,,t}k/. So by
induction, T}, ;4.1) depends only on the sequence {Xg1,..., Xk 7, ,}, and on the realizations of
the other arms (which are described in the event w): T}, ; is thus measurable with respect to (F¢)s,
and is thus a stopping time. Note also that the events in w are independent of { X}, 1,..., X}, }:
Lemma 2 thus directly applies for any w € €2, and thus also for the expectation over the

realizations of every arms k' # k.

Step 2. Regret bound. Using its definition, we may write L ,, as follow:

Lin = E|(inn = 18)?2] = E|(ien = 1) e} +E|(in — 1) ).

Using the definition of fiy , and Proposition 2 (and the last remark in Step 1) we bound the first

term as

; I{¢}]

E {%(Z Xt — Tk,nukﬂ

(7)
(72l
(7)
( )E(Tkn) , (4.25)

Since the upper-bound in Lemma 1 is obtained on the event ¢ (and thus with high proba-

bility), and as T}, < n, we may easily convert it to a bound in expectation as follows:
12
E[T},.] < (T,;*n + 575 V/nlog(1/0) + 4K> + 1 x 4nKs. (4.26)
7 Z»‘min

Combining Equation 4.25 and 4.26, and using Equation 4.22 for inf, (o—g /Tk,n>, we obtain

E[(ﬁk,n — Mk)zﬂ{éf}}
- (2 12/10g(1/9) 4;@)2 (T, + 2/ log(1/0) + 4K + 1 x 4nKo)

n (Aminn)3/2 n?2

min . . (427

Ok

By setting A = 12ylos(1/9) vl‘;i(l/‘s) to simplify the notation, Equation 4.27 may be simplified as

min
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B[ (e n — ) Te}]
2 2
. <E+A+4§> (nﬁﬁﬁmgnm)

n  n3/2 > EO"% o

_(x? A7 16K?%?  24%  8KY?  BAKY
n2 ' nd nt nb/2 n3 n?/2 ()

2 24% 1/,  16K?X? 5  8AKY
_<n2+n5/2+n3</1 - KT ) ( )

< <22+2AZ+T23<A2+12K22+4A\/E2>><...)7

n2 | pb/2

where in the last passage we used n > 4K. Let B = A2 +12K%? +4AVKY, we further simplify

the previous expression as

B[ (k. — o) 1€}
ZJr 1 <2A+2A> 1 (4K22+2A2+B) 1 (82AK+AB) 4K B
n | n3/2 n2 O']% 0',3 > nb/2 O',% O']%E
4KY? 8YAK 4KB
(o + g )8
O'k O'kn O'kn

IN

213
opn

+

We now choose § = n~%/2/K and by using n > 4K we obtain

5
E[(Mk n— Hk) H{ﬁ}} po
1 (EA 2A)+1(4K22+2A2+B+42A\/K+ AB B 2 WA B )
n3/2 O',% n? O']% 0,% by O’% 2VKo}Y O’i VK O’%K 2K2/3U,§
1 /SA 1 9242 AB_ B 2% 24 B
< (22494 AKY + 22 AAVE i A
= n3/2(ag +24) 5= (IKS + S+ 5 g AR Vet st VR R T ans)
1 /SA B 1 AB
< (= 2 ki
_ng/z(gi +2A)+/\mmn (4KZ+4A\/ +K = 2(2A + B+ K2/3)+ (B+2 ﬁ))
1 /2A 24 \/ B 1 AB
< > (=4 2A) K2 4 4AVE + 22 4 Y2 (2A2 B ) (B a2 )
= n3/2<a,3 eA) )\minn2( * TR T s T P ages) T (P Qw/iK>

Before proceeding further we upper bound B as follows

B=A?+12K¥? + 4AVKY < (A+ 4VKX)? < (A4 K3/%)?
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where the last passage follows from ¥ < K/4. Furthermore, we notice that Ay, < 1/K and
thus

K32 < 1 A < A <é

T2 12\/log1/6 T 124/17/210g2

where the first passage follows from the definition of A and the second from § = n~5/2 /K,
n > 4K, and K > 2. Putting these terms together we obtain B < 242. By using the previous

bound, we finally obtain

E[ ik — )€}

S% n;/2(2f+2A>
+)\minn2(K2+4A\F+K+\/>+E<2A2+B+2Ki/3> 1(B+2‘i1/%))
§i+n;/2<zf+2’4> )\mmn (7A\ﬁ+w+3;23>

¥ 1 34 TA3 1

T o T A (1 *z*?)

Since |fig,n — pi| is always smaller than 1, we have E[(fign — ) I{¢“}] < 4nK 6 = 4n=3/2. We

also know that A < 20y IC;%”K Thus the expected loss of arm k is bounded by

min

Y 1 34 TA3 1 1
< = _
Lin € o4y 1o (1 5+ 22) +AnKs§
4 ( 3/2
SE 64/log(nK) 56><10 (lognK) <1+ 1 +i>>
n 3/2A5/2 n2 )\11/2 M 22

min min

Using the definition of regret R, (A) = maxy, Ly, — %, we obtain

by 64«/10g nk) L 168 x 10* (log nK)3/?
n n3/2)5/2 n2 \11/2

min min

Ro(Acw) < max (1; %)) (4.28)

4.A.4 Lower bound for the regret of algorithm CH-AS

We report a sketch of the proof for the example with Ay, = 0 reported in the Remark 3 of
Section 4.3.2. Using the definition of By ;11 and Proposition 1, since 5§7t = 0, we have that at
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any time t 4+ 1 >4, on &,

1 log(1/6) 1 log(1/4)
B < —11/4 —_— B = — . 4.2
L= TM( A ) and 2T T (3 2T, , ) (4.29)

Let t +1 < n be the last time that arm 1 was pulled, i.e., T1; = T1,, — 1 and By 41 > Bo41.
From Equation 4.29, we have on &
log(1/9)

1
B = — (3 7) <B <
2,t+1 T, 2Ts, < Dig+1 <

log(1/4)
> ) (4.30)

1
1/44+6
el Con

Now consider the two possible cases: 1) T, < n/2, in which case obviously 75, > n/2 and 2)
T > n/2, in this case Equation 4.30 implies that Toy > Toy = ﬁ(n2/3) on £. Thus in both
cases, we may write T, = SN)(nQ/ 3), which indicates that arm 2 (resp. arm 1) is over-sampled
(resp. under-sampled) by a number of pulls of order Q(n2/3) on &, and thus with high probability.
By following the same arguments as in the proof of Theorem 4, we deduce that the regret in
this case is at least Q(n*‘l/ 3). Thus we can conclude that for small Ay, the regret of CH-AS is
no longer of order O(n=3/?).

4.B Regret Bounds for the Bernstein Algorithm

4.B.1 Basic Tools

Before proving the bound in Theorem 5 and 6 we need a number of technical tools, in particular

for sub-Gaussian random variables.

4.B.1.1 A High Probability Bound on the Standard Deviation for sub-Gaussian

Random Variable

The upper confidence bounds By, ; used in the B-AS algorithm is motivated by Theorem 10 in [Mau-
rer and Pontil, 2009]. We extend this result to sub-Gaussian random variables. We first recall
Theorem 10 of [Maurer and Pontil, 2009]:

Theorem 7 (Maurer and Pontil [2009]) Let (X1,...,X¢) bet > 2 i.i.d. random variables of
variance o and mean p and such that Vi < t,X; € [0,b]. Then with probability at least 1 — §:

1 < 1 2 log(2/6)
| (G- X)) “"Sb S

i=1 j=1

We now state and prove the following Lemma.

o8



Lemma 4 Let Assumption 4.4.2 hold and n > 2. Define the following event

< 2a log(t2/6) . (4.31)

t
RN AR NP DI CEEE) 3
i— j=1

V/c16(1+cz+log(ca/3)
(1-0)+/210g(2/6)

where a = \/2¢y log(ca/0) + )02, Then Pr(¢§) > 1—2nKj.

Note that the first term in the absolute value in Equation 4.31 is the empirical standard
deviation of arm k£ computed as in Equation 4.8 for ¢ samples. The event £ plays an important
role in the proofs of this section and a number of statements will be proved on this event.
Proof:

Step 1. Truncating sub-Gaussian variables. We want to characterize the mean and variance
of the variables X}, given that |Xj: — ur| < y/ci1log(ca/6). For any non-negative random
variable Y and any b > 0, E(YI{Y > b}) = [[°P(Y > e)de + bP(Y > b). ® In order to
simplify the notation we introduce the deviation random variable Sy ; = Xj; — py. If we take

b = ¢y log(ce/d) and use Assumption 4.4.2, we obtain:

o0
E| St { Sk > b}} = /b P(S; > €)de + bP(S;, > b)

S/ coexp(—e/c1)de + beg exp(—b/cr)
b

< 10 + ¢1 log(ce/0)0
= c10(1 + log(c2/9)).

By definition of Si;, we have E[S£7t3{527t > b} + E[Szth{S,at < b}] = o7, that can be

written as

E[Sl%,tj{sl%,t > b}} - UI%P[SI%,t > b] E[Si,ﬂ{sﬁ,t < b}]

=0} — 4.32
P2, <9 RS <] .
that combined with the previous equation, implies that
) [S ‘S < b] ) ‘E[ Sk:t Uk)ﬂ{skt > b}”
—0
< c16(1 + lolg(CQ(?d)) + (50,%. (4.33)

SLet Y = YI{Y > b} + bI{Y,b}, then E[Y] = [P[Y > e]de + [°P[Y > ¢]de = b+ [°P[Y > e]de. Thus we
can write E[YI{Y > b}] = E[Y] — bP[Y < b] = [ P[Y > e]de + bP[Y > b].
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Note also that Cauchy-Schwartz inequality implies

(S, > 0}]| < \JE[S7,93, > b}]
< \/015(1 + log(ca/9)).

We now introduce the mean of X}, ; conditioned on small deviations, that is fi, = E [X k,t’Sg : <

E[X) +9{S2 . <b ) .
b] = %’”)—}] Thus we can combine IE[XMJ{S,it > b}] + E[XMJ{S,%J < b}] = i with

the previous result and obtain

’E[Sk,ﬂ{sﬁ,t > b}]’ \/01(5 + log 02/5)
}P’(S,it < b) 1-96

| — 1] = (4.34)

We also define the variance of the conditional random variable &,% = V[Xk,t\S;?,t < b] =
E[S?,152, <b|] — (uk — fix)?. From Equations 4.33 and 4.34, we derive

67 — of| < [E[S2.IS2, < 8] — o + (i — )’
< c16(1 + log(ca/8)) + do? N c16(1 4 log(ea/d))

- 1-6 (1—4)2
2c18(1 + log(c2/6)) + b0}
B (1-4)? '

In order to get the final result, we first bound the variance o7 as a function of the constants c;

and ¢y using the sub-Gaussian assumption as
o o0
of = E[(Xps — pux)?] = / P[Xy — pux)? > €lde < / coexp(—¢e/c1)de = cca. (4.35)
0 0

Finally, using +/|a? — b2| > |a — b| we obtain

V2e16(1+ca + log(c2/9))

s (4.36)

| — ok <

Step 2. Application of large deviation inequalities.
Let & = &1 k0 (9) be the event:
= () {Xee—ml < Velog(e/o) )
1<k<K, 1<t<n

Under Assumption 4.4.2, using a union bound, we have that the probability of this event is at
least 1 —nK¢. On &, the {X;}i, 1 <k <K, 1<i<taretiid. bounded random variables

with standard deviation &y,.

Let & = &2 kn(9) be the event:
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1 1< 2 log(2/6)
§2 = ﬂ —1 Z (ch,i 1 Z Xk,j) — 0k < 2¢/c1log(c2/9) r—1
j=1

1<k<K, 1<t<n i=1

Using Theorem 10 of [Maurer and Pontil, 2009] and a union bound, we deduce that Pr(§; N
&) > 1—2nKé. Now, from Equation 4.36, we have on & N&, forall 1 <k < K, 2 <t < n:

t
Ay (- 1)

< NW\/ lotg (_2/15) L V200(1 + ¢ + log(c2/9))

1-6
2 1 1
<920 log(02/5)\/10g(2/5) n V2e10(1+ ¢y + Og(CQ/é))’
t 1-6
from which we deduce Lemma 4 (since {§ N& C € and 2 <t < n). 0

We deduce the following corollary when the number of samples T}, ; are random.

Corollary 1 For any k=1,...,K andt =2K,...,n, let {X};}; be n i.i.d. random variables

drawn from vy, satisfying Assumption 4.4.2. Let Ty, be any random variable taking values in

{2,...,n}. Let 3]%1& be the empirical variance computed from Equation 4.8. Then, on the event
&, we have:
~ log(2/d
Ok — k| < 2a log(2/0) (4.37)
Tht

4.B.1.2 Bound on the regret outside of £

The next lemma provides a bound for the loss whenever the event £ does not hold.

Lemma 5 Let Assumption 4.4.2 holds. Then for every arm k:
E[(firn — p1)?I{ECY] < 2e1n? K8(1 + log(ca/2nK56)) .

Proof: Since the arms have sub-Gaussian distribution, for any 1 < k < K and 1 <t < n, we

have
P[(Xpt — i) > €] < coexp(—e/er) ,

and thus by setting ¢ = ¢; log(cz/2nKJ), we obtain?

P[(Xpt — pu)? > c1log(ca/2nK5)] < 2nKS6 .

9Note that we need to choose cs such that cs >2nKéd = 2Kn" 52 if § = n77/2, ie. co > 1.
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We thus know that

2
/P s E[(Xps — i) TI{Q}]

< / caexp(—e/c1)de + c1log(ca/2nK5)P(§2)
c1 log(c2/2nK§)
= 2c1nK6(1 + log(ce/2nK0)) .
Since the event £ has a probability at most 2nK0, for any 1 < k < K and 1 < t < n, we have

E[(Xp: — ,uk)zﬂ{fc}] < Q/P(gl)i)éanE[(Xk’t — pu)?{Q}] < 2c1nK (1 + log(cz/2nK§)) .

The claim follows from the fact that E[(fig, — p)?I{E9Y] < Spi E[(Xin — 1e)?9{€C}] <
2c1n?K6(1 + log(ca/2nK ). O

4.B.1.3 Other Technical Inequalities

Upper and lower bound on a If § = n~ /2, with n > 4K > 8

_ og(c \/01(5(1 +c2+ 108;(62/6))711/2
a = \/2¢1 log(e2/8) + (1= 6)\/2108(2/9)

2
< \/Tei(ea + 1) log(n) + P c1(1 4 c2)

< 2v/2¢1(co + 1) log(n).

We also have by just keeping the first term and choosing ¢y such that co > 1> en™7/2 = e§

o \/m+ \/015(1 +co + 10g(02/5))n1/2

(1—0)\/21og(2/9)
> V2 > (e

Lower bound on ¢(§) when § = n=7/?> See Lemma 2 for the definition of ¢(§). Using the
fact that the arms have sub-Gaussian distribution we showed in Equation 4.35 that a,% < ciea,
then we also have ¥ < Ke¢jeo. If 5 =n~7/ 2 we obtain by using the previous lower bound on a
that
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(6 = nT/2) = a+/3log(2/9)

\/37((«/2 73 + a+/31og( 2/5))
_ 1 (B
V3K log2/6
> L (1 VE/3
T V3K Verlog2/s
> [y
2 =

)

+

IV
/\
v

by using ¥ < cocq for the last step.

Upper bound on the loss outside ¢ when § = n~7/2  We get from Lemma 5 when § = n~7/2

and when choosing ¢y > 1

R C
E (i — i)' HETY] < 20n? K5 (14 10g (5 55))

5/2
<92 Kn~ 3/2(1 + (o + 1) log (ZK )>
< 20 Kn~2(1+ 3 (e + 1) log(n)

<T7c1K(cg+1) log(n)n*S/Z.

Upper bound on B for § =n~7/2  See the proof of Lemma 2 for the definition of B.

B = 16Ka+/log(2/6) (‘/EJF W)

- 16Ka\/m(\/§ + VK (VY + 3a\/m))

< 16Ka\/m(\f+ WES + 12VE \/e1(c2 + 1)Tlog(n )log(2n)>
< 16Ka\/m(3f(\/m + 45@mlog(n))

< 32K +\/7c1(ca + 1) log n log(2n) (48K\/m 1og(n))

<6 x 10°K?¢i(co + 1) log?(n).

Upper bound on C for § = n~7/2  See the proof of Lemma 2 for the definition of C.
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O a2 108C1)
c(9)
a’log?2/6
Va(3log2/5)1/4
1

< 64v2K3/%a%2(log 2/5)3/4WK1/4(\/K0162 + 64/2¢1(co + 1) log ny/7logn)'/?

< 64v2K3/2

KY4V + 3a+/log 2/8)/?

< 64\/53)1%K7/4(2\/2c1(c2 +1)logn)*?(7logn)3/*V24K Y4 (¢1(ca +1))/4\/log n

<7 x 103K%¢i(co + 1) log?(n).

4.B.2 Allocation Performance

In this section, we first provide the proof of Lemma 2, we then derive the regret bound of The-

orem 5 in the general case, and we prove the Theorem 6 for Gaussians.
Proof: [Proof of Lemma 2| The proof consists of the following five main steps.

Step 1. Lower bound of order O(y/n). Let k be the index of an arm such that Ty, > %
and t+1 < n be the last time that it was pulled, i.e., T} = T}, — 1 and Ty 111 = T} . 10 From
Equation 4.37 and the fact that T}, > 7 > 4, we obtain on ¢

2
1 log(2/9) 1K log(2/d)\2
B < — 4 — < — Y+4 — 4.
k1l < T <0k+ a Tox <3, (\f—&- a 3 ) , (4.38)

where we also used T}, ,, > 4 to bound T}, ; in the parenthesis and the fact that o, < V3. Since

at time ¢ we assumed that arm k has been chosen then for any other arm ¢, we have

Byt+1 < Brit1- (4.39)

From the definition of By:41, removing all the terms but the last and using the fact that
Tyt < Ty n, we obtain the lower bound

log(2/0) _ , »10g(2/0) (4.40)

B > 442
g;t+1 = 2 = 2
Tq,t Tq,n

Combining Equations 4.38-4.40, we obtain

log(2/3) _ 4K (vE+ 3a\/10g(2/5)>2.

T2, 3n

4q>

!ONote that such an arm always exists for any possible allocation strategy given the constraint n = > o LTan-
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Finally, this implies that for any ¢

2a+/log(2/9) / 3n
Tyn > —. 4.4
S (\/i—i— 3a log(2/5)) 4K (141

In order to simplify the notation, in the following we use

a+/3log(2/9)
VE (VS +30y/105(2/5))

c(d) =

thus obtaining T} ,, > ¢(d)y/n on the event £ for any g.

Step 2. Mechanism of the algorithm. Similar to Step 1 of the proof of Lemma 1, we first
recall the definition of By ;41 used in the B-AS algorithm

2
1 (. log(2/6)
B = — 2 .
q,t+1 T, <Uq,t + 2a T, .
Using Lemma 1 it follows that on &, for any g,
o2 log(2/5)\
24 < Byyir < — 0y + day | 22 . (4.42)
Ty q,t Ty

Let t +1 > 2K be the time when an arm ¢ is pulled for the last time, that is 75 = T, , — 1.
Note that there is at least an arm that verifies this as n > 4K. Since at time ¢ + 1 this arm ¢ is

chosen, then for any other arm p, we have

Bp,t+1 S Bq,t+1 . (443)

From Equation 4.42 and Tj,; = T}, , — 1, we obtain

2 2
1 log(2/96) 1 log(2/9)
B 1 S — | O —|—4a = g, —|—4a . (444)
! Tq,t < 7 Tq,t Tq,n -1 ! Tq,n -1
Furthermore, since T, < T}, ,, then
0'2 0'2
Bpii1 > =5 > =2 (4.45)
Dt Tp,n
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Summing over all g that are pulled after initialization on both sides, we obtain on £ for any arm

p

2
;g(n—QK) < > <0q+4a W) : (4.46)

Tyn—1
pn A Tgn>2 qn

because the arms that are not pulled after the initialization are only pulled twice.
Step 3. Intermediate lower bound. It is possible to rewrite Equation 4.46, using the fact
that T, , > 2, as

02 log(2/0 21log(2/9) ?
-0 (oor i) <5 (rorin20).

p,n

Plugging Equation 4.41 in Equation 4.46, we have on £ for any arm p

) 2
%(n —2K) <Y <aq +day| 2 loi(i/ 5)> (f +4VKa lo(g;) é%) ) L (447

because for any sequence (ag)i=1,. .k > 0, and any b > 0, 3", (aj, +b)? < (/> a? + VKb)?
Cauchy-Schwartz.

Building on this bound we shall recover the desired bound.

Step 4. Final lower bound. We first develop the square in Equation 4.46 using T}, , > 2 as

o2 2
Tp (n —2K) <Zo + 8a+/21og(2/6) Z 232(1 log 2/6)
T RV qn q,n

p;n

We now use the bound in Equation 4.47 in the second term of the RHS and the bound in
Equation 4.41 to bound T}, in the last term, thus obtaining

oy (n—2K) < % 4 8a+/210g(2/0) ———

log(2/5) 32Ka?log(2/9)
T < \/n_ (xf +4VKa ) + .

ONG GNGD

By using again n > 4K and some algebra, we get

2 2
o, (n—2K) <% + 16Ka Ylog(2/6) n 64\/§K3/2a210g(2/5) _3/4 | 32Ka”log(2/6)

Tyn = n S0 c(8)v/n
_ x4 16KavI08@/8) (| 20/108(2/) 32g2108@/0) 4
IS 7 (@ ) ) + 642K NZO) . (4.48)
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We now invert the bound and obtain the final lower-bound on 7}, ,, as follows:

bz =y SNG () SNED)

- 16K a+/log(2/0) (\/§+ WW) BYNGY G log(2/5)n—3/41

- b l Evn c(d) ()

> Ty = KAy [16@ 1;g(2/5) <x/§ + 2‘1\/(1;2(%)(%) n'/? 4 64\/ﬁa2§g(2é§; n'/* 42

T s 02(n—2K) ll N 16Ka+/log(2/9) (\/i—l— 2a 10g(2/6)> +64\/§K3/2a210g(2/6)n_3/4] -

Note that the above lower bound holds with high probability for any arm p.

Step 5. Upper bound. The upper bound on T}, ,, follows by using 7}, , = n — Zq;ép Tyn and

the previous lower bound, that is

*
prn sn-— Z Tq,n

q#p
+3 KA, [16@ ¥ 1;g(2/5) <\/i 4 2ev/o8(2/0) i(()(gs)@/‘s) > n'/? 4 64\/ﬁa210g(2€§)) /4 42
q#p ¢
<T,,+K [16@ 1;g(2/5) (x/f + 20%};(%%)”1/2 + 64\/ﬁa2;g(2ég nt/4 4 2.

4.B.3 Regret Bounds

With the allocation performance, we now move to the regret bound showing how the number of
pulls translates into the losses Ly, and the global regret as stated in Theorem 5.
Proof:  [Proof of Theorem 5]

At first let us call, for the sake of convenience,

B /o 2a+/10g(2/9) an _ 3/2a210g(2/6)
B = 16K 1g(2/5)<\/§+c(5) ) d C=64V2K e

Then Equation 4.48 easily becomes

o2 B C
d —2K) < ¥+ — 4+ —. 4.49
T, TSR 9
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We also have the upper bound in Lemma 2 which can be rewritten:

B C
Tym < Ty + 5Vt gn/t 42K,

Note that because this upper bound holds on an event of probability bigger than 1 — 4nK¢§ and
also because of T}, , is bounded by n anyways, we can convert the former upper bound in a

bound in expectation:

E(T,,) < T5, + er n'/* + 2K +n x 4nKs. (4.50)

pn

We recall that the loss of any arm k is decomposed in two parts as follows:

Lk,n = E[(ﬁk,n - ;U’)2H{5H + E[(ﬁk,n - M)2]I{§C}]

By combining that and Equations 4.49, 4.50, and 4.16 (as done in Equation 4.25), we obtain for
the first part of the loss:

E[(fik,n — 1)*I1{€}]

<%2K)(2+?+ 30/4) (Tp*)n—l—g\/ﬁ—l—%nl/‘l—i-QK—i-éanKé)
n—2K (22+22 n3C;4)+(B+nC)2><Z 32\, f+22)\ 1/4+§23§\{k+47§)\]§6)
n—2K ( C(i\i[(z]nl/zl—klmi\[]j&S%-QB\/ﬁ—FQCnl/‘L
2B+ O)( A: +2K)+8(B+c;1ns/zm+(3+c)2(;+(L;;MC)+;i>+4nK5(BZ+AkC)2>
s(ngK)Q<nZ+f\/ﬁ+ ?’Ctjmnl/‘*jtlzK(B;“f)g(;ﬂ)
+ 452:]{ (Z +2(B+C) + BLO ;C)Z))

since B+ C > 1.
Now note, as § = n~7/2, that
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E[(fik,n — 1)*1{€}]

1 3B 3C +2K% (B+0C)3, 1 AKS (B+C)\2
< _(uz42Z R M VE SIS Y G S A i | 1
= (n—2K)2 <” v Al s v T )+n3/2/\k( > )

1 8K 3B 3C +2KY (B+C)* 1 8KY 1
—+— | (nE+ Mt K (Gt D)+ = (B O (14 =5
<2+n3><” +/\k\/ﬁ+ N ot " S )+n3/2Ak( +O (14 5)
b
n

IN

8KY. 3 (33 3C +2KY% (B+C)* 1 8KY.

1
enx L2 SETERE 1 o BTy SR B 021+ —
2 T n2 Ak\/ﬁ+ wo T e G T ey, (BHOT (1 )

% 9B S8KY s 1

S o5 a7 vw <3C+2KE+12K(B+C) (1+z)(22+1)>
Y 9B  8KY 3 )
Py 17K (B 31+ (= +1

. +n3/2/\k n2 + n7/4/\k< TK(B+C)*(1+ )(22 + ))

again since B+ C > 1.

Finally, combining that with Lemma 5 gives us for the regret:

B B 51
) + 60K( +C) (= + D1+ %) +2c:n?K6(1 + log(ca/2nK6)).

Rn < n7/4>\min 32

- n3/2)\min
By recalling the bounds on B and C in 4.B.1.3 and taking 6 = n~7/2, we obtain:

9B (B+0C)3, 1 oy
R, < T + 60K T (ﬁ + 1)1+ )+ 7ci(ea + 1)K log(n)n
o Bax 103¢; (co + 1) K2 log(n)? N O(log(n)6K7>.

- >\minn3/2 n7/4 )\min

4.C Regret Bound for Gaussian Distributions

Here we report the proof of Lemma 3 which states that when the distributions of the arms
are Gaussian, bounding the regret of the B-AS algorithm does not require upper-bounding the
number of pulls T}, (it can be bounded only by using a lower bound on the number of pulls).
Before reporting the proof of Lemma 3, we recall a property of the normal distribution that is

used in this proof (see e.g., Brémaud [1988]).

Proposition 3 Let X1,..., X, be n i.i.d. Gaussian random variables. Then their empirical
mean My = - > i X; and empirical variance 5; = —5 > " (X; — my)° are independent of

each other.
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Let {X;}:>1 be a sequence of i.i.d. random variables drawn from a Gaussian distribution
N(p, 02). Write iy = 130 X; and 82 = 15 31| (X; —)? the empirical mean and variance

of the t first samples. We first deduce from the last proposition the following Lemma.

Lemma 6 We have

t—1 1
Syl = S + 1 (Xpp1 —my)”.

We deduce by induction that for any ¢ > 2 there exists a sequence of non-negative real numbers

{a14,a24,...,a:+} such that
t—1
57 = aiss+ Z ait(Xip1 — mi)?.
i=2
Proof:
We have
s
St = T2 (Xi— Mis1)?
i=1
1< 1
= 7 (X; — Mypp1 + My —my)% + ;(Xtﬂ — Mgg1)?
i=1
1< 1
= 3 (X — ) + ;(Xt+1 — fyg1)® + (Mg — Myg)?
i=1
1< t 1
= 5K — )+ Xep1 — )+ ————(Xpp1 — i)?
t i:1( ) t) (t+1>2( t+1 t) (t+ 1)2( t+1 t)
t
1 1
= = Xi—m) 4+ — (X, —
tizl( i t) +t+1( 41— My)”,
which finishes the proof. (Il

Before proving Lemma 3, we first derive a general result showing that for Gaussian distri-

butions, the empirical mean m; built on ¢ i.i.d. samples is independent from the sequence of

standard deviations S, ..., 8;.
Lemma 7 Let F; be the filtration generated by the sequence of random variables 5s, . ..,5;. Then
forallt > 2,

il ~ N (. 7).

Proof: 'We prove the statement by induction.
The base of the induction (¢ = 2) is directly implied by the specific properties of Gaussian

distributions. In fact, My is distributed as N(u, 02/2) and mso and 5y are independent.
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Now we focus on the inductive step. For any ¢t > 2, let G; be the filtration generated by
the random variables 83 and {(X;11 — M;)?}a<i<t—1. The recursive definition of the empirical
variance in Lemma 6 immediately implies that the knowledge of {sa, ..., 5} is equivalent to the
knowledge of 33 and {(X;+1 —M;)?}a<i<t—1 and thus F; = G;. We assume (inductive hypothesis)

e |Gy ~ N(M, (’;) (4.51)

and we now show that (4.51) also holds for t+1. Let U = (X431 —m¢)|G¢ and V' = (M1 — )| Ge-

Note that V' can be written as V = (t%(ffzt — )+ H%(Xtﬂ — w))|G¢. Since samples are i.i.d.,

Xi+1 is independent from (X7,..., X;) and
Xi41|G ~ N(p, %)

and thus X;y1]|G; is also independent of m4|G;. This fact combined with (4.51) implies that U
and V are zero-mean jointly-Gaussian variables. Furthermore, we can show that they are also

uncorrelated since

E[ov] = E[(Xi1 - ) (Hllxt+1 + H%mt = )94
= B((Xers =0 = P = ) (o5 Ko = ) + 5 — 1) |9
1 5 t o?

t+1°  t+1t

As a result, U and V are independent and

(M1 — 1)[Se1 = (M1 — ) |[{Ge, (Xep1 — m0)*} = (M1 — w)|{S0, U} = VU = V.

Finally, we deduce that
_ o’
M1 |Ge1 ~ N(/b m>7

which concludes the proof since Gyy1 = Fyyq. O

We now study an adaptive algorithm which computes the empirical average m; and that at
each time ¢ decides whether to stop collecting samples or not on the basis of the sequence of
empirical standard deviations $»,...,0; observed so far. Let T > 2 be a integer-valued random
variable, which is a stopping time with respect to F;. This means that the decision of whether

to stop at any time before ¢t + 1 (the event {T" < t}) only depends on the previous empirical
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standard deviations S, ...,S;. From an immediate application of Lemma 7 we obtain
El(mr —p)?] = Y E[(fy — p)*|T = tJP(T = t)
t>2
= > E[E[ w)2|F, T = t]|T = t]P(T = t)
t>2

0.2
- ;E 125 |T = (T = t):;tkP(T: 1 =ofE[ 7]

The previous result seamlessly extends to the general multi-armed bandit allocation problem

considered in the Chapter.
Proof: [Proof of Lemma 3]

Let us now consider algorithms CH-AS and B-AS. For any arm k, the event {1}, > t}
depends on the filtration F; (generated by the sequence of empirical variances of the samples
of arm k) and also on the “environment” €_j (defined by all the samples of other arms). Since
the samples of arm k are independent from £_j, we deduce that by conditioning on €_j Lemma 7

still applies and

El(ikn — 1)) = Be_, [El(firn — w)2E-]] = o7E¢_, [E [T,jn -+]] ot {T;J

We now report the proof of Theorem 6.

Proof: [Proof of Theorem 6] Note that Lemma 2 is only based on the assumption that samples are
generated by a sub-Gaussian distribution. Here we strengthen that assumption and require all
the distributions to be Gaussian with parameters u; and O']%. We recall Lemma 3 and decompose
the loss in order to obtain

4}] .

1 1

1
2
B[
Tk,n :| + Tk Tk n

From the bound in Equation 4.49, we have (since n > 4K)

2

aiE{T;nH{f}] < m?x [%}

- >  4KY 2B 2C
= + n2 n3/2 " p7/4
Y 4KY 12 x 103 14 x 103
S E —+ n2 'n,3/2 K261 (CQ —+ 1) logz(n) =+ WKQCl (C2 + 1) logQ(n)
Y 12 x 108 14 x 103
<=+ WKQ(I +c1(ea + 1)) log®(n) + WK201(C2 +1)log(n).  (4.52)
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where we use the bounds on B and C in 4.B.1.3. As § = n~7/2, and by Lemma 4 we know that
P(¢€) < 2nK ¢ and as a result

1 K
U,%]E[ﬁ]l{fc}} < 2Kofn 2 < T2, (4.53)

Finally, combining Equations 4.52 and 4.53, and recalling the definition of regret, we have

14 x 103
ni/a

) 9 14 x 10% 9
K*(1+ci(c2 + 1)) log™(n) + WK (14 c1(co + 1)) log”(n).

12 x 103
= p3/2
12 x 103
n3/2

K
K21+ c1(ca + 1)) log*(n) + K2%ci(ca + 1) log?(n) + En—f’/? (4.54)

73



4. UPPER-CONFIDENCE-BOUND ALGORITHMS FOR ACTIVE LEARNING
IN MULTI-ARMED BANDITS

74



Chapter 5

Minimax strategy for Stratified
Sampling for Monte Carlo

This Chapter is the product of a joint work with Rémi Munos and Andrds Antos. A short (not
including the proofs and some elements) version of it was published (only with Rémi Munos) in
the Conference of Neural Information Processing System in 2011 (see [Carpentier and Munos,
2011a]). It is the first of four works on adaptive stratified Monte-Carlo. In this Chapter, we
consider that a partitioning of the domain (on which the function is defined) is fixed. We discuss
about adaptive procedures for efficiently sampling in each region of the partitioning (stratum).
The three following Chapters discuss, in different settings, strategies for partitioning the domain.

We consider the problem of stratified sampling for Monte-Carlo integration. We model this
problem in a multi-armed bandit setting, where the arms represent the strata, and the goal is to
estimate a weighted average of the mean values of the arms. We propose a strategy that samples
the arms according to an upper bound on their standard deviations and compare its estimation
quality to an ideal allocation that would know the standard deviations of the strata. We provide
two pseudo-regret! analyses: a distribution-dependent bound of order 5(71_3/ 2) that depends on
a measure of the disparity of the strata, and a distribution-free bound 6(71_4/ 3) that does not?.
We also provide the first problem independent (minimax) lower bound for this problem and
demonstrate that MC-UCB matches this lower bound both in terms of number of samples n and
in terms of number of strata K. Finally, we link the pseudo-regret with the difference between
the mean squared error on the estimated weighted average of the mean values of the arms,
and the optimal “oracle” strategy: this provides us also a problem dependent and a problem

independent rate for this measure of performance and, as a corollary, asymptotic optimality.

Contents
5.1 Introduction . . . . . . @ i i i i i i i i i e e e e e e e e e e e e e e e e e T
5.2 Preliminaries . . . . . . o v i i i i e e e e e e e e e e e e e e e e e e e e e 79

"We define this notion in Section 5.2. It is a proxy on the difference between the mean squared error on the
estimated weighted average of the mean values of the arms, and the optimal “oracle” strategy.
2The notation O(-) corresponds to O(-) up to logarithmic factors.
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5.1 Introduction

Consider a polling institute that has to estimate as accurately as possible the average income
of a country, given a finite budget for polls. The institute has call centers in every region in
the country, and gives a part of the total sampling budget to each center so that they can
call random people in the area and ask about their income. A naive method would allocate
a budget proportionally to the number of people in each area. However some regions show a
high variability in the income of their inhabitants whereas others are very homogeneous. Now
if the polling institute knows the level of variability within each region, it could adjust the
budget allocated to each region in a more clever way (allocating more polls to regions with high
variability) in order to reduce the final estimation error.

This example is just one of many for which an efficient method of sampling a function with
natural strata (i.e., the regions) is of great interest. Note that even in the case that there are
no natural strata, it is always a good strategy to design arbitrary strata and allocate a budget
to each stratum that is proportional to the size of the stratum, compared to a crude Monte-
Carlo. There are many good surveys on the topic of stratified sampling for Monte-Carlo, such
as [Rubinstein and Kroese, 2008][Subsection 5.5] or [Glasserman, 2004].

The main problem for performing an efficient sampling is that the variances within the strata
(in the previous example, the income variability per region) are unknown. One possibility is
to estimate the variances online while sampling the strata. There is some interesting research
along this direction, such as [Arouna, 2004] and more recently [Etoré and Jourdain, 2010; Kawali,
2010]. The work of Etoré and Jourdain [2010] matches exactly our problem of designing an
efficient adaptive sampling strategy. In this paper they propose to sample according to an
empirical estimate of the variance of the strata, whereas Kawai [2010] addresses a computational
complexity problem which is slightly different from ours. The recent work of Etoré et al. [2011]
describes a strategy that enables to sample asymptotically according to the (unknown) standard
deviations of the strata and at the same time adapts the shape (and number) of the strata
online. This is a very difficult problem, especially in high dimension, that we will not address
here, although we think this is a very interesting and promising direction for further researches.

These works provide asymptotic convergence of the variance of the estimate to the targeted
stratified variance 2 divided by the sample size. They also prove that the number of pulls within
each stratum converges asymptotically to the desired number of pulls i.e. the optimal allocation if
the variances per stratum were known. Like Etoré and Jourdain [2010], we consider a stratified
Monte-Carlo setting with fixed strata. Our contribution is to design a sampling strategy for
which we can derive a finite-time analysis (where 'time’ refers to the number of samples). This
enables us to predict the quality of our estimate for any given budget n.

We model this problem using the setting of multi-armed bandits where our goal is to estimate

a weighted average of the mean values of the arms. Although our goal is different from a usual

3The target is defined in [Subsection 5.5] of [Rubinstein and Kroese, 2008] and later in this Chapter, see
Equation 5.4.
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bandit problem where the objective is to play the best arm as often as possible, this problem
also exhibits an exploration-exploitation trade-off. The arms have to be pulled both in order to
estimate the initially unknown variability of the arms (exploration) and to allocate correctly the
budget according to our current knowledge of the variability (exploitation).

Our setting is close to the one described in [Antos et al., 2010] which aims at estimating
uniformly well the mean values of all the arms. The authors present an algorithm, called
GAFS-MAX, that allocates samples proportionally to the empirical variance of the arms, while
imposing that each arm is pulled at least \/n times to guarantee a sufficiently good estimation
of the true variances. Another approach for this problem, still with a bandit formalism, can be
found in [Carpentier et al., 2011a], and the analysis is extended.

Note tough that in the Master Thesis [Grover, 2009], the author presents an algorithm
named GAFS-WL which is similar to GAFS-MAX and has an analysis close to the one of
GAFS-MAX. It deals with stratified sampling, i.e. it targets an allocation which is proportional
to the standard deviation (and not to the variance) of the strata time their size*. They define a
proxy on the mean squared error that they write loss, and prove that the difference between the
loss of GAFS-WL and the optimal static loss is of order O(n~3/2), where the O(.) depends of
the problem. There are however some open questions in this very good Master Thesis. A first
one is on the existence of a problem dependent bound for GAFS-WL. A second important issue
is on the links between the loss they define and the intuitive, related measure of performance,
which is the mean squared error. Without this link, they are not able to prove that GAFS-WL
is asymptotically optimal.

Our objective is similar, and we extend the analysis of this setting. We introduced in
paper [Carpentier and Munos, 2011a] algorithm MC-UCB, a new algorithm based on Upper-
Confidence-Bounds (UCB) on the standard deviations. They are computed from the empirical
standard deviation and a confidence interval derived from Bernstein’s inequalities. The algo-
rithm, called MC-UCB, samples the arms proportionally to an UCB® on the standard deviation
times the size of the stratum. We provided finite-time, problem dependent and problem inde-
pendent bounds for the loss of this algorithm, filling the gap in [Grover, 2009]. We however, as

in [Grover, 2009], did not link this pseudo-regret to the mean squared-error.

Contributions: In this Chapter we extend the analysis of MC-UCB in [Carpentier and Munos,

2011a]. Our contributions are the following:

e We provide two pseudo-regret analysis: (i) a distribution-dependent bound of order 5(n_3/ 2)
that depends on the disparity of the stratas (a measure of the problem complexity), and
which corresponds to a stationary regime where the budget n is large compared to this

complexity. (ii) A distribution-free bound of order 5(71*4/ 3) that does not depend on

4This is explained in [Rubinstein and Kroese, 2008] and will be formulated precisely later.

5Note that we consider a sampling strategy based on UCBs on the standard deviations of the arms whereas
the so-called UCB algorithm of Auer et al. [2002], in the usual multi-armed bandit setting, computes UCBs on
the mean rewards of the arms.
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the the disparity of the stratas, and corresponds to a transitory regime where n is small
compared to the complexity. The characterization of those two regimes and the fact that
the corresponding excess error rates differ enlightens the fact that a finite-time analysis is

very relevant for this problem.

e More precisely, we improve the problem independent upper bound in terms of K. This

K1/3
nA/3

bound on the expectation of the pseudo-regret is of order O( ) where K is the number

of strata.

e We also provide a minimax lower bound on the expectation of the pseudo-regret for the
problem of stratified Monte-Carlo of order Q(%//;) As a matter of fact, the problem
independent lower-bound matches the problem independent upper-bound for MC-UCB,
in terms of n and K. It induces that MC-UCB is minimax optimal in terms of pseudo-

regret.

e Finally, by clarifying the notion of pseudo-regret that we introduce in Section 5.2, we
provide finite-time bound on the mean squared error of the estimate of the integral. As a

corollary, we obtain also asymptotic consistency of our algorithm.

The rest of the Chapter is organized as follows. In Section 5.2 we formalize the problem
and introduce the notations used throughout the Chapter. Section 5.3 states the minimax
lower bound on the pseudo-regret. Section 5.4 introduces the MC-UCB algorithm and reports
performance bounds. Section 5.5 discusses the bridges between the pseudo regret and the mean
squared error. We then discuss in Section 5.6 about the parameters of the algorithm and its
performances. In Section 5.7 we report numerical experiments that illustrate our method to the
problem of pricing Asian options as introduced in [Glasserman et al., 1999]. Finally, Section 5.8

concludes the Chapter and suggests future works.

5.2 Preliminaries

The allocation problem mentioned in the previous section is formalized as a K-armed bandit
problem where each arm (stratum) k = 1,..., K is characterized by a distribution v with mean
value pp and variance al%. At each round ¢ > 1, an allocation strategy (or algorithm) A selects
an arm k; and receives a sample drawn from vy, independently of the past samples. Note that
a strategy may be adaptive, i.e., the arm selected at round ¢t may depend on past observed
samples. Let {wy}r=1,. K denote a known set of positive weights which sum to 1. For example
in the setting of stratified sampling for Monte-Carlo, this would be the probability mass in each
stratum. The goal is to define a strategy that estimates as precisely as possible u = Zle W [k
using a total budget of n samples.

Let us write Ty ; = 2221 I{ks = k} the number of times arm k has been pulled up to time

Tt
t, and fig; = E ZkaS the empirical estimate of the mean jy, at time ¢, where X}, ; denotes
" os=1
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the sample received when pulling arm k for the s-th time.
After n rounds, the algorithm A returns the empirical estimate fiy, ,, of all the arms. Note that
in the case of a deterministic strategy, the expected quadratic estimation error of the weighted

mean p as estimated by the weighted average fi, = Zle Wy, satisfies:
~ 2 K ~ 2 K ;
E[(fin — #)*] = E[( S5 wnlinn — m)] = S w2k,

where £ H is the expectation integrated over all the samples of all arms.

We thus use the following measure for the performance of any algorithm A:

0.2
Lu(A) =TI w} ik (5.1)

We denote this quantity by pseudo-loss, as it is a proxy of the true loss of the algorithm,
which is E[(ﬁn - u)ﬂ. This loss is not the same as in [Grover, 2009] and in [Carpentier and
Munos, 2011a]. We give some properties of this pseudo-loss in Section 5.5. We also provide
in Subsection 5.5.1 properties of the loss defined in papers [Grover, 2009] and [Carpentier and
Munos, 2011a].

The goal is to define an allocation strategy that minimizes the global pseudo-loss defined in
Equation 5.1. If the variance of the arms were known in advance, one could design an optimal
static® allocation strategy A* by pulling each arm k proportionally to the quantity wyo. Indeed,

if arm k is pulled a deterministic number of times 77, , then T
K 9 0%
Ln(A*) =2k wkﬁ : (5.2)
By choosing T}, such as to minimize L, under the constraint that Zi{:l T;, = n, the

optimal static allocation (up to rounding effects) of algorithm A* is to pull each arm £,

Wi,
T = _WkTE (5.3)
YR wio;

times, and achieves a global pseudo-loss (or loss as the (7}, ), are deterministic)

22
w (5.4)

n

Ln(‘A*) =

where $,, = 3.5 w;o; (we assume in the sequel that ¥, > O). In the following, we write

AL = ';‘” = wE’“—Zk the optimal allocation proportion for arm k& and Ayin = minj<gz<x Ag. Note

that a small Ay, means a large disparity of the wio, and, as explained later, provides for the
algorithm we build in Section 5.4 a characterization of the hardness of a problem.

However, in the setting considered here, the o} are unknown, and thus the optimal allocation

SStatic means that the number of pulls allocated to each arm does not depend on the received samples.
7As it will be discussed later, this equality does not hold when the number of pulls is random, as it is the case
of adaptive algorithms where the strategy depends on the observed samples.
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is out of reach. A possible allocation is the uniform strategy A", i.e., such that T}" = ZKk n.

Its pseudo-loss (and loss as the (T}'); are deterministic) is

2 by
Ly (A") = Eszl W Zf:l wl;zak = %2 )

where ¥, 2 = Z,If:l wyoz. Note that by Cauchy-Schwartz’s inequality, we have ¥2, < %, o with
equality if and only if the (oy)r are all equal. Thus A* is always at least as good as A“. In
addition, since Y, w; = 1, we have ¥2 — ¥, 0 = — >, wg(ox — Xy)?. The difference between
those two quantities is the weighted quadratic variation of the o around their weighted mean
Y. In other words, it is the variance of the (o%)i1<kr<k. As a result the gain of A* compared to
A% grow with the disparity of the oy.

We would like to do better than the uniform strategy by considering an adaptive strategy
A that would estimate the o; at the same time as it tries to implement an allocation strategy
as close as possible to the optimal allocation algorithm A*. This introduces a natural trade-off
between the exploration needed to improve the estimates of the variances and the exploitation
of the current estimates to allocate the pulls nearly-optimally.

In order to assess how well A solves this trade-off and manages to sample according to the
true standard deviations without knowing them in advance, we compare its performance to that
of the optimal allocation strategy A*. For this purpose we define the notion of pseudo-regret of
an adaptive algorithm A as the difference between the pseudo-loss incurred by the algorithm
and the optimal pseudo-loss:

R, (A) = L,(A) — L,(AY). (5.5)

The pseudo-regret indicates how much we loose in terms of expected quadratic estimation

2
error by not knowing in advance the standard deviations (o). Note that since L, (A*) = 27”, a

consistent strategy i.e., asymptotically equivalent to the optimal strategy, is obtained whenever

its regret is negligible compared to 1/n.

We also defined the true regret as
Rn(‘A) - E[(ﬁn - M)Q] - Ln(‘A*) (5'6)
This is the difference between the mean-squared error and the optimal mean squared error. The
pseudo-regret is a proxy for the true regret.
5.3 Minimax lower-bound on the pseudo-regret

We now study the minimax rate for the pseudo-regret of any algorithm on a given stratification

in K strata of equal size.

Theorem 8 Let inf be the infimum taken over all online stratified sampling algorithms using
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K strata and sup represent the supremum taken over all environments, then:

K1/3

infsupER,, > CW’

where C is a numerical constant.

Proof: [Sketch of proof (The full proof is reported in Appendix 5.A)] We consider a stratification
with 2K strata. On the K first strata, the samples are drawn from Bernoulli distributions of
parameter p; where pup € {%, M,3%}, and on the K last strata, the samples are drawn from
a Bernoulli of parameter 1/2. We write o = \/m the standard deviation of a Bernoulli
of parameter y. We index by ¢ a set of 25 possible environments, where ¢ = (e1,...,ex) €
{—1,+1}¥ and the K first strata are defined by pj, = u + 5. Write P, the probability under
such an environment, also consider P, the probability under which all the K first strata are
Bernoulli with mean pu.

We define (). the event on which there are less than % arms not pulled correctly for en-
vironment ¢ (i.e. for which T}, is larger than the optimal allocation corresponding to p when
actually py = §, or smaller than the optimal allocation corresponding to p when ju; = 35). See
the Appendix 5.A for a precise definition of these events. Then, the idea is that there are so
many such environments that any algorithm will be such that for at least one of them we have
P, () < exp(—K/72). Then we derive by a variant of Pinsker’s inequality applied to an event
of small probability that P.(£2.) < % = O(”S/%) Finally, by choosing o of order (%)1/ 3

K

we have that P.(€2¢) is bigger than a constant, and on Qf we know that there are more than 4-

arms not pulled correctly. This leads to an expected pseudo-regret in environment € of order
Q2. O

e

This is the first lower-bound for the problem of online stratified sampling for Monte-Carlo.
We sketch the proof in the main text because we believe that the technique of proof for this

bound is original. It follows from the fact that no algorithm can allocate the samples in every

2/3
K
number of arms non negligible when compared to K, with a probability larger than a non

problem according to the unknown best proportions with a better precision than for a

negligible constant.

5.4 Allocation based on Monte Carlo Upper Confidence Bound

5.4.1 The algorithm

In this section, we introduce our adaptive algorithm for the allocation problem, called Monte
Carlo Upper Confidence Bound (MC-UCB). The algorithm computes a high-probability bound
on the standard deviation of each arm and samples the arms proportionally to their bounds times
the corresponding weights. The MC-UCB algorithm, Ay;c_uyoB, is described in Figure 5.1. It

requires three parameters as inputs: ¢; and ce which are related to the shape of the distributions
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(see Assumption 5.4.2), and § which defines the confidence level of the bound. In Subsection
5.6.4, we discuss a way to reduce the number of parameters from three to one. The amount of

exploration of the algorithm can be adapted by properly tuning these parameters.

Input: c1, ez, 6. Let a = \/210g(2/0) /c1 Tog(ea/0) + Y2 ULREG/I

Initialize: Pull each arm twice.
fort=2K+1,...,ndo

Compute By ; = T:’k_l (?f\k’t_l + 2a, /Tki—l) for each arm 1 <k < K

Pull an arm k; € argmaxj<p<x B
end for
Output: fiy¢ for each arm 1 <k < K

Figure 5.1: The pseudo-code of the MC-UCB algorithm. The empirical standard deviations
Ok ¢—1 are computed using Equation 5.7.

The algorithm starts by pulling each arm twice in rounds t = 1 to 2K. From round ¢t = 2K +1
on, it computes an upper confidence bound By ; on the standard deviation oy, for each arm k,
and then pulls the one with largest By ;. The upper bounds on the standard deviations are
built by using Theorem 10 in [Maurer and Pontil, 2009]® and based on the empirical standard

deviation oy ¢—1 :

1 Tk,t—1
Okt—1 = Tor1 - 1 ;_1 (Xki — Hri—1)°, (5.7)

where X, ; is the i-th sample received when pulling arm k, and T} ;1 is the number of pulls
allocated to arm k up to time ¢ — 1. After n rounds, MC-UCB returns the empirical mean fiy, ,,
for each arm 1 < k < K.

5.4.2 Pseudo-Regret analysis of MC-UCB

Before stating the main results of this section, we state the assumption that the distributions
are sub-Gaussian, which includes e.g., Gaussian or bounded distributions. See [Buldygin and

Kozachenko, 1980] for more precisions.

Assumption There exist ¢1,cs > 0 such that for all 1 < k < K and any € > 0,
P (1X — pix] > &) < caexp(—e2/cr) (5.8)
We provide two analyses, a distribution-dependent and a distribution-free, of MC-UCB, which

are respectively interesting in two regimes, i.e., stationary and transitory regimes, of the algo-

rithm. We will comment on this later in Section 5.6.

$We could also have used the variant reported in [Audibert et al., 2009b).
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A distribution-dependent result: We now report the first bound on the expectation of the
pseudo-regret of MC-UCB algorithm. The proof is reported in Appendix 5.C and relies on
upper- and lower-bounds on T} ; — T}, i.e., the difference in the number of pulls of each arm

compared to the optimal allocation (see Lemma 10).

Theorem 9 Under Assumption 5.4.2 and if we choose ¢y such that co > 2Kn~5/2, the pseudo-
regret of MC-UCB launched with parameter § = n~"/2 with n > 4K is bounded in expectation

as

1 K,
Ry,) < 3361/2c1(ca + 2)(v/ez + 1)PK3s, ng;(/s) SR Yw2

n2

Note that this result crucially depends on the smallest proportion Ay, which is a measure
of the disparity of product of the standard deviations and the weights. For this reason we refer

to it as “distribution-dependent” result. The full proof for this result is in Appendix 5.C.

A distribution-free result: Now we report our second pseudo-regret bound that does not
depend on Ay, but whose rate is poorer. The proof is given in Appendix 5.D and relies on

other upper- and lower-bounds on T} ; — T}, detailed in Lemma 11.

Theorem 10 Under Assumption 5.4.2 and if we choose ¢o such that co > 2Kn~%/2 the pseudo-
regret of MC-UCB launched with parameter § = n~"/2 with n > 4K is bounded in expectation

as

2 log(n ) 5KXy 2
E[R,] < +336\/201 (ca +2)(y/ez +1)23KY3%, = n;” .

This bound does not depend on 1/Apnin, not even in the negligible term, as detailed in
Appendix 5.D?. This is obtained at the price of the slightly worse rate 5(71*4/ 3).

5.5 Links between the pseudo-loss and the mean-squared error

As mentioned in Section 5.2, the pseudo-loss is trivially equal to the mean-squared error of the
estimate fi,, of p if the number of samples T}, ,, in each stratum is independent of the samples.
This is not the case for any reasonable adaptive strategy, as such methods precisely aim at
adapting the number of samples in each stratum to the standard deviation inside the stratum.
It is however important to derive links between those two quantities, in order for the pseudo-loss

and the pseudo-regret to be meaningful. The mean squared error can be decomposed as

K n
E[(fin — 1)?] =Y wiE[(fkn — me)?] + DD wiwgB[(fkn — i) (Tgn — g))-

k=1 k=1k'#k

9Note that the bound is not entirely distribution free since ¥, appears. But it can be proved using Assump-
tion 5.4.2 that Eﬁ, < cica.
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The quantity Zk L WEE [(Tig,n — 1i)?] is equal to the loss defined in [Grover, 2009] and [Carpen-
tier and Munos, 2011a]. If the (T}, ); are deterministic, this quantity is equal to the pseudo-loss
and also to the mean squared error E[(f, — p)?]. If the (T),)x are deterministic, the cross-
products D3y > pr s wrwgB [ (B — p) (Tign — 1q)] are equal to 0.

A natural way to proceed is to (i) prove that the expectation of the pseudo-loss is not very
different from Zle WEE[(Ak,n — px)?] (and thus from i, =) and (ii) prove that the cross-products

are close to 0.

5.5.1 A quantity that is almost equal to the pseudo-loss

The technique for bounding Zle w%E[(ﬁkn - uk)Q] is very similar to the one for bounding the
expectation of the pseudo-loss. The only additional technical passage is to use Wald’s identity
to bound 215:1 wiE[(ﬁkn — uk)Q] with a quantity close to the expectation of the pseudo-loss.

