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1.   INTRODUCTION 
 
 
 
Recent advances in telecommunications, collaborated with the development of image and 
video processing and acquisition devices has lead to a spectacular growth of the amount of the 
visual content data (still images, video streams, 2D graphical elements, 3D models...) stored, 
transmitted and exchanged over Internet. Within this context, elaborating efficient tools to 
access, browse and retrieve video content has become a crucial challenge. 
 
Existing approaches, currently deployed in industrial applications are based mostly on textual 
indexation, which shows quickly its limitations, related to the intrinsic poly-semantic nature 
of the multimedia content and to the various linguistic difficulties that need to be overcome. 
The textual annotation has as main objective to associate a set of keywords to each individual 
item. In the case of huge repositories of audio-visual content, like those currently existing 
over Internet such a procedure requires a tremendous effort of human, manual annotation. In 
addition, the indexation process implies various annotators which may have different 
perceptions and sensibilities, which leads to subjective interpretations of the content. Finally, 
the multi-lingual aspects cannot be treated in a straightforward manner. 
 
This shows the interest of developing content-based indexing and retrieval systems, able to 
interpret and describe the semantics of the multimedia content in an automatic manner. Still, 
to obtain viable and effective representations, a number of problems need to be overcome, 
including the identification of the pertinent items to be described, the selection of appropriate 
attributes and the resolution of the so-called semantic gap [Zhu09].  
 
In particular, when considering the specific issue of video indexing, the description exploited 
by the actual commercial search engines is monolithic and global, treating each document as a 
whole. Such an approach does take into account neither the informational and semantic 
richness, specific to video documents, nor their intrinsic spatio-temporal structure. As a direct 
consequence, the resulting granularity level of the description is not sufficiently fine to allow 
a robust and precise access to user-specified elements of interest (e.g. objects, scenes, shots, 
events, chapters…). Within this framework, video temporal segmentation and structuring 
represents a key and mandatory stage that needs to be performed prior to any effective 
description/classification of video documents. 
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The process of automatic analysis of video content can be summarized into the following 
steps [Hanjalic02]: 
• Video decomposition into various structural elements (object, keyframe, shot, scene...). 
• Video indexing, i.e., the process of automatically assigning content-based or high level 

descriptors to the detected video elements.  
• Browsing and retrieval, i.e., the process of presenting to the end user the search results, 

based on the considered descriptions. 
 
This analysis shows that, when developing video indexing and retrieval applications, we first 
have to consider the issue of structuring the huge and rich amount of heterogeneous 
information related to video content. From the spatio-temporal structural point of view, a 
digital video can be decomposed into four different levels of detail (Figure 1.1), 
corresponding to scenes/chapters, shots, key-frames and objects: 

• Scene level – corresponds to a group of video shots that are homogeneous with respect 
to a semantic criterion. A scene needs to respect three continuity rules in space, time 
and action. 

• Shot level –defined as the sequence of successive frames from the moment a camera 
starts recording until it stops. The obtained video has the property of being visual 
continuous;  

• Keyframe level – expressed as a set of representative images in each considered shot, 
able to summarize its visual content; 

• Object level – corresponding to the spatial or spatio-temporal regions of arbitrary 
shapes and related to the salient objects of interest evolving in the sequence. 

 

 
Figure 1.1. The structure of a video sequence. 

 
The detection of the structural elements represents a key and mandatory stage that needs to be 
performed prior to any effective description/classification of video documents. In this thesis, 
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we notably tackle this issue, and propose solutions for the detection of each of the above-
mentioned structural elements involved.  
 
The rest of the manuscript is organized as follows.  
 
Chapter 2 tackles the issue of shot boundary detection. The shot segmentation algorithms 
have been intensively studied in the last two decades, as testifies the extremely rich literature 
dedicated to the subject, which is first presented and analyzed in this chapter. The high 
interest in the field can be explained by the fact the shot is generally considered as the “atom” 
which provides the basis for the majority of video abstraction and high level semantic 
description applications. The analysis of the literature shows that the challenge is to elaborate 
robust shot detection methods for both abrupt and gradual transitions, which can achieve high 
precision and recall rates whatever the movie quality and genre, the creation date and the 
techniques involved in the production process, while minimizing the amount of human 
intervention. In the second part of this chapter, we introduce and validate a novel shot 
boundary detection algorithm able to identify both abrupt (i.e., cuts) and gradual transitions 
(i.e., fades, wipes…). The technique is based on an enhanced graph partition model, combined 
with a multi-resolution analysis and a non-linear filtering operation. In order to reduce the 
computational complexity, an initial segmentation step of the input stream is performed with 
the help of a sliding window that selects a constant number of N frames from the original 
video signal centered on the current frame. We focused next in reducing the global 
computational complexity by implementing a two-pass approach. In a first step, the algorithm 
detects time intervals which can be reliably considered as belonging to the same shots. Abrupt 
transitions considered as certain are also detected in this stage. In a second step, the multi-
resolution graph partition algorithm is further performed only for the remaining uncertain 
time intervals.  
 
In Chapter 3 the video abstraction problem is considered. In our case, we have developed a 
keyframe representation system that extracts a variable number of images from each detected 
shot, depending on the visual content variation. The proposed technique is based on a leap-
extraction algorithm that consider for analysis only the images located at integer multipliers of 
window size (used of shot detection) and not the entire video flow. By computing the graph 
partition within a sliding window, our method ensures that all the relevant information is 
taken into account. Let us also note that the number of detected keyframes set per shot is not 
fixed a priori, but automatically adapted to the content of each shot. 
 
Chapter 4 deals with the issue of high level semantic segmentation into scenes. First, the most 
relevant methods introduced in the last years are presented and discussed. Then, a novel 
scene/DVD chapter detection method is introduced and validated. Here, spatio-temporal 
coherent shots are clustered into the same scene based on a set of temporal constraints, 
adaptive thresholds and with the help of a new concept - neutralized shots. Concerning the 
keyframe visual similarity involved in the above-described process, we consider two different 
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approaches, based on the chi-square distance between HSV color histograms and the number 
of matched interest points extracted described with SIFT descriptors.  
 
Chapter 5 considers the issue of object detection and segmentation. The main concept 
developed here is the one of visual saliency. After reviewing and analyzing the state of the art 
techniques, we introduce a novel spatio-temporal attention model. The spatial saliency map it 
is based on an enhanced stationary technique called region-based contrast (RC) that separates 
large scale objects from their surroundings. The temporal model relies on interest points 
correspondence, geometric transforms (i.e., homographic motion model), motion classes 
estimation (using agglomerative clustering) and temporal consistency. The proposed 
technique is extended on 3D videos by representing the stereoscopic perception as a 2D video 
and its associated depth. The approach is robust to complex background distracting motions 
and does not require any initial knowledge about the object size or shape. The various 
experimental results and comparisons with existent methods demonstrate the effectiveness of 
the proposed technique.  
 
Finally, Chapter 6 concludes the manuscript and highlights the main contributions proposed in 
this work. Some perspectives of future research are also highlighted, in terms of both 
methodology and application for novel multimedia services.   
 
 
 
 



 

 
 
 
 
 
 
 

2.   SHOT BOUNDARY DETECTION  
 
 
 
Summary: In this chapter, we consider the issue of shot boundary detection. We first review 
the state of the art, and highlight, for each method, principles, advantages and limitations. The 
analysis of the literature shows that the challenge is to elaborate robust shot detection 
methods, which can achieve high precision and recall rates whatever the movie quality and 
genre, the creation date and the techniques involved in the development process, while 
minimizing the amount of human intervention. 
 
In the second part of this chapter, we introduce and validate a novel shot boundary detection 
algorithm, based on the graph partition (GP) model and scale-space filtering. Within this 
framework, the detection is performed on the weighted minimum vector of the local 
derivatives. We focus next in reducing the global computational complexity by developing a 
two-pass approach. The experimental results demonstrate the superiority of the proposed 
approach with respect to other state of the art algorithms, with average gains in precision and 
recall rates of 8%, for 25% savings in computational time. The method achieves high 
precision (superior to 90%)) and recall (superior to 95%) rates whatever the movie quality and 
genre and for both abrupt and gradual transitions. 
 
Keywords: shot boundary detection, abrupt and gradual transitions, graph-partition model, 
scale-space filtering.  
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The shot, defined as a video interval corresponding to a continuous camera capture, 
constitutes a fundamental item in the film production process. Thus, movies are created by 
capturing a set of shots, which are then assembled by juxtaposition during the editing stage, in 
order to create the full video document. Various transitions between shots can be considered, 
in order to reinforce motion, ideas and movement within the artistic production process. The 
various types of transitions that are usually considered are briefly recalled in the following 
section.  
 
 

2.1.   TYPES OF TRANSITIONS  
 
There are two basic types of shot transitions: abrupt and gradual. Abrupt transitions, so-called 
cuts, correspond to the direct juxtaposition of two different shots taken with different cameras. 
Some examples of cuts are illustrated in Figure 2.1.a. 
 

 
Figure 2.1. Example of the most encountered transitions in a video stream: 

(a) Cut; (b) Fade-out; (c) Fade-in; (d) Dissolve. 
 
In this case, the individual frames of the two different shots are simply concatenated, without 
considering any specific video processing techniques. Cuts represent the majority of 
transitions encountered in video sequences (85%).  
 
Let us denote by tcut the instant where the cut between two shots ),,(1 tyxS and ),,(2 tyxS
occurs. Here, (x, y) denote the spatial coordinates, while t stands for the temporal one. After 
the concatenation of the two shots, the resulting video sequence, denoted by ),,( tyxS , can be 
described by the following equation [Lienhart01]: 
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  ),,()(),,())(1(),,( 21 tyxSttutyxSttutyxS cutcut ⋅−+⋅−−=                   (2.1) 

where )(tu is the unit step function:  
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By definition, a cut transition has the property of introducing a visual discontinuity in the 
video sequence, indicating a change in space and time. 
 
A second family of shot transitions, so-called gradual transitions, may also be considered 
when editing a given video document, in order to achieve various artistic effects, 
corresponding to smoother visual transitions. Such effects are used to enhance the impact of 
the modality (i.e. refers to how viewer performance depends on the presentation mode of 
studied items), to add meaning or to accentuate emotions. 
 
A gradual transition combines two shots by using chromatic, spatial or spatio-chromatic 
effects. Various classes of gradual transitions can be considered, including fade-in, fade-out, 
dissolve, wipe, morphing... The most commonly used (90%) [Petersohn08] ones are the fade-
in/out and the dissolves.  
 
A fade-out is a gradual decrease in brightness of a considered frame, resulting in a black 
frame (Figure 2.1.b). On the contrary, a fade-in is a gradual increase in intensity starting from 
a black image and up to a given frame (Figure 2.1.c). The fades are used in order to mark a 
distinct break in the movie, usually indicating a change in time, location, or subject matter. 
Most films present various fade-in/fade-out effects used together, one after the other, or begin 
with a fade-in and end with a fade-out. A special effect can also be created by combining a 
fade-in/out structure. In this case, the transition is called a fade group. 
 
According to [Lienhart01], a fade sequence ),,( tyxS  of duration T can be created by 
gradually modifying the pixels color/intensities as described in the following equation: 

   ),,()(),,( 1 tyxStftyxS ⋅=  , [ ]Tt  ,0∈                                      (2.3) 

where )(tf  is a temporally monotone transfer function which satisfies the following 
conditions:  

• for a fade-in, 0)0( =f and 1)( =Tf ,  

• for a fade-out, 0)( =Tf and 1)0( =f  
 
In most of the cases, the transfer function )(tf is linear, defined as:  

     
T
ttf infade =− )(                                                           (2.4) 

    
T
tf outfade −=− 1                                                           (2.5) 
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Another family of popular shot transitions concerns the so-called dissolves. Dissolve 
transitions consists of blending the final images of a first shot with the first frames of the 
successive, second shot. Figure 2.1.d illustrates an example. 
 
The dissolve transformation is performed in the space of pixels intensities and does not use 
any geometric transform. Dissolve provides a smooth transition, its speed affecting the overall 
mood and flow of the video sequences. Dissolves are often encountered in some specific 
video genres such as dance and music pieces or drama. They are also used in live sports to 
separate slow motion replays from the live action. 
 
A dissolve sequence can be mathematically described [Ngo03] as a sequence ),,( tyxS  of 
duration T, created by combining two distinct video shots ),,(1 tyxS  and ),,(2 tyxS . The 
blending process is defined as described by the following equation: 

  ),,(),,(),,(),,(),,( 2211 tyxStyxftyxStyxftyxS ⋅+⋅= , [ ]Tt  ,0∈      (2.6) 

Here, the transition functions (also called intensity scaling function) ),,(1 tyxf and ),,(2 tyxf
characterize the blending process and can be either linear or non-linear.  
 
In the general case, the main constraints to be respected are:  
1. , 1),,(0 2 << tyxf   
2. ),,()1,,( 11 tyxftyxf ≤+ , )1,,(),,( 22 +≤ tyxftyxf .  

 
However, the following simplifying assumptions are frequently considered [Ngo03]: 

)(),,( 11 tftyxf = , )(),,( 22 tftyxf = , ),(),,(1 yxgtyxS = and ),(),,(2 yxhtyxS = . 

This case corresponds to a dissolve between two static frames which may represent the last 
and first frames of the considered two adjacent shots in the [0, T] time interval. Equation (2.7) 
can be in this case re-written as 

 ),()(),()(),,( 21 yxhtfyxgtftyxf ⋅+⋅=                             (2.7) 
The most common dissolve types correspond to cross-dissolves. In this case, the transition 
function is defined as: 

 
T
ttftftf =−= )(   ),(1)( 221 , [ ]Tt  ,0∈ ,                                 (2.8) 

Let us also mention a second type of dissolve transitions, so-called additive (Figure 2.2.b) can 
be considered. An additive dissolve is defined with the help of the following function: 
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Figure 2.2. Intensity scaling function for two dissolve type: (a) cross-dissolve; (b) additive-dissolve. 

 
Wipes distinguish from other types of gradual transitions by affecting the spatial distribution 
of exiting/entering edge pixels. In this case, each frame will have a portion of the old image 
and a region of the new, entering shot (Figure 2.3). Between adjacent frames, a single strip of 
the image will change, which determines a major variation of pixels inside the strip and lower 
variation of edge pixels in other areas of the image [Zabih95]. 
 

 
Figure 2.3. Wipe transition. 

 
A morphing transition can be defined as the construction of sequence corresponding to a 
gradual transition between a source image and a target one. Generally, the morphing effects 
are obtained with the help of the cross-dissolve or fading techniques which permit to achieve 
a smooth change of image content (i.e. texture and/or color) from source to target frames. The 
color of each image pixel is interpolated over time from the first image value to the 
corresponding second image value. Most often, linear interpolation is utilized. This process is 
called cross-dissolve interpolation [Gomes99] and is illustrated in Figure 2.4.  
 

 
Figure 2.4. Morphing transition 

 
A lot of research effort has been dedicated to the automatic detection of shot breaks, during 
the last two decades. Let us analyze how the state of the art methods consider this issue, for 
both abrupt and gradual transitions. 
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2.2.   RELATED WORK 
 
 

Historically, the first shot detection methods have considered the issue of identifying cut 
transitions. In this case, the potential strong variation of the visual content associated to two 
consecutive shots can significantly simplify the problem. More recent techniques are focused 
on detecting gradual transitions with special effects. 
 
In all cases, a set of audio-visual features need to be used in order to detect transitions. In our 
work, we have considered uniquely methods based on visual features. The various types of 
visual features exploited are described in the next section.  
 

2.2.1.   Visual features  
 
The objective is to describe a given frame with a compact, but discriminant set of visual 
attributes. Thus, a set of salient characteristics are extracted either from the entire frame or 
only from a region of interest supposed to be detected.  
 
Such features include: 
• Pixel intensities, 
• Color histograms and moments,  
• Contour/edge descriptions,  
• Compressed-domains characteristics,  
• Motion features  
 

2.2.1.1. Methods based on pixel intensity analysis  
 
One of the very first shot detection approaches relies on the differences in intensity values of 
corresponding pixels between two successive frames [Otsuji91], [Choubey97]. No 
color/motion/shape information is considered in this case, but solely the luminance channel of 
the considered videos.  
 
If the number of pixels pixelsN which change from one image to another exceeds a certain 

threshold ( T ) a shot transition is declared. The number of changing pixels can be 
mathematically expressed as: 

⋅
⋅
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Here, YX , denote the horizontal and vertical image sizes, and V is a threshold specifying the 
minimum absolute difference value starting from which a pixel is considered as changed. 
 
Such a direct approach implicitly considers relatively static, with no or relatively poor 
camera/object motion. However, in the presence of large objects with high amplitude motion 
or in the case of camera motion, such an approach will obviously lead to false detections. 
Moreover, in the case of gradual transition, the underlying pixel intensity constancy 
assumption does not hold. Such problems are illustrated in Figures 2.5 and 2.6.  
 

 
Figure 2.5. Large object motion followed by a dissolve transition. 

 

 
Figure 2.6. Camera motion followed by a CUT transition. 

 
In addition, such methods are sensitive to several factors, including noise introduced by the 
acquisition process, often present in low resolution videos.  
 
In order to increase the robustness to camera and object motion an enhanced method was 
proposed in [Zhang93], which introduces an additional, pre-processing step in the pixel 
intensity analysis. They use of an 33×  averaging spatial filter before the comparison. The 
algorithm shows superior performances with respect to the baseline method in [Nagasaka91].  
 
However, detecting shot changes by exploiting an analysis at the pixel level is obviously not a 
reliable approach.  
 
For this reason, the method presented in [Shahraray95] considers the analysis at the level of 
image blocks. Each frame is partitioned into 12 rectangular blocks. The algorithm aims to 
determine the best match for each block of a considered frame, in the respective neighborhood 
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of the previous image based on the pixels intensity values. Next, a non-linear statistics is used 
to combine the matched values, i.e. the weight of the match in Equation (2.12) will depend on 
its order in a predefined match value list: 

𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = �𝑐𝑐𝑘𝑘

𝐵𝐵

𝑘𝑘=1

∙ 𝐷𝐷(𝑘𝑘, 𝑡𝑡, 𝑡𝑡 + 1)                                            (2.12) 

where ck is a predefined coefficient for the k block, B is the total number of blocks in the 
frame and 𝐷𝐷(𝑘𝑘, 𝑡𝑡, 𝑡𝑡 + 1)  is a partial match value between kth blocks between successive 
frames.  
  
The decision is made based on the assumption that, if the information in the current image can 
correctly predict the following image, both images belong to the same shot. 
 
A different technique introduced and validated during the TRECVID 2004 campaign is 
presented in [Jaffre04]. First, low resolution versions of the original frames are created by 
sub-sampling the frames with a factor 1:8. Next, the resulted images are converted from RGB 
to HSV color space and only the V component is kept for further analysis. With every new 
frame, the absolute difference between pixels intensity is computed. Then, the method starts 
counting the number of pixels which are different of more than 128 grey levels. If the 
resulting value is superior to the average values, obtained for each frame since the last 
detected shot, a cut transition is identified. Regarding the gradual transitions the method can 
detect only dissolves and fades. In this case, authors propose counting only pixels with a 
constant sign of the intensity variation over the duration of a transition. If this number is 
above a threshold the beginning of a gradual transition is declared. The effect is considered 
ended when this number becomes lower then a second threshold. Finally a validation step is 
introduced. For the first and last frame of a candidate transition the absolute difference is 
computed and a new binarized image is created. In order to reduce noise a morphological 
dilatation with a 7x7 mask is applied. A candidate frame transition is validated as a transition 
if the number of pixels that have changed after the dilatation is above a threshold.  
 
In [Lienhart97], authors propose an algorithm that first locates all monochrome frames in the 
video as potential start/end points of fade transitions. The monochrome frames are identified 
as images in the video sequence where the standard deviation of pixels intensities is close to 
zero, with respect to a given threshold. A fade transition 𝐸𝐸(𝑥𝑥, 𝑦𝑦, 𝑡𝑡), of length 𝑑𝑑𝑖𝑖  starting from 
a shot 𝑆𝑆𝑖𝑖−1 is modeled as described by the following equation: 

𝐸𝐸(𝑥𝑥,𝑦𝑦, 𝑡𝑡) = 𝑆𝑆𝑖𝑖−1(𝑥𝑥, 𝑦𝑦, 𝑡𝑡) ∙ �1 −
𝑡𝑡
𝑑𝑑𝑖𝑖�

, 𝑡𝑡 ∈ �0,𝑑𝑑𝑖𝑖�      .           (2.13) 

The standard deviation of pixel intensities is then defined as: 

𝜎𝜎�𝐸𝐸(𝑥𝑥,𝑦𝑦, 𝑡𝑡)� = �𝜇𝜇(𝑋𝑋2) − 𝜇𝜇2(𝑋𝑋) = 

= �1 −
𝑡𝑡
𝑑𝑑𝑖𝑖�

∙ �𝜇𝜇 �𝑆𝑆𝑖𝑖−1
2 (𝑥𝑥,𝑦𝑦, 𝑡𝑡)� − 𝜇𝜇2�𝑆𝑆𝑖𝑖−1(𝑥𝑥,𝑦𝑦, 𝑡𝑡)� ,   (2.14) 



13    SHOT BOUNDARY DETECTION 

 

where 𝜇𝜇 denotes the statistical expectation operator, applied to the pixel intensities of the 
considered frame. 
  
Starting from the detected monochrome images, a search in both temporal directions is 
performed in order to check for a linear increase in the standard deviation of pixels intensity. 
The method starts by computing the line of regression over the existent monochrome frames. 
With any new detected monochrome frame a novel regression line is computed only if the 
correlation does not decrease with more than 3% or if the line slope is not halved. In order to 
identify a transition, two measures are evaluated: the absolute value of the correlation, 
between the standard deviation of two successive monochrome frames, and the slope of the 
computed fitting line. If both values are superior to user-specified thresholds, and if the 
duration of the candidate fade transition lies within the considered typical transition ranges 
(i.e., 4 to 100 frames), a fade transition is identified. 
 
Another fade detection algorithm is introduced in [Alattar97]. For an ergodic video sequence f 
the method starts by identifying all the negatives spikes of the second order difference 
derivative of the image intensity variance function 𝜎𝜎𝑓𝑓2. Fade-in and fades-out are modeled as 
described in the following equations:   

𝑑𝑑2(𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 −𝑖𝑖𝑖𝑖)(𝑛𝑛) =

⎩
⎪
⎨

⎪
⎧ 2𝜎𝜎𝑓𝑓2

𝑀𝑀2  , 1 < 𝑛𝑛 < 𝑀𝑀

𝜎𝜎𝑓𝑓2

𝑀𝑀2 ∙ (2 −𝑀𝑀), 𝑛𝑛 = 𝑀𝑀
0, 𝑀𝑀 < 𝑛𝑛 < 𝑁𝑁

                                             (2.15) � 

 

𝑑𝑑2(𝑓𝑓𝑓𝑓𝑓𝑓 𝑒𝑒−𝑜𝑜𝑜𝑜𝑜𝑜 )(𝑛𝑛) =

⎩
⎪
⎨

⎪
⎧

0 ,          1 < 𝑛𝑛 < 𝑀𝑀
𝜎𝜎𝑓𝑓2

(𝑁𝑁 −𝑀𝑀)2 ∙ (1 − 2(𝑁𝑁 −𝑀𝑀)2), 𝑛𝑛 = 𝑀𝑀

𝜎𝜎𝑓𝑓2

(𝑁𝑁 −𝑀𝑀)2 , 𝑀𝑀 < 𝑛𝑛 < 𝑁𝑁

                (2.16) � 

where 𝑑𝑑2 represent the second order derivatives of the 𝜎𝜎𝑓𝑓2 variance function and [𝑀𝑀,𝑁𝑁] is the 
temporal interval of the considered fade effect. The variance function 𝜎𝜎𝑓𝑓2  is defined as: 

𝜎𝜎𝑓𝑓2 =
1

𝑋𝑋 ∙ 𝑌𝑌
���𝑎𝑎𝑖𝑖 ,𝑗𝑗 − 𝑚𝑚𝑓𝑓�

2   
𝑌𝑌

𝑗𝑗=1

                                 (2.17)
𝑋𝑋

𝑖𝑖=1

 

where X, Y denote the horizontal and vertical image sizes, ai,j is the pixels intensity value and 
mf is the mean value. 
 
The method is based on the assumption that during a fade transition the second order 
difference function remains constant. Moreover, at the beginning/end of a fade-in/-out 
transition the function presents a large variation (spike) due to scene changes. From 
Equation (2.15) and (2.16) it results that a fade-in interval ends, at location 𝑛𝑛 = 𝑀𝑀, with a 
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negative spike of magnitude 𝜎𝜎𝑓𝑓
𝑀𝑀2 ∙ (2 −𝑀𝑀). Also, in the case of a fade-out, the transition starts 

with a negative spike of magnitude 
𝜎𝜎𝑓𝑓

2

(𝑁𝑁−𝑀𝑀)2 ∙ (1 − 2(𝑁𝑁 −𝑀𝑀)2), at location 𝑛𝑛 = 𝑀𝑀.  

 
In the neighborhood of a negative spike the algorithm determines the existence of a fade 
transition as well as its size.  
 
A fade region is detected if Δ𝐼𝐼(𝑛𝑛) returns near a negative spike a positive constant value: 

Δ𝐼𝐼(𝑛𝑛) = ��
𝑚𝑚𝑓𝑓 − 𝐶𝐶
𝑀𝑀

� , 0 < 𝑛𝑛 < 𝑀𝑀

0,𝑀𝑀 ≤ 𝑛𝑛 ≤ 𝑁𝑁
� ,                                   (2.18) 

where C is the begin/end color intensity of the fade transition. For this purpose, the right mean 
(mr) and variance (𝜎𝜎𝑟𝑟 ) of Δ𝐼𝐼(𝑛𝑛) within an adjustable window on the right of the negative spike 
are evaluated. Similarly, authors determine the left mean (ml) and variance (𝜎𝜎𝑙𝑙) on the left side 
of the negative spike. The window size is adaptively selected such that the algorithm can 
include for analysis all frames with a positive absolute change in luminosity greater than a 
predefined threshold. If  𝑚𝑚𝑟𝑟 > 𝑚𝑚𝑙𝑙  , a fade-out is detected. Otherwise if 𝑚𝑚𝑟𝑟 < 𝑚𝑚𝑙𝑙  a fade-in is 
identified. If both values are equal the side with the smaller variance gives the transition type. 
 
An improvement of the above-presented algorithm is presented in [Truong00]. The method 
starts by identifying the monochrome frames of a video sequence. They differentiate between 
quick fades that last only a few frames (3 to 5), and slow fade effects with a duration 
exceeding 100 frames. In the second step, they compute the second order derivative of the 
luminance variance (Equation (2.15) and (2.16)) in order to identify a negative spike situated 
close to a fade-in/out transition. 
 
However, let us note that large object displacements as well as any kind of camera motion can 
produce negative spikes in the derivative signal similar to those given by a fade-in/out shot 
transition.  
 
In [Truong00,] authors propose to further extend the method in order to detect dissolve 
transitions. The approach is based on the assumption that a dissolve can be described as a 
combination of a fade- out and fade-in techniques, superimposed on the same film strip. As in 
the case of fade transitions, for “ideal” dissolves, the luminance mean curve changes linearly, 
while the luminance variance has a parabolic shape. So, if they consider the second order 
derivative of the luminance variance curve, two large negative spikes should appear at the 
start/end of a dissolve. However, in practice, the two negative spikes at the beginning and end 
of a dissolve are often poorly pronounced due to noise and motion in video. 
 
A twin comparison model has been introduced in [Zhang93]. The technique requires two 
thresholds in order to detect any type of transition: a higher one, 𝑇𝑇ℎused to identify hard cuts, 
and a lower one 𝑇𝑇𝑙𝑙  dedicated to gradual transitions. They begin by detecting high 
discontinuities values, corresponding to hard cuts, based on 𝑇𝑇ℎ , and then the threshold 𝑇𝑇𝑙𝑙  is 
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applied to the rest of the discontinuities values. If a discontinuity is higher then 𝑇𝑇𝑙𝑙  then the 
start of a gradual transition is considered. 
 
An enhanced version of the above-mentioned technique is proposed [Zheng05]. In this case, 
the classical twin comparison method is employed for detecting short transitions (under 5 
frames) and a novel approach, that adaptively determines the lower threshold is introduced for 
identifying the other types of transitions. The lower threshold is fixed according to the amount 
of motion present in the video, estimated with the help of the motion vectors, associated to 
each macro-block, included in the MPEG compressed domain.   
 
For the I type frames the macro-blocks are intra-frame encoded and thus do not contain 
motion vectors. In this case the motion feature is computed via interpolation from the forward 
and backward frames of type B or P. In addition, for the frame of type B or P, some of their 
macro-blocks are not encoded through motion compensation. Only the macro-blocks with 
motion vectors are used to estimate the global amount of motion, which is characterized by 
the mean of the absolute motion vectors in horizontal and vertical directions: 

𝑀𝑀𝑀𝑀ℎ =
1
𝑁𝑁
��𝑚𝑚𝑚𝑚ℎ𝑖𝑖 �
𝑁𝑁

𝑖𝑖=1

 ,𝑀𝑀𝑀𝑀𝑣𝑣 =
1
𝑁𝑁
��𝑚𝑚𝑚𝑚𝑣𝑣𝑖𝑖 �
𝑁𝑁

𝑖𝑖=1

                            (2.19) 

where N is the total number of macro-blocks.  
 
In this case the lower threshold (𝑇𝑇𝑙𝑙) is determined using a linear equation: 

𝑇𝑇𝑙𝑙 = 𝛼𝛼 + 𝛽𝛽 ∙ (𝑀𝑀𝑀𝑀ℎ + 𝑀𝑀𝑀𝑀𝑣𝑣)                 ,                          (2.20) 

where 𝛼𝛼 and 𝛽𝛽 are fixed coefficients determined heuristically. 
 
