X. Aubert, G. Bauville, J. Guillon, B. Lacour, V. Puech et al., Analysis of the self-pulsing operating mode of a microdischarge, Plasma Sources Science and Technology, vol.16, issue.1, pp.23-32, 2007.
DOI : 10.1088/0963-0252/16/1/004

K. H. Becker, U. Kogelschatz, K. H. Schoenbach, R. J. Barker, and . Eds, Non- Equilibrium Air Plasmas at Atmospheric Pressure, 2004.

K. H. Becker, A. Koutsospyros, S. Yin, C. Christodoulatos, N. Abramzon et al., Environmental and biological applications of microplasmas, Plasma Physics and Controlled Fusion, vol.47, issue.12B, p.513, 2005.
DOI : 10.1088/0741-3335/47/12B/S37

K. H. Becker, K. H. Schoenbach, and J. G. Eden, Microplasmas and applications, Journal of Physics D: Applied Physics, vol.39, issue.3, pp.55-70, 2006.
DOI : 10.1088/0022-3727/39/3/R01

H. Boettner, J. Waskoenig, O. Connell, D. , K. T. Tchertchian et al., Excitation dynamics of micro-structured atmospheric pressure plasma arrays, Journal of Physics D: Applied Physics, vol.43, issue.12, pp.124010-95, 2010.
DOI : 10.1088/0022-3727/43/12/124010

URL : https://hal.archives-ouvertes.fr/hal-00569560

M. I. Boulos, P. Fauchais, and E. Pfender, Thermal Plasmas: Fundamental and applications I, pp.0-306, 1994.
DOI : 10.1007/978-1-4899-1337-1

X. Eurosensors, The 11th International Conference on Solid-State Sensors and Actuators, 2001.

J. Chen, S. Park, J. G. Eden, and C. Liu, Development and characterization of micromachined hollow cathode plasma display devices, Journal of Microelectromechanical Systems, vol.11, issue.5, pp.536-543, 2002.
DOI : 10.1109/JMEMS.2002.802907

K. C. Choi and H. Tae, The characteristics of plasma display with the cylindrical hollow cathode, IEEE Transactions on Electron Devices, vol.46, issue.12, p.2344, 1999.
DOI : 10.1109/16.808079

L. G. Christophorou and L. A. Pinnaduwage, Basic physics of gaseous dielectrics, IEEE Transactions on Electrical Insulation, vol.25, issue.1, pp.55-74, 1990.
DOI : 10.1109/14.45234

M. Deilmann, H. Halfmann, N. Bibinov, J. Wunderlich, and P. Awakowicz, Low-Pressure Microwave Plasma Sterilization of Polyethylene Terephthalate Bottles, Journal of Food Protection, vol.71, issue.10, pp.2119-2142, 2008.
DOI : 10.4315/0362-028X-71.10.2119

S. Deng, . R. Ruan, C. K. Mok, G. Huang, X. Lin et al., Inactivation of Escherichia coli on Almonds Using Nonthermal Plasma, Journal of Food Science, vol.68, issue.8, pp.62-66, 2007.
DOI : 10.1109/27.842864

L. Dong, F. Liu, S. Liu, Y. He, and W. Fan, Observation of spiral pattern and spiral defect chaos in dielectric barrier discharge in argon/air at atmospheric pressure, Physical Review E, vol.72, issue.4, p.46215, 2005.
DOI : 10.1103/PhysRevE.72.046215

T. Dufour, Etude expérimentale et simulation des microplasmas générés dans des micro-cathodes creuses, 2009.

T. Dufour, L. J. Overzet, R. Dussart, L. C. Pitchford, N. Sadeghi et al., Experimental study and simulation of a micro-discharge with limited cathode area, The European Physical Journal D, vol.15, issue.3, pp.565-574, 2010.
DOI : 10.1140/epjd/e2010-00273-6