We have in the same way a problem dependent bound and a problem independent bound.

Problem dependent bound.

Proposition 4 Under Assumption 5.4.2 and if we choose ¢y such that ¢a > 2Kn=5/2 then for
algorithm MC-UCB launched with parameter § = n~"/2 with n > 4K, we have

K

2 2 22
ZwkE[(Mk,n — Hk) } - Tw
k=1
<1800 (1105 Jerlea £2) + 6er(er + D) + —2 (K32 472061 (c3 + 1) log(n)?
3/2)\3/2 02 61 Co )\?mn w ci1(Cco og(n .

The full proof is in Appendix 5.C.

Problem independent bound.

Proposition 5 Under Assumption 5.4.2 and if we choose ¢y such that ¢; > 2Kn=5/2 then for
algorithm MC-UCB launched with parameter § = n~"/2 with n > 4K, we have

K

2 Y
> wiE[(fen — pr)?] — Tw
k=1
L 200\/Ei(es + 2980 K 365
13 log(n) + 3 <12901(02 +2)2K?log(n)? + KZ%,)

The full proof is in Appendix 5.D.

5.5.2 Bounds on the cross-products

The difficulty in bounding the cross-product comes from the fact that the (7% ,)r depend on

the samples, and more exactly for algorithm MC-UCB, on the sequence of empirical standard
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deviations (oy¢)i<n of each arm k. As in general jiy, , depends on (0 +)i<n, there is no direct
reason why the cross-products should be equal to 0.

We prove three results for bounding these cross-products. The first one corresponds to the
specific case where the distribution of the arms are symmetric. We then provide a problem

dependent and a problem independent bound in the general case.

Equality holds when the distributions of the arms are symmetric. A first result is in
the specific case of symmetric distributions. Intuitively in this setting, the empirical standard
deviations are independent of the signs of (fiy, — p). This implies that the signs of (fixn — fuk)
and (fiq, — fiq) are independent of each other when k # ¢. From that we deduce the following

result.

Proposition 6 Assume that the distributions (vg)i of the arms are symmetric around py re-

spectively. For algorithm MC-UCB launched with any parameters, we have

n

Z Z wkqu [(ﬁk,n - Mk)(ﬁq,n - Mq)] =0.

k=1 k' #k

The proof of this result is to be found in Appendix 5.F.1.

Problem dependent bound in the general case. On an event of high probability, |1} , —
Ty, | = O(n~'/?) as explained in Lemma 10 in the Appendices'®. This means that even though
Tk, is random, it does not deviate too much from 77, . From that we deduce the following

problem dependent bound.

Proposition 7 Under Assumption 5.4.2 and if we choose ¢y such that ¢; > 2Kn=5/2 then for
algorithm MC-UCB launched with parameter § = n~"/2 with n > 4K, we have

DD wnwB[(fkn — k) (fign — 1g)] < O(n™*?),
k=1 k' 2k

where O() hides an invert dependency in Amin.

The proof of this result is in Appendix 5.F.2

Problem independent bound in the general case. On an event of high probability, |1}, , —
Ty, | = O(n=%/3) as explained in Lemma 11 in the Appendices. From that we deduce in the

same way that for he previous proposition the following problem independent bound.

"Here O(-) depends on Al .
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Proposition 8 Under Assumption 5.4.2 and if we choose ¢ such that co > 2Kn~%/2 then for
algorithm MC-UCB launched with parameter § = n~"/2 with n > 4K, we have

n

SN wewgE [ (fin — i) (figm — 1g)] < O(n™7/0),

k=1k'#k

where O() does not depend on Amin.

The proof of this result is in Appendix 5.F.2.

5.5.3 Bounds on the true regret and asymptotic optimality

We are finally able to fulfill the objective of this Section, that is to say bound the true regret
R, = E[(fip — p)? — % We have the following Theorem directly by combining the results of
the Propositions in Subsections 5.5.1 and 5.5.2.

Theorem 11 Under Assumption 5.4.2 and if we choose co such that co > 2Kn~%2, then for
algorithm MC-UCB launched with parameter § = n~ /2 with n > 4K, the true regret is bounded

as

R, = O(n_?’/z),

where O(.) hides a dependency in \_i., and

R, =0(n""/%),

where O() does not depend on Amin.

An immediate corollary on asymptotic optimality follows, when the parameter 6, (for a given

budget n) is chosen wisely.

Corollary 2 Under Assumption 5.4.2 and if we choose ¢y such that co > 2Kn=5/2, then for
algorithm MC-UCB launched with parameter 6 = n~"/% with n > 4K, the true regret converges
and

lim R, =0.

n——+oo

Proof: [Proof of Corollary 2] The proof follows directly from Borel-Cantelli, as ), 6, < +o00. O

5.6 Discussion on the results

We make several comments on the algorithm MC — UCB in this Section.

5.6.1 Problem dependent and independent bounds for the expectation of the
pseudo-loss

Theorem 9 provides a pseudo-regret bound of order X;li{ QO(n*?’/ 2), whereas Theorem 10 provides

a bound of order 5(n_4/ 3) independently of Ayi,. Hence, for a given problem i.e., a given Amin,
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the distribution-free result of Theorem 10 is more informative than the distribution-dependent
-1

result of Theorem 9 in the transitory regime, that is to say when n is small compared to A ;. .
The distribution-dependent result of Theorem 9 is better in the stationary regime i.e., for n large.
This distinction reminds us of the difference between distribution-dependent and distribution-

free bounds for the UCB algorithm in usual multi-armed bandits'!.

The problem dependent lower bound is similar to the one provided for GAFS-WL in [Grover,
2009]. In their paper, their pseudo-loss measure is Zle wiE [(ﬁkn — ,u,k)z] so we compare their
bound with the ones in Propositions 4 and 5. We however expect that GAFS-WL has for some
problems a sub-optimal behavior: it is possible to find cases where E[Zk w2 (fpen — ,uk)ﬂ -

% > O(1/n), see Appendix 5.E for more details. It is not the case for MC-UCB, for which
E[Zk w3 Lk — Mk)ﬂ — %T%U < O(n=*3). Note however that when there is an arm with 0
standard deviation, GAFS-WL is likely to perform better than MC-UCB, as it will only sample

this arm O(y/n) times while MC-UCB samples it O(n?/3) times.

5.6.2 Finite-time bounds for the true regret, and asymptotic optimality
We also bound the true regret R, = E[(fi, — p)?] — % in o(2). This means that the mean
squared error of the estimate is very close to the “oracle” smallest mean squared error possible,

obtained with a deterministic strategy that has access to (o).

The first result in Theorem 11 states that for MC-UCB, the true regret is of order O(n_3/ 3,
where the O hides a dependency in Apin. This is the equivalent of the problem dependent
bound on the pseudo-loss. This Theorem also states that for MC-UCB, an upper bound on
the true regret is of order O(n‘” 6), where the O does not depend in any way on Amin. This
is the equivalent of the problem independent bound on the pseudo-loss. Unfortunately, we do
not obtain a problem independent bound that is of the same order as the problem independent
bound of the pseudo-regret, i.e. O(n~%3). This comes from the fact that the bound on the
cross-products in Proposition 8 is of order O(n~"/6). Whether this bound is tight or not is an

open problem.

These results imply that algorithm MC-UCB is asymptotically optimal (like the algorithms
of Etoré and Jourdain [2010]; Kawai [2010]): the estimate i, = >, wilik, is asymptotically
equal to p and the variance of i, is asymptotically equal to the variance of the optimal allocation
Y2 /n for any problem. Note that the asymptotic optimality of GAFS-WL is not provided in
Grover [2009], although we believe it to hold.

Note also that whenever there is some disparity among the arms, i.e., when %2, — Yow <0,

the MC-UCB is asymptotically strictly more efficient than the uniform strategy.

" The distribution dependent bound is in O(K logn/A), where A is the difference between the mean value of
the two best arms, and the distribution-free bound is in O(y/nKlogn) as explained in [Audibert and Bubeck,
2009; Auer et al., 2002].
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5.6.3 MC-UCB and the lower bound

We provide in this Chapter a minimax (problem independent) lower-bound for the pseudo-regret
that is in expectation of order Q(%//;) (see Theorem 8). An important achievement is that the
problem independent upper bound on the pseudo-regret of MC-UCB is in expectation of the
same order up to a logarithmic factor (see Theorem 10). It is thus impossible to improve this
strategy uniformly on every problem, more than by a log factor.

Although we do not have a problem dependent lower bound on the pseudo-regret yet, we
believe that the rate O(n_3/ 2) cannot be improved for general distributions. As explained in the
proof in Appendix 5.C, this rate is a direct consequence of the high probability bounds on the
estimates of the standard deviations of the arms which are in O(1/y/n), and those bounds are

tight. Because of the minimax lower-bound that is of order O(n=%3), it is however clear that

-1

there exists no algorithm with a regret of order 6(71_3/ 2) without any dependence in A/ (or

another related problem-dependent quantity).

5.6.4 The parameters of the algorithm

Our algorithm takes three parameters as input, namely c¢1, co and ¢, but we only use a com-
bination of them in the algorithm, with the introduction of a = /2log(2/0)+/c1 log(c2/6) +
v/c16(1+1og(ca/8))nt/?

2(1-9)
single parameter a. By the choice of the value assigned to ¢ in the two theorems, a ~ clog(n),

. For practical use of the method, it is enough to tune the algorithm with a

where ¢ can be interpreted as a high probability bound on the range of the samples. We thus
simply require a rough estimate of the magnitude of the samples. Note that in the case of
bounded distributions, a can be chosen as a = 2@0@ where ¢ is a true bound on the
variables. This result is easy to deduce by simplifying Lemma 8 in Appendix 5.B for the case of

bounded variables.

5.6.5 Making MC-UCB anytime

An interesting question is on whether and how it is possible to make algorithm MC-UCB anytime.
Although we will not provide formal proofs of this result in this Chapter, we believe that setting
a ¢ that evolves with the current time, as &, = t~7/2, is sufficient to make all the regret bounds
of this Chapter hold with slightly modified constants. Some ideas on how to prove this result
can be found in the paper [Grover, 2009], and also [Auer et al., 2002] for something more specific
to UCB algorithms.

5.7 Numerical experiment: Pricing of an Asian option

We consider the pricing problem of an Asian option introduced in [Glasserman et al., 1999] and
later considered in [Etoré and Jourdain, 2010; Kawai, 2010]. This uses a Black-Scholes model

with strike C' and maturity 7. Let (W (¢))o<t<1 be a Brownian motion that is discretized at d
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equidistant times {i/d};<;<4, which defines the vector W € R? with components W; = W (i/d).
The discounted payoff of the Asian option is defined as a function of W, by:

F(W) = exp(—rT) max [é 2?21 So exp [(r —1sHd 4 soﬁWi] -C, 0}, (5.9)

where Sy, r, and sg are constants, and the price is defined by the expectation p = Ey F(W).

We want to estimate the price p by Monte-Carlo simulations (by sampling on W = (W;)1<i<d)-
In order to reduce the variance of the estimated price, we can stratify the space of W. Glasser-
man et al. [1999] suggest to stratify according to a one dimensional projection of W, i.e., by
choosing a projection vector u € R? and define the strata as the set of W such that u - W
lies in intervals of R. They further argue that the best direction for stratification is to choose
u = (0,---,0,1), i.e., to stratify according to the last component Wy of W. Thus we sample
W, and then conditionally sample W7, ..., W;_1 according to a Brownian Bridge as explained in
[Kawai, 2010]. Note that this choice of stratification is also intuitive since W, has the biggest ex-
ponent in the payoff (5.9), and thus the highest volatility. Kawai [2010] and Etoré and Jourdain
[2010] also use the same direction of stratification.

Like in [Kawai, 2010] we consider 5 strata of equal weight. Since W follows a N(0,1),
the strata correspond to the 20-percentile of a normal distribution. The left plot of Figure 5.2
represents the cumulative distribution function of W, and shows the strata in terms of percentiles
of W4. The right plot represents, in dot line, the curve E[F(W)|Wy = z| versus P(W; < x)
parameterized by z, and the box plot represents the expectation and standard deviations of
F(W) conditioned on each stratum. We observe that this stratification produces an important
heterogeneity of the standard deviations per stratum, which indicates that a stratified sampling

would be profitable compared to a crude Monte-Carlo sampling.

Expectation of the payoff in every strata for W, with C=90

Cdf of W 4 (Normal distribution) 1000
1
900r [ E[F(W) TW =x]
0.8 800F | o E[F(W)IWde strata]
700t
— 600F
0.6 ifﬂ
500
S
= 4000
04 S
= 300-
=
200
0.2 Lot
100 -
0
P —— . asssmmans i
-2 . 0 5 2 _100 L

05 1 1 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
Strata 4" gtrata 5 0 01 02 03 04 05 06 07 08 09 1

12 1 Stra q:g 2
Strata 1
Strata 3 P(Wd<x)

Figure 5.2: Left: Cdf of Wy and the definition of the strata. Right: expectation and standard

deviation of F(W) conditioned on each stratum for a strike C' = 90.

We choose the same numerical values as Kawai [2010]: Sy = 100, r = 0.05, so = 0.30, T =1
and d = 16. Note that the strike C' of the option has a direct impact on the variability of the
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strata. Indeed, the larger C', the more probable F(W) = 0 for strata with small W, and thus,
the smaller Apin.

Our two main competitors are the SSAA algorithm of Etoré and Jourdain [2010] and GAFS-
WL of Grover [2009]. We did not compare to [Kawai, 2010] which aims at minimizing the
computational time and not the loss considered here!?. SSAA works in K, rounds of length N},
where, at each round, it allocates proportionally to the empirical standard deviations computed
in the previous rounds. Etoré and Jourdain [2010] report the asymptotic consistency of the
algorithm whenever Nik goes to 0 when k goes to infinity. Since their goal is not to obtain a
finite-time performance, they do not mention how to calibrate the length and number of rounds
in practice. We choose the same parameters as in their numerical experiments (Section 3.2.2 of
[Etoré and Jourdain, 2010]) using 3 rounds. In this setting where we know the budget n at the
beginning of the algorithm, GAFS-WL pulls each arm a+/n times and then pulls at time ¢ + 1

wi’;f’jt We set a = 1.

As mentioned in Subsection 5.6.4, an advantage of our algorithm is that it requires a single

the arm k¢y1 that maximizes

parameter to tune. We chose b = 1000 log(n) where 1000 is a high-probability range of the
variables (see right plot of Figure 5.2). Table 5.7 reports the performance of MC-UCB, GAFS-
WL, SSAA, and the uniform strategy, for different values of strike C i.e., for different values of
)\I;iln and Ewyg/E%} = (Z%Zjizg%)g The total budget is n = 10°. The results are averaged on 50000
trials. We notice that MC-UCB outperforms the uniform strategy, SSAA, and GAFS-WL. Note
however that, in the case of GAFS-WL strategy, the small gain could come from the fact that
there are more parameters in MC-UCB, and that we were thus able to adjust them (even if we
kept the same parameters for the three values of C). Note however that for small (but non-zero)

values of Amin, we proved in Appendix 5.E that algorithm GAFS-WL was arbitrarily inefficient.

| C | x= [ Zw2/%% | Uniform | SSAA [ GAFS-WL | MC-UCB |
60 6.18 1.06 252102587103 | 82510°% [ 729101
90 || 15.29 1.24 3321072 ]6.1410°3 | 85810~* | 8.0710°*
120 || 744.25 3.07 3561072 ]6.221073 | 9.8910~* | 9.28 10~*

Table 5.1: Characteristics of the distributions (ALl and ¥, 9/%2) and regret of the Uniform,

min

SSAA, and MC-UCB strategies, for different values of the strike C.

In the left plot of Figure 5.3, we plot the rescaled true regret R,n®/2, averaged over 50000
trials, as a function of n, where n ranges from 50 to 5000. The value of the strike is C' = 120.
Again, we notice that MC-UCB performs better than Uniform and SSA A because it adapts faster
to the distributions of the strata. But it performs very similarly to GAFS-WL. In addition, it
seems that the true regret of Uniform and SSAA grows faster than the rate n®/2, whereas
MC-UCB, as well as GAFS-WL, grow with this rate. The right plot focuses on the MC-UCB

algorithm and rescales the y—axis to observe the variations of its rescaled true regret more

12Tn that paper, the computational costs for each stratum vary, i.e. it is faster to sample in some strata than in
others, and the aim of the paper is to minimize the global computational cost while achieving a given performance.
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accurately. The curve grows first and then stabilizes. This could correspond to the two regimes

discussed previously.

Rescaled regret w.r.t. n for C=120

120001

o Rescaled Regret w.r.t. n for C=120 11000f
X
5
— MC-UCB
5r | ——Uniform Allocation 100001
—~-SSAA
2 |- --GAFS-WL s 5000
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2005060004
500000 V0
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n

Figure 5.3: Left: Rescaled true regret (Rnn?’/ 2) of the Uniform, SSAA, and MC-UCB strategies.
Right: zoom on the rescaled regret for MC-UCB that illustrates the two regimes.

5.8 Conclusions

We provide a finite-time analysis for stratified sampling for Monte-Carlo in the case of fixed

strata. We reported two bound on the expectation of the pseudo-regret: (i) a distribution
—3/2=5/2
min

measure of disparity )\r;iln of the standard deviations (stationary regime), and (ii) a distribution

dependent bound of order 6(71 ) which is of interest when n is large compared to a
free bound of order 5(n*4/ 3) which is of interest when n is small compared to A\l (transitory
regime). We also link the expectation of the pseudo-loss to the mean-squared error of algorithm
MC-UCB and provide also problem dependent and problem independent bounds. An immediate
consequence is the asymptotic convergence of the variance of our estimate to the optimal variance
that requires the knowledge of the standard deviations per stratum.

We also provide the first problem independent (minimax) lower bound on the expectation of
the pseudo-regret for this problem. Interestingly, the problem independent bound on expectation
of the pseudo-regret of MC-UCB matches this lower-bound, both in terms of number of strata
K and in terms of budget n. This means that algorithm MC-UCB is minimax-optimal in terms
of pseudo-regret.

Possible directions for future work include: (i) making the MC-UCB algorithm anytime
(i.e. not requiring the knowledge of n) and (ii) deriving distribution-dependent lower-bound for
this problem and (iii) proposing efficient ways to stratify the space depending on the regularity

of the function.
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Appendices for Chapter 5

5.A Proof of Theorem 8

Let us write the proof of the lower bound using the terminology of multi-armed bandits. Each
arm k represents a stratum and the distribution associated to this arm is defined as the distri-

bution of the noisy samples of the function collected when sampling uniformly on the strata.

Let us choose 1 < 1/2 and o = 4. Consider 2K Bernoulli bandits (i.e., 2K strata where
the samples follow Bernoulli distributions) where the K first bandits have parameter (pu)1<k<x
and the K last ones have parameter 1/2. The puy take values in {u — o, p, p + a}.

Define 02 = (1 — p) the variance of a Bernoulli of parameter p, and is such that \/%7/1 <o <
Vi We wite 0, and o1, the two other standard deviations, and notice that %\/ﬁ <o o <V
and %,u < opa < VR

We consider the 2% bandit environments M (¢) (characterized by ¢ = (e )1<k<x € {1, +1}¥)
defined by (ur = p + ex)1<k<i. We write P. the probability with respect to the environment
M (e) at time n. We also write M (o) the environment defined by all K first arms having a

parameter o, and write P, the associated probability at time n.

Oepa n
Zszl OciatK/2
n times. The corresponding quadratic error of the

The optimal oracle allocation for environment M () is to play arm k < K, tx(e) =

. _ 12
times and arm k > K, t;(e) = —T

K 2
(Zizl(g;;?;K/ 2” " For the environment M (o), the optimal oracle
1/2

allocation is to play arm k < K, t(o) = ﬁmn times (and arm k > K, t3(0) = Rotik73"

resulting estimate is I(e) =

times).

Consider deterministic algorithms first (extension to randomized algorithms will be discussed
later). An algorithm is a set (for all t = 1 to n— 1) of mappings from any sequence (rq,...,7¢) €
{0,1} of ¢t observed samples (where rs € {0,1} is the sample observed at the s-th round) to the
choice of an arm I;1; € {1,...,2K}. Write Ty(r1,...,r,) the (random variable) corresponding

to the number of pulls of arm k& up to time n. We thus have n = Zii{l Ty

Now, consider the set of algorithms that know that the K first arms have parameter uy € {u—
a, i, i+ a}, and that also know that the K last arms have their parameters in {1/4,3/4}. Given

Ota
Ko_o+V3K/4 n
times. Indeed, the optimal oracle allocation in all such environments allocates less than

this knowledge, an optimal algorithm will not pull any arm k& < K more than

(#m)n samples to each arm k < K. In addition, since the samples of all arms are
independent, a sample collected from arm k& does not provide any information about the relative
allocations among the other arms. Thus, once an arm has been pulled as many times as recom-
mended by the optimal oracle strategy, there is no need to allocate more samples to that arm.
Writing A the class of all algorithms that do not know the set of possible environments, A, the

class of algorithms that know the set of possible environments M (e) and A, the subclass of A,
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that pull all arms k& < K less than (ﬁ%l{m)n times, we have

inf sup ER,, > inf sup ER,, = inf sup ER,,
A M) Ae M(e) Aopt M ()

where the first inequality comes from the fact that algorithms in A, possess more information

than those in A, which they can use or not. Thus A C A..

Now for any € = (e1,...,€x), define the events

K
Qe={w:VUC{L,...,K}: Ul < 0 and Vk € U°, e, T, > ept(o)}.

Note that by definition

Cer

0, =

U {{ (e < Ekt(0>}} ﬂ{ N {exTi > skt(a)}}}.

TUC{l,..K}:Uj=p \ kel keuc

p

By the sub-additivity of the probabilities, we have

=

Py () < 23: > P

p=1Uc{1,...K}:|Uj=p

{{ Nieti <t} ] N i > gkt(g)}}}],

kel keuc

The events {{ NrewlerTr < skt(a)}} N { Nreve {exTr > st(a)}}} are disjoint for different

¢, and form a partition of the space, thus ) _P, [{{ MieulerTr < skt(a)}} N { Nieuc 1Tk >

skt(a)}}}] ~1.

We deduce that

S B (0.) < Zf: S B, H{ N < st O N fonTi 6kt(0)}}}]

€ e p=lUuc{1,..K}:|U|=p keU keuc

_ EK: ST H{ NexTe < sxt@} O { N T = skt(a)}}}]

p=lUc{l,...K}:|U=p € kelu keuc

:i > 1

p=1Uc{1,...K}:|U|=p
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Since there are 2% environments ¢, we have

K
. 1 1 & K
g < 5 TR0 2 53 ().

K K
Note that 2%(21)3:1 ( ) ) = P(Zsz1 Xy < %) where (X1,...,Xk) are K independent

Bernoulli random variables of parameter 1/2. By Chernoff-Hoeffding’s inequality, we have
P(Zﬁil X < %) = P(% Zle Xp—3 < %) < exp(—K/72). Thus there exists emin such
that Py (Qe, . ) < exp(—K/72).

Let us write p = P._. (Qe,...) and ps = Po(Qe,,..). Let kl(a,b) = alog() + (1 —a) Iog(%)
denote the KL for Bernoulli distributions with parameters a and b. Note that because V(2,
KL(Pe,;, (-€),Po(.[2)) > 0, we have

k’l(p,pa) < KL(IP) ]P)a)‘

€min

From that we deduce that p(log(p)—log(ps))+(1—p)(log(1—p)—log(1—p,)) < KL(P._. ,P,),
which leads to

p< max(% (KB Bo)). exp(~K/72)) (5.10)

Let us now consider any environment (¢). Let Ry = (r1,...,7¢) be the sequence of observa-
tions, and let PL be the law of R; for environment M (). Note first that P. = P?. Adapting the

chain rule for Kullback-Leibler divergence, we get
KL(PZ,P2)

L(PL,Pl) +Z Z PL (Ry—1) K L(PL(.|Ry-1), PG (| Ry))

t=2 Ry 1

=KLELPH+Y | > POMRoOK(u e+ Y PRk a,p)]
=2 R¢_iler,=+1 Ri—1ler,=—1

=kl(p—a,pn)E Z Ti] + kl(p + o, p)E Z Tk
kiep=—1 k‘Ek +1
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We thus have, using the property that ki(a,b) < g)?;b)bj,

k:Ek:—l k:sk:—i—l

Note that for an algorithm in A, we have Zle T, < T < K(ﬁ)n Since

a=4%and 0 < p < we have

2

O+t (6
KL(P.,P,) < (K )—n
(P, Po) Ko_o+V3K/4/) 02
2 2
< 4a+aa—2n < 8a—n,
(o2 g

We thus deduce using Equation 5.10

18
Pgmin (Qsmin) =p S maX(? (KL(]P)Emin7 ]P)U')) ? eXp(—K/72))
o144 o?
——n.
- K o
Now choose ¢ < %(%)1/3 (asa =4 = %2) Note that this implies that P, (Qc,..) < 3.
Let w € Qf . We know that for w, there are at least % arms among the K first which are

not pulled correctly: either % arms among the arms with parameter ;4 — o or among the arms

with parameter u + « are not pulled correctly. Assume that for this fixed w, there are % arms
among the arms with parameter y — o which are not pulled correctly. Let U(w) be this subset

of arms.

We write AT =, Tk — %t(a,a) the number of times those arms are over pulled. Note
that on w we have AT > %t(a) —t(0_a). We have

K K 1 K 1 Ko_q
AT = —t(o) — —t(o_q) = A 7 7 n
6 6 6 Ko+ K/2° 6K 5+ K/2
>1 Ko n—l Ko/V?2 "
T 6Ko+K/2 6\3Ko/V2+K/2
1 1 1
> = K2%0/2 — K20 /2V2)n
—6K0+K/2\/§Kg/ﬁ+K/2< of o/ )
1
> 5(1—1/\/§)o—n
L SVEREY
=35
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Thus on w, the regret is such that

Ry e pin (W)
2

> % wpop 1 (K, 0c0 + K/2)

= Ti(w) (2K)? n

wio? wio? 1 K ooa —|—K/2)2

Z k™ k + k~ k _ =1 7

ke%w) Ti(w) keuz(w)c Tk (w) (2K)2 n
JLE % (SEome - Koo/61K/2)° 1 (SE et K/2)°
= K2 6 ty(0_a) + 6AT/K 2K — K/6)%(n — AT) (2K)? n

) N <(zf_105iQ+K/2)AT (=K, oqatK/2)AT )
1 (XK, 000 + K/2) (Ko—a/6)n (2K, 0ea—Ko—a/6+K/2)n
~ (2K)? n 6AT (YK ocjatK/2) (TK 0cyatK/2)AT
(1 + Ko_an ) (1 N (Zf{:l o‘eia—Kaa/G—i-K/Q)n)

1 (OK 000+ K/2)°
(2K)? n

. , ( (YK, 0cyatK/2)AT ) ( (YK, ocpatK/2) AT)
1 (il 00+ K/2) (YK, 0eja—Ko_a/6+K/2)n (Ko—a/6)n

= (2K)? n (1 N 6AT(Z£IJEW+K/2)) (1 -1 (T 0cjatK/2) AT )
>

Ko_an K 0cja—Ko_o/6+K/2)n
(AT)2 K1/3
where C' is a numerical constant. Note that for events w where there are % arms among the

arms with parameter p 4+ a which are not pulled correctly, the same result holds.

Note finally that P(Q¢ . ) > 1/2. We thus have that the regret is bigger than

in

ERnysrnin Z Z anamin (('U)]P)Emin (w>

WEngin

K1/3 1 K1/3
2 ) O @) 2 507 45
weﬂgmin

which proves the lower bound for deterministic algorithms. Now the extension to randomized
algorithms is straightforward: any randomized algorithm can be seen as a static (i.e., does not
depend on samples) mixture of deterministic algorithms (which can be defined before the game
starts). Each deterministic algorithm satisfies the lower bound above in expectation, thus any

static mixture does so too.
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5.B Main technical tools for the regret and pseudo-regret bounds

5.B.1 The main tool: a high probability bound on the standard deviations

Upper bound on the standard deviation: The upper confidence bounds By ; used in the
MC-UCB algorithm is motivated by Theorem 10 in [Maurer and Pontil, 2009] (a variant of this
result is also reported in [Audibert et al., 2009b]). We extend this result to sub-Gaussian random

variables.

Lemma 8 Let Assumption 5.4.2 hold and n > 2. Define the following event

£ =Ern(0) = N l t—% > (Xk,i - %ZXIW')Q — oy <

1<Ek<K, 2<t<n =1 Jj=1

where a = \/2¢y log(ca/d) + \/6(116((15;6/22—:(1:;?;;26/)6))711/2. Then Pr(§) > 1 —2nK3$.

Note that the first term in the absolute value in Equation 5.11 is the empirical standard
deviation of arm k& computed as in Equation 5.7 for ¢ samples. The event £ plays an important
role in the proofs of this section and a number of statements will be proved on this event.
Proof:

Step 1. Truncating sub-Gaussian variables. We want to characterize the mean and variance
of the variables X}, ; given that | Xy — ur| < \/c1log(ca/d). For any positive random variable
Y and any b > 0, E(YI{Y > b}) = [[“P(Y > e)de + bP(Y > b). If we take b = ¢ log(c2/6) and

use Assumption 5.4.2, we obtain:

+oo
B[ 1X0s ~ i PHIXes — i > 0)] = [ P(Xes P > £)de + UB( Xt~ gl > )
b

+oo
< / caexp(—e/cy)de + beg exp(—b/cy)
b

< 015 + log(02/5)5
< c16(1 + log(cz2/9)).

We have E[[XM — P Xt — pux]? > b}} +E [|Xk,t — g PT{| X — pu]? < b}} — o2, which,

combined with the previous equation, implies that
B[ ((Xne = 0)? = 07 ) H{IX0s = > 13|

P(| Xk — il < b)

< c16(1 +log(c/8)) + do?
- 1-6 '

B (X0 = pkl? | [ X = el < 0] = oF|

(5.12)
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Note also that Cauchy-Schwartz inequality implies

’E[<Xk,t - Nk)ﬂ{’Xk,t — pu|® > b}} ‘ < \/E[(Xk,t — )| Xt — x| > b}]

< \/clé(l + log(ca/6)).

Now, notice that E[Xk,t]mxk,t — w2 > b}} +E[Xk,t]1{|xk,t ol < b}} — g, which,

combined with the previous result and using n > K > 2, implies that

] (X — s U X — el > 01| /161 + Tog(ca/)
P(|Xp — sl < b) ) =0

| — pi| = , (5.13)

E |:Xk,tH{|Xk,t*Mk|2§b}}

where fi, © E[Xk,t || Xk — o] < b] =
P<|Xk,t—uk|2ﬁb)

o def .
We note 52 = V[Xk,t | | Xk — pxl* < b} = E[\Xk,t — e | [ X — pe? < b — (e — fi)*
From Equations 5.12 and 5.13, we derive
6% — o] < ‘E[|Xk,t —ukl® | [ Xny — pil* < b} - 01%‘ + | — )
< c16(1 + log(ca/8)) + do? N c16(1 + log(ca/9))

- 1-0 (1—9)2
2¢16(1 + log(c2/d)) + b0}

from which we deduce, because a,% < cico

V/2¢16(1 + ¢ + log(c2/0))
1-6 '

63 — on] < (5.14)

Step 2. Application of large deviation inequalities.

Let & = &1, k.0 (0) be the event:

a= N {|Xk,t — | < Ve log(02/5)}-

1<k<K, 1<t<n

Under Assumption 5.4.2, using a union bound, we have that the probability of this event is at
least 1 — nKé.

We now recall Theorem 10 of [Maurer and Pontil, 2009]:

Theorem 12 (Maurer and Pontil [2009]) Let (Xi,...,X;) be t > 2 i.i.d. random variables

of variance o and mean pu and such that Vi < t,X; € [a,a + ¢|. Then with probability at least
1-9:
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1 < 1 2 log(2/6
| i (XN ‘“‘96 T

On &, the {Xj;}i, 1 <k < K, 1<i<taretiid. bounded random variables with standard

deviation d}.

Let & = &2 k,n(9) be the event:

t

1 1
§o = ﬂ ' mZ(Xk,i—ngk,j) — Ok
j=1

1<k<K, 1<t<n i=1

< 2¢/c11og(ca/d) log 2/5

t—1

Using Theorem 10 of [Maurer and Pontil, 2009] and a union bound, we deduce that Pr(£; N
£) > 1 - 2nKSs.
Now, from Equation 5.14, we have on £ N&y, forall 1 <k < K, 2 <t < n:

t

t
[ TE T
j=1

i=1

log(2/9)

< 2 C1 log(62/5) —1

\/2015 1+ co +log(ca/6))

1-96
log(2/d
2¢q log(ca/0) g(t/)
V2¢16(1 + ¢2 + log(ca/6))
+ )
1-9
from which we deduce Lemma 8 (since { N & C & and 2 <t < n). O

We deduce the following corollary when the number of samples T}, ; are random.

Corollary 3 For any k=1,...,K andt =2K,...,n, let {Xy;}; be n i.i.d. random variables

drawn from vy, satisfying Assumption 5.4.2. Let Tj.; be any random variable taking values in

{2,...,n}. Let Gi,t be the empirical variance computed from Equation 5.7. Then, on the event

&, we have:

log(2/6)
it

|8kz,t - Uk| < 2a (5.15)

5.B.2 Other important properties

A stopping time problem: We now draw a connection between the adaptive sampling and
stopping time problems. We report the following proposition which is a type of Wald’s Theorem

for variance (see e.g. Resnick [1999]).
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Proposition 9 Let {F;} be a filtration and X; a Fi-adapted sequence of i.i.d. random variables

with variance o%. Assume that Fy and the o-algebra generated by {X; : i > t+1} are independent
and T is a stopping time w.r.t. F; with a finite expected value. If E[X?] < oo then

(Sx-1)

E

= E[T] o% (5.16)

Bound on E[|fi, — s [2I{¢“}].  The next lemma provides a bound for the loss whenever the
event £ does not hold.

Lemma 9 Let Assumption 5.4.2 holds. Then for every arm k:

E[|ftkn — uk|2]l{§c}] < 2c1n?K6(1 + log(ca/2nK9)) .

Proof: Since the arms have sub-Gaussian distribution, for any 1 < k < K and 1 <t < n, we
have

P(|Xps — pi|*> > €) < coexp(—e/er) ,
and thus by setting ¢ = ¢1 log(ca/2nK )3, we obtain

P(| Xk — pe? > log(c2/2nK6)) < 2nK§ .
We thus know that

ma

B[ X, — u|21{Q
Q/]P(Q):};nm “ kit Mk' { H

< / coexp(—e/c1)de + 1 log(02/2nK6)P<Q)
c1 log(ca/2nK§)

=2c1nK (1 + log(ca/2nKY0)) .

Since the event £¢ has a probability at most 2nK§, for any 1 < k < K and 1 < t < n, we have

E[| X5, — up21{CY] < ElX,, — u2I{OQY] < 2¢;nK5(1 +1 nKJ)) .
[1 Xkt — pue] I{E H_Q/P(gl)i)énl(d [ Xk — P T{Q}] < 2¢1nK (1 + log(c2/2nK6))

The claim follows from the fact that E[|fig, — m|?I{¢°}] < S0 E[| Xy, — ml*I{ECY] <
2c1n? K (1 + log(ca/2nK9)). O

5.B.3 Technical inequalities

Upper and lower bound on a: If § = n= /2, with n > 4K > 8

B Note that we need to choose c2 such that co >2nKéd = 2Kn~ 52 if § = n~7/2,
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— aerToglaafd) + YLt er L IB@a/0) 1

(1—0)+/21og(2/3)

1
< \/Tei(ea + 1) log(n) + =7 c1(2+ ¢2)
n

< 2v/2¢1(co + 2)log(n).

We also have by just keeping the first term and choosing ¢y such that ¢y > ed = en™7/?

5(1 1 )
— /2o Tog(ca/d) + Ved(l+ ez +log(es/9))
(1 —0)/2log(2/9)
> \/2c1 > /e
Lower bound on ¢(§) when § = n~7/2;  Since the arms have sub-Gaussian distribution, for
any 1 <k < K and 1 <t <n, we have
P(|Xgs — pi|*> > €) < coexp(—e/er) ,
We then have

o
E[| Xk — Mk|2] < / coexp(—e/c1)de = cacq
0

We then have ¥, < \/cac.

If 6 = n~7/2, we obtain by using the lower bound on a that

o6 = P2 Vog(2/6) )2/3

Su —|—4a\/log (2/6)

Y >2/3
22 + dar/Tog(2/9)

2/3
35 +4W>
2/3 2/3 2/3 2/3
() (5% = @) (m)

by using ¥, < /cacy for the last step.

l\:)\»—l [\3\»—!

v

- (5
(2
(2

Upper bound on E[|fiy,, — u21{¢°}] when § = n~7/2: We get from Lemma 9 when
8 =n~"/2 and when choosing ¢y such that ¢y > 2nK¢§ = 2Kn—5/2
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E|[|ftkn — uk|2]l{fc}] < 2¢1n%K6(1 4 log(cz/2nK6))
<20 K(1+ 2(02 +1) log(n))n_3/2

< 6¢1K (o + 1) log(n)n=3/2.

5.C Proof of Theorem 9 and Proposition 4

In this section, we first provide the proof for an important Lemma on the number of pulls of the

arms, and then use the result to prove Theorem 9 and Proposition 4.

5.C.1 Problem dependent bound on the number of pulls

Lemma 10 Let Assumption 5.4.2 hold. Let 0 < § < 1 be arbitrary and and n > 4K. The
difference between the allocation T), implemented by the MC-UCB algorithm described in Fig-
ure 5.1 and the optimal allocation rule T\, has the following upper and lower bounds, on & (and
thus with probability at least 1 — 2nK5), for any arm 1 <p < K:

V10g(2/3) V10g(2/3)
“12a), Ogg//z Vi — AKX, < Ty, — T3, < 12a °g3/2 Vi AK (5.17)
S S

W min W min

Verd(1teatlog(c2/3)) 172
(1-6)+/21log(2/6) ’

where a = /2¢y log(ca/0) +

In Equation 5.17, the difference T}, ,, — T}, is bounded with O(y/n). This is directly linked
to the parametric rate of convergence of the estimation of oy, which is of order 1/y/n. Note that
Equation 5.17 also shows the inverse dependency on the smallest proportion Apip.

Proof: [Lemma 10] The proof consists of the following three main steps.

Step 1. Properties of the algorithm. Recall the definition of the upper bound used in
MC-UCB when t > 2K:

wy [ ~ log(2/6
Bq,t+1=th(<7q,t+2a gT(t/)), I<g<K.
q7 q7

From Corollary 3, we obtain the following upper and lower bounds for B, ;11 on &:

WyO, w, log(2/6
L4 < Buon < 4 <aq +4da gT(/)> (5.18)
q7t q;t q,t

Let t+1 > 2K be the time at which a given arm £ is pulled for the last time, i.e., T}, s = T} ,—1
and Ty, (;41) = Tk Note that as n > 4K, there is at least one arm k such that this happens,
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i.e. such that it is pulled after the initialization phase. Since Ajc—_ycop chooses to pull arm k

at time t + 1, we have for any arm p

Bpi+1 < Byty1 - (5.19)

From Equation 5.18 and the fact that T} ; = T}, ,, — 1, we obtain

wg, log(2/9) wg, log(2/0)

Biiy1 < | ok +4a = o +4ay | ——— . 5.20

Y ( T Tin — 1 T — 1 (520)

Using the lower bound in Equation 5.18 and the fact that 7,; < T, ,, we may lower bound
Byt as

WO Wpo
B > _BP > PP 5.21
pirt = Tp,t N Tp,n ( )

Combining Equations 5.19, 5.20, and 5.21, we obtain

wpop W log(2/4)
< 4 — ] . 5.22
Tpn = Tk,n—1<”’“+ N T —1 (5.22)

Note that at this point there is no dependency on ¢, and thus, the probability that Equa-
tion 5.22 holds for any p and for any k such that arm k is pulled after the initialization phase,
i.e., such that T}, > 2, is at least 1 — 2nKJ (probability of event &).

Step 2. Lower bound on 7}, ,,. If an arm p is under-pulled compared to its optimal allocation
without taking into account the initialization phaseji.e., T, — 2 < A\p(n — 2K), then from the
constraint ), (T, — 2) = n — 2K and the definition of the optimal allocation, we deduce that
there exists at least another arm k that is over-pulled compared to its optimal allocation without
taking into account the initialization phase, i.e., Ty, , —2 > A\p(n — 2K). Note that for this arm,
Tin —2 > A(n —2K) > 0, so we know that this specific arm is pulled at least once after
the initialization phase and that it satisfies Equation 5.22. Using the definition of the optimal
allocation T,;’:n = nwyok /Xy, and the fact that Ty, > A\g(n — 2K) + 2, Equation 5.22 may be

written as for any arm p

WpTp < uik n op + da log(2/6)
Ty — Ty, (n—2K) Ap(n —2K) + 1

log(2/6
<Zo KTy 5, /RO

3/2
n n3 2)\k/

)

because n > 4K. The previous Equation, combined with the fact that Ay > Apin, may be

written as

Wplp _ Sy 12 log(2/0) n 4K§w .
Tpm n n3/2)\3/2 n

min

(5.23)
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By rearranging Equation 5.23, we obtain the lower bound on 7}, ,,:

T, > wpop 120, V/1og(2/6)

U Su 19 V108D | akcs, Ty a2
n

w
BEYZIN 3/2 n2 min
in

N U —AK ), (5.24)

where in the second inequality we use 1/(1 +x) > 1 — z (for x > —1). Note that the lower

bound holds on £ for any arm p.

Step 3. Upper bound on T}, ,,. Using Equation 5.24 and the fact that >, T, = n, we obtain

Ty =n—=3 Thn < (0= T¢,) + > (1203, V;iz/‘s VAR, )

3/2
k#p k#p k#p W min

And we deduce because » ;. ., Ay <1

10g(2/5)
Tpn < T\ + 120 Ogg/Q Vi + 4K . (5.25)

W min

The lemma follows by combining the lower and upper bounds in Equations 5.24 and 5.25. [

5.C.2 Proof of Theorem 9

We are now ready to prove Theorem 9.

Proof: [Theorem 9] By definition, the pseudo-loss of the algorithm is

K 0_2 K K 0_2
E[L,] = Y wiE| 25| = 3 wiE| |+ wiE| 21|
k=1 Temd o k=1 T
= 2 U;% < 201%
<> Wp > wk?P(fc)
k=1 —kn =1

where T, , is the lower bound on T}, on the event £, and also because Tk, > 2 by definition of
algorithm MC-UCB.
Using Equation 5.23 for wioy /T ke (result of Lemma 10, which is equivalent to using a lower

bound on T}, on the event &), we obtain

K
log(2/0) 4KX%,
< 12a
;wkan Zwk0k< n3/2)\i{i =+ 2 )
22 1 2
Zu | 1943, 0g(2/9) 4K§w.
nS/QA?r{ii n
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Finally we have, because of Lemma 8 tells us that P({¢) < 2nKd, that

2 JIog2/3)  AKX?
E[L,] < 2 1 124y, Y198(2/0) | AK%, | Swanks
n

3/2 2
/2)‘min "
52 log(n) 4K  S,»
< =w - 7
< T8 168+/2c1 (c2 + 2) 1Og(n)zw71‘9,/2/\3/2 w2 Tt
min
22 log(n) 5Ky 0
< 2w 4 168/2 2)% -
<0 ale+ X0 5m +

where we use a < 24/2c;(c2 +2)log(n) and § = n~7/2. Those bounds are made explicit in
Appendix 5.B.3.

This concludes the proof.

5.C.3 Proof of Proposition 4

We are also ready to prove Proposition 4

Proof: [Proposition 4] The proof consists of the following two steps.

Step 1. T}, is a stopping time. Consider an arm k. At each time step ¢t + 1, the MC-
UCB algorithm decides which arm to pull according to the current values of the upper-bounds
{Bk,t+1}k- Thus for any arm k, T}, (;41) depends only on the values {7} ;}x and {0 }x. So by
induction, T}, (;41) depends on the sequence { Xk, ,Xk;rk’t}, and on the samples of the other
arms (which are independent of the samples of arm k). We deduce that T}, is a stopping time

adapted to the process (Xj¢)¢<n.

Step 2. Bound on Zle sz{(ﬁkn — ,uk)Q] . By definition, we have

Z%E[Mkn Nk} ZwkE[Mkn 1) H{&}}+ZwkE|:ﬂkn 1) I{ECH.

k=1 k=1 k=1
Using the definition of /iy, and Proposition 9 we bound the first term as

K

ZwkE[ukn 1)) < 3 up Pt (5.26)

k=1 k=1 =k,n

where T, is the lower bound on Tk, on the event &.
Note that as ), T, = n, we also have >, E[T}, ,] = n.

Using Equation 5.26 and Equation 5.23 for wyox /T, ,, (which is equivalent to using a lower
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bound on T}, on the event £), we obtain

K 9 K
E[T; ¥ 10g(2/0)  AKS,\2

ngw <3 (22 42 0g(2/9) , ") Bl ] (5.27)
T n n3/2)3/2 n? ’

k=1 k,n k=1 min

Equation 5.27 may be bounded using the fact that ), E[T},] = n as

K 2 9
2 B Tn] <&+12a log(2/9) 4K2w>n

k 2 — 3/2 2
k=1 I’% n n?/ 2)‘rr{in n
v log(2/8) 8KX2 log(2/8) 8K?2X2
< ((—“’)2+24a2w g(?jz) + Y 4+ 288a” i(g/ )+ 1 w)n
n nd/2)\>2 n3 neAD n
2 log(2/5) 8KX32 log(2/8) 8K?2X2
Zw 4 9443, og(3/2) 2w+2882°§(3/)+ ~w
n n3/2\ m/in n n2\) n
2 log(2/8 16
< 24 24a%, og(3?2) + 5 (KZ?H + 18a* 10g(2/6)>.
n n3/2)\min )\min

From Lemma 9, we have E[(ﬁkn — uk)Q]I{gc}} < 2¢1n%K6(1 + log(c2/2nK6)). Thus using

the previous equation, we deduce

K 22
> wfE (e — )] <52 4 2403,
k=1

log(2/4)
n3/2)\3/.2

tyr o (sz +18a log(2/5)>
+ 2e1m2K5(1 + log(co /20K 6))
»2 1
<Zu 4 54y, V1080
n 713/2)\3/2

min

16
+ 5 (Kzfu +90a? 1og(n))

InlIl

+ 6¢1K (o + 1) log(n)n =3/

2 1
<Zw log(n) (1122 Vei(ea + 2) + 6¢1(ca + 2) )

n n3/2/\3/2

+ (1@2 + 7201 (c2 + )log(n)2) :

mll’l

where we use a < 24/2c1(cz + 2)log(n) and E[|fix, — w2 I{EC}] < 61K (c2 + 1) log(n)n=53/2.
Those bounds are made explicit in 5.B.3.

The Theorem follows by expressing the regret.

5.D Proof of Theorems 10 and Proposition 5

Again, we first state and prove the following Lemma and then use this result to prove Theorem 10

and Proposition 5.

107



5. MINIMAX STRATEGY FOR STRATIFIED SAMPLING FOR MONTE
CARLO

5.D.1 Problem independent Bound on the number of pulls of each arm

Lemma 11 Let Assumption 5.4.2 hold. For any 0 < § < 1 and for n > 4K, the algorithm
MC-UCB satisfies on £, and thus with probability at least 1 — 2nK§6, for any arm p,

1 log(2/6)
> T 1/3 2/3 ‘
Tyn 2T, (24aK . Aq () n? + 12K)\q>, (5.28)
and
1 [log(2/0)
< 1/3 2/3 '
Ton < Ty, + (24aK " () n’? + 12KZw>, (5.29)

(20 lee2/8) 4 2/3 B Verd(1+eatlog(c2/d)) 172
where 6(5)_<Zw+4a 10g(2/6)K> and a = +/2c11og(ca/d) + (1-0)y/2108(2/0) nee

Unlike the bounds proved in Lemma 10, the difference between T}, , and T}, is bounded by
6(n2/ 3) without any inverse dependency on Apin.
Proof: [Proof of Lemma 11]
Step 1. Lower bound of order 5(712/ 3). Let k be the index of an arm that is such that
Thm — 2 > wi(n — 2K) (this implies Ty, > 3 as n > 4K, and arm k is thus pulled after the
initialization)M. Let t +1 < n be the last time at which it was pulled, i.e., T}, ; = T}, — 1 and
T} t+1 = T n- From Equation 5.15 and the fact that T}, ,, > wyn, we obtain on £

loa(2/8 maxy, o, + 4a4/log(2/9)
Buy < U ( oy 4 aay [10830) ) ( . ) (5.30)
T Tyt n

where the second inequality follows from the facts that Ty ; > 1, wioy < Xy, and wg, < Y wg =

1. Since at time ¢ 4+ 1 the arm & has been pulled, then for any arm ¢, we have
By < By 4. (5.31)

From the definition of By, and also using the fact that T, ; < Ty, we deduce on & that

Bt > Qawqi”bg@/d) > 2aw V1os(2/9) . (5.32)

3/2 - q 3/2
Tq,é Tq77/7‘

Combining Equations 5.30-5.32, we obtain on &

log(2/4) o maxp op + dar/log(2/6)

q 3/2 = )
Tyn n

! Note that such an arm always exists for any possible allocation strategy, as n—2K = > (Tan=2),1 =37 wq,
and Vg, wq > 0.
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Finally, this implies on £ that for any g,

(5.33)

2/3
T, > < 2awg+/log(2/6) )n) / .

Y +4ay/log(2/6

In order to simplify the notation, in the following we define

o) = ()

Y + 4ay/log(2/§

thus the lower bound on Tj,,, on & writes T}, > w§/3c(5)n2/3.

Step 2. Properties of the algorithm. We follow a similar analysis to Step 1 of the proof of
Lemma 10. We first recall the definition of B, ;41 used in the MC-UCB algorithm

Wy [ log(2/6
Bq,t+1 = Tiq (Uq,t + 2a g(/)> .

q,t Tq,t

Using Corollary 3 it follows that, on &

log(2
< By < 74 (aq +4a ‘M) (5.34)

Wq0q

q,t q,t Tq,t

Let t+1 > 2K +1 be the time at which an arm ¢ is pulled for the last time, that is T, ; = T3, —1.
Note that there is at least one arm such that this happens as n > 4K. Since at t + 1 arm ¢ is

chosen, then for any other arm p, we have
Bp,t+1 < Bq7t+1 : (5~35)

From Equation 5.34 and Tj,; = T}, , — 1, we obtain on §

w log(2/4) w log(2/4)
B <1 4 = 4 day | ———=|. .

Furthermore, since T, ; < T}, ,, then on §

WpOp -, WpIp

Bpit1 > (5.37)

Dt Tpvn

Combining Equations 5.35-5.37, we obtain on &

WpOp log(2/9)
Tyn—1) < day | —"——=].
Ty (Tyn — 1) < wq (Uq +4a Tyn — 1

109




5. MINIMAX STRATEGY FOR STRATIFIED SAMPLING FOR MONTE
CARLO

Summing over all ¢ such that the previous Equation is verified, i.e. such that 77, > 3, on both

sides, we obtain on &

WpTp log(2/9)
Ti Z (Tq,n — 1) S Z wq (Uq + 4(1 m .

" Ty n>3 A|Tyn>3
This implies
72— 2K) < i (U W)- (5.38)
Tpn it a7 Tym —1
Step 3. Lower bound. Plugging Equation 5.33 in Equation 5.38,

Wpop log(2/4)

p?n q

21log(2/9)
<D w (ffq +4da w2 e(8)n/?

q

log (2/6) log (2/6)

2/3 1/3 [108(2/0)

SEw—i-E 4awq/ n2/3<2 +6aKY n2/3’
q

on &, since Zq w3/3 < K3 by Jensen inequality and because Ty —1 > T‘Jz’” (as Tgm > 2).

Finally as n > 4K, we obtain on ¢ the following bound

Yrop 2w + 24aK1/3 log(2/9) n~43 4 7121(22“’. (5.39)
Tpn n c n
We now invert the bound and obtain on & the final lower-bound on 7},,, as follows:
1 log(2/6
Ty > bt i) > T7, — 240K 350, 108(2/9) 2rs _yopcy

Su | 24aK1/3 /1ogc((§§5)n_4/3+ 121;2% i Y c(0)

as 13- + > 1 — x. Note that the above lower bound holds with high probability for any arm p.

Step 4. Upper bound. An upper bound on 7}, on ¢ follows by using 7}, , = n — Zq#p Tyn

and the previous lower bound, that is

5 1 log(2/9)
* 1/3 2/3
=Y Tr, +> (12K/\q+24aK/ 5.\ " e9) n/)
a7p a7p

1 [log(2/0)
< T* 1/3 _+ 2/3
< T+ (200K - R +12K),
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because 3, Ag < 1. O

5.D.2 Proof of Theorem 10

We are now ready to prove Theorem 10.
Proof: [Theorem 10]
By definition, the pseudo-loss of the algorithm is

2 K 2 K 2
_ o [ %k } _ 2 [ Ok ] 2 [ Tk
E[L,] ZwkE[T ZwkE Tkmﬂ{ﬁ} +kz—1wkE Thn

k=1

where T}, ,, is the lower bound on Tk, on the event &, and also because Tk, > 2 by definition of
algorithm MC-UCB.
Using Equation 5.39 for wyoy /T, ,, (result of Lemma 11, which is equivalent to using a lower

bound on T}, on the event &), we obtain

K
Sw log(2/d) _ 12K%
< ZW L opq K3, | 28N T, —4/3 71”)
wkan Zwkok( o + (5 n + 2
k=1 k=1
2 log(2 12K%2
< 2w 4 24q K3y, Mn*‘*/i”+72w (5.40)
n C n

Finally we have, as by Lemma 8, we know that P(£¢) < 2nKd, that

2 2
E[L,] < % +24aK'3%,, log((zgé)n% % + Xy onK$

A

i 1 5K,
< —+336\/M(\ﬁ+1 2/3 g1 /3y, 108(n) 2

nA/3 n2

2/3
where we use a < 24/2c;(c2 + 2)log(n), ¢(5) > (ﬁ) and § = n~7/2. These bounds are
made explicit in Appendix 5.B.3.

This concludes the proof.

5.D.3 Proof of Proposition 5

We are also ready to prove Proposition 5.

Proof: [Proposition 5]
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We decompose Zle wiE [(ﬁkn — ,uk)z} on £ and its complement:

ZwkE[Hkn Mk} ZwkE[Mkn k) H{ﬁ}}+zwkE{ﬂkn 1) ETH -

k=1 = =
Using the definition of ji;, 5, and Proposition 9 we bound the first term as

K

ZwkE[Nkn [ik) H{i}} > wp Tkn (5.41)

— k=1 —km

where Ty, ,, is the lower bound on T} , on §.