In [Volkmer04], authors propose a gradual transition detection method, based on a sliding 
window centered on the current frame. A distance between the current frame and all the other 
frames in the sliding window is then computed. The average values of the whole set of 
distances provides an inter-frame difference measure, which is finally exploited for shot 
detection purposes (based on a thresholding process). The distance between frames is 
computed based on the Manhattan (city-block) measure between pixels intensities values, 
defined as:  

𝐿𝐿1�𝑓𝑓𝑖𝑖 ,𝑓𝑓𝑗𝑗 � = ���𝑓𝑓𝑖𝑖(𝑘𝑘, 𝑙𝑙, 𝑡𝑡) − 𝑓𝑓𝑗𝑗 (𝑘𝑘, 𝑙𝑙, 𝑡𝑡)�
𝑌𝑌

𝑙𝑙=1

𝑋𝑋

𝑘𝑘=1

,                      (2.21) 

where 𝑓𝑓𝑖𝑖  and 𝑓𝑓𝑗𝑗  defines two successive video frames.   
 
A particular strength of the approach is its capability of accurately detecting the start and end 
of gradual transitions. 
 
One of the first algorithms proposed to detect gradual transitions (fade/dissolve) based on 
pixel intensity variation is described in [Hampapur94]. The model exploits the chromatic 
scaling model, described in Equation (2.22).  
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𝐸𝐸(𝑥𝑥,𝑦𝑦, 𝑡𝑡) = 𝑆𝑆(𝑥𝑥,𝑦𝑦, 𝑡𝑡) ∙ �1 −
𝑡𝑡
𝑙𝑙0
�                                     (2.22) 

where 𝑆𝑆(𝑥𝑥,𝑦𝑦, 𝑡𝑡) denotes the image sequence, 𝑙𝑙0 its temporal length and 𝐸𝐸(𝑥𝑥,𝑦𝑦, 𝑡𝑡) represents a 
frame in the editing interval (i.e., the set of frames generated during a transition between two 
shots). 
 
In this case, the fade-in/out operations are represented as some combination of chromatic 
scaling operation. The fade-in (𝐸𝐸𝑓𝑓𝑓𝑓(𝑥𝑥, 𝑦𝑦, 𝑡𝑡)) and fade-out (𝐸𝐸𝑓𝑓𝑜𝑜(𝑥𝑥, 𝑦𝑦, 𝑡𝑡)) are determined as:   

𝐸𝐸𝑓𝑓𝑓𝑓 (𝑥𝑥,𝑦𝑦, 𝑡𝑡) = 𝑆𝑆1(𝑥𝑥,𝑦𝑦) �
𝑙𝑙1 − 𝑡𝑡
𝑙𝑙1

�  𝑎𝑎𝑎𝑎𝑎𝑎 𝐸𝐸𝑓𝑓𝑓𝑓(𝑥𝑥,𝑦𝑦, 𝑡𝑡) =  𝑆𝑆2(𝑥𝑥, 𝑦𝑦) �
𝑡𝑡
𝑙𝑙2
� , (2.23)  

where 𝑙𝑙1and 𝑙𝑙2 are the fade-out/in rates in terms of the number of shots. 
  
The chromatic scaling models [Hampapur94] are used to classify dissolve effects in the video 
production process. In this context, a dissolve transition is modeled as a linear combination of 
two shots, as described in the following equation: 

𝐸𝐸𝑑𝑑(𝑥𝑥, 𝑦𝑦, 𝑡𝑡) = 𝑆𝑆1(𝑥𝑥,𝑦𝑦) �
𝑙𝑙1 − 𝑡𝑡
𝑙𝑙1

�
(𝑡𝑡1,𝑡𝑡1+𝑙𝑙1)

+ 𝑆𝑆2(𝑥𝑥, 𝑦𝑦) �
𝑡𝑡
𝑙𝑙2
�

(𝑡𝑡2,𝑡𝑡2+𝑙𝑙2)
         (2.24) 

where 𝑙𝑙1and 𝑙𝑙2  are the dissolve lengths in both shots, 𝑡𝑡1(𝑡𝑡2) is the starting time of shot 𝑆𝑆1 
(respectively, 𝑆𝑆2).  
 
During dissolves and fades, the chromatic image is assumed to have a reasonably constant 
value. Unfortunately, this technique is very sensitive to camera and object motion. In practice, 
the assumption that no motion can be encountered during a dissolve transition is not satisfied. 
This causes high rates of missed detections and false positives.   
 
In a general manner, methods based on pixel intensity variations are highly sensitive to noise 
and motion present in the video sequence.  
 
In order to overcome such limitations, some more global representations are proposed, which 
include, in addition to the luminance value, colorimetric information. Such approaches are 
described in the following section.  
 

2.2.1.2. Methods based on color histograms  
 
The color histogram methods are based on the assumption that between two consecutive 
frames of a given video shot, the global color content presents relatively low variations. Such 
a color content can be effectively described with the help of color histograms.  
 
In a basic form, the underlying principle can be stated as follows:  
1. Describe each video frame with the help of a color histogram,  
2. Evaluate the variation between each two consecutive frames as a distance/similarity 

measure between associated color histograms,  
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3. Identify shot transitions whenever the measure evaluated in step 2 is superior to a given 
threshold.  

 
Color histograms offer the advantage of a compact representation, in terms of 
bandwidth/storage requirements. In addition, efficient similarity measures can be associated 
with. Finally, a color histogram presents a relative robustness to slight variation of the image 
content.  
 
For all these reasons, color histograms are good candidates for representing the content of 
video frames within the context of shot detection applications. However, appropriate color 
spaces, color quantization schemes, histogram dimensions, similarity measures and inter-
frame comparison strategies have to be considered. Let us analyze how such aspects are taken 
into account by the methods proposed in the literature.  
 
In [Lienhart99], a color histogram is computed in the discretized RGB color space. A uniform 
quantization, performed marginally on each color component with a number of B=7 bits (i.e., 
2B-1 = 128 quantization levels on each color component) is retained. For each frame i, a 
similarity measure defined as the L1 distance between the histograms associated to the current 
frame i and the previous frames (i-1) is computed. This leads to a 1D color histogram 
difference signal, denoted by CHDi.  
 
In order to identify shot transitions, the peaks in the CHD signal with an amplitude superior to 
a given threshold are considered as transitions boundaries. Let us note that selecting a “good” 
threshold that can hold in all cases is not straightforward, because of variations in content, 
noise, object/camera motion…  
 
In [Furth95], authors propose a similar approach, with the difference that here the color 
histograms are constructed in the HSV color space (Figure 2.7). The principle of the HSV 
representation [Cardani01] consists of separating the intensity (luminance) channel and the 
chromaticity information, which is described in terms of two components:  
• Hue –  represented as an angular coordinate in a cylindrical coordinate system,  
• Saturation – which measures the degree of white of a given color  

 
The advantage of such a representation is related to the invariance property of the hue 
component with respect lightning intensity changes. Moreover, the similarity measures 
associated with this representation are more consistent with the human visual perception 
[Su11].  
 
However, in [Mas03] several tests and comparisons between the HSV and RGB are 
performed within the framework of shot boundary detection applications. Authors conclude 
that the associated performances are quite equivalent.  
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Figure 2.7. The HSV color space. 

 
An extended evaluation of a significant number color spaces is presented in [Gargi00]. Color 
histograms are here computed for six different color spaces, including RGB, HSV, YIQ, 
L*a*b*, L*u*v* and Munsell. The following four different similarity measures are also 
retained for evaluation:  

• Bin-to-bin histogram difference (L1 distance):  

   ∑ −
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                                  (2.25) 

where is X and Y are respectively the image width and height, j is the jth color in the 
representation (with respect to a considered color quantization scheme), and )( jH t  is the 
number of pixels in frame t taking the color j.  

• Chi-square test:  
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Let us note that the 2χ  test applied to image intensity histograms was one of the first 
similarity measures used for shot detection [Nagasaka92].  

• Histogram intersection: 

∑ −−
−=

j
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jHjH
D

))()(min(
1 1                                    (2.27) 

• The Kolmogorov-Smirnov measure, denoted by DKS, which represents the maximum bin 
difference between cumulative histograms:  

   )()(max),( 1
' jCHjCHttD ttKS −−=   ,                                (2.28) 

where tCH  represents the cumulative histogram associated to the histogram tH :  

∑
≤≤

=
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tt iHjCH
0

)()(                                                      (2.29) 

The experimental results obtained demonstrated that the Munsell color space offers the best 
shot detection performances, at a moderate computational cost. The RGB, HSV, L*a*b*, 
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L*u*v* color spaces showed quasi-equivalent performances. However, in [Gargi00] authors 
affirm that the choice of color space has less of an impact than the choice of the 
corresponding similarity measure and claim that the histogram intersection returns the best 
results. The chi-square test has significantly lower detection rates than the others and does not 
appear to be a suitable choice for coarse histogram comparison in the shot-change detection 
context. The Kolmogorov-Smirnov measure it is also insufficient to capture shot information, 
being completely inadequate for this application. 
 
In [Nagasaka92], authors also propose a block-based histogram comparison, in order to obtain 
a more discriminative representation. Each video frame is divided into a set of non-
overlapping blocks. The typical partition proposed is of 16 = 4 × 4 blocks. For each bloc, a 

histogram is associated to. The 2χ  similarity measure is here exploited to compare different 
histograms, on a block by block basis. The regions corresponding to the eight largest 
differences are discarded, in order to reduce the effects of noise, object and camera motion. 
 
In [Cernekova03], shot boundary detection is performed with the help of a singular value 
decomposition (SVD) applied to the individual frame histograms. For each frame 𝑓𝑓𝑖𝑖 , 𝑖𝑖 =
1, …𝑁𝑁  of a video sequence, a M-dimensional feature vector 𝑎𝑎𝑖𝑖  is computed. Here, 3D 
normalized histograms, computed in the RGB color space, with 16 bins for each color 
component are considered. Thus, the dimensionality of feature vector is 4096163 = . Using 𝑎𝑎𝑖𝑖  
as column an NxM matrix A is obtained: 

𝐴𝐴 = [𝑎𝑎1] … [𝑎𝑎𝑁𝑁]                                                             (2.30) 

The SVD of an NxM matrix A is a factorization of the form: 

𝐴𝐴 = 𝑈𝑈�𝑉𝑉𝑇𝑇                                                               (2.31) 

where U is an NxM column-orthogonal matrix (left singular vectors), V is an NxN column 
orthogonal matrix (right singular vectors) and ∑ = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝜎𝜎1, … ,𝜎𝜎𝑅𝑅) is a diagonal matrix with 
non-negative elements (the singular values 𝜎𝜎1 ≥ ⋯ ≥ 𝜎𝜎𝑅𝑅 ≥ 0). 
 
The color histograms (the column vectors of A) are projected onto the orthonormal basis 
formed by vectors of the left singular matrix U. The frame coordinates are given by the 
columns of ∑𝑉𝑉𝑇𝑇 . The row vectors (i.e. colors) of A are projected on the orthogonal basis 
using 𝑉𝑉𝑇𝑇and the coordinates are given by the rows of 𝑈𝑈∑. 
 
As a similarity measure the authors propose to exploit an angular correlation coefficient, 
defined as the cosine function of angle between the rows vectors 𝑣𝑣𝑖𝑖�  and 𝑣𝑣𝑗𝑗� : 

Φ�𝑓𝑓𝑖𝑖 ,𝑓𝑓𝑗𝑗 � = cos�𝑣𝑣𝑖𝑖� , 𝑣𝑣𝑗𝑗�� =
�𝑣𝑣𝑖𝑖� ∙ 𝑣𝑣𝑗𝑗�𝑇𝑇�
‖𝑣𝑣𝑖𝑖�‖ ∙ �𝑣𝑣𝑗𝑗��

                                 (2.32) 
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The technique proposed in [Cernekova06] is based on two parameters, corresponding to the 
mutual information (MI) and the joint entropy (JE) between successive frames t and t+1 are 
determined, using the following set of relations: 

𝑀𝑀𝑀𝑀𝑡𝑡 ,𝑡𝑡+1 ≜ 𝑀𝑀𝑀𝑀𝑡𝑡 ,𝑡𝑡+1
𝑅𝑅 + 𝑀𝑀𝑀𝑀𝑡𝑡 ,𝑡𝑡+1

𝐺𝐺 + 𝑀𝑀𝑀𝑀𝑡𝑡 ,𝑡𝑡+1
𝐵𝐵            ,                      (2.33) 

where the mutual information for the red component 𝑀𝑀𝑀𝑀𝑡𝑡 ,𝑡𝑡+1
𝑅𝑅  is computed as: 

𝑀𝑀𝑀𝑀𝑡𝑡 ,𝑡𝑡+1
𝑅𝑅 = −� �𝐶𝐶𝑡𝑡 ,𝑡𝑡+1

𝑅𝑅 (𝑖𝑖, 𝑗𝑗)
𝑁𝑁−1

𝑗𝑗=0

𝑙𝑙𝑙𝑙𝑙𝑙
𝐶𝐶𝑡𝑡 ,𝑡𝑡+1
𝑅𝑅 (𝑖𝑖, 𝑗𝑗)

𝐶𝐶𝑡𝑡𝑅𝑅(𝑖𝑖) ∙ 𝐶𝐶𝑡𝑡+1
𝑅𝑅 (𝑗𝑗)

𝑁𝑁−1

𝑖𝑖=0

       ,          (2.34) 

with 𝐶𝐶𝑡𝑡 ,𝑡𝑡+1
𝑅𝑅 (𝑖𝑖, 𝑗𝑗) representing the probability that a pixel having a red level i in frame 𝑓𝑓𝑡𝑡  to 

change into a red level j in frame 𝑓𝑓𝑡𝑡+1.  
 
The joint entropy is defined as:  

𝐻𝐻𝑡𝑡 ,𝑡𝑡+1 ≜ 𝐻𝐻𝑡𝑡 ,𝑡𝑡+1
𝑅𝑅 + 𝐻𝐻𝑡𝑡 ,𝑡𝑡+1

𝐺𝐺 + 𝐻𝐻𝑡𝑡 ,𝑡𝑡+1
𝐵𝐵                   ,               (2.35) 

where 𝐻𝐻𝑡𝑡 ,𝑡𝑡+1
𝑅𝑅 is the joint entropy of the transition from 𝑓𝑓𝑡𝑡  to frame 𝑓𝑓𝑡𝑡+1, for the red component: 

𝐻𝐻𝑡𝑡 ,𝑡𝑡+1
𝑅𝑅 = −� �𝐶𝐶𝑡𝑡 ,𝑡𝑡+1

𝑅𝑅 (𝑖𝑖, 𝑗𝑗) ∙ log⁡(𝐶𝐶𝑡𝑡 ,𝑡𝑡+1
𝑅𝑅 (𝑖𝑖, 𝑗𝑗))

𝑁𝑁−1

𝑗𝑗=0

𝑁𝑁−1

𝑖𝑖=1

       .        (2.36)  

In equations above, N denotes the number of quantization levels on each color component.  
 
Small values of the parameter MIt,t+1 indicate the existence of a cut between frames ft and ft+1. 
Since MIt,t+1decreases when the transmitted information from one frame to another is small 
(in case of fade transitions) the joint entropy (Equation (2.36)) is employed, in order to 
efficiently distinguish abrupt and fade transitions. The joint entropy measures the amount of 
information carried by the union of these frames. Therefore, its value decreases only during a 
fade, where a weak amount of inter-frame information is present. 
 
The method offers the advantage of a high discriminative power, and of insensivity to 
translational, rotational, and zooming camera motions [Costaces06]. In particular, the method 
shows high detection rates (precision and recall rates of around 95% for abrupt transition and 
83% in the case of fade transitions).  
 
Another technique able to detect gradual transitions is based on the twin comparison 
algorithm presented in [Zhang93], which consists of comparing frame to frame color 
histogram differences with the help of two different thresholds. A first, higher threshold is 
used to determine cut effects while, a second lower one is representative of gradual 
transitions. The two thresholds are applied on a frame-to frame difference signal, computed 
based on color/gray level histograms. The HSV color space is here employed.  
 
The method is highly sensitive to camera motions such as pan and zoom, which can generate 
an effect similar to the one caused by gradual transition. In order to improve the robustness of 
the proposed technique, authors introduce a new, user-dependent parameter, so-called called 
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tolerance that allows the analysis of a number of consecutive frames before making a 
decision.   
 
A third family of methods considers a content representation based on contour/edge features. 
Such methods are described in the following section.  
 

2.2.1.3. Methods based on edges/contours  
 
Edge/contour-based methods exploit the contour information present in the individual frames, 
under the assumption that the amount and location of edges between consecutive frames 
should not change drastically. Such methods aim at overcoming the limitations of color-based 
approaches, which suffer from illumination changes.  
 
Thus, a cut transition produces a structural discontinuity at the image level. Based on this 
observation, in [Zabih95] authors propose an edge-based approach, which relies on the 
hypothesis that at the level of a shot boundary, new edges associated with the two shots are 
located at significantly different positions in the corresponding images.  
 
The technique takes as inputs two consecutive frames k and (k+1). To detect the transition 
type the algorithm first performs a global motion compensation between successive frames 
[Zabih94]. The edges are detected with the help of the Canny’s algorithm (Figure 2.8) which 
determines for each frame the associated binary image 𝑒𝑒𝑘𝑘  and 𝑒𝑒𝑘𝑘+𝑙𝑙 , respectively. Let 𝑓𝑓𝑘𝑘𝑖𝑖𝑖𝑖  
denote the fraction of edge pixels in 𝑒𝑒𝑘𝑘+𝑙𝑙  which are located at more than a fixed distance r 
from the closest pixel in 𝑒𝑒𝑘𝑘 . Similarly, 𝑓𝑓𝑘𝑘𝑜𝑜𝑜𝑜𝑜𝑜  is the fraction of pixels in 𝑒𝑒𝑘𝑘  which are further 
than r from the closest pixel in 𝑒𝑒𝑘𝑘+𝑙𝑙 . The edge change ratio (ECR) parameter is defined as 
follows: 
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where kσ represents the number of edge pixels in the frame k . 

 
Shot transitions are determined by examining the peaks in the EC sequence. A global 
threshold is considered. If the value of ECR exceeds the threshold, a scene brake is detected. 
 

 
Figure 2.8. Transition detection based on edge variation. 

 
A variation of the above approach is presented in [Lupatini98], where edge information 
(number of edge points that appears or disappears) is also used to detect scene breaks. Based 
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on the two frames under analysis the algorithm firstly performs motion compensation using 
the block-matching technique introduced in [Liu93]. Next, camera/object motions of punctual 
changes in the image are eliminated by applying a low pass spatial filtering scheme. Edges are 
here extracted with the help of a Sobel operator. Finally, the difference between the numbers 
of edge points that change between two successive frames is determined. The method is more 
robust to camera and object motion than histogram-based approaches, but with an increase in 
the associated computational complexity. 
 
The proposed technique is able to determine the type of transition existent between two video 
shots. If the ECR signal contains an isolated maximum, a hard cut is identified. Unlike hard 
cuts which lead to a single peak in the ECR signal, fades and other gradual transitions lead to 
an interval where ECR is elevated [Lienhart97]. In order to detect fade transitions two ECR 
parameters, corresponding to entering and exiting edges and respectively denoted by  𝐸𝐸𝐸𝐸𝐸𝐸𝑘𝑘𝑖𝑖𝑖𝑖  
and 𝐸𝐸𝐸𝐸𝐸𝐸𝑘𝑘𝑜𝑜𝑜𝑜𝑜𝑜  are considered and analyzed. Let us note that during a fade-in (fade-out) 
transition, the number of entering (resp. exiting) edges is superior to the number of exiting 
(resp. entering) edges. In other words, a fade-in is identified if outin ECRECR >> . Inversely, if

inout ECRECR >>  a fade-out transition is detected. All other maxima of ECR are 
automatically identified as dissolves. 
 
Another approach is presented in [Yu97]. Authors exploit the fact that the ECR parameter 
should be close to zero at some instant, because either the initial or the final frame of a fade 
transition correspond to a blank image, with a number of edge pixels close to zero. 
Furthermore, the ECR parameter should present a gradual, monotonic variation. The method 
can be summarized by the following steps: first the frames are smothered using a spatial filter 
and then the ECRi between two consecutive frames i and (i+1) is computed. Next, the set of 
local minima int the ECR signal is detected. Solely the local minima with corresponding ECR 
value below a given threshold are here considered. For each retained local minimum, the first 
local maximum on the left (i0) and right (iN) sides of the minimum is determined. Then, if 
∑ 𝐸𝐸𝐸𝐸𝐸𝐸𝑖𝑖

𝑗𝑗−𝑖𝑖0𝑖𝑖∈(𝑖𝑖0,𝑗𝑗 )  is smaller than a pre-establish threshold a fade-out transition is identified. Else, if 

∑ 𝐸𝐸𝐸𝐸𝐸𝐸𝑖𝑖
𝑖𝑖𝑁𝑁−𝑗𝑗𝑖𝑖∈(𝑖𝑖0,𝑗𝑗 )  is below a threshold then the transition is considered as fade-in.  

 
During dissolves, object contours gradually disappear and new objects contours gradually 
show up. As a consequence, at the center of a dissolve transition the contour contrast becomes 
dimmer. The ECR parameter exploits the fact that the number of exiting edge pixels during 
the first part of a dissolve is large, while the number of entering edges pixels is large during 
the second half. For the dissolve detection the authors in [Yu97] define the double chromatic 
difference of a frame f i as follows: 

𝐷𝐷𝐷𝐷𝐷𝐷𝑓𝑓𝑖𝑖 = ∑ 𝑇𝑇ℎ ��𝐼𝐼(𝑥𝑥 ,𝑦𝑦 ,𝑖𝑖0)+𝐼𝐼(𝑥𝑥 ,𝑦𝑦 ,𝑖𝑖𝑁𝑁 )
2

− 𝐼𝐼(𝑥𝑥,𝑦𝑦, 𝑓𝑓𝑖𝑖)��(𝑥𝑥 ,𝑦𝑦)         ,                 (2.38)      

where I(x,y,t)is the intensity of pixel (x,y) at time t and Th(.) is a thresholding function. So, a 
dissolve is detected if the global minimum of 𝐷𝐷𝐷𝐷𝐷𝐷𝑓𝑓𝑖𝑖 is bellow a fixed threshold.   
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The approach has high computational requirements but works well under the assumption that 
during the transition interval the sequence presents relatively slow motion.  
 
A comparative study of both edge and histogram-based methods is proposed in [Lienhart01]. 
The following conclusions are highlighted:  
• concerning the detection performance for hard cut transitions the color histogram-based 

algorithms generate better results than edge/contour techniques, with less computational 
time,   

• the strength of the ECR feature comes from its ability of identifying any type of video 
transitions (fade, dissolve and wipe), but with a reduced performance (less than 70%.in 
precision and recall rates.  
 

However, edge features are highly useful in removing the false alarms caused by abrupt 
illumination changes, as underlined in [Yuan07].   
 
A fourth family of methods considers a set of features associated to the compressed and 
notably MPEG-compressed representation of videos.  

 
2.2.1.4. Temporal segmentation in the compressed domain 

 
Let us first mention the approach proposed in [Meng95], where the visual discontinuities are 
measured with the help of the MPEG coefficients stored in the compressed video stream.  
 
The principle consists of analyzing the statistical characteristics of the Discrete Cosine 
Transform (DCT).  
 
For an image block f(x, y) of size (N × N) pixels the DCT transform is defined as described by 
the following equation:  

𝐶𝐶(𝑢𝑢, 𝑣𝑣) = 𝛼𝛼(𝑢𝑢)𝛼𝛼(𝑣𝑣) � �𝑓𝑓(𝑥𝑥, 𝑦𝑦)
𝑁𝑁−1

𝑦𝑦=0

∙ 𝑐𝑐𝑐𝑐𝑐𝑐 �
𝜋𝜋(2𝑥𝑥 + 1)𝑢𝑢

2𝑁𝑁 �
𝑁𝑁−1

𝑥𝑥=0

∙ 𝑐𝑐𝑐𝑐𝑐𝑐 �
𝜋𝜋(2𝑦𝑦 + 1)𝑣𝑣

2𝑁𝑁 � , (2.39) 

for 𝑢𝑢, 𝑣𝑣 = 0, … ,𝑁𝑁 − 1 and 𝛼𝛼(𝑢𝑢),𝛼𝛼(𝑣𝑣) defined as: 

𝛼𝛼(𝑢𝑢) =

⎩
⎪
⎨

⎪
⎧�1 𝑁𝑁⁄ , 𝑓𝑓𝑓𝑓𝑓𝑓  𝑢𝑢 = 0

�2
𝑁𝑁

, 𝑓𝑓𝑓𝑓𝑓𝑓  𝑢𝑢 ≠ 0
�                                       (2.40) 

In the case of MPEG videos, the DCT is computed on a (8 x8) block basis.   
 
Two types of features can be used directly to detect shot change:  
• The DC coefficients (i.e., corresponding to frequential parameters u and v equal to zero for 

each block), and corresponding to the average luminance/chrominance values of each 
block,  

• The AC coefficients, which describe the signal variation within each block.  
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The set of all DC coefficients represent a down-sampled version of the original image. The 
majority of compressed-domain shot detection algorithms consider uniquely the DC 
coefficients. 
 
Let us note that in this case, major savings in computational time can be achieved since such 
coefficients can be determined without completely decoding the entire video stream.   
 
Another interesting parameter that can be exploited for shot boundary detection is the type of 
the MPEG encoded frame, which can be I (intra-coding mode), P (predictive coding mode) or 
B (bi-directional predictive coding mode) [Li04]. Such a parameter is used for shot detection 
purposes in [Calic02], [Pei00]. 
 
Another approach, introduced in [Fernando01], jointly exploits the number of macro-blocks 
encoded in B-mode and the motion vectors associated with each block in the MPEG-2 stream.  
The analysis is based on the statistical features (mean and variance) associated to DC 
coefficients in the compressed domain. However, the proposed method is implicitly based on 
the assumption that the video sequence is an ergodic process. This hypothesis is often violated 
in practice, with an impact on the associated shot detection performances.    
 
In a general manner, shot boundary detection methods that directly exploit information 
included in the MPEG streams do not need to completely decompress the data and thus offer 
the advantage of speed. In particular, they are well suited for real-time applications. Such 
information makes it possible to detect discontinuities produced by both abrupt and gradual 
transitions. However, the associated detection performances are lower than the ones 
corresponding to methods that are performing the analysis in the original image domain.  
 
A tradeoff between speed and detection performances can be achieved by considering a 
partial decoding solution, which makes it possible to carry out the analysis in both image and 
compressed domains [Bruyne08].  
 

2.2.1.5. Methods based on motion analysis  
 
Motion present in videos represents one of the major problems that impacts the performances 
of shot detection methods, because of the number of false alarms that are introduced in 
practice in the case of videos with a high amount of motion. The question to be solved can be 
stated as follows: how to distinguish between variations in the visual content due to 
camera/object motion and variations due to shot transitions?  
 
In order to overcome such a problem, motion-based approaches have been proposed. The 
underlying hypothesis is that, in the case of a transition between two shots, a discontinuity in 
the associated motion flow is produced. 
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A block matching technique which aims at determining the motion between pairs of 
successive frames is proposed in [Lupatini98]. The resulting motion vectors are exploited 
within the framework of a motion compensation procedure. If the difference, in terms of 
motion compensation error, between the two considered frames is greater than a specified 
threshold, a shot boundary is identified. An average value of the luminance channel associated 
to each considered block is also considered, in the motion compensation stage, in order to 
ensure robustness to local motion.  
 
A slightly different approach is proposed in [Porter00]. A spatial decomposition of video 
frames into non-overlapping blocks of 32 x 32 pixels is first performed. To each block from 
the current frame k , a best matching block is determined in frame 1+k . The matching 
process is performed around a search windows centered on the considered block. The decision 
process takes into consideration the following two parameters: the normalized correlation 
between corresponding blocks and the location of the correlation coefficient with the largest 
magnitude. In order to reduce the computational complexity related to the computation of the 
normalized correlation function, a frequency domain technique is applied.  
 
Advanced techniques that implement detection based on motion analysis use more 
sophisticate features to identify transition as: the changes affecting the optical flow 
[Akutsu92], the number and distribution of motion vectors [Lupatini98] as well as the 
strength of the residual [Shahraray95] given by the differences from the current and anterior 
position of the block.   
 
However, as mentioned in [Gargi00], block matching methods remain inferior, in terms of 
performances to intensity/color histograms-based techniques. In addition, the motion 
estimation stage is a highly complex process, which limits the applicability of this family of 
approaches. Moreover, obtaining reliable motion estimations is still an open issue of research.  
 
This concludes the analysis of how the main visual features are taken into consideration by 
the methods of the state of the art. Let us now analyze a second, important aspect, which 
concerns the specification of the temporal domain of the various continuity metrics involved.  

 

2.2.2.   Temporal domain of continuity metric 
 

Whatever the visual features involved, the analysis process requires a comparison between 
frames within a given set. Such a set can be defined in various manners, as described here-
below.  
 

2.2.2.1. Frame-to-Frame comparison 
 

The simplest way to detect a camera brake in a video stream is searching for high 
discontinuity values of a similarity measure between pairs of successive frames (denoted by 

),,( tyxI  and )1,,( +tyxI ), expressed as:  
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    ( )1, +Θ= ttt FFd                                                          (2.41) 
where td  denotes the similarity value at frame t, Θ is the similarity function, and tF  and 1+tF  
are the features considered in the two frames It and It+1. 
  
Pair-wise comparison schemes offer the advantage of simplicity. However, such approaches 
are highly sensitive to significant object/camera motion or in the case where different types of 
discontinuities occur. As a typical example, let us mention the flash lights that are present in 
certain videos and which lead to a punctual discontinuity that might generate false alarms. In 
order to overcome such a drawback, several optimizations have been proposed.  
 
In [Zheng05] and [Leszczuk02], the second order derivative of the color histogram with 16 
bins for each channel in the RGB color space was applied before analysis. 

∆2𝐹𝐹𝑡𝑡 = ∆𝐹𝐹𝑡𝑡+1 − ∆𝐹𝐹𝑡𝑡                                                 (2.42) 

where 𝐹𝐹𝑡𝑡denotes the features of the tth frame and ∆𝐹𝐹𝑡𝑡 = 𝐹𝐹𝑡𝑡+1 − 𝐹𝐹𝑡𝑡 .  