URL : https://hal.archives-ouvertes.fr/hal-01005937

R. Dussart, M. Boufnichel, G. Marcos, P. Lefaucheux, A. Basillais et al., etching process, Journal of Micromechanics and Microengineering, vol.14, issue.2, pp.190-196, 2004.
DOI : 10.1088/0960-1317/14/2/004

URL : https://hal.archives-ouvertes.fr/hal-01057233

R. Dussart, L. J. Overzet, P. Lefaucheux, T. Dufour, M. Kulsreshath et al., Integrated micro-plasmas in silicon operating in helium, The European Physical Journal D, vol.92, issue.3, pp.601-608, 2010.
DOI : 10.1140/epjd/e2010-00272-7

URL : https://hal.archives-ouvertes.fr/hal-00655009

J. G. Eden, S. Park, N. P. Ostrom, S. T. Mccain, C. J. Wagner et al., Microplasma devices fabricated in silicon, ceramic, and metal/polymer structures: arrays, emitters and photodetectors, Journal of Physics D: Applied Physics, vol.36, issue.23, pp.2869-2877, 2003.
DOI : 10.1088/0022-3727/36/23/001

J. G. Eden and S. Park, Microcavity plasma devices and arrays: a new realm of plasma physics and photonic applications, Plasma Physics and Controlled Fusion, vol.47, issue.12B, pp.83-92, 2005.
DOI : 10.1088/0741-3335/47/12B/S07

J. G. Eden, S. Park, N. P. Ostrom, and K. Chen, Recent advances in microcavity plasma devices and arrays: a versatile photonic platform, Journal of Physics D: Applied Physics, vol.38, issue.11, pp.1644-1648, 2005.
DOI : 10.1088/0022-3727/38/11/002

J. C. Eijkel, H. Stoeri, and A. Manz, An atmospheric pressure dc glow discharge on a microchip and its application as a molecular emission detector, Journal of Analytical Atomic Spectrometry, vol.15, issue.3, p.297, 2000.
DOI : 10.1039/a909238b

J. K. Evju, P. B. Howell, L. E. Locascio, M. J. Tarlov, and J. J. Hickham, Atmospheric pressure microplasmas for modifying sealed microfluidic devices, Applied Physics Letters, vol.84, issue.10, p.1668, 2004.
DOI : 10.1063/1.1668327

U. Fantz, Basics of plasma spectroscopy, Plasma Sources Science and Technology, vol.15, issue.4, pp.137-147, 2006.
DOI : 10.1088/0963-0252/15/4/S01

R. Foest, E. Kindel, A. Ohl, M. Stieber, and K. D. Weltmann, Non-thermal atmospheric pressure discharges for surface modification, Plasma Physics and Controlled Fusion, vol.47, issue.12B, pp.525-561, 2005.
DOI : 10.1088/0741-3335/47/12B/S38

J. W. Frame and J. G. Eden, Planar microdischarge arrays, Electronics Letters, vol.34, issue.15, p.1529, 1998.
DOI : 10.1049/el:19981018

J. W. Frame, D. J. Wheeler, T. A. De-temple, and J. G. Eden, Microdischarge devices fabricated in silicon, Applied Physics Letters, vol.71, issue.9, pp.1165-1167, 1997.
DOI : 10.1063/1.119614

J. W. Frame, P. C. John, T. A. Detemple, and J. G. Eden, Continuous-wave emission in the ultraviolet from diatomic excimers in a microdischarge, Applied Physics Letters, vol.72, issue.21, pp.2634-2636, 1998.
DOI : 10.1063/1.121439

Y. B. Golubovskii, V. A. Maiorov, J. Behnke, and J. F. Behnke, On the Homogeneity of the Glow-Like Barrier Discharge at Atmospheric Pressure, Plasma Processes and Polymers, vol.37, issue.3, p.188, 2005.
DOI : 10.1002/ppap.200400062

J. Guikema, N. Miller, J. Niehof, M. Klein, and M. Walhout, Spontaneous Pattern Formation in an Effectively One-Dimensional Dielectric-Barrier Discharge System, Physical Review Letters, vol.85, issue.18, p.3817, 2000.
DOI : 10.1103/PhysRevLett.85.3817