Note also that as ), T, = n, we also have >, E[T} ,] = n. Using Equation 5.41 and

WkOk

Equation 5.39 which provides an upper bound on ¢ on T (and thus a lower bound on £ on

Tk.n), we deduce
K K
R Y 2 5 12KZ
> wlE | (ien — e} < D0 (22 + z4aK2/3,/ / is 4 ) E[Ty.). (5.42)
k=1 k=1

Using the fact that ), E[T} ,| = n, Equation 5.42 may be rewritten as

ZwkE[/%n ;) H{ﬁ}} (—+24 K2/3 ?5 12K2 ) n

k=1
<<(2w)2 48%,a K33 log 2/5
“\'n n7/3

12K22 115202 K*/3 log (2/6) 288K223,
* n8/3 c(9) n4 >n

_E%U 485, aK2/3 log 2/5
77 n4/3

12K22 1152a2K4/3 log (2/6) 2881(222
+ 5/3
n c(9)
- 27‘5) 48%,aK%/%  [log(2/ 5) 300 2 K4/310g(2/5)
~n ni/3 c(6) c(0)

K¥2 )

From Lemma 9, we have E|(fig,, — /Lk)2ﬂ{£c}:| < 2c1n?2K6(1 + log(ca/2nK6)). Thus using
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the last equation and the fact that 6 = n~"/2, the loss is bounded as

K
> wiE| (i - M]

k=1

»2  48%,aK?%? |1 log(2/6
<, 8Ywa og 300 LKA log(2/9) + K%2? ) +2¢1n*K§(1 4 log(ca/2nK6))
n n4/3 c(d)

¥2  96%,aK
gow g Do 1og(n)(\ﬁ+ 1)1/3 (16a2K2 log(n) (vez + 1) + K32
+ 6c1 K (ca + 1) log(n)n™
¥2 2004 /c1(ca +2)%y 1/3
§7 =+ /3 log(n) (\/5 + 1)
365
+ = (160K log(n) (vez + 1)+ K2 4 ea(ea + 2)K log(n)
»2  2004/c1(co +2)8, K 365
<=y \FWS log(n) + —57 (129(:1(@ +2)2K? log(n)? +K§;%U) .

2/3
where we use a < 2+/2¢1(c2 + 2) log(n), ¢(8) > (J%H) and E |7y — | 2I{EC}] < 6c1K (ca+
1) log(n)n=3/2. Those bound are made explicit in 5.B.3.

O

5.E Comments on problem independent bound for GAFS-WL

Let n > 4 be the budget. We face a two-arms bandit problem with w; = wy = % and such
that (i) the distribution of the first arm is a Bernoulli of parameter p = — /2 — with ¢ such that
1/6 > ¢ > 0 and that (ii) the distribution of the second arm is such that oo = 1 and bounded
by c.

Note that

1
Wgalém and 0'2:].,

because o1 = /p(1 — p) and that thus

—1/4—e/2)2 —1/4—¢/2
ng(l—i—n ) S1—1—3n Si-i- 1 '
4n 4n 4n  nd/Ate/2

We run algorithm GAFS-WL on that problem. Note that algorithm GAFS-WL pull each

arm |ay/n| times and then pull the arms according to %

We call {X}p=12:u=1,. n the samples of the arms.
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Note that:
1 a\/n
IP’<X1,1 =0,..., Xy laym) = 0) > (1- W) v
an”*
> (1 — —=)wn
> ( a\/ﬁ)

> (1 —an ) exp(—an~%) > (1 — an"°)2.

Note on the other hand, that P(|oy, m — 1] > 27%&/6)) < §. This means that with

probability at least 1 — 2exp(—ay/n/4), we have oy, 5 > 0.

The probability that o, sn = 0 goes to 1 when n goes to +oo. The probability that
09.4ym > 0 goes to 1 when n goes to +oo. This means that the probability that GAFS-WL
stops pulling arm 1 after a/n pulls goes to 1 when n goes to 400, and arm 1 is under-pulled if
£ < 1/2 (it should be pulled n®/4-¢/2).

Note that on the event such that <X171 =0,.... X [ayn] = 0), we know that ﬁl,a\/ﬁ = 0.

Note also that we know that as arm 2 is gaussian, we have E(fa,, — p2)? < ﬁ. The performance
of GAFS-WL then verifies

E[ Y wiliien — m)?] 2 % +P(G10ym = OP(Byaym > 0) (n—lﬂ—e)z
k

> % + (1~ 2exp(~ayin/ )1 - an9)? (0~ 7%)

1 8 a, 1
> —+(1-—- 1-2—)—>5=
~ 4n + a\/ﬁ)( ns)nHzE
S 1 1 8 2a
= 4n + nl+2e  gp3/2+2  pli3e
S 1 1 10 max(a,1/a)
= 4n | plt2e nl+3e '

where the last line is obtained using the fact that ¢ < 1/6. Note that we used the proxy defined

in paper Grover [2009] to measure performance, so that we can compare with their bound.

We thus have

2
&Z
n

1 10 max(a,1/a) 1
nlt2e nl+se p5/4+e/2

E[Zwi(ﬂm — k)| —
P

1 11 max(a, 1/a)
= plt2e nlt3e ’

again because ¢ < 1/6. This implies that for n such that n > (Hmaxf(a’l/a))l/ €, we have

. 2 1
E[sz(ﬂk,n_ﬂk)2 _Tw Z oot
k

with € arbitrarily close to 0.
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5.F Proof of Propositions 6, 7 and 8

5.F.1 Proof of Proposition 6

We first prove that the bounds of Theorems 4 and 5 can be directly expressed as bounds on the
mean squared error E[(72, — u)?] when the distributions of the arms are symmetric.

Proof: [Proof of Proposition 6]

Step 1: Expression of E[(ﬁkn — ,uk) (ﬁqm — ,uq)\Tk,n =T1,T,n = To]. At each time step
t+1 > 2K, the MC-UCB algorithm decides which arm to pull according to the current values of
the upper-bounds { By ;+1}p. Thus for any arm k, T}, ;1) depends only of the values {7}, ;}, and
{Gp,t}p- So by induction, T} ,, depends of the samples of the arms only trough the K sequences

{Op.par<n:
Let us consider another arm g # k. The samples of arm k£ and arm ¢ depend of each other
only trough (T +)i<n and (Tgt)i<n, and thus by induction only trough the sequence {7}, ¢ }p v7<n.

The samples are thus independent conditionally to the {G, ¢ }pr<n-
This leads to:

E[(ﬁk,n - ,uk) (ﬁq, - Hq) ’Tk n="Ti, an = TQ]

T
1
:E[(ﬁE X — i) § RN )| Ten = T, Ty = T
u=1

T
1 1 ~
=K [E[(ﬁ Z X — fir) (?2 Z Xou = t1g) {Fp,tr Yo 41 <n]
u=1 u=1
IED({a\p,t’ tptr<nlTepn = T1, Ton = TQ) T =T, T = TQ}

T
1 _ .
- E[E[(ﬁ D Kb — 1) {8p 3o <n | P(Bpar dpr<nl Ten = Tv, Tym = To) [ Thn = T1, Ty = TQ}

x E [E[(i Z Xq,u - Mq) ’{Ep,t/}p,t’gn]P({a—\p,t/}p,t’gn’Tk,n = Tla Tq,n = T2) |Tk,n = T17 Tq,n = T2:| )
(5.43)

where the X, , are the u-th samples pulled from arm p.

Step 2: The distribution of 25:1 Xku — 1 conditioned on {7, }, <, is symmetric.
Consider an arm k, and a time 7. As the distributions v is symmetric, % 25:1 Xkw — Mk
conditioned on {G y }¢<, is symmetric.
T ~ ~ T
As % Zu:l Xbouw— Mk depends on {O'p’t/ }p;ék:,t’gn only trough {Uk7t/}t/§n, the % Zu:l Xiuw— ke
conditioned on {4 }y<y, is independent of {5, ' } £k ¢'<n. The distribution of % 25:1 X — Ik

conditioned on {7, ¢ }pr<p is thus symmetric around 0, as v, is symmetric around .
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This leads to

T
E[(% Z X — Mk) {opv }pﬂ‘/én] =0. (5.44)

u=1

Step 4: The cross products E[(fik, — pk) (Hgn — 1)) are null.  We combine Equations
5.43 and 5.44 to get

E[(ﬁk,n - Nk) (ﬁq,n - Mq) ’Tk,n = T17 Tq,n = T2]
= E|0[T = T3, Ty = T3|E|0[Tky = T3, Ty = To| = 0,

Now note that
E [(ﬁk,n - ,uk) (ﬁq,n - ,Uq):|

n n
=) > E[(ﬁk,n — tie) (Flgn — 11q)| T = T, Ty = TQ]IP(Tk,n =T1,Tyn =To) =0,
T1=2To=2

where we use the previous Equation at the end.

Finally, we conclude the proof with

E[(ﬁn — M)ﬂ = E[(iwk(ﬁk,n - uk))z}
k=1
— K wguz[(gkm — %)2} +2) wkqu[(ﬂkm — k) (Hg,n — fiq)
1 k#q

ke
= L,(Avc-vcB)-

5.F.2 Proof of Propositions 7 and 8

We also relate the bounds in Propositions 4 and 5 to a bound on E[(fi, — )?] in the general
case. The proof Propositions 7 and 8 are very similar up to the end, where we use for the
problem dependent Proposition 7 the results of Lemma 10, and for the problem independent
Proposition 8 the results of Lemma 11.

Proof:

Step 0: A useful Lemma.

Lemma 12 Let X be a random variables such that E(X) = 0. Let (y)u=1,..p be a partition of

the space of random events. Let (ay)u=1,...p be a positive decreasing sequence of random numbers.
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We have ,
E(X Y au{X € Q})| < (a1 — ap)VE(X?).

u=1

Proof:

First note that as the sequence of a, is positive decreasing, the following equation holds
P
XY ad{X € Q} < XaiI{X > 0} + Xa,J{X < 0}.
u=1
This implies

E[X iauH{X c Qu}} < E[Xalﬂ{x > 0} + Xa,[{X < 0}}

< E[(al — ) XI{X > 0} + a, X (I{X < 0} + I{X >0})

< (a1 — ap)E[XH{X > o}]

A

< (a1 — ap)\/E [X%I{X > 0}]
< (a1 — ap) E{XZ},

where the fourth line follows by Cauchy-Schwartz.
By remarking that

p
XY a{X € Q} > XarI{X < 0} + Xq,I{X > 0},

u=1

we prove in the same way that

E[sz:auﬂ{x € )| > —(a1 — ap) E[X?]

u=1

Those two inequalities lead to the desired result.

Note first that

El(in — 1)%) = 3 wFE | (e — )| + 2D wrwgB| (i — i) (gn = i1a) |-
k#q k#q

As problem dependent and problem independent bounds on Zk?é q wiE [(ﬁkn _ ,Uk)z} are avail-

able in Propositions 4 and 5, it is sufficient to bound the cross-products.
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Step 1: E{( tTiln ( Xkt — uk))(Zfif (Xgt — ,uq))] = 0. Let us denote by ¢ the moment
where the algorithm pulls arm & the t—th time.

E{<§<Xk,t - ) <jq_z’:<xq,t ~ 1)

= E[( tZ:(Xk,t — 1) H{ T > 13) ( g;(Xq,t — 11g){Tyn > t})]

- tzn;;n:l E|(Xes = i) (X = 0) Ty = ¢ M{ T > 1}]

= iéE[(Xm — i) (X = p1g) { Ty > 3 Ty > t}1{tg4 < tq,t/}}
+ tZ: tz: E(Xes = ) (X = ) H{Tyn = VT = H1{tes > by}

Letuscall ¢, i =0 X115, Xujtys oo XK 150015 XK,tK> the multidimensional filtration
generated, for all k, by the t; first instance of the k—th arm. Note that the algorithm MC-UCB
disposes at time ¢ of the informations from a certain Fy, ;. where ), t; =t and picks an arm
(i.e. a dimension of the filtration) according only to information in F, ;.. If the algorithm
picks arm k, the information at the disposal of MC-UCB is, after pulling arm &, in Fy, ¢, 41, 5 -

Now let us consider consider two arms k and ¢. Note that the collection of events 7 =
o(Xgw) N {Tyn >t} N {Tp >t} N {tgs > typ} is in Fn. 1.0 indeed, no information of

Xk, with u greater than ¢ — 1 is needed in addition F,, . ;—1, ., to know if we are in an event

40

of 7 and in which one. This means that X} ; is independent of all events in 7. Finally, we have

E{(XM — i) (Xgpr — pq) Ty > T, > t}1{ts s > t,”,}}
= E[(Xq,t’ — piq) Ty > YTy > 3 {tpy < tgu }E[(Xiy — /Lk)|:}'n,“.,t71,...,n]]

=E [(Xq,t, — pg) Ty > YTy > t}{ts > tq,t,}o} =0.

By summing and doing the same reasoning for arm ¢, we obtain that

Tin Ton
E[(3(Kee = 1)) (3o (Xae = )] = 0. (5.45)

Note that we have by doing a similar reasoning, that

min(Tk’n,Tk) min(Tq,nv,TQ)
El( Y Gee-m)( Y Ker-m))| =0, (5.46)
t=max(Ty n,T}) t':maX(Tq,mIq)

15Here there are n at all positions except at the k — 1 where there is a .
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where T, T, Ty and T, are any constants.

Step 2: Definition of an event 7 of high probability. We remind that on £, by combining

Lemmas 10 and 11, we have for all p,
Ty > T, = max (T];jn — BV, Tp, — A/, En2/3),

and
Ty < Ty = min (T, + DV, Ty, + Cn??).

’ p7n

where B and D are as in Lemma 10, A and C are as in Lemma 11, and £ is as in the proof of
Lemma 11 (Equation 5.33). Note that B and D display an invert dependency in Api,, but that
A, C, and E do not. The probability of £ is more than 1 — 2nKJ.

Now let us define the event 7 such that for all p,
Ty > T, = max (T;n — BV, Tj, — A/, En2/3),

and
Tpn < Ty = min (T*n 4 Do, T, + Cn2/3>.

- D, ’ p,n

Note that £ C 7 because of Lemmas 10 and 11. We have, because of £ C T,

Bl — 1a) Gtk — )Y (5.47)
< \Egn — 10) T}y Bl n — p1x)21{7<)]

< VElfgn — 1) HEN /BB — ) HEY]

< 2¢1n?K4(1 + log(c2/2nKd))

< 21 K (1 + log(can®? /2K ))n=3/2

< Crn ™32, (5.48)

as in Appendix 5.B and because § = n~"/2. Here C; = 2¢; K (1 + log(can®?/2K)).

Step 3: Bounding the cross-products. Using step 1 and 2 together, we get

Tk,n Tq,n
B[ (Xea — 1) (3 (X — 1)) 17
t=1 t=1
min(Ty,n,Te,n) min(Ty,n,Tg,n)
- E[( Z (Xt — /‘k))( Z (Xg o — Mq))] =0.
t:max(Tkm,Zk’n) t’:max(Tq,n,zqyn)

Let us call Z = (Zmin(Tk’”’Tk’") ( Xkt — uk))(zmin(Tq’"’Tq’") (Xq¢ — 11q))- Note that

t:maX(Tk/ﬂ’Zk,n) t/:maX(Tqﬂ/VL’Zq,n)
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E[Z] = 0. We thus have by Lemma 12

‘E [(//Zk:,n - Nk) (I/Zq,n - /‘q)H{T}} ‘

1 min(Tk,ank,n) min(Tq,n,Tq,n)
= E{(T (Xk — ,uk)) (Ti Z (Xgp — Mq))] ’
kin t=max(T n,T ) an t'=max(Tq,n,L, )
1 1
- [z, 7))
Tk,n Tq,n
Tk,n Tq n 1 1
Y S 2, .0
t:Zk,'n t/_Tq,n
1 1 1 1
<E[Z] (T T,, [ )
L kn Zqmn Tk,n T‘I:n
Note now that
min(Tx n,Tk,n) min(Ty,n,Ty,n)
B =[E[( Y )Y Kee—w)|
t=max (T, n,Lk ) t’:max(Tq’n,qu)
min(Tk,ny’fk,n) 9 min(Tq7n7TQ7n) 9
< B[ Y G-m)'E[( Y (Kew—n)]
t=max Tk T“Tk n) t/:max(Tan7Iq,n)

From that, one gets

- = 1 1 1 1
wkw’E[ﬁk, — Uk ﬁ7 — U, ]ITHkadk Tkwa T}n< - = = >
q ( n )( q,n q) { } n*wqvq q Ik,n Iq,n Tk,n Tq,n

< g2 Tir T (T Tyn— Ty T ) (5.49)
n? TnTyn fnlan T Shnsan '
»? 1 _ -

<4AS (Tk,an,n - Lmzq,n). (5.50)
n

Tk,an,n

where the second inequality comes from the fact that Vp, T, ,, > T, — A)\an/ 3 which implies

wyo Su zw
that P2 < s < 247,
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Step 4: problem dependent upper bound We deduce from Equation 5.50 that

wkwq‘E [(ﬁk,n - /Uc) (:aq,n - Hq)H{T}] ‘
<4A22712U¥
- n? \/ Tk,an,n
52 (v + Dy) (Agn -+ DV) = (e — By) (Agn = Bv/n) )

n? \/ Own + D) (Agn + D)
,52 (D4 By + Ag)ny/i + (D* ~ BY)n)

" (QkAgn? + (D + B)( + Ag)ny/i + D)
225 (D + B+ D*)ny/n
n? ny/ (k)
(D+ B+ D? ¥

()\k)\q) n3/2"

(Tk,an,n - Ik,nzq,n)

<4A

<4A

<4A?

Finally, we have

witg|E | (e — 1x) (fgn — ) Y] | < Cin2, (5.51)

— 442 (D+B+D?*)(Ap+Aq) E%U-
VAg)

where Cq

Finally, using Equation 5.48, we have

wiwgB| ik — ) (Fan = 1) | = B[ (e = 16) (Fan — #10)HEY] + B[ (e = 11e) (Fgm — p1a)HE
< Cin~3? 4 Con32,
< (Cr+Crn?2,

1

>\min :

where Cy and C; depend only polynomially on log(n), on 3, on K, on (c1,c2), and on

This concludes the proof for the problem dependent bound.
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Step 4bis: problem independent upper bound From Equation 5.50, we deduce that

wkwq‘E[(ﬂk,n - :uk) (ﬁq,n - Mq)H{T}} ‘

5 %2 1
<164 ﬁifc,nﬂm
) 22 (()\kn + Cn3) (Agn + Cn?/%) = (An — An?/3) (Agn — An?/%))

\/ (n + Cn2/3) (Agn + Cn2/3)
222 ( (A+ C)(Ap + Ag)nn?/3 + (C? —A2)n4/3)
(
(

(Tk,an,n - Ik,nzq,n)

<16A4°—+=

=16A

\/ Aedg7i? + (A + C)(Ap + Ag)nn?/3 + C2nt/3)

2 2/3 2 A2V,,4/3
Slﬁﬁ% A+ C)p + A (C?— A%)n ]
LA+ C)p + Ag)nn2/3 vt/

2
§16A2% A+ Oy + 20?6 4 on?/3

2
<1642 /(A + C)(Ap + Ag) +C .
Finally, we have
wiwy|B[ (B — 18) (A — 1)1 | < Con =705, (5.52)

where Cy = 1642 | /(A + C) + C’] »2.

Finally, using Equation 5.48, we have

wiwgB| (kg — ) (Fan = 1) | = B (G = 16) (Fan = #0)HEY] + B (e — 118) (Fgm — 11a)HE
< Con~ 0 4 Cn 32,
S (02 + CT)n77/67

where Co and C- depend only polynomially on log(n), on 3, on K and on (c1, ¢2).
This concludes the proof for the problem dependent bound.
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Chapter 6

Minimax Number of Strata for
Online Stratified Sampling given
Noisy Samples

This Chapter is a joint work with Rémi Munos, and is extracted from the Technical Report [Car-
pentier and Munos, 2012b]. In it, and in the next two others as well, we consider different
scenarios of the setting of functional integration, and try to answer the question of efficiently
stratifying the space. We assume in this Chapter that the function we want to integrate is noisy,
and we are concerned about building a minimax-optimal stratification of the domain for a given
smoothness assumption on the function.

More precisely, we consider the problem of online stratified sampling for Monte Carlo inte-
gration of a function given a finite budget of n noisy evaluations to the function, and we focus
on the problem of choosing the number of strata K as a function of the budget n. We pro-
vide asymptotic and finite-time results on how an oracle that has access to the function would
choose the number of strata optimally. In addition we prove a lower bound on the learning rate
for the problem of stratified Monte-Carlo. As a result, we are able to state, by improving the
bound on its performance, that algorithm MC-UCB, defined in [Carpentier and Munos, 2011a],
is minimax optimal both in terms of the number of samples n and the number of strata K, up
to a \/IC)gTK). This enables to deduce a minimax optimal bound on the difference between
the performance of the estimate outputted by MC-UCB, and the performance of the estimate

outputted by the best oracle static strategy, on the class of Holder continuous functions, and up

to a y/log(n).

Contents
6.1 Setting . . . . . o . o o e e e e e e e e e e 126
6.2 The quality of a partition: Analysis of the term Q,, . .. .. ... ... 129
6.2.1 General comments . . . . ... 130
6.3 Algorithm MC-UCB and a matching lower bound ... ......... 131
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6.3.1 Algorithm MC —UCB . . . .. . . . . i 131
6.3.2 Upper bound on the pseudo-regret of algorithm MC-UCB. . . . .. ... .. 132
6.3.3 Lower Bound . . . .. .. . .. ... 132
6.4 Minimax-optimal trade-off between Q, ~, and R, n,(Amc-vecs) . . . . 133
6.4.1 Minimax-optimal trade-off . . . . . . . ... ... o 133
6.4.2 Discussion . . . . . .. ..o 134
6.5 Numerical experiment: influence of the number of strata in the Pricing
of an Asian option . . . . . . . ... L L e e e e e e 136
6.A Proofof Theorem 16 . .. . ... . . . ... 139
6.A.1 The main tool: a high probability bound on the standard deviations . . . . 139
6.A.2 Main Demonstration . . . . . . . .. ... L 139
6.B Proof of Proposition 10 . . . . . . . . . . ... o i e e 142
6.C Proof of Proposition 11 . . . . . . . . . . . . 0o 146
6.D Large deviation inequalities for independent sub-Gaussian random vari-
ables . ... e e e e e e e e e e e e e e e e e e e 146
Introduction

The objective of this Chapter is to provide an efficient strategy for Monte-Carlo integration of a
function f over a domain [0, 1]%. We assume that we can query the function n times. Querying

the function at a time ¢ and at a point z; € [0, l]d provides a noisy sample

f(a:t) + S(ZUt)Et, (61)

where &; is an independent noise drawn from v, and s > 0 is a function on [0, 1]¢. Here v, is a
distribution with mean 0, variance 1 and whose shape may depend on x!. This model is actually
very general (see Section 6.1).

Stratified sampling is a well-known strategy to reduce the variance of the estimate of the
integral of f, when compared to the variance of the estimate provided by crude Monte-Carlo. The
principle is to partition the domain in K subsets called strata and then to sample in each stratum
(see Rubinstein and Kroese [2008][Subsection 5.5] or Glasserman [2004]). If the variances of the
samples in the strata are known, there exists an optimal static allocation strategy which allocates
the number of samples in each stratum proportionally to the measure of the stratum times the
variance in the stratum (see Equation 6.3 in this Chapter for a reminder). We refer to this
allocation as optimal oracle strategy for a given partition. In the case that the variations of f

and the standard deviation of the noise s are unknown, it is not possible to adopt this strategy.

Tt is the usual model for functions in heterocedastic noise. We isolate the standard deviation on a point z,
s(z), in the expression of the noise, since this quantity is very relevant.
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Consider first that the partition of the space is fixed. A way around this problem is to
estimate the variations of the function and the amount of noise on the function in the strata
online (exploration) while allocating the samples according to the estimated optimal oracle
strategy (exploitation). This setting is considered in Carpentier and Munos [2011a]; Etoré and
Jourdain [2010]; Grover [2009]. In the long version Carpentier and Munos [2011b] of the last
paper, the authors describe the MC-UCB algorithm which is based on Upper-Confidence-Bounds
(UCB) on the standard deviation. They provide upper bounds for the difference between the
mean-squared error(w.r.t. the integral of f) of the estimate provided by MC-UCB and the mean-
squared error of the estimate provided by the optimal oracle strategy (optimal oracle variance).
The algorithm performs almost as well as the optimal oracle strategy. However, the authors
of Carpentier and Munos [2011b] do not infirm nor assess the optimality of their algorithm with
a lower bound as benchmark. As a matter of fact, no lower bound on the rate of convergence
(to the oracle optimal strategy) for the problem of stratified Monte-Carlo exists, to the best of
our knowledge. Still in the same paper Carpentier and Munos [2011b], the authors do not at
all discuss on how to stratify the space. In particular, they do not pose the problem of what an
optimal partition of the space is, and do not try to answer on whether it is possible or not to
attain it.

The next step is thus to efficiently design the partition. There are some interesting papers
on that topic such that Etoré et al. [2011]; Glasserman et al. [1999]; Kawai [2010]. The recent,
state of the art, work of Etoré et al. [2011] describes a strategy that samples asymptotically
almost as efficiently as the optimal oracle strategy, and at the same time adapts the direction
and number of the strata online. This is a very difficult problem. The authors do not provide
proofs of convergence of their algorithm. However for static allocation of the samples, they
present some properties of the stratified estimate when the number of strata goes to infinity and
provide convergence results under the optimal oracle strategy. As a corollary, they prove that

the more strata there are, the smallest the optimal oracle variance.

Contributions: The more strata there are, the smaller the variance of the estimate computed
when following the optimal oracle strategy. However, the more strata there are, the more diffi-
cult it is to estimate the variance within each of these strata, and thus the more difficult it is
to perform almost as well as the optimal oracle strategy. Choosing the number of strata is thus
crucial and this is the problem we address in this Chapter. This defines a trade-off similar to the
one in model selection (and in all its variants, e.g. density estimation, regression...): The wider
the class of models considered, i.e. the larger the number of strata, the smaller the distance
between the true model and the best model of the class, i.e. the approximation error. But the
larger the estimation error.

Paper Etoré et al. [2011], although proposing no finite time bounds, develops very interesting
ideas for bounding the first term, i.e. the approximation error. As pointed out in paper e.g. Car-
pentier and Munos [2011a], it is possible to build algorithms that have a small estimation error.

By constructing tight and finite-time bounds for the approximation error, it is thus possible
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to propose a number of strata that minimizes an upper bound on the performance. It is how-
ever not clear how consistent this choice is. The essential ingredients for choosing efficiently a
partition are thus lower bounds on the estimation error, and on the approrimation error.

The objective of this Chapter is to propose a method for choosing the minimax-optimal

number of strata. Our contributions are the following.

e We first present results on what we call the quality Q,, v of a given partition in K strata N
(i.e., using the previous analogy to model selection, this would represent the approximation
error). Using very mild assumptions we compute a lower bound on the variance of the
estimate given by the optimal oracle strategy on the optimal oracle partition. Then if

the function and the standard deviation of the noise are a—Holder, and also if the strata

a/d
)

—). This bound is also minimax

satisfy some assumptions, we prove that @, x = O(

optimal on the class of a—H&lder functions.

e Even though we presented these results during the last Chapter, it was originally in the
Technical Report from which this Chapter is extracted (Technical Report [Carpentier and
Munos, 2012b]) that we provided the lower bound for the problem of adaptive stratified
Monte-Carlo (that is of order Q(K/3n~%3)) and also that we tightened the problem
independent regret bound for algorithm MC-UCB in terms of K (and proved that it is of
order O(Kn~%/?)). We remind that this implies that MC-UCB is minimax-optimal up to
a \/W both in terms of number of samples and in terms of number of strata.

e Finally, we combine the results on the quality and on the pseudo-regret of MC-UCB to
provide a value on the number of strata leading to a minimax-optimal trade-off (up to a

log(n)) on the class of a—Hélder functions.

The rest of the Chapter is organized as follows. In Section 6.1 we formalize the problem
and introduce the notations used throughout the Chapter. Section 6.2 states the results on
the quality of a partition. Section 6.3 improves the analysis of the MC-UCB algorithm, and
establishes the lower bound on the pseudo-regret. Section 6.4 reports the best trade-off to
choose the number of strata. And in Section 6.5, we illustrate how important it is to choose
carefully the number of strata. We finally conclude the Chapter and suggest future works. The
proofs of the results are in the Appendices of the Chapter.

6.1 Setting

We consider the problem of numerical integration of a function f : [0,1]¢ — R with respect to
the uniform (Lebesgue) measure. We dispose of a budget of n queries (samples) to the function,
and we can allocate this budget sequentially. When querying the function at a time ¢ and at a
point x;, we receive a noisy sample X (¢) of the form described in Equation 6.1.

We now assume that the space is stratified in K Lebesgue measurable strata that form a
partition N. We index these strata, called Qj, with indexes k € {1,..., K}, and write wy, their
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measure, accordmg to the Lebesgue measure. We write pp = —— ka ey L f () + s(x)e]ldr =
o fQ z)dz their mean and o} = o ka Econ, [(f(z) + s(x)e — Mk) |dx their variance. These
mean and variance correspond to the mean and variance of the random variable X (¢) when the
coordinate x at which the noisy evaluation of f is observed is chosen uniformly at random on

the stratum €.

We denote by A an algorithm that allocates online the budget by selecting at each time
step 1 < ¢t < n the index k; € {1,...,K} of a stratum and then samples uniformly in the
corresponding stratum €,. The objective is to return the best possible estimate fi, of the
integral of the function f. We write Ty, = 3, I{k¢ = k} the number of samples in stratum

Q. up to time n. We denote by (Xk,t) the samples in stratum 2, and we define

1<k<K1<t<Tyn
lkn = Tk ZT" 7' Xj+ (the empirical means in the strata). We estimate the integral of f by
ﬁn = Zk:l wk’lu'k,n-

If we allocate a deterministic number of samples T} to each stratum €0 and if the samples

are independent and chosen uniformly on each stratum 2, we have

=) wppy = Z du_/[oud f(u)du = p,

k<K k<K
and also 5 o
. wio

k<K
where the expectation and the variance are computed according to all the samples that the

algorithm collected.

For a given algorithm A allocating T}, , samples drawn uniformly within stratum €, we

denote by pseudo-risk the quantity

2 .2

w.o
Lun(A) = Y %, (6.2)
k<K k,n

Note that if an algorithm A* has access the variances Uz of the strata, it can choose to allocate

WOk

the budget in order to minimize the pseudo-risk, i.e., sample each stratum 77 = T n times

i<k Widi

(this is the so-called oracle allocation). These optimal numbers of samples can be non-integer
values, in which case the proposed optimal allocation is not realizable. But we still use it as a
benchmark. The pseudo-risk for this algorithm (which is also the variance of the estimate here

since the sampling strategy is deterministic) is then

2
Lpn(A") = <EkSK wk0k> = 2—%, (6.3)

n n

WOk
ZiSK w;o;’
and to optimal oracle strategy to this allocation strategy. Although, as already mentioned, the

where ¥y = )", wpoi. We also refer in the sequel as optimal proportion to A\, =
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optimal allocations (and thus the optimal pseudo-risk) might not be realizable, it is still very
useful in providing a lower-bound. No static (even oracle) algorithm has a pseudo-regret lower
than L, x(A*) on partition N.

It is straightforward to see that the more refined the partition N the smaller L, n(A*) (see
e.g. Glasserman et al. [1999]). We thus define the quality of a partition Q,n as the difference
between the variance L,, n(A*) of the estimate provided by the optimal oracle strategy on parti-
tion N, and the infimum of the variance of the optimal oracle strategy on any partition (optimal

oracle partition) (with an arbitrary number of strata):

QnN = Ly N(A") — inf Ly (AY). (6.4)

N’measurable

We also define the pseudo-regret of an algorithm A on a given partition N, as the difference

between its pseudo-risk and the variance of the optimal oracle strategy:
R N(A) = Lo n(A) = Ln N (A7) (6.5)

We will assess the performance of an algorithm A by comparing its pseudo risk to the

minimum possible variance of an optimal oracle strategy on the optimal oracle partition:

Lon(A)—  inf Ly (AY) = Ryn(A) + Qnv (6.6)

N'measurable

Using the analogy of model selection mentioned in the Introduction, the quality @, is

similar to the approximation error and the pseudo-risk R, n(A) to the estimation error.

Motivation for the model f(z)+ s(x)s;. Assume that a learner can, at each time ¢, choose
a point x and collect an observation F(x,W;), where W; is an independent noise, that can
however depend on z. It is the general model for representing evaluations of a noisy func-
tion. There are many settings where one needs to integrate accurately a noisy function without
wasting too much budget, like for instance pollution survey. Set f(z) = Ew,[F(xz, W;)], and
s(x)ey = F(x, W) — f(x). Since by definition ; is of mean 0 and variance 1, we have in fact
s(x) = \/E,, [(F(x,W;) — f())?] and &; = w Observing F'(z, W;) is thus equivalent

s(x

to observing f(x) + s(x)et, and this implies that the model that we choose is also very general.
There is also an important setting where this model is relevant, and this is for the inte-
gration of a function F in high dimension d*. Stratifying in dimension d* seems hopeless,
since the budget n has to be exponential with d* if one wants to stratify in every direction
of the domain: this is the curse of dimensionality. It is necessary to reduce the dimension
by choosing a small amount of directions (1,...,d) that are particularly relevant, and con-

2

trol/stratify only in these d directions®. Then the control/stratification is only on the first

d coordinates, so when sampling at at a time ¢, one chooses z = (z1,...,24), and the other

d* — d coordinates U(t) = (Ugyp1(t),...,Ug(t)) are uniform random variables on [0,1]¢ —¢

2This is actually a very common technique for computing the price of options, see Glasserman [2004].
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(without any control). When sampling in = at a time ¢, we observe F(x,U(t)). By writing
f(@) = Eygyoages—a)[F (2, U(t))], and s(z)er = F(x,U(t)) — f(z), we obtain that the model

we propose is also valid in this case.

6.2 The quality of a partition: Analysis of the term @), .

In this Section, we focus on the quality of a partition defined in Section 6.1.

Convergence under very mild assumptions As mentioned out in Section 6.1, the more
refined the partition N of the space, the smaller L, x(A*), and thus . Through this monotony
property, we know that infy ¥ is also the limit of the (X, ), of a sequence of partitions (N}),
such that the diameter of each stratum goes to 0. We state in the following Proposition that for

any such sequence, lim,_, | Xy, = f[o 1) 8(z)dx. Consequently infy X = f[o e S(x)da.

Proposition 10 Let (Np)p = (Qkp)re(1,.... K, }pefl,....+00} D€ @ sequence of measurable partitions

(where K, is the number of strata of partition Np) such that

o ASI: 0 < wyy < vp, for some sequence (vp)p, where v, — 0 for p — 4-o00.

A

e AS2: The diameters according to the ||.||2 norm on R of the strata are such that maxy, Diam(Q )

D(wyp), for some real valued function D(-), such that D(w) — 0 for w — 0.

If the functions m and s are in Ly([0,1]%), then

p——+00 Nmeasurable

lim ¥y, = inf Xy —/ s(z)dex,
[0,1]¢
which implies that n X Qp N, — 0 for p — +o0.

The full proof of this Proposition is available in the Appendix 6.B.

In Proposition 10, even though the optimal oracle allocation might not be realizable (in
particular if the number of strata is larger than the budget), we can still compute the quality of
a partition, as defined in 6.4. It does not correspond to any reachable pseudo-risk, but rather
to a lower bound on any (even oracle) static allocation.

When f and s are in Ly([0,1]¢), for any appropriate sequence of partitions (N,)p, N,
(which is the principal ingredient of the variance of the optimal oracle allocation) converges to
the smallest possible Yy for given f and s. Note however that this condition is not sufficient to

obtain a rate.

Finite-Time analysis under Holder assumption: We make the following assumption on

the functions f and s.
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Assumption The functions f and s are (M, «)—Holder continuous, i.e., for g € {m, s}, for
any z and y € [0,1)%,[g(z) — g(y)| < M]|z —yll5.

The Hoélder assumption enables us to consider arbitrarily non-smooth functions (for small
a, the function can vary arbitrarily fast), and is thus a fairly general assumption.

We also consider the following partitions in K squared strata.

Assumption We write N the partition of [0,1]¢ in K hyper-cubic strata of measure wy, =
w = % and side length (%)1/ d: we assume for simplicity that there exists an integer [ such that
K =14

The following Proposition holds.

Proposition 11 Under Assumption 6.2 we have for any partition N as defined in Defini-
tion 6.2 that )
SN —/ s(z)dz < V2dM (=), (6.7)
[0,1) K

which implies

2v/2d M Yy, (i)a/d
n

Q?’L,NK S K

)

where N1 stands for the “partition” with one stratum.

The full proof of this Proposition is available in the Appendix 6.C.

6.2.1 General comments

The impact of o and d: The quantity @, v, increases with the dimension d, because the
Holder assumption becomes less constraining when d increases. This can easily be seen since a
squared strata of measure w has a diameter of order w'/?. Qn Ny decreases with the smoothness
a of the function, which is a logic effect of the Holder assumption. Note also that when defining
the partitions N in Definition 6.2, we made the crucial assumption that K'/¢ is an integer.
This fact is of little importance in small dimension, but will matter in high dimension, as we

will enlighten in the last remark of Section 6.4.

Minimax optimality of this rate: The rate n ™ 'K —a/d ig minimax optimal on the class of
a—Holder functions since for any n and K one can easily build a function with Holder exponent

a such that the corresponding Yy, is at least f[o 1jd s(x)dx + cK~/? for some constant c.

Discussion on the shape of the strata: Whatever the shape of the strata, as long as their
diameter goes to 0%, Xy, converges to f[o 1jd s(z)dx. The shape of the strata have an influence
only on the negligible term, i.e. the speed of convergence to this quantity. This result was

already made explicit, in a different setting and under different assumptions, in Etoré et al.

3And note that in this noisy setting, if the diameter of the strata does not go to 0 on non homogeneous part
of m and s, then the standard deviation corresponding to the allocation is larger than f[o 14 s(u)du.
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[2011]. Choosing small strata of same shape and size is also minimax optimal on the class
of Holder functions. Working on the shape of the strata could, however, improve the speed
of convergence in some specific cases, e.g. when the noise is very localized. It could also be

interesting to consider strata of varying size, and make this size depend on the specific problem.

The decomposition of the variance: The variance a,% within each stratum §2; comes from

two sources. First, 0,3 comes from the noise, that contributes to it by wik ka s(x)%dx. Second, the
. . . . . 2. 1 1 2

mean f is not a constant function, thus its contribution to o} is - ka (f(x)_sz ka f(uw)du) da.

Note that when the size of 2 goes to 0, this later contribution vanishes, and the optimal

allocation is thus proportional to \/wk Jo, s(x)?dz 4+ 0(1) = [, s(z)dx +o(1). This means that
for small strata, the variation in the mean are negligible when compared to the variation due to

the noise.

6.3 Algorithm MC-UCB and a matching lower bound

6.3.1 Algorithm MC —-UCB

In this Subsection, we describe a slight modification of the algorithm MC — UCB introduced
in Carpentier and Munos [2011a]. The only difference is that we change the form of the high-
probability upper confidence bound on the standard deviations, in order to improve the elegance
of the proofs, and we refine their analysis. The algorithm takes as input two parameters b and
fmax which are linked to the distribution of the arms, § which is a (small) probability, and the
partition Ng. We remind in Figure 6.1 the algorithm MC — UCB.

Input: b, fmax, 0, Nk, set A =21/(1 +3b+4f2,,) log(2nK/J)
Initialize: Sample 2 states in each strata.
fort=2K+1,...,ndo

Compute By, = T:)t: <8k7t_1 + A Tk1t—1> for each stratum k < K

Sample a point in stratum k; € argmaxi<p<g B
end for
—~ K ~
Output: pu, = Zk:1 Wk k,n

Figure 6.1: The pseudo-code of the MC-UCB algorithm. The empirical standard deviations and
means Ez’t and iy, are computed using Equation 6.8.

The estimates of 8,% ,_1 and iy ¢—1 are computed according to

Trt—1 Tyt—1

~ ~ 1
> (Xki = fikg—1)? and figi1 = Too s D X (6.8)
i=1 A=l o

=R 1
Okt—1 = Thr 1
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6.3.2 Upper bound on the pseudo-regret of algorithm MC-UCB.

We first state the following Assumption on the noise €:

Assumption There exist b > 0 such that Vo € [0,1]%, V¢, and Y\ < %,

)), and E, [exp()\s,? - )\)} < exp (2)2)

E,, [eXp(/\Et)] < exp (2 X (1— D)

(1—\b

This is a kind of sub-Gaussian assumption, satisfied for e.g., Gaussian as well as bounded

distributions. We also state an assumption on f and s.

Assumption The functions f and s are bounded by finax-

Note that since the functions f and s are defined on [0, 1]¢, if Assumption 6.2 is satisfied,
then Assumption 6.3.2 holds with fumax = max(f(0),5(0)) ++/2dM. We now prove the following
bound on the pseudo-regret. Note that we state it on partitions Ng, but that it in fact holds

for any partition in K strata.

Proposition 12 FizedStrata.prop:m-regret
Under Assumptions 6.3.2 and 6.5.2, on partition Ng, when n > 4K, we have

K13 14K%3

E[Ru Ny (Amc-veB)] < CW log(nk) + —,

1/3
where €' = 24v/2%, /(T + 36 + 472, (£2+2) .

The proof of this Proposition is close to the one of MC-UCB in Carpentier and Munos
[2011a]. But an improved analysis leads to a better dependency in terms of number of strata
K. We remind that in paper Carpentier and Munos [2011a], the bound is of order O(K n~4/ 3).
This improvement is crucial here since the larger K is, the closer Xy, is from f[o,l]d s(z)dx. This
result is however substantially similar to Theorem 10 in Chapter 5. We make the small changes
explicit in the Appendices of this chapter, i.e. Appendix 6.A. The next Subsection states that
the rate K/30(n=4/3) of MC-UCB is optimal both in terms of K and n.

6.3.3 Lower Bound

We now study the minimax rate for the pseudo-regret of any algorithm on a given partition Ng.
Note that we state it for partitions N, but that it holds for any partition in K strata of equal

measure.
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Theorem 13 Let K € N. Let inf be the infimum taken over all online stratified sampling
algorithms on N and sup represent the supremum taken over all environments, then:
K1/3

inf sup B[Roxy ] 2 €7,

where C is a numerical constant.

This lower bound, that we already presented in Chapter 5 (Theorem 8), was originally
introduced in Carpentier and Munos [2012D], i.e. this work. We believe that the proof is original
and interesting: this is the main contribution of this work. Note that this bound is of same order
as the upper bound for the pseudo-regret of algorithm MC-UCB. It means that this algorithm
is, up to y/log(nK), minimax optimal, both in terms of the number of samples and in terms of
the number of strata. It however holds only on the partitions Ng (we conjecture that a similar

/
result holds for any measurable partition N, but with a bound of order Q ( Y oseN %) ).

6.4 Minimax-optimal trade-off between Q,, n, and R, n, (Arvc—ves)

6.4.1 Minimax-optimal trade-off

We consider in this Section the hyper-cubic partitions Nx as defined in Definition 6.2, and we
want to find the minimax-optimal number of strata K, as a function of n. Using the results
in Section 6.2 and Subsection 6.3.1, it is possible to deduce an optimal number of strata K to
give as parameter to algorithm MC — UCB. Note that since the performance of the algorithm
is defined as the sum of the quality of partition Ng, i.e. @, n, and of the pseudo-regret of the
MC-UCB algorithm, namely R, n, (Amc-vcn), one wants to (i) on the one hand take many
strata so that @, x, is small but (ii) on the other hand, pay attention to the impact this number
of strata has on the pseudo-regret R, n, (Armc—vcn). A good way to do that is to choose K,
in function of n such that Q,n,, and Ry, N (Apmc—veB) are of the same order.

Theorem 14 Under Assumptions 6.2 and 6.3.2 (since on [0,1]¢, Assumption 6.2 implies As-
d
sumption 6.5.2, by setting fmax = X (1) + V2dM ), choosing K,, = (L(nﬁ)l/ﬂ) (< N5 <

n), we have

1 2 o o o
E[L,(Avc-veB)] — n</[o .y s(x)dac) < Cdiata 1Og(n)n*%(1 +don T,

1/3
where ¢ = T0(1 + M)Xn,. /(1 + 3b + 4(f(0) + s(0) + M)2) (W) .

d+4a

2 ~
Ifd < n, then E[Ln(Arvc_ven)] — %( Sioa s(x)da:) — O(n~ ©5a),

We can also prove a matching (up to y/log(n)) minimax lower bound using the results in
Theorem 13.
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Theorem 15 Let sup represent the supremum taken over all a—Hdélder functions and inf be
the infimum taken over all algorithms that partition the space in convex strata of same shape,
then the following holds true:

2 o
infsupEL,(A) — Tll(/[o .y s(x)dx) =Q(n~ e ).

6.4.2 Discussion

Optimal pseudo-risk. The dominant term in the pseudo-risk of MC-UCB with the proper
number of strata is M = %(f[O,I]d s(ac)dx)2 (the other term is negligible). This means
that algorithm MC-UCB is almost as efficient as the optimal oracle strategy on the optimal
oracle partition. In comparison, the variance of the estimate given by crude Monte-Carlo is
f[O,l]d (f(z) _f[O,l]d f(u)du)de%—f[O,l]d s(z)?dx. Thus MC-UCB enables to have the term coming
from the variations in the mean vanish, and the noise term decreases (since by Cauchy-Schwarz,
2
(f[O,l]d s(a:)da;) < f[071]d s(x)%dx).

Minimax-optimal trade-off for algorithm MC-UCB. The optimal trade-off on the num-
ber of strata K, of order nﬁ depends on the dimension and the smoothness of the function.
The higher the dimension, the more strata are needed in order to have a decent speed of con-
vergence for X, . The smoother the function, the less strata are needed.

It is yet important to remark that this trade-off is not exact. We provide an almost minimax-

optimal order of magnitude for K, in terms of n, so that the rate of convergence of the algorithm
is minimax-optimal up to a y/log(n).

Link between risk and pseudo-risk. It is important to compare the pseudo-risk L, (A) =

Zszl I;EUE and the true risk E[(fi, — p)?]. Note that these quantities are in general not equal
for an aléorithm A that allocates the samples in a dynamic way: indeed, the quantities T},
are in that case stopping times and the variance of estimate fi, is not equal to the pseudo-risk.
However, in the paper Carpentier and Munos [2011b], the authors highlighted for MC — UCB
some links between the risk and the pseudo-risk. More precisely, they established links between
Ln(A) and S8 wE[(fig,n — px)?]. This step is possible since E[(fign — px)?] < ?%UEE[T;C,”],
where T, , is a lower-bound on the number of pulls T ;, on a high probability event. Then they

bounded the cross products E[(fi,n — i) (Bp,n — tp)] and provided some upper bounds on these
terms. A tight analysis of these terms as a function of the number of strata K remains to be

investigated.

Knowledge of the Holder exponent. In order to be able to choose properly the number
of strata to achieve the rate in Theorem 14, it is needed to possess a proper lower bound on
the Holder exponent of the function: indeed, the rougher the function is, the more strata are
required. On the other hand, such a knowledge on the function is not always available and an

interesting question is whether it is possible to estimate this exponent fast enough. There are
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interesting papers on that subject like Hoffmann and Lepski [2002] where the authors tackle the
problem of regression and prove that it is possible to adapt to the unknown smoothness of the
function. The authors in Giné and Nickl [2010] add to that (in the case of density estimation)
and prove that it is even possible under the assumption that the function attain its Holder
exponent to have a proper estimation of this exponent and thus adaptive confidence bands. An

idea would be to try to adapt these results in the case of finite sample.

MC-UCB On a noiseless function. Consider the case where s = 0 almost surely, i.e. the
samples collected are noiseless. Proposition 10 ensures that infy Xy = 0: it is thus possible
in this case to achieve a pseudo-risk that has a faster rate than O(%) If the function m is
smooth, e.g. Holder with a not too low exponent «, it is efficient to use low discrepancy methods
to integrate the functions. An idea is to stratify the domain in n hyper-rectangular strata of
minimal diameter, and to pick at random one sample per stratum. The variance of the resulting
estimate is of order O(m). Algorithm MC-UCB is not as efficient as a low discrepancy
scheme: it needs a number of strata K < n in order to be able to estimate the variance within
each stratum. Its pseudo-risk is then of order O( m)

This however only holds when the samples are noiseless. Otherwise, the variance of the estimate

is of order 1/n, no matter what strategy the learner chooses.

In high dimension. The first bound in Theorem 14 expresses precisely how the performance
of the estimate outputted by MC-UCB depends on d. The first bound states that the quantity
L,(A) — %(f[o,l]d s(x)dm)Q is negligible when compared to 1/n when n is exponential in d.
This is not surprising since our technique aims at stratifying equally in every direction. It is
not possible to stratify in every directions of the domain if the function lies in a very high
dimensional domain.

This is however not a reason for not using our algorithm in high dimension. Indeed, stratifying
even in a small number of strata already reduces the variance, and in high dimension, any
variance reduction techniques are welcome. As mentioned in the end of Section 6.1, the model
that we propose for the function is suitable for modeling d* dimensional functions that we only
stratify in d < d* directions (and d < n). A reasonable trade-off for d can also be inferred from
the bound, but we believe that what a good choice of d is depends a lot of the problem. We then
believe that it is a good idea to select the number of strata in the minimax way that we propose.
Again, having a very high dimensional function that one stratifies in only a few directions is a
very common technique in financial mathematics, for pricing options (practitioners stratify an
infinite dimensional process in only 1 to 5 carefully chosen dimensions). We illustrate this in

the next Section.
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6.5 Numerical experiment: influence of the number of strata in

the Pricing of an Asian option

We consider the pricing problem of an Asian option introduced in Glasserman et al. [1999] and
later considered in Etoré and Jourdain [2010]; Kawai [2010]. This uses a Black-Scholes model
with strike C' and maturity T". Let (W (¢))o<t<7 be a Brownian motion. The discounted payoff
of the Asian option is defined as a function of W, by:

F((W)o<t<T) = exp(—rT) max {fOT So exp ((r — 1t + sth> dt - C, O} ,

where Sy, r, and sg are constants.

We want to estimate the price p = Ey [F'(W)] by Monte-Carlo simulations (by sampling on
W). In order to reduce the variance of the estimated price, we can stratify the space of W.
Glasserman et al. [1999] suggest to stratify according to a one dimensional projection of W, i.e.,
by choosing a time t and stratifying according to the quantiles of W; (and simulating the rest
of the Brownian according to a Brownian Bridge, see Kawai [2010]). They further argue that
the best direction for stratification is to choose t = T, i.e., to stratify according to the last time
of T'. This choice of stratification is also intuitive since W has the highest variance, the largest
exponent in the payoff and thus the highest volatility. We stratify according to the quantiles
of Wr, that is to say the quantiles of a normal distribution N(0,7'). When stratifying in K
strata, we stratify according to the 1/K-th quantiles (so that the strata are hyper-cubes of same

measure).

We choose the same numerical values as Kawai [2010]: Sy = 100, r = 0.05, s = 0.30, T' =1
and d = 16. We discretize also, as in Kawai [2010], the Brownian motion in 16 equidistant times,

so that we are able to simulate it. We choose C' = 120.

In this Chapter, we only do experiments for MC-UCB, and exhibit the influence of the
number of strata. For a comparison between MC-UCB and other algorithms, see Carpentier
and Munos [2011a]. By studying the range of the F(IW), we set the parameter of the MC-UCB
algorithm to A = 1501log(n).

For n = 200 and n = 2000, we observe the influence of the number of strata in Figure 6.2
(the number of strata varying from 2 to 100). We plot results for MC-UCB, uniform stratified
Monte-Carlo (that allocates a number of samples in each stratum proportional to the measure
of the stratum), and also for crude, unstratified, Monte-Carlo. We observe the trade-off that we
mentioned between pseudo-regret and quality, in the sense that the mean squared error of the
estimate outputted by MC-UCB (when compared to the true integral of f) first decreases with
K and then increases. Note that, without surprise, for a large n the minimum of mean squared
error is reached with more strata. Finally, note that our technique is never outperformed by

uniform stratified Monte-Carlo: it is a good idea to try to adapt.
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Figure 6.2: Mean squared error for crude Monte-Carlo, uniform stratified sampling and MC-
UCB, for different number of strata, for (Left:) n=200 and (Right:) n=2000.

Conclusion

In this Chapter we studied the problem of online stratified sampling for the numerical integration
of a function given noisy evaluations, and more precisely we discussed the problem of choosing
the minimaz-optimal number of strata.

We explained why, to our minds, this is a crucial problem when one wants to design an
efficient algorithm. We enlightened the fact that there is a trade-off between having many
strata (and a good approximation error, i.e. quality of a partition), and not too many, in order
to perform almost as well as the optimal oracle allocation on a given partition (small estimation
error, i.e. pseudo-regret).

When the function is noisy, the noise is the dominant quantity in the optimal oracle variance
on the optimal oracle partition. Indeed, decreasing the size of the strata does not diminish the
(local) variance of the noise. In this case, the pseudo-risk of algorithm MC-UCB is equal, up
to negligible terms, to the mean squared error of the estimate outputted by the optimal oracle
strategy on the best (oracle) partition, at a rate of O(n_%) where « is the Holder exponent
of s and m. This rate is minimax optimal on the class of a-Holder functions: it is not possible,

to do better on simultaneously all a-Holder functions.

There are (at least) three very interesting remaining open questions:

e The first one is to investigate whether it is possible to estimate online the Holder exponent
fast enough. Indeed, one needs it in order to compute the proper number of strata for

MC-UCB, and the lower bound on the Hélder exponent appears in the bound. It is thus
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a crucial parameter.

e The second direction is to build a more efficient algorithm in the noiseless case. We
remarked that MC-UCB is not as efficient in this case as a simple non-adaptive method.
The problem comes from the fact that in the case of a noiseless function, it is important

to sample the space in a way that ensures that the points are as spread as possible.

e Another question is the relevance of fixing the strata in advance. Although it is minimax-
optimal on the class of a—Holder functions to have hyper-cubic strata of same measure, it
might in some cases be more interesting to focus and stratify more finely at places where

the function is rough.

138



Appendices for Chapter 6

6.A Proof of Theorem 16

6.A.1 The main tool: a high probability bound on the standard deviations

Upper bound on the standard deviation:

Lemma 13 Let Assumption 6.5.2 hold and n > 2. Define the following event

gAﬁ, (6.9)

t t
£=E¢rn(d) = m | t—% Z (Xk,z' - %ZXk,j)Q — o
j=1

1<k<K, 2<t<n i=1

where A = 2+/(1 4 3b+ 4V)log(2nK /). Then Pr(€) > 1 — 6.

Note that the first term in the absolute value in Equation 6.9 is the empirical standard deviation
of arm k£ computed as in Equation 6.8 for ¢ samples. The event £ plays an important role in the
proofs of this section and a number of statements will be proved on this event.

Proof: Under Assumption 6.3.2 we have for f2_. > max; 0"% with probability 1 — § because of

the results of Lemma 16

t

t
T
j=1

- 2\/(1 + 3+ 43 10g(2/9) (6.10)

° t
=1

Then by doing a simple union bound on (k,t), we obtain the result.

[0 We deduce the following corollary when the number of samples T}, ; are random.

Corollary 4 For any k=1,...,K andt =2K,...,n, let {Xy;}; be n i.i.d. random variables
drawn from vy, satisfying Assumption 6.3.2. Let T}, ; be any random variable taking values in

{2,...,n}. Let 31375 be the empirical variance computed from Equation 6.8. Then, on the event

~ 1
Okt — ok < Ay —=—, (6.11)
Tt

where A = 2+/(1 4 3b+ 4V) log(2nK/6).