Authors have shown that using the second order derivatives can significantly improve the 
performances of the considered methods, in particular in the case of small object motions.  
 
However, such approaches can provide only partial solutions to the problem, in some 
particular cases. A sounder framework to deal with such a problem is provided by methods 
performing the analysis within a sliding window, defined over a set of multiple frames.  

 
2.2.2.2. N-frame window analysis 

 
The principle of the so-called N-frame window analysis approaches, first introduced in 
[Hanjalic02], is illustrated in Figure 2.9.  

 
Figure 2.9. Illustration of the sliding window analysis approach. 

 
In order to reduce the local or punctual variations in terms of dissimilarity value between 
successive frames, a set of frames, corresponding to a considered temporal interval (whose 
length gives the window size), is considered [Boccignone05]. 
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The set of frames included in the analysis window is combined as described in [Cooper07]. 
First, low-level features are computed for each frame. The authors propose using the YUV 
color histograms (𝐹𝐹𝑡𝑡 ) for N frames. The chi-square similarity between images is used (d). 
Next, a similarity matrix is determined, which includes the similarity values between each two 
pairs of frames in the window. The similarity matrix, denote by S, is defined as described in 
the following equation: 

𝑆𝑆(𝑖𝑖, 𝑗𝑗) = 𝑑𝑑�𝐹𝐹𝑖𝑖 ,𝐹𝐹𝑗𝑗 �                                                    (2.43)  

Thus, the number of rows and columns of S is equal with the total number of frames included 
in the sliding window.   
 
In this way, abrupt shot boundaries present highly distinctive similarity patterns in the matrix. 
Frames from the same shot are visually coherent, with high similarities, while frames from 
different, adjacent shots present low similarity.  This produces a checkerboard pattern along 
the main diagonal of matrix S. Based on this observation the authors propose using matched 
filtering approaches (kernel cross-correlation) for boundary detection. The matched filter is a 
square kernel matrix, K, that represents the appearance of an ideal boundary in S. The frame 
index score is determined by correlating K along the main diagonal of the matrix S.  

𝑣𝑣(𝑛𝑛) = � � 𝐾𝐾(𝑙𝑙,𝑚𝑚)𝑆𝑆(𝑛𝑛 + 𝑙𝑙,𝑛𝑛 + 𝑚𝑚)
𝐿𝐿−1

𝑚𝑚=−𝐿𝐿

𝐿𝐿−1

𝑙𝑙=−𝐿𝐿

                      (2.44) 

where 𝐾𝐾(𝑙𝑙,𝑚𝑚) is a square matrix of size 2Lx2L. 
 
Different kernel functions can be considered, corresponding to scale-space analysis, diagonal 
cross-similarity, cross-similarity and full-similarity. They are detailed in [Cooper07].  
 
Finally, the shot detection decision process is performed as follows. Maxima in the correlation 
measure (Equation (2.44)) correspond to locally novel frames and are good candidate for shot 
boundaries. The authors use them to form an intermediate-level feature set to 
comprehensively represent the local temporal structure and to perform boundary detection via 
supervised non-parametric classification. The temporal segmentation is formulated now as a 
temporal pattern classification for which they apply the k-nearest-neighbor (kNN) classifier.  
 
A third approach to combine visual information from multiple frames consists of considering 
the whole temporal interval since the last detected shot boundary.   
 

2.2.2.3. Interval since last shot break 
 
In this case, the entire set of frames since the last detected transition and up to the current 
instant are considered and simultaneously analyzed.  
 
Such approaches can be interpreted in the sense of a spatio-temporal image, so-called 
sequence matrix, summarizing the video flow.  
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An early example of such an approach is presented in [Han99]. The method starts by 
determining a feature vector for each image of the video sequence. Then, with the help of 
both horizontal and vertical projections of motion vectors the principal component 
dissimilarity vector is defined as: 

𝐷𝐷(𝑗𝑗) =  �|𝑃𝑃(𝑖𝑖, 𝑗𝑗) − 𝑃𝑃(𝑖𝑖, 𝑗𝑗 − 1)|
𝑁𝑁

𝑖𝑖=2

 ,                                   (2.45) 

where P(LxM) is the principal component of each feature vector and N is the total number of 
frames of the video stream.  
 
The largest principal components P(1,j) are excluded to reduce significant changes in 
luminance level. In order to detect transitions the authors propose comparing 𝐷𝐷(𝑗𝑗) to a fixed 
threshold.  
 
A so-called visual rhythm method is proposed in [Chung00]. Authors exploit the spatio-
temporal image, constructed from pixels sampled uniformly along the main diagonal of each 
frame, to create different visual patterns adapted to various types of shot transitions. Cuts, 
wipes, and dissolves can then be identified by analyzing the resulting image. A cut appears as 
a vertical line, a wipe is a continuous curve, while a dissolve presents a linear increase or 
decrease of pixel values over a certain time interval. 
 
In the above approach the spatial-temporal images are constructed in the spatial domain. 
Another technique [Guimaraes03] uses the visual rhythm variation by constructing the 
sequence matrix based on three measures: Soille’s gradient, multi-scale representation using 
ultimate erosion and thinning. 
 
Whatever the features and similarity measures involved and whatever the type of the analysis 
interval used, it is necessary in all cases to threshold a similarity function in order to detect 
transitions. This aspect is discussed in the following section.  
 

2.2.3.   Thresholding and discontinuity detection 
 
The simplest way is to consider a fixed, global threshold that is applied to the dissimilarity 
signal (Equation (2.43)) in order to detect shot breaks.  
 

2.2.3.1. Fixed threshold 
 

Selecting a “good” threshold is essential to detect transitions. The static threshold is the 
simplest decision method. In this case, the similarity/dissimilarity metric between pairs of 
consecutive frames is compared with the considered, fixed threshold (Figure 2.10), as 
described in the following equation. 
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)(              ,        (2.46) 

where SBD(t) is a binary variable associated with frame t and indicating if frame t 
corresponds to a shot boundary (SBD(t) = 1) or not (SBD(t) = 0). 
 

 
Figure 2.10. Transition detection based on a global threshold. 

 
Most methods consider some heuristics in order to choose a global threshold. [Nagasaka92], 
[Arman93], [Fernando01]. However, it is impossible to determine a global threshold that may 
hold for all types and genres of videos.  
 
An alternative solution is proposed in [Hanjalic02]. Here, the statistical distribution of the 
discontinuity values of pixels intensity variation between successive frames, within a fixed 
number of frames (e.g. 500) is measured. The obtained distribution is afterwards modeled by 
a Gaussian function with parameters µ  andσ , and the threshold value is computed as 
described in the following equation: 

𝑇𝑇 = 𝜇𝜇 + 𝑟𝑟 ∙ 𝜎𝜎,                                                         (2.47)  

where r is a parameter related to the user specified tolerated probability for false detection.  
 
Such an approach takes into account the second order statistics of a video. However, the 
choice of parameter r is not straightforward.  
 
In order to overcome such limitations, in [Zabih95] authors require evaluating that the 
discontinuity values over the similarity signal obtained using pixels intensity variation.  
 
In [Zhang93], authors first observe that cut transitions correspond to relatively high amplitude 
spikes in the feature dissimilarity signal, while gradual transitions lead to smaller amplitude 
values. The twin-comparison method proposed exploits this behavior by considering two 
global thresholds to detect transitions: a higher one to detect cut transitions and a lower one to 
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detect any kind of gradual transitions. However, the approach suffers from inherent 
confusions between gradual transitions and variation due to camera/object motion.  
 
In order to smooth the similarity signal, various pre-processing techniques can be utilized.  
 
In [Otsuji94], authors consider morphological filtering with a flat structuring element of size 
B frames. The dilation (𝐷𝐷𝐵𝐵�𝑆𝑆(𝑡𝑡)�) and erosion 𝐸𝐸𝐵𝐵�𝑆𝑆(𝑡𝑡)� of the similarity signal are computed 
as described in Equations (2.48) and (2.49).  

𝐷𝐷𝐵𝐵(𝑆𝑆(𝑡𝑡)) = max 𝑆𝑆(𝑡𝑡 + 𝑟𝑟), 𝑟𝑟 = −
𝐵𝐵
2

, ±1, … , 0, … ,
𝐵𝐵
2
− 1,           (2.48) 

𝐸𝐸𝐵𝐵�𝑆𝑆(𝑡𝑡)� = min 𝑆𝑆(𝑡𝑡 + 𝑟𝑟), 𝑟𝑟 = −
𝐵𝐵 − 1

2
, ±1, … , 0, … ,

𝐵𝐵
2

,           (2.49) 

The authors propose applying morphological operators because in practice the erosion shrinks 
the peaks of the dissimilarity signal shorter than the structuring element, while the dilation 
produces the dual effect, enlarging the positive peaks. So, in this case a transition is detected 
by first applying a temporal closing that first eliminates negative spikes and afterwards a top-
hat transform to extract positive peaks. The method brings some improvements especially 
when dealing with special effects such as animation, slow object or camera movement.   
 
A nonlinear filtering approach is proposed in [Han99]. The objective is to distinguish between 
rapid, abrupt variation and smooth, gradual transition. Based on this constraint the authors 
propose introducing a progressive nonlinear filter (PNF) specifically designed for temporal 
segmentation. The PNF can suppress large variation in gradual transitions regions and 
preserve abrupt shot changes. The process involves two smoothing operation. In the first 
phase abrupt shot changes are preserved and noisy gradual transition are smoothed using the 
following equation: 

𝐹𝐹𝑖𝑖1 =  
1
𝑁𝑁

� 𝐹𝐹𝑖𝑖0(𝑘𝑘)
𝑘𝑘=𝑁𝑁/2

𝑘𝑘=−𝑁𝑁/2

,                                                    (2.50) 

 where 𝐹𝐹𝑖𝑖  are the features associated to frame i, and N is the size of the sliding window.  
 
In the second stage a filtering operation eliminates insignificant impulse shot changes based 
on Equation (2.50). 

𝐹𝐹𝑖𝑖2 = �
1
𝑁𝑁
∑ 𝐹𝐹𝑖𝑖1(𝑘𝑘)
𝑘𝑘=𝑁𝑁

2

𝑘𝑘=−𝑁𝑁2
, 𝑖𝑖𝑖𝑖 ∆𝐹𝐹𝑖𝑖1 < 𝑡𝑡ℎ𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑜𝑜𝑜𝑜𝑜𝑜  

𝐹𝐹𝑖𝑖1, 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

�   ,            (2.51)  

where ∆𝐹𝐹𝑖𝑖1 =  �𝐹𝐹𝑖𝑖1 − 𝐹𝐹𝑖𝑖−1
1 �. The method shows better performance than Gaussian, Wiener, and 

Wavelet-based filters.  
 
In a general manner, algorithms based on global thresholds provide satisfactory results only in 
cases where the analyzed video exhibits similar characteristics over time in terms of content 
type and associated features. However, in practice, it is impossible to determine a unique, 
global threshold that can work with all kind of video material [Lienhart01]. Moreover, a same 



31    SHOT BOUNDARY DETECTION 

 

video document may include parts with highly different, both static and dynamic content. In 
such a case, considering a global threshold parameter at the level of the entire video is not 
appropriate.  

 
2.2.3.2. Adaptive threshold  

 
The adaptive thresholding is a natural solution to avoid the above-mentioned problems. The 
main principle consists of modifying the threshold within a sliding window, by taking into 
account the statistics of the similarity signal over time.  
 
This principle is illustrated in Figure 2.11, where the average value of the similarity signal is 
considered. In a general manner, an adaptive threshold incorporates contextual information by 
considering the local activity of the content. 
 
One of the first methods that adopt adaptive thresholding approach for shot boundary 
detection objectives is described [Yeo95]. The similarity signal at frame t is defined as: 

𝑆𝑆𝑖𝑖 ,𝑗𝑗 (𝑡𝑡) = 𝑑𝑑�𝐹𝐹𝑖𝑖 ,𝐹𝐹𝑗𝑗 �,                                                 (2.52)  

where 𝐹𝐹𝑖𝑖and 𝐹𝐹𝑗𝑗  are the feature sets extracted to characterize frames 𝐼𝐼𝑖𝑖and 𝐼𝐼𝑗𝑗 . 
 
A shot break is declared if the similarity measure between two consecutive frames satisfies 
the following conditions:  

• (C1) - represents the maximum value within a symmetric sliding window of size 2𝑁𝑁 − 1, 
centered at the current frame t,  

• (C2) - is t α times bigger than the second largest maximum in the sliding window, with α 
denoting a real-valued parameter.  

 
Figure 2.11. Transition detection based on an adaptive threshold. 

 
The parameter α models, in a certain sense, the shape of the boundary pattern and implicitly 
incorporates the adaptive thresholding principle. Thus, a cut transition is characterized by an 
isolated, sharp peak in the similarity signal. Condition (C2) is useful to distinguish between 



SEGMENTATION AND STRUCTURING OF VIDEO DOCUMENTS FOR INDEXING APPLICATIONS 32 

 
 

shot boundaries and punctual distortions of the similarity signal, such as those caused by 
camera flashes: abrupt illumination introduces a rapid succession of at least two spikes. 
 
An improved approach is proposed in [Hanjalic02]. The sliding window principle is here 
combined with a statistical analysis of the similarity samples within the considered window, 
which are modeled with the help of a Gaussian distribution. Instead of choosing a 
heuristic/empirical value, parameter α is determined indirectly, based on the pre-specified 
tolerable probability of falsely detected boundaries  
 
Various authors have adopted adaptive thresholds in their approaches [Park05], [Robles04]. In 
[Park05] the authors propose to vary the threshold depending on the magnitude value of the 
motion vectors, while in [Robles04] the authors compute the threshold based on the average 
number of wavelet coefficients associated to each frame at different resolution. 
 
In [Osian04], the evaluation of the similarity signal is performed within a sliding window of 
15-20 frames. Several parameters are computed for each position of the considered window, 
including global motion compensation computed for each pair of frames and an affine 
transformation which warps the first frame into the second. The resulting difference is 
compared against an adaptive threshold, determined with the help of second order statistics.  
 
A modified version of this approach is proposed in [Cernekova06]. Here, the average value of 
the difference signal is computed within the sliding window, without considering the current 
frame. The similarity value associated to the current frame is then compared with the average 
value. If their ratio exceeds a given threshold, a shot boundary is declared.   
 
In [Urhan07], authors combine two different thresholds: a global and a local one. If the 
similarity value is superior to the global threshold, a cut transition is identified. In the other 
case, a local threshold, defined as the average of the dissimilarity signal within a sliding 
window, is computed. If the similarity value is above the local threshold than a gradual 
transition is identified.    
 
The computation of adaptive thresholds/local statistical measures naturally leads to an 
increase in computational time. In order to speed-up, the process, in [Drew99], authors 
propose to perform the analysis at a coarser temporal resolution, obtained by sub-sampling the 
video. A fixed sampling step of 32 frames is here used.  
 
A similar approach is also proposed in [Bescos00]. In order to detect gradual transitions, 
multiple sampling intervals, varying from 5 to 30 frames are here used (Figure 2.12). This 
leads to a multi-scale analysis process. A shot transition introduces a peak in the dissimilarity 
sequence at a given scale, and flatter variation patterns at the other scales. In the case of noise 
caused by large object displacement, camera movement or abrupt illumination two different 
peaks will result at all scales. This nice property is used to distinguish between transitions and 
the other events, thus increasing the detection efficiency. 
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Figure 2.12. Transition detection using the technique [Bescos00]. 

 
Methods involving adaptive thresholds overcome a lot of the problems related to a global 
analysis and significantly increase the detection efficiency. However, the size of the analysis 
window is a highly important parameter. For relatively small values, it is impossible to 
capture all the dynamics of a gradual transition. In most cases, this will generate a missed 
detection. For large window size, multiple shots with different characteristics may be 
considered together, which leads to the same drawbacks as in the case of global thresholding. 
Typical values of window sizes encountered in the literature range in the 5-35 frames interval.  
 
However, a “good” compromise should be determined, on an empirical basis or by injecting 
some strong a priori information within the analysis process. This can be done by considering 
a learning process, as in the case of the classification-based approaches described in the 
following section.  
 

2.2.3.3. Trained classifiers 
 

In order to overcome limitations related to threshold selection and parameter setting, machine 
learning techniques are based on a radically different detection strategy. The principle consists 
of considering supervised classification techniques, able to learn the considered transitions 
from a ground truth learning set and to generalize them to unknown video signals.  
 
Among the classification techniques that can be uses to achieve such an objective, let us cite 
rule induction [Feng08], support vector machines [Anguita10], boosting algorithms 
(AdaBoost) [Freund97]… 
 
Recent approaches [Yuan07], [Matsumoto06], [Chasanis08] use a support vector machine 
(SVM) classifier [Burges06] in order to both: 
• Locate shot boundaries, i.e. provide, for each frame, a binary decision indicating if the 

considered frame correspond or not to a shot transition,  
• Identify the corresponding transition type.  
 
If we consider a set of training points {𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛}, where each input has 𝑁𝑁 attributes, the 
SVM technique divides the input data in two classes 𝑦𝑦𝑖𝑖 = −1 or  𝑦𝑦𝑖𝑖 = +1. In this case the 
data is considered linearly separable. Most methods are based on binary decisions and use a 
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set of machine for detection (e.g. one to differentiate between abrupt and gradual transitions, 
one to distinguish dissolves from fades…).     
 
In [Matsumoto06], features from both compressed (MPEG) and uncompressed domains are 
combined into a multi-dimensional global feature vector. The method is able to identify 
various types of transitions, including cuts, dissolves with various transition spans….  
 
A SVM shot boundary detection strategy is also proposed in [Yuan07]. Multiples classifiers 
are manually trained with positive and negative examples for each type of transition. In this 
context, cuts are distinguished from the others via the shape of the valley in the similarity 
signal considered. Because a gradual transition may span a varying temporal length, authors 
affirm that it is almost impossible to predict all possible situations. Moreover, after analyzing 
the experimental results they claim that a more appropriate solution is to consider an adaptive 
threshold.  
 
In [Chasanis08], authors consider a multi-scale representation, obtained by computing inter-
frame dissimilarities at three sampling intervals of 2, 3 and 6 frames. A SVM classifier is here 
again considered in order to categorize the feature vectors, associated to each image of the 
video flow, in three classes corresponding to so-called normal sequences (i.e., succession of 
frames without transitions), abrupt cuts and gradual transitions.  
 
Classification-based approaches offer powerful solutions which make possible to: 
1.  Consider and combine various types of features for an increased discriminative power,  
2. Inject a considerable amount of a priori knowledge in the shot detection process, with the 

help of the ground truth used in the training step. 
 

However, in practice, the associated performances are strongly dependent of the learning set 
used to train the classifiers. Such a data set should be sufficiently important in terms of size, 
and variability of content/transition types, in order to ensure good generalization properties.  
 
However, constructing such a ground truth data set requires a huge amount of human 
interaction. In addition, the categories of transitions and, more generally, the various types of 
video segments have to be carefully identified and taken into account for a successful 
classification process. 
 

2.2.4.   Performance evaluation 
 
An important issue to be solved when considering the issue of shot boundary detection 
methods is the constitution of a representative test data set that can serve as ground truth for 
the various techniques. Such a ground truth needs to include a large variety of videos, with a 
wide range of content and transitions types. In addition, such a data set, that can include 
thousands of videos for a real-life set-up, has to be manually segmented by human experts, 
which is a tedious and time-consuming process. Moreover, precisely determining the 
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transitions boundaries in the case of some gradual transitions is not straightforward and may 
depend of the subjective user perception.  
 
The lack of common, widely recognized by the scientific community, and publicly available 
benchmark data set is a first and major problem encountered when evaluating shot boundary 
detection methods.  
 
Numerous methods introduced in the literature propose evaluations on more or less ad-hoc 
data sets, which limit the pertinence of the obtained results. In addition, such test sets are 
generally not publicly available. As a consequence, objective comparisons with different 
methods are not possible.  
 
Still, notable efforts have been made during the last decade, within the framework of various 
national and international evaluation campaigns dedicated, in general, to video 
processing/analysis techniques. As notable examples, let us mention the so-called ARGOS 
French campaign – “Campagne d'évaluation d'outils de surveillance de contenus video” 
[Joly07], and TRECVID – “Video Retrieval Evaluation” [http://trecvid.nist.gov]. Such 
campaigns propose to standardize the evaluation process, which is carried out as a contest, by 
developing a unique data base for tests and ground truth and by establishing a set of 
performance evaluation criteria. 
 
In particular, the TRECVID approach consists of evaluating each submitted method against a 
large test set of commercial videos for which the ground truth data is manually established. 
Unfortunately, the TRECVID corpus is restricted only to the participants.  
 
Concerning the performance evaluation metrics, two types of detection errors can be 
encountered:  
• The first one corresponds to the so-called missed detections (or false negatives) and relates 

to the case where the detection failed for some transitions present in the video; 
• The second error corresponds to the situation where some false shot boundaries have been 

erroneously detected. Such cases are called false alarms (or false positives).  
 
When a ground truth test data set is available, such detection errors can be counted and 
globally described with the help of two error parameters, denoted by MD and FD, and 
respectively representing the numbers of missed detected and false detected transitions. Let us 
also denote by D the total number of correctly detected transitions. Based on these entities, the 
most often popular evaluation measures encountered in the literature are the so-called recall 
(R) and precision (P) rates, respectively defined as described in Equations (2.53) and (2.54): 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =
𝐷𝐷

𝐷𝐷 + 𝑀𝑀𝑀𝑀
                                                    (2.53) 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =  
𝐷𝐷

𝐷𝐷 + 𝐹𝐹𝐹𝐹
                                                    (2.54) 
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The precision is given by the total number of correctly detected transitions divided by the total 
number of detected transitions (i.e. the sum of correctly detected transitions and false alarms). 
The recall parameter is defined as the number of true positives divided by the total number of 
elements that actually should be identified as shot boundaries (i.e. the sum of correctly 
detected and missed detected transitions). Precision can be interpreted as a measure of 
exactness or fidelity, whereas recall is a measure of completeness. 
 
The recall and precision rates can be combined within a unique evaluation metric, denoted by 
F1 and defined as the harmonic mean of precision and recall rates:  

𝐹𝐹1 = 2 ∗
𝑃𝑃 ∙ 𝑅𝑅
𝑃𝑃 + 𝑅𝑅

                                                             (2.55) 

Ideally, the recall, precision and 1F measures should be equal to 1, which corresponds to the 
case where all existing shot boundaries are correctly detected, without neither false alarms nor 
missed detections.  
 
In [Sethi95], authors suggest that false-alarm errors should be ignored entirely, because in the 
author’s opinion the correct identification of shot boundaries is more important than any false 
alarms. Moreover, they argue that the false alarms are determined either by camera/object 
motion or by camera processing operations (e.g. zoom in/out, pan…) and it is natural to 
consider that part as distinct. In the view of [Gargi00], this is not desirable, since under such 
an evaluation scheme, an algorithm that detects a shot transition at every single frame would 
outperform a more conservative one. 
 
The evaluation might also depend on the considered applications. For example, since shot 
detection is needed in the case of semantic video compression [Cotsaces06], too many shot 
changes will lower the efficiency of the representation.  
 
Moreover, in the case of video summarization applications, false alarms are not desirable 
since the objective is to obtain compact representations, where the redundancies are 
minimized. Even with perfect precision, some types of video sequences have shot changes 
every few seconds, increasing this with false alarms, the resultant video summary would 
become useless for the end user. 
 
Today, the widely recognized measures for evaluating shot boundary detection methods are 
the recall, precision and F1 rates. They will be subsequently utilized in our work.  
 
 

2.3.   THE PROPOSED SHOT BOUNDARY DETECTION SYSTEM 
 
The proposed shot boundary detection method exploits and extends the graph partition (GP) 
model introduced in [Yuan07]. Let us first recall the basic principle of the graph-based 
representation model. 
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2.3.1.   Graph partition method 
 
Various real-world or physical situations can be mathematically modeled with the help of 
graphs. Let us first introduce the basic definitions necessary for our future developments.  
 

2.3.1.1. Background  
 
A graph G is by definition an ordered triple (𝑉𝑉(𝐺𝐺),𝐸𝐸(𝐺𝐺),𝜓𝜓𝐺𝐺) consisting of a nonempty set of 
vertices (or nodes) V(G), a set of edges E(G) and an incidence function 𝜓𝜓𝐺𝐺  that associates 
with each edge of E an unordered pair of (not necessarily distinct) vertices of G. If e is an 
edge and 𝑣𝑣𝑖𝑖and 𝑣𝑣𝑗𝑗  are vertices such that ψ𝐺𝐺�𝑒𝑒𝑖𝑖 ,𝑗𝑗 � = �𝑣𝑣𝑖𝑖 , 𝑣𝑣𝑗𝑗 �, then ei,j is said to join 𝑣𝑣𝑖𝑖  and 𝑣𝑣𝑗𝑗  
while the vertices are called the ends of eij [Hendrickson00]. Two vertices incident to a 
common edge are called adjacent, or neighbors. Analogously, two edges sharing a common 
vertex are also called adjacent.  
 
The number of vertices (edges) is denoted by |V| (resp. |E|).  
 
Let us illustrate this concept with the help of the following simple example. Let  

( )G ),( ),( ψGEGVG =  be the considered graph, with { }54321  , , , ,)( vvvvvGV =  and 

{ }87654321  , , , , , , ,)( eeeeeeeeGE =  . The incidence function Gψ  is defined by: 

    },{)( 211 vveG =ψ , },{)( 112 vveG =ψ , },{)( 323 vveG =ψ , },{)( 434 vveG =ψ  
  },{)( 425 vveG =ψ , 𝜓𝜓𝐺𝐺(𝑒𝑒6) = {𝑣𝑣3, 𝑣𝑣5}, },{)( 417 vveG =ψ , },{)( 548 vveG =ψ  

The diagram associated with the planar graph G is illustrated in Figure 2.13. 

 
Figure 2.13. The associated diagram for a graph G. 

 
An edge having two distinct ends is called a link, while in the case of identical ends is said to 
form a loop (the case of e2 in Figure 2.13). A graph is called simple if it has no loops in its 
structure and no two links join the same pair of vertices. 
 
The graph vertices may represent distinct entities, while the edges encode data dependencies. 
To each edge 𝑒𝑒𝑖𝑖𝑖𝑖 , a weight 𝑤𝑤𝑖𝑖𝑖𝑖  may be associated to. Such a weight might represent, for 
example, a degree of similarity between nodes i and j.  
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The connectivity of a given graph can also be described with the help of the so-called 
adjacency matrix, denoted by A. The adjacency matrix is constructed based on the vertices (or 
nodes) of a graph that are adjacent to which other vertices. For the graph presented in 
Figure 2.13 the associated adjacency matrix is described as follows:  

𝐴𝐴 =

⎝

⎜
⎛

1     1     0     1     0
1     0     1     1     0
0     1     0     1     1
1     1     1     0     1
0     0     1     1     0⎠

⎟
⎞

   ,                                       (2.56) 

Let us note that the adjacency matrix is symmetric, of size |V| × |V|.  
 
Let us now introduce the problem of optimal graph cuts.  
 
For a given graph G with weights associated to each edge, the objective is to partition the 
nodes of G into two non-empty and disjoint subsets A and B such that a total cost function 
associated to the considered partition is minimized. Such a partition can be simply obtained 
by cutting the graph along a set of edges (i.e., removing edges connecting the two parts 
A and B).  
 
A graph partition application requires the specifications of the following issues:  
• What is the best criterion that the partition has to satisfy? 
• How such a partition can be computed efficiently? 
 
In the literature, various partition criteria have been defined. Early studies proposed to use as 
an objective function the so-called minimum cut [Kernighan70]. In this case if we consider a 
set of edges E defined as: 𝐸𝐸 =  ���𝑣𝑣𝑖𝑖 , 𝑣𝑣𝑗𝑗 � �  𝑣𝑣𝑖𝑖 ∈ 𝐴𝐴, 𝑣𝑣𝑗𝑗 ∈ 𝐵𝐵 𝑎𝑎𝑎𝑎𝑎𝑎 �𝑣𝑣𝑖𝑖 ,𝑣𝑣𝑗𝑗 � = 𝑒𝑒𝑖𝑖 ,𝑗𝑗 � the cost function 
associated to the partition (A, B) is computed as: 

𝑐𝑐𝑐𝑐𝑐𝑐(𝐴𝐴,𝐵𝐵) = � 𝑤𝑤𝑖𝑖 ,𝑗𝑗 (𝑣𝑣𝑖𝑖 ,𝑣𝑣𝑗𝑗 )
(𝑣𝑣𝑖𝑖 ,𝑣𝑣𝑗𝑗 )∈𝐸𝐸

    ,                                     (2.57) 

The cut function represents the sum of weights associated to edges that have been removed.  
 
The objective then is to determine the partition minimizing Equation (2.57) (Figure 2.14). 
Although there are an exponential number of possible partitions, efficient minimization 
algorithms exist [Kolmogorov06].  
 
However it has been proven that usually such an approach leads to skewed cuts [Yuan07] 
since the functional in Equation (2.57) tends to introduce a bias and favors small cuts 
corresponding to some isolated nodes in the graph.  
 
In order the overcome such limitations, several other objective functions have been introduced 
more recently, including the ratio cut [Wang03], the normalized cut [Shi00] and the min-max 
cut [Ding01].  
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Figure 2.14. Graph partition model - schematic representation. 