A. El-habachi and K. H. Schoenbach, Emission of excimer radiation from direct current, high-pressure hollow cathode discharges, Applied Physics Letters, vol.72, issue.1, p.22, 1998.
DOI : 10.1063/1.120634

A. El-habachi and K. H. Schoenbach, Generation of intense excimer radiation from high-pressure hollow cathode discharges, Applied Physics Letters, vol.73, issue.7, p.885, 1998.
DOI : 10.1063/1.122027

G. J. Hagelaar and L. C. Pitchford, Solving the Boltzmann equation to obtain electron transport coefficients and rate coefficients for fluid models, Plasma Sources Science and Technology, vol.14, issue.4, p.722, 2005.
DOI : 10.1088/0963-0252/14/4/011

D. D. Hsu and D. B. Graves, Microhollow Cathode Discharge Reactor Chemistry, Plasma Chemistry and Plasma Processing, vol.65, issue.1, pp.1-17, 2005.
DOI : 10.1007/s11090-004-8831-8

F. Iza, G. J. Kim, S. M. Lee, J. K. Lee, J. L. Walsh et al., Microplasmas: Sources, Particle Kinetics, and Biomedical Applications, Plasma Processes and Polymers, vol.39, issue.4, pp.322-366, 2008.
DOI : 10.1002/ppap.200700162

W. Kern and . Ed, Handbook of Semiconductor Cleaning Technology, 1993.

M. Klein, N. Miller, and M. Walhout, Time-resolved imaging of spatiotemporal patterns in a one-dimensional dielectric-barrier discharge system, Physical Review E, vol.64, issue.2, p.26402, 2001.
DOI : 10.1103/PhysRevE.64.026402

K. Yu, .. D. Mesyats, and G. A. , Physics of pulsed breakdown in gases, 1998.

P. S. Kothnur and L. L. Raja, Two-dimensional simulation of a direct-current microhollow cathode discharge, Journal of Applied Physics, vol.97, issue.4, p.43305, 2005.
DOI : 10.1063/1.1849816

M. K. Kulsreshath, L. Schwaederlé, L. J. Overzet, P. Lefaucheux, J. Ladroue et al., Study of dc micro-discharge arrays made in silicon using CMOS compatible technology, Journal of Physics D: Applied Physics, vol.45, issue.28, p.285202, 2012.
DOI : 10.1088/0022-3727/45/28/285202

URL : https://hal.archives-ouvertes.fr/hal-00713105

E. E. Kunhardt, Generation of large-volume, atmospheric-pressure, nonequilibrium plasmas, IEEE Transactions on Plasma Science, vol.28, issue.1, p.189, 2000.
DOI : 10.1109/27.842901

P. Kurunczi, J. Lopez, H. Shah, and K. Becker, Excimer formation in high-pressure microhollow cathode discharge plasmas in helium initiated by low-energy electron collisions, International Journal of Mass Spectrometry, vol.205, issue.1-3, p.277, 2001.
DOI : 10.1016/S1387-3806(00)00377-8

M. J. Kushner, Modelling of microdischarge devices: plasma and gas dynamics, Journal of Physics D: Applied Physics, vol.38, issue.11, p.1633, 2005.
DOI : 10.1088/0022-3727/38/11/001

M. A. Lieberman and A. J. Lichtenberg, Principles of plasma discharges and materials processing, 2005.
DOI : 10.1002/0471724254

V. Martin, G. Bauville, N. Sadeghi, and V. Puech, Microplasmas as vacuum ultraviolet source for Cl-atom density measurements by resonance absorption spectroscopy, Journal of Physics D: Applied Physics, vol.44, issue.43, p.435203, 2011.
DOI : 10.1088/0022-3727/44/43/435203