&, we have:

6.A.2 Main Demonstration

We first state and prove the following Lemma and then use this result to prove Theorem 16.
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Theorem 16 Let Assumption 6.3.2 hold. For any 0 < 6 < 1 and for n > 4K, the MC-UCB

algorithm launched on a partition N satisfies

2 Fonae + 4\ 1/3 K1/3 14K%%,
ELn < =X 4+ 24325, /(1 + 3b+4f§m)( e ) 7 Vlog(nk) + — 2.

n

Proof:

Step 1. Lower bound of order 5(n2/3). Let k be the index of an arm such that T}, > &
(this implies T}, > 3 as n > 4K, and arm k is thus pulled after the initialization) and let
t 4+ 1 < n be the last time at which it was pulled 4, i.e., Tit=Tyn—1and Ty 441 = Ty From
Equation 6.11 and the fact that T}, > 7, we obtain on §

Bp; < — 24, — | < 6.12
kit > Tk;7t o + Tk,t > n ; ( )

where the second inequality follows from the facts that T}, > 1, wiyor < Yy, and wy <

> r Wk = 1. Since at time ¢ + 1 the arm £ has been pulled, then for any arm ¢, we have
Byi < By (6.13)

From the definition of B, and also using the fact that T, ; < Ty, we deduce on & that

2Aw, S 2Aw,

3/2 — 3/2 °
Tq,é Tq747’

Bq,t Z

(6.14)

Combining Equations 6.12-6.14, we obtain on &

2 Aw, Kwk<ak +2A>
PP o :

q’n

Finally, this implies on £ that for any ¢ because wj, = wy,

24 n >2/3

Tyn>|—— 1
@ _<0'k+2AK (6.15)

2/3 oA 2/3
This implies that Vq, Ty, > C’(%) where C = (7> .

maxyg O +2A
Step 2. Properties of the algorithm. We first remind the definition of By;41 used in the
MC-UCB algorithm

Wq [ 1
Byt = ﬁ (Uq,t + A Tt) .
q7 q7

“Note that such an arm always exists for any possible allocation strategy given the constraint n = o LTan-
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Using Corollary 4 it follows that, on &

Wq0gq

w 1
<B < Lo, +24,/— |. 6.16
T, < Datn < T%t( q Tq7t> (6.16)

Let t+1 > 2K +1 be the time at which an arm ¢ is pulled for the last time, that is T, ; = T, , — 1.
Note that there is at least one arm such that this happens as n > 4K. Since at t + 1 arm q is

chosen, then for any other arm p, we have
Bpt11 < Bgy1 - (6.17)

From Equation 6.16 and T}, ; = T}, , — 1, we obtain on §

w 1 w 1
B < 4 24, | — | = —2L— 24, | ——— |. 6.18
TS Ty <Jq * Tq,t) Tyn —1 <0q ’ Tyn — 1) (6.18)

Furthermore, since T, ; < T}, ,, then on ¢

WpOp > WpOp

Bpip1 > (6.19)

Dt Tp,n

Combining Equations 6.17-6.19, we obtain on &

WpOp

1
Tym —1) < 24 [ —— |.

Summing over all ¢ such that the previous Equation is verified, i.e. such that 77, > 3, on both

sides, we obtain on &

Wy, O 1
WpTp Tyn =1 < Y w, (aq +24, 1)
pn a|Tqn>3 a|Tq,n2>3 o
This implies
Wy, O K 1
Ll —3K) <Y wy|og+24 = ]. (6.20)
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Step 3. Lower bound. Plugging Equation 6.15 in Equation 6.20,

Wpop 1
— 2 (n—3K) < 2A
T (n—3 )_gwq<aq+ ”Tq,n—1>
/2K2/3
q
2V2A K1/3
Ve nl/3’

< YN +

on &, since Ty, —1 > Tan (as Ty > 2). Finally as n > 4K, we obtain on & the following bound

wpop _ S | 4V24 K3 L 12K
Tpn ~ n VO ni n?

(6.21)

Step 4. Regret. By summing and using Equation 6.21 which holds for all p, we obtain on ¢
(with probability 1 — d)

2 2 2 )
I — Z Y% Xk n 45N, V2A K1/3 N IZKZNK'
! » Tpn = n VG nt3 n?

This implies since EL,, = E[L,I{¢}] + E[L,I{£¢}] and since § = n~2

SR N 4NN V2AKY3 12KY3

2 2\, —2
EL, < — vo TR +(§p:wpap)n

2 2
_ B LA V2A K13 N 14KENK‘
~n VO o nA/3 n?

_ 2/3
Since § = n~2, we have A < 64/(1 + 3b+ 4V)log(nK) and C > (ﬁ) , this leads to

»2 Fonax 4) 1/3 K1/3 4KYS,

Ng 2
ELy < =3 4+ 24325, /(1 + 36 + ) (722 s V1og(nK) + —

6.B Proof of Proposition 10

Step 1: Expression of the variance of the stratified estimate. Note that the samples

f(z) + s(x)e; where e, ~ v, and E,_[e¢] =0, V,,_[e¢] = 1 the &; are independent.
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We have

op = ul . Eo, [(Xa(t) — px)?]da
N U:)lk 0 Bu [(f(w) + s(w)er — qjk ; f(u)du)ﬂdm
1 1 )
= w—k o E,, [(f($) - uTk o f(U)du)z} dxr + w—k /Qk E,, [S("L‘)2Eﬂ dr
- o L vies L[ sy
= o U@ = [ S e /| RERE

Step 2: Proof for the uniformly continuous functions. We first prove the result for a

subset of Ly([0,1]%), namely the set of functions m and s that are uniformly continuous.

Proposition 13 If the functions f and s are uniformly continuous and if the strata satisfy the

Assumptions of Proposition 10, we have

Z Wk nOkn — / s(x)dx — 0
k [0’1]d

Proof:

Let v > 0. As s and f are uniformly continuous, we know that ¥z, 3n such that |s(x +u) —
s(z)| < v and |f(x + u) — f(x)| < v where u € By 4(n)°.
By Assumption AS1, we know that wy, < v,. Note that the diameter of strata €} , is smaller
than D(wy ) < D(vy,). Let us choose n big enough, i.e. such that D(v,) < n and v, <wv.
We have

1 1 1 2 1 1 2
oo [ = [ (e [ e [ (e [ )
’ Wk,n JO Wkn JO Wk JQy Wk JQy Wk JQy

k,n k,n

1 / ( 1 / )2 n 1 / ( f 1 f) 2
wk7n Qk,n wk’n Qk,n wk7n Qk,n wk’n Qk,n

< v2 4+ 02 < 202,

Because of concavity of the square-root function, we get

1
Okn — ( / 8) < \@U.
Qk:,n

Wi, n

By summing we get

Zwk,ngkm — / s < V2u.
k [Ovl]d

®We denote by Bz,4(n) the ball of center 0 and radius 1 according to the ||.||2 norm.
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Step 3: Density of uniformly continuous functions in Lo([0,1]%). We first remind a

property of the functions in Ly ([0, 1]9).

Proposition 14 The uniformly continuous functions according to the ||.||2 norm are dense in
La([0, 1]%).

Proof: The result follows directly from the facts that

e The continuous functions are dense in L2(€2) (Stone-Weierstrass Theorem).

e The uniformly continuous functions on a compact space € according to the ||.||2 norm are

dense in the space of continuous functions.
e [0,1]¢ is a compact.

O This means that we can approximate with arbitrary precision according to the |[|.||2

measure on Ls([0,1]%) any function in Lo([0,1]%) by an uniformly continuous function.

Using this proposition, we can prove the following Lemma.

Lemma 14 For a given n and a given v, there exist two uniformly continuous function m, and
Sy such that:

Ky K,
‘ Z Wk nOkn — Z vV Wkn / (fv (JZ‘) +
k=1 k=1 Qp,n

fu(u)du>2dx - /Q s%(x)dw’ <.

Qk:,n wk,n

k,n

Proof: Let us fix n and v.

Let m, be an uniformly continuous function such that

/Q(f(ﬂf) — fo(z))?dx < m}jn(wk,n)%,

and s, be an uniformly continuous function such that

(Y

/Q(s(a:) — sp(2))3dx < mkin(wk,n)g.

It is possible because of wy, > 0 and because the uniformly continuous functions are dense in
L»([0,1]%) by Proposition 14.
Note that we thus have

1
wn o U@ = @< 3,

and .
o /Q k,n(s(x) — sy(x))2dx < %
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Note also that — ka n(S(l’) — sy(x))?dz >

Wi, n -
Simple triangle inequality leads to

1 1
Wi, n ka,n S(x)2dm - Wi, n ka’" SU($)2d$’

1 / 1 9 1 / 1 9 ‘ v
T) — w)du)“dx — v(x) — vw)du)dr| < —.
’wk,n L U@ =g | fdufde— o [ (fule) = o Sl ;

Now note that as g7 = —1 kan (f(x) — ﬁ kan f(u)du)?dx + ﬁ kan s(x)%dz, we know

k,n Wi n

that the variance of the function on strata 2, ,, is arbitrarily close to the variance of its approx-
imation.

By convexity, one gets

1 1 2 1
Okm — w(x) — v(uw)du) dr + / s%a:dx‘gv.
o \/wm L (o [ wan)as s

And finally, by summing

K, Ky,
‘ Z WEnOkn — Z VWkn / (fv (LL’) +
k=1 k=1 Qe

1
/ s%(a:)dx‘ <.
Wk n Qpn

fo (u)du) de -

Qk:,n

Step 4: Combination of all the preliminary results to finish the proof. Finally, we
finish the demonstration of Proposition 10.

Let v > 0 and f, and s, be as in Lemma 14.
We know that

1

K K
n n 2
WOk — Wk n folz +/ folw)du) dzx — / s2(x dx’ <w,
‘; k/‘Z:l \//Qk,n< ( ) Qk,n ( ) ) wkvn Qk,n ( )

and also that

[ sta) = sufa)Pde < minu) < 5.

Note that by Cauchy-Schwartz:

/st(a;) — su(z)|dz < \//Q(S(x) — su(2))2dz < \/g

Note also that Proposition 13 tells us that dn such that

i\/m\//ﬂkn (fv(l’) 1 fv(u)du)zdaz—k/gk’n 8%(x)dx_/[o,1]d sy(x)dz < v.

wk,n Qk,n

When combining all those results, one gets the desired result.

Note finally that if we choose the strata as being small boxes of size % and side (%)1/ 4 then
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the assumptions of Proposition 10 is verified.

6.C Proof of Proposition 11

Note first that

1 1 2 1
2 _ L o L 2
o). = o o, ()‘(:v) o o, f(u)du) dz + o o, s*(z)dz.

The term in f As the function f is (o, M)— Holder, we know that V(z,y) € Q,|f(x)— f(y)| <
M|z —yll5.
Using that we get

L (f(a?) 1 f(u)du)de < MQD(Qk)Za
Wi Qp Wi Qp

1
< M2d(= 20¢/d'
< Md(5)
The term in s As the function s is («, M)— Holder, we know that V(x,y) € Q,|s(x) —s(y)| <
M|z —yll5.

. s%(z)dx — (1/Q s(u)du)2 - L (s(z) — x s(u)du)zd:c < M%D(y,)*

Wi Ja, W Wk Ja, Wk Ja,

1
< M2d(57)

Finally... By combining those two results

WkOk —/ﬂ s(x)dr < wk\/ai — (1;/Q S(x)dg;)Q

< wy, \/ M2d( = e/ 4 M2d( el

By summing over all the strata, one obtains
1
SN — / s(x)dz < V2dM (=),
[0,1) K

6.D Large deviation inequalities for independent sub-Gaussian

random variables

We first state Bernstein inequality for large deviations of independent random variables around

their mean.
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Lemma 15 Let (X1,...,X,) be n independent random variables of mean (M, oy i) and of

variance (02,...,02). Assume that there exists b > 0 such that for any A < b, for any i <n, it

holds that IE{exp()\(XZ - Mz))} < exp (%) Then with probability 1 —

n

1 ¢ 1o 2(L 370 02)log(2/0) , blog(2/9)
B |
=1 =1
Proof:  If the assumptions of Lemma 15 are verified, then

]P’(iXi — i,ui > nU) = [exp < Ol X =Y, ul)> > exp(n/\v)]

exp (A Xe- iy ) ) ]

<E

exp(niv)

exp (A(Xi—m)) ]

exp(A\v)

A2 H
<exp(5 > iy ﬁ — nA\v).

By setting A = W we obtain
- - n?v?
P(;Xi B g“ 2 ) < P ST o7 b))
By an union bound we obtain
2,,2

(| ZX Zm\ > nv) < 2exp(— Q(Zn?gg + bnv))'

This means that with probability 1 — ¢,

|ZX—Z/M<\/ (u Xit1 07)log(2/9) | blog(2/0)

n

O

We also state the following Lemma on large deviations for the variance of independent

random variables.

Lemma 16 Let (X1,...,X,) be n independent random variables of mean (u1, ..., uy) and of

variance (02,...,02). Assume that there exists b > 0 such that for any A\ < %, for any i <
. )\2 2

n, it holds that E[exp()\(Xi - uz))} < exp( 5= Ab)) and also B| exp(M(X; — p;)? — Ao?)| <

252
exp (2(1 /\b)>
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Let V = L =il — lz wi)? + * Zn o2 be the variance of a sample chosen uniformly
at random among the n distributions, and V=1 N 1( = ZJ 1 X ) the corresponding

empirical variance. Then with probability 1 — 9,

|\/§—\/V|§2\/(1+3b+4v)10g(2/6)'

n

Proof: By decomposing the estimate of the empirical variance in bias and variance, we obtain
with probability 1 — §

~ 1 1 1 1
V:EZ(Xz_* :UJj)Q_(EZXl_* pi)®
7 7 7 A
1 9 1 1
:E (Xi — pi)” +2— Z(Xz - /JZ)E Z(Mz " ZMJ)
i ) i J
1 1 9 1 1 9
- T — = Xz_* i
+ = (i j ;) (”Zi: Z 1:)
1 1 1 1 1
:E (Xi_ﬂz)z"‘EZ(Uz_E Mj)Q_(EZXZ_ ZHZ)Q

We then have by the definition of V' that with probability 1 — §

n

EAEFISUEVEET L EIEP DL EE DTN

=1
If the assumptions of Lemma 16 are verified, we have with probability 1 — ¢

P(Z Zo > nv) = exp( Z|X pi|* — Za ) > exp( n)\v)]
[exp ( (i X — il* — > i U?))]

exp(nAv)

i [exp (A% = il - a?))]

T exp(Av)
)\2 n 2
<2 — —
Py ; 2(1 — Ab) niv)
If we take A = ﬁ we obtain with probability 1 — ¢
i=19; v
- 2 - 2 2 n*v?
P Xi — )" — P> < - . 6.23
(0= = 3ot 2 m0) s onlgrmr Ty (6:23)
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By a union bound we get with probability 1 — ¢ that

P(I;(Xi—m)Q—ZU?IZnU> SQQXP(_?(Z, o +bnu))'

i=1

This means that with probability 1 — ¢,

!*D ) _ZUQ,<\/ G EE oD lon2/t) | Viosl2)8)

Finally, by combining Equations 6.22 and 6.24 with Lemma 15, we obtain with probability
1-90

V-v|<

n n? n n

AL 0?)log(2/9) | 20%10g(2/9)” +\/2(,£Zz 107)10g(2/0) | blog(2/9)

3 \/2@2 10)108(2/0)  (3b+ 44 T, 07) 10g(2/9)

n n

< 12V log(2/4) N (3b44V) 10g(2/5)7

when n > blog(2/6) and because V > 137 52,
This implies with probability 1 — § that

2V log(2/9) N log(2/0) e (3b+ 4V') log(2/9) n log(2/0)
n 2n n 2n

- VT \/ log(2/8) \/‘7 L (+3b+ 4V) log(2/6)

LT /10g2/(5 BN \/1+3b+4V log(2/6)

:»ﬁ/gﬁw\/ +3b+4V) log(2/)

n

7

On the other hand, we have also with probability 1 — ¢

2V 1og(2/9) N (3b+4V)log(2/9)

:>ﬁgﬁ+2\/(l+3b+4‘/)log(2/5).

n

V<V+

Finally, we have with probability 1 — ¢

|\/‘§_ﬁ|SQ\/(1+3b+4V)log(2/5)_ (6.25)

n
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Chapter 7

Adaptive Stratified Sampling for
Monte-Carlo integration of

Differentiable functions

This Chapter is a joint work with Rémi Munos. It is, like the two previous Chapters, about
stratified Monte-Carlo integration. Like the last Chapter, it is concerned with stratification
strategies, but whereas the aim of the previous Chapter was the integration of a noisy function,
we aim in this Chapter at integrating a non-noisy and smooth function. The partitioning and
sampling strategies need to be changed in order to be efficient in this setting.

More precisely, we consider the problem of adaptive stratified sampling for Monte Carlo
integration of a differentiable function given a finite number of evaluations to the function. We
construct a sampling scheme that samples more often in regions where the function oscillates
more, while allocating the samples such that they are well spread on the domain (this notion
shares similitude with low discrepancy). We prove that the estimate returned by the algorithm
is almost similarly accurate as the estimate that an optimal oracle strategy (that would know

the variations of the function everywhere) would return, and provide a finite-sample analysis.
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7.1 Introduction

In this Chapter we consider the problem of numerical integration of a differentiable function
f :[0,1]% — R given a finite budget n of evaluations to the function that can be allocated
sequentially.

A usual technique for reducing the mean squared error (w.r.t. the integral of f) of a Monte-
Carlo estimate is the so-called stratified Monte Carlo sampling, which considers sampling into a
set of strata, or regions of the domain, that form a partition, i.e. a stratification, of the domain
(see Rubinstein and Kroese [2008][Subsection 5.5] or Glasserman [2004]). It is efficient (up to
rounding issues) to stratify the domain, since when allocating to each stratum a number of
samples proportional to its measure, the mean squared error of the resulting estimate is always
smaller or equal to the one of the crude Monte-Carlo estimate (that samples uniformly the
domain).

Since the considered functions are differentiable, if the domain is stratified in K hyper-cubic
strata of same measure and if one assigns uniformly at random n/K samples per stratum, the
mean squared error of the resulting stratified estimate is in O(n~'K~2/%). We deduce that if
the stratification is built independently of the samples (before collecting the samples), and if
n is known from the beginning (which is assumed here), the minimax-optimal choice for the
stratification is to build n strata of same measure and minimal diameter, and to assign only
one sample per stratum uniformly at random. We refer to this sampling technique as Uniform
stratified Monte-Carlo. The resulting estimate has a mean squared error of order O(n~(1+2/d),
The arguments that advocate for stratifying in strata of same measure and minimal diameter
are closely linked to the reasons why quasi Monte-Carlo methods, or low discrepancy sampling
schemes are efficient techniques for integrating smooth functions. See Niederreiter [1978] for a
survey on these techniques.

It is minimax-optimal to stratify the domain in n strata and sample one point per stratum,
but it would also be interesting to adapt the stratification of the space with respect to the
function f. For example, if the function has larger variations in a region of the domain, we would

like to discretize the domain in smaller strata in this region, so that more samples are assigned to
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this region. Since f is initially unknown, it is not possible to design a good stratification before
sampling. However an efficient algorithm should allocate the samples in order to estimate online
the variations of the function in each region of the domain while, at the same time, allocating
more samples in regions where f has larger local variations.

The papers Carpentier and Munos [2011a]; Etoré and Jourdain [2010]; Grover [2009] provide
algorithms for solving a similar trade-off when the stratification is fixed: these algorithms allocate
more samples to strata in which the function has larger variations. It is, however, clear that the
larger the number of strata, the more difficult it is to allocate the samples almost optimally in
the strata.

Contributions: We propose a new algorithm, Lipschitz Monte-Carlo Upper Confidence
Bound (LMC-UCB), for tackling this problem. It is a two-layered algorithm. It first stratifies
the domain in K < n strata, and then allocates uniformly to each stratum an initial small
amount of samples in order to estimate roughly the variations of the function per stratum. Then
our algorithm sub-stratifies each of the K strata according to the estimated local variations, so
that there are in total approximately n sub-strata, and allocates one point per sub-stratum. In
that way, our algorithm discretizes the domain into more refined strata in regions where the
function has higher variations. It cumulates the advantages of quasi Monte-Carlo and adaptive
strategies.

More precisely, our contributions are the following:

e We prove an asymptotic lower bound on the mean squared error of the estimate returned
by an optimal oracle strategy that has access to the variations of the function f every-
where and would use the best stratification of the domain with hyper-cubes (possibly of
heterogeneous sizes). This quantity, since this is a lower-bound on any oracle strategies, is
smaller than the mean squared error of the estimate provided by Uniform stratified Monte-
Carlo (which is the non-adaptive minimax-optimal strategy on the class of differentiable

functions), and also smaller than crude Monte-Carlo.

e We introduce the LMC-UCB algorithm, that sub-stratifies the K strata in hyper-cubic sub-
strata, and samples one point per sub-stratum. The number of sub-strata per stratum is
linked to the variations of the function in the stratum. We prove that algorithm LMC-UCB
is asymptotically as efficient as the optimal oracle strategy. We also provide finite-time
results when f admits a Taylor expansion of order 2 in every point. By tuning the number
of strata K wisely, it is possible to build an algorithm that is almost as efficient as the

optimal oracle strategy.

The Chapter is organized as follows. Section 7.2 defines the notations used throughout the
Chapter. Section 7.3 states the asymptotic lower bound on the mean squared error of the optimal
oracle strategy. In this Section, we also provide an intuition on how the number of samples into
each stratum should be linked to the variation of the function in the stratum in order for the

mean squared error of the estimate to be small. Section 7.4 presents the LMC-UCB algorithm
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and the first Lemma on how many sub-strata are built in the initial strata. Section 7.5 finally
states that the LMC-UCB algorithm is almost as efficient as the optimal oracle strategy. We

finally conclude the Chapter. Due to the lack of space, we also provide experiments and proofs.

7.2 Setting

We consider a function f : [0,1]¢ — R. We want to estimate as accurately as possible its
integral according to the Lebesgue measure, i.e. f[O,l]d f(x)dz. In order to do that, we consider
algorithms that stratify the domain in two layers of strata, one more refined than the other. The
strata of the refined layer are referred to as sub-strata, and we sample in the sub-strata. We will
compare the performances of the algorithms we construct, with the performances of the optimal
oracle algorithm that has access to the variations ||V f(z)||2 of the function f everywhere in the
domain, and is allowed to sample the domain where it wishes.

The first step is to partition the domain [0, 1] in K measurable strata. In this Chapter, we
assume that K% is an integer!. This enables us to partition, in a natural way, the domain in
K hyper-cubic strata (Q)g<x of same measure wy, = % Each of these strata is a region of the
domain [0, 1]¢, and the K strata form a partition of the domain. We write puz = wik ka f(z)dx
the mean and oi = wik ka ( f(z) — ,u,k)2dx the variance of a sample of the function f when
sampling f at a point chosen at random according to the Lebesgue measure conditioned to
stratum 2.

We possess a budget of n samples (which is assumed to be known in advance), which means
that we can sample n times the function at any point of [0,1]%. We denote by A an algorithm
that sequentially allocates the budget by sampling at round ¢ in the stratum indexed by k; €
{1,..., K}, and returns after all n samples have been used an estimate fi,, of the integral of the
function f.

We consider strategies that sub-partition each stratum €2 in hyper-cubes of same measure
in Q, but of heterogeneous measure among the €. In this way, the number of sub-strata in
each stratum €2, can adapt to the variations f within Q. The algorithms that we consider
return a sub-partition of each stratum €y in Sj, sub-strata. We call Nj, = (Q4;)i<s, the sub-
partition of stratum €. In each of these sub-strata, the algorithm allocates at least one point?.
We write X}, ; the first point sampled uniformly at random in sub-stratum € ;. We write

wy,; the measure of the sub-stratum ;. Let us write pug,; = ﬁz fﬂm f(x)dx the mean and

a,ii = wi,i sz“ (f(:c) — ,u;m-)2dx the variance of a sample of f in sub-stratum €, (e.g. of

Xii = f(Uk,;) where Uy ; ~ UQ,“)

This class of 2—layered sampling strategies is rather large. In fact it contains strategies that

are similar to low discrepancy strategies, and also to any stratified Monte-Carlo strategy. For

example, consider that all K strata are hyper-cubes of same measure % and that each stratum

2y, is partitioned into Sy hyper-rectangles €2 ; of minimal diameter and same measure KLS;Q If

!This is not restrictive in small dimension, but it may become more constraining for large d.
*This implies that >, Sk < n.
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the algorithm allocates one point per sub-stratum, its sampling scheme shares similarities with
quasi Monte-Carlo sampling schemes, since the points at which the function is sampled are well
spread.

Let us now consider an algorithm that first chooses the sub-partition (N ) and then allocates
deterministically 1 sample uniformly at random in each sub-stratum €3 ;. We consider the
stratified estimate 1, = Zk 1 Zsk 2k, sz i of 1. We have

K Sk
E(7i,) = Wk z)d _/ de = p,
(fin) kZl; Skﬂ k;{; Qm x [Oﬁl]df(w) r=p

and also

Zzwkl QE sz 'uk:z

k<K i=1 k<K i=1

For a given algorithm A that builds for each stratum & a sub-partition Nj, = (€2 ,)i<s, , we

=> Z (7.1)

k<K i=1

call pseudo-risk the quantity

Some further insight on this quantity is provided in the paper Carpentier and Munos [2011b].
Consider now the uniform strategy, i.e. a strategy that divides the domain in K = n hyper-

cubic strata. This strategy is a fairly natural, minimax-optimal static strategy, on the class of

differentiable function defined on [0, 1], when no information on f is available. We will prove

in the next Section that its asymptotic mean squared error is equal to

1 ) 1
O AIZCIET s

1-2/d which is smaller, as expected, than 1 /n: this strategy is more

This quantity is of order n™
efficient than crude Monte-Carlo.

We will also prove in the next Section that the minimum asymptotic mean squared error
of an optimal oracle strategy (we call it “oracle” because it builds the stratification using the

information about the variations ||V f(z)||2 of f in every point x), is larger than

112</[0 1]d(||vf($)|!2)dildx) ' 142

n

This quantity is always smaller than the asymptotic mean squared error of the Uniform stratified
Monte-Carlo strategy, which makes sense since this strategy assumes the knowledge of the
variations of f everywhere, and can thus adapt accordingly the number of samples in each

region. We define

1 (d+1)

zzm(AWNVﬂmMJWQ - (7.2)

Given this minimum asymptotic mean squared error of an optimal oracle strategy, we define

155



7. ADAPTIVE STRATIFIED SAMPLING FOR MONTE-CARLO
INTEGRATION OF DIFFERENTIABLE FUNCTIONS

the pseudo-regret of an algorithm A as

= (7.3)

[SUIN

This pseudo-regret is the difference between the pseudo-risk of the estimate provided by algo-
rithm A, and the lower-bound on the optimal oracle mean squared error. In other words, this
pseudo-regret is the price an adaptive strategy pays for not knowing in advance the function
f, and thus not having access to its variations. An efficient adaptive strategy should aim at

minimizing this gap coming from the lack of informations.

7.3 Discussion on the optimal asymptotic mean squared error

7.3.1 Asymptotic lower bound on the mean squared error, and comparison
with the Uniform stratified Monte-Carlo

A first part of the analysis of the exposed problem consists in finding a good point of comparison
for the pseudo-risk. The following Lemma states an asymptotic lower bound on the mean squared

error of the optimal oracle sampling strategy.

Lemma 17 Assume that f is such that Vf is continuous and [||Vf(z)|3dz < oco. Let
((Qz)kﬁn)n be an arbitrary sequence of partitions of [0,1]% in n strata such that all the strata
are hyper-cubes, and such that the maximum diameter of each stratum goes to 0 as n — +oo
(but the strata are allowed to have heterogeneous measures).Let [i, be the stratified estimate of

the function for the partition (2} )x<n when there is one point pulled at random per stratum.
Then

lim inf n'*?/%V(z,) > .

n—oo
The full proof of this Lemma is in Appendix 7.B.
We have also the following equality for the asymptotic mean squared error of the uniform

strategy.

Lemma 18 Assume that f is such that Vf is continuous and [ ||V f(z)|[3dz < co. For any
n = 1% such that | is an integer (and thus such that it is possible to partition the domain in n
hyper-cubic strata of same measure), define ((QZ)kén)n as the sequence of partitions in hyper-
cubic strata of same measure 1/n. Let [, be the stratified estimate of the function for the

partition (2} )x<n when there is one point pulled at random per stratum. Then

lim inf n 24V (G,) = — ( / llVf(sc)H%dl“)-
[0,1]¢

n—oo - E

The proof of this Lemma is substantially similar to the proof of Lemma 17 in Appendix 7.B.
The only difference is that the measure of each stratum QF is 1/n and that in Step 2, instead

of Fatou’s Lemma, the Theorem of dominated convergence is required.
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The optimal rate for the mean squared error, which is also the rate of the Uniform stratified

1-2/d and is attained with ideas of low discrepancy sampling.

Monte-Carlo in Lemma 18, is n™
The constant can however be improved (with respect to the constant in Lemma 18), by adapting
to the specific shape of each function. In Lemma 17, we exhibit a lower bound for this constant
(and without surprises, -5 ( f[o,l}d ||Vf(:n)|]%d1:) > 3). Our aim is to build an adaptive sampling
scheme, also sharing ideas with low discrepancy sampling, that attains this lower-bound.
There is one main restriction in both Lemma: we impose that the sequence of partitions
((QZ)kSn)n is composed only with strata that have the shape of an hyper-cube. This assumption
is in fact reasonable: indeed, if the shape of the strata could be arbitrary, one could take the
level sets (or approximate level sets as the number of strata is limited by n) as strata, and this
would lead to lim,,_,o infq n1+2/dV(ﬁn7Q) = 0. But this is not a fair competition, as the function
is unknown, and determining these level sets is actually a much harder problem than integrating
the function.
The fact that the strata are hyper-cubes appears, in fact, in the bound. If we had chosen other
shapes, e.g. lo balls, the constant 1—12 in front of the bounds in both Lemma would change?. It
is however not possible to make a finite partition in I balls of [0, 1]¢, and we chose hyper-cubes
since it is quite easy to stratify |0, 1]d in hyper-cubic strata.

_d
(va(fc)\b)dl appear. This
f[o,1]d(||vf(“)”2)d+l du
quantity is proposed as “asymptotic optimal allocation”, i.e. the asymptotically optimal number

The proof of Lemma 17 makes the quantity s*(x) =

of sub-strata one would ideally create in any small sub-stratum centered in x. This is however
not very useful for building an algorithm. The next Subsection provides an intuition on this

matter.

7.3.2 An intuition of a good allocation: Piecewise linear functions
In this Subsection, we (i) provide an example where the asymptotic optimal mean squared error
is also the optimal mean squared error at finite distance and (ii) provide explicitly what is, in
that case, a good allocation. We do that in order to give an intuition for the algorithm that we
introduce in the next Section.

We consider a partition in K hyper-cubic strata . Let us assume that the function f is
affine on all strata €y, i.e. on stratum €y, we have f(z) = (<9k, x) —i—pk>]l{x € Qi }. In that case
ur = f(ax) where ay is the center of the stratum Q. We then have:

1 1 21 N0l vezsay 1663 o
, 1 B 2, 1 B — = (1%li2 — 22
ot = | ()~ sayiar= - [ (00 (@ = o) o = — (F R ) = H R

We consider also a sub-partition of Q in Sy hyper-cubes of same size (we assume that S,i/ i
an integer), and we assume that in each sub-stratum ), ;, we sample one point. We also have
o _ l6&ll3 (%)2/07/
ki = 12 \3,
For a given k and a given Sy, all the o}, ; are equals. The pseudo-risk of an algorithm A that

for sub-stratum €, ;.

3The 11—2 comes from computing the variance of an uniform random variable on [0, 1].
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divides each stratum {2 in Sy sub-strata is thus
2+2/d HHIQH B

wi |16k 13 (Cky2/d _ w
ZZ - 122 Sk) Z 1+2/d 19 _Zsl-s-];/da’%'

k<K i<Sy, k k<KS k<K Pk

If an unadaptive algorithm A* has access to the variances az in the strata, it can choose to
allocate the budget in order to minimize the pseudo-risk. After solving the simple optimization

problem of minimizing L,,(A) with respect to (Sg)x, we deduce that an optimal oracle strategy

_d
on this stratification would divide each stratum £ in S; = (g o) 71 —n sub-strata®. The
Zigx(wiai)m
pseudo-risk for this strategy is then

(d+1)

_d_ (d+1)
(Shexlwpo)m)” T 2

Ly k(AY) = - ni+2/d IS ES Y (7.4)

d
where we write X = ),y (wio;)@ 1. We will call in the Chapter optimal proportions the

quantities
d
WOy ) I+
A= (26%) - (7.5)
i< (Wioi) T
In the specific case of functions that are p1ecew1se linear, we have Y = ZK K(wkak)di =
[16kll2, 1/dy % W
ZkgK( ko3 Wk )T = f[OJ]d 122(;11) dx. We thus have
" 1
Lk (A) = S——. (7.6)
n T4

This optimal oracle strategy attains the lower bound in Lemma 17. We will thus construct,
in the next Section, an algorithm that learns and adapts to the optimal proportions defined in

Equation 7.5.

7.4 The LMC-UCB Algorithm

7.4.1 Algorithm LMC-UCB

We present the Lipschitz Monte Carlo Upper Confidence Bound (LM C — UCB) algorithm. It
takes as parameter a partition (;)r<x in K < n hyper-cubic strata of same measure 1/K (it
is possible since we assume that 31 € N/I¢ = K). It also takes as parameter an uniform upper
bound L on ||V f(z)||3, and J, a (small) probabiljty. The aim of algorithm LMC — UCB is to
(wiog) HH1

—n hyper-cubic sub-strata of same measure

sub-stratify each stratum Q in A\gj =
Y (wioy) THT

4We deliberately forget about rounding issues in this Subsection. The allocation we provide might not be
realizable (e.g. if Sj is not an integer), but plugging it in the bound provides a lower bound on any realizable
performance.
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and sample one point per sub-stratum. An intuition on why this target is relevant was provided

in Section 7.3.
_ _d \1/d
Algorithm LMC-UCB starts by sub-stratifying each stratum Qj in S = ((%) d“) hyper-

cubic strata of same measure. It is possible to do that since by definition, S/¢ is an integer.
We write this first sub-stratification N}, = (Qk,i)z’SS- It then pulls one sample per sub-stratum
in N}, for each Q.

It then sub-stratifies again each stratum €2; using the informations collected. It sub-stratifies

each stratum Q in

e gy
Yt w <3i,KS + A(%)l/d\/g> o+

hyper-cubic strata of same measure (see Figure 7.1 for a definition of A). It is possible to

do that because by definition, S,i/ 4 is an integer. We call this sub-stratification of stratum
Q, stratification N = (Q.i)i<s,. In the last Equation, we compute the empirical standard

deviation in stratum €, at time K S as

~ 1
g a = _—
EKS 51

M

1E 2
<Xk,i -3 Zle,j) : (7.8)
=

i=1

Algorithm LMC-UCB then samples in each sub-stratum 2 ; one point. It is possible to do
that since, by definition of Sy, >, Sk + KS <n
The algorithm outputs an estimate [i,, of the integral of f, computed with the first point in each

sub-stratum of partition Ni. We present in Figure 7.1 the pseudo-code of algorithm LMC-UCB.

Input: Partition (Q)x<s, L, 0, set A = 2L/d\/log(2K/J)

Initialize: Vk < K, sample 1 point in each stratum of partition N},

Main algorithm:

Compute Sj, for each k < K

Create partition Ny, for each k < K

Sample a point in € ; € Nj, for ¢ < S,

Output: Return the estimate fi,, computed when taking the first point X}, ; in each

sub-stratum €y ; of Ny, that is to say [, = Z,If:l Wy Zi’“l );’;1

Figure 7.1: Pseudo-code of LMC-UCB. The definition of N}, S, N, € ; and Sy are in the main
text.

7.4.2 High probability lower bound on the number of sub-strata of stratum
Q

We first state an assumption on the function f.

Assumption The function f is such that Vf exists and Vo € [0,1]%,||Vf(2)||3 < L.  The
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next Lemma states that with high probability, the number S; of sub-strata of stratum €, in

which there is at least one point, adjusts “almost” to the unknown optimal proportions.

Lemma 19 Let Assumption 7.4.2 be satisfied and (Q)k<x be a partition in K hyper-cubic
strata of same measure. If n > 4K, then with probability at least 1 — §, Vk, the number of

sub-strata satisfies

Sj, > max [)\Kk [n — (L + 1)d¥?\/1og(K/5)(1 + EL)KTn%} S
K

The proof of this result is in Appendix 7.C.

7.4.3 Remarks

A sampling scheme that shares ideas with quasi Monte-Carlo methods: Algorithm
LMC — UCB almost manages to divide each stratum 23 in Ax n hyper-cubic strata of same
measure, each one of them containing at least one sample. It is thus possible to build a learning
procedure that, at the same time, estimates the empirical proportions Ax i, and allocates the

samples proportionally to them.

The error terms: There are two reasons why we are not able to divide exactly each stratum
Q, in Ag in hyper-cubic strata of same measure. The first reason is that the true proportions
Ak are unknown, and that it is thus necessary to estimate them. The second reason is that
we want to build strata that are hyper-cubes of same measure. The number of strata Sy needs

thus to be such that S;/ “is an integer. We thus also loose efficiency because of rounding issues.

7.5 Main results
7.5.1 Asymptotic convergence of algorithm LMC-UCB

By just combining the result of Lemma 17 with the result of Lemma 19, it is possible to show
that algorithm LMC-UCB is asymptotically (when K goes to +00 and n > K) as efficient as

the optimal oracle strategy of Lemma 17.

Theorem 17 Assume that Vf is continuous, and that Assumption 7.4.2 is satisfied. Let
(Q)nk<k, be an arbitrary sequence of partitions such that all the strata are hyper-cubes, such
that 4K, < n, such that the diameter of each strata goes to 0, and such that

dt1
limy,— 400 %(Kn(log(Knn%) 2 ) = 0. The regret of LMC-UCB with parameter 6, = # on this
sequence of partition, where for sequence (0} )n k<K, it disposes of n points, is such that

lim n' 4R, (Arvc—ver) = 0.
n—oo

The proof of this result is in Appendix 7.D.

7.5.2 Under a slightly stronger Assumption

We introduce the following Assumption, that is to say that f admits a Taylor expansion of order
2.
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Assumption f admits a Taylor expansion at the second order in any point a € [0, 1]% and this
expansion is such that Vz,|f(z) — f(a) — (Vf, (z — a))| < M||z — a||3 where M is a constant.

This is a slightly stronger assumption than Assumption 7.4.2, since it imposes, additional to
Assumption 7.4.2, that the variations of Vf(x) are uniformly bounded for any z € [0,1]%.

Assumption 7.5.2 implies Assumption 7.4.2 since |||V f(z)||2 — ||V f(0)||2| < M||z — 0||2, which
implies that ||V f(x)||ls < [|[Vf(0)||2 + M+/d. This implies in particular that we can consider
L = ||V£(0)||2 + M+/d. We however do not need M to tune the LMC-UCB algorithm, as long
as we have access to L (although M appears in the bound of next Theorem).

We can now prove a bound on the pseudo-regret.

Theorem 18 Under Assumptions 7.4.2 and 7.5.2, if n > 4K, the estimate returned by algo-
rithm LMC — UCB 1is such that, with probability 1 — 6, we have

1 3Md\4 1 1 1,1
R,(ALmc-veB) Sn% [M(L +1)* (1 + T) (650d3/2 log(K/8)K #n~ a1 4 25d(E) d“)].

A proof of this result is in Appendix 7.E.

Now we can choose optimally the number of strata so that we minimize the regret.
Theorem 19 Under Assumptions 7.4.2 and 7.5.2, the algorithm LMC — UCB launched on
d
K, = L(\/ﬁ)l/dJ hyper-cubic strata is such that, with probability 1 — &, we have

1 3Mdy 4
Ru(Armc-ven) <———— |T00M (L + 1)*d*? (1 + 7> \/log(n/<5)} :
n1+d+2(d+1) by

7.5.3 Discussion

Convergence of the LMC-UCB algorithm to the optimal oracle strategy: When
the number of strata K, grows to infinity, but such that lim, . %(Kn(log(Kan))%) =
0, the pseudo-regret of algorithm LMC-UCB converges to 0. It means that this strategy is
asymptotically as efficient as (the lower bound on) the optimal oracle strategy. When f admits
a Taylor expansion at the first order in every point, it is also possible to obtain a finite-time

bound on the pseudo-regret.

A new sampling scheme: The algorithm LM C—UC'B samples the points in a way that takes
advantage of both stratified sampling and quasi Monte-Carlo. Indeed, LMC-UCB is designed
to cumulate (i) the advantages of quasi Monte-Carlo by spreading the samples in the domain
and (ii) the advantages of stratified, adaptive sampling by allocating more samples where the
function has larger variations. For these reasons, this technique is very efficient on differentiable
functions. We illustrate this assertion by numerical experiments in Appendix 7.A.

In high dimension: The bound on the pseudo-regret in Theorem 19 is of order n~1=% x
poly(d)n_m. In order for the pseudo-regret to be negligible when compared to the opti-
mal oracle mean squared error of the estimate (which is of order rfl*%) it is necessary that
poly(d)n_m is negligible compared to 1. In particular, this says that n should scale ex-

ponentially with the dimension d. This is unavoidable, since stratified sampling shrinks the
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approximation error to the asymptotic oracle only if the diameter of each stratum is small, i.e. if
the space is stratified in every direction (and thus if n is exponential with d). However Uniform
stratified Monte-Carlo, also for the same reasons, shares this problem®.

We emphasize however the fact that a (slightly modified) version of our algorithm is more ef-
ficient than crude Monte-Carlo, up to a negligible term that depends only of poly(log(d)). The
bound in Lemma 19 depends of poly(d) only because of rounding issues, coming from the fact
that we aim at dividing each stratum {2 in hyper-cubic sub-strata. The whole budget is thus
not completely used, and only Y, Sx + KS samples are collected. By modifying LMC-UCB
so that it allocates the remaining budget uniformly at random on the domain, it is possible to

prove that the (modified) algorithm is always at least as efficient as crude Monte-Carlo.

Conclusion

The aim of this work was to provide an adaptive method for estimating the integral of a differ-
entiable function f.

We first proposed a benchmark for measuring the efficiency of our method: we proved that the
asymptotic mean squared error of the estimate outputted by the optimal oracle strategy is lower
bounded by Eﬁ.

We then proposed an algorithm called LMC-UCB, which manages to learn the amplitude of
the variations of f, to sample more points where theses variations are larger, and to spread
these points in a way that is related to quasi Monte-Carlo sampling schemes. We proved that
algorithm LMC-UCB is asymptotically as efficient as the optimal, oracle strategy. Under the as-
sumption that f admits a Taylor expansion in each point, we provide also a finite time bound for
the pseudo-regret of algorithm LMC-UCB. We summarize in Table 7.1 the rates and finite-time
bounds for crude Monte-Carlo, Uniform stratified Monte-Carlo and LMC-UCB. We believe that

Pseudo-Risk:
Sampling schemes || Rate Asymptotic constant + Finite-time bound
P)

Crude MC 1 f[O,l]d (f(z) - f[O,l]d f(w)du) dz +0

. . 1 1 2 d
Uniform stratified MC 7 ﬁ<f[0’1]d |\Vf(:z)\|2das) _ +O(n1+§7+2%)
LMC-UCB e b (foeI95@)] )dild:z:)Q( T oat
o3 120J[014 2 n1+%+m

Table 7.1: Rate of convergence plus finite time bounds for Crude Monte-Carlo, Uniform stratified
Monte Carlo (see Lemma 18) and LMC-UCB (see Theorems 17 and 19).

an interesting extension of this work would be to adapt it to a—HGélder functions that admit a

Riemann-Liouville derivative of order . We believe that similar results could be obtained, with

an optimal constant and a rate of order n!*t2e/d,

SWhen d is very large and n is not exponential in d, then second order terms, depending on the dimension,
take over the bound in Lemma 18 (which is an asymptotic bound) and poly(d) appears in these negligible terms.
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Appendices for Chapter 7

7.A Numerical Experiments

We provide some experiments illustrating how LMC-UCB works, and compare its efficiency to
that of crude Monte-Carlo and Uniform stratified Monte-Carlo.

We first illustrate on an example, in Figure 7.2, the sampling scheme. We have launched
LMC-UCB on the function displayed in Figure 7.2 (i.e. f(z) = sin(1/(z + 0.1)) + I{z >
0.9}sin(1/(z — 0.7))). We chose this function since its variations are quite heterogeneous in
the domain [0,1]. We considered a budget of n = 100, and took as parameter A = 10. K,, and
S are defined as in Figure 7.1.

Position of the samples collected by LMC-UCB (for n=100)
1 T T T T

f(x)

- position of the samples| |

—function f

| | 1 1 1
0.5 0.6 0.7 0.8 0.9 1

Figure 7.2: Position of the samples collected by LMC-UCB.

We observe that, as expected, the algorithm allocates more points in parts of the domain where
the function has larger variations and, additional to that, it spreads the points on the domain
so that every region is covered (in a similar spirit to what low-discrepancy schemes would do).

We also compare, for this function, the mean squared error of crude Monte-Carlo, uniform
stratified Monte-Carlo and LMC-UCB, for different values of n. We average the mean squared
error of the estimate returned by each method on 10000 runs. We have the following perfor-

mances for each method (displayed in Figures 7.3 and 7.4).

As expected, the mean square error decreases faster than 1/n for uniform stratified Monte-
Carlo and LMC-UCB. These methods are also more efficient than crude Monte-Carlo (up to 100
times more efficient on this function), which makes sense since the function that we integrate is
differentiable (and then the rate for LMC-UCB and Uniform stratified Monte-Carlo is of order
O(n~'=%/%)). The gain in efficiency when compared to crude Monte-Carlo however decreases
with the dimension, as explained in Subsection 7.5.3. We observe that LMC-UCB is more
efficient than uniform stratified Monte-Carlo, which is a minimax-optimal strategy in the class

of non-adaptive strategies.
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\ -~ crude MC
-=-uniform stratified MC

Y —LMC-UCB

Mean squared error
w»

0.5

0
100 200 300 400 500 600

Figure 7.3: Mean squared error w.r.t. the
integral of f of crude Monte-Carlo, uni-
form stratified Monte-Carlo and LMC-
UCB, in function of the budget n. Since
crude Monte-Carlo is approximately 100
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Figure 7.4: Zoom on the mean squared
error w.r.t. the integral of f of uniform
stratified Monte-Carlo and LMC-UCB, in

times less efficient than the two other
strategies, their curves are shrinked and
not very visible.

function of the budget n.

7.B Poof of Lemma 17

Step 0: Decomposition of the variance Let Q = (2})o<n<+took<n be a sequence of par-
titions of [0,1]? in n hyper-cubic strata such that the maximum diameter of the strata in the

partitions converges to 0 when n goes to infinity. In each of those strata, there is a point.

Let n be the number of points, and k < n be an index. Let a,, ; be a point of the stratum 7.
Let us assume that f is differentiable, that it’s derivative V f is continuous, and let us also assume
that ||V f(u)|]3 = Zgzl (%g))? is such that [ ||V f(z)||3dz is bounded. In that case, Va € QF,
there exists u, ., € €2} such that we have f(x) — f(ar) = (Vf(unke), T — ang) (intermediate
values theorem). Note also that we have in that case p, , = f(ank) + ﬁ fQZ<Vf(un7k,x), T —
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ap k)dx where a, i is the center of the stratum Q}. We thus have:

wljk 92 flank))*dz

s o vf (Un k), an,k>_wi’k /QZWf(un,k,y),y_an7k>dy)2d$

= / (V7 un) @ an,k>)2dx— (wik / Z(Vf(un7k’y),y—an’k>dy>2
:wi,k /[0,1}‘1 (<Vf(un,k,w)1[{9,€}, (z — anvk)H{Qm)?dlﬁ

- (wik /[071]d<vf(unky)11{9 by anyk)u{gg}my)?

Step 1: Convergence of ¢, when the size of the strata goes to 0 Let = € [0,1]%. Note

that as as (Qf)k<n is a partition, there is a kj, , such that x € Qp

Note first that V f is continuous. This means that Ve, 3n/Vy € Ba(x,n), ||V f(y) =V f(x)|]2 <

e. Let € > 0 and n sufficiently large (any n larger than some given horizon n’), the maximum

diameter of 2 is smaller than 7). Let y € Q. As upp, ..y € 2

we know that Hun,kn,m,y -

z|| < n and that we thus have ||V f(un, ,y) — Vf(2)|l2 < e. This means that V f(upg,.y)

converges point-wise to V f(x).

Note also that we have by Cauchy-Schwartz that
1 1

n,kn,z n,kn,z

(V7). 0= a0, )) TR, 3 S 1 ) Blly = e, JBHO, )

< AV f(Un gy oy)ll5 < dL?.

As V f(unp, ,y) converges point-wise with n to V f(z), and as

2/7(1 <<Vf(un En, e)s (Y —

n.kn,

2
an,kn’z») < dL?, we have by the Theorem of Dominated convergence, that

1

n——4o0o
TL n,

2
llm W /[‘0 1}d ((Vf(un,kn,z,y)a (y - anykn,z)>> H{an,z}dy

. 1 2 n
LT /H (¢ lim 9 f (s (0 = np))) TR, by

n—-+oo

7’)7..’E

o "oy
i i /[ o (V7). (0= g, ) T, Y

n—-+o0o
TL n,r
14+2/d
1 @)
T oo 11274 12
nknz
V@)1
12 '
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In the same way, we have that

. 1 N 2

n—-+00

n,kn,z
I ! 1 HOp ydy)
n;rfmm( /[0 1]d<n§foo VI (Un b )y (0 = ann )V, L} y)

771(E

. 1 " 2
i~z ( /[0 LTI = o DO, i)

n—-+o0o
nv n,x

: L 142/d
- TLETOO 1+2/dwn kn x (an7k”7$ - anakn@)
Wy, kn,@

=0.

2
Let us call g, o(z) = > 5 1/Qul]I{Q"}( x) = Z’{/’;’;z The last two inequalities prove, Vz,
n,kn,x

. . v
point-wise convergence of g, o(z) to l f1(2$)||2:

Step 2: Optimal allocation and minimum for the asymptotic variance There is one

point pulled at random per stratum. The variance of the estimate given by such an allocation is

2
Z Z 1+2/d Onk
wnkank— wn X’LU X 2/d
wn,k

Define s, o(x) = > p_; nwlk {2} }(x). Note first that

and that

spa(x) > 0.

One has also for the variance of the estimate that

Zw ! g Q(x);dm
n,k nk n1+2/d (0,1 L) Sn7Q(x)1+2/d )

By using the result of the previous step, one has (for every sequence €2 where the diameter of

IV £ ()13
12

the strata converge uniformly to 0), point-wise convergence of g, o(z) to when n goes

to infinity.
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This leads to, by using Fatou’s Lemma

1
lim inf o(@)—————d
lmnirﬂroo /[071]dg 7Q(l’) Snﬂ(l‘)l‘i‘?/d v

1
- o
- /[o,ﬂd i (gn’Q(x) Sn,Q(ff)l”/d)dx

2/ o V@I 1

[0,1]¢ 5:5>0, [ s=1 12 S(x)1+2/d :

One thus wants then to find the function s(z) that minimizes this limit. One thus wants to

2
solve in each point x the program infy val(;)HQ s(a:)11+2/d such that s > 0 and f[o 14 s(x)dx = 1.

The solution (by just writing Lagragian) is

cn IV f@ll)T
s*(x) = E—
JoaUIVf(@)]]2) 77 du

By plugging it in the bound, one obtains

im nin—foo [0,1]4 In.Q (x)Wd$
_d 2@
_ (s 09 @)y )

- 12

Note that the previous result holds for any sequence of partitions (£2,,),, where the diameter
of each stratum converges uniformly to 0. One finally has, using that, that the minimum possible

asymptotic variance is bounded by

4 (@)
( f[O,l]d(| |V f(x)]]2) #1 dx)
12 )

n
lim infn!t2/d g w? o2, >
n—-+oo € 1 ’ ’

and we thus obtain the desired result.

7.C Proof of Lemmas 19

Upper bound on the standard deviation: The upper confidence bounds Bj; used in
the MC-UCB algorithm is an elaboration in the specific case of Lipschitz function on Theo-
rem 10 in Maurer and Pontil [2009] (a variant of this result is also reported in Audibert et al.
[2009b]). We state here a main Lemma.

Lemma 20 Assume that the function f from which the data is collected is differentiable, and

167



7. ADAPTIVE STRATIFIED SAMPLING FOR MONTE-CARLO
INTEGRATION OF DIFFERENTIABLE FUNCTIONS

that ||V f(x)||2 is bounded by L, and n > 2. Define the following event

W log(2K/6)
S AUV TG

(7.9)

' S S
1<k<K,

ﬁ Z (Xk,i — % ZXk,j>2 e

i=1 j=1

The probability of & is bounded by 1 — §.

Note that the first term in the absolute value in Equation 7.9 is the empirical standard
deviation of arm k£ computed as in Equation 7.8 for ¢ samples. The event £ plays an important
role in the proofs of this section and a number of statements will be proved on this event.

We now provide the proof of Lemma 20.

Let us assume that f is such that ||V f||2 < L. Let us consider a small box 2, of size w and
such that Q,, = Hle[ai— %/d, aH—“’;/d]. As ||V fl|2 < L, we know that | f(z)—+ fﬂw flu)du| <
Ly dw'/4,

If U is a random variable on ,, and X = f(U), then

‘X - /’L| < L\/gwl/dv

where = L Ja,, fu)du.
Note first that for algorithm LMC-UCB, the S first samples are each sampled in an hypercube

Wie
S )
Using a large deviation bound on the variance, e.g. the one in Maurer and Pontil [2009], we can

deduce that with probability 1 — 20

of measure and all of those hypercubes form a partition of the domain.

Ly 1 g 2log(1/6)
NES PR DM

Jj=1

where b is a bound on the random variables X; — ;. One gets because | X, ; — g i| < \/&L(%)l/d
(where f1, ; is the mean of the function on the hypercube where point X}, ; is sampled and because
t>2

S

S
| | 2 w1 ja f108(1/0)
> (XK= 2> Xiy) —oul < 2LVA(E =T
‘ 5_1;( ki Sj:1 k,]) Uk| = f( S) S

Then by doing a simple union bound on (k,t), we obtain the result.

The following Corollary holds.

Corollary 5 On the event &, Vk < K,

1/d

~ w
Gy k5 — Okl < 2L\/ﬁ\/log(2K/5)—§ kS
2d
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By concavity, we also have the following Corollary.

1

Corollary 6 On the event &, there is Vk < K that

d d wﬁ
~d+1 d+1 k
|ak,KS_Uk | SA, d+2

S2(d+1)

where A = (2L\/a\/log(2K/5))#l.

The number of sub-strata Let k£ be an index. Let us call C), =
Eszl w (Ei,KS'*‘A(?

K3).
Stratum € is subdivided in S} = max [S, LC’;/dJ d’] substrata, composing the sub-partition

N.
Note first that Zszl S < n as Zszl Cr =n — KS. As the samples are always picked in

sub-strata that have the less points, it ensures that there is at least one point per sub-stratum.