 
Such strategies require the definition of two extra measures called the subgraph association 
for A  and B , expressing the total connection between the vertices in A  to all the other nodes 
in the considered graph. If we consider two sets 𝐸𝐸1 =  ��(𝑣𝑣𝑖𝑖 , )𝑣𝑣𝑗𝑗 � 𝑣𝑣𝑖𝑖 ∈ 𝐴𝐴, 𝑣𝑣𝑗𝑗 ∈ 𝑉𝑉 𝑎𝑎𝑎𝑎𝑎𝑎 �𝑣𝑣𝑖𝑖 , 𝑣𝑣𝑗𝑗 � =
𝑒𝑒𝑖𝑖 ,𝑗𝑗 � and 𝐸𝐸2 =  ��(𝑣𝑣𝑖𝑖 , )𝑣𝑣𝑗𝑗 � 𝑣𝑣𝑖𝑖 ∈ 𝑉𝑉 𝑣𝑣𝑗𝑗 ∈ 𝐵𝐵 𝑎𝑎𝑎𝑎𝑎𝑎 �𝑣𝑣𝑖𝑖 ,𝑣𝑣𝑗𝑗 � = 𝑒𝑒𝑖𝑖 ,𝑗𝑗 �, then the associations are defined 
as: 

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝐴𝐴,𝑉𝑉) = � 𝑤𝑤𝑖𝑖 ,𝑗𝑗 (𝑣𝑣𝑖𝑖 , 𝑣𝑣𝑗𝑗 )
(𝑣𝑣𝑖𝑖 ,𝑣𝑣𝑗𝑗 )∈𝐸𝐸1

 ,                                    (2.58) 

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝐵𝐵,𝑉𝑉) = � 𝑤𝑤𝑖𝑖 ,𝑗𝑗 (𝑣𝑣𝑖𝑖 , 𝑣𝑣𝑗𝑗 )
(𝑣𝑣𝑖𝑖 ,𝑣𝑣𝑗𝑗 )∈𝐸𝐸2

,                                   (2.59) 

One of the most popular approaches consists of, considering an objective function defined 
based on the dissociation between measures. This leads to the so-called normalized cut 
objective function, defined as: 

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁(𝐴𝐴,𝐵𝐵) =
𝑐𝑐𝑐𝑐𝑐𝑐(𝐴𝐴,𝐵𝐵)
𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝐴𝐴,𝑉𝑉)

+
𝑐𝑐𝑐𝑐𝑐𝑐(𝐴𝐴,𝐵𝐵)
𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝐵𝐵,𝑉𝑉)

                             (2.60) 

The normalized cut function makes it possible to overcome the limitations of the minimal cut, 
which tends to yields small sets of isolated nodes in the graphs. The normalized cut 
guarantees that a reduced number of isolated points will not determine small Ncut  values, 
because in this case the cut is expressed as the total connection between the reference set of 
vertices and all the other nodes in the original structure. 
 
In a similar manner, a new measure can be defined for the total association, called normalized 
association within groups for a given partition and defined as: 

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁(𝐴𝐴,𝐵𝐵) =
𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝐴𝐴,𝐴𝐴)
𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝐴𝐴,𝑉𝑉)

+
𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝐵𝐵,𝐵𝐵)
𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝐵𝐵,𝑉𝑉)

                    (2.61) 

The normalized associations Nassoc(A, B) expresses how tightly the nodes clustered in a 
specific class are connected to other nodes grouped in other classes. 
Finally, let us note that the normalized association and normalized cut functions are inter-
related, and described in Equation (2.62): 
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In our work, we have adopted a slightly different approach, corresponding to the so-called 
min-max objective function, introduced in [Ding01] and defined as:  

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝐴𝐴,𝐵𝐵) =
𝑐𝑐𝑐𝑐𝑐𝑐(𝐴𝐴,𝐵𝐵)
𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝐴𝐴,𝐴𝐴) +

𝑐𝑐𝑐𝑐𝑐𝑐(𝐴𝐴,𝐵𝐵)
𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝐵𝐵,𝐵𝐵)                                         (2.63) 

When graphs are used for video temporal segmentation, the pairs of weights associated with 
each edge jie , , are strictly positive 0),(, >jiji vvw , and express the similarity/dissimilarity 

between two frames. Let us now describe how such a graph-based representation approach 
can be used for temporal segmentation purposes.  
 

2.3.1.2. Min-Max graph cut for temporal video segmentation  
 
In this case, the graph G is constructed as follows. For each individual video frame n, a 
sliding window of size N, centered on the current frame is considered. To each frame in the 
current window, a node in the graph is associated to. Thus the set of nodes, denoted by Gn will 
correspond to the set of frames in the considered window. The set of edges is defined by 
interconnecting each node to each other, in an exhaustive manner. The corresponding weights 
will correspond to a measure of visual similarity between corresponding frames. 
 
A particular case of cuts is here considered. They correspond to the partition of set Gn into 
two sets, denoted by 𝐴𝐴𝑛𝑛𝑘𝑘  and  𝐵𝐵𝑛𝑛𝑘𝑘  and associated to a frame k in the considered temporal 
interval. More precisely, 𝐴𝐴𝑛𝑛𝑘𝑘  and  𝐵𝐵𝑛𝑛𝑘𝑘  respectively represent the sets of nodes (frames) anterior 
and posterior to frame k. 
 
The min-max objective function in Equation (2.63) becomes now: 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀�𝐴𝐴𝑛𝑛𝑘𝑘 ,𝐵𝐵𝑛𝑛𝑘𝑘� =
𝑐𝑐𝑐𝑐𝑐𝑐�𝐴𝐴𝑛𝑛𝑘𝑘 ,𝐵𝐵𝑛𝑛𝑘𝑘�
𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎�𝐴𝐴𝑛𝑛𝑘𝑘 ,𝐴𝐴𝑛𝑛𝑘𝑘�

+
𝑐𝑐𝑐𝑐𝑐𝑐�𝐴𝐴𝑛𝑛𝑘𝑘 ,𝐵𝐵𝑛𝑛𝑘𝑘�
𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎�𝐵𝐵𝑛𝑛𝑘𝑘 ,𝐵𝐵𝑛𝑛𝑘𝑘�

                                   (2.64) 

The cut and assoc functions can be written as described in Equations (2.67) and (2.68).  

𝑐𝑐𝑐𝑐𝑐𝑐�𝐴𝐴𝑛𝑛𝑘𝑘 ,  𝐵𝐵𝑛𝑛𝑘𝑘� = � 𝑤𝑤𝑖𝑖 ,𝑗𝑗 �𝑣𝑣𝑖𝑖 ,𝑣𝑣𝑗𝑗 �
𝑖𝑖∈𝐴𝐴𝑛𝑛𝑘𝑘 ,𝑗𝑗∈𝐵𝐵𝑛𝑛𝑘𝑘   

                                                       (2.65) 

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎�𝐴𝐴𝑛𝑛𝑘𝑘 � = � 𝑤𝑤𝑖𝑖 ,𝑗𝑗 �𝑣𝑣𝑖𝑖 ,𝑣𝑣𝑗𝑗 �
𝑖𝑖 ,𝑗𝑗∈𝐴𝐴𝑛𝑛𝑘𝑘

;       𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎�𝐵𝐵𝑛𝑛𝑘𝑘� = � 𝑤𝑤𝑖𝑖 ,𝑗𝑗 �𝑣𝑣𝑖𝑖 ,𝑣𝑣𝑗𝑗 �
𝑖𝑖 ,𝑗𝑗∈𝐵𝐵𝑛𝑛𝑘𝑘

                      (2.66) 

The analysis thus performed makes it possible to construct a local dissimilarity vector v(n) 
that stores, for each frame n the associated optimal cut measure 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝐴𝐴𝑛𝑛𝑘𝑘 ,𝐵𝐵𝑛𝑛𝑘𝑘) (minimum 
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value of the objective function defined in Equation (2.61)). For each frame n, v(n) is defined 
as:  

𝑣𝑣(𝑛𝑛) = min
𝑘𝑘∈{1,…,𝑁𝑁−1}

{𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝐴𝐴𝑛𝑛𝑘𝑘 ,𝐵𝐵𝑛𝑛𝑘𝑘)}                                            (2.67) 

Figure 2.15 illustrates the dissimilarity vector obtained for a given video, with various sizes of 
the analysis window, ranging from 10 to 35 frames.  
 
We can observer that larger window sizes lead to smoother dissimilarity vectors. The window 
size should be large enough to capture usual transitions that are greater than 10–15 frames. In 
our work, we have considered a value of 25=N  frames (Figure 2.15), that assures a good 
compromise between detection precision and computational time. 
 

 
Figure 2.15. Local minimum vector variation with different window sizes: 

(a) 10 frames; (b) 15 frame; (c) 25 frames; (d) 35 frames. 
 
Concerning the weights jiw , , they are defined as the chi-square distance between color 

histograms associated to corresponding frames, represented in the HSV color space.  

    
( )∑ −×

+
−

=
k

ji
j

k
i
k

j
k

i
k

ji e
HH
HH

w ,       ,                                     (2.68) 

where �𝐻𝐻𝑘𝑘𝑖𝑖 �𝑘𝑘=1
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁

denotes the HSV color histogram associate to frame i . The histogram can be 
mathematically expressed:  
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�𝐻𝐻𝑘𝑘𝑖𝑖 �𝑘𝑘=1
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 =  

1
𝑋𝑋 ∙ 𝑌𝑌

��𝛿𝛿(𝐼𝐼(𝑖𝑖, 𝑗𝑗) − 𝑐𝑐)
𝑌𝑌−1

𝑗𝑗=0

 
𝑋𝑋−1

𝑖𝑖=0

                        (2.69) 

where 𝑋𝑋 ∙ 𝑌𝑌 is the frame size, k is the current color index, ),( jiI is the color of the pixel ),( ji

in the image I and )(xd is the Dirac function. 
 
The exponential term in Equation (2.68) is used in order to take into account the temporal 
distance between frames [Ţapu10].  
 
In our work, we have considered the HSV color space, in order to take advantage of the Hue 
invariance to common (weak) lightning intensity changes.  
 
The video graph G is represented with the help of an N x N symmetric matrix, denoted by S, 
which stores the distances between the N nodes (frames) of the graph and which is defined as: 

𝑆𝑆 = �

𝑤𝑤1,1,𝑤𝑤1,2, … ,𝑤𝑤1,𝑁𝑁
𝑤𝑤2,1,𝑤𝑤2,2, … ,𝑤𝑤2,𝑁𝑁

…
𝑤𝑤𝑁𝑁,1,𝑤𝑤𝑁𝑁,2, … ,𝑤𝑤𝑁𝑁,𝑁𝑁

�   ,                                            (2.70) 

The similarity matrix stores the cut and association values, as illustrated in Figure 2.16.  

 
Figure 2.16. The similarity matrix S associated with graph G. 

 
When displacing the analysis window from frame to frame, a new frame of the video is each 
time considered for analysis. The similarities between current image and all the other frames 
in the window are determined and stored in the matrix. At each iteration, the values of the 
similarity matrix are permuted from left to right allowing a continuous update in the graph 
partition (Figure 2.17). 
 
After computing the local minimum vector for the input video stream the simplest way to 
identify a camera brake is determine if the discontinuity value:  
1. exceeds a pre-established threshold, and  
2. represents a maximum within the considered window [Ţapu11].  
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Figure 2.17. Updating process for the similarity matrix. 

 
If both conditions are accomplished, then a shot boundary is identified. This process is 
illustrated in Figure 2.18. 

 
Figure 2.18. Transition detection using the local minimum vector. 

 
However, determining an appropriate and global threshold is a difficult issue, since in 
practice, shots might exhibit camera or large object motions which can lead to both false 
alarms and miss detection of gradual transitions. This problem is illustrated in Figures 2.19, 
2.20 and 2.21, where some false alarms, due to large camera motion and flash lights are 
detected, in the case of a real-life video document. Figure 2.19 presents the variation of the 
local minimum vector due to a flash light.    

 
Figure 2.19. Local minimum vector variation for due to a flashlight: (a) Video sequence; 

(b) Local minimum vector variation. 
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In the case of large object movement the variations of the local minimum vector are not that 
pronounced as for flashlights as it can be observed in Figure 2.20. The camera motion has a 
similar impact on the local minimum vector (Figure 2.21).   
 

 
Figure 2.20. Local minimum vector variation due to large object displacement: 

(a) Video sequence; (b) Local minimum vector. 
 

 
Figure 2.21. Local minimum vector variation due to camera movement: 

(a) Video sequence; (b) Local minimum vector. 
 
As it can be observed, the main limitation is related to the threshold parameter, the sensitivity 
to camera and object motion being very strong (Figure 2.22).  
 
A current way to solve this problem is to replace it by an adaptive threshold inside a moving 
window. Introducing an adaptive threshold helps to decrease this sensitivity in a certain way, 
but obviously not completely. In this case, the window size becomes the main parameter to be 
tuned, directly influencing the detection performances.  
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Figure 2.22. Temporal segmentation based on the local minimum vector. 

 
In order to overcome such limitations, and to be able to deal with heterogeneous videos, we 
propose to perform a pre-processing step, aiming at reducing the possible perturbations that 
can present the local minimum vector 𝑣𝑣(𝑛𝑛). 
 
This pre-processing step is based on a non-linear filtering in the space of scale space 
derivatives of the dissimilarity vector 𝑣𝑣(𝑛𝑛).  
 

2.3.2.   Pre-processing with scale-space derivatives  
 
After applying the graph partition on the input video flow and optimizing the min-max 
objective function we propose to perform the shot boundary detection on the derivatives of 
the minimum vector 𝑣𝑣(𝑛𝑛).  
 
In [Lefevre07], authors showed that the exploitation of the first order derivatives can increase 
the reliability of the temporal segmentation. However, in order to further increase the 
detection efficiency, we propose to perform the analysis within the scale space of derivatives. 
 
More precisely, let 𝑣𝑣′(𝑛𝑛) denote the first order derivative of vector 𝑣𝑣(𝑛𝑛), defined as the 
following finite difference:  

    𝑣𝑣′(𝑛𝑛) = 𝑣𝑣(𝑛𝑛) − 𝑣𝑣(𝑛𝑛 − 1)                                                (2.71) 

We construct the set of cumulative sums {𝑣𝑣𝑘𝑘′ (𝑛𝑛)}𝑘𝑘=1
𝑁𝑁 , over the difference signal 𝑣𝑣(𝑛𝑛) up to 

order N, by setting:  

𝑣𝑣𝑘𝑘′ (𝑛𝑛) = �𝑣𝑣′
𝑘𝑘−1

𝑝𝑝=0

(𝑛𝑛 − 𝑝𝑝)                                                 (2.72) 

The signals 𝑣𝑣𝑘𝑘(𝑛𝑛) can be interpreted as low-pass filtered versions of the derivative signal 
𝑣𝑣𝑘𝑘′ (𝑛𝑛), with increasingly larger kernels, and constitute our scale space analysis. 
 
If we process the above equation for all the frames inside a moving window we can determine 
the derivative within each point of the local minimum vector:  
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𝑣𝑣′𝑘𝑘−0(𝑛𝑛) = 𝑣𝑣(𝑛𝑛) − 𝑣𝑣(𝑛𝑛 − 1) 
𝑣𝑣′𝑘𝑘−1(𝑛𝑛) = 𝑣𝑣(𝑛𝑛 − 1) − 𝑣𝑣(𝑛𝑛 − 2) 
𝑣𝑣′𝑘𝑘−2(𝑛𝑛) = 𝑣𝑣(𝑛𝑛 − 2) − 𝑣𝑣(𝑛𝑛 − 3) 

…                                          (2.73) 
𝑣𝑣′𝑘𝑘−𝑛𝑛+1(𝑛𝑛) = 𝑣𝑣(𝑛𝑛 − (𝑘𝑘 + 1)) − 𝑣𝑣(𝑛𝑛 − (𝑘𝑘 + 2)) 

𝑣𝑣′𝑘𝑘−𝑛𝑛(𝑛𝑛) = 𝑣𝑣(𝑛𝑛 − (𝑘𝑘)) − 𝑣𝑣(𝑛𝑛 − (𝑘𝑘 + 1)) 

After summing up all of the above equations, the cumulative sum 𝑣𝑣𝑘𝑘′ (𝑛𝑛)can be simply 
expressed as:  

�𝑣𝑣′(𝑛𝑛 − 𝑝𝑝) = 𝑣𝑣(𝑛𝑛) − 𝑣𝑣(𝑛𝑛 − 𝑘𝑘)                                    (2.74)
𝑘𝑘−1

𝑝𝑝=0

 

Figure 2.23 illustrates the set of derivatives signals obtained. We can observe that smoother 
and smoother signals are produced, which can be helpful for eliminating variations related to 
camera/large object motions.The peaks which are persistent through several scales correspond 
to large variations in terms of video content and can be exploited to detect the transitions 
[Ţapu10].  

 
Figure 2.23. The set of scale space derivatives. 

 
In order to detect such peaks, a non-linear filtering is first applied to the multi-scale 
representation. More precisely, the following filtered signal is constructed: 

{ } { })()()(max)()(max)( ' khknvnvkhnvnd
kkk

⋅−−=⋅=                      (2.75) 

where the weights h(k) are defined as:  
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The shot detection process is applied on the )(nd  signal thus obtained. The weighting 
mechanism adopted privileges derivative signals located at the extremities of the scale space 
analysis. In this way, solely peaks that are persistent through all the considered scales are 
retained.  
 
The proposed process also helps to eliminate variations related to large object/camera 
motions, while preserving the peaks corresponding to the true transitions [Ţapu10], as 
illustrated in Figures 2.24 and 2.25. 
 

 
Figure 2.24. A false alarm due to camera motion is avoided when using the 

scale-space filtering approach. 
 

 
Figure 2.25. False alarms due to large object motion are avoided when using 

the scale-space filtering approach.  
 
Let us note that a progressive transition can be considered as a transition whose effects have 
been spread on multiple frames. This behavior makes it possible to detect both types of 
transitions (abrupt and gradual) in a relatively similar way.   
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Here, false alarms appear when thresholding the initial local minimum vector 𝑣𝑣(𝑛𝑛). When 
considering the scale-space filtered signal d(n), this false alarms are avoided since the related 
variations are considerably reduced.  
 
In the second phase of our video structuring and segmentation framework, we focused on the 
computational complexity aspects involved. 
 

2.3.3.   Two-pass approach 
 
The most time consuming stage in the shot detection process concerns the construction of the 
local minimum vector 𝑣𝑣(𝑛𝑛) , which involves the computation of the optimal cut (cf. 
Equation (2.64)).  
 
Determining the similarity matrix requires a large amount of resources (because with each 
step a number of N-2 partitions are computed).  
 
In order to reduce the computational complexity, we have considered a new technique based 
on a two-step analysis process. The principle consists of identifying so-called “certain” 
transitions in a first stage, while applying the graph partition method uniquely on uncertain 
time intervals (Figure 2.26). 

 
Figure 2.26. Classification of video in certain/uncertain segments. 

 
Step1: In a first stage, the algorithm detects video segments that can be reliable considered as 
belonging to the same shot. Here, a simple (and fast) chi-square comparison of HSV color 
histograms associated to each pair of consecutive frames is performed, instead of applying the 
graph partition model. In the same time, abrupt transitions are here detected. 

𝐷𝐷(𝐼𝐼𝑡𝑡 , 𝐼𝐼𝑡𝑡−1) = �
(𝐻𝐻𝑘𝑘𝑡𝑡 − 𝐻𝐻𝑘𝑘𝑡𝑡−1)2

𝐻𝐻𝑘𝑘𝑡𝑡 + 𝐻𝐻𝑘𝑘𝑡𝑡−1
𝑘𝑘

                                         (2.77) 

Concerning the threshold used in the first stage we have considered a value of 𝑇𝑇𝑔𝑔1 = 0.9 for 
detecting a subset of transitions, considered as certain. The selected value is high enough to 
avoid the introduction of false positives. Also in this stage we have considered a second 
threshold, set to 𝑇𝑇𝑔𝑔2 = 0.35, in order to determine uncertain time intervals. If the dissimilarity 
values between a number of successive frames are above the second threshold �𝐷𝐷(𝐼𝐼𝑡𝑡 , 𝐼𝐼𝑡𝑡−1) >
𝑇𝑇𝑔𝑔1 ), and also inferior to 𝑇𝑇𝑔𝑔1a more detailed analysis is required and the method passes to the 
second step. All frames with chi-square distances between HSV histograms of successive 
images lower than 𝑇𝑇𝑔𝑔2  are considered to belong to the same shots. 
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Step 2: In the second stage, we consider the scale space filtering method described in 
Sections 2.3.1 and 2.3.2, but applied uniquely to the remaining uncertain video segments. The 
complex shot boundary detection methods receives as input only specific fragments of the 
original movie for which the first detector cannot distinguish between camera/object motion, 
abrupt changes in the light intensity… This second step makes it possible to identify the 
transition type (whether is abrupt or gradual) and has almost constant detection rates not being 
influenced by the movie genre, production stile and age conditions, as demonstrated in the 
following section. 

 
2.3.4.   Experimental evaluation of the shot boundary detection system 

 
In order to evaluate the proposed algorithm, we have considered a sub-set of videos from the 
“TRECVID 2001 and 2002 campaigns, which are freely available on Internet 
(www.archive.org and www.open-video.org). The video corpus includes 8 documents (NASA 
25th Anniversary Show: Segment 05, Segment 07 and Segment 08 from TRECVID 2001 and 
Wrestling with Uncertainty, Exotic Terrane, Adelante Cubanos (Part I), Desert Venture 
(Part I), The Egg and US) totalizing 122.36 minutes and 1183 shots.  
 
Some videos in the considered corpus are illustrated in Figure 2.27.  

 
Figure 2.27. Video corpus. 

 
The videos are mostly documentaries that vary in style and date of production, while 
including various types of both camera and object motion. For all the films in the database, a 
ground truth has been established by manually segmenting the video data. Their 
corresponding characteristics are summarized in Table 2.1. 
 
As evaluation metrics, we have considered the traditional Recall (R), Precision (P) and F1 
norm (F1) measures, defined in Section 2.2.4.   
 
We have compared the proposed approach with the method of [Yuan07], which is considered 
as state of the art and which is also based on a graph partition approach. Let us underline that 
the Yuan’s method also exploits a trained classifier that uses the support vector machine 
(SVM) to detect transitions. In our case, no learning process is achieved.  
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Table 2.1. Evaluation corpus features. 

Video 
title 

Number of 
frames 

Number of 
transition 

Abrupt 
transition 

Gradual transition 
File name Fade in / 

out Dissolve Other 
type 

NAD 55 26104 185 107 21 57 - NASA 
Anniversary 

NAD 57 10006 73 45 6 22 - NASA 
Anniversary 

NAD 58 13678 85 40 7 38 - NASA 
Anniversary 

UGS09 23918 213 44 25 144 - Wrestling 
Uncertainty 

UGS01 32072 180 86 6 88 - Exotic Terrane 

23585a 14797 153 80 2 71 - Adelante 
Cubanos 

10558a 19981 141 79 20 42 1 Desert Venture 
06011 23918 153 81 26 46 - The Egg & US 

TOTAL 164474 1183 562 113 508 1  
 
Table 2.2 summarizes the results obtained for shot boundary detection when considering the 
Yuan et al. approach, while Table 2.3 presents the detection performances obtained for the 
proposed scale-space filtering approach.  
 
The various parameters involved are the following N = 25 frames and threshold gT  = 0.7 for 

all videos. 
 
Note: In the case of abrupt transitions detection we considered a tolerance of 10 frames (in 
both directions) from the actual position of a cut, while for gradual transitions the deviations 
from the actual location was set at 25 frames.  
 
The results presented in Table 2.2 and 2.3 can be further processed in order to compute the 
precision, recall and F1 norm rates. These measures allow us to make a complete evaluation 
of the proposed method against other techniques, existent in the technical literature. The 
obtained scores after applying both methods are given in Table 2.4 and 2.5. 
 

Table 2.2. Yuan et al. algorithm’s performance evaluation. 

Video 
title 

Number of 
transitions 

Abrupt transitions Gradual 
Transitions Total 

FA Total Detected MD FA Total Detected MD FA 
NAD 55 185 107 103 4 22 78 68 10 24 46 
NAD 57 72 45 39 6 6 28 22 6 5 11 
NAD 58 85 40 38 2 7 45 35 10 18 25 
UGS09 203 44 43 1 8 169 137 32 40 48 
UGS01 180 86 78 8 14 94 79 15 26 40 
23585a 153 80 60 20 5 73 58 15 2 7 
10558a 141 79 68 11 10 62 48 14 4 14 
06011 153 81 74 7 8 72 60 12 23 31 

TOTAL 1173 562 503 59 80 621 507 116 142 222 
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Table 2.3. The novel graph partition based on scale space derivative algorithm performance. 

Video 
title 

Number of 
transitions 

Abrupt transitions Gradual 
Transitions Total 

FA Total Detected MD FA Total Detected MD FA 
NAD 55 185 107 107 0 9 78 73 5 18 27 
NAD 57 72 45 43 2 2 28 24 4 3 5 
NAD 58 85 40 38 2 4 45 43 2 10 14 
UGS09 203 44 44 0 4 169 159 10 14 18 
UGS01 180 86 84 2 11 94 93 1 15 26 
23585a 153 80 75 5 4 73 67 6 1 5 
10558a 141 79 76 3 9 62 60 2 10 19 
06011 153 81 76 5 6 72 68 4 10 16 

TOTAL 1173 562 543 19 49 621 587 34 81 130 
 

Table 2.4. Recall, precision and F1 norm for Yuan et al. algorithm. 
Video 
title 

Abrupt transitions Gradual Transitions All transitions 
R P F1 R P F1 R P F1 

NAD 55 0.9626 0.824 0.8879 0.8717 0.7391 0.7999 0.9243 0.788 0.8507 
NAD 57 0.8666 0.8666 0.8666 0.7857 0.8148 0.7999 0.8472 0.8472 0.8472 
NAD 58 0.95 0.8444 0.8940 0.7777 0.6603 0.7142 0.8588 0.7448 0.7977 
UGS09 0.9727 0.8431 0.9032 0.8106 0.7740 0.7918 0.8866 0.7894 0.8351 
UGS01 0.9069 0.8472 0.8760 0.8404 0.7523 0.7939 0.8722 0.8579 0.8649 
23585a 0.75 0.923 0.8275 0.7945 0.9666 0.8721 0.7712 0.944 0.8488 
10558a 0.8607 0.8717 0.8661 0.7741 0.923 0.8420 0.8226 0.8923 0.8560 
06011 0.9135 0.9024 0.9079 0.8333 0.7228 0.7741 0.8756 0.8121 0.8426 

TOTAL 0.8950 0.8627 0.8785 0.8164 0.7812 0.7984 0.8610 0.8198 0.8398 
 

Table 2.5. Recall, precision and F1 norm for the proposed algorithm. 
Video 
title 

Abrupt transitions Gradual Transitions All transitions 
R P F1 R P F1 R P F1 

NAD 55 1 0.922 0.9594 0.935 0.802 0.8634 0.972 0.869 0.9176 
NAD 57 0.955 0.955 0.955 0.857 0.888 0.8722 0.917 0.931 0.9239 
NAD 58 0.95 0.904 0.9264 0.955 0.811 0.8771 0.952 0.852 0.8992 
UGS09 1 0.916 0.9561 0.941 0.919 0.9298 0.953 0.918 0.9351 
UGS01 0.976 0.884 0.9277 0.989 0.861 0.9205 0.983 0.871 0.9236 
23585a 0.937 0.949 0.9429 0.917 0.985 0.9497 0.928 0.965 0.9461 
10558a 0.962 0.894 0.9267 0.967 0.857 0.9086 0.964 0.877 0.9184 
06011 0.938 0.926 0.9319 0.944 0.871 0.9060 0.941 0.904 0.92212 

TOTAL 0.9661 0.917 0.9409 0.945 0.877 0.9097 0.955 0.896 0.9245 
 
The results clearly demonstrate the superiority of our approach, for both abrupt and gradual 
transitions, with global gains in terms of recall and precision rates of 9.4% and 7.7%, 
respectively (Figure 2.28). These gains are even more important in the case of gradual 
transitions with recall and precision rates of 94,5% and 87,7%, respectively (with respect to 
R = 81.6% and P =  78,1% for the reference method [Yuan07]) (Figure 2.29).  
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Let us also note that such scores are approaching the performances obtained for the detection 
of abrupt transitions (R = 96.6% and P = 91.7%), which is quite a remarkable result 
(Figure 2.30). 
 

 
Figure 2.28. Recall, Precision and F1 norm rates when detecting all types of transitions for: 

(a) Yuan et al. algorithm, (b) The proposed scale space derivative technique. 
 

 
Figure 2.29. Recall, Precision and F1 norm rates when detecting gradual transitions for: 

(a) Yuan et al. algorithm, (b) The proposed scale space derivative technique. 
 

 
Figure 2.30. Recall, Precision and F1 norm rates when detecting abrupt transitions for: 

(a) Yuan et al. algorithm, (b) The novel scale space derivative technique. 
 
In order to determine the computational complexity and the improvement brought by the 
proposed two-pass approach, we have also evaluated the processing time required. Table 2.6 
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and Figure 2.31 present the obtained detection times1

 

 and its variation in both cases: when 
applying graph partition for the entire video stream and only for uncertain time intervals. 
The results demonstrate the improvement due to our approach with respect to the state of the 
art algorithm, with savings greater than 25% in computational time. The detection 
performances are equivalent in both situations, so the two-pass approach does not influence 
the quality of the shot boundary detection system. 
 

Figure 2.31. Shot boundary detection time when using the two-pass approach. 
 

Table 2.6. Computation time and gain for scale space filtering graph partition method 
and two-pass approach. 

Video 
title 

Video duration 
Time (s) 

Two-pass approach 
Time (s) 

Graph partition 
method 
Time (s) 

Gain (%) 

NAD55 871 153 221 30.7 
NAD57 417 72 107 32.7 
NAD58 455 102 141 27.5 
UGS09 1768 355 457 22.3 
UGS01 1337 292 399 26.8 
23585a 615 125 155 19.3 
10558a 833 169 225 25.3 
06011 997 168 215 21.8 

TOTAL 7293 1436 1920 25.2 
  
 

2.4.   CONCLUSIONS AND PERSPECTIVES 
 
In this chapter, we have considered the issue of shot boundary detection. First, we have 
presented an overview of the scientific literature dedicated to the subject, and the main 
families of methods proposed over the last two decades, including intensity-based approaches, 
histogram representations, compressed domain techniques, edge/contour-based methods, 
motion-based approaches and graph-based techniques. The analysis of the state of the art 
highlighted the following conclusions:  
                                                            
1 The algorithms were run on a Pentium IV machine with 3.4 GHz and 2 Go RAM, under a Windows 
XP SP3 platform.  
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  1. Methods based on the absolute difference of pixels colors/intensities are highly 
sensitive to noise and camera/object motion. 
  2. Color histogram-based approaches offer an interesting and useful approach, due to 
histogram invariance to information spatial distribution and insensitivity to low motion. 
 3. Techniques based on edges/contours have slightly inferior performances compared 
to histogram-based methods. In addition, they suffer from a higher computational complexity. 
However, such edge features are highly useful for removing false alarms caused by abrupt 
illumination changes.  
 4. Motion-based approaches can take advantage of features available in the MPEG 
compressed domain (e.g., motion vectors associated to MPEG macro-blocks). However, such 
motion information is mostly related to motion compensation purposes and thus remains 
unreliable for shot detection objectives.  
 