URL : https://hal.archives-ouvertes.fr/hal-01005960

. Mee and D. C. Meeker, Finite element method magnetics, version 4.0.1 http

M. Moselhy, R. H. Stark, K. H. Schoenbach, and U. Kogelschatz, Resonant energy transfer from argon dimers to atomic oxygen in microhollow cathode discharges, Applied Physics Letters, vol.78, issue.7, p.880, 2001.
DOI : 10.1063/1.1336547

M. Moselhy, I. Petzenhauser, K. Frank, and K. H. Schoenbach, Excimer emission from microhollow cathode argon discharges, Journal of Physics D: Applied Physics, vol.36, issue.23, p.2922, 2003.
DOI : 10.1088/0022-3727/36/23/009

G. Nersisyan and W. G. Graham, Characterization of a dielectric barrier discharge operating in an open reactor with flowing helium, Plasma Sources Science and Technology, vol.13, issue.4, p.582, 2004.
DOI : 10.1088/0963-0252/13/4/005

R. Papoular, Phénomènes Electriques dans les Gaz, 1963.

S. Park, C. J. Wagner, C. M. Herring, and E. J. , Flexible microdischarge arrays: Metal/polymer devices, Applied Physics Letters, vol.77, issue.2, pp.199-200, 2000.
DOI : 10.1063/1.126923

S. Park, J. Chen, C. Liu, and E. J. , Silicon microdischarge devices having inverted pyramidal cathodes: Fabrication and performance of arrays, Applied Physics Letters, vol.78, issue.4, pp.419-421, 2001.
DOI : 10.1063/1.1338971

S. Park, J. Chen, C. J. Wagner, N. P. Ostrom, C. Liu et al., Microdischarge arrays: a new family of photonic devices (revised*), IEEE Journal of Selected Topics in Quantum Electronics, vol.8, issue.2, pp.387-392, 2002.
DOI : 10.1109/2944.999194

F. Paschen, Ueber die zum Funken??bergang in Luft, Wasserstoff und Kohlens??ure bei verschiedenen Drucken erforderliche Potentialdifferenz, Annalen der Physik, vol.29, issue.5, pp.69-96, 1889.
DOI : 10.1002/andp.18892730505

C. Penache, M. Miclea, A. Bräuning-demian, O. Hohn, S. Schössler et al., Plasma source sci, pp.476-483, 2002.

J. Raiser and M. Zenker, Argon plasma coagulation for open surgical and endoscopic applications: state of the art, Journal of Physics D: Applied Physics, vol.39, issue.16, pp.3520-3523, 2006.
DOI : 10.1088/0022-3727/39/16/S10

Y. P. Raizer, Gas discharge Physics, 1991.
DOI : 10.1007/978-3-642-61247-3

E. Robert, V. Sarron, D. Ries, S. Dozias, M. Vandamme et al., Characterization of pulsed atmospheric-pressure plasma streams (PAPS) generated by a plasma gun, Plasma Sources Science and Technology, vol.21, issue.3, p.34017, 2012.
DOI : 10.1088/0963-0252/21/3/034017

URL : https://hal.archives-ouvertes.fr/hal-00820326

N. Sadeghi, 6. Molecular Spectroscopy Techniques Applied for Processing Plasma Diagnostics, Journal of Plasma and Fusion Research, vol.80, issue.9, pp.767-769, 2004.
DOI : 10.1585/jspf.80.767

URL : https://hal.archives-ouvertes.fr/jpa-00205697

R. M. Sankaran and K. P. Giapis, Hollow cathode sustained plasma microjets: Characterization and application to diamond deposition, Journal of Applied Physics, vol.92, issue.5, p.2406, 2002.
DOI : 10.1063/1.1497719

K. H. Schoenbach, A. El-habachi, M. Moselhy, W. Shi, and R. H. Stark, Microhollow cathode discharge excimer lamps, Physics of Plasmas, vol.7, issue.5, p.2186, 2000.
DOI : 10.1063/1.874039

L. Schwaederle, M. K. Kulsreshath, L. J. Overzet, P. Lefaucheux, T. Tillocher et al., Breakdown study of dc silicon micro-discharge devices, Journal of Physics D: Applied Physics, vol.45, issue.6, p.65201, 2012.
DOI : 10.1088/0022-3727/45/6/065201