On &, we have because of Corollary 6 that

wd+10_d+1
Ck > P k P k %H (n - KS)
Zi[il wzd+1 (Uszrl + 24 wid+2 )
§2(dTD)
wf o .
Py — L
SZ(del)
_ 2A
> Ak k(n — K5)<1 - _7“)
2K5’2(d+1)
2An )

> /\KJf(” ~KS— ——5
EKSZ(OH-I)

Using the fact that (%
d d+2
Ck ZAK,k<n_K(K 2 K)mxwtl) (1+d(

1 1
§+< )2 d(d+2)
> )\Kk<n — K iln %1 — MKQ(dJrl)Q (1 + [d(g)%wz(‘gﬁ)))
- ’ YK n
(7.10)

_d+2
> MKk <n —(1+ 2; + d(5)2<d+1>2 )Kﬁncﬁ'ﬁl),
K

where the last line comes from the fact that n > K.
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We also have

1 d-1
Cr— G/ <o — (/' =1t =Cp(1—(1 - —77)") < dC,?
k

From the last Equation, the definition of Sy and Equation 7.10 we deduce that (rounding

issues)

S > max 5.0 (1 - )]

> max _S',C'k(l— d )]

> max | 5, A (n B P E S )K%n%) (1 - d(%)ﬁ)}

M A 1 d
> max S,)\K7k(n—(2+2—+d)Kd+1nd 1) .

We call N = n — (2 + 2% + d)Kd+ind+T in the sequel. Note that Vk, we have S; >
max[g, AK,kN]-
Note also that for § < 1, we have

= (2LVd\/log (2K /8)) 71
< 4A(L + 1)Vd\/log(K /).

‘We thus have that

n>N>n—7L+1)d*?*\/log(K/§)(1 + =) K #F1na, (7.11)
K

7.D Proof of Theorem 17

Step 1: Notations Let ((QZ)kS Kn)n be a sequence of partitions in hyper-cubic strata of
same measure. Let us also assume that the number of strata K, in partition (Q})j is such that
limy, 400 Ky = +00 and limy, 0 W = 0. On each of those partitions, MC — UCB is
launched with respectively n samples and parameter d,, = #

The number of hyper-cubic sub-strata built by the algorithm in stratum €} is S, ;. Let us
write <((QZ s) SSSn,k) h< Kn>n the partition in hyper-cubic strata formed with those sub-strata.
By construction of the algorithm, there is at least one point per sub-stratum. The estimate of

the mean of the function is built with the first point in each of those sub—strata.
n 0_n . Sl/2d
Let us write gf’(z) = i S SO} o) = SRy S of (O] H @)
n,k,s n k

From step 1 of the proof of Lemma 17, it converges with n (because K, — 400 when n — oo

2
and thus the diameter of each stratum goes to 0) point-wise to %.
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Let us write gg)(x) = S 1/M]I{Q }Hx). From step 1 of the proof of Lemma 17, it
wnk

V()13
12

converges with n point-wise to . This convergence implies, as ||V f|[3 is bounded and

thus as [ ||V f]|5 T is bounded, by the Theorem of Dominated convergence that lim,,_, ;- Xk, =
4 d
lim, - yoo figya(g5 (2)) 200 d = f[o,”a%wwd:c > 0.

d
Define An(a) = 1, () — 52K, asons T yrgny om0 o thug know,
as the limit of (XK, )n exists and is bigger than 0, that \,(z) converges pointwise to s(z) =

IV f(z )Ild“

Jio.1ya ||Vf(x>||5d+” da
Let us also define s, (x) = Zk 1w, k]I{Q”}( x).

Step 1: Majoration of of é Let us consider only functions f that are not everywhere
constant on the domain, as otherwise the bound on the pseudo-risk is trivial®>. Then 3X € [0, 1]¢

such that X is measurable and such that [,.1 > 0, and such that Yz € X,||Vf(x)||]2 > 0. Then
Sy (L2 IV 5@)iz y @5 gy > 0.

Let N be defined as in the proof of Lemma 19, i.e. N,, as in Equation 7.11. As lim,, 4+ Xk, =
f[oﬂd(%)ﬁdm, we know that for any n sufficiently large, lim,, X, > 35 f[o 154 M) @ .,
We thus have

1
n> Ny >n—7(L+1)d¥2\/log(Kn/0n)(1 + — ) K T1p @

YK
1
>n— C\/log(Kan)K;f“nﬁ,

n

d
with C' < 400 as fo 1]d ”VJ;(;)HQ)wH)dx > 0. As by definition of the sequence of partitions,

limy, s 4 o0 v/10g( K, n2)<K") 1 =0, we know that lim,_, o 2= =1

By Lemma 19, with probability 1 — 6, Vk, Sy, x > Ak, xNn. We thus have

which leads to

P (o 2 ) <o

Let X* = {z € [0,1]% : ||V f]|2 > 0}. By the last Equation, Ve > 0, Vz € X, for n sufﬁciently
large (In’ such that Vn > n’), IP(snlW yw (I) > ¢) < §,. Note that 3279 6, oo L < 4.

n=1 n2
We can thus use Borel-Cantelli’s Theorem and this gives us that on X, lim sup,, Tl(a:) — ﬁ(m) <0

SIf the function is everywhere constant, the samples are always equal to the integral, and the pseudo-risk of
the estimate is zero.
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a.S..

We thus deduce (i) by the definition of \,, and the fact that it converges almost surely to
s and (ii) by the fact that lim,, % = 1, that limsup,, ﬁ(x) < ﬁ a.s. (since, by definition,
Sn(z) > —2— > 0).

— nwn K
From that we deduce that Vz € X, limsup,, sn%m) < le) a.s.. Ason [0,1] — X, s(x) =0,

1 1
T(I) S @ a.s..

we have Vz € [0,1]%, that limsup,,

Step 2: Convergence rate of the pseudo-risk. The pseudo-risk of the estimate [, is

Kn Sn,k

Wnk\2 o 1+2/d/ 1) 1
—_— —_ d .
;; <5nvk> T T fo a9 ) Gy

IV 113

On [0, 1]¢, g7(11) converges pointwise to "5, and limsup,,_, ;o - 1

@ < 5

1
ira7a a.s. We

finally have by Fatou’s Lemma that

1 1
W)= g < ; WDy =
/[O,I]d 9’ (z) sn(x)1+2/dd$ = /[0,1]d lim Sgp (gn () sn($)1+2/d)d$

1
: (1) . -
< /[0,1]d limsup g,/ (x) lim Sl:lp o ()52 dx

n

VA3 1
< dx.
- /[;]’l]d 12 s(z)tt+2/d v

By plugging in the last Equation the Definition of s, we conclude the proof.

7.E Proof of Theorems 18

Step 0: Some inequalities when the second derivative of f is bounded Let a be a

point in €.

f admits a Taylor expansion in any point. For any z € Q have |f(z)— f(a)+V f(a).(x—a)| <
M]||z — al|3 with 2M a bound of the second derivative of f.
Note also that ||V f(z) — Vf(a)ll2 < M||z — all2.

Note also that
IVF@)I3 = IV F@IB] < [(197@)112)* = IV £ (@)l 3
< (194 @Iz + Ml = all2)* = [V f(@)] 3
< |IV£(@)13 + 20V f(@)]|zl|z — alls + M|l — al}} ~ [V F(a) 1

< 2M||Vf(a)llall — all2 + M|z — all3.
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This means that

IVf(@)]l2 = [V (a)llz] < M|z = all2. (7.12)

Step 1: Variance on a small box Let us place us on one small box of size w and such that

. . . 1/d 1
the corresponding domain is €, = [[[a; — %, a; + ¥ / ]. We can do a Taylor expansion in a

and have
|f(x) = f(a) + Vf(a)(z — a)| < M|z — a3,

with 2M a bound of the second derivative of f.

Note that because of the previous equation

’110/9 <f(u)_f<a)+Vf(a)(u—a))du] < 1/Q F () = f(a) + V(@) (u—a)|du

w
< M|z — al|3. (7.13)
g w/d l/d
This implies because a; = [* " /d udu that
o
o fn = @) < e~ (7.14)

Finally, by combining Equations 7.13 and 7.14, we get

f(z) = — ; fu)du + V f(a)(z — a)| < 2M||z — al[3.

w

Triangle inequality on the last Equation leads to

@)= [ fdal < V(@) = o)l + 2000 = ol
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This means by integrating that

| (@3 [ rwin)dr< [ (950 - o) + 20 - alf) do

§/w (Vf(a)(x — a))2d$ (7.15)

oM (Vf(a)(x—a)|)|\x—a||gdx (7.16)
Qu

+ 4M> /Qw ||z — a|[3d. (7.17)

l/d
Note first that because a; = [ aitty Wl / 4 udu, we have for the term in Equation 7.15
a.

7

/ (Vf(a)(:v—a))Qdm :/ (Zd:Vf(a)i(xi —ai))Qdm

l/d

w™ l/dZ/ s Vf(a)i(z; — a;)’da;

Ed: wlt2/d
=1
w+2/d
= LIV @)l (7.18)

Now note that for the term in Equation 7.17

d
/Qw ||z — al|3dz = /Qw (;(azz — ai)2>2dx

< dPw' e, (7.19)

Now note that because of Cauchy-Schwartz and by using Equations 7.18 and 7.19, we have
for the term in Equation 7.16

/ (Vf(a)(w - a)l) |z — al[3de < \//Q (Vf(a)(x - a)|)2dx\//gw |z — al|id
< ||V £ (a)|[aw! /2414y a2 +4/d

< d||V f(a)||zw' /4. (7.20)

We thus have by combining Equations 7.15, 7.16, 7.17, 7.18, 7.20 and 7.19

/ _/ f va(2)||2 1+2/d+2Mdef( )H2wl+3/d+4M2d2 1+4/d
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This leads to using Step 0 in Proof 7.B

2
w20_2 < vai;a”2w2+2/d+2Md||vf(a)|2w2+3/d+4M2d2w2+4/d
= w2+2/d(”v2f\(/cg”2 + 2Mdw'/?)?. (7.21)

In the same way, one can prove

w?a? > w2+2/d(Hv2f\(/a§)H2 — 2de1/d)2. (7.22)

Step 2: Majoration on the strata Lemma 19 tells us that with probability 1 — ¢ (i.e. on
the event ¢), each stratum 2, is partitioned in Sy > max | Ay kN, S| hyper-cubic substrata Qi

of same measure, and that that there is at least one sample per stratum.The measure of those
sub-strata is thus wy,; = Zg—l’:
We have for stratum €, ; by using Equation 7.21
9 9 212/d ||V faki)ll2 l/d
k,Z kyl k,'L ( 2\/§ ) ?
where ay, ; is the center of stratum ;.

Let cg; be a point in € ; such that cy; = argmineeq,, [|[Vf(c)|[2. By using that and
Equation 7.12, we get that the variance on strata k that is bounded by

\4 i
Zwkﬂm<z 2+2/d IV £ (ay, )H2+2Md 1/4)2

23
2+2/d IV f(ck)l]2 l/d
<Z T+3Md D)
s
Wi o IV f (cryi)ll2

<k / 3Mdw ”d .
<5 2 w, ( e + J)

Let us call g(x) Vi@l 3de,i/d. As wy, > wy;, and ||V f||2 is positive, we have

d+2
Zwkz kz— Zwk'z Ckz . (723)

Step 3: Minoration of the number of sub-strata in each stratum By setting Equa-

tion 7.21 to the power 5 we get on stratum €2 that

d
2(d+1)’

4 IV f(ag)]]2 1/dy 7%
< + 2Mdw)/?) T
(wrok) ™1 < wy(————2—= Ve )
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Let ¢f* be a point in €2, such that ot = argminecq, ||V f(c)|2. Note that this implies that

Zk 1 Wk (”VJ;(\C/’&)HQ + 3de1/d) a1l L f01 (”V;\([)HQ + 3de1/d) a1 du. By using that and

Equation 7.12, we get that X = Zk(wkak)dﬂ is bounded as

K

Z HVf CLk; H2 oM dw 1/d)di
k=
va IV f(eg)ll2 1/dy 7
<> w +3Mdw, ")+
WL )
of (O gy,
o1 2v/3
< / g(u) 7 du, (7.24)
[0,1]¢
In the same way, we can deduce
[V f(w)]l2 % 4
3 2/ — 3Mdw,"") 1 du. 7.25
e at (7.25)

Let ¢ be a point in O such that ¢ = argmax.cq, ||Vf(c)||2. For a stratum k, by using
Equations 7.22 and 7.12

a+42

d+2 442 [|V f(ar)]|2 _oMdw 1/d)d+1

(wkak)dﬂ > wk (

2v/3
d+2 M d
> wy* (HVJ;(\C/%)HQ 3Mdw l/d)dﬁ'

As for any u > 0 and @ > 0 one has (1 —u)™ > 1 + au, the last Equation leads to

1 1
<
arz —~ T di2
(wkgk)d+1 wkd (HVJ;(\C})M +3de1/d 3Md( 1/d+wi/d))
< 1
=T a2
wy? (g( )—6de1/d) Es
< 1
- dd2 _d_ 6Mdw/?\ 42
wy,? 9(62/[) “(1* g(c;;fk) at
- 1 ( d+2)6Md ”d)
B w,:%(g(cfy))% d+1" g(ch)
1 1 9Mdw,’*
S d+2( d+2 + 2d+3)'

w, ™ (g(eh)) 7T (gleh)) @
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As wy ; = 2~ this leads with the last Equation and Equation 7.24
b Sk

g(u)) *du d+2 9Md 1/d
d+2 < (f[o,ud( ( )) ) d 1 n wy, )

a7 2073 (7.26)
(g(ch) =t (g(ey)) o

Step 4: Bound on the pseudo-risk As ¢! = maxccq, ||[Vf(c)||2 and ¢ ; = minceq, , ||V f(c)|]2,

and as g(z) = HVf\([)Hz + 3de1/ , we have for any (a,b) > 0 that gg((cczj)): < minceq,, g(c)*?.

By using that and Equations 7.23 and 7.26

Zwkﬂkzwk(f[m ( N )TZWJQ(C&DQ

=1
_d
(f[oﬂ + (9(w)) 1du)d$2wk§’é( L, OMdw olens)?
N Sk (g(c)) B <g<c£4>>2d"+*f’ v
d
w)) T duy dE2 Sk 1/d
S(f[ovl]d (g( )) > ' %Z( min g(C)al;iil 4+ min M )
N k =1 c€Q% c€Qy 5 (g(c))dﬂ

Note also that by definition, g(z) > 3M dw;/ . From that and the previous Equation, we

deduce
Sk f ( )ﬁdu d+2 Sk ., 9de1/d
Wi 107 < " bl min g(c)@H + —F
; k,i%k, ( N > Sk ; (cerﬂi (3de1/d) +1)

d
TH gy | d+2
(Lo TN (L] gt s ontn),
k

Wk

Finally, by summing over all strata and because all strata have same measure wy = %

K S 4 W) Ty a2 K
> > wiiok, é(f[o’” ) )’ Z(/ﬂ 9(u) 1 du + wy x 9M dwT)

i=1 i=1 k=1

[t s ontat )7

d 2(d+1) 4 a2 ] .1
S—a3 ((/[071}d9(u)d+1du) d —|—9Md(/[071]dg(u)d+1du) d (?)d 1>'
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Step 5: Bound on f[o 1) g(u)ﬁdu Note that because d%.il-l <1, we have

ﬂmfh=(Hvﬂim2+3Mdlm)f

2V/3
IV f()l2\ 14 TH
< + 3Mdw;] 2
We thus have
4 IV f(w)]l2 7
w)d+du < LR A dy + 3Mdw “. 7.28
[ omrans [ (R0 k (7.28)
Note also that for £ > 0, and as (djl) < 4, we have

2(d+1)

(I+z)"a <(142)* <1+ 2 max(z,2? 23, 2).

d
Let us call ¥ = f[o,l]d (HV;\%HZ)W(ZU. Then by applying the previous result to Equation 7.28,

we get

(/ g(u)dildu)wjl) - </ |V f(u )HQ) 7 2 +3dedi1>2(dd+1)
[0,1]@ = 0.1 2\/§
M 3Md # 2(d+1)
- (1+ 5
1
<y L 1en T ( 3Md) wT, (7.29)

Note also that by Equation 7.12, we know that ||V f(u)||2 < [|[V£(0)||]2 + M+/d. From that
we deduce that

/ g(u )d+1du<Z+3ded+1
[0,1]

< ¥+ 3Md. (7.30)
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Step 6: Final bound on the pseudo-risk From Equations 7.27, 7.29 and 7.30, we deduce

K Sk

1 4 2t 4o dk2 1 1
ZZwkmlmf d<(/[;),1]dg(U)d+1dU) d +9Md(/[071]dg(u)d+1du) d (?)cm)

=1 1=1
+ -+ 4 1
< 1 [EQ(dd 1) 1 22<dd 1) (1 3Md) w]g 1

dt2
p b

=

+OMA(S + 3Md) T (%)#1}

1 3Md\4, 1 1
< [22(11;1) +25Md(2+1)%<1+7> (7)d+1:|

a+2

d

L o]

=

<

a+2
d

=

4
where C' = 25Md(S + 1) 4 (14 22) "

d

Note that N = n — (2 + 2¢- + d)K 7 n#1 = n — BK7 07+, where B = 2+ 24 + d.
From plugging that in the last Equation, we get

Kok, 1 2(d+1) 1,1
DD whioii < = 5T +CO() ]
=1 i=1 (n _ BKmnm) I
1 2(d+1) 1,1
< YT C(=)4 1}
T d+2 _ at2 [ (K)

d—+ 2 11 2(d+1) 1.1
< 1 BK +1} [2 (=) ]
Sz |1+ () BK @0 (K)
< (257 4+ 3™ BTy L o(L)y# 4 3BOR @),
n d K

where we use for passing from the second to the third line of the Equation that (1—u)™% < 14+au.

(d+1) .
a2 and this leads to

K S 2d41) 1)1
ZZwk Za,“ _j z + 6BOK #rin @ 4 C(?) ] (7.31)
i=1 i=1

Note first that by Equation 7.25 and because ||V f||2 < L we have

IV f(w)]]2 1/dy 74
Y > / WYIANZ s ppqwt/ ) a1 qy
" [0,1) ( 23 )

_1
> — 3LMdw".
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From that we deduce that

4(L+1 log(K
B<2+9 + ¢1/% /5

> — 31)]\4dwl,;“rl

L+ 1)Vdy/log(K = (L+1 log(K

< 10(L 4 1)Vd\/log(K/6)(1 + =

By plugging in Equation 7.31 the definition of C' and the bound on B computed above, we

<2+8

obtain

K Sk
3Md

Zzw,”a,“_ 2 [22(”” +650M (L +1)d2(1+ T) VIog(K/8)K #in~ a1
T

+25Md(S+1) 7T (14 SJ\EM) (?) 1.

This concludes the proof.
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Chapter 8

Toward Optimal Stratification for
Stratified Monte-Carlo Integration

This Chapter is a joint work with Rémi Munos. Whereas the two precedent Chapters were
concerned on the number of strata into which it is relevant to partition the space in order to
perform efficiently stratified Monte-Carlo integration of a function, the approach of this Chapter
is more direct. The objective is to provide an adaptive way to refine partitioning of the space in
interesting regions of the domain. It is the last Chapter of this PhD on Monte-Carlo integration.

We consider the problem of adaptive stratified sampling for Monte Carlo integration of a
function, given a finite budget n of noisy evaluations to the function. We tackle in this Chapter
the problem of stratifying the domain in an efficient way. More precisely, it is interesting to refine
the partition of the domain in area where the noise on the function, or where the variations of the
function, are very heterogeneous. On the other hand, having a (too) refined stratification is not
optimal, since the more refined the stratification, the more difficult it is to estimate the variance
of the noise and the variations of the function, in each stratum. We provide in this Chapter two
algorithms that are almost as efficient (up to a constant) as the MC-UCB algorithm (introduced

in Carpentier and Munos [2011a]) run on the best partition of a large class of partitions.
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8.1 Introduction

The objective of this Chapter is to provide an efficient strategy for integrating a noisy function
F: X x Q — R. The learner can sample n times the function. If he samples the function, at a

time ¢, in a point x; € X of the domain, he obtains the noisy sample
F($t,€t), (81)

where ¢; € ) is drawn independently at random from some distribution £,,, where £, is a
probability distribution that depends on z.

If the variations of the function F’ are known to the learner, an efficient strategy is to sample
more points in parts of the domain X where the variations of F' are larger. This intuition is
explained more formally in the setting of Stratified Sampling (see e.g. Rubinstein and Kroese
[2008]).

More precisely, assume that the domain X is divided in Ky regions (according to the usual
terminology of stratified sampling, we refer to these regions as strata) that form a partition N
of X. Tt is optimal (for an oracle) to allocate a number of points in each stratum proportional to
the measure of the stratum times a quantity depending of the variations of F' in the stratum (see
[Subsection 5.5] of Rubinstein and Kr(;ese [2008]). We refer to this strategy as optimal oracle

strategy for partition N. We write E—Tz‘ the mean squared error (with respect to the integral
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of F') of the estimate outputted by the optimal oracle strategy (see again [Subsection 5.5] of
Rubinstein and Kroese [2008] for a definition of Xy).

The problem is that the variations of the function F' in each stratum of N are unknown to the
learner. In the papers Carpentier and Munos [2011a]; Etoré and Jourdain [2010]; Grover [2009],
the authors expose the problem of, at the same time, estimating the variations of F' in each
stratum, and allocating the samples optimally among the strata according to these estimates.
More precisely, in Carpentier and Munos [2011b]!, the authors provide an asymptotically con-
sistent algorithm whose pseudo-risk? is bounded by % + C’minEN%//j, where Chyin is a constant.
This bound implies that the learner is able to, at the same time, learn about the variations of the
function and allocate optimally the samples in the strata, up to a negligible term. If the domain

2
is wisely stratified, according to F', and in many strata, then ETN is small (see again [Subsection
1/3

5.5] of Rubinstein and Kroese [2008]). Note however that the term % in the bound depends
also of the partition of the space and increases with the number of strata. The intuition behind
this fact is that the learner has to learn the variations of the function inside each stratum, and
the more strata there are, the harder the task.

It is thus important to adapt also the partition to the function, and refine more the strata
where variations of the function F' are larger, while at the same time not considering too many
strata. As a matter of fact, a good partition of the domain is such that, inside each stratum,
the values taken by F' are as homogeneous as possible (see [Subsection 5.5] of Rubinstein and
Kroese [2008]), while at the same time the number of strata is not too large.

There are very interesting and deep studies on how to stratify efficiently the space, e.g. Etoré
et al. [2011]; Glasserman et al. [1999]; Kawai [2010]. More specifically, in the recent, state of
the art, paper Etoré et al. [2011], the authors propose an algorithm for performing this task
online and efficiently. They do not provide proofs of convergence of their algorithm, but they
give some properties of optimal stratified estimate when the number of strata goes to infinity,
notably convergence results under the optimal allocation. They also give some intuitions on
how to split efficiently the strata. Having an asymptotic vision of this problem prevents them
however from giving clear directions on how exactly to adapt the strata, as well as from providing

theoretical guarantees.

Contributions: We consider in this Chapter the problem of designing efficiently the partition
of the space. More precisely, our aim is to build an algorithm that performs almost as well as
MC-UCB (introduced in Carpentier and Munos [2011a]) on the best possible partition (adaptive
to the function F') in a large class of partitions. We consider in this Chapter the class of partition

to be the set of partitions defined by a hierarchical partitioning of the domain.

e We first provide an algorithm, Deep-MC-UCB, that is based on MC-UCB but incorporates

!This is the detailed version of Carpentier and Munos [2011a], where the bounds are enhanced.
2We define precisely later in the Chapter the notion of pseudo-risk. It is a proxy for the mean squared error
of the estimate of the integral.
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a test. We prove that the pseudo-risk of this algorithm is with high probability, up to a
multiplicative constant, lower than the pseudo-risk of MC-UCB on any partition N of the
hierarchical partitioning such that every stratum is of depth H. We however do not prove
that this intuitive algorithm performs almost as good than MC-UCB on any partition of

the hierarchical partitioning (including thus the partitions of heterogeneous depth).

e We provide a second, more involved, algorithm, called MC-ULCB, that fills this gap. Its
pseudo-risk is smaller, up to a constant, than the pseudo-risk of MC-UCB on any partition

of the hierarchical partitioning.

The rest of the Chapter is organized as follows. In Section 8.2 we formalize the problem and
introduce the notations used throughout the Chapter. We also remind the problem independent
bound for algorithm MC-UCB, introduced in Carpentier and Munos [2011a]. In Section 8.3, we
first introduce what we call Uniform Sampling Scheme (USS). It is a simple sampling scheme
for allocating samples in a random yet low discrepancy way on a domain. We then introduce
algorithm Deep-MC-UCB and prove a bound on its pseudo-risk. Section 8.4 presents algorithm
MC-ULCB, and its bound on the pseudo-risk. We also discuss the results. We finally conclude
the Chapter.

8.2 Preliminaries

8.2.1 The function

We want to integrate the noisy function F' according to a finite measure v corresponding to a
o—algebra whose sets belong to X. Without risk of generality, we assume that v(X) =1 (v is
a probability measure). The learner can sample sequentially the function n times, and observe
noisy samples. When sampling the function at time ¢ in x;, it observes a noisy sample F'(x¢, ;).
The noise g; ~ £, is independent of the previous samples, but its distribution depends of x;.
We first state an assumption on the expectation of F' (with respect to the noise) and on the

local variance of F' (again, w.r.t. the noise), in any point = € X.

Assumption Define g(z) = E. s, [F(z,¢)] and s(z) = \/EENLI [(F(x,e) — g(x))Q] We as-
sume that they both are bounded in absolute value by the constant fiax. This assumption
means that mean function, and that the variance of the noise &, are bounded at any point of
the domain X.

We also state an assumption on the noise to the function.
Assumption Let v(z,¢e) = W (if s(x) =0, set v(x,e) = 0). We assume that 3b such
that VA < 7,

2 2

Eemr, exp()\v(x,e))} < exp (ﬁ), and E.z, | exp(Av(z,e)? — )\)] < exp (ﬁ)
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This assumption implies that the variations induced by the noise are sub-Gaussian®.
Assumptions 8.2.1 and 8.2.1 mean that the variations coming from the noise in F', although

potentially unbounded, are not too large. We believe that these assumptions are quite general.

In particular, they are satisfied if F' is bounded, and are also satisfied e.g. for a bounded function

perturbed by an additive, heterocedastic, (sub-)Gaussian noise.

8.2.2 Notations for a hierarchical partitioning

Define a dyadic hierarchical partitioning J of the domain X. More precisely, we consider a set
of partitions of X at every depth h > 0: for any integer h, X is partitioned into a set of 2 strata
Xfn,q, where 0 <7 < 2" — 1. This partitioning can be represented by a dyadic tree structure,
where each stratum X, ; corresponds to a node [h,i] of the tree (indexed by its depth h and
index 7). Each node [h,i| has 2 children nodes [h + 1,2i] and [h + 1,2i + 1]. In addition, the
strata of the children form a sub-partition of the parents stratum Xy, ;; . The root of the tree
corresponds to the whole domain X.

We first make the assumption of measurability of every partition of the hierarchical parti-

tioning.

Assumption VI[h,i] € T, the stratum X, ; is measurable according to the o—algebra on which
the probability measure v is defined.

We write wy, ;) the measure of stratum X, 5, i.e. wy ) = v(Xpp). We also assume that
the hierarchical partitioning is such that all the strata of a given depth have same measure,

Le. Wi ) = Wh.

Assumption V[h,i] € T, the children strata of [h,i] are such that wpy1 = v(Xjpqq,29) =

V(x[h,z‘]) Wh,
— .

V(Xjhy1,2i41) = = 4 If for example X = [0, 1], a hierarchical partitioning that

satisfies the previous assumptions with the Lebesgue measure is illustrated in Figure 8.1.

10,01 10,01 10,01 10,01
11,01 w1 11,01 11,11
11,01 1 / [z,;< 2,1112,2 12,31
1
1 1
201 {1211 221§ 231 4 o lnal bad 371
3,14 ,3) Ea,s '
1

w
NN *
w
IS S

/\/\x/\/\x/\/ YaY,

Figure 8.1: Example of hierarchical partitioning in dimension 1.

3This assumption is actually slightly stronger than the usual sub-Gaussian assumption. Nevertheless,
e.g. bounded random variables and Gaussian random variables satisfy it.
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We write By ;v, where N is a cut of a dyadic tree, the sub-partition given by the leafs of the
tree issued from [h,i] and with leaves N (we branch partition N on leaves [h,]). We also call
by a slight abuse of notations By, ;1 ,, the sub-partition of all nodes of depth & + m issued from
node [h,i]. We illustrate this in Figure 8.2.

AN 4,

B[h.i], m
@[h,i],ﬂ\[

Figure 8.2: llustration of By, ;. and By, i,

We write mean and variance of stratum X, ;) the mean and variance of a sample of the
function F, collected in the point X, where X is drawn at random according to v conditioned
to stratum Xp, ;). We write py, ;) = EXN,,x[h _] [EENLX[F(X, 8)]} = o fx[h (z)dv(z) the mean

and 0'[2h7ﬂ = wih fx[h,i] (g( ) — I, Z]> + o fx dv(z) the variance (we remind that g
and s are defined in Assumption 8.2. 1)

8.2.3 Pseudo-performance of an algorithm and optimal static strategies

We denote by A an algorithm that allocates the budget m and returns a partition N, =
(DC[M]) haex included in the hierarchical partitioning T of the domain. In each node [h,i] of
KISUTY

Ny, algorithm A allocates uniformly 7Tj;, ; , random samples. We write (X[h,i] t) '
[ ]ENR t<Tip i),
these samples, and we write i ;) , = ﬁ tT 17" Xn,), the empirical mean built with these
samples. We estimate the integral of F' on X by ji, = Z[h,z’}eNn Wh[h,i]n
If Ny, is fixed as well as the number T}, ;),, of samples in each stratum, and if the T}, ),
samples are independent and chosen uniformly according to the Lebesgue measure restricted on

each stratum X, ;, we have

E(fin) = Y whipg= Y. /x Z/xg(u)du(u):,u,

[h,i]ENy, [h,i]ENy, ¥ Il

and also
2 2

m - WhO i
[h,i}ENn [h,i]GNn [h,l],n

where the expectation is computed on the samples collected in the strata.
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For a given algorithm A, we denote by pseudo-risk the quantity

2 2
WrO R
LA = Y i (8.2)

[hd]EN Tl

This measure of performance is discussed more in depths in the paper Carpentier and Munos
[2011Db).

Note that if, for a given partition N, an unadaptive algorithm A} would know the variances
O‘[2h’l-] of the nodes in N, it could allocate the budget in order to minimize the pseudo-risk, by

th[h,i]n
ZxEN Wz Oy

choosing to pull in each stratum Xy, ;) (up to rounding issues) T[Z q= samples. The

pseudo risk for this oracle strategy is thus

( Z[h,i]e?\f th[h,ﬂ)2 2

Ln(AY) = - = 7” (8.3)

where we write Y = >y wz0,. We also refer, in the sequel, as optimal allocation (for a

w Even when the optimal allocation is not realizable because of

partition N), to Ay, 3 =
rounding issues, it can still be used as a benchmark since the quantity L, (AY) is a lower bound
on the variance of the estimate outputted by any oracle strategy.

We define the pseudo-risk on partition N in the case when the samples within each stratum
Xn,q are chosen uniformly at random in the stratum according to the measure Vi In this
Chapter, we however do not sample uniformly at random in each stratum of partition N, but
according to a sampling scheme, called USS, that we introduce in the following Section. We
prove that the variance of the empirical mean of the samples collected with this sampling scheme
is smaller than the variance when sampling uniformly at random in stratum X, ;, which justifies

the use of this scheme.

8.2.4 Main result for algorithm MC-UCB and point of comparison

Let us consider a fixed partition N of the domain. We first remind (and slightly adapt) one of
the main results of paper Carpentier and Munos [2011b]. It provides results on the pseudo-risk
of an algorithm called MC-UCB. This algorithm takes some parameters linked to upper bounds
on the variability of the function®, a small probability §, and the partition N. Its pseudo-risk is
bounded in high probability by = =% + 3XnO( 4//3 ). This theorem holds also in our setting. The
fact that the measure v is finite together with Assumptions 8.2.2, 8.2.1 and 8.2.1 imply that the
distribution of the samples obtained by sampling in the strata are sub-Gaussian (as a bounded

mixture of sub-Gaussian random variables). We remind and slightly improve this theorem.

Theorem 20 Under Assumptions 8.2.2, 8.2.1 and 8.2.1, the pseudo-risk of MC-UCB? launched

41t is needed that the function is bounded and that the noise to the function is sub-Gaussian.
5In order to fit with the assumptions of this Chapter, we redefine Vo € N and V¢ < n the upper confidence

bound in paper Carpentier and Munos [2011b] as By = %sz (317t + \/%)
x,t— .t
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on partition N with parameters fmax, b and § is bounded, if n > 4K, with probability 1 — § as

232\[ wi/?’
Lon(Amc-ves) < — + CninZy ZE;\I pveR
x

where Cmin = (4v/2VA + 3 fnaxA) and A = 21/2(1 + 3b + 4 frmax) 10g(412 (3 fnax)3/9).

The bound in this Theorem is slightly sharper than the one in Theorem 2 in Carpentier and
Munos [2011b]. The proof is in Appendix 8.B.2.

We will use in the sequel the bound in this Theorem as a benchmark for the efficiency of an
algorithm that adapts the partition. The aim is to construct a strategy whose pseudo-regret is
almost as small as the minimum of this bound over a large class of partitions (e.g. the partitions
defined by the hierarchical partitioning).

The bound in this Theorem depends on two terms. The first, En—?“, which is the oracle
optimal variance of the estimate on partition N, decreases with the number of strata, and more
specifically if the strata are “well-shaped”. On the other hand, the second term, »_ %,
increases when the partition is more refined. There are however two extremal situations for this
term, leading to two very different behaviors with the number of strata. If the strata have all

1/3
w23 Ky

zeN pa/3 = /3

(and this is the bound reported in Carpentier and Munos [2011b]). Now if the partition is very

the same measure %N where Ky is the number of strata in partition N, then >

localized (i.e. exponential decrease of the measure of the strata), then whatever the number of
2/3

strata, >, oy 247 is of order O(#), and the number of strata Ky has no more influence than

a constant. This bound is thus more refined than the one in Carpentier and Munos [2011b], and

is thus more suitable to really adapt to the trade-off in terms of shape and number of strata, for

building the optimal partition of the domain.

8.3 A first algorithm that selects the depth

8.3.1 The Uniform Sampling Scheme

We first describe what we call Uniform Sampling Scheme (USS). We will use it for the two
algorithms that we describe in this Chapter.

We design this sampling scheme because the algorithms we propose need to be able to divide
at any time each stratum. A desirable property is then that, at the moment of the division,
the number of points in each sub-stratum is proportional to the size of the sub-stratum. This
means that we need to sample uniformly on the domain, almost in a low-discrepancy way.

The proposed methodology is the following recursive procedure. Consider a stratum Xy, 4,
indexed by node [h,i] and that has already been pulled according to the USS ¢ times. It has
two children in the hierarchical partitioning, namely [h+ 1, 2i] and [h+ 1,2i+ 1]. If the number
of points in each of these nodes is not equal, e.g. Tjn41,2i < T]p41,2i+1], We choose the child that
contains the smaller number of points, e.g. [h + 1,2i + 1], and apply USS to this child. If the
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number of points in each of these nodes is equal, i.e. Tjp 112 = T{ny1,2i41), choose uniformly at
random one of these two children, and apply USS to this child. Then iterate the procedure in
this node, until for some depth h + [ and node j, one has T}, 5 = 0. Then when T}, 5 = 0,

sample randomly a point in stratum X, 1, according to Vx| This provides the (¢ + 1)th

htl,4]"
sample.

We provide in Figure 8.3 the pseudo-code of this recursive procedure.

X —USS(p,j])
if T[p+1,2j] 7£ T[p-‘rl,?j-i—l} then
return USS( arg min(T[ijLgﬂ y T[er172j+1} ))
else if T[p+1,2j} = T[p+172j+1] > (0 then
return USS([p + 1,25 + B(1/2))
else

return X ~ VX (s
endif

]

Figure 8.3: Recursive USS procedure. B(1/2) is a sample of the Bernouilli distribution of
parameter 1/2 (i.e. we sample at random among the two children strata).

An immediate property of this sampling scheme is as follows. If stratum [h, 7] is sampled ¢ times
according to the USS, any child strata [p, j] of [h, 1] is such that T, ;; > w—itj > Z“Z—Zt -1
We also provide the following Lemma providing properties of an estimate of the empirical

mean when sampling with the USS.

Lemma 21 Let Xy, ) be a stratum where one samples t times according to the USS. Then the
empirical mean [, ; of the samples is such that
2
hs)

Eliinq] = ppa,  and Vi) < o

The proof of this Lemma is in the supplementary material (Appendix 8.A)

Note also that this Lemma also holds for the children nodes of [h, 7] (for a child [p, j], it holds
with L%j points, since the procedure is recursive).

This sampling scheme is thus efficient. It is meaningful to write the pseudo-risk on a partition
where the samples in each node are collected according to the USS, since the variance of the
estimate of the mean constructed with this sampling scheme is smaller than or equal to crude

Monte-Carlo on the stratum.

8.3.2 The Deep-MC-UCB algorithm

We propose a first algorithm called Deep-MC-UCB. The aim of this algorithm is to, at the same

time, construct a good partition of the domain and allocate properly the points in it.
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At each time t, algorithm Deep-MC-UCB updates a partition N; of the hierarchical par-
titioning. It performs a test for each node [h,i] € Ny and for any [ > 0 (if such an [ exists)

such that Tjp, ;¢ = LA%HQ/SJ, Le. at any depth h + 1 such that all nodes in By, ;; contain
h+1

LAwif’an/?’J points (A is defined in Figure 8.4). The purpose of the test is to decide whether
the bound on the regret of algorithm MC-UCB would be smaller for partition N, or for some
more refined partition Ny \ [A, ] U By q,-

At the same time, the samples are allocated among the strata in N;. This is performed
by using similar ideas than for algorithm MC-UCB in paper Carpentier and Munos [2011a],
i.e. allocating the samples using ideas of upper confidence bounds. In each stratum of N, the
algorithm samples according to the USS.

The upper bounds By, ;) on the standard deviations for stratum [h,i] € N, defined in
Figure 8.4, are based on the empirical standard deviation oy, ;. The standard deviations are

computed using the first ¢, = LAw,QL/ 32/ 3| samples only:

1 th 1 th
O] = | 3 > X — & > X (8.4)
= =1

where X[, .5 is the j-th sample in leaf [h, ].
After n rounds, Deep-MC-UCB returns the empirical mean fi,, = Z[hﬂ-] eN,, Whil{n,q),n, Where

1 Tip,j1,n
Bl = Toim ; Xina b (8.5)

is computed with all samples collected in stratum [h,i], at the end of the algorithm.
This algorithm takes as input three parameters, namely b and f,.x which are linked to the

function F', 6 which is a small probability, and the hierarchical partitioning of the space 7.

8.3.3 Main result

We have the following result for the pseudo-risk of algorithm Deep-MC-UCB.

Theorem 21 Let Ni™ = Bio,o,zr be the partition containing all nodes of depth H*. Under
Assumption 8.2.2 and 8.2.2 for the strata, and 8.2.1 and 8.2.1 for the function F', one has that
the risk of algorithm Deep-MC-UCB is such that with probability 1 — §

N2 w2/? 52 0. K3 K3\
< ZNn . }: z < : N LN 2 ( NH )
Ln < n + Cninx, < nd/3 = Hgl—{-loo n  ACmax v n4/3 + 4Cax n4/3 ’

rENR

where Crpax = (C’min + 6\/2), Cin = (4\/§\/Z—|— 3fmaXA) and A defined in Figure 8.4.

The proof of this result is in Appendix 8.B. This result states that, up to a multiplicative
constant, algorithm Deep-MC-UCB performs almost as well as algorithm MC-UCB run on the
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Input: 7, b, fiax, and 6.

Initialize: A = 2\/2(1+ 3b + 4 fimax) 1084102 (3 fmax)?/0), H = | 1283 ma)’n (ligmx |

and Cpin = <4\/§\/Z + 3fmaXA>. Pick LAnz/?’J points in [0,0] according to
USS([O, 0]) NLAn2/3J == [0, O]
fort = |[An?/3| +1,...,n do

Compute for every [h,i] € Ny, and for [ such that h+1 < H, Tjp 34 >

Tt = L T Lp2/3| the quantity Clhi)i = WhO i) — E[h+l,i’]eB[h,i Wh 410 [41,57]-
h+l
w23

if 37, [h, 4] € Ny such that Cpp, 5, > (Cmin + 3\/2) Z[h-l-l,i’]eB il n}ILZ’f then
Nit1 =NeU B \ [hs 1]
else
Nip1 =Ny
end if
Compute By, 441 = T[I,Ui( Oh,i) + %) for each leaf [h,i] € Nyy1
Choose a leaf [h, i] such that [h,i]i1 = arg max, ;) Bis )41
Pick a point according to USS([h, i]¢+1)
end for
Output: i, = Z[h’i]ej\f” whﬂ[h,i},n

Figure 8.4: The pseudo-code of the Deep-MC-UCB algorithm. The empirical standard devia-
tions and means G[hﬂ-] and ﬁ[hﬂ’]m are computed using Equation 8.4 and 8.5. The USS algorithm
is described in Figure 8.3.

best uniform partition (see Theorem 20, and note also that for any H*, since each stratum in

NH" has depth H*, we have > peNH* w§/3 = K3 ). The ideal H* depends on the function and
1/3

NH*
22 * * o,
2T is small), but not “too” large (so that njiiz is not too large).

will be large (so that

The test in Deep-MC-UCB: Algorithm Deep-MC-UCB updates at each time ¢ the partition
N; by performing a test on each stratum. The test for node [h,i] € N; consists in checking if
the upper-bound for the pseudo-regret of MC-UCB is smaller on N; or on Ny {J By, \ [h,1].
The depth [ at which we test increases with Ty, ; ;. It is chosen small enough so that there are
enough points in the nodes of By, ;; (in order for the test to be accurate enough). It is also
chosen large enough so that the strata in By, ;1 ; do not contain more points than what algorithm
MC-UCB run on Ny By, \ [h, 7] would pull in them. In this way, we guarantee the results
of Theorem 21, i.e. that Deep-MC-UCB is up to a constant as efficient as MC-UCB run on the
best uniform partition. Note however that the partition N,, returned by the algorithm is not

uniform.

Comparison only with uniform partitions: We believe however that algorithm Deep-MC-
UCB is not as good as algorithm MC-UCB run on the best partition of the domain (possibly
of heterogeneous depth). Indeed, Deep-MC-UCB considers for opening only sub-partitions of
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an open node that have uniform depth. This could be changed by considering for any N the
sub-partition By, ; n instead of testing only for By, ;) ;. However, the moment when one decides
to test whether it is, or not, opportune to split a node depends on the depth of the node. It
implies that it is efficient to test simultaneously nodes of same depth, e.g. nodes of the form
Bip,i,i- It is however more complicated for nodes of heterogeneous depths, e.g. By, ;1 n-

The main issue is that Deep-MC-UCB explores uniformly in each stratum [h,i] € Ny, whereas
it is possible that the sub-strata of stratum [h, i| have heterogeneous variances. The reason why
this is a problem is the following. It is possible that there is a stratum [h, ] such that its standard
deviation is almost the same as the sum of the standard deviations of its two children-strata,
but also such that the two standard deviation of the children-strata are very different from each
other.

Set for example h = 0, pj1 0 = pp1,1) = 0, and o3 = 1 — n~/6 and oy =1+ n~1/6 in that
case |079,0] — (%0[170] + %0[1,10[ = # and |%a[1,0} — %0[1,1]\ = #. In that case, stratum [h, 7]
should not be divided at depth 1. But maybe stratum [1, 1] should be divided at a higher depth.

In that case, it is necessary that there are not too many points in stratum [1, 0].

In the next Section, we describe another algorithm that takes into account these two issues.

8.4 A more efficient strategy: algorithm MC-ULCB

We pointed out in the comments on the results of the last Section that algorithm Deep-MC-
UCB’s main weakness is the following: if two children nodes have very heterogeneous variances,
it allocates the same budget to their exploration unless it decides to open them. It is important

to overcome this problem.

8.4.1 The MC-ULCB algorithm

We describe now the Monte-Carlo Upper-Lower Confidence Bound algorithm. It is decomposed

in two main phases, a first Exploration Phase, and then an Exploitation Phase.

The Exploration Phase uses Upper and Lower Confidence bounds for allocating correctly
the samples. During this phase, we update an Exploration partition, that we write NY, and that
is included in the hierarchical partitioning. When, in a stratum [h,i] € N§, there are more than
LAwi/?’nQ/gJ samples, we update Ny by setting Ny, ; = N U[h + 1, 2i] U[h + 1,20 + 1] \ [h, 1]: we
divide [h, 4] in its two children nodes. To each node [h,i] € Nf corresponds a value 7, ;. When
[h,i] is divided in ([h + 1,2i], [h + 1,27 + 1]), we associate the value 7y, ;) for j € {24,2i + 1}
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(and j~ the other) defined as

w2/
w23
Wh410hy1,5] + VA Vel ~ ~ Whyq
ht15) = ( WOhG )T[h,ﬂﬂ{whﬂa[hﬂ,j-] — Wh410(t1) > 20V A Js }
w23
Whe 2/3
Wh410 [A+1,4] — € nl/3 ) ~ ~ Why1
o = g < =2
( WhGn T HWh+107h41,j-] = Wh10(nt1,5] < cVA 1/3}
w2/
_ /wp41min (U[h+1 ) Olht1,5 ]) + /A T 1
+ min < ; 5) (i)
th[h,ﬂ
W23
~ ~ Whi1
X W 4157 41,5-] — Wh1G g1 < 2cVA 173 h (8.6)
where j~ is the complementary of j in {2i,2i + 1}, ¢ = (82 4+ 1)VA, & = Tl0,0) + 1/3 , A=

20/2(1 1 3b + 4 fmax) 108(An2 (3 frnax)3/0), H = L% | +1, B = 38v2Ac(1 + L) and

C! .. = max(B,14HcVA) + 2v/A. We initialize the r by (0,00 = Of0,0] — 21%. The standard
deviations 8[h+1,j] is computed as in Equation 8.4. We also introduce another estimate for
the standard deviation in this Equation, namely &y, ;, which is computed with the first 25 =
QLAwi/gnQ/?’J points (and not with the first ¢, points as o[ ;)):

2t 2t
1 h h

- 1
Olhg) = EZ( ik~ ¢ > X (8.7)

k=1 ’f’l

We use this estimate for technical purposes only.

This value of 7, ; is either a (proportional) upper, or a (proportional) lower confidence bound
ON Wij41,j]0(h+1,5]- 1t is a (proportional) upper confidence bound for the stratum [h, j] that has
the smallest empirical standard deviation, and a (proportional) lower confidence bound for the

other. If the quantities w1 j0(h11,2i and W41 510 [h+1,2i41] are too close, we set the same
Th,i]

value to both sub-strata. The points are then allocated in the strata according to T

T[h i)

A point is allocated in stratum [h,i] € NY if > 42 . All the points are allocated inside each

stratum [h, ] € N¥ according to the USS procedure

The Exploration Phase stops at time T, when every node [h, ] € N is such that % < %.
We write TJ7 the tree that is composed of all the nodes in N7 and of their ancestors. The
algorithm selects in this tree a partition, that we write N, and that is an empirical minimizer

(over all partitions in T%.) of the upper bound on the regret of algorithm MC-UCB.

Finally, we perform the Exploitation Phase which is very similar to launching algorithm
MC-UCB on N,. We pull the samples in the strata according to the USS-A sampling scheme
(described in Figure 8.6). The idea of this scheme is that it is crucial, if two children of a node
have obviously very different variances, to allocate more samples in the node that has higher

variance (in order to explore this node enough). But it is also necessary to be careful and have
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an allocation that is better than uniform allocation, as it is not sure that it is a good idea to
split the parent-node. In order to do that, we construct a scheme that uses upper confidence
bounds for the less variating node, and lower confidence bounds for the most variating node: we

use the rp, ; that were defined for this purpose. We illustrate this concept in Figure 8.5.

Strategies in are
N f |
umber of samples less efficient than the
optimal number of samples 0ptima| aIIocation, but .
E—— more than the uniform X :USS'AQPJ])
if {[p+1,2j],[p+1,2j +1]} € TG
uniform number of samples
4 I then
uniform number of samples
return
s (Tipt1,25]  Tlp+1,2541]
_ USS( arg min (212
optimal number of samples ( & (T[P+1,2j] ’ T[P+172J'+1] ))
else
return X = USS([p, j])

Figure 8.5: With high probability, the children Figure 8.6: Recursive USS-A procedure.
of each node in N,, are sampled a number of time
that is in the gray zone by MC-ULCB.

We now provide the pseudo-code of algorithm MC-ULCB in Figure 8.7

8.4.2 Main result

We are now going to provide the main result for the risk of algorithm MC-ULCB.

Theorem 22 Under Assumption 8.2.2 and 8.2.2 for the strata and 8.2.1 and 8.2.1 for the
function F, the pseudo-risk of algorithm MC-ULCB is bounded with probability 1 — 9 as

(wp0)? .| 2% , w§/3 9 wf/?’ 2
Lo(Apc-vLos) < ) o Smin | 8 Gl Dy > L+ Cmax< S :17/3> ’
z,n n n n
zeNg O yeN yeN

where min means minimum over all partitions of the hierarchical partitioning, and C} . <
320\/(1 + 3b + 4 fimax) log(4n2(3fmax)3/6)(1/0[070] +1)(8079,0) + 1) log ((3fmax)3n).

The proof of this result is in Appendix 8.C.

8.4.3 Discussion and remarks

Algorithm MC-ULCB does almost as well as MC-UCB on the best partition: The
result in Theorem 22 states that algorithm MC-ULCB selects adaptively a partition that is
almost a minimizer of the upper bound on the pseudo-risk of algorithm MC-UCB. It then
allocates almost optimally the samples in this partition. Its upper bound on the regret is thus

smaller, up to additional multiplicative term contained in C’ than the upper bound on the

max?

regret of algorithm MC-UCB run on the best partition of the hierarchical partitioning. The
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Input: fu.x, b and 9.
Initialization: Pull [An*?] — 1 by USS([0,0]). Compute = 5y q) + Sma. Ny =
{[0,0]}. i
Set ¢ = (88 + VA, A = 2./2(1+ 3b+ 4fmax) log(dn2(3fmax)3/0), H =
37‘[,
L%J 11, Clyay = max(B, 14Hey/A) + 2v/4, and B = 38v2Ac(1 + 1),
Exploration Phase: i
while 3[h, i] € N§|% > 4 do
Take a sample in USS([h, i]).
if 3[h,q] € Nf]{TWLt — 2 Aw2 23| w5y g0 > 6HeVA
Ny =NyUh + 1, 2i U[h + 1,20 4+ 1]\ [h, 1]
Compute 7, 11,2 and 7p11,2i41]-

W23
s h < H} then

end if
end while R R 2
Select N, such that Xy, = arg minyege (EN + (C! o — VA) D oyen %)
T=t
Exploitation Phase:
fort=T+1,...,ndo

Compute [ ;) for any [h,i] € N,

Compute By, ;¢ = T[h;”iit_l (8[;17@1 + n‘l%) for any [h,i] € Ny,

Choose a leaf [h, i]; such that [h,i]; = arg maxy, jen, Bipj¢
Pick a point according to USS-A([h, ;).

end for

OUtPUt: ﬁn = Z[h,i]GNn whﬁ[h,i},n

Figure 8.7: The pseudo-code of the MC-ULCB algorithm. The empirical standard deviations
and means [, ; and Jif ;) , and Gy, ;) are computed using Equation 8.4, 8.5 and 8.7. The value
of 74 is computed using Equation 8.6. The USS algorithm is described in Figure 8.3 and the
USS-A algorithm is described in Figure 8.6.

issue is that CJ .

is bigger than the constant Cp, for MC-UCB. More precisely, we have

C} ax = Cimin X C'log ((3 fmax)?’n), where C'is a constant depending of fiax and b (see bound on
C} .x in Theorem 22). This additional dependency in log(n) is not an artifact of the proof and

appears since we perform some model selection for selecting the partition N,,. We do not know
whether it is possible or not to get rid of it.

The final partition N,: Algorithms Deep-MC-UCB and MC-ULCB refine more the parti-
tion N, that they build in parts of the domain where splitting a stratum [k, i] in a sub-partition
Binqv is such that wy, 07,5 — Zmeﬁ[h,im w, 0, is large. Note that this corresponds, by defini-
tion of the o 5, to areas of the functions where g and s have large variations. We do not refine
the partition in area where it is not the case, since it is more efficient to have also as few strata
as possible.

Results with the sum of weight or with the number of strata? We express the

/

bound on the pseudo-risk in Theorems 20, 21 and 22 in terms of erNn wi % This quantity is
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bounded by K}L/ 3 where K, is the number of strata in N,,. Note also that Ké/ 3 erNn wf/ 3

when all the strata have the same measure. But when the measures of the strata are heteroge-
neous, these two quantities can be very different. Consider a “flat” function with a very localized
noise,e.g. consider g(z) = 0 and s(z) = aI{[0, (3)"]}(z) and assume that the hierarchical parti-
tioning is the intuitive dyadic tree as illuSQtrated in Figure 8.1. Then the optimal partition is such
that ¥, w?/® = S0 (L) = 1‘1@(3;';“) < g, and Ky = howhich can be arbitrarily
2 2

1 2
large. The link between the performances of the algorithm and the number of strata is thus not

direct.

The sampling schemes: The key-points in this Chapter are the sampling schemes. Indeed,
we construct and use a sampling technique, the USS, that is such that the samples are collected
with low discrepancy® on the domain, and provide an estimate such that its variance is smaller
than the one of crude Monte-Carlo. This scheme is sufficient for algorithm Deep-MC-UCB as
the strata are refined at uniform depths. But is not sufficient for building algorithm MC-ULCB,
and we therefore build a new sampling scheme, USS-A. This sampling scheme ensures that,
with high probability, if two child-nodes have very different variances, then the one with higher
variance is more pulled. At the same time, it ensures that if finally the decision of splitting the

node is not taken, then the allocation is still better than or as efficient as uniform.

Conclusion

In this Chapter, we presented two algorithms that aim at integrating a function in an efficient
way.

Deep-MC-UCB builds an estimate for the integral whose pseudo-risk is smaller up to a con-
stant than the pseudo-risk of MC-UCB run on the best uniform partition. MC-ULCB improves
the performances of Deep-MC-UCB and returns an estimate whose pseudo-risk is smaller, up to
a constant, than the minimal pseudo-risk of MC-UCB run on any partition of the hierarchical
partitioning. The algorithm adapts the partition to the function and noise on it, i.e. it refines
more the domain where m and s have large variations. We believe that this result is interesting

since the class of hierarchical partitioning is very rich and can approximate many partition.

6 Although the samples are chosen randomly, the sampling scheme is such that we know in a deterministic and
exact way the number of samples in each not too small part of the domain.
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Appendices for Chapter 8

8.A Proof of Lemma 21

Assume that stratum X ; has been sampled ¢ times according to the USS. Let (Ay,...,4;) €
{0,1}! be the (uniquely defined) decomposition in basis 2 of t, i.e. Z;ZO A2t =tand 4 = 1.
This implies by Assumption 8.2.2 and by definition of (A,),, that Z;:O AP% = t. We denote
by D; = (X1,. .., X;) the set of the ¢ samples in stratum X, ;-

By construction of the USS, there are at most two and at least one element of D; in each
stratum of By, ;1;. For all j < 2hHl _ 1, we write X;; the first sample in stratum [h + [, j].
Conditionally to the number ¢ of samples, each of these samples is pulled randomly in stratum
[h +1,j] according to vy, ..