Whatever the visual features involved, graph-based representations proved recently their 
superiority in terms of detection performances when compares to frame-to-frame comparison 
techniques.  
 
By considering the general graph-based representation and detection framework proposed in 
[Yuan07], we have proposed a novel technique, based on a scale-space analysis of a 
dissimilarity vector computed with the help of HSV color histograms. The key stage of our 
algorithm concerns the non-linear scale space filtering of the derivatives of the similarity 
vector associated to the graph partition model. Notable, this mechanism makes it possible to 
enhance the robustness of the detector with respect to camera/large object motion. The 
filtering stage makes it possible to eliminate the signal variations cased by motions, while 
preserving the peaks corresponding to the real transitions.  
 
Moreover, we have proposed a two-pass analysis approach, in order to reduce the associated 
computational complexity. In a first step, the algorithm detects time intervals which can be 
reliably considered as belonging to the same shots. Abrupt transitions considered as certain 
are also detected in this stage. In a second step, the analysis is further performed only for 
uncertain time intervals.  
 
The experimental results, carried out on a data set of publicly available video sequences of 
various types and including both abrupt and gradual transitions demonstrate the superiority of 
the proposed approach with respect to the state of the art method of [Yuan07], with average 
gains in precision and recall rates of 8%, for 25% savings in computational time. 
 
In our future work, we will consider the integration in our approach other visual 
representations, including edge and motion features. An adaptive thresholding technique can 
also be considered in this framework in order to further enhance the detection performances. 
Finally, the object detection/identification issues (cf. Chapter 5), can also be taken into 
account within a more general framework.   
 



 

 

 
 
 
 
 
 
 

3.   AUTOMATIC VIDEO ABSTRACTION 
 
 
 
Summary: In this chapter, we consider the issue of video abstraction/summarization which 
aims at providing a concise representation of a video document, based on a set of 
representative key-frames. First, we analyze the state of the art, focusing on the main 
advantages and limitations of each technique. Then, we introduce a novel method to construct 
static storyboards, which extracts, for each detected shot, a variable number of keyframes 
depending on the visual content variation. In order to reduce the computational time, the 
analysis is performed only on a reduce number of frames by taking advantage of the shot 
boundary detection algorithm presented in Chapter 2, which computes graph partition within a 
moving window. The leap keyframe extraction method leads to a gain of 23.2% in overall 
extraction efficiency. An additional post-processing step, based on SIFT interest points is 
introduced, in order to remove irrelevant images from the selected set of keyframes. 
 
Keywords: Video abstraction, static storyboard; visual content variation, keyframe 
extraction, blank or test card frames removal. 
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Video abstraction techniques aim at eliminating the inherent redundancy present in video 
documents, in order to provide a compact, comprehensive and illustrated summary of the 
considered video sequence. Such a summary consists of a shorter representation of the 
original sequence and should include the most relevant segments in order to enable a fast 
browsing and retrieval of the original content. 
 
The keyframe-based representation is highly useful for video indexing and browsing 
objectives. Thus, the selected representative images offer to the end user guidance to locate 
specific video segments of interest. In the same time, the keyframes are the most suitable in 
representing the entire content of an image sequence, so the visual features encountered here 
can constitute the basis of any video indexing application.   
 
Video abstraction techniques provide concise information, with still or moving images, about 
the video content while conserving the original message [Pfeiffer96]. Elaborating automatic 
or semi-automatic methods able to capture in a semantically pertinent manner the video 
content and requiring a minimal amount of human intervention is still today a challenging 
issue of research.  
 
Two different types of summaries can be developed in order to characterize image sequences: 
static video summary and video skimming (Figure 3.1) [Li01].  

 
Figure 3.1. Video abstraction: types of summaries. 

 
Static video summaries, also known as still abstracts or storyboards, are defined as a set of 
representative images (keyframes) selected from the original movie. On the other hand, video 
skimming, also called moving abstract, is a collection of short video sequences incorporating 
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several audio-visual cues for presenting the user with a condensed and succinct representation 
of the video content. They can be further categorized into highlights and summary sequences. 
A movie highlight includes only the most interesting parts of a film while the summary 
sequence attempts to condense all the semantically meaningful parts in a shorter version with 
respect to the temporal order. 
 
Whatever the type of video summary considered, two different parameters need to be taken 
into account: the selection of relevant keyframes/shots, and their corresponding layout. The 
first parameter is a global characteristic given by the representative power of the selected 
features, while the second is related to the data layout in both spatial and temporal domains. 
 
In our work, we have considered solely the video summarization techniques, based on static 
story-boards. The various keyframe detection methods proposed in the state of the are 
described in the following section.  
 
 

3.1.   DEVELOPING VIDEO SUMMARIES 
 

A video summary is defined as a set of salient images (keyframes) selected or reconstructed 
from an original video sequence. The selection of such salient images from all the frames of 
an original video is in this case essential for guaranteeing the representative power of the 
resulted video summary. 
 
In a more formal manner, a static summary ( summarySt ) of a video sequence S  is defined as: 

   { }Nsummary frameframeframeSSt ,...,,)( 21=                                  (3.1) 

where iframe  represent the ith extracted keyframe, with Ni ,...,1= while N gives the total 

number of representative images included in the storyboard. Parameter N directly influences 
the quality of the resulting storyboard. 
 
An important issue to be solved concerns the value of parameter N. A first approach consists 
of imposing a priori the number of considered key-frames. However, it is difficult to imagine 
that a single value can be adapted and useful for all types of videos encountered in practice. 
So, ideally, video summarization techniques should be able to adaptively determine 
appropriate values of parameter N.  
 
Video summarization techniques based on a keyframe extraction principle can be divided into 
four categories [Li01]: sampling-based, shot-based, and segment-based approaches. They are 
described in the following sub-sections.  
 

3.1.1.   Sampling – based key-frame extraction 
 
The simplest method for keyframe generation consists of uniformly sampling the video 
sequences, [Taniguchi95], [Mills92]. Such an approach offers the advantage of simplicity and 
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the associated computational complexity is almost negligible. However, their major drawback 
is related to the reduced representative power of such a representation which does not take 
into account the video stream structure and dynamics.  
 
In this case, short yet important segments may not have any representative frames, while 
longer segments, with redundant informational content, can represented by multiple 
keyframes.  
 
A second type of approach notably aims to capture the video structure and is related to the 
shot structure of the video document.  
  

3.1.2.   Shot-based keyframe extraction 
 

One of the first attempts to automate the keyframe extraction process is to consider first a shot 
detection technique. Then, a keyframe is selected and defined as the first, middle, random or 
last frame appearing in each detected shot (Figure 3.2) [Shahraray95]. 
 

 
Figure 3.2. Example of a static summary for a shot with large object motion. 

 
Such a strategy provides satisfactory results for stationary shots, where the video content 
variation is relatively low. However, a single frame does not provide an acceptable 
representation for highly dynamic shots. In such cases, it is necessary to elaborate methods 
that are able to extract significant information based on the visual content variation along the 
video flow [Hanjalic99]. 
 
In [Hanjalic99], different keyframe extraction strategies are compared. An interesting 
observation is here highlighted: the strategy of selecting keyframes without any information 
about the content provides satisfactory results for a quasi-constant shot, while for more 
complex content the frame situated in the middle of the considered shot is more pertinent to 
offer a significant preview of the global action. Such an observation is consistent with the 
definition of a shot (cf. Chapter 2). The direct implication is that in the case of highly dynamic 
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shots, where the visual homogeneity principle is violated (in the sense of associated visual 
characteristics), more advanced keyframe extraction techniques should be considered.  
 
This shows the necessity of adapting to the underlying semantic content, maintaining as much 
as possible the dynamic nature of the video content while removing all redundant information. 
In theory, semantic primitives of videos, such as interesting objects, actions and events should 
be used. However, because a general semantic analysis is a highly difficult task, notably when 
no information from soundtracks and/or close caption is available, the sole alternative is to 
rely on low-level image features, such as: color, motion, hybrid…. Such approaches are 
described in the following sections.  
 

3.1.2.1. Color based selection  
 
Methods based on color information select representative keyframes considering the statistic 
analysis of pixel intensity or the color histogram variation over a shot.  
 
One of the first methods proposed in the literature is described in [Yeung95]. Here, each shot 
is represented by an image set that can effectively capture temporal variations caused by 
camera operations or object motions. The approach starts from the following hypothesis: for 
image sequences with little or no significant variation in time, one representative frame (e.g. 
the first image) is sufficient to capture all the informational content. For long shots or shots 
with important variations, a variable number of images is considered. 
 
Selecting a keyframe set that captures all information from a shot is achieved by a nonlinear 
temporal sampling, which measures the dissimilarity (based on the luminance projections) 
between the last frame selected as important and all the other remaining frames. A new image 
is marked as representative if it presents a considerable visual variation.  
 
A major limitation of the technique is related to the high probability that the selected frame 
belongs to a transitional effect. Clustering algorithms (Figure 3.3) offer a natural solution to 
solve such problems.  
 
One of the first methods proposing an unsupervised clustering based approach to select 
representative frames is introduced in [Zhuang98]. The N frames of a shot determined after a 
temporal segmentation algorithm are clustered into M classes using an agglomerative 
clustering technique. For each couple of frames the similarity of their visual content is 
measured with the help of color histograms, computed in the HSV color space. A cluster 
density measure (and representing the minimum number of objects within a given radius) is 
also computed. 
 
All clustering algorithms have a weakness related to the threshold parameter (denoted by τ) 
which controls the cluster density. For a higher value of parameter 𝜏𝜏, the number of elements 
included in a same class can become extremely large.  
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Figure 3.3. Keyframe selection based on clustering techniques. 

 
The method presented in [Gunsel98] integrates the shot boundary detection and keyframe 
selection tasks in one single step by using a 2D feature vector, expressing the color variation 
in the YUV color space. The YUV color representation is here adopted due to its consistency 
and applicability in both compressed and uncompressed domain.  
 
The first component of the feature vector is obtained with the help of a color histogram 
comparison and is determined for each pair of successive frames t and t+1, as described in the 
following equation:    
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i represent the color histogram for Y, U and V components and 

N is the number of histogram bins.  
 
The second component of the feature vector is computed as the difference between the current 
frame histogram and the mean histogram of all previous ones in the current shot:    
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Finally, two thresholds are used, a first one in order to determine the shot boundaries, based 
on Equation (3.2), and the second one dedicated to the keyframe selection process 
(Equation (3.3)). The multi-threshold technique makes it possible to overcome the problems 
related to gradual shot transitions.  
 
An enhanced method of selecting representative frames with an improved computational 
efficiency is described in [Girgensohn99]. The approach is based on the observation that 
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clustering methods are computational expensive. In order to reduce the complexity, the 
algorithm starts by considering only keyframes that are very dissimilar to each other (with 
respect to a visual criterion). To reduce the influence of noise caused by any type of video 

motion a chi-square ( 2χ ) histogram difference is considered. 
 
The histogram representation is performed in the YUV color space with 8 bins for luminance 
and 4 bins for each chrominance, for a total of 128 bins. The problem of selecting an optimum 
threshold to establish the cluster density is here avoided by adopting a complete link method, 
which consists of setting the maximum difference between two frames in different clusters as 
threshold of the hierarchical agglomerative clustering technique considered.  
 
Recent trends in keyframe extraction methods consider spatio-temporal color distributions in 
order to determine representative images. The approach described in [Sun08] starts by 
constructing a so-called temporally maximum occurrence frame (TMOF) by observing the 
distribution of the pixel value in the same position through frame pairs within a shot. First, the 
method computes the color histogram 𝐻𝐻𝑖𝑖 ,𝑗𝑗 (𝑏𝑏)  with pixel values from the same position 
through the frames in the shot. Second, a Gaussian filtering operation is applied on the 
histogram. Finally, for each filtered signal authors search for a peak value that will be 
considered as reference.  
 
From the distribution of the pixel value in the same position throughout the frames, a content 
descriptive frame is constructed, considered as the reference frame for the shot. In the TMOF 
frame each pixel position stores the representative color information that lasts for the longest 
duration. By comparing the distance between each frame in the shot with TMOF, they obtain 
the distribution of the features that describes the shot content. The keyframes correspond to 
the peaks in the distance sequence.  
 
Existing algorithms exploit the property of histogram invariance to relatively low 
camera/object motion. However, in the case of large amplitude camera/object motion, this 
property does not hold anymore. In addition, the various thresholding parameters involved 
need to be manually adjusted.  
 
In order to overcome such limitations, a second family of methods exploits motion analysis of 
the considered video.  
 

3.1.2.2. Motion-based approaches 
 
One of the first methods encountered in the technical literature is presented in [Wolf96]. For 
each frame, the global motion amplitude is associated to, by summing the amplitude of all 
motion vectors determined with the help of an optical flow algorithm.   
 
The local minima of the global motion amplitude signal over time are selected as keyframes. 
This process is illustrated in Figure 3.4. 
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Figure 3.4. Motion amplitude variation over time. 

 
A similar principle is adopted in [Dirfaux00], where shot boundary detection and keyframe 
extraction are simultaneously performed. Here again, the selected keyframes correspond to 
frames with low motion activity, in order to avoid blurring or excessive coding artifacts.  
 
An algorithm that attributes semantic meaningful representations of shots is described in 
[Luo09]. The number of representative images selected from a video depends on various 
factors including camera motion, scene content, image quality and interaction between 
objects. A psycho-visual experiment is proposed, in order to determine common criteria used 
by humans when selecting keyframes.  
 
In [Liu03], motion patterns are used to characterize the content variation in videos. For each 
rapid modification of the informational content, a specific motion pattern is created. The 
motion characterization is performed with the help of a so-called perceived motion energy 
(PME), which takes into account the percentage of dominant motion direction and the motion 
magnitude. Such a parameter can be determined with the help of the motion vectors included 
in MPEG streams. By considering an acceleration/deceleration model, The PME makes it 
possible to segment shots into sub-shots. For each sub-shot, a keyframe, corresponding to the 
maximum/minimum instance in the acceleration / deceleration process is associated to.  
 
The approach described in [Guironnet07] introduces a keyframe extraction method dedicated 
to video shots presenting continuous and homogeneous camera motion. Authors suggest that 
for dynamic shots the selection of the first, last and median images, is sufficient to completely 
describe the analyzed segments. For relatively static shots, they claim that the first and the last 
frame are sufficient to completely capture all the informational content. The camera motion 
magnitude is also considered in this framework.  
 
In [Fauvet04], a set of geometric criteria are applied for selecting representative keyframes. 
The analysis starts with a temporal segmentation of the input video flow. Next, all frames 
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within a shot are projected onto the same coordinate system by using the 2D affine motion 
parameters. This makes it possible to determine the amount of content corresponding to 
entering, shared, and lost areas (Figure 3.5). 
 

 
Figure 3.5. Three scene information parts. 

 
The number of selected keyframes is here set manually by the user.  
 
The motion-based approaches are useful to extract representative images for shot with 
important variation of the visual content. However, such techniques suffer from various 
limitations, in particular in the case of gradual transitions or large object motions.  
 

3.1.2.3. Hybrid approaches 
 
Hybrid techniques combine various sources of information such as color, texture and motion, 
in order to obtain a reliable keyframe selector. 
 
Within this context, let us first mention the non-sequential video content representation 
algorithm proposed in [Doulamis00]. Here, a preliminary temporal segmentation is 
performed, in the compressed domain. The informational content of each frame is described 
with the help of global color and motion histograms. The keyframes are determined with the 
help of a multi-resolution approach based on Recursive Shortest Spanning Tree (RSST). 
Afterwards, a motion activity descriptor is considered, in order to characterize both camera 
and object movement. The motion activity is determined within each detected shot, based on a 
macro-block analysis. For keyframe extraction, a cluster-based method exploiting both color 
and motion features and relying on agglomerative clustering technique is proposed. 
 
In [Zhang99], a robust keyframe extraction technique is proposed. The approach is based on 
the information accumulated during a detection process. The algorithm starts by choosing the 
first frames located near a shot boundary as a representative one. Successive frames are then 
selected according to the following criteria: 

• Color based criteria - after the first keyframe is selected, the following frames in the 
shot are sequentially compared against the last detected keyframe, based on their 
similarities defined by color histogram or moments. If a significant content change 
occurs between the current frame and the last detected keyframe, the current frame is 
selected as a new keyframe.  
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• Motion based criteria – in order to select keyframes representing camera panning and 
zooming motion, the authors introduced two additional criteria. For a zooming 
sequence, at least two frames will be selected: the first and last frame since one will 
represent a global, while the other will represent a more focused view. For a panning-
like sequence, the number of frames to be selected will depends on the scale of 
panning. 
 

Authors point out the importance of considering the motion information in the keyframe 
extraction process. Thus, in the case of panning sequences, each keyframe should capture 
different parts of activity, in order to reveal the spatial context of the whole action with little 
overlap.  
 
A combined histogram and interest point-based keyframe extraction method is proposed in 
[Fu09]. A shot boundary detection method, based on color histogram comparison, is first 
considered. Histograms are here constructed in the RGB color space, with histogram 
intersection as dissimilarity measure. The interest points are extracted using the Harris point 
detector. The first frame of each video shot is selected as a benchmark, reference frame. 
 
In the second step, all the shot frames are compared with the reference keyframe one by one. 
If the dissimilarity between the first frame and the current frame k, given by a histogram 
intersection and the total number of matched keypoints, is greater than a pre-established 
threshold, the current frame is selected as keyframe and included in the representative image 
set. For all the following frames, the dissimilarity is computed based on the comparison of the 
current image with the most recent benchmark frame. The algorithm ensures a good 
representation of the video content with a variable number of keyframes for each analyzed 
sequence. However, the choice of the threshold is made on an empirical basis.  
 
Moreover, when selecting the first frame encountered after a shot boundary as a keyframe, as 
presented in [Zhang99] and [Fu09] a possible limitation is related to the possibility that such a 
frame belongs to a transitional effect, which makes it poorly representative. So, selecting the 
first frame is not an optimal solution.  
 
A universal content representation scheme for video information management is presented in 
[Ferman98]. The technique develops a quantitative description of each detected shot by using 
statistical features such as mean color and color histograms.  
 
The summarization scheme proposed in [Stefanidis00] selects keyframes based on object 
trajectory tracing and identification. In order to select representative images the object 
trajectory line is segmented with brake points called nodes. The nodes are distributed 
dynamically to capture the information content of regions in the 3D spatio-temporal (x,y,t). 
More nodes are assigned where trajectory presents breakpoints (e.g., moving at fixed velocity) 
and fewer nodes are assigned to segments where the spatiotemporal behavior of an object is 
smooth. The number of nodes is dynamically distributed along the trajectory, using elements 
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from self organizing maps (SOM) or clustering approaches (K-means), in order to capture the 
variation of the informational content.  
 
The keyframe extraction method described in [Kelm09] is focused on selecting representative 
images from amateur movies stored on video websites. Unprofessional films are quite hard to 
deal with because of their unstructured character and low quality. The shot boundaries are 
first determined with the help of HSV color histogram comparisons. Each shot is further 
divided into sub-shots in order to detect the content variation introduced by camera or object 
motion. A motion intensity vector is here defined, with the help of the motion vectors 
included in the MPEG compressed stream. The local minima of the motion intensity signals 
are identified and the corresponding frames are considered as keyframes. In addition, a face 
(using Haar classifier) and a text detector are used in order to increase the representative 
power of the keyframe representation. 
 
A complex algorithm to extract keyframes from already segmented videos is proposed in 
[Ciocca05]. Here, multiple visual descriptors (color histogram, edge histogram and wavelet 
statistics) are exploited in order to capture the changes and complexity of the visual content. 
The keyframe selection algorithm is applied on a curve of cumulative frame differences 
computed based on feature variation over the entire shot. Sharp slopes indicate complex shots 
with consistent motion or dynamic events. The selected keyframes correspond to the mid 
points between each pair of consecutive curvature peaks.  
 
One limitation of such approaches is related to the number of representative frames obtained, 
which may be considerably high in the case of long video documents (e.g., more than an 
hour). In order to deal with such an issue, various methods exploit a higher structural level 
(called segment) for the analysis. The segment can be identified as a scene, but also the entire 
input video stream can be considered for abstracting.  
 

3.1.3.   Keyframe extraction on segment level 
 
One of the first approaches in this area of is introduced in [Fauvet04]. The video is first 
divided into video segments of fixed length L. The resulting segments are classified into two 
classes, so-called small-change and the large-change clusters, corresponding to the motion 
activity present in the considered segment. For the small change clusters the first and the last 
frame are selected as representative frames, while for the large-change clusters all the frames 
are retained. If the number of the resulted frames is not the desired one, the procedure 
dynamically regroups (using a K-means clustering technique) the set of retained images, and 
the procedure is re-iterated. The algorithm converges when the desired number of keyframes 
is obtained.  
 
In [Sun00], authors aim at generating a static storyboard that optimally covers all the video 
content, with the help of a Singular Value Decomposition (SVD) analysis. The input video is 
first sampled at a rate of 3 frames per seconds (fps). For each selected frame, a color 
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histogram in the RGB color space is computed. In order to incorporate spatial information 
each frame is further dived in 3 x 3 non-overlapping blocks to which a color histogram is 
associated with. The extracted features are used in order to construct a similarity matrix A to 
which the SVD is applied. 
 
The SVD makes it possible to determine both static and dynamic video segments. The 
considered frames are grouped using a clustering algorithm based on similar features, while 
the cluster centroid is selected as keyframe. 
 
The method assures a minimum informational redundancy for the summary, as well as the 
possibility for the user to specify the number of frames contained in the still abstract. One 
potential problem is given by the lack of consistency regarding the temporal order of frames, 
which is lost in the grouping process. 
 
A multi-resolution keyframe extraction method is proposed in [Yu04]. Here, the KPCA 
(Kernel-based Principal Component Analysis) method is used in order to identify 
representative images. The KPCA is performed on a color histogram extracted from the DC 
image constructed in the compressed domain using the MPEG video stream. Finally, all 
frames are clustered with the help of a fuzzy c-means clustering technique that selects a 
predetermined number of classes. The cluster centroid represents the selected keyframe.  
 
Methods that extract keyframes from segments or even from the entire video sequence 
attempt to solve the problems encountered by shot based approaches by eliminating the 
temporal segmentation step and by selecting a reduced number of frames to characterize the 
visual content.  
 
 

3.2.   THE PROPOSED STATIC STORYBOARD TECHNIQUE    
 

In this section, a novel technique to develop static storyboards, with reduced computational 
complexity, and based on keyframe representation is proposed.  
 

3.2.1.   Leap extraction algorithm 
 
For each detected shot, a variable number of keyframes is determined. The number depends 
on the visual content variation. The first keyframe extracted is always situated near a shot 
boundary. We use here the shot boundary detection method introduced in Section 2.3. By 
definition, this frame is located at N (i.e., the window size used for the shot boundary 
detection - cf. Section 2.3.1) frames away after a detected transition, in order to make sure that 
the selected image does not belong to a gradual effect.  
 
However, for dynamic shots with relatively important amount of motion, only one frame is 
not sufficient to adequately represent the content of a video shot. In this case, multiple images 
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need to be selected, based on the visual variation, for a finer shot characterization 
(Figure 3.6).  

 
Figure 3.6. Keyframe selection in a dynamic shot with camera movement (pan left). 

 
In order to characterize dynamic shots that present various types of camera motion or large 
object displacement, we introduce a leap-extraction method that consider for analysis only the 
images located at integer multipliers of window size (Figure 3.7).  

 
Figure 3.7. Keyframe extraction based on the proposed technique. 

 
After selecting the first keyframe the algorithm starts computing the dissimilarity between the 
image being analyzed and the selected keyframe.  
 
In our case, we define the dissimilarity as a normalized cross correlation distance between 
color histograms represented in the HSV color space. The frames are normalized in order to 
avoid the variation of lighting and exposure conditions. 
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and N is the total number of bins in the histogram.  
 
If the distance ),( 1−tt IID  is superior to a given threshold gT  , the analyzed image is selected 

as keyframe and included in the shot storyboard. The process is repeated recursively with the 
observation that all the following frames are further compared with the entire set of keyframes 
already extracted. Based on the amount of visual content variation (expressed as normalized 
cross correlation distance in the HSV color space) a new frame is selected as representative 
image if its visual content differ significant (above a fixed threshold) from all other frames 
previously extracted. 
 
Let us note that the analysis is performed only upon a reduced number of frames, by taking 
advantage of the shot boundary detection algorithm. By computing the graph partition within 
a sliding window, the method ensures that all the relevant information will be taken into 
account. Let us also note that the number of detected keyframes set per shot is not fixed a 
priori, but automatically adapted to the content of each shot.  
 

3.2.2.   Post-processing: useless frame detection and removal 
  

We consider an additional post-processing step, firstly described in [Chasanis08] that 
eliminates all the monochrome and color bar images from the selected set of keyframes 
assuring that the story board captures all informational content of the original movie without 
any irrelevant images, which influence directly the representative power of the summary. 
 
The static summary obtained may contain in its structure some useless frames such as 
monochrome images or color bars (Figure 3.8.a and 3.8.b). 
 

 
Figure 3.8. Useless keyframes: (a) monochrome; (b) color bars. 
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The method starts computing an edge histogram descriptor. The keyframe is divided in 4 x 4 
rectangular sub-images and the detected edges are classified into five categories: vertical, 
horizontal, 450 diagonal, 1350 diagonal and non-directional edges. A total number of 

80165 =×  histograms need to be computed in order to make correct classification of an edge 
orientation in a whole frame. 
 
In Figure 3.9 we present the edge histogram for a color bar (a) and for a normal frame (b). As 
it can be observed, a color bar frame has some distinctive features: the histogram bins only for 
horizontal and vertical direction have non-zero values and all the other bins corresponding to 
diagonal and non-directional edges are null. 
 

 
Figure 3.9. Edge direction for: (a) color bar; (b) normal frame. 

 
In this case it is straightforward to distinguish between an important keyframe and a useless 
image because a color bar or a monochrome frame return small differences (lower than a 
threshold) between the sum of all bins in the edge histogram descriptor and the sum 
corresponding only to the vertical and horizontal bins. 
 
 

3.3.   EXPERIMENTAL EVALUATION   
 

In our experiments, we have considered for evaluation a corpus of 12 videos (both sitcoms 
and Hollywood movies) commonly used in the technical literature [Rasheed05], [Zhang99]. 
The following extra videos in the database have been considered: Seinfeld (SF), Two and a 
half men (TM), Prison Break (PB), Ally McBeal (AM), Sex and the city (SC), Friends (FR) - 
sitcoms , The 5th element (5E), Ace-Ventura – The Pet Detective (AV), Lethal Weapon 4 
(LW), Terminator 2 – The Judgment Day (T2), The Mask (MK) and Home Alone 2 (HA2) – 
Hollywood movies.  
 
Table 3.1 presents the computational time necessary to extract representative frames for each 
detected shot, in both cases: when applying our leap-extraction strategy for selecting 
keyframes and the classical method of selection [Rasheed05], [Zhang99] based on direct 
comparison of all adjacent frames inside a shot. The detected representative frames for each 
shot are highly similar in both cases. 
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Table 3.1. Computation time and gain for classic and leap keyframe extraction strategy. 
 Video 

title 

Video 
duration Time 

(s) 

Leap-Extraction 
Method Time (s) 

Classical Extraction 
Time (s) Gain (%) 

Si
tc

om
s 

SF 1313 297 434 31.5 
TM 1200 344 509 33.4 
PB 2558 990 1260 21.5 
AM 2607 1209 1642 26.4 
SC 1779 824 1067 22.7 
FR 1506 309 371 17.1 

H
ol

ly
w

oo
d 

m
ov

ie
s 

5E 7277 3548 4581 22.5 
AV 5353 1982 2774 28.5 
LW 7333 3015 3985 24.3 
T2 8812 3589 4154 13.6 
MK 5820 2173 2987 27.2 
HA2 7200 3212 4215 23.8 

TOTAL 52758 21492 27979 23.2 
 
The results presented in above table demonstrate that the proposed approach makes it possible 
to significantly reduce the computational complexity for static storyboard development, for 
equivalent performances regarding the selected informational content. The leap keyframe 
extraction method leads to a gain of 23.2% in extraction efficiency (Figure 3.10). 
 

 
Figure 3.10. Static storyboard construction time. 

 

For each detected shot identified based on the technique presented in Section 2.3 we applied 
the leap extraction method. In Figure 3.11 and 3.12 we illustrated the set of representative 
images chosen for complex shots with important visual content variation (large object 
displacement and camera movement).  
 

 
Figure 3.11. Experimental results – shot boundary detection and keyframe. 
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In this case a large number of keyframes is required in order to capture all informational 
content. As it can be observed, the first segment is completely described by 3 images while 
the second one needs 6 keyframe. 
 

 
Figure 3.12. Experimental results – shot boundary detection and keyframe selection for complex shots 

characterized by important visual content variation and abrupt changes in the light intensity. 
 
 

3.4.   CONCLUSIONS AND PERSPECTIVES  
 
In this chapter, we have considered the issue of video summarization with static storyboards.  
The objective is to determine a set of salient images, so-called keyframes that are considered 
representative with respect to the informational content of a given video sequence.  
 
A review of state of the art summarization techniques has been first proposed. The rich 
literature dedicated to this research issue illustrates a great variety of approaches involving 
various visual features, including color, motion and hybrid techniques.  
 