URL : https://hal.archives-ouvertes.fr/hal-00667649

K. H. Schoenbach, R. Verhappen, T. Tessnow, F. E. Peterkin, and W. W. Byszewski, Microhollow cathode discharges, Applied Physics Letters, vol.68, issue.1, p.13, 1996.
DOI : 10.1063/1.116739

K. H. Schoenbach, A. El-habachi, W. Shi, and M. Ciocca, High-pressure hollow cathode discharges, Plasma Sources Science and Technology, vol.6, issue.4, pp.468-477, 1997.
DOI : 10.1088/0963-0252/6/4/003

V. V. Serikov and K. Nanbu, The analysis of background gas heating in direct current sputtering discharges via particle simulation, Journal of Applied Physics, vol.82, issue.12, p.5948, 1997.
DOI : 10.1063/1.366497

R. E. Sladek, E. Stoffels, R. Walraven, P. J. Tielbeek, and R. A. Koolhoven, Plasma Treatment of Dental Cavities: A Feasibility Study, IEEE Transactions on Plasma Science, vol.32, issue.4, pp.1540-1543, 2004.
DOI : 10.1109/TPS.2004.832636

D. Staack, B. Farouk, A. Gutsol, and A. Fridman, Characterization of a dc atmospheric pressure normal glow discharge, Plasma Sources Science and Technology, vol.14, issue.4, p.700, 2005.
DOI : 10.1088/0963-0252/14/4/009

R. H. Stark and K. H. Schoenbach, Direct current high-pressure glow discharges, Journal of Applied Physics, vol.85, issue.4, p.2075, 1999.
DOI : 10.1063/1.369505

E. Stoffels, . I. Kieft, R. E. Sladek, L. J. Bedem, . Van-den et al., medical treatment: recent developments and perspectives, Plasma Sources Science and Technology, vol.15, issue.4, pp.169-180, 2006.
DOI : 10.1088/0963-0252/15/4/S03

H. Wagner, R. Brandenburg, K. V. Kozlov, A. Sonnenfeld, P. Michel et al., The barrier discharge: basic properties and applications to surface treatment, Vacuum, vol.71, issue.3, p.417, 2003.
DOI : 10.1016/S0042-207X(02)00765-0

A. D. White, New Hollow Cathode Glow Discharge, Journal of Applied Physics, vol.30, issue.5, p.711, 1959.
DOI : 10.1063/1.1735220

?. Mukesh-kulsreshath, L. Schwaederlé, L. J. Overzet, P. Lefaucheux, J. Ladroue et al., Study of dc micro-discharge arrays made in silicon using CMOS compatible technology, Journal of Physics D: Applied Physics, vol.45, issue.28, p.285202, 2012.
DOI : 10.1088/0022-3727/45/28/285202

?. Laurent-schwaederlé, M. Kulsreshath, L. Overzet, P. Lefaucheux, T. Tillocher et al., Breakdown study of dc silicon micro-discharge devices, Journal of Physics D: Applied Physics, vol.45, issue.6, p.65201, 2012.
DOI : 10.1088/0022-3727/45/6/065201

?. T. Dufour, L. J. Overzet, R. Dussart, L. C. Pitchford, N. Sadeghi et al., Experimental study and simulation of a micro-discharge with limited cathode area, The European Physical Journal D, vol.15, issue.3, pp.565-574, 2010.
DOI : 10.1140/epjd/e2010-00273-6

URL : https://hal.archives-ouvertes.fr/hal-01005937

?. R. Dussart, L. J. Overzet, P. Lefaucheux, T. Dufour, M. Kulsreshath et al., Integrated micro-plasmas in silicon operating in helium, The European Physical Journal D, vol.92, issue.3, 2010.
DOI : 10.1140/epjd/e2010-00272-7

URL : https://hal.archives-ouvertes.fr/hal-00655009