Let us now consider the largest p < [ such that A, = 1. Let us consider D, = D; \
{(Xl,j)[thl,j]eﬂs[h’i]’l}. By construction of the USS, conditionally to the knowledge that there is
a re-numeration of the samples such that V0 < j < QZ,XM ~ VX (and thus conditionally
only to the number ¢ of samples since the fact that there is a re-numeration such that V0 < j <
2! Xi1.j ~ Va1, follows deterministically from the budget t), there are at most two and at least
one element of D, in each stratum of By, ;1,,. We note X, ; the first sample. By construction of
the USS and conditionally to the number ¢ of samples, each of these samples is pulled randomly
in stratum [ + p, j] according to vy, .

We can continue this induction for every p such that A, = 1. We have, at the end of the
induction, relabeled (trough the relabeling that we presented) every sample (in D;) by X, ;.
We know that conditional to the number ¢t of samples, Vp/A, = 1, and V0 < j < ohtp _ 1,

Xpj~ vy ’ and also that these relabeled samples are all independent of each other (although

[p.J
the relabeling of each sample is random and is not independent of the other samples).

The empirical mean fif;, ; on stratum [k, i] thus satisfies

t l

Z S Z :ULZXPJAP-

Wyt
—1 p=0 P [hip1€B i p

=)
=
~ | —
>
I

l prh
p=0 w,

Since by construction ) = t, the empirical estimate of the mean thus satisfies

l l

~ wp, w wp,
E[M[h,z‘ﬂ = — Z *p/ﬁ[hw,j]Ap = Z 7/‘[h,i]Ap = M-
— Wyt : wp, — Wyt
p=0 [P+ J1€Bh,i1,p p=0
Note now that the variance of this estimate is such that
L2 w Low U[2h ]
~ h P\2 2 p 2 )i
Viapal =Y D 2 04 < 307ha Ap <
wit < wp, wpt t
p=0 P [htpjl€B(n i), p=0
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8.B Proof of Theorem 21

8.B.1 An interesting large probability event

Lemma 22 For a stratum X, ; of the hierarchical partition, write (X[h@],o» .. .,X[W],n) the
samples collected by USS in stratum X, ; (or by USS in a stratum of smaller depth). Consider

the event

n 1 9llog(t)| —1 1 9llog(t)] ) T
<= QHQ{’ 2lloe(®)] 2) (X[hﬂ,a‘m > X[h,iLa') = T[h] <A\/;},

a= a’=0

log ((3fmax)3n)

where A = 2+/2(1 + 3b + 4 finax) 10g(412(3 fmax)3/6) and H = | Tog(2)

1-9.

|+ 1. Then P(§) >

Note also that for h > H,Vi < 2" — 1, we have

Proof: Probability of the event ¢

Let [h,i] be a stratum of the hierarchical partitioning such that h < H and ¢ > 2. Let
I = |log(t)]. By definition of the USS, we know that for s < 2!, sample X(n,i),s> conditionally to
the 2! — 1 other samples, is sampled uniformly in the stratum X[n+i1,x) where the other samples

are not, and independent of the other samples.

Using the results from Lemma 39, we know that with probability 1 — §, the estimate of the

standard deviation computed with the 2! first samples satisfies

2l—1 ol _1 _
L 1 2 (1+3b + 4V) log(2/0)
’ ol Z (X[h,i},a Y ; X[h,z‘],b> — O[g| < 2\/ 50

a=0

- 2\/2(1 +3b+ ix‘/) log(2/0)

- 2\/2(1 +3b+ 4J;max) log(2/0)

By the definition of H, we know that there are less than 2 x 2 strata in the hierarchical
partitioning of depth smaller than H. Because of the definition of A, we have P({) > 1 — 0.

Characterization of the strata of depth bigger than H

Consider a node [h, ] of depth h > H. As both m and s are bounded by fiax (see Assump-
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tion 8.2.1), then

w[hz]a[hl]—,/ h.i d$+\/ hz\// hl})2dx
[hZ [h,i]

< Wih,i) /JC ernaxd:C + v/ Wih,i] A 4fr%1axdx
[h3]

[hi]

< 3w[h,i} fmax-

As h > H, we have Wiy < (%)H < ( 1 )3% From that we deduce that for h > H,

3fmax
2/3
Wy, .
]
WiniOhil < 173

8.B.2 Rate for the algorithm

We first prove the following result.

Proposition 15 Let Assumption 8.2.2, 8.2.2, 8.2.1, and 8.2.1 hold. For any 0 < 6 < 1, the
Deep-MC-UCB algorithm outputs a partition Ny, and satisfies on &, and thus with probability at
least 1 — 0,

2/3 2/3
w 3
ZqENn q Nn +CmianENn

WpOp _ XN, 29N, Wa__
< + (4V2A + Iy, A) Ve <= vy

Tpn n

where Cpin = (4\/ 2A + ENnA) and

Ty 2 Aps, (0= B( Y wy/*)n??),

q€Nn
where B = %w.
Proof:
Assume that n > 2B )" 4eN,, W 2/3,2/3 (with B = %)'

Step 1. Properties of the algorithm. For a node g € N;;1, we first remind the definition of
By t+1 used in the MC-UCB algorithm

Byi41 = Tq (Uq +VA 1/3 1/3)
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Using the definition of £ and the fact that if node ¢ is in Nyyq, then T, ;41 > LAwg/gnz/?’J,
it follows that, on &

Wq0q
<B < 4 2V A 8.9
Ty g t+1 Tos <Uq + 1/3 1/3) (8.9)

Let t+1 > 2K +1 be the time at which an arm g is pulled for the last time, that is T3, ; = T, , — 1.
Note that there is at least one arm such that this happens as n > 4K. Since at t + 1 arm q is

chosen, then for any other arm p, we have
Bpit1 < By - (8.10)

From Equation 8.40 and T, ; = T;,, — 1, and also since by construction of the algorithm 77 ,, > 2,

we obtain on &

Byiy1 < T, (aq +2v2A 1/3n1/3) (8.11)
Furthermore, since T, < T, ,, then on §
WO, WO,
Bpiy1 > 2L > 22 (8.12)
pit Ty

Combining Equations 8.41-8.12, we obtain on &

WpOp
T) (Tym — 1) <wq<aq+2\/ 1/3 1/3)

,n

Summing over all ¢ such that the previous Equation is satisfied, i.e. such that 1y, > ng/ 302/ 3],

on both sides, we obtain on &

% Z (Tyn —1) < Z wy (aq + 2\/2A1/31/3>
b, n

A Tyn> | Awg/*n2/3 ] qITg.n> w) *n2/3)

This implies

K

WpTp 2/3.2/3 oA —

q q=1

Step 2. Lower bound. Equation 8.13 implies

2\/72 w2/3

WO,
7Py — Ang/?’nZ/B’) < Sy + e ’

Tp7n q
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on ¢, since Ty, — 1 > TT (as Ty > 2). Finally, if n > 24% " w2/3n2/3, we obtain on £ the
following bound

2/3
ZqGN wq/

WpOp ENn
Zr%p + (4V24 + Iy, A) i

8.14
Ty — n ( )

Step 2bis. Lower bound on the number of pulls. By using Equation 8.14 and the fact
that IJ%I > 1 — x one gets

4V2A + Sy, A
Tp,n > AP,ENR (n - ( D ) ( Z wg/g)n2/3> > AP,ENR (n - B( Z w;/3)n2/3)7
N qun qun
where B = @.

Step 3. Proof that n > 2B%" wq/3n2/3 (with B = W > A).

Note first that nodes are incorporated to partition N, only if (because of the form of the

n

test) a node [h, ] is opened up to depth m,

2/3
Wy
WhOh,i] — Z WyOq 2 (Cmin - 2\/Z> Z 1/3 )

TE€Bn,i],m 2€B(ni),m

which implies (by taking into account all opened nodes and going back to the root)

2/3

w.
Wo010,0] — Z WgOp = mln - 2\/2) Z :18/3 s

which itself implies by multiplying by ﬁ
—2vA

DN

Nn €N, " €N,

since X, < woop- This implies, as Za:GNn weo, > 0, to
Cmin — 2V A
n> ( mmE VA) S w3 > B Y W,
Nn ZEN, 2EN,

by definition of B. This concludes the proof. O

8.B.3 Nodes that are in the final partition

Condition for the test on a node [h,i] to be made at depth m

Lemma 23 Lett >0, m > 1 and [h,i] € N;. Assume that h+m < H (H defined in Lemma 22).
2/3 1

Assume also that wy, ;00,5 > 243N, Zwéﬁ[b,i},m wy' 7.
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On the event &, either node [h,i| is not in the final partition, either all the tests on Clny are
performed on the child-nodes of [h,i] up to depth h+m, i.e. Vo € By, 3 m> Ten > Aw§/3n2/3.

Proof: Assume that [h,i] is also in the final partition N,,. Then on £, Proposition 15 together
with the fact that n > 2B( er?\fn 11)313/3)712/3 tells us that

A A _ 1/3Y,.2/3 Wih,i] 9 [h,i]
T[h,z],nz)\[h,z],Nn<n B(z%;nwx )n )2 o n

> A Z w§/3n2/3,
xeB[h,i],m
where the property that wy, ;00 > 24Xy, erg[m,m w?gﬁ# and the fact that Xy, > Xy,
allows to pass from the first to the second line. Because of the definition of the USS, this implies
that for € By, 4 m, there is on § Ty, > Awgzc/gnQ/g. This implies that on &, either node [h, 1] is
open, either the est is made up to depth A + m. [l

Bounds on C[h,i],m,t

Lemma 24 Lett >0, m > 1, and [h,i] € Ny. Assume that the test on Cy ) my is performed
at time t, i.e. Yx € B, ) ms Lo = LAw?;/SnZ/?’J. Assume also that h +m < H (H defined in
Lemma 22). Then on &

|C[h7i},m - (w[h,i]g[h,i} - Z wxax>

IEB[hyz]ym

/
<3 Z VA

SEE

IEB[hJ]’m

Proof:
2/3
Let © € By im- As Tpp > %"2/3 (since there is at least two point in each stratum by
definition of the algorithm) and h +m < H, we know by Lemma 22 that

wAV2 2 Aw2/?

S T
\/ Aw§/3n2/3

By summing over all nodes in By, ;) , one gets

|wxax - wxo-x| <

2/3
Z WyOq — Z Wyoy| < Z wmnl/?)QA

TE€Bn,i,m 2€B(h 4),m z€B(p,i),m

Note also that Tj, 5, = erg[ Tyepn > LAw[h/B’] 2/3|. ‘We thus have in the same way that

h,i],m

2/3
VA '

(@i — Wik < 3
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By combining these two results, we obtain

2/3\/2
~ ~ Wy
|w[h,i]0[h,i] - Z WrOyx — (w[h,i}(’[h,z'} - Z wxo-x)’ <3 Z B

€Bp,i],m T€Bn,i],m—1 €B(n,i,m

As Cppijm = Wi O hyi) — erg[ W,04, We obtain the desired result. O

h,i],m

Nodes that are not in the final partition at the end.

Lemma 25 Let [h,i] be a stratum and m > 1 such that h +m < H. Assume that

2/3

Wy
w[hJ]U[h’i] — Z Wr Oy Z <4\/§\/Z + 6\/Z + 3fmaxA> Z m (8'15)
xe‘B[h,i],m xeB[h,i],m

Then on &, [h,1] is not in the final partition Ny,.

Proof: Note first that if there is no time ¢ < n such that [h,i] € Ny, then [h,i] does not belong
to Ny,.

Let ¢t > 0. Let [h,i] € N such that Equation 8.15 is satisfied.

Note first that as 3 fmaxA > 23y, A, this directly implies that wy, 0,4 > 23N, A erg[w‘m Z%—;j
This leads by Lemma 23 to the fact that on &, either node [h, ] is not in N,,, either the test on
Cln, is done at least up to depth h + m on children nodes of [h, i].

Assume that the test is performed up to depth A + m. Then Lemma 24 implies that on &

2/3\/2
Wz
Clhilm = WhnilOha — D Wa0z—3 Y ——u—

1/3
reﬁ[hﬂ-]m meB[h,i],m n
w23
> (4\/%/2 F 3 fimax A+ 3\/2) > S
JJE'B[h i) n

This means that in that case, [h,i] is open up to depth m on &.

In all cases, on &, [h,i] is not in N,.

Corollary 7 Assume that on &, [h,i] € Ny,. Then for m > 1 such that h+m < H, we have on
3

2/3

Wy
WO — Y Walz < (4\/5\/2 +6VA+ 3fmaXA> 3 o
TEB(n,i],m 2€B(h i)m

Nodes that are not open at the end.
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Lemma 26 Let [h,i] be a node such that Ym > 1

2/3

/ Wy
w[hﬂo[h’i] — Z WyOgp < (4\/§ A+ 3fmaXA> Z W (8.16)
2€Bh,i),m TEB [ i,m

Then on &, if node [h,i] is reached at time t, then it is in the final partition Ny,.

Proof:

Let m be such that h +m < H. Let ¢ be the time (if it exists) when the test on C, ;) s is
performed. Then by Lemma 24, we know that on &

2/3
wy TV A
Clhijm < WihiOlhi) — Z Wy0p +3 Z B
xeB[h,i],m IEB[h,i],m

2/3

< (4\@\/2 F 3 o A+ 3\/2) y o=

nl/3"

IE'B[h’i]ym

This means that if 3¢ such that [h,i] € N¢, then on £ [h,i] belongs also to N,,. O

Corollary 8 Assume that on &, 3t < n such that [h,i] € Ny, but [h, 1] is not in N,,. Then on

2/3

w
Wih,i)Oh,i] — Z WyOg 2 (4\/5\/2“‘ 3fmaxA> Z #
xEB[h,i],m xeB[h,i],m

8.B.4 Comparison at every scale

Let N,, with ¥y, be the final partition.

More refined scales

Lemma 27 Let [h,i| € N, be a stratum in the final partition. Then for any h* such that
H > h* > h, we have on xi

2/3
Wy
Wih,i]9h,i] < Z W0z + Crmax Z m

TEB(p i), n*—h TEB(n i), n* —h

where Ciax = (4\/5\/2 +6vVA+ SfmaXA) .

Proof:
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As [h,i] € N,, then by Corollary 7, on &, we have wy, 0 — erB[h o WOz < <4\/§\/Z—i—
6V A+ 3fmaXA> Zwe%[h o n1/3 This implies that

2/3
Whioh S Y Wa0u + (4\/5\/2 +6vVA+3 fmaXA> 3 “’f -
TEBn,i],m TEBh,i],m
W23
< Z W0z + Crmax Z f/3 .
2E€B i],m TEBn,i),m
where Cynae = (4\&\/2 F6VA+3 fmaxA). 0

Less refined scales

Lemma 28 Let [h,i] € Ny, be a stratum in the final partition. Then for any h* such that h* < h,
there exists ' < h* and k such that [h', k] is an ancestor of [h,i] and such that all nodes from
N, issued from W', k] have higher depth than h*. This node [h', k| is also such that, on &,

too W23
Y
> Y met G Ay Y Y
m= OyG'Bh/k] N Nn m= lye‘Bh’k] NNn
2/3
Wy
< Z W0z + Crnax Z R
nl/3
IeB[h/,k],h*fh’ IEB[h’,k],h**h/

where Crin = 4v2V A + YN, A (as Cpax — 6V A > Chnin )-

Proof: Let [h,i] € N,, be such that h > h*.

Let [h*, j] be its ancestor at depth h*. As it is opened (as [h,i] € N,,), it means that there
exists a node [h/, k] such that A’ < h* and which is an ancestor of [h, ], and that was open at a
time t up to depth A’ + L where b’ + L > h* (and b’ + L < h). As node [I/, k] has been opened
at time ¢ up to depth A’ + [, it means by Corollary 8 that on &,

2/3
Wy
Wy kO k] — Z WepOg > (4\@\/2 + 3fmaxA) Z 1/3 (817)
zeB[h’,k],L Ieﬁ[h’,k],L
2/3
Wy
> (Cmax - 6\/Z) Z n1/3 . (818)
IEB[h/’k]’L

Also by definition of the algorithm, every node of By 41, is either in N, or opened by the
algorithm, so all nodes issued from [h’, k] have higher depth than h*.
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Let now x € By g - Let my be the depth at which it is opened by the algorithm (if it is

not opened anymore, m, = 0). Again by Corollary 8, on &,

2/3

WypOp — Z Wyoy > (Crmax — 6\/2) Z wi’/g

yEBz,mz ye‘Bz,mz

By adding this Equation, for every x € By 4,1, to Equation 8.17, we obtain on §

WO~ D, D WOy

T€B s 1), YEBa,me
w23 2/3
>(Cinax = 6v/4) Z nf/s + (Cinax = 6V/4) Z Z n1/3
z€B s 1)L z€B s 1), YEBa,me
2/3

SR YD ol

CCEB[h/, k],L yEBa: mg

By iterating this process in the same way until we reach the leafs of N,, we obtain (by

induction) on &

Wy k)O[h! k] — Z Z Wy Ty

m=0y€B 1,1 11 m NNn
w2/3
hat’
>(Crnax — 6 Z > i (8.19)
m= 1y€3[h/Y l,m m (1 Nn

Assume that ' < h*. As node [h/, k] is not opened before depth A’ + L > h*, we have by

Lemma 27, on &,

2/3
Wy
Win' KO k] — Z wz05 < Cpax Z REVER (8.20)

TEB s kg nx ! TEB s kg nx !

By putting together the results of Equations 8.20 and 8.19, we obtain on &

+o0 w2/3
Yy
S Y untCameVAY Y 7
M=0y€B 1/ 11 m NNn M=1y€B s 1) m NNn
2/3
Wy
< g W0z + Crmax E VER
xeB[h’,k],h*—h’ xeg[h’,k],h*—h’

and note that all nodes in N,, issued from [h/, k] have higher depth than h*.
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Bound on ¥y, up to depth H Let us consider a depth h* < H and the partition at depth
h* that we denote by N*".

Let us consider first a stratum [h, ] € N, such that h > h*. For each node [h,i] € N,, with
h > h*, let [W, k] [h,i be defined as in Lemma 28. Let NT be the set of non overlapping node of
minimal depth made by all nodes [, K]y 4, i.e. Nt = {[h’,kz][hﬂ : [hyi] € Np, h > h*,V[p,j] €
N, p > h*, [W, K], 51 is not strictly parent of [I, k], z]}. Note that by Lemma 28 and also by
construction of Nt every node [h, 7] issued from a node in N and that belongs to N,, is also such
that h > h*. This implies that the strata in N cover the same space as {[h,i] € N,,/h > h*}

and do not overlap.

From that and Lemma 28, we obtain on &

w2/5
T
g Wg0g + Chi E

. YT min ' n1/3
[h,i]ENR /h>h* [h,i]ENR /h>h*

W23
< WyOx + E Cmax E W (821)
h’ k]€N+ :L“E'B[h/ K], h* —h! [h’,k]eN"F xe‘B[h’,k],h*—h’

Let us now consider a node [h, i] such that h < h*. We have for this node by Lemma 27 that

on ¢
W23
x
Wh,i]|Oh,i] < Z Wz0z + Chax Z PRVER
TE€B(pi),h*—h TEB(n i) n* —h
w?/®
and by just adding Cmin%, we have on &
h w h
Wih,i)Oh,i] + Chin [1/;} < Z Wz + Chax Z T/?’ + Ciin [1/;]
2€B(pi),h*—h ZEB (i), n* —h
w2/3
< Z W0z + 2Cmax Z %
€Bpi),hx—h TEB(n i), n* —h "
We thus have by summing on all strata in N,, of depth smaller than h* that on &
23
Yl
Y whgomat Y, Cumm /3
[h,i]€EN, /h<H [h,i]EN, /h<H
w2/3
C Y Y wme2 Y w YU 2
[h,i]€Nn /h<H z€Bp i), 11 —n [h,il €N, /h<H 2€B i H-h
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Finally, note that on the nodes [h,i] € N,, such that h = h*, we have on &

W23

Wihi)

Yo wpgomagt+ Y, Cain—pg 13
[h,i]EN, /h=h* [h,i]EN, /h=h*

2/3

Wy, -

[h.3)
< D uwpaomat ) Comax 73 - (8.23)
[h,i]ENp /h=h* [h,i]ENp /h=h*

Now note that (i)

N, = {[h,i] e Ny /h > h*}U{[h,z’] € Ny /h < h*} U {[h,i] €N, /h = h*}

is a partition and that (ii)

*

Nh:( U {xegwﬂﬁuwDLJ( U {$€memmDLJ“MH€NMh=hﬁ

[W K]eENT [h,i|€Ny, /h<h*

is also a partition as Nt is a non overlapping set of nodes that cover the same space as {[h,i] €

N, /h > h*}. We thus have by using the results of Equations 8.21, 8.22 and 8.23 that on &, for
h*<H

2/3 2/3

3 weos+ Couin Y :f/g < 3 weou + 20max Y wf/g. (8.24)

[h,i]ENy, [h,i]ENR TENh* zENh*

Global bound on Xy, Let us consider a depth h* > H. Let X« ; be a stratum of N and
[H, k] be its ancestor at depth H.

2/3

2/3
Note first that by Lemma 22, we have wiy gopus < —174 < 2Cmax Z%B e —
w?/3 23 w2/3
Wig k] Wi, k]
Crin—ij5 » a8 Zmeg[H o H i > 15 and 1 < Cpin < Cax. Since er% g W0z 2 0

this directly implies

w3

WP W23
WH,k|O[H,k] + Cmin—77% nl/3 < Z Wy0y + 2Cmax Z /3"

T€BH k) b —H TEB(H k], h* —H

By summing on all strata of N¥, we get

w2?
Yla k)
> Wik + Cuin )~
n
xeNH reNH
w2/3
xr
<2 2 woetUm )
reNH xeB[H,k],h*—H zeNH IGB[Hk h*—H
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Finally, using Equation 8.24 and the previous result, we have

2/3 2/3
Wy . Wy
ENn + Chin E nl/3 < hIP%I;I [ E Wz0z + 2CHhax § n1/3 :|
[h,i] €Ny, TENh* TENh*
W23
. X
< min [ENh* + 2Chax E n1/3}

rENR*

— min |Sue 420, Nh*] 8.25
h*H<u—|{loo[ Nk + maxn 9 ( )

. ; h* 1
as every stratum in N have same measure =

Final regret bound We have because of Equation 8.47 on £ for any node [p, j] € N,, that on
£

. S ~ 2/3 2/3
—=p~p < jS
T p” + (4V2A + By, A) /3 < —= 4+ Chin z;[: Vs

This leads because of Equation 8.25 to, on &

2/3 1/3
WO YN w I K -
p¥Dp n x : N N
Al S - g R E < min + 2Chax—= | .
Tom — n  Cmin = ni/3 _h*<+oo[ n A/
x n

By summing over p and using once again Equation 8.25, one obtains for the pseudo-risk of

the algorithm on &

Wy O 232\; w23 Yy Kl/h3
_ zVx n . T . Nh* Nh*
L, = Z T < T + C&mnENn Z 4/3 < min [ + 2Chax nAl3 ] ZNn

zeN, " TEN, hr<too | T
<, (B2 2 ] )
< i [E e
+4C§1ax(i§//§ )2 .

8.C Proof of Theorem 22

8.C.1 Some preliminary bounds

Let ¢ = (8% + 1)V/A. Note that ¢ > 1.
Let [h,i] be a stratum that is explored during the Exploration Phase, and split in its to
children.
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2/3
This implies that w0y, > GHC\/Z%. By definition, for j € {2i,2i + 1}

w23

w23
wh+10[h+1 ] + C\/Z ’{731 ~ ~ Whi1
15 = ( WOhG )T[hﬂﬂ{wh+1f’[h+1,r] ~ Wh410(1) = 20V A nl/3 }
\F fztfl 2/3
Wh410(p41,4] — € SVE ~ ~ Whyt
i < ) 1 - 1< —2eVA
th[h,z} T'[h,i] {wh+10[h+1,g ] — Wh410[h+1,5] ¢ 1/3}
2/3
. (Wh+1min (U[h+1,j]a Olh+1,5~ ) + VAT 7731
+ min ( wh&[h ; ) T'[h,i]
W23
~ ~ Wht1
X H{‘wh+1‘7[h+1,j*] — Whi10[p41,5]] < 2eV/A 173 2

where j~ is the complementary of j in {2i,2i + 1}. Note that the three indicators used in the

definition of r form a partition of the domain.

Lemma 29 If on £ a node [h,i] has two children [h + 1,2i] and [h + 1,2i + 1] that have been
explored by the algorithm, then T, 1 2 + ripy1,2i41) < Tihyi-

2/3
Gln1gFeVADEL
Proof: This is straightforward from the definition of r as for j € {2i,2i+1}, (whﬂg[h;lg[h; nl/3 )r[h,i]—i—
w2/3
(whﬂalhﬂfr‘:f %’1) <1 O
WhOh,q],¢ -
Lemma 30 For any stratum Xy, 5, if v of depth smaller than H is defined then on §
(2H — h) wi? (H + 2h) wh?
- ~ i,
¥ (w[;” C\/> 1/3 ) < Tlha) < I (w[hﬂa[hyi] +cVA 173 )
2/3
Proof:  The proof is done by induction. Note first that rig o = wjo 00,0 + ¢ At[lo/’g]. The

result is thus satisfied for node [0, 0].
Assume that the property of Lemma 30 is satisfied for a given [h, ] on &.

Assume that the children of this node are opened. This implies that woy, ;) > 6H C\F P VER

i.e.

w?/3
1o ‘F e (8.26)
2H wha[h i) . '

Let j € {2i,2i + 1}. Note first that wp 110,41 j-] + Wht10(p41,5] < WrOny) (by definition of

o and &, and also because of the properties of the empirical variance), and that on &, \whﬁ[hji] —
2 3

Wpo | < 2\/> 1/3 as a node is open only if there are enough samples in it, i.e. if there are
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more than | Aw 2/3

n?/ 3] samples. This together with Equation 8.26 implies that

[hi"
w23 w23
Wik O] — ¢V A5 < Y, 00 hilt — 3ev/A~ L o L (8.27)
Wih, ) B Wih,i)Oh,i) T 2H”
as ¢ > 1. In the same way
w2/?
~ Wiha)
Win,il %1k T CV AT 1
p <l+_— 8.28
Wik O (ki) 2 (5:2%)
By Equation 8.27
wh+1a[h+1 ]] - C\/Z ?731 > —~ \/Zwifl 2H — h 1 1
( WhGh,g )T[’”'] - (whﬂ"[hﬂu‘] RARSYE >( o (' am)
2/3
~ Wyt 2H — (h+1)
> (wh+10'[h+17j] - C\/Z n1/3 ) ( oH ) (829)
In the same way, by Equation 8.28
w23
Whi10(ps1,) + VAT ) wh+1 + 2h 1
< +cVA ) —
( ’th[h,z] Tlhi = thrlU [h+1,5] T € nl/3 QH)
w23
(wh+10 h+1,4] T VA h+1> h )
»J 1/3 2H H2
23
(wh+10 h+1,] T VA ?7;) -I— — + —)
w23 1)
h
(wh+10 B T VA n1731> ) (8.30)
as h < H.
L2/3
~ w?!? Wh410[ht1 /A Thel
Assume that [wp410[h41,5) — Wht 10415~ < 2cv/ A . Then w+h+J10'[h 3 /3 < 2Tt
implies that, by Equation 8.29
N w23
"hi] (wh+10[h+1,j} - C\/Ziﬁsl )r '
2 = wh&[hﬂ (1]
2/3
> (w Glhe1 —C\/thil)(QH_ (hH)) (8.31)
= h+10[h+1,5] nl/3 el : :
w2/3
2/3 ’u)thla[h ,']+C\/Zih+1
Assume that [wp+10[h41,5) — Wht10[hg1,5-1 = —2c/AZ 75 Then w:1+]16[h,,~] nl/8 > %
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It implies that, by by Equation 8.30

w2/?
Mhi) _ (Wht10hr) + VATES
<( | iAW
’ WhOTh,i) ’
o wifl H+2(h+1)
: (whﬂg[hﬂ’j] e nl/3 ) ( H ). (8.32)

w2/3

h+1
nl/3
)71

Why10(py1,5]—cVA

From Equations 8.29 and 8.31, from the definition of r, and from the fact that (

WhOh,4]
2/3
Wh1Gh 41,5 VAT
( wh; — W1/3 )T[h,ib we deduce that
2/3
T[h+1,4] > <wh+10[h+1,ﬂ —cVA nl/3 )( 2H )7

and finish the induction for the left-hand-side on &.

In the same way, by combining Equations 8.30 and 8.32, we finish the induction for the
right-hand-side on &.

O
Corollary 9 For any stratum X, ;), if r(n) is defined then on §
(2H — h) wh? (H + 2h) w)®
— [,i] [h,i]
Y1 (w[h’i]a[hﬂ — 26\/2 n1/3 ) < T[h,i] < 7}[ (w[h,i}o'[h,i] + 20\/2 n1/3 ),
where ty, ;) is the time where node [h,1i] is first explored.
Proof: This is straightforward from Lemma 30, by the definition of £ and as ¢ > 1. ]

Lemma 31 For any stratum Xy, 51, if T4 is defined then on §
n 2/3 2/3
Tk, X (E) > Aw;'"n /
where ty, ;) is the time where node [h,1d] is first explored.
Proof:

Let [h, ] be a node.

Assume that the children of this node are explored at time ¢. This implies that w0y, >
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Tlhi] = %(wha[h,i} —c AML)

2 2
1
> —(GHc«waL _c,ﬁAU}L>
2 n

as H > 2. This implies as ¢ > 82\/2 that

"lha (M 2/3 2/3
: (42)>Awh+ln . (8.33)

By Equation 8.27 (as 24-1 > 1)

2/3
o . W23

nl/3 ~ h+1
)T[h,i} Z 3 (wh+10[h+1,j] + VA /3 )

w2/3

Z*\F Wht1

nl/3

V

(wh+10[h+1 g tc

who—[h,z}

This implies as ¢ > 853\/2 that

2/3

wh+13[h+17ﬂ + C\/Zlfﬁ/ﬁl n 2/3 2/3
( . )r[h l]< E) > Aw'lin (8.34)

Let j* = argmin;rp4q 5. For j = {2i,2i + 1}, we know that from the definition of 7,
Ww2/3

w c +C\F Chi1 .
Tlh41,5] = Min [( i [Hul}}jg[h . nl/3 ) T[hi]» T[g—”] From that and Equations 8.33 and 8.34 we

deduce the Lemma.
O

8.C.2 Study of the Exploration Phase

Lemma 32 On &, the Explomtzon phase ends at T < n and all the nodes x of partition N¢, are

such that T peare < 43 and ” > 4z

Proof: Let T be the time at which the exploration phase ends (if it does not end, write T' = n).
One needs to pull a node in N¢ at a time ¢’ < 7" if and only if

Ty 43
_— > .
szt/ + 1 n

We thus know that the last time stratum X, is sampled during the Exploration Phase (and thus
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at the end of the Exploration Phase)

Ty

Tx,T

>

3\ =t

If stratum X, is not sampled during the Exploration Phase after having been opened, then

Ty = [Aw?/3n?/3].

)

Note that by Lemma 31, on & rmé > Awg/ 1n2/3. From that we deduce that

and from that together with the fact that we only sample a node at time t < T if % > %, we

deduce the second part of the Lemma, i.e. that on £, Vo € N¢, = > %.

n’ Tz,T

Note now that Y cne 72 < 700 = $: it is straightforward by Lemma 29. This directly

leads to:

£> Zmz%ZTw.

zeNE, zeNE

This directly implies that ZmeN% T, < % <n, which leads to the desired result, i.e. that

the Exploration Phase ends before all the budget has been used. This implies that on &, Va €

€ Tx @
n’ TI,T+1 S n '’

O

2/3
wz/

Lemma 33 Let x be a node such that wyo, > 14HC\/ZW and also such that, for all its
2/3
parents, wyoy, > 14H C\/Z%

Then on &, at the end T of the Exploration phase phase, node x is open, i.e. x € Tr, which
also implies T, 7 > Aw§/3n2/3(2 2).

Proof:  The result is proven by induction. Assume that there is a node x that satisfies the
,0]

2/3
Assumptions of Lemma 33. Then w000 > 14H VA 1 /g . Note first that after the Initial-

w[o/
ization, i.e. at the time t = | An®*/3| when Tt = | An?/3], i.e. when the decision of opening or
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not the node is made, we have on £ that

2/3
(0,0
Wio,0010,0] = Wo00,0) — 2VA 1/3]
2/3
> 12HeV/AL 1/3
2/3
“0,0)
> 6He fnw

The node [0, 0] is thus opened on ¢ .

Assume now that an ancestor [h,i] of node x is open. By Lemma 9, we now that on

w2/3

(2H — h) X
T[hvi] Z 2H (w[hvi]a[h’i]vt[h, 26\/> 1/3)
2/3
[h,i
( 1/3 — 2 \/> 1/3)
2/3
> GHeyv/A — /3

By Lemma 33, we know that at the end T of the Exploration Phase, with T' < n on £, we have

T[,:[;L;]H < 42 . As ¢ > 8%v/A, we have by using the previous result that T = 6HAw[ /?.’]n2/3.

By the definition of A and the fact that h < H, we know also that Aw[Qh/ 3] n2/3 > 2, which implies

that T}, ;7 > 2. This, together with the fact that wy, ;07,7 > 12HAw[2h/3] 2/3 on ¢, implies
that node [h, ] is open and split in its too children.
We have thus proved the result of the Lemma by induction. O

Lemma 34 Let T be the end of the Exploration Phase, and let x € TS.. Then on &,

).

2/3 _2/3
5

Tyr < max( WaGalt , 15¢ \/ZM
6% %

Proof: Let T be the end of the exploration phase.
Let x € T5. Let N be the subset of the partition N¢ that covers z. Let y € N. By Lemma 32

we have on £

Ty 427
Ty,T n
which leads directly to
ryn
< —=.
TS
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Note that by Lemma 29 one has > ry < 14. One thus has

yeN

Tor =Y Tyr < Z < =T (8.35)

yeN

Note now that by Corollary 9, we have on & r, < 3(10;;:03; + 2/ AY 1/3). From that and
Equation 8.35, we deduce that on &

w2'?
xT<3(wwaz+26\ﬁ 1/3)

n

n2/3
< max<5wx0x 15¢ \wa )
6%

This concludes the proof.

8.C.3 Characterization of the Xy,

The algorithm selects a partition N,, such that

2/3
S y wy
N, € argj{frélqr}% (EN + (Cl o — VA) Z 1/3)
yeN
with €7, = max(B, 14HcvA) + 2v/A and B = 16v/2Ac(1 + %)
Note that for every partition N € T7, as all the nodes of T}, are such that T ,, > Awg/ 32/3 >
2 by the structure of the algorithm. One thus has on &, for any N partition included in T7, that

w2l
Sn—En < VAN 2

yeN

PSYER

because by construction every node of J¢ has depth smaller than H.
We thus have for the selected partition N,, that, on &,

2/3

’ ’LUy .
— 24V —2 < m
ENn + (Cmax A) GEN n 1/3 = NE%L
Yy n

2/3

w
SN+ Chax f/3] (8.36)
yeN

Let S be the set of all nodes = such that all their ancestors y are such that wyo, >

14H C\/Z i /3 This implies because o, is positive, and because C' >14H eV A that

max

min
NeS

2/3

w .

SN+ O ax E 31"/3] = min
yeN

2/3

w

IN + Chax D 31’/3 ] (8.37)
yeN

where miny is the minimum over all the partitions in the entire hierarchical partitioning.
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Lemma 33 states that on £, S C TJ7,. This implies that

2/3

XN+ Crlnaxz wgl// ] < mm
yeN

min
NeTe

2/3
SN+ Cla 3 wf/3] . (8.38)
yeN

By combining Equations 8.36, 8.37 and 8.38, we obtain on &

2/3

2N, —I—BZ peYEs <m1n
yENy,

2/3

w

SN+ Crax D f /3] (8.39)
yEN

since C’, — 2v/A > B.

8.C.4 Study of the Exploitation phase

Lemma 35 At the end of the Exploitation phase (end of the algorithm) one has VYx € Ny,

W0z YN, 2/3

Tx,n ~ n

ol /3 7
yENy

where B = 16v2Ac(1 + %)

Proof:

Step 1. Lower Bound in each node Let us first note that by Lemma 32, we know that
on &, at the end T' < n of the Exploration Phase, we have erN; T, < %. There is still a
budget of at least ‘%" pulls left for the Exploitation phase.Note first that as a node x is opened
only when there are LAw§/3n2/3j points in it, so Vo € N, T, 7 > w2/3 2/3,
Step 2. Properties of the algorithm. We first remind the definition of By 11 used in

the MC-UCB algorithm for a node ¢ € N,

BQ7t+1 Tq (O-q_i—\/» 1/3 1/3)

Using the definition of £ together with the fact that, by construction, at a time t of the
Exploration Phase, Ty ; > LAwg/ 3n2/ 3], it follows that, on &

WqO,
978 < Byyg < =L T 0+ 2VA—— (8.40)
at at wy n1/3

Let t+1 > T +1 be the time at which an arm ¢ is pulled for the last time, that is T ; = T3, — 1.
Note that there is at least one arm such that this happens as n > T by Lemma 32. Since at

t+ 1 arm q is chosen, then for any other arm p, we have
Bpi+1 < Byt - (8.41)
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From Equation 8.40 and T},; = T}, , — 1, we obtain on §

_ YW
By < =% T <aq +2VA I 1/3) R (aq +2V2A—— 1/3 7 ) (8.42)

Furthermore, since T, < T}, ,, then on §

WpOp > WpOp

Byiv1 > (8.43)

pt Tp,n

Combining Equations 8.41-8.43, we obtain on £ that if at least one sample is collected from

stratum ¢ after the Exploration Phase, then

WpOp _1N<
T) (Tgm — 1) wq<aq—|—2\/2A 73 1/3) (8.44)

N

Step 3: The Exploration Phase has not deteriorate the performances of the

algorithm.

If T, ,, > T 7, then samples are pulled from y after the Exploration Phase. By summing

over these nodes on Equation 8.44, we obtain that, on &£, for any x,

WOy 1
Tx Z (Ty7n — 1) < Z Wy (Uy + 2v 2A,u)1/3,nl/3>

" y|Ty,n>Ty,T y|Ty n>Ty T
5 A 2/3
= n1/3
5 A 2/3
2 ZyGN wy/
< pYE . (8.45)
where X7 = Zleyn>T » Wyoy. The passage from line 2 to line 3 come from the fact that
2/3
Tyn =2 Tyr 2 Awi’/s
Lemma 34 states that on ¢, for all z € N,, C Ty,
2/3

3 2/3
T, < max <4/\xN n, 15C\F%).

)

Note also that by Step 1, on &, ?jT" < Zleu WSTy T Ty n. We thus have from these two results
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that on &, for any = € N,,,

2/3 _9/3
Wy Oy Wy Oy 3 wy' "N 3n
T g (Tym —1) > max [(n — g ZAI’N”n — E 150\/A72~] ), T }

n T,n
Y| Ty,n>Ty T
) 3”}
1l

(8.46)

Y| Ty,n=Ty,T

Wy Oy 2T (XN, — wy 3n
= 15¢v A
max [(n S +n 4EN E 5¢

2/3

By combining Equations 8.45 and Equation 8.46, we obtain for every x € N,, that on &

Wy O g < 1

P e [ (n 4 23 -, 15V A

B 2\/2A e, w0y
X nl/3

2/3
DN | ST DN -
- n n4/3 n4/3%)
ENn 38 2ACZyGNn w;/s 1
é + 4/3 (1 ?)7
n n b))
where we use the fact that nE + n% > 7 and 1— <14 x for z < 1 for passing from
line 1 to line 2. We finally have
Waor 2/3
Y
< .
e B gy sa)
’ yENR,

where B = 38v2Ac(1 + £).
Step 4. Lower bound on the number of pulls. By using Equation 8.47 and the fact that

1+$ > 1 — x one gets

B
Tp,n 2 )‘}%EN” (n — ZiNn( EZN wg/3)n2/3> .
q n

O

Lemma 36 Let x € N,,. Let y be an open grand-child of x, and y1 and yo be its two children.
Then

Tys Ty + Tyy
= M
Tyn Tym —1

where i € {1,2}.
Proof:
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~ 2/3 . .
We consider = € N,, such that w,6, > 6Hc Awf/3: otherwise it has no grand-children.

By Lemma 34, we know that for any y grand-child of x, we have yn < Aw2/ ®n2/3. Note that

at the moment of a node’s opening, the number of points in the node is smaller than Aw2/ Sn2/3,

< 45’ we know that at the end

As the Exploration stops sampling in a stratum x when Ty |

T of the Exploration Phase, we have T

We prove by induction that =% < 4 for any grand-child of x, and that for its two children

< Tu 'H”yz

y1 and y2, we have Tyl,n S

By Lemma 30, we know that as w0, > 6chle/d , we have on &

2/3
7 7
< < — < — .
Ty 3(wxa$ +cVA 1/3 ) < 3<6wx0x> < 2wxax

By combining this result with Lemma 35 and also with the definition of Xy, , we have on ¢

r Twy,o 7 2/3 7 (W[0,0190,0] c! 78
T - 0z [ B ) 7( ) ) max) <=
Ton = 2Tpn — 2( - y%\r: n4/3 2 n + nd/3) —2n

2/3
because by definition, ¥y, + B ZyEN 75 < o0 t+ ‘“/ag‘, and also because ¥ < a0,0] + '{‘7;‘.
Let x1 and zo be the two children of x. Note first that at the end T of the Exploration
Phase, by Lemma 32, we have T”T > 4%, where i € {1,2}. By Lemma 29, we know that

I’L

Ty 2> Ty + 7oy > T, I,T4%. This means that as % < 4, then then a sample will be pulled again in
one of the two nodes {x1, x5} after the Exploration Phase. Assume without risk of generality

that it is node z1 that is pulled.

Tzo < Tz

Tﬂﬁzm N Tzhn -1

Tx

2. By summing, we get that

T9,Mn
Tx
: (Tl’hn + Ty — 1) <oy + Ty
Txg,n
We thus have
T'zo < Tzy + Tay Ty + Ty

ng,n B (T:Bhn + T$2,n - 1) N Tm,n -1

If a sample is also collected from stratum Z9, then the same result applies also for :1;1 Otherwise,

TT”QT > 4 , and as one sample is collected in x1, we have T - < 42 SO

we have in any case

Tzq < Ty T Tag

chl,n o Tac,n -1 .
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2/3
The recursion continues in the same way for any child y of « such that w,o, > 6H C\/Z%
(otherwise it has no children). Indeed, the budget in the terminal nodes of the Exploration

partition N¢ does satisfy this property.
O

Lemma 37 Let x be a node of N;,. Let N be the sub-partition of nodes in N, that cover the

domain of x. One has on &:

3 Cowon)® o (o)
Tx,n

T,
yeNz y,n

Proof: 'The result of the Lemma follows by induction.

Let us consider a node x € N, and let N, be the sub-partition of nodes in NY, that cover

the domain of z.

Let y1 and yo be two nodes of N, that have the same father-node y. Assume without risk of
generality that r,, < ry,.

Lemma 36 states that

,
T, .»>—2 (T,,—1).
Yy1,n Ty1 + Tyg ( yn )

As Ty, n + Ty, n = Ty, we have by the previous Equation

r
Ty2’n S 2 (Ty,n + 1)-

Ty, + Ty,
In the same way, we obtain
Ty Ty,
— Ty — 1) < Ty < —=—(Tyn+1). 8.48
g+ 1y e T S T S ) (349
and
Tyo Tyo
—== (Tyn— 1) <Ty,n < —=—(T, 1). 8.49
Ty1+ry2( yn = 1) S Tyyn < ry1+ry2( Y +1) (8.49)

From that we deduce that if r,, < ry,, then T}, ,, <17,

Y2,n-

If ry, = ry,, this implies that |7}, ,, — Ty,n| < 1, and the last sample is pulled at random

(wy10y1)2 (wy20y2)2 (wyoy)
T, + < T

2
between the two strata. From that we deduce that , in the same

Tyy.n
way that in Lemma 21.

Assume now that ry, <ry,. Note now that on £, because of the definition of r, we have on ¢

Ty1 > Wy, Oy
Typ T Tyy Wy Oyy + Wy, Ty,
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By combining that with Equation 8.48, we get on &

Wy, Ty

(Tym+1) < T,
y7n — y 7n
Wy, Oyy + Wy, Oyy Y

which leads to

Wy, Oy, < Wy, Ty + Wy, Oy

Ty = (Tyn + 1) (8.50)
In the same way, as on &
Ty Wy, Ty,
Ty +Tys Wy Oy + Wyy0yy
we have
Wy20ys Wy Oy + Wy, Ty, (8.51)

Ty2,n B (Tym - 1)
We deduce from Equations 8.50 and 8.51 that on &

Wy 0yr - WyzOyo
Tyl ,n TyQ’n

From that, together with the fact that r,, <r,, and T}, , < Ty, n, we deduce because of variance

properties that

(wy1ay1)2 (wy10y2)2 <2(wy1‘7y1>2 +2(wy10y2)2 < (wy‘fy)2
Tyim Tyom Tyn Tyn ~ Tyn ’

(wy10y1)2 (wy10y2)2
Tyyn Tyy,n

and note that as y; and ys are terminal nodes of T¢, then correspond to
the variance of the stratified estimate on these nodes.

In the same way, by induction, for any child y of x that is in T}, we also have

Y

(wyay)2 (wy10y1)2 (wy10y2)2 (wxax)2
aalt (gl 3 ()

)
Tyvn yi,n Ty2 T Txvn

ZGNI

which is the desired result in the specific case where y = x.

8.C.5 Regret of the algorithm

All the nodes in N¢, are sampled in a homogeneous way, so it is coherent to define the risk as

Ln=Y (wa02)”

z,n
e )
xzeENg

222



By Lemma 37, we have on &

’me'x2 wxaxz
ey (e |y (e

z,n

Now by Lemma 35, we have
2/3
(we02)* Z%\In Wy
Lnéz T < - +BENnZW-
zeN, " yENR
Finally, because of Equation 8.39
2 w2'? 522 w23
Nn y : N / y
yENn yeN

Then by using again that N, is the empiric minimizer of the bound, i.e. Equation 8.39, and also

by upper bounding C} .., we obtain the final result.

8.D Large deviation inequalities for independent sub-Gaussian

random variables

We first state Bernstein inequality for large deviations of independent random variables around

their mean.

Lemma 38 Let (X1,...,X,) be n independent random variables of mean (u1,. .., 1,) and of

variance (02,...,02%). Assume that there exists b > 0 such that for any A < %, for any i <n, it
2.2

holds that E{exp()\(Xi — uz))} < exp (ﬁ) Then with probability 1 — 6

I;Zn:Xi —iim\ - \/2(}1 > 02)log(2/0) N blog(2/(5)'
=1

N n n
=1

Proof: If the assumptions of Lemma 38 are satisfied, then
n n
(S5 o) el ) 2ot
i=1 i=1

<E

e (T, XS m)]
xp(E)

<[ E [W]

o2

2 2
< exp(% Yo ) ne).
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By setting A = ﬁ we obtain
- - n2e?
P(;Xi - ;Mi > ns) < exp(—2(2?_l 2t bns—:))'
By an union bound we obtain
3 - n2e?
IP><| ;Xi - ;Mi’ > ns) < 2«3}(1)(—2(2?:1 o bm)).

This means that with probability 1 — 6,

|ZX_Z/~%’<\/ (3 2 1(;)1%(2/5) blog(2/6)

n

O

We also state the following Lemma on large deviations for the variance of independent

random variables.

Lemma 39 Let (X1,...,X,) be n independent random variables of mean (u1, ..., 1n) and of
variance (02,...,02). Assume that there exists b > 0 such that for any \ < 11), for any i <

n, it holds that E[exp()\(Xz - ul))} < exp( (/\1 Ab)) and also ]E[exp()\(Xl —wi)? = Xod)| <
>‘2‘7i2
eXp (2(17,\1)))'
Let V. = L =i (s — 1 LS i)+ 1 L3, 07 be the variance of a sample chosen uniformly
at random among the n distributions, and V =1 ZZ 1 ( 1 Z; 1 X ) the corresponding

empirical variance. Then with probability 1 — ¢,

|\/§_\/V|§2\/(1+3b+4V)10g(2/5). (8.52)

n

Proof: By decomposing the estimate of the empirical variance in bias and variance, we obtain
with probability 1 — §

-1 (Xl—uz>2+2—z<x )~ Z Zug
+% (ui—% _m)’ = ZX—quz
:i (Xz_MZ)Q"‘%Z(U% %ZMJ ZX_ ZMZ
7 2 J



We then have by the definition of V' that with probability 1 — ¢

n

LS SCET SR SEC S ST W S L

i=1

If the assumptions of Lemma 39 are satisfied, we have with probability 1 — §

P(Z ZO‘ > ns) =P|exp ()\(sz; | X — ] — ZO‘ ) > exp n)\s)]

rexp (A X — pul? = Sy 07))
exp(ne)

IN

E

n
<JIE
=1

exp (A(lXi — pil* = 03))]

exp(Ae)
P o?
<2 — — — —nle).
< Zex(3 ;2(1—/\1)) nie)
If we take A = # we obtain with probability 1 — 0
i1 05 +nbe
- 2 - 2 2 n’e?
IP’( (Xi—wi)*— ) o7 >ne ) < exp(— ). (8.54)
2 (Xim =2 o S+ )

By a union bound we get with probability 1 — ¢ that

(S - ) <2

i=1

This means that with probability 1 — ¢,

|:L2n:<Xz’ - i)’ - iZnIa?! < \/ 22k 1) og3/0) | DlogG/3) (g
=1

X n
=1

Finally, by combining Equations 8.53 and 8.55 with Lemma 38, we obtain with probability
1-90

n n? n n

- A(L 571 0?)log(2/9) | 20%10g(2/9)” +\/2<,£ZZ 107)0g(2/6) | blog(2/9)

2(;; o1y 07) log(2/9) (3b+4%2?:10?)10g(2/5)

2V log(2/9) N (3b+4V)log(2/0)

n n

IN
&

)

when n > blog(2/§) and because V > 1 3%

zlz
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This implies with probability 1 — § that

2V 108(2/0) | 108(2/8) _ 5 , (3b+4V)log(2/0) | loa(2/s)

n 2n n 2n

- VT \/log 2/6) g\/f/ (1+3b+4V)10g(2/5)

LT /log2/5 VT4 \/ +3b+4V )log(2/4)

:ﬁ§ﬁ+2\/l+3b+4V)log(2/5).

n

V —

On the other hand, we have also with probability 1 —§

~ 2V log(2 4V) log(2
V<va % o;gl( /5)+(3b+ V; 0g(2/9)

j\/§§¢17+2\/(1+3b+4v)10g(2/5)-

n

Finally, we have with probability 1 — ¢

‘ﬁ_\/wSQ\/(1+3b+4V)log(2/5). (8.56)

n
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Chapter 9

Compressed Sensing

9.1 Introduction

Compressed Sensing is a fascinating field that has been attracting much attention in the past
years. As a part of this PhD is on this domain, we believe that it is very relevant to give an
overview of this field.

As Compressed Sensing is a domain which is already huge, multidisciplinary and which grows
very fast, it is out of scope as well as out of reach for us to make a complete overview of it. We
thus decided to remain as little technical as possible and to attack Compressed Sensing by an
angle which is of particular interest for us: that is to say from the angle of sampling techniques.

We presented in the first part of this Dissertation some of our works in bandits. They were
characterized by a small dimension (number of arms). Because of that, it was clever to try to
adapt to the problem. In Compressed Sensing, efficient sampling schemes are radically different.
As the dimension is huge, even when compared to the number of samples, it is unlikely that
there is much to gain by adapting to the problems. But there are indeed some very efficient
sampling schemes which we are going to present in this chapter. In order to write this Chapter,
I used a large number of sources which I try to quote, but I more specifically relied on the

excellent book [Fornasier and Rauhut, to appear] which is very accurate and informative.
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9.2.4 The RIP property: a solution to the noisy setting and efficient ways to sample237
9.2.5 Matrices that verify the RIP property . . . .. ... .. ... .. ...... 238
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9. COMPRESSED SENSING

9.2 Compressed Sensing in a nutshell

9.2.1 Setting

Linear regression in very high dimension The setting of Compressed Sensing is the same
as the setting of linear regression, but in very high dimension d > n. The learner observes n
measurements of a linear function with an unknown parameter a. Its objective is to reconstruct

« with these measurements.

More precisely, the samples, or position of the measurements are concealed in a measurement
matrix X € R*™ where d is the dimension of the parameter o. The learner then observes

measurements Y € R"™, where
Y =Xa+c¢,

where o € R is the d—dimensional unknown parameter, and € € R™ is a noise on the measure-

ments.

The objective of the learner is to output an estimate & of o that is as precise as possible.
Assume that the observations cover all the directions, i.e. if it is possible to extract from X
a basis of R? (this is equivalent to asking that X7 X is invertible). Then if the noise ¢ is an

i.i.d. white noise, we have o = arg min, E, [Hy — XTQH%:|. It is thus reasonable to search for an

estimate & that minimizes [, [\ ly—XTal \%} . A usual way to compute an estimate that minimizes
this loss is to output the estimate that minimizes the empirical loss, that is to say to define the

estimate @ as
a = argmin||Y — Xal|3. (9.1)
a

This estimate is very popular and is called least squares estimator. It has a nice analytic
expression, that is to say @ = (X7X)"'XTY. It has also the nice property to be unbiased
and asymptotically minimax. In an important case, that is to say when the noise is i.i.d. and
Gaussian, it corresponds also the maximum likelihood.

If there is no noise (¢ = 0) and d < n, then @ = «. If ¢ is an i.i.d. noise of variance-covariance
matrix ¥ = E.e”¢, then the mean squared error of the least squares estimator on the parameter
is E. [H& — a\\%} = (XTX)"IXTEX(XTX)™! = O(£). It is also proven that this rate of O(<)
is minimax optimal on all vector o of R?. For complete informations on linear regression, least
square estimator, and its minimax optimality, see the survey [Rao and Toutenburg, 1999].

However, this theory is useless unless (X7 X)~! is invertible, i.e. unless it is possible to
extract from the measurement matrix a basis of R?. In particular, this implies that d > n.
Compressed Sensing is about cases where d > n. In these case, the least square estimate can

not be used.

We assume throughout this chapter that d > n.
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Notion of sparsity We mentioned in the last paragraph that the mean-squared error on the
parameter « is of order O(%). Even if it was possible to compute an alternative estimate of «
when d > n that has this same rate, it is not interesting as it is linear in d. We also mentioned
in the last paragraph that this rate is minimax optimal on the class of all vectors o of R%. Tt

99 1

is thus not realistic to hope for an estimate that has an “interesting”" rate of convergence on

simultaneously all vector of R%.

It is thus necessary to restrict the class of model, i.e. the domain of . The assumption that
is made in compressed sensing is that « is S—sparse. The set of S—sparse vectors Sg is defined

as

def
Ss = {& :|lz[lo < S},
where ||.||o is the usual semi-norm defined as ||z||o = card (i : x; # 0) (where card denotes the

cardinality).

This assumption actually makes sense in practice. Indeed, many signals are naturally sparse
in their basis of storage. Usual instances are images and sounds. In fact, many lossy compression
techniques such as JPEG, MPEG or MP3 rely on the empirical observation that audio signals
and digital images have a sparse representation in terms of a suitable basis. Roughly speaking
one compresses the signal by simply keeping only the largest coefficients. A sketchy example of
a exactly sparse signal are cartoons. A famous image is the Logan-Shepp Phantom, introduced
in [Shepp and Logan, 1974], that we display in inverted color in Figure 9.1. The sparse signal
is the derivative of this image: for a cartoon, there are large uniform color spots, and there are

only few color changes.

Figure 9.1: The Logan-Shepp Phantom.