Inspired from the method introduced in [Rasheed05], we proposed a fast static storyboard 
technique based on leap keyframe extraction algorithm. The method exploits the shot 
boundary technique proposed in Chapter 2 and is able to adaptively identify the required 
number of keyframes, based on a measure of content variation. In order to reduce the 
computation time, the analysis is performed only on a reduced number of frames while 
assuring that all the relevant information is kept. The leap keyframe extraction method leads 
to a gain of 23.2% in overall extraction efficiency. 
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4.   HIGH LEVEL TEMPORAL VIDEO SEGMENTATION 
 
 
 
Summary: In this chapter we tackle the issue of video scene/DVD chapter segmentation. 
First, we propose a review and analysis of the most salient methods existent in the technical 
literature. A scene can be interpreted as a group of video shots that are correlated according to 
the semantic interpretation of the content and needs to respect three continuity rules related to 
space, time and action. However, in some circumstances such constraints may not hold from a 
purely visual point of view, as in the case of scenes with large camera/object motion.  
 
In the second part of the chapter, we introduce a novel methodological framework for high 
level video temporal structuring and segmentation that extracts scenes/DVD chapters based 
on temporal constraints clustering, adaptive temporal lengths, neutralized shots and adaptive 
thresholding mechanism. The output of our method provides a structured video and facilitates 
the user access to different parts of the image sequence. In order to validate the proposed 
technique we have considered two types of low level visual features (i.e. the HSV color 
histogram and the interest points extracted using the SIFT descriptor). The experimental 
evaluation validates the proposed approach returning an average score for the F1 norm 
of 86%. 
 
Keywords: Scene segmentation, DVD-chapter extraction, temporal clustering, neutralized 
shots, adaptive thresholds. 
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A scene is defined in the Webster’s dictionary as follows: “a subdivision of an act or a play in 
which the setting is fixed, the time is continuous and the action is developed in one place”. 
This traditional definition of a scene can be further interpreted as a group of video shots that 
satisfy a certain homogeneity with respect to a semantic criterion. By definition, a scene needs 
to respect three continuity rules, corresponding to unitary space, time and action [Lowe04].  
 
However, from a purely visual analysis, in some circumstances such constraints may not hold, 
as in the case of scenes with large camera/object motion. Elaborating methods for pertinent 
and automatic scene identification is still today an open issue of research. 
 
When creating video summaries, the necessity of this phase is put into evidence by the 
increased number of shots that might appear in commercial movies (e.g. in “Terminator 2 – 
The Judgment Day” in 15 minutes of video there were identified 314 shots). In such cases, a 
static summary becomes extensively large and almost meaningless to any user. Moreover, a 
human watches a film by its semantic scenes and not by its structural elements as shots with 
the corresponding keyframes. In order to cover meaningful semantic parts of a movie the 
extracted shots need to be organized into scenes. So, in the area of video indexing 
applications, the process of scene identification/construction becomes a fundamental step. 
 
In real-life videos there are various circumstances when multiple events are simultaneously 
developed and sequentially revealed to the user. As a typical example, let us mention the case 
of a dialogue scene where two people are talking to each other. Even though both persons are 
involved in the same discussion, the video shots alternate, and the camera switches back and 
forth between them (Figure 4.1).  
 
In this case, the various shots involved do not have any continuity in space, which translates 
into different visual appearances. However, from a semantic point of view, the constituent 
shots are related and should be grouped into the same scene. 
 

 
Figure 4.1. Switch back and forth between successive shots belonging to same scene. 

  
Let us first review the main families of methods proposed in the literature. 
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4.1.   RELATED WORK 
 
 

As representative of scene-based identification techniques, let us first mention the graph-
based segmentation approaches.  
 

4.1.1.   Graph-based segmentation methods  
 

In a general manner, such methods use, as fundamental unit of a given video sequence, the 
shot. Scenes are then obtained by grouping together sets of shots, under both visual and 
temporal constraints. The graph representation can offer a compact structure of a video based 
on the temporal relation between their constituent shots. 
 
Within this context, let us first mention the approach proposed in [Yeung98]. Here, the 
dissimilarity between two different shots in the video is defined as:  

𝑑𝑑�𝑆𝑆𝑖𝑖 , 𝑆𝑆𝑗𝑗 � = min
𝑏𝑏𝑖𝑖≤𝑙𝑙≤𝑒𝑒𝑖𝑖 , 𝑏𝑏𝑗𝑗≤𝑙𝑙≤𝑒𝑒𝑗𝑗

𝐷𝐷(𝑓𝑓𝑙𝑙 , 𝑓𝑓𝑘𝑘)                                       (4.1) 

where 𝐷𝐷(. , . ) is the measure of dissimilarity between two images (frames), 𝑆𝑆𝑖𝑖  and 𝑆𝑆𝑗𝑗  are two 

video shots determined as their corresponding sets of frames: 𝑆𝑆𝑖𝑖 = {𝑓𝑓𝑘𝑘}𝑘𝑘=𝑏𝑏𝑖𝑖
𝑒𝑒𝑖𝑖 and 𝑆𝑆𝑗𝑗 = {𝑓𝑓𝑘𝑘}𝑘𝑘=𝑏𝑏𝑗𝑗

𝑒𝑒𝑗𝑗 . 

Equation (4.1) states that the two shots are considered as similar if they contain at least one 
pair of similar frames 𝑓𝑓𝑚𝑚 , 𝑓𝑓𝑛𝑛  with 𝑏𝑏𝑖𝑖 ≤ 𝑚𝑚 ≤ 𝑒𝑒𝑖𝑖 ;  𝑏𝑏𝑗𝑗 ≤ 𝑚𝑚 ≤ 𝑒𝑒𝑗𝑗 .  
 
Let us note that a temporal sub-sampling operation is also performed, in order to reduce the 
total number of frames associated with each shot.  
 
A scene transition graph (STG) is a oriented graph with 𝐺𝐺 = (𝑉𝑉,𝐸𝐸,𝐹𝐹), where 𝑉𝑉 = {𝑣𝑣𝑖𝑖} is the 
set of nodes, E is the set of edges and F is a mapping that partitions the set of shots {𝑆𝑆𝑖𝑖} into 
𝑣𝑣1, 𝑣𝑣2, … ,∈ 𝑉𝑉 such that the nodes are sufficient similar according to some dissimilarity metric 
(Equation (4.1)). In this context, each shot is considered as a node in the graph structure. A 
directed edge is created between two nodes (U and W) if there is a shot represented by node U 
that immediately precedes any shot represented by W. The relation between nodes is governed 
by the temporal ordering of the shots and the dissimilarity between the associated keyframes.  
 
Based on the graph concept a scene is defined as set of related shots in a particular setting. In 
the graph structure, each interaction is shown by the presence of an edge connecting the nodes 
containing the respective shots. 
 
In order to prevent grouping far apart, but also similar shots, a temporal constraint condition is 
imposed. Thus, within a scene transitional graph, each shot can be described as a node and the 
temporal relationship (𝑑𝑑𝑡𝑡(𝑆𝑆𝑖𝑖 , 𝑆𝑆𝑗𝑗 )) between two shots can be represented by the edges weights. 
The temporal distance between 𝑆𝑆𝑖𝑖  and 𝑆𝑆𝑗𝑗  is determined based on Equation (4.2): 
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𝑑𝑑𝑡𝑡�𝑆𝑆𝑖𝑖 , 𝑆𝑆𝑗𝑗 � = �min(�𝑏𝑏𝑗𝑗 − 𝑒𝑒𝑖𝑖�, �𝑏𝑏𝑖𝑖 − 𝑒𝑒𝑗𝑗 �) , 𝑖𝑖 ≠ 𝑗𝑗
0,                                           𝑖𝑖 = 𝑗𝑗 

�                           (4.2)  

The graph structure can be extracted automatically using the visual content and some 
temporal information, without any specific knowledge of the video content and structure. The 
nodes are clusters of visually similar shots and the edges indicate the temporal flow of the 
story. The scene segmentation is performed also by taking into consideration the temporal 
distance between shots. This means that for any two shots that are far apart in time, even if 
they share similar visual contents, they potentially represent different contents or occur at 
different scenes. Time-constrained clustering further imposes a time-window parameter T that 
prevents two shots that are far apart in time but similar to be clustered together. 
 
In order to detect the scene boundaries, the resulted graph is split into sub-graphs using the 
complete link method of hierarchical clustering [Jain88]. In this case, a sub-graph can be 
considered as a scene if the intersection between color histograms is above a fixed threshold. 
 
In [Rasheed05], the detection problem is formulated as an optimal partition of a graph. The 
nodes of the graph represent the various shots of the video. The weight of an edge (𝑊𝑊(𝑖𝑖, 𝑗𝑗)) is 
defined as proportional with the product between shot similarity and temporal proximity: 

𝑊𝑊(𝑖𝑖, 𝑗𝑗) = 𝑤𝑤(𝑖𝑖, 𝑗𝑗) × 𝑆𝑆ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜(𝑖𝑖, 𝑗𝑗)                                                 (4.3) 

where:  
• 𝑤𝑤(𝑖𝑖, 𝑗𝑗) = 𝑤𝑤(|𝑖𝑖 − 𝑗𝑗|)  is a decreasing function of the temporal distance between shots, 

defined as: 

𝑊𝑊(𝑖𝑖, 𝑗𝑗) = exp�−
1
𝑑𝑑
�
𝑚𝑚𝑖𝑖 − 𝑚𝑚𝑗𝑗

𝜎𝜎
�

2
�                                                  (4.4) 

where 𝑚𝑚𝑖𝑖  and 𝑚𝑚𝑗𝑗  are the middle frames from shots i and j respectively, 𝜎𝜎  is the standard 
deviation of a shot duration (with respect to the considered video) and d is a factor controlling 
the temporal decrease;  

•   𝑆𝑆ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜(𝑖𝑖, 𝑗𝑗) represents a global similarity between shots defined as: 

𝑆𝑆ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜(𝑖𝑖, 𝑗𝑗) = 𝛼𝛼 ∙ 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉(𝑖𝑖, 𝑗𝑗) + 𝛽𝛽 ∙ 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝑖𝑖, 𝑗𝑗)                     (4.5) 

where 𝛼𝛼  and 𝛽𝛽  are positive, real-valued weights respectively associated with the so-called 
visual similarity (𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉) and motion similarity (𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀). 
 
The visual similarity is defined between any pair of arbitrary shots i and j as the maximum 
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑥𝑥,𝑦𝑦) of all possible pairs of their key-frames.  

𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉(𝑖𝑖, 𝑗𝑗) = max
𝑝𝑝∈𝐾𝐾𝑖𝑖 ,𝑞𝑞∈𝐾𝐾𝑗𝑗  

�𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑝𝑝, 𝑞𝑞)�                                  (4.6) 

where 𝐾𝐾𝑖𝑖  and 𝐾𝐾𝑗𝑗  denote the set of keyframes belonging to shot i and j respectively, while 
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 is defined as the color similarity between two images:  

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑥𝑥,𝑦𝑦) = � �𝐻𝐻𝑥𝑥(ℎ),𝐻𝐻𝑦𝑦(ℎ)�
ℎ∈𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏

                                  (4.7) 
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where 𝐻𝐻𝑥𝑥  and 𝐻𝐻𝑦𝑦  are the HSV color histogram of frames x and y respectively and 
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑥𝑥,𝑦𝑦) ∈ [0,1].  
 
To each shot i, authors propose to associate a measure of the motion content (𝑀𝑀𝑀𝑀𝑀𝑀𝑖𝑖).  
 
Based on the motion content the motion similarity is defined as described in Equation (4.8). 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝑖𝑖; 𝑗𝑗) =
2 × min⁡(𝑀𝑀𝑀𝑀𝑀𝑀𝑖𝑖 ,𝑀𝑀𝑀𝑀𝑀𝑀𝑗𝑗 )

𝑀𝑀𝑀𝑀𝑀𝑀𝑖𝑖 + 𝑀𝑀𝑀𝑀𝑀𝑀𝑗𝑗
                                   (4.8) 

If two shots have similar motion content their MotSim will have a high value.  
 
Finally, the weighted unidirectional graph is partitioned with the help of the normalized graph 
cut measure (cf. Section 2.3) [Yuan07].  
 
In [Rasheed05], Rasheed et al. simply choose the decrease control factor d as a constant 
value.  
 
In [Zhao07], authors affirm that d is related to the number of shots N. When the shot number 
N is large/small, d should correspondently increase/decrease to avoid over-
segmentation/under-segmentation. They claim that the square root of parameter d should be 
proportional to the number of shots N. The temporal distance becomes then: 

𝑤𝑤(𝑖𝑖, 𝑗𝑗) = exp�−
�𝑚𝑚𝑖𝑖 − 𝑚𝑚𝑗𝑗 �

2

√𝑁𝑁 ∙ 𝜎𝜎2
�                                                (4.9) 

In addition, an extra measure called shot goodness (G(i)) that depends on the visual content 
variation within the shots included in the current scene is defined as:  

𝐺𝐺(𝑖𝑖) =  (∑ 𝑆𝑆ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜(𝑖𝑖, 𝑗𝑗)𝑗𝑗∈𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 )2 ∙ 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿ℎ(𝑖𝑖)                          (4.10)  

where 𝑆𝑆ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜(𝑖𝑖, 𝑗𝑗)is defined as in Equation (4.5). 
 
Here, two different types of scenes, so-called parallel and serial are introduced. A parallel 
scene includes at least one interacting event (PI) (e.g., dialog between two persons) or two or 
more serial events developed simultaneously (PS) (e.g., a men is going home on the road 
while the child is fighting with the thieves at home). A serial scene (SS) include neither 
interacting events nor serial events happening simultaneously (e.g., a man is driving a car 
from one city to a mountain). 
 
Figure 4.2 presents the temporal layout patterns of shots from different scenes. Each circle 
represents a shot and the same letter in different shots indicates similar shots. For parallel 
scenes with interacting events there are often two fixed cameras capturing two persons and 
the view points are switched alternative. For parallel scenes with simultaneous serial events 
the action switches between two actions developed simultaneously, with an impact one over 
the other. For serial scenes the camera setting keeps changing and the visual similarity for 
consecutive shots returns high values. 
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Figure 4.2. Semantic description of a video scene. 

 
A mosaic-based scene detection method is introduced in [Aner02]. Two principles are here 
used: shot clustering and repetitive event detection.  
 
The proposed analysis is based on identifying the shots with an important camera motion or 
large object displacement that can offer a large amount of informational content about the 
segments. Once these shots are determined their corresponding mosaics are chosen as 
representative mosaics (R-mosaics). Two shots are identified as developed in the same 
location if their corresponding R-mosaics are highly similar. The visual similarity between 
two mosaics is determined based on the rubber sheet matching method [Gozalez93] which 
takes into account the topological distortions among mosaics. 
 
A scene segmentation algorithm based on shot clustering is introduced in [Bouthemy99]. The 
structure is constructed in order to represent the similarity between frames with the help of a 
clustering procedure. In this case, the collection of shots is partitioned into nodes and directed 
edges are drawn between any two adjacent shots. The representation allows the analysis of a 
video through the graph properties. One important feature is a cut edge defined as an edge of 
an unidirectional graph that has the property that when it is removed, two disconnected graphs 
are formed. The graph definition also guarantees that there always exists a path from any 
given node to any other node. In this way, each connected sub-graph after the removal of the 
cut edges will represent a story unit.  
 
In order to reduce the computational time a temporal constraint is introduced. So, to compute 
the N(N-1) distances describing the similarity between shots, authors propose to compute the 
pairwise distances between keyframes located within a given temporal window. Distances are 
accessed via a priority stack for efficiency reasons. At each iteration, the smaller distance 
among the N(N-1) distances is selected and the two corresponding clusters are merged. All 
distances are updated through Lance-Williams formula [Ziberna04]. The algorithm stops 
when a pre-established value of the maximum similarity is reached. The oriented graph is 
afterwards segmented into strongly connected components, which are assumed to correspond 
to scene boundaries. 
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The technique suffers from various limitations, because of the too restrictive definition of the 
semantic story unit considered. For example, a shot story element that is included in a 
broadcast transmission will be included in a larger scene due to the recurrent anchor elements 
existent in the keyframes selected from anterior and predecessor shots. 
 
A second family of scene segmentation approaches exploits a modeling stage based on a so-
called logical story unit. 
 

4.1.2.   Logical story units approaches 
 
The approach introduced in [Truong03] defines a scene as a story unit that has start and end 
instants corresponding to the arrival and departure of the characters involved. A HLS color 
model is here employed for representing visual similarities.  
 
In the case of relatively static low-motion shots, a single frame is sufficient to completely 
describe the informational content of the shot. Such a frame is selected as the first frame 
encountered after a transition. In the case of dynamic (high-motion) shots, an increased 
number of frames is required.  
 
Defined as presented above the color changes can be regarded as edges. The authors propose 
to identify the scenes boundaries by using an edge detector that is based on Deriche’s 
recursive filtering algorithm [Adams00]. In order to increase the robustness to different 
lighting conditions and shading characteristics (determined by various camera shooting angles 
and motion), a new metric is proposed that gradually eliminates from comparison the regions 
with highest dissimilarity value. 
 
The scene segmentation algorithm introduced in [Hanjalic99] is based on the concept of 
logical story unit (LSU) that relies on the global temporal consistency of the visual content. 
An LSU includes repetitive visual elements (e.g., settings, characters…) that appear at various 
instants in the video document. A LSU include a sequence of temporally continuous shots, 
which are characterized by overlapping links that connect similar visual elements. 
 
The scene segmentation algorithm proposed in [Hanjalic99] is based on the investigation of 
the visual information and the temporal variations, as well as on the assumption that the visual 
content within a movie episode is temporally consistent. In general, for videos with strong 
actions, the technique can provide satisfactory segmentation results, although the LSU 
boundaries only approximate the actual scene boundaries. 
 
The method proposed in [Rasheed03] considers a two-pass algorithm. In the first stage, a set 
of uncertain scene boundaries are identified based on the so-called backward shot coherence.  
 
A similarity measure between the current shot i and a set of previously analyzed shots 
(included in a window of N frames) is first defined as:  
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SC𝒊𝒊
𝒋𝒋 = max

𝑓𝑓𝑥𝑥∈𝐾𝐾𝑖𝑖𝑓𝑓𝑦𝑦∈𝐾𝐾𝑗𝑗 ,
(𝐷𝐷(𝑓𝑓𝑥𝑥 ,𝑓𝑓𝑦𝑦))                                            (4.11) 

where SC𝒊𝒊
𝒋𝒋 expresses the shot coherence of shot i with shot j, where shot i and j respectively 

include n and m keyframes, 𝑓𝑓𝑥𝑥 is the xth frame of the video shot i, 𝑓𝑓𝑦𝑦 the yth frame of video 
shot j and 𝐷𝐷(𝑓𝑓𝑥𝑥 ,𝑓𝑓𝑦𝑦) represents the intersection of histograms of frames x and y, in the HSV 
color space.  
 
The backward coherence for a shot i is computed as the maximum shot coherence within a 
temporal window of length N:  

𝐵𝐵𝐵𝐵𝐵𝐵𝑖𝑖 = max
1≤𝑘𝑘≤𝑁𝑁

(𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖−𝑘𝑘)                                                      (4.12) 

A scene is defined as a collection of contiguous shots in time taken at the same location and 
presenting similar visual content. At the beginning of a new logical story unit, the initial shots 
are not similar with the shots from the previous LSU. Therefore, the BSCs for these shots are 
very small. As the action progresses, similar shots are developed. Consequently, the BSCs 
measures computed for these shots attain higher values. This process continues until the start 
of a new LSU. The beginning of a new scene can be detected by locating a minimum in the 
plot of BSCs. 
 
The method is able to determine effectively scenes presenting a repetitive structure as well as 
dialogue scenes. For semantic units with weaker structure the proposed technique generally 
leads to an over-segmentation. In order to overcome such a limitation, authors propose to 
incorporate, in addition to the color information, the shot length and the motion content.  
 
Most of the above approaches determine the shot similarity based on their corresponding 
visual similarity. Furthermore, they consider the temporal distance of shots as an extra feature 
that is taken into account when computing the similarity between two shots for shot clustering 
into scenes. Due to the absence of prior knowledge concerning the video content or the 
average shot duration, the methods fail to correctly determine the scene boundaries since, in 
this case, the similarity between shots is computed within a sliding window of fixed 
dimension. Such techniques return in most of the cases an over-segmented video.  
 
A third family of approaches concerns the methods based on statistical analysis/modeling, 
described in the following section.  
 

4.1.3.   Statistical models  
 
In [Chaisorn02], authors exploit Hidden Markov Models (HMM) in order to model and detect 
the scene transitions. A Markov chain includes a finite set of states that are characterized by 
their associated probability distribution. A scene transition is detected by using the transition 
probabilities that are determined based on the shot scene/location change, tagged category 
represented by a tag id ranging from 1 to 11 (e.g., intro, anchor, gathering, still image, live-
reporting, speech, sport, text scene, special, weather and finance) and the speaker change. 
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Figure 4.3 illustrates an ergodic HMM system with 4 hidden states. 
 

 
Figure 4.3. Ergodic HMM system. 

 
Let us mention that a HMM is also utilized in [Xie04] in order to distinguish between the two 
types of moments involved in a soccer game, play and brake.  
 
In order to characterize the video production syntax and the video content, authors propose to 
exploit the dominant color ratio and the motion intensity. The motion intensity m is computed 
as the average magnitude of the motion vectors associated to each frame. This measure of 
motion intensity gives an estimate of the overall motion at the considered instant, including 
both camera and object motions. 
 
Using the above-cited features, the algorithm can be summarized into two phases. First, the 
data likelihood of fixed length, relatively short video segments, is evaluated against a pre-
trained HMM. In the second step, a correlation measure is developed in order to smooth labels 
associated to segments and to generate the final segmentation.  
 
In all cases, the HMM is trained with manually labeled, ground truth data with the help of the 
well-known Expect-Maximization (EM) algorithm. The observations (i.e., the topologies for 
play and for brake) are modeled as mixtures of Gaussians. Each feature involved is smoothed 
over time with a low pass filter and normalized with respect to its mean and variance. 
 
The method introduced in [Zhai06] is also based on Markov Monte Carlo Chains (MMCC) in 
order to identify the central concept within a scene. The central concept refers to shots 
correlated not only in terms of associated physical environment, but also sharing the same 
story topic, or the same sub-theme of the story line. Based on such elements, authors propose 
to use a statistical solution and model the number of scenes and their corresponding boundary 
locations. A scene boundary is here considered as a change point in the central concept. The 
estimation of the scene boundaries is determined with the help of MMCC. A hierarchical 
Bayesian model is here developed, and the optimization problem is solved with the help of the 
Metropolis-Hasting-Green algorithm [Green95].  
 
In a general manner, such techniques are usually sufficient to cluster together shots 
characterized by pronounced visual similarity However, the above methods fail to return high 
precision and recall values in the case of more complex scenes (under 50%).  
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So far, the approaches presented above are exclusively based on visual features for describing 
the content of the scenes/shots/frames. A promising axis of research concerns the multi-modal 
approaches, which combine both audio and visual feature for scene detection purposes.  
 

4.1.4.   Multi-modal approaches 
 

In [Huang98], three different types of feature are jointly used for video segmentation: audio, 
color, and motion. For each considered feature, a segmentation process is performed, which 
leads to three types of distinct breaks.  
 
The audio breaks are detected by sampling the audio signal and dividing it into non-
overlapping clips with a fixed length. For each segment, the following set of features is 
extracted: non-silence ratio, volume standard deviation, dynamic volume range, modulation 
energy, pitch period deviation, frequency centroid, bandwidth, and energy ratio of three 
frequential sub-bands. An audio brake is identified based on an audio dissimilarity metric 
which measures the similarities of the features vector within a window of N frames centered 
on the current frame.  
 
The color brake detection is based on the color frame dissimilarity index, computed based on 
color histograms in the RGB color space. 
 
Motion information can be determined by computing the motion histograms difference 
associated to successive frames. However, the accuracy of motion strongly depends on the 
motion estimation algorithms employed. In order to overcome this limitation, authors propose 
to use a phase correlation function (PCF) that avoids the explicit compotation of motion 
vector.  
 
Finally, the scene boundaries are determined based on the common information existent in all 
the similarity indexes. Using color histogram alone can yield false detection under lighting 
condition. This false detection can be avoided by examining the PCF, which is invariant to 
lighting changes.  
 
A scene detection method combining audio and visual information is presented in 
[Lienhart99]. The technique is based on the assumption that a scene transition will determine 
a profound change not only on the visual structure but also in the audio track. Two types of 
audio signals are here defined: background and foreground. The background segments present 
in their structure a general feeling of the atmosphere encountered in the considered scene but 
do not carry any relevant information for the action development and understanding. The first 
step consists of detecting such background audio segments.  
 
In a second phase, the foreground segments are analyzed in order to determine their spectral 
content. The sound similarity is determined based on a spectral analysis, performed within a 
Hamming sliding window. An important modification within the audio signal is registered as 
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audio cut. An audio shot is then defined as a segment between two successive background - 
foreground transitions.  
 
Solely for the foreground segments, a set of visual features is then extracted. A color 
coherence vector (CCV) [Pass96] representation is here adopted. In addition, a global image 
structure orientation, based on a gradient analysis, is also determined.  
 
The distance between two shots with respect to their color or orientation content is measured 
based on the disaggregated set representation of the shots, using the minimum distance 
between the most common feature values [Lienhart98]. The scene extraction algorithm works 
as follows: a shot cluster includes all shots between two shots which are no further apart than 
a fixed distance with similarities, in term of color coherence and image orientation, below a 
fixed threshold. Also, overlapping shot clusters are grouped into the same scene.  
 
The technique also permits to classify shots into various categories, including audio 
sequences, settings and dialogs.  
 
The method performance depends mainly on the selected set of features and much less on the 
employed clustering algorithm. Authors also suggest some improvements that could 
potentially make it possible to distinguish between acts, scene and story units. 
 
Ngo et al. [Ngo02] propose to integrate both motion/activity and color cues in order to 
construct a global criterion for scene detection. The authors propose describing a video as an 
image volume with (x,y) image dimension and t temporal dimension. The horizontal slices 
with dimension (x,t) are denoted with H, while the vertical slices with a dimension (y,t) with 
V. The slices are analyzed for both horizontal and vertical direction in order to discover 
motion patterns, because they provide rich visual cues along a larger temporal scale. 
 
In order to reduce the computational time and to efficiently use the storage capabilities the 
authors propose processing and analyzing the slices in the MPEG compressed video domain. 
The local orientations of slices are estimated based on a so-called structure tensor. The 
distribution of the local orientation across time inherently reflects the motion trajectory in an 
image volume.  
 
A concrete way of describing video content for scene change detection is to represent each 
shot with background images. The authors propose a video representation strategy that 
consists of two major parts: keyframe selection and background reconstruction. In this case, 
the shot is represented with the help of both motion and color features (i.e., HSV color 
histograms).  
 
The proposed technique is able to identify different types of motion (e.g., pan, tilt, zoom…) 
existent in a video shot and to extract a variable number of keyframes that completely 
describe its content. 
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The method introduced in [Ngo02] clusters shots based on the color histogram intersection of 
keyframes. They use motion information only to exclude moving foreground objects from 
camera motion and not as a cue for determining shot similarities. However, when sequences 
of shots form a scene, it is often because the shots are correlated by the same environment 
rather than by the visual similarity existent in the selected keyframes.  
 
A fifth family of approaches attempts to exploit the semantics associated with the visual 
content for scene detection purposes.  
 

4.1.5.   Semantic representation methods 
 

In [Tavanapong04] the authors identify the following three semantic categories of scenes: 
• Travelling scenes – that consist of one or more characters that travel together to 

various locations, and spending a brief period in each visited place;  
• Serial event scenes –characterized by a succession of shots that share the same 

location; 
• Parallel event scenes – consists of two or more serial events that are developed 

simultaneously and reveled to the end user sequentially.  
 
For each detected shot, two keyframes are selected: the first and the last frame of the shot. For 
each keyframe, a feature vector is associated with. For MPEG videos the features are defined 
as the average value of all the DC coefficients of the Y color component in the region. For 
uncompressed videos, the color feature is computed using the average pixels values instead of 
DC coefficients. A L1 distance between feature vectors is adopted as similarity measure. The 
scenes boundaries are detected using clustering algorithms constructed in order to take into 
consideration the semantic scenes categories.  
 
However, the approach can be effectively used only for narrative films. A major limitation of 
the proposed algorithm is given by its inapplicability to any type of video clip (e.g., news, 
sport, advertisement) due to the imposed scene categories.   
 
The scene segmentation algorithm proposed in [Li03] is based on temporally overlapping 
skims that are clustered with the help of the K-means algorithm. The method is based on the 
assumption that semantically inter-related shots correspond to the same event since different 
events shall have distinct topics. The technique integrates speech and face information.  
 
Three different categories of scenes are here considered: two-speaker dialogs, multi-speaker 
dialogs and hybrid scenes. Figure 4.4 illustrates two movie dialogs model. Each node in the 
figure represents a shot that contains the indicated speaker, the arrows are used to indicated 
the switches between the two shots.  
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Figure 4.4. Traditional movie dialogs for: 2-speaker dialog (inside the first square 

speaker A and B), multi-speaker dialog (speaker A, B and C). 
 
Since a scene is generally characterized by a repetitive visual structure, the technique extracts 
all video segments that possess the same features. A scene is determined in four steps: 
 Step 1: Shot sinks generation using the window-based sweep algorithm. A shot sink is 
defined as a pool of shots which are temporally close and visually similar. To compare the 
visual similarity of two shots a set of keyframes is selected for each shot using the technique 
presented in [Lienhart97]. The similarity between two shots is determined based on the 
Euclidian distance between color histograms in the RGB color space.  
 Step 2: Sink clustering and characterization into one of the three predefined classes: 
periodic, partially-periodic and non-periodic based on the shot repetition degree. 
 Step 3: Scene extraction and classification. At this stage, the scenes are extracted by 
grouping temporally overlapped sinks into one event. In this way, the shots which are 
semantically inter-related with each other will belong to the same scene, since different events 
should have different thematic topics, so different scenes. If an event contains two periodic 
shot sinks, a 2-speaker dialog is detected. If the event contains several partly periodic sinks a 
multi-speaker dialog is identified. All the remaining events are labeled as hybrid scenes. 
 Step 4: Post-processing phase that integrates speech and face cues in order to remove 
false alarms presented in events identification.  
 
In a general manner, the approaches based on semantic representations of the scene content 
suffer mainly from the too restrictive definition of the scenes and events considered, which 
cannot respond effectively to the variety of concepts encountered in real-life videos.  
 