Assume now that the learner has access to the full support of the vector «, i.e. it knows
exactly which coordinates are non-zero. The minimax bound on the mean-squared error on the

parameter « is then of order O(%) It is thus not possible to have a lower minimax bound on
Ss.

IThat does not depend, or depend very mildly on d.
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9. COMPRESSED SENSING

Possible solution We now assume that o € Sg.

A reasonable idea is to adapt the estimate defined in Equation 9.1 in the case where the
space of solutions is constrained to sparse vectors. The equivalent of the estimate defined in
Equation 9.1 is

min [|Xa =y}, (9.2)

Note that the constraints are a finite union of convex spaces (the union of spaces where vectors
have a fixed S—sparse support), and that the ||.||2 norm is convex, with a minimum in the null
vector. There is thus always at least one solution to this system.

Although there always exists at least one solution for this problem, the main question now
is whether the solutions that we obtain are accurate.

Assume that there is no noise, ¢ = 0. Then it is clear that « is always one of the solutions of
System 9.2, as in this case || Xa — y||3 = 0. In the noiseless case, it follows that if the solution
of System 9.2 is unique, then & = «. In order for this procedure to be accurate in the noiseless
case on every S—sparse vector, it is necessary and sufficient that the solution of System 9.2 is
unique for every S—sparse vector. This is equivalent to some conditions on the measurement
matrix X: for instance, if we were in the setting that n > d, it would be sufficient that X7 X is
invertible. As in our setting n < d, this is clearly not the case, and it is necessary to find other
conditions.

In the next two Subsections, we consider the noiseless case. We then switch back to the

noisy case in the third Subsection of this Section.

9.2.2 What is a good sampling scheme?

In this Subsection, we restrict ourselves to the noiseless case (¢ = 0). As mentioned in the
previous Subsection, in order for System 9.2 to be efficient (return & = «) for every S—sparse
vector, it is necessary to find some clever conditions on the matrix X. We are interested in
conditions on the matrix X such that for any S—sparse «, if the learner is given the measurements
y = Xa, then the solution of system 9.2 is unique and equal to a.

A first remark is that there is a necessary condition on the number of measurement. If there
are less than S measurements, it is strictly impossible to recover any S—sparse vector, even if
the position of the non-zero entries of the vectors are provided to the learner.

A second remark is on the form of the measurement. Assume that the learner measures the
value of v at n coordinates of the basis where « is sparse. Then it is again strictly impossible
to recover every a € Sg with these measurements. Indeed, assume that a certain vector a € Sg
is non-zero in a coordinate k that we do not measure (as n < d, k always exists). Then there is
no way that the learner will be able to reconstruct az from that kind of measurements. The set

of measurement matrices X that ensures good recovery properties with n < d is thus restricted.

A theoretical condition A necessary and sufficient condition on X to ensure uniform recov-

ery by solving System 9.2 is the following.
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Assumption [No 2S—sparse vectors in Kernel] There are no 25 sparse vectors in the kernel
of X, ie Seg(Ker(X)=0.

It is straightforward when remarking that if the existence of 2.5—sparse vectors in the kernel
of X, is equivalent to the existence of at least two S—sparse vectors a; and as have the same
image by X.

This assumption is thus equivalent to uniform, perfect recovery in the noiseless case by
solving System 9.2. Note however that this property does not imply any guarantees in the noisy
case.

This condition is also non informative: it does not provide any informations on the minimal

number n of measurements needed, nor on the concrete form of the measurements.

Intuition of what “good” measurements are Consider the set of 1—sparse vector, i.e. S;.
A very simple yet efficient deterministic sampling scheme that enable uniform, perfect recovery
on every 1—sparse vector is the dichotomic search. The idea is to always divide in two the space
so that the possible support of the 1—sparse vector is at each time divided by two. We illustrate
that in Figure 9.2 in the case of d = 8. What is remarkable with this sampling scheme is that

only log(d) measurements are necessary instead of d.

0

x

0

0

0

0

0

0
11110000 z
11001100 = T
10101010 0

Figure 9.2: Sparsity 1 in dimension 8: only 3 measurements are necessary.

There is thus hope that, using similar ideas, it is possible to design a sampling scheme, i.e. a
measurement matrix X with n ~ S(log(d)), and that it will ensure perfect recovery by solving
System 9.2.

The uniform uncertainty principle A very important result at the border between group
theory and signal processing is the uniform uncertainty principle. This result has a long story
that goes back to the early times of quantum mechanics. A primary version of it has been stated
by Pr. Chebotarév in 1923 (see [Stevenhagen and Lenstra, 1996] for a modern version of this).

A consequent breakthrough has been operated in paper [Donoho and Stark, 1989] by Pr.
Donoho and Pr. Stark in 1989. The content of their main theorem is approximately as follows.
They state that if f : [2(Z/dZ) :— C is a function defined on the cyclic group Z/dZ, then its
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9. COMPRESSED SENSING

support? and the support of its Fourier transform can not be very localized at the same time.
This result is directly linked with the finding of good measurement matrices for compressed
sensing if one imagines that f = « and that the n entries of matrix X correspond to coordinates
of the Fourier basis. Then the observations y are the Fourier coefficients at the frequencies cor-
responding to the coordinates. This implies that if the vector « is sparse, then the observations
y are very likely to be non-zero. As the Fourier basis is a basis, this implies, if n is big enough,
perfect recovery.
However, the main Theorem in [Donoho and Stark, 1989] implies that at least S? arbitrary
measurements of Fourier coefficients are necessary to find at least S non-zero Fourier coefficient
for any a € S, and then have perfect recovery: the support of the Fourier transform of f is
widespread, but not enough so that S arbitrary measurements are enough. This is the quadratic
bottleneck of Compressed Sensing (see e.g. [Rauhut, 2010]). For the purposes of Compressed
Sensing, this result is thus not informative enough even though it is tight. There is however an
easy way to overcome this problem, and we will start talking about it before the end of this
paragraph, and also in the last Subsection.

In 2003, Pr. Tao proved a specific and beautiful extension of the result in [Donoho and
Stark, 1989] for the specific case when d is prime. In this case, the results of paper [Donoho and
Stark, 1989] can be significantly improved. Its formulation is also surprisingly simple. We state

it almost as it is in paper [Tao, 2003].

Theorem 23 (Uniform Uncertainty principle for cyclic group of prime order) Assume
that d is prime and that f : lo(Z/dZ) :— C. Write 8 the support of f, and by abusing the nota-
tions, F(8) the support of the Fourier transform of f. Then

card(8) + card(F(8)) > d + 1,

where card(.) denotes the number of elements in a set.

This Theorem implies the following corollary. It comes easily from the fact that if two
S—sparse signal are different, then their Fourier transform cannot coincide in more than 25

points without contradicting Theorem 23.

Corollary 10 Assume d is prime. Then every S—sparse vector a € R® is uniquely determined

by the values of its Fourier transform at any 2S points.

This corollary provides us an answer to what is the sufficient number of different Fourier
measurements of a S—sparse signal to ensure perfect recovery: it says that any 25 different
measurements are sufficient! This implies that if d is prime, it is a clever idea to consider X
being the 25 x d matrix with e.g. the first 25 frequencies of the Fourier basis of dimension d
(any set of 2S5 measurements that differ from each other will work). This can not be much

ameliorated, as S measurements are anyway needed.

2We define the support of this function as the set of non-zero atom in Z/dZ.
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If d is not prime, however, this Theorem does not hold, and the main Theorem [Donoho and
Stark, 1989] is tight: as explained, the quadratic bottleneck occurs and S? arbitrary measure-
ments are needed. It is not anymore possible to select any 25 measurements so that Corollary 10
holds. It is however possible to select 25 well-chosen measurements: it ensures uniform, per-
fect recovery to choose 2.5 distinct generators of the multiplicative ring (Z/ dZ>*3 (see [DeVore,
2007]). It is however computationally extensive to design such a matrix: as many problems
involving the finding of prime numbers, it is NP-hard.

It is anyway theoretically possible to construct a matrix X containing only 25 measurements
(e.g. well chosen Fourier measurements), and such that uniform recovery holds for any S—sparse
vector by solving System 9.2 (Assumption 9.2.2 is verified). There is however still two big issues.
Although the solution of System 9.2 theoretically exists and is unique under the condition we
recalled, it is computationally infeasible to find it. Indeed, solving this system implies solving

a minimization problem in every sub-spaces of R¢ of dimension S and with only S non-zero
coordinates. There are g such subspaces, and that kind of problem are called N P—hard.

We recall a solution to this problem in the following Subsection. The other issue is on designing
in practice the matrix X, i.e. choosing carefully the Fourier coefficient to measure. Indeed,
we saw that choosing them in a good way is NP-hard. We deal with this problem in the last

Subsection.

9.2.3 Transformation of the problem in a convex problem

As mentioned in the last Subsection, System 9.2 is in practice impossible to solve. A clever and

natural way to make this problem feasible is to transform the constraints in convex constraints.

Convexification of the ||.||o norm A natural idea is to transform System 9.2 in the following
system:

min || Xa -y, 9.3
|\a||1§CsH I (9.3)

where Cjg is a constant depending on the sparsity and on the level of noise. It is exactly equivalent
to solving System 9.2 in the convex envelop of the constraints. As the problem is convex, the
solution is easy to compute.

This idea was first introduced in the PhD Dissertation of Pr. Logan [Logan, 1965]. There
were many works on this idea since then. This kind of approach was largely popularized by
Pr. Tibshirani (see [Tibshirani, 1996]) under the name of lasso where one aims at solving the
Lagrangian of System 9.3, that is to say ming || Xa — y||3 + A||@][1.

It is now necessary to provide some conditions under which System 9.3 is equivalent to
System 9.2. Figure 9.3 provides an illustration in dimension 2 where this is the case for the dual
of System 9.3 and System 9.2.

3That is to say, 2S distinct number which are prime with d.
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Solution to Iy and |y
minimization

|
<

Y

/Aall

Figure 9.3: A situation where the solutions of the dual of System 9.2 and System 9.3 coincide.

Conditions on the measurement matrix X A necessary and sufficient condition for Sys-
tem 9.3 to have a unique solution equal to « in the noiseless case is just a rewriting of Assump-
tion 9.2.2. It is a classic condition that has been introduced in [Cohen et al., 2009] under the
name Null Space Property (NSP), but that was already implicitly used in more ancient works
such as [Elad and Bruckstein, 2002]. It is recalled in Assumption 9.2.3.

Assumption [NSP of order 25:] If x € Ker(X), then V8 € Sgg, we have ||zs||1 < ||zsc]l.

Here zg is x restricted to the support 8.

It is very similar to Assumption 9.2.2, as it is equivalent to having no picky vector in the ||.||;
sense, while Assumption 9.2.2 says exactly the same but in the ||.||o sense. Very importantly, the
fact that the matrix X satisfies the NSP of order 25, is equivalent to perfect, uniform recovery
in the noiseless case (see [Cohen et al., 2009]). Interestingly, Fourier matrices constructed as
described in the paragraph on the uniform uncertainty principle satisfy also the NSP (see [Cohen
et al., 2009]). For such measurement matrices, only 25 measures are needed to guarantee perfect
recovery of any S—sparse vector when there is no noise, and that by solving the convex, and

thus easy System 9.3.

Although this property ensures perfect recovery in the noiseless case, it however does not
give good guarantees in the noisy case. We present in the next Subsection properties that allow

efficient reconstruction when there is noise.
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9.2.4 The RIP property: a solution to the noisy setting and efficient ways to
sample

We provided in the last two Subsections two necessary and sufficient properties, Assumption 9.2.2
and 9.2.3, which ensure perfect reconstruction in the noiseless case when solving respectively
System 9.2 and 9.3. It is however not informative on what happens when there is noise. We

also did not yet provide ways in how to construct X, outside of Fourier measurements.

RIP property A first remark that we can do is on basic linear regression. In this setting, if
the noise is homocedastic, the minimax error is minimized when X is an isotropic, matrix. This
is intuitive because isotropic means that all directions are measured with equal precision. Note
that in the case when n < d, isotropic implies orthonormal. Intuitively, in the noisy case, good
measurement matrices are thus matrices that verify the NSP, and that are orthonormal. The
well-known restricted isometry property (RIP) is almost stating that.

The RIP property was first introduced in [Candes et al., 2004]. It is anterior to the NSP,
but it is also more restrictive: it is not necessary for perfect, uniform recovery. It is however a

very useful and popular property. We state it in Assumption 9.2.4.
Assumption [(9,S)—RIP property] A matrix X is (0, S)—RIP with ¢ € (0,1) if V € Sg,

(1= d)fxllz < [|Xz[l2 < (1 + §)[z[]2.

This also means that the ||.||2 norm of any S—sparse vector is approximately conserved.
Norm conservation is not necessary, as witnessed, in the noiseless case and with the NSP prop-
erty. It becomes however crucial in the noisy case, so that the noise over ratio signal is conserved.
There are however variations on the RIP, like for instance the condition in [Foucart and Lai,
2009], which is an extension of the RIP. The (1 — §) and (1 + §) are replaced by cpin and cpax,
which correspond respectively to the minimum and maximum eigenvalues in any of the matrices
X g Xs (for any 8). If the ration Ccrr:ﬁ is too small, there are some S—sparse vectors for which
the signal to noise ratio will be very small.

It is clear that the (6 < 1,25)—RIP implies Assumption 9.2.2, and thus implies uniform,
perfect recovery in the noiseless case by solving System 9.2. In [Candes et al., 2004], the authors
also prove that the (§ < %, 2S5)—RIP implies the 25—NSP and thus noiseless uniform recovery
by solving System 9.3%.

Noisy recovery We have now every element to state a popular Theorem on noisy uniform
recovery, that holds when the noise (7;); is bounded in [|.||]2 norm over ¢, i.e. ||[n||2 < o. Tt is
extracted from [Candes et al., 2006].

“In fact, as the NSP was not stated at that time, they proved that the (§ < %,25‘)—RIP implies perfect,
uniform recovery, which is equivalent.
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Theorem 24 [Noisy recovery] Let /nX be such that d3s + ds5 < 2 (6, is the RIP constant of
X for the p—sparse vectors). Then for any signal o € Sg and any perturbation n with ||n||2 < o,

we have

~ 10502
& ol < 2257

where a is solution to the dual of System 9.3.

Note that the error is only of order O(%), which is the minimax rate when the support is
available! The only issue that remains, and on which we will dissert in the next Subsection is
on how to construct RIP matrices, and with how many measurements.

There are in fact many other instances of Theorems for noisy and noiseless recovery, un-
der somewhat weaker conditions, with different algorithms, or with different shapes of noises.
Although many of these techniques are fundamental breakthrough, we won’t make a listing
of them, as the purpose of this introduction on Compressed Sensing is focused on sampling
schemes, and does not aim at being exhaustive. We will just briefly mention, as an important
development, the Dantzig selector, introduced in [Candes and Tao, 2007]. It deals with the case
of i.i.d. Gaussian noise (extended to more general i.i.d. like noise in [Koltchinskii, 2009]). It gives

2 is now the variance

results that are in essence similar to the ones in Theorem 24, but where o
of the noise.

Finally, we want to mention very briefly best S—term approximation. Indeed, there are many
interesting natural examples where the signal is not completely sparse, but almost, i.e. it can be
well approximated by an S—sparse signal. The main Theorem in [Candes et al., 2006] is already
stated in this settiQHg and they prove that the additional error generated by this approximation

lla—asll3

is of order TS where ag is the best S—sparse approximation of « in the |[|.||2 sense. See
also [Cohen et al., 2009] for a full study of this setting.

9.2.5 Matrices that verify the RIP property

The main remaining problem is on building with few measurements and at low computational
cost RIP-matrices (and that thus verify the NSP). It is also important that these matrices verify

these properties with only few measurement, i.e. with a number of measurements of order S.

Fourier matrices: As a matter of fact, carefully built Fourier matrices, as introduced in the
paragraph on Uniform Uncertainty Principle, verify it with only 25—measurements. It thus
provides a cheap way to create RIP matrices when d is prime. However when d is not, although
it is in theory possible to select carefully the frequencies at which one ought to sample, it is
computationally very extensive to do so : it is as equivalent to finding 25 distinct generators of
Z/dZ, which is a NP-hard problem (we already pointed that out in the paragraph on Uniform
Uncertainty Principle).

A very simple yet clever way to overcome this problem is, as in many combinatorial problems, to
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sample randomly, uniformly, the frequencies. Because of the properties of density and repartition
of the prime numbers in Z, there is a high probability, when sampling uniformly at random, to
sample distinct generators of Z/dZ. This result is made explicit in [Shepp and Logan, 1974],
and is also discussed in depth in [Candes et al., 2004]: randomization helps to overcome the
quadratic bottleneck. This idea of using randomization to solve difficult combinatorial problems

is not a specificity of Compressed Sensing, and it is actually a quite popular approach.

This idea of randomizing the sampling scheme has given birth to many other ways of building

RIP matrices.

Sub-Gaussian matrices: A very popular is to construct X with i.i.d. Gaussian entries. We
display this result in Theorem 25. It can also easily be generalized to any sub-Gaussian matrix

with i.i.d. entry (see [Baraniuk et al., 2008] for a beautiful proof of this result).

Theorem 25 [Gaussian matrices are RIP] Assume that Vi < K and Vt < n, X;; ~ N(0,1)
and are i.i.d.. Let (e,0) € (0,1)%2. If n > C52S(log(d/S) — log()) for an universal constant
C > 0, then with probability 1 — e, the matrix X is (0, S)—RIP. Then if n > CSlog(d/d), with
probability 1 — §, the matriz X is 0—RIP.

This implies that only a multiple of S measurements is necessary to ensure the perfect

uniform recovery with high probability by solving a convex problem.

Orthonormal bounded systems: We also recall here a last result, as it is of particular
interest from a sampling perspective. It is the case of bounded orthonormal system. Assume
that a function is sparse on a functional basis which is bounded and orthonormal. A very
common example for that is functions that are sparse on the Fourier basis (again!).

It is interesting to be able to design sampling schemes that ensure recovery of the function.
In [Rauhut, 2010], the author seems to be the first to have posed and solved this problem
from a sampling point of view. Write ¢ the k—th function of the orthonormal basis, and x4
the t—th measurement. In [Rauhut, 2010], the author proves that when sampling the points
(x¢)¢ uniformly at random on the domain of the function, then System 9.3 ensures that the

measurement matrix (gpk (ZL‘t)> i is RIP with approximately only C'S log(d) measurements where
t

C' is a numerical absolute constant. This ensures that Theorem 24 holds (up to some constants
which differ).

There are many other classes of random matrices that verify the RIP in high probability,
like some types of circulant matrices (see [Rauhut, 2010]). But interestingly, except in some
specific cases, e.g. when d is prime, there are no available results on computationally feasible,

deterministic ways to build RIP matrices.
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9.3 Conclusion

Because of the recent advances in the field of Compressed Sensing, some astonishing results have
been obtained, like for instance in terms of transmission devices in satellites.

Although every aspect of this field are both interesting and beautiful, we focused mainly on
sampling techniques in very high dimension. We are indeed going in the two following Chapters
to present some of our work, that mainly rely on these aspects, if not directly on the results, at

least on the intuitions..
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Chapter 10

Sparse Recovery with Brownian

Sensing

This Chapter is the fruit of a collaboration with Odalric Ambrym Maillard and Rémi Munos.

It was published in the proceedings of the conference Neural Information Processing Systems,

in 2011 (see [Carpentier et al., 2011Db]).

We consider the problem of recovering the parameter o € R of a sparse function f (i.e. the

number of non-zero entries of « is small compared to the number K of features) given noisy eval-

uations of f at a set of well-chosen sampling points. We introduce an additional randomization

process, called Brownian sensing, based on the computation of stochastic integrals, which pro-

duces a Gaussian sensing matrix, for which good recovery properties are proven, independently

on the number of sampling points IV, even when the features are arbitrarily non-orthogonal.

Under the assumption that f is Holder continuous with exponent at least 1/2, we provide an

estimate @ of the parameter such that |[a—all2 = O(||n]|2/V N), where n is the observation noise.

The method uses a set of sampling points uniformly distributed along a one-dimensional curve

selected according to the features. We report numerical experiments illustrating our method.
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10.1 Introduction

We consider the problem of sensing an unknown function f : X — R (where X C R%), where f
belongs to span of a large set of (known) features {¢g}1<p<x of La(X):

K
fla) =) arer(),
k=1

. . . def | .
where a € R¥ is the unknown parameter, and is assumed to be S-sparse, i.e. ||allo = |{i : ax #

0} < S. Our goal is to recover « as accurately as possible.
In the setting considered here we are allowed to select the points {z,}1<n<ny € X where the

function f is evaluated, which results in the noisy observations

Yn = f(xn) + M, (10.1)

N
. . . .. . def
where 7,, is an observation noise term. We assume that the noise is bounded, i.e., ||]|3 = E n? < o
n=1

We write Dy = ({Zn, Yn }1<n<n) the set of observations and we are interested in situations where
N < K, i.e., the number of observations is much smaller than the number of features ¢y.

The question we wish to address is: how well can we recover a based on a set of N noisy
measurements? Note that whenever the noise is non-zero, the recovery cannot be perfect, so we
wish to express the estimation error |[a — @||2 in terms of N, where & is our estimate.

The proposed method. We address the problem of sparse recovery by combining the two

ideas:

e Sparse recovery theorems (see Section 10.2) essentially say that in order to recover a
vector with a small number of measurements, one needs incoherence. The measurement
basis, corresponding to the pointwise evaluations f(z,,), should to be incoherent with the
representation basis, corresponding to the one on which the vector « is sparse. Interpreting
these basis in terms of linear operators, pointwise evaluation of f is equivalent to measuring
f using Dirac masses d,,, (f) & f(xr). Since in general the representation basis {¢r }1<k<i
is not incoherent with the measurement basis induced by Dirac operators, we would like
to consider another measurement basis, possibly randomized, in order that it becomes

incoherent with any representation basis.
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e Since we are interested in reconstructing «, and since we assumed that f is linear in «, we
can apply any set of M linear operators {Ty, }1<m<m to f = >, appr, and consider the
problem transformed by the operators; the parameter « is thus also the solution to the

transformed problem Tp, (f) = >, cTom(¢k)-

Thus, instead of considering the N x K sensing matrix ® = (04, (¢%))k,n, We consider a new
M x K sensing matrix A = (T;,(k))k,m, where the operators {7, }1<m<nmr enforce incoherence
between bases. Provided that we can estimate T,,(f) with the data set Dy, we will be able
to recover o. The Brownian sensing approach followed here uses stochastic integral operators
{T)n}1<m<nm, which makes the measurement basis incoherent with any representation basis, and
generates a sensing matrix A which is Gaussian (with i.i.d. rows).

The proposed algorithm (detailed in Section 10.3) recovers « by solving the system Ao ~ b
by l; minimization!, where b e RM is an estimate, based on the noisy observations y,, of the
vector b € RM whose components are by, = Ty, f-

Contribution: Our contribution is a sparse recovery result for arbitrary non-orthonormal
functional basis {¢y } <k of a Hélder continuous function f. Theorem 29 states that our estimate
a satisfies || — a@ll2 = O(||n]l2/v/N) with high probability whatever N, under the assumption
that the noise 7 is globally bounded, such as in Candes and Romberg [2007]; Rauhut [2010].

This result is obtained by combining two contributions:

e We show that when the sensing matrix A is Gaussian, i.e. when each row of the matrix is
drawn i.i.d. from a Gaussian distribution, orthonormality is not required for sparse recov-
ery. This result, stated in Proposition 16 (and used in Step 1 of the proof of Theorem 29),

is a consequence of Theorem 3.1 of Foucart and Lai [2009].

e The sensing matrix A is made Gaussian by choosing the operators T, to be stochastic

integrals: T,, f def ﬁ fe fdB™, where B™ are Brownian motions, and C is a 1-dimensional
curve of X appropriately chosen according to the functions {¢y }r<x (see the discussion in

Section 10.4). We call A the Brownian sensing matrix.

We have the property that the recovery property using the Brownian sensing matrix A only
depends on the number of Brownian motions M used in the stochastic integrals and not on the
number of sampled points N. Note that M can be chosen arbitrarily large as it is not linked
with the limited amount of data, but M affects the overall computational complexity of the
method. The number of sample N appears in the quality of estimation of b only, and this is
where the assumption that f is Holder continuous comes into the picture.

Outline: In Section 10.2, we survey the large body of existing results about sparse recovery
and relate our contribution to this literature. In Section 10.3, we explain in detail the Brownian

sensing recovery method sketched above and state our main result in Theorem 29.

lwhere the approximation sign = refers to a minimization problem under a constraint coming from the obser-
vation noise.
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10. SPARSE RECOVERY WITH BROWNIAN SENSING

In Section 10.4, we first discuss our result and compare it with existing work. Then we
comment on the choice and influence of the sampling domain € on the recovery performance.

Finally in Section 10.6, we report numerical experiments illustrating the recovery properties
of the Brownian sensing method, and the benefit of the latter compared to a straightforward

application of compressed sensing when there is noise and very few sampling points.

10.2 Relation to existing results

A standard approach in order to recover « is to consider the N x K matrix ® = (¢x(zn))kn,
and solve the system ®& &~ y where y is the vector with components y,. Since N <« K this is an
ill-posed problem. Under the sparsity assumption, a successful idea is first to replace the initial
problem with the well-defined problem of minimizing the £y norm of a under the constraint
that ®a ~ y, and then, since this problem is NP-hard, use convex relaxation of the £y norm
by replacing it with the ¢; norm. We then need to ensure that the relaxation provides the
same solution as the initial problem making use of the £y norm. The literature on this problem
is huge (see Candeés and Romberg [2007]; Candes and Tao [2007]; Donoho [2006]; Donoho and
Stark [1989]; Koltchinskii [2009]; Tibshirani [1996]; Zhao and Yu [2006] for examples of papers
that initiated this field of research).

Generally, we can decompose the reconstruction problem into two distinct sub-problems.
The first sub-problem (a) is to state conditions on the matrix ® ensuring that the recovery is
possible and derive results for the estimation error under such conditions:

The first important condition is the Restricted Isometry Property (RIP), introduced in
Candes et al. [2004], from which we can derive the following recovery result stated in Candes
et al. [2006]:

Theorem 26 (Candés & al, 2006) Let ds be the restricted isometry constant of %, defined

o
as 0g = sup{| Imele 1); lallo < S}. Then if 35 + das < 2, for every S-sparse vector a € RE

llall2
the solution @ to the {1-minimization problem min{||a||1;a satisfies ||®a —y||3 < 02} satisfies
Cgo?
N )

~ 2
[a—allz <
where Cg depends only on d4g.

Apart from the historical RIP, many other conditions emerged from works reporting the
practical difficulty to have the RIP satisfied, and thus weaker conditions ensuring reconstruction
were derived. See van de Geer and Buhlmann [2009] for a precise survey of such conditions. A
weaker condition for recovery is the compatibility condition which leads to the following result
from van de Geer [2007]:

Theorem 27 (Van de Geer & Buhlmann, 2009) Assuming that the compatibility condi-
tion is satisfied, i.e. for a set 8 of indices of cardinality S and a constant L,

Sl-2al3
_ VN 7%

C(L,8) = min
(2.8) = min {2

,a satisfies ||age||1 < LH&SHl} >0,
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then for every S-sparse vector a € RX, the solution @ to the ¢y-minimization problem
min{||alj1; o satisfies ||age|1 < L||as||1} satisfies for C' a numerical constant:

C  o%log(K)
C(L,8)? N

~

la = a3 <

The second sub-problem (b) of the global reconstruction problem is to provide the user with
a simple way to efficiently sample the space in order to build a matrix ® such that the conditions
for recovery are fulfilled, at least with high probability. This can be difficult in practice since it
involves understanding the geometry of high dimensional objects. For instance, to the best of
our knowledge, there is no result explaining how to sample the space so that the corresponding
sensing matrix ¢ satisfies the nice recovery properties needed by the previous theorems, for a
general family of features {pg }r<r.

However, it is proven in Rauhut [2010] that under some hypotheses on the functional basis,
we are able to recover the strong RIP property for the matrix ® with high probability. This

result, combined with a recovery result, is stated as follows:

Theorem 28 (Rauhut, 2010) Assume that {¢y } <k is an orthonormal basis of functions un-
der a measure v, bounded by a constant Cy, and that we build Dy by sampling f at random ac-
cording to v. Assume also that the noise is bounded ||n||2 < o. If % > coCz,Slog(S)Qlog(K)
and N > ch;Z,Slog(pfl), then with probability at least 1 — p, for every S-sparse vector o € RE

the solution @ to the {1-minimization problem min{||a||1;a satisfies ||Aa —y||3 < 02} satisfies

0202

N I

la—all3 <
where ¢y, c1 and co are some numerical constants.

In order to prove this theorem, the author of Rauhut [2010] showed that by sampling the
points i.i.d. from v, then with with high probability the resulting matrix ® is RIP. The strong
point of this Theorem is that we do not need to check conditions on the matriz ® to guarantee
that it is RIP, which is in practice infeasible. But the weakness of the result is that the initial
basis has to be orthonormal and bounded under the given measure v in order to get the RIP
satisfied: the two conditions ensure incoherence with Dirac observation basis. The specific case
of an unbounded basis i.e., Legendre Polynomial basis, has been considered in Rauhut and Ward
[2010], but to the best of our knowledge, the problem of designing a general sampling strategy
such that the resulting sensing matrix possesses nice recovery properties in the case of non-
orthonormal basis remains unaddressed. Our contribution considers this case and is described

in the following section.

10.3 The “Brownian sensing” approach

A need for incoherence. When the representation and observation basis are not incoherent,

the sensing matrix ® does not possess a nice recovery property. A natural idea is to change the
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10. SPARSE RECOVERY WITH BROWNIAN SENSING

observation basis by introducing a set of M linear operators {T, }m<nr acting on the functions
K

{¢rtr<r. We have T),(f) = Z arTn (k) for all 1 <m < M and our goal is to define the op-

k=1
erators {1, }m<nr in order that the sensing matrix (75, (k) )m,k €njoys a nice recovery property,

whatever the representation basis {¢k }r<k-

The Brownian sensing operators. We now consider linear operators defined by stochastic

integrals on a 1-dimensional curve € of X. First, we need to select a curve € C X of length [, such

that the covariance matrix Ve, defined by its elements (Ve);; = [opipj (for 1 < i,j < K), is

invertible. We will discuss the existence of a such a curve later in Section 10.4. Then, we define
def 1

the linear operators {1}, }1<m<n as stochastic integrals over the curve C: T),,(g) = ivi fe gdB™,

where {B™},,<n are M independent Brownian motions defined on C.

Note that up to an appropriate speed-preserving parametrization g : [0,1] — X of €, we can

work with the corresponding induced family {9y }rx<x, where 1, = ¢, 0 g, instead of the family
{ortr<k-
The sensing method. With the choice of the linear operators {7}, }m<nr defined above,

the parameter o € RE now satisfies the following equation
Aa=b, (10.2)

where b € RM is defined by its components by, o Tn(f) = \/% Jo f(x)dB™(x) and the so-called

Brownian sensing matrix A (of size M x K) has elements A, ; def T (). Note that we do
not require sampling f in order to compute the elements of A. Thus, the samples only serve for
estimating b and for this purpose, we sample f at points {x, }1<n<n regularly chosen along the

curve C.

In general, for a curve C parametrized with speed-preserving parametrization g : [0,1] — X

of €, we have z,, = g(§() and the resulting estimate b e RM of b is defined with components:

N—-1
B = jM 3 (B (ane1) = B" (). (10.3)

Note that in the special case when X = € = [0, 1], we simply have z,, = &.

The final step of the proposed method is to apply standard recovery techniques (e.g., [y
minimization or Lasso) to compute & for the system (10.2) where b is perturbed by the so-called

sensing noise € ©y B (estimation error of the stochastic integrals).

10.3.1 Properties of the transformed objects

We now give two properties of the Brownian sensing matrix A and the sensing noise € = b — b.
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Brownian sensing matrix. By definition of the stochastic integral operators {1, }m<nr,

the sensing matrix A = (T3, (¢k))m,k is a centered Gaussian matrix, with

1
Cov(Ap ki, Am ) = M/@‘Pk@)@k’(x)dx‘

Moreover by independence of the Brownian motions, each row A,,. is i.i.d. from a centered
Gaussian distribution N (0, ﬁV@), where Ve is the K x K covariance matrix of the basis, defined
by its elements Vi = [o ¢r(x)@w (x)dz. Thanks to this nice structure, we can prove that A
possesses a property similar to RIP (in the sense of Foucart and Lai [2009]) whenever M is large

enough:

Proposition 16 Forp > 0 and any integer t > 0, when M > %(t log(K/t) +log1/p)), with C’
being a universal constant (defined in Baraniuk et al. [2008]; Rudelson and Vershynin [2008]),
then with probability at least 1 — p, for all t—sparse vectors x € RE,

1 3
grminellellz < 14z]2 < Svmaxellzle,

2

where Vmax e and Umin ¢ are respectively the largest and smallest eigenvalues of Vel/z.

Sensing noise. In order to state our main result, we need a bound on ||¢[|2. We consider
the simplest deterministic sensing design where we choose the sensing points to be uniformly

distributed along the curve C2.
Proposition 17 Assume that |n||3 < o2 and that f is (L, 3)-Hoélder, i.e.

V(w,y) € X% | f(2) = f(y)| < Llz —yl”,

then for any p € (0, 1], with probability at least 1 —p, we have the following bound on the sensing

noise € = b — b:

=2
5 _ 0°(N,M,p)
< - -7
lellz < N :
where
228
9 def .,/ L7l 5 log(1/p) log(1/p)
G(N,M,p)—2(7N2ﬁ_l+a)<1+2 [ )

Remark 1 The bound on the sensing noise ||€||3 contains two contributions: an approzimation
error term which comes from the approximation of a stochastic integral with N points and that
scales with L2128 /N?P, and the observation noise term of order o*/N. The observation noise

term (when o > 0) dominates the approximation error term whenever 8 > 1/2.

ZNote that other deterministic, random, or low-discrepancy sequence could be used here.

247



10. SPARSE RECOVERY WITH BROWNIAN SENSING

10.3.2 Main result.
In this section, we state our main recovery result for the Brownian sensing method, described

in Figure 10.1, using a uniform sampling method along a one-dimensional curve € C X C R

The proof of the following theorem can be found in the supplementary material.

Input: a curve € of length [ such that V¢ is invertible. Parameters N and M.
e Select N uniform samples {zy}1<n<n along the curve C,
e Generate M Brownian motions {B™}i<m,<n along C.

RMXK

e Compute the Brownian sensing matrix A € (ie. Apr =

L o on@)dB(z).
e Compute the estimate b € RM (i.e. by, = ﬁ Zgz_ol Yn(B™(xpt1) — B™(xy))).

e Find @, solution to

N 52(N, M
min{ lall1 such that [|Aa—b|3 < G*(N, M, p) }
a

Figure 10.1: The Brownian sensing approach using a uniform sampling along the curve C.

Theorem 29 (Main result) Assume that f is (L,3)-Hélder on X and that Ve is invertible.
Let us write the condition number ke = Vmax,e/Vmin,e, Where Vmaxe and vmine are respectively
the largest and smallest eigenvalues of Vel/2. Write r = [(3/1(3 - 1)(4\/%71)]2. For any p € (0,1],
let M > 4¢(4Sr log(ﬁ) + log 1/p) (where c is a universal constant defined in Baraniuk et al.
[2008]; Rudelson and Vershynin [2008]). Then, with probability at least 1 — 3p, the solution &

obtained by the Brownian sensing approach described in Figure 10.1, satisfies

Ke )52(N,M,p)

~ 2<C(
o - ol < 0 T2

where C' is a numerical constant and 6(N, M, p) is defined in Proposition 17.

10.4 Discussion.

In this section we discuss the differences with previous results, especially with the work Rauhut
[2010] recalled in Theorem 28. We then comment on the choice of the curve € and illustrate
examples of such curves for different bases.

10.4.1 Comparison with known results

The order of the bound. Concerning the scaling of the estimation error in terms of the

number of sensing points N, Theorem 28 of Rauhut [2010] (reminded in Section 10.2) states
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that when N is large enough (i.e., N = Q(Slog(K))), we can build an estimate @ such that
@ —«al3 = O(U—]\?) In comparison, our bound shows that ||@ — «||3 = O(LNL;; + ‘7—]\?) for any
values of N. Thus, provided that the function f has a Holder exponent 8 > 1/2; we obtain the

same rate as in Theorem 28.

A weak assumption about the basis. Note that our recovery performance scales with
the condition number xe of Ve as well as the length [ of the curve €. However, concerning the
hypothesis on the functions {¢y }x<x, we only assume that the covariance matrix Ve is invertible
on the curve C, which enables to handle arbitrarily non-orthonormal bases. This means that
the orthogonality condition on the basis functions is not a crucial requirement to deduce sparse
recovery properties. To the best of our knowledge, this is an improvement over previously known
results (such as the work of Rauhut [2010]). Note however that if ke or [ are too high, then
the bound becomes loose. Also the computational complexity of the Brownian sensing increases
when ke is large, since it is necessary to take a large M, i.e. to simulate more Brownian motions

in that case.

A result that holds without any conditions on the number of sampling points.
Theorem 29 requires a constraint on the number of Brownian motions M (i.e., that M =
Q(Slog K)) and not on the number of sampling points N (as in Rauhut [2010], see Theorem
28). This is interesting in practical situations when we do not know the value of S, as we do not
have to assume a lower-bound on N to deduce the estimation error result. This is due to the
fact that the Brownian sensing matrix A only depends on the computation of the M stochastic
integrals of the K functions ¢g, and does not depend on the samples. The bound shows that
we should take M as large as possible. However, M impacts the numerical cost of the method.
This implies in practice a trade-off between a large M for a good estimation of o and a low M

for low numerical cost.

Intuition of the method. Now, we give more intuition about the method. In other works,
either with deterministic or random design (i.e. when the function is evaluated at a set of points
chosen in a deterministic or stochastic way), the samples (z,,)1<n<n are used both to observe
the function f and to construct the sensing matrix ®. It is computationally infeasible to check
the if the recovery property on the sensing matrix is verified. In the method proposed here, we
separate the sparse regression problem in two distinct problems. First we build independently
from the samples a Brownian sensing matrix A, which only depends on the choice of the Brownian
motions. This matrix is Gaussian and verifies a property similar to RIP with high probability
(and the RIP-constant decreases with the number of Brownian motions). Second we estimate
the right hand side term b = [ fdB using the samples. Thus the only requirement about the

samples is that they enable us to accurately estimate those stochastic integrals.
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10. SPARSE RECOVERY WITH BROWNIAN SENSING

10.4.2 The choice of the curve

Why sampling along a 1-dimensional curve C instead of sampling over the whole
space X7 In a bounded space X of dimension 1, both approaches are identical. But in dimen-
sion d > 1, following the Brownian sensing approach while sampling over the whole space would
require generating M Brownian sheets (extension of Brownian motions to d > 1 dimensions) over
X, and then building the M x K matrix A with elements A, = [ @ (t1,...ta)dB*(t1)...d B (tq)-
Assuming that the covariance matrix Vi is invertible, this Brownian sensing matrix is also
Gaussian and enjoys the same recovery properties as in the one-dimensional case. However, in
this case, estimating the stochastic integrals b, = fx fdB™ using sensing points along a (d-
dimensional) grid would provide an estimation error e = b —b that scales poorly with d since we
integrate over a d dimensional space. This explains our choice of selecting a 1-dimensional curve
C instead of the whole space X and sampling N points along the curve. This choice provides
indeed a better estimation of b which is defined by a 1-dimensional stochastic integrals over C.
Note that the only requirement for the choice of the curve € is that the covariance matrix

defined along this curve should be invertible.

In addition, in some specific applications the sampling process can be very constrained by
physical systems and sampling uniformly in all the domain is typically costly. For example in
some medical experiments, e.g., scanner or I.R.M., it is only possible to sample along straight

lines.

What the parameters of the curve tell us on a basis. In the result of Theorem 29,
the length [ of the curve € as well as the condition number ke = Vmax,e/Vmin,c are essential
characteristics of the efficiency of the method. It is important to note that those two variables
are actually related. Indeed, it may not be possible to find a short curve € such that ke is small.
For instance in the case where the basis functions have compact support, if the curve € does not
pass through the support of all functions, Ve will not be invertible. Any function whose support
does not intersect with the curve would indeed be an eigenvector of Ve with a 0 eigenvalue.
This indicates that the method will not work well in the case of a very localized basis {¢ <k
(e.g. wavelets with compact support), since the curve would have to cover the whole domain
and thus [ will be very large. On the other hand, the situation may be much nicer when the
basis is not localized, as in the case of a Fourier basis. We show in the next subsection that in
a d-dimensional Fourier basis, it is possible to find a curve € (actually a segment) such that the

basis is orthonormal along the chosen line (i.e. ke = 1).

10.4.3 Examples of curves

For illustration, we exhibit three cases for which one can easily derive a curve € such that Vp is

invertible. The method described in the previous section will work with the following examples.

250



X is a segment of R: In this case, we simply take € = X, and the sparse recovery is possible

whenever the functions {¢y, }r<x are linearly independent in Lo.

Coordinate functions: Consider the case when the basis are the coordinate functions ¢y (t1, ...tq) =
tr. Then we can define the parametrization of the curve € by g(t) = a(t)(t,t2,...,t%), where
a(t) is the solution to a differential equation such that [|¢/(¢)||]2 = 1 (which implies that for
any function h, [hog = [,h). The corresponding functions v (t) = a(t)t* are linearly inde-
pendent, since the only functions «(t) such that the {t¢}r<x are not linearly independent are
functions that are 0 almost everywhere, which would contradict the definition of «(t). Thus Ve

is invertible.

Fourier basis: Let us now consider the Fourier basis in R? with frequency T

29t
‘Pn1,~~~,nd(t13 otd) = Hexp ( - %)a
J
where n; € {0,...,7 — 1} and t; € [0,1]. Note that this basis is orthonormal under the uniform
distribution on [0,1]%. In this case we define g by g(t) = Moz, t e ...,t%j) with A =

Td—1>%7d—1»
\/ij% (so that ||¢(t)||2 = 1), thus we deduce that:

2imtA Y m; T
¢n1,...,nd(t) = €xXp ( - T‘Jd )

Since ny € {0,...,T — 1}, the mapping that associates }; n; 7771 to (n1,...,n4) is a bijection
from {0,...,7—1}¢to {0,...,7%—1}. Thus we can identify the family (15, _n,) With the one
dimensional Fourier basis with frequency TTd, which means that the condition number p = 1 for
this curve. Therefore, for a d-dimensional function f, sparse in the Fourier basis, it is sufficient

to sample along the curve induced by g to ensure that Ve is invertible.

10.5 Recovery with orthonormal basis and i.i.d. noise when the

function f is Lipschitz

We assume in this Section that the function f is L—Lipschitz.

10.5.0.1 1I.i.d. centered Gaussian observation noise

Let us now assume that the noise is i.i.d. from a centered Gaussian distribution, i.e. n, ~ N(0, v).
We will also make the standard assumption (see Rauhut [2010]) that the basis functions ¢y, are
upper-bounded by @, i.e. ||ok||co < @.

Here, we use the Dantzig selector and thus suppose that the basis (¢r)1<k<x is orthonormal
(in practice, orthogonal is sufficient if we know the norm of each feature, see the proof in Candes
and Tao [2007]).
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10. SPARSE RECOVERY WITH BROWNIAN SENSING

We first state a result similar to the orthogonality condition of Candes and Tao [2007] showing
that any row of the matrix A is weakly correlated to the approximation error ¢ = b — B, which

will be useful in order to control the estimation error of a naive estimate of the parameter (here

ATD).

Proposition 18 Assume that M > N2, then with probability 1 — 2e:

sgp(Ak,,,@ < rd(e/(2KN))(4/ 7)103]2\71{/6 + %) (10.4)

with k< max(1, %, L%, L), and ¢ (e) e+ 24/log(2/e) + log(2/e).

Now we consider the solution given by the Dantzig selector (see Candes and Tao [2007]) and

deduce Theorem 30 from Candes and Tao [2007]. The estimate is given by

- log2K/e 1
min [|al|; under the constraint ||A7 (Aa — b)[|s < c’(e/(ZKN))(\/UOgN/e + N>'

Theorem 30 Ve > 0, M > max(N?,25C"(3S1log(K/3S5) +log1/e)), with probability 1 — 3e,

& — alz < 21\@/@0’(6/(2[(]\7))(\/“032\;[{/6 + %)

This result says that without assumption on a minimal number of samples N, we can get a

recovery error ||a — alls = O(\/g(\/v/N +1/N) 1og(KN)>.

10.5.1 Discussion

The condition in Proposition 18. The Assumption that M > N? is useful only to have
this distinction between the the approximation noise (due to approximation error) and the i.i.d.
observation noise (approximation noise small in front of i.i.d. noise). This requirement is not
restrictive (in terms of samples V) since we can choose as many Brownian motions M as we
wish. The only cost is computational. We could also release this constraint and derive in a very
similar way, that sup (A, ,€) = O(m)

Lasso and Dantzig Selector are equivalent. We know from Asif and Romberg [2010];
Bickel et al. [2009]; James et al. [2009] that LASSO and Dantzig selector are equivalent in the
case of i.i.d. Gaussian noise. Here the estimation error ¢ = b — b of our transformed problem is
not i.i.d. Gaussian anymore but still satisfy the orthogonality condition (10.4) which is similar

to the one defined in Candes and Tao [2007] for which Dantzig selector can apply.

A remark on non-orthonormal bases. Let us finally mention that considering non-orthonormal
bases for the case of i.i.d. noise is also possible if we can compute the matrix V' (covariance ma-

trix of the features) and are ready to invert it. Indeed, we could just consider the transformed
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problem
min ||a||; under the constraint ||V "'AT(Aa — b)||o < C,

and all results obtained for the orthonormal case would hold.

The recovery rate. For i.i.d. noise the existing results such as Bickel et al. [2009]; Bunea
et al. [2007]; Zhang [2009] impose conditions on the sensing matrix, as a function of the samples,
which are hard to check in practice. The condition for Brownian Sensing is that the samples
enable to estimate correctly the stochastic integral of f. This condition is easy to check if the

regularity of f is known.

10.6 Numerical Experiments

10.6.1 Illustration of the performances of of Brownian Sensing

In this subsection, we illustrate the method of Brownian sensing in dimension one. We consider

a non-orthonormal family {¢;}r<x of K = 100 functions of Ly([0,27]) defined by ¢g(t) =
cos(tk)+cos(t(k+1))
Von
which is (10,1)-Ho6lder, and we consider a bounded observation noise 7, with different noise

. In the experiments, we use a function f whose decomposition is 3-sparse and

levels, where the noise level is defined by ¢? = Zflvzl n2.

Comparison of I1-minimization and ian Sensing Comparison of I1-minimization and Brownian Sensing Comparison of I1-minimization and Brownian Sensing
200 with noise variance 0 0r with noise variance 0.5 20 with noise variance 1
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Figure 10.2: Mean squared estimation error using Brownian sensing (plain curve) and a direct
l1-minimization solving ®a = y (dashed line), for different noise level (o2 = 0, 02 = 0.5, 02 = 1),
plotted as a function of the number of sample points N.

In Figure 10.2, the plain curve represents the recovery performance, i.e., mean squared error,
of Brownian sensing i.e., minimizing ||a|; under constraint that |[Aa—b||s < 1.95,/2(100/N + 2)
using M = 100 Brownian motions and a regular grid of N points, as a function of N3. The
dashed curve represents the mean squared error of a regular /1 minimization of ||a||; under the
constraint that |[®a — y||3 < o2 (as described e.g. in Rauhut [2010]), where the N samples are
drawn uniformly randomly over the domain. The three different graphics correspond to different
values of the noise level o2 (from left to right 0, 0.5 and 1). Note that the results are averaged
over 5000 trials.

3We assume that we know a loose bound on the noise level, here 6% < 2, and we take p = 0.01.
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Figure 10.2 illustrates that, as expected, Brownian sensing outperforms the method described
in Rauhut [2010] for noisy measurements®. Note also that the method described in Rauhut [2010]
recovers the sparse vector when there is no noise, and that Brownian sensing in this case has a
smoother dependency w.r.t. N. Note that this improvement comes from the fact that we use
the Holder regularity of the function: Compressed sensing may outperform Brownian sensing

for arbitrarily non regular functions.

10.6.2 The initial experiment of compressed sensing revisited

Intuition The idea developed in Subsection 10.4.3 is a good tool to understand the initial
experiment of Compressed sensing: that is to say the Logan-Shepp Phantom, introduced in
Candes et al. [2004].

The Logan-Shepp Phantom is a cartoon, i.e. an image whose derivative is sparse. The idea
is then to sample a few Fourier coefficients of the derivative of the cartoon and then reconstruct
it using a [;-minimization algorithm. It has been observed that it was enough to sample on some
linear curves (22 radial lines in Candes et al. [2004]), which is surprising for usual compressed
sensing theory. What is even odder is that it is enough to sample only on one line in the upper
part of the cartoon.

Let f(z,y) denotes the derivative of the cartoon F', where x and y are integers in {1, ..., K'}.

Since the basis on which f is sparse is the Dirac basis (ex; i, )k ko<k Where g p,(2,y) =
Ozk1 Oy kp s WE have f(z,y) =3 4 1) Oy ko€hy ko (T, Y), With ay, i, the sparse parameter.

Thus F(f), the Fourier transform of f, satisfies:

F(F)(w1,w2) = > Qky oy b oo (W1, w2)
k1 k2

—QZLK”“) is the Fourier basis of frequency K.

_ 2imwako )
K

exp(

Thus, to recover a, we can sample the Fourier transform F(f) on some randomly chosen

where g, k, (W1, w2) = exp(

points over the Fourier domain, or better only on the linear curve € along which the Fourier basis
is orthogonal, like for instance the curve parametrized by ¢ given by: g(t) = {w1 = +t,ws = t}.

Then, we get the sampling points (g(t,))n for parameter points ¢,, € R and recover f with this
sample, which will be the solution of total variation norm minimization problem (see Rudelson
and Vershynin [2008] for recovery with Fourier random matrix, Rauhut [2010] for recovery with
orthonormal base).

Note eventually that the 22 radial lines used to sample were not at all parametrized by g.
But for most linear curves the Fourier basis is still orthogonal along this curve, thus, it is no

wonder that observing on these radial lines is enough to recover exactly the image.

“Note however that there is no theoretical guarantee that the method described in Rauhut [2010] works here
since the functions are not orthonormal.
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Compressed sampling the Logan-Shepp along one line We applies the idea of sampling
the Fourier coefficients only on one well-chosen curve € to the Logan Shepp Phantom, where
we choose for € the line parameterized by the function g defined in the previous section. We
consider two experiments showing that sampling on this line enables similar recovery properties

as sampling on the all domain.

Figure 10.3: The Logan Shepp Phantom (left), the sample line in the Fourier space (black line,
middle), the image recovered with no error (right).

The phantom image of a head known as the Logan-Shepp phantom is an image of size 64 x 64,
thus with 4096 pixels and the sparsity of the image derivative is 502 (Note that the sparsity is
here is due the fact we have an image with low resolution).

We applied total variation minimization algorithm (/;— magic) after sampling 800 Fourier
coefficients of the image on only one well-chosen segment of the image. Figure 10.3 shows the
target image, the sampling line, and the reconstructed image (with no error) and all in inversed
colors.

The second experiment illustrated by Figure 10.4 directly compares Compressed sensing for

points that are randomly chosen in the domain and for points chosen on the segment.

Comparaigon of sampling over the entire domain or over a curve

Ower a curve
180 | — — — Ower the entire dormain

rmean quadratic error
=]
=]

80rF

BO R

. I ]
[u] &0 100 150
number of sampling points

Figure 10.4: Recovery error of Compressed sensing when sampling over the segment € and when
sampling randomly over the entire domain, as a function of the number of sampling points.

Those numerical experiments show that there is no additional approximation error when
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10. SPARSE RECOVERY WITH BROWNIAN SENSING

sampling along a single segment compared to sampling uniformly randomly over the whole

space.

Conclusion

In this Chapter, we have introduced a so-called Brownian sensing approach, as a way to sample
an unknown function which has a sparse representation on a given non-orthonormal basis. Our
approach differs from previous attempts to apply compressed sensing in the fact that we build a
“Brownian sensing” matrix A based on a set of Brownian motions, which is independent of the
function f. This enables us to guarantee nice recovery properties of A. The function evaluations
are used to estimate the right hand side term b (stochastic integrals). In dimension d we proposed
to sample the function along a well-chosen curve, i.e. such that the corresponding covariance
matrix is invertible. We provided competitive reconstruction error rates of order O(||n|l2/v/N)
when the observation noise 7 is bounded and f is assumed to be Holder continuous with exponent
at least 1/2. We believe that the Holder assumption is not strictly required (the smoothness of
f is assumed to derive nice estimations of the stochastic integrals only), and future works will

consider weakening this assumption, possibly by considering randomized sampling designs.
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Appendices for Chapter 10

10.A Proofs

Proof of Proposition 16

First, we prove a very short Lemma describing some properties of the matrix A.

Lemma 40 Let us consider M independent Brownian motions (B',...,BM) on X, and define
the M x K matriz A with elements

- \/1M< /e apk(az)dBm(a:)).

Then A is a centered Gaussian matriz where each row Ay, . is i.i.d. from N(0, 4z Ve), where Vg

is the K x K covariance matriz of the basis, defined by its elements Vv = fe or(x)pr (z)de.

Proof: Indeed, from the definition of stochastic integrals, each A,, ;, ~ N(0, 77 fe cpk x)dz), and
Cov(Am ks Amp) = 37 fe ok (z)pp (2)dz. Thus each row A,, . ~ N(0 7MVG) and are independent

by independence of the Brownian motions. Additionally, we have

E[(ATA)g ] = [ Z AmAm k’] = Vi r c-

O

Now let us define B = AVe_l/ % Since each row of A is an independent draw of N (0, Ve ), then
each row of B is an independent draw of N(0, ). Thus B is a matrix with elements i.i.d. from
N(0,1). We thus can use the following result (as stated in Fornasier and Rauhut [to appear],
see also Baraniuk et al. [2008]; Rudelson and Vershynin [2008]):

Theorem 31 For p' > 0 and any integer t > 0, when M > C'§~%(tlog(K/t) + log1/p')), with
C’ being a universal constant, see Baraniuk et al. [2008]; Rudelson and Vershynin [2008], then
with probability at least 1 — p', there exists & < § (0 is the RIP constant of B for t-sparse

vectors) such that for all t—sparse vectors v € RX,
(1 =d)lzll2 < [[Bzll2 < (14 &) [|z[l2-

Since Ve is symmetric, it is possible to write Ve = UDU” with U an orthogonal matrix
and D a diagonal matrix with the eigenvalues of V' as diagonal elements (SVD decomposition).
Thus, VY2 = UDY2UT where D'/? is the diagonal matrix with the square roots of the diagonal
elements of D (i.e., the eigenvalues of V, Y 2)

Note that if U is an orthogonal matrix, BU is also RIP with the same constant as B (see

Donoho [2006] for the preservation of the RIP property to a change of orthonormal basis).
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10. SPARSE RECOVERY WITH BROWNIAN SENSING

Applying this and Theorem 31 with 6 = 1/2 for 2t-sparse vectors, we have that whenever
M > 4C"(2tlog(K/2t) +log 1/p'), the RIP constant dy; < 1/2, i.e. for all 2t—sparse vectors z,

1 3
Slalle < 1BU]l> < Slale

Now if we consider a 2t—sparse vector z, then D/2z is also 2t—sparse with same support
as z, and we also have that vy, cllzlla < [[DV?2]l2 < Vmasell®l2. Thus the matrix BUD/?

satisfies
Vmin,@

3
zllo < HBUDl/Qng < % T

As mentioned before, the preservation of the RIP property to a change of orthonormal base
(see Donoho [2006]) can be applied with U and thus as A = BVY/2 = BUDY2UT to obtain:

1 3
svminelellz < 14z]2 < Svmaxellz]2.