A last category of methods exploits a set of temporal constraints. Such approaches are 
described in the following section. 
 

4.1.6.   Temporally constrained techniques 
 
The underlying principle consists of imposing a temporal distance constraint with the help of 
a sliding window which selects the maximum total number of shots that can be possibly 
included into the same scene. In other words, only the shots situated in the temporal window 
and satisfying certain similarity constraints can be grouped into the same video scene. The 
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proposed criterion is used in order to avoid grouping into the same scene shots that exhibit a 
high similarity of the visual content but located at a distance greater than the specified 
parameter. This principle is illustrated in Figure 4.5.  
 

 
Figure 4.5. Shot grouping based on temporal constrained window. 

 
Naturally; the window length has a strong impact on the segmentation results. On one hand, if 
the selected size is too large, shots from two or more scenes will be grouped together in a 
same scene. In this case, the number of missed detected scenes will be very large causing an 
under-segmentation of the original video flow. On the other hand, a smaller value of the 
sliding window, will determine shots from the same scene to be attached to different scenes. 
In this case, the number of false alarms is increasing and the input movie will be over-
segmented.   
 
As representative of this category of approaches, let us first mention the method introduced in 
[Zhu09], which exploits a spatio-temporal shot clustering technique. The technique starts by 
performing shot detection and keyframe extraction using the gray-level variance histogram 
and wavelet texture variance histogram.  
 
The similarity between shots should reflect the correlation between visual content elements: 
such as locations, persons and events. In order to match the information between shots the 
authors propose using the pair of keyframes which returns the highest value of the reciprocal 
Bhattacharya distance between normalized color histograms in the RGB color space. 
The temporal locality constraint is characterized with the help of a parameter that sets the 
time-window length, denoted by 𝑇𝑇𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 , and representing the maximum number of shots 
that a scene can include.  
 
Moreover, the content of each segment is further classified into one of the following general 
categories: 

1. Conversational scenes: include in their structure shots with faces or objects with 
similar spatial position and size; they are characterized by a succession of shots that 
show low visual content variation and reduced camera/object motion. 

2. Suspense scenes: characterized by a succession of shots that show average motion in 
time, low audio energy and visual content variation but that are followed by a sudden 
change either in the sound track or in the activity intensity, or in most of the cases in 
both parameters. 
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3. Action scenes: composed of a succession of shots with reduced temporal duration, but 
with intensive motion activity or audio energy.  

 
The technique introduced in [Sakarya10] is also based on a temporal interval that is set to 9 
shots. For each position of the sliding window, a similarity matrix between sets of keyframes 
associated to each shot is determined. The similarity matrix is used in order to optimize the 
objective function that partition a graph into two sets based on the min-max algorithm. A 
scene boundary is associated with the resulting partition. In order to reduce the total number 
of false scene boundaries, a filtering process is introduced. Finally, a clustering operation is 
performed by using two distinct grouping strategies: k-means clustering and dominant set 
framework. 
 
The technique introduced in [Chasanis09] is based on histograms of visual words and 
temporal distances. The author claims that the color histogram fail to describe the 
connectivity between shots in the case of a rapid change of the visual content So, in order to 
avoid this situation they propose using two other descriptors invariant to transformation as 
rotation and scale: SIFT and CCH (color context histogram). For each shot, a different 
number of descriptors is computed that describe certain objects or interest points within the 
given shot. Then, a visual word is defined as a set of descriptors, selected from each 
keyframes, that are concatenated to represent the whole shot.  
 
To extract the visual word, the set of descriptors associated to N videos shots is cluster intro k 
groups (where k denotes the total number of visual words considered). Thus, given a shot and 
its associated descriptors a visual word histogram is determined (Figure 4.6). Next, the 
similarity between shots is established in order to detect the scene and chapter boundaries. 
 

 
Figure 4.6. Temporal smoothing of visual words histograms. 

 
Authors propose to consider the video shots as the words of a document that compose a 
paragraph (scene) that further compose a book chapter (DVD chapter), describing a specific 
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theme. A Gaussian smoothing kernel is used to smooth temporally the visual words histogram 
of a shot with respect to the histograms of neighboring shots.  
 
The temporal constraints impose a maximum number of shots to be included in a shot/DVD 
chapter, 8 and 16 respectively. The scene boundaries are detected by using the Euclidean 
distance between successive smoothed histograms. 
 
Some of methods presented above [Tavanapong04], [Yeung98], [Rasheed05] are based on the 
assumption that the scene background remains unchanged and use the location of an anchor 
persons/object inside the scene. In this case, the shots of anchor persons/objects are shown in 
certain time interval which helps locating the boundaries. However, such methods were 
dedicated by construction to the specific characteristics of the news video. Other techniques 
[Zhu09] are focused on classifying the shots into particular common categories. Such 
categories are not available for any type of videos, such as home videos or feature films. On 
the other hand, other methods [Lienhart97] [Huang98], do not fully taken into account the 
characteristic of film editing such as the linking of shots and scenes. 
 
A novel scene detection algorithm based on hierarchical clustering is introduced next. The 
technique adopts a shot grouping method that exploits temporal constraints, adaptive 
thresholds, neutralized shots and a new similarity measure between two shots. 
 
 

4.2.   PROPOSED APPROACH 
 

The keyframes selected based on the leap-extraction method, introduced in Section 3.2.1 are 
exploited to form scenes defined as a collection of shots that present the same theme and 
share similar coherence in space and time [Truong07].  
 
We have considered two different types of low level features to characterize the visual 
structure of a keyframe. In the first case we used the traditional HSV color histogram 
extracted at image level. In the second case we applied the scale invariant features transform 
(SIFT) [Lowe04] to each frame belonging to the static summary. 
 

4.2.1.   Scene / DVD chapter extraction 
 
The proposed algorithm can distinguish between semantic continuous actions and actual 
scenes brakes by using a temporally distance-constrained analysis. The technique is based on 
a novel clustering procedure which consists of iteratively merging shots falling into a 
temporal analysis window and satisfying certain grouping criteria. 
 
The temporal constraint selection has a major impact on the final segmentation result. A 
larger value of this parameter will determine clustering shots from different scenes together 
(under-segmentation), while a smaller value cause shots from the same scene to be labeled as 
distinct (over-segmentation). The first major contribution brought by the proposed technique 
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is given by the adaptive modality of selecting the temporal distance parameter (dist), which is 
set proportional to the ratio between the total number of frames of the video sequence and the 
number of shot boundaries detected in the movie (i.e., the average number of frames per shot). 

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 𝛼𝛼 ∙
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑠𝑠ℎ𝑜𝑜𝑜𝑜𝑜𝑜

                                (4.13) 

where α denotes a user-defined parameter. 
 
We consider further that a scene Sl is completely described by its constituent shots: 

𝑆𝑆𝑙𝑙 : 𝑠𝑠(𝑆𝑆𝑙𝑙) = �𝑠𝑠𝑙𝑙 ,𝑝𝑝�𝑝𝑝=1
𝑁𝑁𝑙𝑙 ⟶ ��𝑓𝑓𝑙𝑙 ,𝑝𝑝 ,𝑖𝑖�𝑖𝑖=1

𝑛𝑛𝑙𝑙 ,𝑝𝑝 �
𝑝𝑝=1

𝑁𝑁𝑙𝑙
                      (4.14) 

 
where Sl denotes the lth video scene, Nl the number of shots included in scene Sl, sl,p the pth 
shot in scene Sl, and fl,p,i the ith keyframe of shot sl,p. containing nl,p keyframes. 
 
The proposed scene change detection algorithm based on shot clustering consists of the 
following steps: 
 
Step 1: Initialization – The first shot of a film is automatically assigned to the first scene S1. 
Scene counter l is set to 1.  

 
Step 2: Shot to scene comparison – Consider as current shot scrt the first shot which is not yet 
assigned to any of the already detected scenes. Detect the sub-set Ω of scenes anterior to scrt 
and located at a temporal distance inferior to parameter dist. Compute the visual similarity 
between the current shot and each scene Sk in the sub-set Ω, as described in the following 
equation: 

∀ 𝑆𝑆𝑘𝑘 ∈ Ω, 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜(𝑠𝑠𝑐𝑐𝑐𝑐𝑐𝑐 , 𝑆𝑆𝑘𝑘) =
𝑛𝑛𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 ℎ𝑒𝑒𝑒𝑒

𝑛𝑛𝑘𝑘 ,𝑝𝑝 ∙ 𝑁𝑁𝑘𝑘 ∙ 𝑛𝑛𝑐𝑐𝑐𝑐𝑐𝑐
                  (4.15) 

where ncrt is the number of keyframes of the considered shot and nmatched represents the 
number of matched keyframes of the scene Sk. A keyframe from scene Sk is considered to be 
matched with a keyframe from shot scrt if a given visual similarity measure between the two 
keyframes is superior to a threshold Tgroup. Let us note that a keyframe from the scene Sk can 
be matched with multiple frames from the current shot.  
 
Concerning the visual similarity measure involved in the above-described process, we have 
considered two different approaches, based on: 
(1) chi-square distance between HSV color histograms; 
(2) the number of matched interest points determined based on SIFT descriptors with a  

KD-tree matching technique [Lee07].  
 
Finally, the current shot scrt is identified to be similar to the scene Sk if: 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜(𝑠𝑠𝑐𝑐𝑐𝑐𝑐𝑐 , 𝑆𝑆𝑘𝑘) ≥ 0.5                                    (4.16) 
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In this case, the current shot scrt will be clustered in the scene Sk. In the same time, all the 
shots between the current shot and the scene Sk will also be attached to scene Sk and marked 
as neutralized. Let us note that the scenes to which initially belonged such neutralized shots 
disappear (in the sense that they are merged to the scene Sk). The list of detected scenes is 
then updated. 
 
The neutralization process allows us to identify the most representative shots for a current 
scene (Figure 4.7.a and 4.7.b), which are the remaining non-neutralized shots. In this way, the 
influence of outlier shots which might correspond to some punctual digressions from the main 
action in the considered scene is minimized. 
 

 
Figure 4.7. Neutralizing shots (marked with red) based on visual similarity: 

(a) The 5th element; (b) Ace Ventura the pet detective. 
 
If the condition described in Equation (4.16) is not satisfied, go to step 3.  
 
Step 3: Shot by shot comparison – If the current shot (scrt) is highly similar (i.e., with a 
similarity at least two times bigger than the grouping threshold Tgroup) with a shot of any scene 
in the sub-set Ω determined at step 2, then scrt is merged in the corresponding scene together 
with all the intermediate shots. If scrt is found highly similar to multiple other shots, than the 
scene which is the most far away from the considered shot (in the sense of the temporal 
distance) is retained. 
 
Both the current shot and all its highly similar matches are unmarked and for the following 
clustering process will contribute as normal, non-neutralized shots (Figure 4.8). This step 
ensures that shots highly similar with other shots in the previous scene to be grouped into this 
scene and aims at reducing the number of false alarms. 
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Figure 4.8. Shot non-neutralization based on high similar value. 

 
Step 4: Creation of a new scene – If the current shot scrt does not satisfy any of the similarity 
criteria in steps 2 and 3, a new scene, including scrt, is created. 

 
Step 5: Refinement - At the end, scenes including only one shot are attached to the adjacent 
scenes depending on the maximum similarity value. In the case of the first scene, this is 
grouped with the following one by default. 
 
The grouping threshold Tgroup is adaptively established depending on the input video stream 
visual content variation as the average chi-square distance / number of interest points between 
the current keyframe and all anterior keyframes located at a temporal distance smaller then 
parameter dist.  
 

4.2.2.   Experimental evaluation 
 
The evaluation of our scene change detector algorithm is done on TRECVID 2001 and 2002 
video corpus (Figure 2.27) and on the set of 6 sitcoms and 6 Hollywood movies introduced in 
the automatic static summary development stage (Figure 4.9). The selected videos are also 
used for evaluation purposes in the state of the art algorithms presented in [Rasheed05], 
[Chasanis09] and [Zhu09]. 
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Figure 4.9. Extended video database 

 
At the beginning, for all videos, a manual segmentation has been performed in order to 
constitue a ground truth : here, 10 human observers have manually detected the scene 
boundaries. Let us note that the process can be influenced by subjectivity and depends on 
each individual perception. In order to establish a reliable benchmark we selected as correct 
only the scenes identified by all the observers.  
 
Figure 4.10 and Figure 4.11 illustrate some examples of scene boundary detection, obtained 
with both the SIFT and HSV -based approaches. 
 

 
Figure 4.10. Detected scenes when using the interest points extracted based on SIFT descriptor. 
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Figure 4.11. Detected scenes when using the HSV color histogram features. 

 
We can observe that in all cases the scenes have been correctly identified. Table 4.1 and 4.2 
summarize the scene detection results obtained when using to determine the visual similarity 
between keyframe the SIFT descriptors and HSV color histogram comparisons, respectively. 
As it can be observed, the detection efficiency is comparable in both cases. The α parameter 
(equation 4.13) was set here to a value of 7. 
 

Table 4.1. Scene detection based on SIFT features. 

Current  
number Campaign Video 

name 

Ground  
truth 

(Human 
observers) 

Detected False 
Alarms 

Missed 
Detected 

Precision 
(%) 

Recall 
(%) 

F1 
(%) 

1. 

Tr
ec

V
id

 
20

01
 a

nd
 

20
02

 

NAD57 4 3 0 1 100 75.00 85.71 
2. NAD55 14 10 0 4 100 71.42 83.33 
3. NAD58 5 4 3 1 57.14 80.00 66.66 
4. UGS01 5 4 3 1 57.14 80.00 66.66 
5. UGS09 14 13 2 1 86.66 92.85 89.65 
6. 

Si
tc

om
s 

SF 24 19 1 5 95.00 79.16 86.36 
7. TM 22 18 0 4 100 81.81 90.00 
8. PB 39 31 3 8 91.17 79.48 84.93 
9. AM 32 28 11 4 71.79 87.50 78.87 
10. SC 20 17 0 3 100 85.00 91.89 
11. FR 17 17 7 0 70.83 100 82.92 
12. 

H
ol

ly
w

oo
d 

m
ov

ie
s 

5E 63 55 24 8 69.62 87.30 77.46 
13. AV 36 34 11 2 75.55 94.44 83.95 
14. LW 67 63 39 4 61.76 94.02 74.55 
15. T2 66 61 11 5 84.72 92.42 88.41 
16. MK 44 40 5 4 88.88 90.91 89.88 
17. HA2 68 56 6 12 90.32 82.35 86.15 

TOTAL 540 473 126 67 78.96 87.59 83.05 
 
Note: In the case of scene change detection we considered a tolerance of 10% from the actual 
size of the ground truth scene when identifying the position of a scene brake (for both HSV 
color histogram and SIFT interest points). 
 
The analysis of the experimental results presented in Figure 4.12, 4.13 and 4.14 leads to the 
following conclusions.  

1. The keyframe similarity based on HSV color histogram is much faster than the SIFT 
extraction process (the average time for the histogram extraction is 0.5 seconds/image 
while for the interest points the extraction time is 2 seconds/image) and can be used 
when feature detection and matching becomes difficult due to the complete change of 
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the background, important variation of the viewing point, or the action development 
(Figure 4.15).  

2. The matching technique based on interest points is better suited for scenes that have 
undergone some great changes but where some persistent, perennial features (such as 
objects of interest) are available for extraction and matching. In this case, the 
technique is robust to abrupt changes in the intensity values introduced by noise or 
changes in the illumination condition (Figure 4.16).  

 
Table 4.2. Scene detection based on HSV color histogram. 

Current  
number Campaign Video 

name 

Ground  
truth 

(Human 
observers) 

Detected False 
Alarms 

Missed 
Detected 

Precision 
(%) 

Recall 
(%) 

F1 
(%) 

1. 

Tr
ec

V
id

 
20

01
 a

nd
 

20
02

 

NAD57 4 3 1 1 75.00 75.00 75.00 
2. NAD55 14 12 2 2 85.71 85.71 85.71 
3. NAD58 5 5 1 0 83.33 100 90.90 
4. UGS01 5 4 4 1 50.00 80.00 61.53 
5. UGS09 14 11 0 3 100 78.57 88.00 
6. 

Si
tc

om
s 

SF 24 20 0 4 100 83.33 90.90 
7. TM 22 17 2 5 89.47 77.27 82.92 
8. PB 39 33 0 6 100 84.61 91.66 
9. AM 32 21 4 8 84.00 72.41 77.77 

10. SC 20 15 1 5 93.75 75.00 83.33 
11. FR 17 17 7 0 70.83 100 82.92 
12. 

H
ol

ly
w

oo
d 

m
ov

ie
s 

5E 63 49 10 9 83.05 84.48 83.76 
13. AV 36 26 2 7 92.85 78.78 85.24 
14. LW 67 64 25 3 71.97 95.52 82.05 
15. T2 66 60 7 6 89.55 90.90 90.22 
16. MK 44 38 7 6 84.44 86.36 85.39 
17. HA2 68 50 5 11 90.90 81.96 86.20 

TOTAL 540 445 78 77 85.08 85.25 85.17 
 

 
Figure 4.12. Recall, Precision and F1 norm rates for the proposed technique when tested on TRECVid 

2001 and 2002 databases: (a) interest points; (b) HSV color histogram. 
 
The average precision and recall rates are the following:  

• R=88% and P=78%, for the SIFT-based approach, and  
• R=85% and P=85%, for the HSV histogram approach.  
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These results demonstrate the superiority of the proposed scene detection method with respect 
to existing state of the art techniques [Rasheed05], [Chasanis09] and [Zhu09], which provide 
precision/recall rates between 82% and 77%. 
 

 
Figure 4.13. Recall, Precision and F1 norm rates for the proposed technique when tested on 

sitcoms: (a) interest points; (b) HSV color histogram. 
 

 
Figure 4.14. Recall, Precision and F1 norm rates for the proposed technique when tested on 

Hollywood movies: (a) interest points; (b) HSV color histogram. 
 

 
Figure 4.15. Video scene correctly identified using the HSV color histogram. 

 

 
Figure 4.16. Video scene correctly identified using the interest points. 

 



SEGMENTATION AND STRUCTURING OF VIDEO DOCUMENTS FOR INDEXING APPLICATIONS 96 

 
 

We also analyzed the impact of the different temporal constraints lengths (Equation (4.13)) on 
the proposed scene detection method. Figure 4.17 presents the precision, recall and F1 scores 
obtained for various values of the α parameter when using the both type of descriptors.  
 

 
Figure 4.17. Precision, recall and F1 score variation for different α values. 

 
As it can be noticed, a value between 5 and 10 returns quite similar results in terms of the 
overall efficiency. 
 
We can observe that increasing the α parameter lead to lower recall rates. That means that for 
higher values of the α parameter, different scenes are grouped within a same one. In the same 
time, the number of false alarms (i.e., false scene breaks) is reduced.  
 
This observation led us to investigate the utility of our approach for a slightly different 
application, related to DVD chapter detection. For the considered Hollywood videos, the 
DVD chapters were identified by movie producers and correspond to access points in the 
considered video. The DVD chapters are highly semantic video units with low level of detail 
containing a scene ore multiple scenes that are correlated based on a purely semantic 
meaning.  
 
Table 4.3 and 4.4 summarizes the DVD chapter results obtained when using to determine the 
visual similarity between keyframe the interest points extracted based on SIFT descriptors and 
HSV color histogram comparisons, respectively. 
 

Table 4.3. DVD chapter detection based on SIFT features for Hollywood movies temporally 
segmented by producers. 

Current  
number Campaign Video 

name 

DVD 
chapters 
(Movie 

producer) 

Detected False 
Alarms 

Missed 
Detected 

Precision 
(%) 

Recall 
(%) 

F1 
(%) 

1. 

H
ol

ly
w

oo
d 

m
ov

ie
s 

5E 37 36 39 1 48.00 97.29 64.28 
2. AV 31 28 12 3 70.00 90.32 78.87 
3. LW 46 44 41 2 52.87 95.65 68.09 
4. T2 58 51 7 7 87.93 87.93 87.93 
5. MK 34 32 12 2 71.11 94.11 81.01 
6. HA2 29 28 22 1 56.00 96.55 70.88 

TOTAL 235 219 133 16 62.42 93.19 74.76 
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Table 4.4. DVD chapter detection based on HSV features for Hollywood movies temporally 
segmented by producers. 

Current  
number Campaign Video 

name 

DVD 
chapters 
(Movie 

producer) 

Detected False 
Alarms 

Missed 
Detected 

Precision 
(%) 

Recall 
(%) 

F1 
(%) 

1. 

H
ol

ly
w

oo
d 

m
ov

ie
s 

5E 37 36 21 1 63.15 97.29 76.58 
2. AV 31 26 5 5 83.87 83.87 83.87 
3. LW 46 43 28 3 60.56 93.47 73.50 
4. T2 58 45 4 13 91.83 77.58 84.11 
5. MK 34 32 16 2 66.66 94.11 78.04 
6. HA2 29 25 17 4 59.52 86.20 70.41 

TOTAL 235 207 91 28 69.46 88.08 77.66 
 
The value of the α parameter has been here set to 10. The average recall (R) and precision (P) 
rates obtained in this case are (Figure 4.18): 

• R=93% and P=62%, for the SIFT-based approach, and  
• R=68% and P=87%, for the HSV histogram approach.  

 

 
Figure 4.18. Recall, Precision and F1 norm rates for DVD extraction techniques tested 

on Hollywood movies: (a) interest points; (b) HSV color histogram. 
 
Such a result is quite competitive with the state of the art techniques introduced in 
[Rasheed05], [Chasanis09] and [Zhu09] which yield precision/recall rates varying between 
65% and 72%. As it can be observed, when extracting interest points the recall rates are 
superior to those obtained for the HSV color histogram but, in this case, the number of false 
alarms becomes extensively high, reducing dramatically the method precision. Another aspect 
that needs to be taken into consideration is the computational time for the SIFT extraction 
procedure (e.g. for 1500 keyframes – 86400 s) which is important for real-time applications. 
 
In Table 4.5 we presented the experimental results obtained on the “Ace Ventura – The pet 
detective” Hollywood movie. In the present table we give also the DVD chapter keyframe 
automatically selected by the proposed temporal segmentation framework and the one 
manually chosen by movie producers. In our case, the most representative image for a DVD 
chapter is selected as cluster centroid. The presented results are obtained when extracted as 
visual feature the HSV color histograms. 
 



SEGMENTATION AND STRUCTURING OF VIDEO DOCUMENTS FOR INDEXING APPLICATIONS 98 

 
 

Table 4.5. DVD chapter detection for “Ace Ventura – The Pet Detective” movie. 

Crt. Nr.  1 Selected 
Keyframe 

DVD 
Keyframe Crt. Nr. 2 Selected 

Keyframe 
DVD 

Keyframe 

DVD 
Chapter 

Begin 
Titles 

  

DVD 
Chapter 

Special 
Deliver

y 

  
TL 0:15 TL 3:38 
DC √ DC √ 
FA - FA - 

Crt. Nr. 3 Selected 
Keyframe 

DVD 
Keyframe Crt. Nr. 4 Selected 

Keyframe 
DVD 

Keyframe 
DVD 

Chapter Dissatisfied 

  

DVD 
Chapter 

Satisfie
d Client 

  

TL 2:08 TL 0:55 
DC √ DC √ 
FA - FA - 

Crt. Nr. 5 Selected 
Keyframe 

DVD 
Keyframe Crt. Nr. 6 Selected 

Keyframe 
DVD 

Keyframe 

DVD 
Chapter Kidnapped! 

  

DVD 
Chapter 

Ace's 
Kingdo

m 

  
TL 1:05 TL 3:12 
DC √ DC √ 
FA - FA - 

Crt. Nr. 7 Selected 
Keyframe 

DVD 
Keyframe Crt. Nr. 8 Selected 

Keyframe 
DVD 

Keyframe 
DVD 

Chapter 
Pet 

Detection 

  

DVD 
Chapter 

Ace on 
Case 

  

TL 2:15 TL 1:45 
DC √ DC √ 
FA - FA - 

Crt. Nr. 9 Selected 
Keyframe 

DVD 
Keyframe Crt. Nr. 10 Selected 

Keyframe 
DVD 

Keyframe 
DVD 

Chapter Tanked Up 

  

DVD 
Chapter 

New 
Trainer 

  

TL 2:22 TL 1:50 
DC √ DC √ 
FA - FA - 

Crt. Nr. 11 Selected 
Keyframe 

DVD 
Keyframe Crt. Nr. 12 Selected 

Keyframe 
DVD 

Keyframe 
DVD 

Chapter Lt. Einhorn 

  

DVD 
Chapter 

Camp's 
Party 

  

TL 4:42 TL 2:37 
DC √ DC √ 
FA - FA - 

Crt. Nr. 13 Selected 
Keyframe 

DVD 
Keyframe Crt. Nr. 14 Selected 

Keyframe 
DVD 

Keyframe 

DVD 
Chapter 

Face of the 
Enemy 

  

DVD 
Chapter 

"Do 
Not Go 

In!" 

  
TL 2:46 TL 4:56 
DC √ DC √ 
FA - FA +2 

Crt. Nr. 15 Selected 
Keyframe 

DVD 
Keyframe Crt. Nr. 16 Selected 

Keyframe 
DVD 

Keyframe 

DVD 
Chapter 

Ring 
Wearers 

  

DVD 
Chapter 

She's 
All 

Right 

  
TL 3:27 TL 1:50 
DC √ DC √ 
FA +1 FA - 
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Crt. Nr. 17 Selected 
Keyframe 

DVD 
Keyframe Crt. Nr. 18 Selected 

Keyframe 
DVD 

Keyframe 

DVD 
Chapter 

At the 
Crime 
Scene 

  

DVD 
Chapter 

The 
Missing 
Player 

  
TL 4:22 TL 3:32 
DC √ DC √ 
FA - FA - 

Crt. Nr. 19 Selected 
Keyframe 

DVD 
Keyframe Crt. Nr. 20 Selected 

Keyframe 
DVD 

Keyframe 
DVD 

Chapter 
No Sleep 
Tonight 

 
 

DVD 
Chapter 

Finkle's 
House 

  

TL 1:18 TL 4:37 
DC X DC √ 
FA - FA +1 

Crt. Nr. 21 Selected 
Keyframe 

DVD 
Keyframe Crt. Nr. 22 Selected 

Keyframe 
DVD 

Keyframe 

DVD 
Chapter 

They've 
Got Marino 

  

DVD 
Chapter 

Einhorn 
Commo

tion 

  
TL 2:10 TL 3:39 
DC √ DC √ 
FA +1 FA - 

        

Crt. Nr. 23 Selected 
Keyframe 

DVD 
Keyframe Crt. Nr. 24 Selected 

Keyframe 
DVD 

Keyframe 

DVD 
Chapter 

Master at 
Work 

  

DVD 
Chapter 

Finkle's 
Grabba

g 

  
TL 2:22 TL 3:16 
DC √ DC √ 
FA - FA - 

Crt. Nr. 25 Selected 
Keyframe 

DVD 
Keyframe Crt. Nr. 26 Selected 

Keyframe 
DVD 

Keyframe 
DVD 

Chapter 
The Truth 

Dawns 

  

DVD 
Chapter 

Tailing 
Einhorn 

  

TL 3:45 TL 2:57 
DC √ DC √ 
FA - FA - 

Crt. Nr. 27 Selected 
Keyframe 

DVD 
Keyframe Crt. Nr. 28 Selected 

Keyframe 
DVD 

Keyframe 
DVD 

Chapter Nap Time 

 

 

DVD 
Chapter 

Penalty 
on Ace 

 

 

TL 1:41 TL 1:48 
DC X DC X 
FA - FA - 

Crt. Nr. 29 Selected 
Keyframe 

DVD 
Keyframe Crt. Nr. 30 Selected 

Keyframe 
DVD 

Keyframe 
DVD 

Chapter 
Trouble 

W/the Lady 

  

DVD 
Chapter 

Stripped 
Pretense 

 

 

TL 1:31 TL 3:52 
DC √ DC X 
FA - FA - 

Crt. Nr. 31 Selected 
Keyframe 

DVD 
Keyframe 

TL – Temporal Length 
DC – Detected Chapter  
FA – False Alarms 

DVD 
Chapter 

Lover of 
Animals 

  

TL 2:25 
DC √ 
FA - 
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4.2.3.   The VICTORIA Platform 
 
When considering the problem of video semantic segmentation it is highly useful to develop 
appropriate user interfaces that can help to evaluate the detection performances. The proposed 
video structuring platform, so-called VICTORIA (VIdeo CharacTerization Of Retrieval and 
Indexing Applications) illustrated in Figure 4.19 was developed in Visual Studio C++/MFC. 
 

 
Figure 4.19. High level video temporal segmentation graphical interface. 

 
The user can select an arbitrary input video and launch the segmentation/structuring process 
(Figure 4.20).  
 

 
Figure 4.20. The control panel of VICTORIA platform. 
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After selecting a movie the user can also specify if he desires an XML file, the value for the α 
parameter that control the temporal length and also the descriptor type used for scene/DVD 
chapter extraction. 
 
The outcome of the analysis is an XML file which specifies the shot and scene boundaries, as 
well as the temporal positions of the obtained keyframes. The adopted syntax is compliant 
with the MPEG-7 segment-based representation [ISO/IEC 15938-5]. Finally, the system 
allows the user to hierarchically browse the movie at each structural level (Figure 4.21). 
 

 
Figure 4.21. Video segmentation with the proposed system for an input video file 

loaded on the platform. 
 
The XML file generated at the end of the program allow annotating the input video stream 
with MPEG-7 metadata. The annotated descriptors are associated with each element of the 
video structure starting from the scene level to shot and keyframes and stored in a XML file.  
 
In MPEG-7 a Time Series structure describes a temporal set of descriptors extracted from a 
video segment and provides image to video-frame and video frames to video frames matching 
functionalities. Two types of Time Series are defined: Regular and Irregular. In the Regular 
Time Series, the descriptors are located at constant intervals within a given time span. 
Alternatively, for Irregular Time Series the descriptors can be located at random positions. 
 
Based on this representation the temporal descriptor is characterized by the following set of 
attributes: ID, name, Access mode, descriptor length, temporal interval, the original offset and 
the bit stuffing sequence.    
 