Proof of Proposition 17

We prove here without loss of generality (because of we can always parametrize the curve)
the result for X = [0,{]. Let us recall that f is (L,)-Holder and that we write o = |52
The estimation error &, = b,, — 57;, given the samples (zy,, Yn)n, follows a centered Gaussian

distribution (w.r.t. the choice of the Brownian B™) with variance

Viem) = ( /f )dB™ (z Z?/n x,wl_BgZ)))

= %V (/0 (f(x)_ZU(Z(";l))—&—nn)Hme[lnl<n+1)])dB ())

n

1 l

= 37 ], U@ = 2200 + ) o) de
1 l<n]¢1)

= ), (@=flg)-—m)’d
1 Ll

= MN Zn:(Ng + \ﬁn|)2dﬂf

<

We now wish to apply Bernstein’s inequality in order to bound |||z in high probability. We
recall the following result (see e.g. Bennett [1962]):
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Theorem 32 (Bernstein’s inequality) Let (Xi,....Xy) be independent real valued random
variables and assume that there exist two positive numbers v and d such that: Zi\r/le E(X2) <w
and for all integers r > 3,

M rl
ST EI(X)7] < Dod 2,

m=1
Let S = Z%zl(Xm —E(X,)), then for any x > 0, we have P(S > v/2vx + dx) < exp(—x).

Let us check that the assumptions for applying Bernstein’s inequality hold with the choice
v=38M(V(epn))? and d = 2V(g,,). Indeed, since the &, are i.i.d. centered Gaussian, by writing
Xm = €2, we have X, > 0 and for any integer r > 2, E(X") = (V(em))" gfg;. This gives

SM U E[X2) = 3M(V(em))? < v, and for r > 3,

M
SE[XT] = M(V(en)) 2

7! _
5] < M(V(ep))" x 2Tl < §vdr 2,

m=1

We thus apply Bernstein’s inequality (and recall that V(e,,) < ﬁ (%2_61 + a2>) to obtain

that with probability at least 1 — p,

L2128 42 log(1/p) = log(1/p)
”5”§§2< N2B +ﬁ)(1+4 Mo TP )

Proof of Theorem 29

Following Foucart and Lai [2009], we define ay > 0 (respectively f; > 0) as the maximal (resp.

minimal) values such that for all x € R¥ which are t—sparse,

atllzllz < [[Azlly < Bilz]l2- (10.5)

We now define v = % and use Theorem 3.1 of Foucart and Lai [2009] applied to sparse

vectors, in the case of {1 minimization, reminded below:

Theorem 33 (Foucart, Lai) For any integer S > 0, for t > S, whenever vy — 1 < 4(\/2 —

1) %, the solution a to the ¢1-minimization problem

min ||a||1, under the constraint ||Aa — b||3 < ||]|3,

~ _ 5 Do |le]l2
satisfies [lo — @[ < =5~

Foucart and Lai [2009)].

, where Do is a constant which depends on vat, S and t defined in

In order to apply this results, we now provide conditions such that (10.5) holds, as well as
an upper bound on the noise |||, and a lower bound on 5.

Step 1. Recovery Condition: We recall the results of Proposition 16 and have that
(10.5) holds with ag; > %l/mim@ and (o < %Vmaxﬁ with probability 1 — p’ as long as M >

%(tlog(K/t) +1log1/p’)). Thus g < 327:6 = 3ke.

,C
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10. SPARSE RECOVERY WITH BROWNIAN SENSING

A sufficient condition for (33) is that 3ke — 1 < 4(v/2 — 1)\/%

By defining r = [(3ke — 1)(4\/%71)]2 (note that r only depends on V¢), condition (33) holds

whenever t > Sr, thus with probability 1 — p/, whenever

K
M > 4Cﬂ(2fSrwk¥§§§;~+log1/pq. (10.6)

Note that this condition holds when the number of Brownian motions M (which can be
chosen arbitrarily) is large enough (and does not depend on the number of observations V).
Step 2. Upper bound on ||c?||: This is the result of Proposition 17.
Step 3. Lower bound on (s In order to apply Theorem 33, we now provide a lower

bound on Sag.

Lemma 41 If
M > C'log1/u, (10.7)

then with probability 1 — u we have: Pag > %, / maxy fe cpz.

Proof: Let us define i = arg max;, [, ¢2(x)dz. Let us now consider the 1—sparse vector a such
that a; = 1 and a, = 0 otherwise. We have: (Aa), = [o¢i(x)dB™(x). So each (Aa)p, is a
sample drawn independently from N(0, [, ¢7(z)dz).

By applying Theorem 31, with S = K =1 and § = 1/2, when M > C’log1/u, then with

probability 1 — u,
1 9 3 9
o\ [, i @)dzllallz < [[Aallz < o4 | | ¢ (z)dzall2-
C (¢

And since fyg is the minimal constant such that for every 2S—sparse vector z (in particular

for a) we have ||Az|j2 < Bagl||z||2, we deduce that

Bas > ;\/W = ;\/ml?x/egoz(w)dx.

We now apply Theorem 33 and deduce that when M satisfies (10.6) (which implies that
(10.7) also holds) using Lemma 41, with probability 1 — p' — u,

O

QDQ&(N’ Mvp)
\/N\/maxk fe cpi

Thus from Proposition 17, with probability 1 —p — p' — u,

& —al2 < (10.8)

803 (ke + ) (1 + clp, M)
N (maxy, [o ¢7) 7

lo = a3 <
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and from Foucart and Lai [2009], we deduce that if we are able to recover 45—sparse vectors,
i.e., if M > 4C’(4Srlog 47[5{7« +log 1/p’) then Dy < Ck3 where C can be loosely bounded by 90,
see Foucart and Lai [2009] (note that this numerical constant can be greatly improved). The

result follows with the choice p = p’ = w.

Proof of Proposition 18

Step 1: decomposition of the orthogonality condition: We write the noise ¢, = by, —Zm

Em = / f(z)dB™ (x Z yn(BIL — BI))
B </ < n/N) + nn)Hze[n/N (n+1)/N])dBm( )>
(n+1)/N
( / (n/N dBm Znn A Bm ))
1
- ﬁ (Zn: Fmvn - Zn:??an,n> .

where By, = (B, — BY) and Fr, = f%”/N[ f(z) — f(n/N)|dB™ ().

The inner product between the k-th row of A and ¢ is bounded as

%\H %\

M N-1
<Ak,.75> = \/7m2: TLZ nan,n)
N-—1

= ) (frm — MnChm)s (10.9)

n=0

Whereckm—\ﬁz 1 Akm mnandfkn:rz L Ak mFrn-

We now want to find an upper bound on maxy ||ck, |3 and maxy ||fx, |1, which will be
obtained by applying Bernstein’s inequality (in Step 4). We first provide preliminary results in
Steps 2 and 3 in order to apply Bernstein’s inequality.

Step 2: Preliminary results on Ay ,,, Byn, and Fy, ,: We now characterize the laws and

correlation structures of Ay ,,, By, and Fp, -

o Apm= \ﬁ fo ©;dB™ ~ N(0,a), where we write a def ﬁ [ pidz,

n+1

¢ By, =BT, — BT = [,N 1dB™ ~ N(0,b) where we write b < 1/N,

N N N

o Frun = [TV f(2) = f(n/N)dB™ (x) ~ N(0, §) where we write 5 < [0/ [#(a) -

f(n/N)Pdz),
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10. SPARSE RECOVERY WITH BROWNIAN SENSING

The products (A mBm.n)i<m<m are ii.d.

The products (AgmFmn)i<m<m are ii.d.

ntl def
© E(dimBmn) = 757 3 onl(a)de = e
nT-H def

E(AkmFmn) = 7= [+ or(@)[f (@) = f(n/N)ldz = ¢

n
N

Step 3: Bounding the moments of (A, Bn,) and (A, Fmn): Let us first remind

Isserli’s Theorem:

Theorem 34 (Isserli’s Theorem) If (X1, Xs,..., X)) is a zero-mean multivariate Gaussian

random vector, then:

E(XlXQ .. .Xgp) = Z HE(XzXJ)

where the notation Y [[ means summing over all distinct ways of partitioning (X1, ..., Xop)
into pairs. Additionally, E(X1Xs...X9p—1) =0

An immediate consequence of this Theorem and the preliminary results of Step 2 is the next

Lemma.

Lemma 42 We have:

E[(ApmBmn)?] = 2 +ab<2(a+b+|c)?
E[(AgmFmn)?] = 2% +aB <2(a+ B+ [s)?
Proof: From Step 2 and Theorem 34, we have
E[(AgmBmn)?] = 2(E[AmBnn])? + E(A2,)E(B2,,,) = 26 + ab < 2(a+ b+ |¢])%.

The second line is derived similarly. O

We now need to bound moments of order p, which is proved by induction.

Lemma 43 We have for all integer p > 2:

p!

El(AxmBunlll < Ea+ble)P>(@a+ bt 1el))
El(AemBrn)l < Dlat+ 8416 2(2a+ 5+ 15)?)

Proof:

We will prove the first inequality and the second one can be proven exactly the same way.
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Again we use Isserli’s Theorem:

E((Ak,mBm,n)p) = pE(Ak,mBm,n)E((Ak,mBm,n)p_l) + (p — 1)E(A,2§7m)[E(Ap*2BP )

km—m,n
E(AL ZBF,) = (p—DE(Bh, )E(AkmBmn)’ %) + (p = 2)E(Ak m B E(AL U BE, )

By defining w, def E((Ak,mBmn)P) and vy, def ]E(Ai;fBﬁ%n), those equations rewrite

Up = pcup—1 + (p — 1)avy, and vy, = (p — 1)bup—2 + (p — 2)cvp_1. (10.10)

The initial conditions are u; = ¢,v2 = b. Let us define a new sequence (wp)p,>1 defined by
wi = (a+ b+ |c|) and for p > 1,

wp = pla+ b+ |c)wp—1.

We have immediately from their definition that |u;| < w; and |ve| < wy.

Now let us assume that for a given p:
|up—1] < wp—1, and |vp| < wp_1.
We then have from (10.10):
lupl < plelwp—1 + (p — Dawp—1 < pla+b+ [c))wp—1 = wp
lvp+1| < pbwp—1 + (p = D)|cjwp—1 < pla+b+ |c))wp—1 = wp

Thus, by induction Vp > 1: |u,| < w)p and |vpy1]| < wy.
We deduce that:

p!

> (a4 b4+ [c))P2(2(a+ b+ |c|)?)

’E[(Ak,mBm,n)p” = ’up| <wp = pl(a+b+ )P =

Step 4: Bounding maxy ||ck, |3 and maxg || fx, |1 in high probability:

Lemma 44 If we take M > N2, the following inequalities hold with probability 1 — e:

2
max[lo [} < Sod/(e/(2KN))

max || filli < 1c(e/(2KN)),

with ' (e) L 2¢/log(2/e) + log(2/e)) and K def max(1, 3%, L?, Lp).
Proof:
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10. SPARSE RECOVERY WITH BROWNIAN SENSING

We first prove the statement corresponding to |y |, and then derive a bound the same way
for | finl-

Notice that

n+1

n+l
N
E(ck,n) :rZE (Ak,mBm.n :MZ/ dx—/n o(x)dx.

N

We now derive a concentration result for ¢, around its mean using Bernstein’s inequality (see

Theorem 32) which applies thanks to Lemmas 42 and 43. This gives

P(Jekn — Elekn)| = —==[v/AM(a+ b+ )%z + (a+ b+ |el)a] ) < 2exp(~a).

\ﬁ

Finally since (¢ )i are bounded by ¢, we have with probability 1 — e

n+1

eal < | [ ontodda] 4 200t b 1) VIoB(2/E) + (a+ b+ el og(2/e)
< w7+ 5 ) 2VioRe) + lox(2/e)

We deduce similarly (and additionally using that f is Lipschitz) that with probability 1 — e:

n+1

| /nN er(@)[f(2) = F/N)]dar| +2(a + B+ s])v/10g(2/e) + (a + B + [s|) log(2/e)

VAN

n+1

5 L el o B+ D2y Iog(2/e) + log(2/e)

=2 2
@ L
+(M+W+FN2 (24/1og(2/e) + log(2/e))

IN

IN

Ly
N2

From our definitions of x and ¢/(e), when M > N? we have that for each n, k, with probability
1 —e, [ckn| < §¢(e), and with probability 1 — e, |frn] < §=2¢/(e).

By an application of a union bound we have that with probability 1 —e, forall k =1... K

and n =1...N, simultaneously

K
ehal < (e/CEN))
K
Jinl < S(e/(2KN)),
from which we deduce the result. O
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Step 5: Bound on the inner products From (10.9),

N—-1
Sup (A €) < sup|| . ||1 + sup 1> nckm

n=0

Given ¢y, 5, the quantity 27]:/:_01 Cln"n is @ Gaussian random variable (w.r.t. the observation
noise) N(0, v||cg, ||3). The supremum of those K Gaussian variables (union bound) is bounded,

with probability 1 — ¢/, as

N-1
sup ’ § Ck,nTn
k n=0

1
< 510g(2K/e’)v sup ||cg,.||2- (10.11)
k

Now, we use Lemma 44 to deduce that with probability 1 — e’ — e

/ vlog2K/e! 1
Sup(dy.., €) < e (e/(2KN))(\/T+ N)

We take e = €’ to deduce the result.

Proof of Theorem 30

Here we take the following convention for the RIP property: for every vector x S—sparse,
(1=d9)||z||l2 < ||Az||2 < (14 6dg)]||z||2- Note that here we use this convention which differs from
the one used in Candes and Tao [2007] (that is to say (1 — dg)||z|]3 < ||Az||3 < (1 + 6s)]|z][3))
and that there will thus be differences in the citations of theorems. We will use the fact that the
RIP constant according to Candes and Tao [2007] (second definition) is bounded by 6% + 26
(with 0g RIP constant as in the first definition).

Let us define as in Candes and Tao [2007] fg, s, the number such that for any ¢ Sy —sparse
and ¢’ Sp—sparse vectors of disjoint support, (Ac, Ac') < 0g, s,||c||2||¢||2. Finally, consider

noisy observations y = Aa+¢ One can get from Candes and Tao [2007], the following Theorem:

Theorem 35 Let a € R be a S—sparse vector and A be a RIP(2S,da5)-matriz

Assume that with probability 1 — €, sup,(Ag, ,€) < Akee (actually, in Candes and Tao
[2007], they show this is the case for i.i.d. noise).
Then if the matriz A is such that

(055 + 2025) + 0525 < 1, (10.12)
then the Dantzig selector given by:

min ||@||; under the constraint ||AT (A& — y)||oo < Aicer

265



10. SPARSE RECOVERY WITH BROWNIAN SENSING

satisfies the following recovery property, with probability (1—e’), where Cy = =2 +2§25)795 o
25 s

Ha — OzHg < Cl\/g)\K,s,e’

In Candes and Tao [2007] The authors also prove that for any matrix A that is RIP(S; +
S2,603,+5,), then we have g, g, < 5§1+52 + 205,45,

Here since we assume the basis to be orthonormal, the matrix A is Gaussian with N(0, 1)
i.i.d. entries.

Applying Theorem 31 to A for 3S-sparse vectors, we deduce that provided that M >
25C"(3S log(K/3S) + log1/€’)), then with probability 1 — ¢/, 624 + 2635 < 2.

Now since 5%5 + 2625 < 6%5 + 2635 and also 05295 < 5%5 + 2035, we deduce that for such a
M, condition (10.12) holds and that C; = 1_(555"'2;25)_95725 < 3/25.

This bound together with Proposition 18 allows us to use Theorem 35 and finally we deduce
that for M > max(N?,25C"(3S log(K/3S) +1log1/€')) we have with probability (1 —2e)(1—¢'):

la —allz < Clx/Em(e/(zKN))(W n %)
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Chapter 11

Bandit Theory meets Compressed
Sensing for high dimensional linear
bandit

This Chapter is the product of a collaboration with Rémi Munos, and is extracted from a paper
that was published in the proceedings of the conference on Artificial Intelligence and Statistics
in 2012 (see [Carpentier and Munos, 2012a]).

We consider a linear stochastic bandit problem where the dimension K of the unknown
parameter # is larger than the sampling budget n. Since usual linear bandit algorithms have
a regret of order O(K+/n), it is in general impossible to obtain a sub-linear regret without
further assumption. In this Chapter we make the assumption that 6 is S—sparse, i.e. has at
most S—non-zero components, and that the set of arms is the unit ball for the ||.||2 norm.
We combine ideas from Compressed Sensing and Bandit Theory to derive an algorithm with a
regret bound in O(Sy/n). We detail an application to the problem of optimizing a function that
depends on many variables but among which only a small number of them (initially unknown)

are relevant.

Contents
11.1 Setting and a useful existing result . . . . ... ... ... ......... 269
11.1.1 Description of the problem . . . . ... ... ... ... .. ......... 269
11.1.2 A useful algorithm for Linear Bandits . . . . . . . ... ... ... ..... 270
11.2 The SL-UCB algorithm . . . . . . ... ... ... oo, 271
11.2.1 Presentation of the algorithm . . . . . ... ... .. ... ... .. ... 271
11.22 Main Result . . . . . .. . . o 272
11.3 The gradient ascent as a bandit problem ... ............... 273
11.3.1 Formalization . . . . . . . . . . . . ... 273
11.4 An alternative algorithm when the noise is sparse. . . . . . .. ... .. 275
11.4.1 Presentation of the algorithm . . . . . . . .. ... ... ... ... ... 275



11. BANDIT THEORY MEETS COMPRESSED SENSING FOR HIGH
DIMENSIONAL LINEAR BANDIT

11.4.2 Main Result . . . . . . . . . . . . e 275

11.4.3 Numerical experiment . . . . . . . . . . ... ... 277

11.A Proofs . . . . . i i e e e e e e e e e e e e e e e e e e e e e e e e e 281
Introduction

We consider a linear stochastic bandit problem in high dimension K. At each round ¢, from 1 to
n, the player chooses an arm x; in a fixed set of arms and receives a reward ry = (¢, 0+1;), where
6 € RE is an unknown parameter and 7; is a noise term. Note that r; is a (noisy) projection of
0 on x;. The goal of the learner is to maximize the sum of rewards.

We are interested in cases where the number of rounds is much smaller than the dimension of
the parameter, i.e. n < K. This is new in bandit literature but useful in practice, as illustrated
by the problem of gradient ascent for a high-dimensional function, described later.

In this setting it is in general impossible to estimate # in an accurate way (since there is not
even one sample per dimension). It is thus necessary to restrict the setting, and the assumption
we consider here is that 6 is S-sparse (i.e., at most S components of # are non-zero). We assume
also that the set of arms to which x; belongs is the unit ball with respect to the ||.||2 norm,

induced by the inner product.

Bandit Theory meets Compressed Sensing This problem poses the fundamental question
at the heart of bandit theory, namely the exploration' versus exploitation? dilemma. Usually,
when the dimension K of the space is smaller than the budget n, it is possible to project the
parameter 6 at least once on each directions of a basis (e.g. the canonical basis) which enables
to explore efficiently. However, in our setting where K > n, this is not possible anymore, and
we use the sparsity assumption on 6 to build a clever exploration strategy.

Compressed Sensing (see e.g. [Blumensath and Davies, 2009; Candes and Tao, 2007; Chen
et al., 1999]) provides us with a exploration technique that enables to estimate 6, or more
simply its support, provided that 0 is sparse, with few measurements. The idea is to project 6 on
random (isotropic) directions x; such that each reward sample provides equal information about
all coordinates of 8. This is the reason why we choose the set of arm to be the unit ball. Then,
using a regularization method (Hard Thresholding, Lasso, Dantzig selector...), one can recover
the support of the parameter. Note that although Compressed Sensing enables to build a good
estimate of 0, it is not designed for the purpose of maximizing the sum of rewards. Indeed, this
exploration strategy is uniform and non-adaptive (i.e., the sampling direction x; at time ¢ does
not depend on the previously observed rewards r1,...,7_1).

On the contrary, Linear Bandit Theory (see e.g. Dani et al. [2008]; Filippi et al. [2010];
Rusmevichientong and Tsitsiklis [2008] and the recent work by Abbasi-Yadkori et al. [2011]) ad-

!Exploring all directions enables to build a good estimate of all the components of 8 in order to deduce which
arms are the best.
2Pulling the empirical best arms in order to maximize the sum of rewards.
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dresses this issue of maximizing the sum of rewards by efficiently balancing between exploration
and exploitation. The main idea of our algorithm is to use Compressed Sensing to estimate
the (small) support of #, and combine this with a linear bandit algorithm with a set of arms
restricted to the estimated support of 6.

Our contributions are the following:

e We provide an algorithm, called SL-UCB (for Sparse Linear Upper Confidence Bound)
that mixes ideas of Compressed Sensing and Bandit Theory and provide a regret bound?

of order O(Sy/n).

e We detailed an application of this setting to the problem of gradient ascent of a high-
dimensional function that depends on a small number of relevant variables only (i.e., its
gradient is sparse). We explain why the setting of gradient ascent can be seen as a bandit
problem and report numerical experiments showing the efficiency of SL-UCB for this high-

dimensional optimization problem.

The topic of sparse linear bandits is also considered in the paper [Abbasi-yadkori et al.,
2012] published simultaneously. Their regret bound scales as O(v/KSn) (whereas ours do not
show any dependence on K) but they do not make the assumption that the set of arms is the
Euclidean ball and their noise model is different from ours.

In Section 11.1 we describe our setting and recall a result on linear bandits. Then in Sec-
tion 11.2 we describe the SL-UCB algorithm and provide the main result. In Section 11.3 we

detail the application to gradient ascent and provide numerical experiments.

11.1 Setting and a useful existing result
11.1.1 Description of the problem

We consider a linear bandit problem in dimension K. An algorithm (or strategy) Alg is given
a budget of n pulls. At each round 1 <t < n it selects an arm x; in the set of arms Dy, which

is the unit ball for the [|.|[2-norm induced by the inner product. It then receives a reward
Ty = <.’Et,(9 + 7775>7

where 7, € RX is an i.i.d. white noise? that is independent from the past actions, i.e. from
{(xt/)t/g}, and 6 € R¥ is an unknown parameter.
We define the performance of algorithm Alg as

n

Ln(Alg) =Y (0, 21). (11.1)

t=1
Note that L,(Alg) differs from the sum of rewards ) ;" ;7 but is close (up to a O(y/n)
term) in high probability. Indeed, > ;" (n:, z¢) is a Martingale, thus if we assume that the

3We define the notion of regret in Section 11.1.
“This means that E,, (nx,:) = 0 for every (k,t), that the (nx,¢)r are independent and that the (nx,.); are i.i.d..
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noise 7 is bounded by %O‘k (note that this can be extended to sub-Gaussian noise), Azuma’s
inequality implies that with probability 1 — §, we have Y ;" ;7 = Lyp(Alg) + > p i (ne, 2e) <

Lu(Alg) + v/21og(1/8)]lo |2/

If the parameter 6 were known, the best strategy Alg* would always pick * = arg max,cp, (6, x) =

||96||2 and obtain the performance:

La(Alg") = |62 (11.2)
We define the regret of an algorithm Alg with respect to this optimal strategy as
Ry (Alg) = Ln(Alg") — Ln(Alg). (11.3)

We consider the class of algorithms that do not know the parameter . Our objective is to
find an adaptive strategy Alg (i.e. that makes use of the history {(z1,71),..., (zi—1,7—1)} at
time t to choose the next state x;) with smallest possible regret.

REXt of all chosen arms, and R; =

For a given t, we write Xy = (x1;...;2;) the matrix in
(r1,...,7:)" the vector in R of all rewards, up to time ¢.

In this Chapter, we consider the case where the dimension K is much larger than the budget,
ie, n < K. As already mentioned, in general it is impossible to estimate accurately the
parameter and thus achieve a sub-linear regret. This is the reason why we make the assumption

that 0 is S—sparse with S < n.

11.1.2 A useful algorithm for Linear Bandits

Input: Dy,
Initialization:
Ay =14, 6, =0, B, = 128d(log(n?/6))>.
fort=1,...,ndo R
Define By = {v : ||V — 64|[2,4, < V/DBt}
Play x; = arg max,cp, max,cp, (v, x).
Observe r, = (x,0 + UQ.
Set At+1 = At + l‘téﬂg, 9t+1 == A;rllXth.
end for

Figure 11.1: Algorithm Con fidenceBally (C'Bg) adapted for an action set of the form D, (Left),
and illustration of the maximization problem that defines z; (Right).

We now recall the algorithm ConfidenceBally (abbreviate by C'Bsg) introduced in Dani
et al. [2008] and mention the corresponding regret bound. C'Bs will be later used in the SL-
UCB algorithm described in the next Section to the subspace restricted to the estimated support

of the parameter.
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This algorithm is designed for stochastic linear bandit in dimension d (i.e. the parameter
is in R?) where d is smaller than the budget n.

The pseudo-code of the algorithm is presented in Figure 11.1. The idea is to build an ellipsoid
of confidence for the parameter 0, namely B, = {v : ||v — 9AtH2,At < Bt} where ||ul|2.4 = vl Au
and é\t = A;lXt,lRt,l, and to pull the arm with largest inner product with a vector in By,
i.e. the arm z; = arg max,ep, max,cp, (v, ).

Note that this algorithm is intended for general shapes of the set of arms. We can thus apply
it in the particular case where the set of arms is the unit ball D, for the ||.||2 norm in R%. This
specific set of arms is simpler for two reasons. First, it is easy to define a span of the set of arms
since we can simply choose the canonical basis of R¢. Then the choice of z; is simply the point
of the confidence ellipsoid B; with largest norm. Note also that we present here a simplified
variant where the temporal horizon n is known: the original version of the algorithm is anytime.
We now recall Theorem 2 of [Dani et al., 2008].

Theorem 36 (ConfidenceBally) Assume that (n:) is an i.i.d. white noise, independent of the
(xp)p<¢ and that for all k = {1,...,d}, 3oy, such that for all t, |n. x| < %ak. For large enough
n, we have with probability 1 — § the following bound for the regret of Con fidenceBalla(Dy,d):

Ry (Alges,) < 64d(1[61]2 + llol]2 ) (log(n?/2))* /.

11.2 The SL-UCB algorithm

Now we come back to our setting where n < K. We present here an algorithm, called Sparse
Linear Upper Confidence Bound (SL-UCB).

11.2.1 Presentation of the algorithm

SL-UCB is divided in two main parts, (i) a first non-adaptive phase, that uses an idea from
Compressed Sensing, which is referred to as support exploration phase where we project 6 on
isotropic random vectors in order to select the arms that belong to what we call the active
set A, and (ii) a second phase that we call restricted linear bandit phase where we apply a
linear bandit algorithm to the active set A in order to balance exploration and exploitation and
further minimize the regret. Note that the length of the support exploration phase is problem
dependent.

This algorithm takes as parameters: &5 and f3 which are upper bounds respectively on ||o||2
and ||0|]2, and 6 which is a (small) probability.

First, we define an exploring set as

1

8xploring = \/?{_1,+1}K- (114)

Note that €,pi0ring C Di. We sample this set uniformly during the support exploration
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phase. This gives us some insight about the directions on which the parameter 6 is sparse,
using very simple concentration tools®: at the end of this phase, the algorithm selects a set
of coordinates A, named active set, which are the directions where 6 is likely to be non-zero.

The algorithm automatically adapts the length of this phase and that no knowledge of ||0||2 is

required. The Support Exploration Phase ends at the first time ¢ such that (i) maxy, |§k7t|*\2/7bz >0
for a well-defined constant b and (if) t > —¥* .
maxy |0k | — %

Vit

We then exploit the information collected in the first phase, i.e. the active set A, by playing a
linear bandit algorithm on the intersection of the unit ball B and the vector subspace spanned
by the active set A, i.e. Viec(A). Here we choose to use the algorithm CBs described in [Dani
et al., 2008]. See Subsection 11.1.2 for an adaptation of this algorithm to our specific case: the
set of arms is indeed the unit ball for the ||.||2 norm in the vector subspace Vec(A).

The algorithm is described in Figure 11.2.

Input: parameters &9, 02,6.

Initialize: Set b = (02 + 72)+/2log(2K/9).

Pull randomly an arm z1 in E,poring (defined in Equation 11.4) and observe r;
Support Exploration Phase:

While (1) maxp |/H\k7t| — 2711 < O or (11) t < W dO
, T

Pull randomly an arm z; in €gpioring (defined in Equation 11.4) and observe r;
Compute é\t using Equation 11.5
Set t +t+1

end while

Call T the length of the Support Exploration Phase

Set A= {k: Br > 2}

Restricted Linear Bandit Phase:
Fort=T+1,...,n, apply CB2(Dg NVec(A),d) and collect the rewards ;.

Figure 11.2: The pseudo-code of the SL-UCB algorithm.

Note that the algorithm computes §k,t using

K

t
é\k,t = 7(21’&{&) = (%XﬁRt)k. (11.5)
i=1

11.2.2 Main Result
We first state an assumption on the noise.

Assumption (1) is an i.i.d. white noise and Joy, s.t. |ng | < %ak.
Note that this assumption is made for simplicity and that it could easily be generalized to,
for instance, sub-Gaussian noise. Under this assumption, we have the following bound on the

regret.

®Note that this idea is very similar to the one of Compressed Sensing.
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Theorem 37 Under Assumption 11.2.2, if we choose &3 > ||o||2, and 02 > ||0||2, the regret of
SL-UCB is bounded with probability at least 1 — 59, as

Rn(Algsr—vep) < 118(02 + &9)* log(2K/5)Sv/n.

The proof of this result is reported in Section 11.A.

The algorithm SL-UCB first uses an idea of Compressed Sensing: it explores by performing
random projections and builds an estimate of 6. It then selects the support as soon as the
uncertainty is small enough, and applies C'Bs to the selected support. The particularity of this
algorithm is that the length of the support exploration phase adjusts to the difficulty of finding
the support: the length of this phase is of order O(%). More precisely, the smaller ||0]|2, the
more difficult the problem (since it is difficult to find the largest components of the support),
and the longer the support exploration phase. But note that the regret does not deteriorate for
small values of ||6]| since in such case the loss at each step is small too.

An interesting feature of SL-UCB is that it does not require the knowledge of the sparsity

S of the parameter.

11.3 The gradient ascent as a bandit problem

The aim of this section is to propose a gradient optimization technique to maximize a function
f : RE — R when the dimension K is large compared to the number of gradient steps n,
i.e. n < K. We assume that the function f depends on a small number of relevant variables: it
corresponds to the assumption that the gradient of f is sparse.

We consider a stochastic gradient ascent (see for instance the book of Bertsekas [1999] for
an exhaustive survey on gradient methods), where one estimates the gradient of f at a sequence

of points and moves in the direction of the gradient estimate during n iterations.

11.3.1 Formalization

The objective is to apply gradient ascent to a differentiable function f assuming that we are
allowed to query this function n times only. We write u; the t—th point where we sample f,
and choose it such that ||u;y1 — ui||2 = &, where ¢ is the gradient step.

Note that by the Theorem of intermediate values
flun) = Fuo) =D flur) = flus-1)
t=1
=D {(ur = u1), V. fwn)),
t=1

where w; is an appropriate barycenter of u; and us_1.

We can thus model the problem of gradient ascent by a linear bandit problem where the
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reward is what we gain/loose by moving from point u;—1 to point u, i.e. f(uy) — f(ui—1).
More precisely, rewriting this problem with previous notations, we have 6 +n; = V f(w;)®, and

Ty = ur — ug—1. We illustrate this model in Figure 11.3.

B,(u,,€) = Ensemble of
potential choices for u,

Figure 11.3: The gradient ascent: the left picture illustrates the problem written as a linear
bandit problem with rewards and the right picture illustrates the regret.

If we assume that the function f is (locally) linear and that there are some i.i.d. measurement

errors, we are exactly in the setting of Section 11.1. The objective of minimizing the regret, i.e.,

Rn(Alg) = max  f(z) — f(un),
x€Ba(ug,ne)
thus corresponds to the problem of maximizing f(u,), the n-th evaluation of f. Thus the regret
corresponds to the evaluation of f at the n-th step compared to an ideal gradient ascent (that
assumes that the true gradient is known and followed for n steps). Applying SL-UCB algorithm
implies that the regret is in O(Sey/n).

Remark on the noise: Assumption 11.2.2, which states that the noise added to the function
is of the form (u; — uy—1,m;) is specially suitable for gradient ascent because it corresponds to

the cases where the noise is an approximation error and depends on the gradient step.

Remark on the linearity assumption: Matching the stochastic bandit model in Section
11.1 to the problem of gradient ascent corresponds to assuming that the function is (locally)
linear in a neighborhood of ug, and that we have in this neighborhood f(uiy1) — f(ur) =

(ug+1 — ug, Vf(ug) + me+1), where the noise n41 is i.i.d. This setting is somehow restrictive:

5Note that in order for the model in Section 11.1 to hold, we need to relax the assumption that 7 is i.i.d..
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we made it in order to offer a first, simple solution for the problem. When the function is not

linear, one should also consider the additional approximation error.

11.4 An alternative algorithm when the noise is sparse

Now, we make a stronger assumption on the noise, namely that it is sparse. Under this assump-
tion, we can build an alternative algorithm such that the regret is in O(S\/n).

We call the corresponding algorithm Sparse Square Linear Upper Confidence Bound (S*L-
UCB).

11.4.1 Presentation of the algorithm

Again, the S?L-UCB algorithm is divided in two parts, the support exploration phase where
we sample the function in order to choose which arms belong to the active set A(t) and the
Restricted Linear Bandit Phase where we apply a linear bandit algorithm to the active set A(t).
Note that the active set A(t) evolves in time for S?L-UCB.

This algorithm takes as parameters: S, an upper bound on the sparsity of 6, and ¢ which is
a (small) probability.

The design of the support exploration phase for this algorithm is very different from the one
for SL-UCB. Here, the length of the support exploration phase is fixed, but the way we explore
the support evolves in time. It is divided in n; = |log(K/25)(S + 1)] + 1 phases. Some indexes
are removed from the active set A(t) at the end of each of those n; phases’. During each of those
phases, the algorithm chooses randomly ny = [log(1/d) exp(1)] +1 arms = drawn from L(A(t)),
where L(A(t)) is a probability distribution defined later in this Subsection. And the algorithm
pulls ng = [log(1/d)y/n| + 1 times each of those chosen arm z. If for a given z, the observed
reward samples are always zero, all the indexes k such that z; # 0 are removed from the active
set. Note that the length of the support exploration phase is ninonsg = O(Slog(K/25)/n).

We define the probability distribution £(A) for any A C {1,...,K}. x ~ L(A) is generated

u

from z = Tl where u € RX is generated according to:

e For every k € A, we set up = 0 with probability % and u, ~ N(0,1) with probability
1
25+1"

e For k € A°, where A€ is the complementary of A, i.e. {1,..., K} \ A, we set u; = 0.

We then exploit the information collected in the first phase, i.e. the active set at time ninong,
by applying the linear bandit algorithm CBs on the small selected subset. The pseudo-code of
the algorithm is described in Figure 11.4.

11.4.2 Main Result

We make a more restrictive assumption on the noise

"Note that A(1) = {1,...,K}.
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Input: parameters S, §.
Initialize: Set n; = |log(K/25)(S+1)] + 1, na = |log(1/d) exp(1)] + 1 and n3 =
[log(1/8)y/m] + 1
Initialize: Set t =1, A(t) ={1,..., K}
Support exploration phase:
fori=0,...,n1 —1do
v=20
for j=0,...,n2 —1do
Pull randomly an arm z ~ L(A(t))
for k=0,...,n3 do
Collect r; with 2; = x
Set A(t + 1) = A(t)
if r, =0 then
V= Tt
end if
t=t4+1
end for
end for
if v # 0 then
At +1)=A(t) \ {k: v #0}
end if
end for
Restricted Linear Bandit Phase:
For t = ningns,...,n, run CBy(Dg N Vec(A(ninang)),d) and collect the r,

Figure 11.4: The pseudo-code of the S?L-UCB algorithm.

Assumption The vector o such that || < %ak is a S—sparse vector.
We provide here the expression of the regret for algorithm S?L-UCB. Again, the proof of

this result can be found in the Section 11.A.

Theorem 38 Under Assumption 11.4.2, and if S is an upper bound on the sparsity of 0, the
regret of S?L-UCB is bounded with probability at least 1 — § as

Ry(Algszr—veB)
< 2985 1og(16 K Sn?/62)4(||0]]2 + ||o||2)v/n- (11.6)

When the noise is sparse, it is possible to retrieve the support of 8 with a number of samples
of order O(Sy/n) even when the noise is arbitrarily big and € is arbitrarily small. The idea is
to detect the coordinates of the space for which the projection of the vector 6 + 7, is non-zero:
note that there are at most 2.5 indexes such that the vector is non-zero. To detect the non-zero
coordinates, we project on vectors x that contain a certain proportion of non-zero coordinates
whereas the other coordinates of the vector are 0. With a non-zero probability, all the non-zero

coordinates of 6 4+ 1, will be at the same position as the zeros in  and we observe in those cases
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re = (0+n, ) = 0. In this case, we can remove all the non-zero coordinates of x from the active
set®. As we observe r; = 0 with non-zero probability, we know that if we sample a large enough
number of different i.i.d. x, we will receive r; = 0 several times with high probability and thus
remove from the active set many coordinates: at the end of the process, the size of the active
set A(t) is smaller than a constant times S.

We are thus able to find the support with just O(Sy/n) pulls. We illustrate briefly the
technique in Figure 11.5.

O OO OO O T O O oR

1 0 o0 o o 1 1 0 0 1 1 a

1 1 1 1

I @ ® 0 1 ® 0 0 1 ® 1 = | b+e
0l ® ® 1 0@ 0 1 0 & 1 0
O] RFIOWLRR O X ©

Figure 11.5: Idea of the support exploration phase: each time we observe r, = 0, we know
that the non-zeros coordinates of x are not active. The first matrix contains the vectors x;, the
second is # and the last one is r;.

11.4.3 Numerical experiment

In order to illustrate the mechanism of our algorithm, we apply SL-UCB to a quadratic function
in dimension 100 where only two dimensions are informative. Figure 11.6 shows with grey levels
the projection of the function onto these two informative directions and a trajectory followed by
n = 50 steps of gradient ascent. The beginning of the trajectory shows an erratic behavior (see
the zoom) due to the initial support exploration phase (the projection of the gradient steps onto
the relevant directions are small and random). However, the algorithm quickly selects the righ
support of the gradient and the restricted linear bandit phase enables to follow very efficiently
the gradient along the two relevant directions.

We now want to illustrate the performances of SL-UCB on more complex problems. We fix

8Note however that in order to remove coordinates from the active set, we need to project many times on a
given x: this is necessary in order to be sure that we do not remove by accident a coordinate where 6 = —ny,+ # 0.
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Figure 11.6: Illustration of the trajectory of algorithm SL-UCB with a budget n = 50, with a
zoom at the beginning of the trajectory to illustrate the support exploration phase. The levels
of gray correspond to the contours of the function.
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the number of pulls to n = 100, and we try different values of K, in order to produce results for
different values of the ratio % The larger this ratio, the more difficult the problem. We choose
a quadratic function that is not constant in S = 10 directions®.

We compare our algorithm SL-UCB to two strategies: the “oracle” gradient strategy (OGS),
i.e. a gradient algorithm with access to the full gradient of the function'®, and the random
best direction (BRD) strategy (i.e., at a given point, chooses a random direction, observes the
value of the function a step further in this direction, and moves to that point if the value of
the function at this point is larger than its value at the previous point). In Figure 11.7, we
report the difference between the value at the final point of the algorithm and the value at the

beginning.

| K/n || OGS | SL-UCB | BRD \
2 1.875 10° | 1.723 10° | 2.934 10*
10 || 1.87510° | 1.657 10° | 1.335 10*
100 || 1.87510° | 1.552 10° | 5.675 10°

Figure 11.7: We report, for different values of % and different strategies, the value of f(u,) —

f (uo).

The performances of SL-UCB is (slightly) worse than the optimal “oracle” gradient strategy.
This is due to the fact that SL-UCB is only given a partial information on the gradient. However
it performs much better than the random best direction. Note that the larger %, the more
important the improvements of SL-UCB over the random best direction strategy. This can
be explained by the fact that the larger %, the less probable it is that the random direction
strategy picks a direction of interest, whereas our algorithm is designed for efficiently selecting

the relevant directions.

Conclusion

In this Chapter we introduced the SL-UCB algorithm for sparse linear bandits in high dimension.
It has been designed using ideas from Compressed Sensing and Bandit Theory. Compressed
Sensing is used in the support exploration phase, in order to select the support of the parameter.
A linear bandit algorithm is then applied to the small dimensional subspace defined in the first
phase. We derived a regret bound of order O(Sy/n). Note that the bound scales with the
sparsity S of the unknown parameter € instead of the dimension K of the parameter (as is
usually the case in linear bandits). We then provided an example of application for this setting,
the optimization of a function in high dimension. Possible further research directions include:
e The case when the support of # changes with time, for which it would be important to
define assumptions under which sub-linear regret is achievable. One idea would be to use

techniques developed for adversarial bandits (see [Abernethy et al., 2008; Audibert et al.,

9We keep the same function for different values of K. It is the quadratic function f(z) = 3,2, —20(z) — 25)*.
YEach of the 100 pulls corresponds to an access to the full gradient of the function at a chosen point.
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2011; Bartlett et al., 2008; Cesa-Bianchi and Lugosi, 2012; Koolen et al., 2010], but also
[Flaxman et al., 2005] for a more gradient-specific modeling) or also from restless/switching
bandits (see e.g. [Garivier and Moulines, 2011; Nino-Mora, 2001; Slivkins and Upfal, 2008;
Whittle, 1988] and many others). This would be particularly interesting to model gradient

ascent for e.g. convex function where the support of the gradient is not constant.

e Designing an improved analysis (or algorithm) in order to achieve a regret of order O(v/Sn),
which is the lower bound for the problem of linear bandits in a space of dimension .S. Note

that when an upper bound S’ on the sparsity is available, it seems possible to obtain such
Vvn
1006100 1> L:3) 12— Y52
using for the Exploitation phase the algorithm in [Rusmevichientong and Tsitsiklis, 2008].
The regret of such an algorithm would be in O(v/S'n). But it is not clear whether it is
possible to obtain such a result when no upper bound on S is available (as is the case for

SL-UCB).

a regret by replacing condition (ii) in the algorithm by ¢ < , and
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Appendices for Chapter 11

11.A Proofs

Proof of Theorem 37

Definition of a high-probability event £ Step 0: Bound on the variations ofgt around its
mean during the Support Exploration Phase

Note :c\hat since wy; = \/—% or Ty = —\/% during the Support Exploration Phase, the
estimate 0; of # during this phase is such that, for any tg < T and any k

to
~ K
ek,to = % ( Z fEk,H‘t)
= tO(ZIEktZSCk/ 9k’+”7k/ ))

t=1 k=1
= ka ik + - Zfﬂkt > ww b + Zgﬁkt Z TR ¢
=1 KAk =1 k=1
= O + Z Z R Z Z bk i/ 11K 5 (11.7)
0 %=1 b2k 0 %=1 k=1

where byt = KTp 1T 4.

Note that since the xy ; are i.i.d. random variables such that zj; = # with probability 1/2
and zp; = —ﬁ with probability 1/2, the (b ¢)i'#k, are i.i.d. Rademacher random variables,
and by = 1.

Step 1: Study of the first term. Let us first study % S, >tk Okt 1Ok -

Note that the by 0 are (K — 1)T zero-mean independent random variables and that
among them, V&' € {1, ..., K}, to of them are bounded by 0, i.e. the (b 4 0% ):. By Hoeffding’s
inequality, we thus have with probability 1 — ¢ that |t Zt 1 k’;ék b i 401 | < [61l2/2 108 (2/3) VQ\/;%W.
Now by using an union bound on all the k = {1,..., K'}, we have w.p. 1 — 4, Vk,

0||2+/21og(2K/6
|—ZZb | < 16112 \/tf’( /%) (11.8)
0421 bk 0

Step 2: Study of the second term. Let us now study = i Zt 1 k/ 1 Dk 40 -
Note that the (by i +nw )i+ are Kto independent zero-mean random variables, and that
among these variables, Vk € {1, ..., K } to of them are bounded by %ak. By Hoeffding’s inequality,

loll2 ”j%)g@/é). Thus by an

we thus have with probability 1 — \t Zt 1 k/ 10k i 2] <
union bound, with probability 1 — §, Vk,
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to K
1 llo]|2/210g(2K/6)
— b 1 i +| < . 11.9
|TZZ ek ke | < N ( )
t=1 k'=1
Step 3: Final bound. Finally for a given ¢, with probability 1—24, we have by Equations 11.7,
11.8 and 11.9

(16]]2 + [lo]]2) /2 log(2K/5)

167 — 0|0 < T (11.10)
Step 4: Definition of the event of interest.
Now we consider the event & such that
K b
= we /| ——XiR < — 5, 11.11
3 t:Q.n{ /e = —X tHoo_\/Z} (11.11)

where b = (02 + G2)1/210g(2K/6).
From Equation 11.10 and an union bound over time, we deduce that P(§) > 1 — 2nd.

Length of the Support Exploration Phase The Support Exploration Phase ends at the
first time ¢ such that (i) maxy |§kt| - 2711 >0 and (i) t > V/n

max, |9k,t|*% )
Step 1: A result on the empirical best arm

On the event &, we know that for any ¢ and any k, 0| — ]9k o < |Ok|+ \/ In particular

for k* = argmaxy, |0x| we have

b
7 (11.12)

b N
0| — — < m]?X|0k,t| < |G

Vit

Step 2: Mazimum length of the Support Exploration Phase.

If |6~ —7 > 0 then by Equation 11.12, the first (i) criterion is verified on §. If ¢ >

then by Equation 11.12, the second (ii) criterion is verified on &.

Note that both those conditions are thus verified if ¢ > max (‘ 691’ EE ?jT\QI)' The Support

Exploration Phase stops thus before this moment. Note that as the budget of the algorithm is

4 2
n, we have on £ that T" < max (|9 ek 3‘5£|,n) < 9|\\9F|\b V. We write Thax = 9|\|§ﬁl; NG

Step 3: Minimum length of the Support Fxploration Phase.
If the first (i) criterion is verified then on £ by Equation 11.12 |f«| — % > 0. If the second

f
10|

Combining those two results, we have on the event £ that T > max(

b2
We write Tinin = o Vn.

0,5 — 3bf
WV

(ii) criterion is verified then on £ by Equation 11.12 we have t >
b2 2

b
02 Tel) = TV

B

Description of the set A The set A is defined as A = {k : |6A?kT| > 5—%}
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Step 1: Arms that are in A
Let us consider an arm k such that |0y| > 3 VIUZ 2 Note that T > Thin = ‘gT‘Q Vnon & We
thus know that on &

Bzl > 10k — S 3oVIOll:  bVIIEll2
kT = \/T nl/a nl/a _ﬁ

This means that k € A on . We thus know that |0;| > 3bn1'/‘f”2 implies on £ that k € A.

Step 2: Arms that are not in A

Now let us consider an arm k such that |9k| <3 f Then on &, we know that

b 3b<27b
VT <At T <3 < VF

This means that k£ € A° on &. This implies that on &, if || = 0, then k € A°.
Step 3: Summary.

\Gk T’ < ’9]@‘ + —

Finally, we know that A is composed of all the |0y > 3bn1'/'f"2, and that it contains only

the strictly positive components 0y, i.e. at most S elements since 6 is S—sparse. We write

‘Amin — {]C |9k| > 3b\/ H@ |2}

ni/4

Comparison of the best element on A and on Di. Now let us compare max,, ey ec(4)n . (0, xt)
and maxy,cp, (0, x¢).

At first, note that maxy,ep, (0, 7:) = [|0][2 and that max,, cyecpaynn (0, 7) = [0all2 =
\/Zszl 9,%]1{14: € A}, where 04, = 0), if k € A and 04, = 0 otherwise. This means that

max {6,z max 0,z
ztGDK< t> J:tEVec(A)ﬂDK< ’ t>

116]]3 — [|01{k € A}|[3
10]|2 + [|0T{k € A}[]2

OF _ ke, O _ 05
ke ke, V% 9S8 (11.13)

<
— llz T gl T n

= [10ll2 = [|0I{k € A}[|2 =

Expression of the regret of the algorithm Assume that we run the algorithm C'Bs(Vec(A)N
Dk, d,T) at time T' where A C Supp(#) with a budget of n; = n—T samples. In the paper [Dani
et al., 2008], they prove that on an event {3(Vec(A)N Dy, d,T) of probability 1 — 4§ the regret of
algorithm C'By is bounded by Ry (Alge:py (vee(a)ids o)) < 6414] (| 10][o-+]|o] \2) (log(n?/6))2\/m1.

Note that since A C Supp(0), we have {&a(Vec(A) N Dk, 5, T) C &a(Vee(Supp(0)) N Dk, 6, T)
(see the paper [Dani et al., 2008] for more details on the event &;). We thus now that,
conditionally to 7', with probability 1 — §, the regret is bounded for any A C Supp(f) as
R (Algcp, vee s sm) < 645 (110112 + lloll2 ) (log(n?/6))? /.

By an union bound on all possible values for 7' (i.e. from 1 to n), we obtain that on

an event & whose probability is larger than 1 — 0, R,(Algep,(vee(a)nps,r)) < 64S<Hl9||2 +
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H‘7H2>(10g(n3/5))2\/ﬁ

We thus have on £ |J &2, i.e. on an event with probability larger than 1 — 20, that

R, (Algsr.—vcB,6) < 2Tmax||0]]2
+ max Ry, (Algo By (Vee()nD i b))

+ n< max (z,0) — max (x,6’>>.
€DK z€DNVect(Amin)
By using this Equation, the maximal length of the support exploration phase Ty,.x deduced
in Step 2 of Subsection 11.A, and Equation 11.13, we obtain on £ that

Ry, < 645(]|6]l2 + [lo]]2) (log(n®/6))*Vn + 1856°v/n + 95>/
< 118(6y + 72)% log(2K/8)S/n.

by using b = (02 + 52)~/21og(2K/$) for the third step.

Proof of Theorem 38

Some additional notations Let us denote by Supp(6) = {k : 0x # 0} U{k : o # 0}. Note
that [Supp(0)| < 25.

Let us now call p = minge gupp(6) Py, (O + 1kt 7 0)-

Let us write Supp(z) = {k : = # 0}

Probability of observing r, = 0 when Supp(0) N Supp(z) # 0 Let us assume that we are
at time ¢ and in the support exploration phase (t < ninang).

Let us assume that we pulled an arm x from €poring(t). Note that the algorithm will pull
this arm ng3 times.

At first, note that as the (21)regupp(z) are [Supp(x)| i.i.d. gaussians and as the other xy, are

equal to 0, we have

K
P(r, =0) = P(Z 1Ok + 1Mkye) = 0)
k=1
=P( > @bk + 1) =0) =0, (11.14)
keSupp(x)

if the all the components (O, 7.t ) ke Supp(z) are not 0.
Let us assume that Supp(0) N Supp(z) # 0. It means that there is (at least) a k such that
0, # 0 or o # 0, and zp # 0.
Let us now assume that 7; = 0. It means because of Equation 11.14 that n; + 6 = 0. We thus
have
B(r, = 0) < Blny + 6, = 0) <1 p.
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Now note that the algorithm pulls arm k exactly nz = w times. The probability P; of

observing r; = 0 all those n3 times is thus

log(1/9)

P<(l-p®<(1-p » <4, (11.15)

because (1 + 7)™ < exp(z).
This means by just doing a union bound over the nine times where a different x is chosen
that with probability at most nin2d, if for a chosen z we have maxye gupp(a) 0k| + 0% # 0, we do

not observe for this z only r; = 0.

Probability of choosing a x such that Supp(z) N Supp(d) = 0. Let us assume that we are

at time ¢ and in the support exploration phase (t < ninans).

Let us assume that [A(t)| = k. This means that the probability of choosing = such that Supp(z)N

Supp(0) =0 is (;37)° > st exp(—1)(1 — ﬁ) > e, because (1+ )" > exp(a)(1 — %)
Note that we pick ny different vectors in €,pjoring(t). The probability P, that none of those

ng vectors are such that Supp(z) N Supp(f) = 0 is such as
Py < (1—exp(—1))" <. (11.16)

because (14 £)" < exp(z). This means by just doing a union bound over the n; times where
the support is updated that with probability at least 1 — n1d, we will pull an arm x at each
phase such that Supp(z) N Supp(8) = 0.

Probability of picking the good support at the end. Equation 11.A tells us that with
probability at least 1 — ningd if Supp(x) N Supp(f) # O, then we observe at least a ry # 0 for
this z. Equation 11.A tells us that with probability 1 —n6, we will pull a & € €,pioring(t) such
that Supp(z) N Supp() = 0.

Combining those two results allows us to state that with probability at least 1—n1d—ninad >
1 — 2n1n9d, we will pull randomly (at least) one vector x among the ns different vector that
were picked before changing set A(t), such that Supp(x) N Supp(8) = 0.

Let us assume that at time ¢, A(t) = m. Now note that because of the law of x we have with
probability 1 — ¢ that Supp(z)¢ N Supp(0)¢ < mSiJrl + %\/W This means that when we
choose a = € € pioring(t) such that Supp(z) N Supp(#) = 0, then with probability 1 — 4§, we will
diminish the set A; from a size m to a size msi+1 + %\/W . If we combine this with the
previous result, we know that with probability 1 — 3ninsd, we diminish the active set n; times
(at every step).

This means that at the end, with probability 1—3nin9d, the active set is such that Supp(0) C
Aningns and that [Ap non,| < K(557)™ + n134/10g(2/6) < 1+ log(K)(S + 1)3/log(2/6) <
log(K)(S +1)1/log(2/9).
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Regret Let us suppose that p < % We pose here S' = log(K)(S + 1)\/W the upper
bound with probability 1 — 3nined on the size of the active set at the end of the support
exploration phase. As p < %’ we know that all the non-null coordinates of § are in A(ninans)
with probability at least 1 — 3ninsd.

We have with probability 1 — 3ninsd — ¢

R < mnans(2116]]3) + 645" (110]12 + |02 ) (log(n?/8))* /7.

Now note that if we take a parameter bigger than ﬁ as a lower bound on p and if p is

smaller, then the set A(ninonz) might only contain the k such that P(f + nk,t = 0) > -1

4

Note however that for the k that do not verify this, we have 0 = E(0 + ny,) < W%.

S(| maxy, 0| + o1)?

R, <n Il + 3n1n2dn + ninang + O(45'y/n)
2
S 0 2
< ( max|;|§9’/|r€| o) + 3n1ng + ning log(n)v/n + O(4S8"v/n).
2

Note also trivially that

R, < n||0||2 + 3n1n2dn + ninong + O(4S+/n)
< nl|]]2 + 3n1ng + ning log(n)v/n + O(4Sv/n).

Finally, we have

R, < min (nHHHQ + 2n1ng + ninglog(n)v/n + O(4Sv/n),

S(| maxy O] + o3)*
1012

<VS( max Ok| + ok)vn + 2n1ng + ninglog(n)v/n + O(4Sv/n).

+ 2n1ng + ning log(n)v/n + 0(45\/ﬁ)>
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