For the above video the resulted file is presented in Figure 4.22. 
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Figure 4.22. Video segmentation using the MPEG-7 structuring format. 

 

In order to ensure a large interoperability, we integrated our technique into the OVIDIUS 
(On-line VIDeo Indexing Universal System) [Bursuc10] indexing system, which is web 
platform developed with HTML, PHP and JavaScript technologies. The following 
components are included: selector of the segment type, selector of the hierarchical level of 
each segment, iconic representation of segments, navigation/browsing buttons, summary and 
keyword visualization and selection (Figure 4.23). 
 

 
Figure 4.23. The web version of the VICTORIA platform. 
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One column of iconic preview representations is dedicated to each level of hierarchy of the 
video. Scenes, shots (Figure 4.24), and still regions (Figure 4.25) can be browsed and 
accessed in a hierarchical manner, as MPEG-7 segments. Additionally a color code for each 
level of decomposition is exploited, in order to help the user to locate him during the 
navigation process (e.g., green for scenes, light blue for shots, dark blue for still regions). 
 

 
Figure 4.24. Video access at shot level. 

 

 
Figure 4.25. Video access at keyframe level. 

 
4.3.   CONCLUSIONS AND PERSPECTIVES 

 
In the first part of this chapter we have presented the state of the art in the field of scene 
detection/grouping methods. We focused our attention on the most recent techniques 
introduced in this area and emphasized that the most promising methods, in terms of related 
performances, are based on a graph partition approach. In addition, we underlined the 
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importance of combining temporal constraints and visual similarity for achieving improved 
performances. 
 
Then, we have introduced a novel methodological framework for high level video temporal 
structuring and segmentation that extracts scenes/DVD chapters based on temporal constraints 
clustering, adaptive temporal lengths, neutralized shots and an adaptive thresholding 
mechanism. 
 
Concerning the shot clustering into scenes, we have validated our techniques by using two 
types of features: the HSV color histogram and interest points extracted based on SIFT 
descriptors. The experimental evaluation validates the proposed approach, when using either 
interest points or HSV color histogram. The F1 measure in both cases is around 86%. 
 
We continued our analysis and proven that for a larger temporal length the proposed 
algorithm can be used to detect DVD chapters. The experimental results demonstrate our 
algorithm robustness, regardless to the movie type or gender, returning an average score of 
76% for the F1 norm.  
 
Our perspectives of future work will concern the integration of our method within a more 
general framework of video indexing and retrieval applications, including object detection 
and recognition methodologies. Finally, we intend to integrate within our approach motion 
cues that can be useful for both reliable shot/scene/keyframe detection and event 
identification.



 

 

 
 
 
 
 
 
 

5.   SALIENT OBJECT DETECTION AND TRACKING 
 
 
 
Summary: In this chapter, we consider the issue of salient object detection. We start by 
presenting and analyzing the related work, and discuss for both spatial and temporal attention 
models proposed in the literature. Two categories of techniques are identified: bottom-up and 
top-down approaches. The last category is task driven, using prior knowledge of the video 
flow or its content and involves pattern, shape and other cognitive processing related features. 
In contrast, bottom-up algorithms exploit low level features (e.g. luminance, color, motion 
contrast…), in order to build a saliency map able to emphasize relevant regions.  
 
In the second part, we propose a novel bottom-up approach for modeling the spatiotemporal 
attention in videos. The spatial model is developed starting from a region-based contrast 
measure associated to individual keyframes. The temporal model relies on interest points 
correspondence, geometric transforms (i.e. homographic motion model), motion classes 
estimation (using agglomerative clustering) and regions temporal consistency. Finally, the 
interest object is extracted with the help of GrabCut segmentation which takes as input to the 
saliency map previously determined. 
 
Keywords: Saliency map, RANSAC algorithm, temporal attention model, homography 
transform, agglomerative clustering, k-NN algorithm, object segmentation, GrabCut, 
segmentation.  
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The human brain and visual system actively seek for regions of interest by paying more 
attention to some specific parts of the image/ video. The concept of visual saliency [Kim11] 
can be defined as the perceptual quality that allows an object, person or pixel to stand out 
from his neighbors by capturing our attention. Humans can easily understand a scene based on 
the selective visual attention which makes it possible to detect regions of interest in images or 
interesting actions in videos sequences [Achanta09].  
 
In the field of computer vision, the objective is to simulate the human visual system behavior 
by automatically producing saliency maps of the target image or video sequence [Zhai06]. 
Salient object detection assume extracting the visual uniqueness, rarity, unpredictability or 
interesting events described as variations in image/video attributes such as color, texture, 
shape, edges and motion vectors. In this case, abnormal regions are quickly highlighted and 
can be further analyzed. However, some fundamental questions need to be solved: what part 
of the scene can be considered as salient? How can we define in a rigorous manner the 
concept of saliency? 
 
One basic principle when considering the issue of modeling of the human visual system is to 
suppress the response to frequently occurring input patterns, while, in the same time, 
preserving sensitivity to novel features. Image/video information in this case can be regarded 
as a redundancy term plus a sparse contribution. Inspired by this insight, also from the 
perspective of cognitive science, the informational content, denoted by Info(image/video), can 
be decomposed into two components [Chandrasekaran09]: 

𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖|𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣) =  𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼(𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅) + 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆)           (5.1) 

where 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼(𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅) denotes the information with high regularities of the visual inputs 
and 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆) represent the novel part. This principle is illustrated in Figure 5.1.  

 
Figure 5.1. Decomposition of image information. 
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As it can be observed, the redundant information corresponds to statistical invariant features, 
while the salient characteristics always build on the properties assigned to a small number of 
objects, which correspond to a sparse component recovery problem.  
 
Let us now review the various solutions proposed in the literature.  
 
 

5.1.   RELATED WORK 
 
Recently, visual saliency has drawn great research interest in the fields of computer vision and 
of multimedia modeling. The image attention models can be divided into two families: 
bottom-up and top-down approaches. The last category is task driven, using prior knowledge 
of the video flow or its content and involves pattern, shape and other cognitive processing 
related features. Its major drawback is the lack of generality, since the same context is not 
available in every video document.  
 
To solve this problem a various set of bottom-up approaches have been introduced [Li08], 
[Chen08], [Liu06] usually referred to as saliency detection or stimuli-driven techniques. Most 
of them model the human reaction to external stimuli, and exploit low level features (e.g. 
luminance, color, motion, contrast…), in order to build a saliency map which emphasizes 
relevant regions.  
 

5.1.1.   Spatial saliency detection 
 

One of the first techniques proposed in the literature [Itti98] uses several feature attributes 
such as color, intensity and orientation.  
 
The luminance image I is used to create a Gaussian pyramid 𝐼𝐼(𝜎𝜎), where 𝜎𝜎 ∈ [0 … 8] is the 
scale. The center surround is defined as the difference between fine and coarse scales. The 
center is a pixel at scale 𝑐𝑐 ∈ {2,3,4} and the surround is the corresponding pixel at scale 
𝑠𝑠 = 𝑐𝑐 + 𝛿𝛿, 𝛿𝛿 ∈ {3,4} . The across-scale difference between two maps (denoted with  Θ) is 
obtained by interpolation to the finer scale and point by point subtraction.  
 
The r, g and b channels are normalized by the luminance value I in order to decouple hue 

from intensity. Four color channels are created: 𝑅𝑅 = 𝑟𝑟 − �𝑔𝑔 + 𝑏𝑏
2
�, 𝐵𝐵 = 𝑏𝑏 − 𝑟𝑟+𝑔𝑔

2
, 𝐺𝐺 = 𝑔𝑔 − 𝑟𝑟+𝑏𝑏

2
 

and 𝑌𝑌 = 𝑟𝑟+𝑔𝑔
2
− �𝑟𝑟−𝑔𝑔

2
� + 𝑏𝑏. The first set of feature maps are concerned with intensity contrast 

computed in a set of six maps Μ(𝑐𝑐, 𝑠𝑠): 

𝑀𝑀(𝑐𝑐, 𝑠𝑠) = |𝐼𝐼(𝑐𝑐)Θ𝐼𝐼(𝑠𝑠)|                                                       (5.2) 

The second set of maps is similarly constructed for the color channels as follows: 

𝑅𝑅𝑅𝑅(𝑐𝑐, 𝑠𝑠) = ��𝑅𝑅(𝑐𝑐) − 𝐺𝐺(𝑐𝑐)�Θ(𝐺𝐺(𝑠𝑠) − 𝑅𝑅(𝑠𝑠))�                        (5.3) 

𝐵𝐵𝐵𝐵(𝑐𝑐, 𝑠𝑠) = ��𝐵𝐵(𝑐𝑐) − 𝑌𝑌(𝑐𝑐)�Θ(𝑌𝑌(𝑠𝑠) − 𝐵𝐵(𝑠𝑠))�                        (5.4) 
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Local orientation information is obtained from I using the oriented Gabor pyramids 𝑂𝑂(𝜎𝜎,𝜃𝜃), 
where 𝜎𝜎 ∈ [0 … 8]represents the scale and 𝜃𝜃 ∈ {0°, 45°, 90, 135°} is the preferred orientation. 
Orientation feature maps Φ(𝑐𝑐, 𝑠𝑠, 𝜃𝜃), encode, as a group, local orientation contrast the between 
center and the surround scales:  

Φ(𝑐𝑐, 𝑠𝑠,𝜃𝜃) = |𝑂𝑂(𝑐𝑐,𝜃𝜃)Θ𝑂𝑂(𝑠𝑠,𝜃𝜃)|                                       (5.5) 

In total, 42 feature maps are computed: six for intensity, 12 for color and 24 for orientation. 
 
The image saliency is defined based on the surrounded differences obtained across multi-scale 
image features. Authors propose a map normalization operator that can differentiate between 
scales in which only a small number of conspicuous locations are presented, while 
suppressing other maps with numerous comparable peaks responses. Only the local maxima 
of the various feature maps considered are here taken into account. The focus of attention is 
created as a simple disk, centered on each local maximum detected, with a fixed radius. 
 
The proposed model has been shown to be successful in predicting human fixation and can be 
further enhanced to completely detect objects of interest. However, the approach requires the 
manual setting of numerous parameters.  
 
A modified version of the technique introduced in [Itti98] is presented in [Harel07]. A graph-
based technique is here considered in order to highlight the conspicuous parts of an image and 
to allow a combination with other importance maps. 
 
Frintrop et al. introduced in [Frintrop07] a method inspired from Itti’s [Itti98]. In contrast 
with the reference method, center surround differences obtained using a Gaussian image 
pyramid with 5 levels which are here computed in order to determine two types of features: 
(1) on-center differences, i.e. image parts responding strongly to bright regions on a dark 
background and (2) off-center differences, i.e. image parts responding strongly to dark regions 
on a bright background. The center surrounding mechanisms are computationally expensive. 
In order to decrease the processing time, authors propose to use integral images.  
 
Another extension of the technique introduced in [Itti98] is proposed in [Hu04]. The visual 
saliency is here estimated by applying heuristic measures on the initial saliency maps obtained 
after thresholding the histogram of the features maps.  
 
Based on the Itti’s model where three feature maps are generated corresponding to color, 
intensity and orientation, the authors in [Hu04] propose a novel measure called Composite 
Saliency Indicator (CSI) to determine the contribution of each feature map to the salient 
region. Measures of spatial compactness and saliency density are here proposed in order to 
describe the neighborhood of each candidate salient point detected and to retain a reduced and 
consistent sub-set.  
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A technique based on the spectral residual is introduced in [Hou07]. For an input image the 
log Fourier spectrum ℒ(𝐼𝐼) = log⁡(𝐴𝐴(𝐼𝐼)) is computed starting from a down-sampled image 
with height and width equals with 64 pixels (Figure 5.2). 
 

 
Figure 5.2. Orientation of average curves of log spectra. 

 
The so-called spectral residual R(I) is computed as: 

𝑅𝑅(𝐼𝐼) = ℒ(𝐼𝐼) − 𝐴𝐴(𝐼𝐼)                  .                                  (5.6) 

Authors claim that the spectral residual R(I) makes it possible to detect the singularities of the 
considered image. However, the role of spectral residual in identifying salient regions is not 
clearly defined. Moreover the authors in [Guo10] suggest that the phase spectrum, instead of 
the amplitude spectrum of the image Fourier transform, can be more appropriate for 
determining the location of the salient areas. 
 
A related approach is introduced in [Wang08], which exploits in a first stage the same spectral 
residual model presented in [Hou07] to quickly locate the visual pop-outs from the entire 
image. So, in this stage only coarse “unusual” regions are identified. In the second phase, a set 
of Gestalt features is exploited to propagate the results from the first step, based on a local 
coherence measure, to capture the object details.  
 
In [Achanta08], authors propose to estimate the saliency using the center surrounding feature 
distance at various scales. This is evaluated as the distance between the average feature 
vectors of pixels within a sub-image with respect to the average feature vector of the pixels of 
its neighborhood sub-region. For each image, the saliency is determined at three different 
scales and the final map is computed as the sum of saliencies obtained at each resolution.  
 
An extension to this technique is proposed in [Achanta09]. Here, authors propose a 
frequency-tuned method that directly defines pixel saliency using a pixel’s color difference 
from the average image color. In this case, the saliency map S of an image I, of width W and 
height H is defined as: 

𝑆𝑆(𝑥𝑥, 𝑦𝑦) =  �𝐼𝐼𝜇𝜇 − 𝐼𝐼𝜔𝜔ℎ𝑐𝑐(𝑥𝑥,𝑦𝑦)�                                            (5.7) 

where 𝐼𝐼𝜇𝜇  is the average image value, 𝐼𝐼𝜔𝜔ℎ𝑐𝑐(𝑥𝑥, 𝑦𝑦)  is the corresponding image value of the 
Gaussian blurred version of the original image, ‖∙‖  is the 𝐿𝐿2  norm, and 𝜔𝜔ℎ𝑐𝑐  is the high 
frequency cut-off value. The proposed approach solely considers the first order statistics, 
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which is not sufficient to analyze complex object variations encountered in natural images 
[Cheng11]. 
 
In bottom-up approaches the saliency of each location is a function of how distinct the 
considered location is from the surrounding background. This definition is satisfied by the 
ubiquity of “center-surround” mechanisms in the early stages of biological vision. Based on 
this observation, in [Gao07] authors propose to maximize the mutual information between the 
feature distributions of so-called center and surrounding image regions. 
 
A different technique, called graph-based saliency that uses biological models, is introduced 
in [Harel07]. Here, the feature map is developed using the Itti’s method but the normalization 
is performed by employing a weighted graph-based approach, based on a Markovian 
modeling.  
 
In [Guo10], the principles from human visual attention models are taken into consideration in 
order to construct the saliency model. First, low level cues are developed based on the 
supposition that a pixel is salient if its appearance is unique. However, in this case the isolated 
pixels need to be discarded and the analysis is performed on surrounding patches (obtained 
after dividing the image into blocks of 7x7 pixels). In the second step, a multi-scale analysis is 
performed in order to decrease the saliency of the background pixels. The background pixels 
are assumed to have similar patches at all scales while foreground pixels should differ 
significantly from one scale to another (Figure 5.3). In addition, the saliency map can be 
enhanced with a face detection [Viola01] algorithm. 
 
By exploiting local contrast measures, the method tends to yield higher saliency values near 
edges instead of uniformly highlighting salient objects. 
 

 
Figure 5.3. Saliency detection based on the technique proposed in [Guo10]: (a) Original image; 

(b) Saliency map at scale 1; (c) Saliency map at scale 4; (d) Final result. 
 
Different studies [Liu06], [Gao08] attempt to model the visual saliency based on the relations 
existing between neighboring pixels. 
 
Thus, Liu and Gleicher [Liu06] proposed a region-enhanced saliency detection strategy. The 
technique differentiates from other methods due to its scale invariance property and can be 
summarized into the following steps: First, the image is converted into L*u*v color space. 
Second the image is segmented and an adaptive Gaussian filtering pyramid is constructed.  
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Next, at each scale, a contrast pyramid is developed. The contrast value 𝑐𝑐𝑖𝑖 ,𝑗𝑗 ,𝑙𝑙  at scale l is 
computed as: 

𝑐𝑐𝑖𝑖 ,𝑗𝑗 ,𝑙𝑙 =  �𝑤𝑤𝑖𝑖 ,𝑗𝑗 ,𝑙𝑙
𝑞𝑞∈Θ

𝑑𝑑�𝑝𝑝𝑖𝑖 ,𝑗𝑗 ,𝑙𝑙 , 𝑝𝑝𝑞𝑞�                                         (5.8) 

where Θ is the neighborhood of pixel (i,j) at scale l, 𝑝𝑝𝑖𝑖 ,𝑗𝑗 ,𝑙𝑙  the corresponding color value 𝑝𝑝𝑞𝑞  is 
the average color in the neighborhood, d the L2 distance, and 𝑤𝑤𝑖𝑖 ,𝑗𝑗 ,𝑙𝑙  weights designed in order 
to privilege as salient candidates the pixels located in the center of the image. Finally, the 
saliency map is constructed from the contrast pyramid by summing up all scales (Figure 5.4). 
 

 
Figure 5.4. Region-enhanced saliency detection: (a) Original image; 

(b) Segmented image; (c) Scale invariant saliency, (d) Region enhanced saliency. 
 
The technique introduced in [Muratov11] is based on image segmentation. The authors affirm 
that the major problem of previously developed saliency detectors is that only a small part of 
the interest object (e.g. edges or high contrast points) is detected. So, they propose to apply 
the saliency map on each segmented region by considering the relation between segments 
rather than pixels. Authors consider a set of global features including color information, 
luminance contrast and center surround histogram map. Based on the assumption that the 
object of interest is always located in the center of the image they computed two parameters 
corresponding to the segment location and size. 
 
A three step method based on image patches is also introduced in [Duan11]. First, the image 
is segmented into non-overlapping patches for which only the color information is taken into 
consideration. Second, the patches are described in a low dimensional space which is obtained 
based on a method equivalent to PCA. In the final step, spatially weighted dissimilarities are 
evaluated based on a weighting mechanism that indicates the central bias.  
 
The method presented in [Fang11] is also based on the principle of dividing the input image 
into small patches. For each patch the intensity Y and the color components  R, G, B are 
considered in order to form two new color difference channels: 𝑅𝑅𝑅𝑅 = 𝑅𝑅 − 𝐺𝐺 and 𝐵𝐵𝐵𝐵 = 𝐵𝐵 −
𝑌𝑌 . By using Quaternion Fourier Transform (QFT) applied to each patch, the amplitude 
spectrum is determined as follows: 

𝑄𝑄𝑄𝑄 = 𝐴𝐴 ∙ 𝑒𝑒𝑖𝑖𝑖𝑖 ,  with 𝑄𝑄𝑄𝑄 = 𝑄𝑄𝑄𝑄𝑄𝑄(𝑌𝑌,𝑅𝑅𝑅𝑅,𝐵𝐵𝐵𝐵)   .                       (5.9) 

The final saliency value of a patch is computed as the Euclidian distance between the 
amplitude spectrum of the image patch (i) and all its neighboring patches computed as: 
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𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑖𝑖, 𝑗𝑗) = �� log�𝐴𝐴𝑚𝑚𝑖𝑖 + 1� −� log⁡(𝐴𝐴𝑛𝑛
𝑗𝑗 + 1)

𝑛𝑛𝑚𝑚

�       .             (5.10) 

The logarithm is used to reduce the dynamic range of the amplitude coefficients. 
 
In [Gao08], authors define a discriminant center surround saliency, based on the idea that 
local image features are stimuli of interest when they are distinguishable from the 
background. An intensity map and four color channels are here used. The intensity channel is 
decomposed using a directional zero-mean Gabor filter at 3 spatial scales and 4 directions.  
 
Most of the methods [Gao08], [Oliva03], [Zhang09] based on Gabor or DoG filter responses 
require many design parameters such as the number of filters, type of filters, choice of the 
nonlinearities, and a proper normalization scheme. Such methods tend to emphasize textured 
areas as being salient, regardless of their context. 
 
A different technique is presented in [Seo09], where the authors introduce a nonparametric 
saliency estimation method. First, the detection is performed using the local regression 
kernels (LSK) as features. Such features capture the local structure of the data and are robust 
to significant noise distortion. Second, in order to determine the likelihood of saliency, called 
self-resemblance, they introduce a nonparametric kernel density estimation algorithm. The 
LSK features make it possible to accurately detect the salient objects. The main drawback is 
related to the high computational resources required.  
 
Based on the definition of a semantic element, also called attention object (AO), (e.g.: a 
human face, a flower, an automobile, a text sentence), in [Chen03] authors propose assigning 
three attributes to each AO: the region of interest (ROI), the attention value (AV) and the 
minimum perceptible size (MPS). In order to determine the saliency map they adopt a three 
channel representation of the image based on color, intensity and orientation. In this case, the 
saliency attention value is computed as: 

𝐴𝐴𝐴𝐴𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = � 𝐵𝐵𝑖𝑖 ,𝑗𝑗 ∙ 𝑊𝑊𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆
𝑖𝑖 ,𝑗𝑗

(𝑖𝑖 ,𝑗𝑗 ∈𝑅𝑅)

                                 (5.11) 

where 𝐵𝐵𝑖𝑖 ,𝑗𝑗  denotes the brightness of pixel (i, j) in the saliency region R and 𝑊𝑊𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆
𝑖𝑖,𝑗𝑗  is the 

positional weight associated to pixel (i, j), defined with the help of a Gaussian template placed 
in the centre of the image (Figure 5.5). 

 
Figure 5.5. Image saliency detection using normalized Gaussian templates: 

(a) Original image; (b) Saliency map. 
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The technique introduced in [Zhai06] is based on psychological studies and affirm that the 
human perception is sensitive to contrast of visual signals such as color, intensity and texture. 
Here, in order to determine the spatial attention model they exploit color features. The 
computational complexity is linear with respect to the total number of pixels in the image. 
The saliency map of an image is built upon the color contrast between image pixels. The 
saliency value of a pixel 𝐼𝐼𝑘𝑘  in an image 𝐼𝐼 is defined as: 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝐼𝐼𝑘𝑘) = �‖𝐼𝐼𝑘𝑘 − 𝐼𝐼𝑖𝑖‖
∀𝐼𝐼𝑖𝑖∈𝐼𝐼

                                              (5.12) 

where ‖∙‖ represents the color distance metric.  
 
A color quantization is applied in order to obtain a set of 256 indexed colors. Based on the 
obtained saliency map the authors propose a region growing technique for detecting the 
salient regions (Figure 5.6). 
 

 
Figure 5.6. Spatial attention detection: (a) Input image; (b) Pixel level saliency map; (c) Detected 

attention points; (d) Expanded boxes from the attention points; (e) Saliency map. 
  
In a general manner, global contrast based methods evaluate saliency of an image region 
using contrast with respect to the entire image.  
 
A different approach is proposed in [Xie11] that use salient points to detect the corners of an 
object of interest. In order to provide the preliminary location for an attention region the 
convex hull techniques is used to enclose the detected salient points (Figure 5.7). 
 

 
Figure 5.7. Rough saliency estimation as in [Xie11]: (a) Input image; 

(b) Salient points; (c) Convex hull. 
 
After estimating the location of the rough salient regions the final saliency map is determined 
with the help of a Bayesian estimator.  
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Various studies that combine the bottom-up and top-down models for better detection 
performances. In most part of the cases, the top-down component is actually a human face 
detector [Itti01], [Suh03]. Some variation is presented in [Chen03] that combine a face and 
text detector to find the optimal solutions through a branch and bound algorithm.  
 
The above presented approaches concern exclusively the case for 2D still images. Let us now 
analyze how the saliency detection is considered in the case of video data.  
 

5.1.2.   Temporal saliency detection 
 
One of the greatest challenges in computer vision is automatic interpretation of dynamic 
scenes which include detection, localization and segmentation of objects and people. The 
video saliency detection represents a highly promising manner to understand and identify 
relevant features of interest and its content. While this can be performed by analyzing 
individual frames independently, video provides rich additional cues, which include motion of 
objects in the scene, temporal continuity, long range temporal object interaction and the 
causal relations among events [Lezama11]. 
 
Motion has a great influence in identifying the salient regions in complex, dynamic scenes. 
Salient motion models combined with bottom-up and top-down cues can lead to an efficient 
visual saliency model, which can be generated with the help of static saliency maps and 
motion vectors.  
 
In [Zhai08], authors use both low level features and cognitive features, such as skin color and 
captions, to develop a visual attention model. They start by converting the image in the 
YCbCr color space. The orientation channel (𝑐𝑐𝑐𝑐𝑖𝑖) is obtained by filtering the intensity channel 
(𝑐𝑐𝑐𝑐𝑖𝑖) in four directions with Gabor filters (GF(𝜃𝜃)): 

𝑐𝑐𝑐𝑐𝑖𝑖(𝜃𝜃) = 𝑐𝑐𝑐𝑐𝑖𝑖 ∗ 𝐺𝐺𝐹𝐹(𝜃𝜃),𝜃𝜃 ∈ {0°, 45°, 90°, 135°}                 (5.13) 

The motion vectors are estimated with the help of the Ogale’s algorithm [Ogale06]. Between 
three consecutive frames, the average directional optical flows 𝑜𝑜𝑜𝑜(𝑓𝑓𝑖𝑖−1,𝑓𝑓𝑖𝑖) and 𝑜𝑜𝑜𝑜(𝑓𝑓𝑖𝑖 ,𝑓𝑓𝑖𝑖+1) 
are computed in both horizontal (h) and vertical (v) directions, as described in the following 
equation: 

𝑐𝑐𝑐𝑐𝑖𝑖
Θ =

[𝑜𝑜𝑜𝑜Θ(𝑓𝑓𝑖𝑖 ,𝑓𝑓𝑖𝑖+1) + 𝑜𝑜𝑜𝑜Θ(𝑓𝑓𝑖𝑖−1,𝑓𝑓𝑖𝑖)]
2

,Θ ∈ (ℎ, 𝑣𝑣)                 (5.14) 

For each frame, a pyramid is created by iteratively down-sampling the established channels. 
Finally, the various channels considered are combined in one single saliency profile.   
 
In practice, the motion can be produced by two types of elements: salient (interesting) objects 
and background (uninteresting) objects. The salient motion is defined in [Ying-Li05] as the 
motion from a typical surveillance target (person of vehicle) that is opposed to other type of 
movements such as: camera displacements, swaying of vegetation in the wind… Based on 
this definition, authors propose a spatiotemporal saliency detection algorithm, dedicated to 
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real-time surveillance videos, that is able to detect interesting objects characterized by a 
consistent motion over the time. 
 
The proposed method can be summarized into the following steps. First, the region of change 
between successive frames is obtained by substraction. Next, the optical flow is computed 
with the help of the well-known Lucas-Kanade algorithm. In the third phase, pixels motion 
consistency over a set of successive frames in the horizontal/vertical directions is determined, 
by temporal filtering. Finally, a salient object is detected by combining the temporal 
difference images with the temporal filtered motions. This process is illustrated in Figure 5.8.  

 
Figure 5.8. Salient motion detection [Ying-Li05]: (a) Initial frame; (b) Difference image between 

successive frames; (c) Horizontal optical flow; (d) Filtered optical flow; (e) Salient object. 
 
The method introduced in [Chen08] extracts a set of salient feature points, from 3D 
spatiotemporal volumes of video sequences. Such feature points are further used as seeds in a 
region growing-based approach in order to detect the salient regions in a motion attention 
map. The salient feature points are determined based on a Harris detector that is constructed 
using a 3 x 3 second order matrix 𝜇𝜇 associated to each pixel in each frame and defined as: 

𝜇𝜇 = 𝑔𝑔(𝑥𝑥, 𝑦𝑦, 𝑡𝑡:𝜎𝜎𝑖𝑖2, 𝜏𝜏𝑖𝑖2) ∗ �
𝐿𝐿𝑥𝑥2 𝐿𝐿𝑥𝑥𝐿𝐿𝑦𝑦 𝐿𝐿𝑥𝑥𝐿𝐿𝑡𝑡
𝐿𝐿𝑥𝑥𝐿𝐿𝑦𝑦 𝐿𝐿𝑦𝑦2 𝐿𝐿𝑦𝑦𝐿𝐿𝑡𝑡
𝐿𝐿𝑥𝑥𝐿𝐿𝑡𝑡 𝐿𝐿𝑦𝑦𝐿𝐿𝑡𝑡 𝐿𝐿𝑡𝑡2

� ,                        (5.15) 

where 𝜎𝜎𝑖𝑖2 = 𝑠𝑠 ∙ 𝜎𝜎𝑙𝑙2  and 𝜏𝜏𝑖𝑖2 = 𝑠𝑠 ∙ 𝜏𝜏𝑙𝑙2  are the integration scales, 𝐿𝐿𝑘𝑘  is the first order Gaussian 
derivative through the k axis and 𝑔𝑔(𝑥𝑥,𝑦𝑦, 𝑡𝑡:𝜎𝜎𝑖𝑖2, 𝜏𝜏𝑖𝑖2)  is a Gaussian weighting function. The 
pixels with significant eigenvalues (𝜆𝜆1, 𝜆𝜆2, 𝜆𝜆3) of matrix 𝜇𝜇 are considered as salient. 
 
After detecting the seeds, a motion attention map is constructed in order to determine the 
spatial extent of the search window. The goal is to find salient regions that present consistent 
motions. The optical flow (𝑢𝑢, 𝑣𝑣,𝑤𝑤) in the neighborhood of each pixel is estimated by solving 
the following structural tensor equation: 

𝜇𝜇 ∙ [𝑢𝑢 𝑣𝑣 𝑤𝑤]𝑇𝑇 = 03×𝑙𝑙 .                                            (5.16) 
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The continuous rank-deficiency measure 𝑑𝑑𝜇𝜇  is defined as: 

𝑑𝑑𝜇𝜇 =

⎩
⎨

⎧
0, 𝑖𝑖𝑖𝑖 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝜇𝜇) = 0

𝜆𝜆3
2

( 1
2𝜆𝜆1

2 + 1
2𝜆𝜆2

2 + 𝜀𝜀)
, 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒                                    (5.17) � 

where 𝜀𝜀 is a constant used to avoid the division to zero. The motion attention map is obtained 
after applying a median filter (𝑓𝑓𝜇𝜇 ) on 𝑑𝑑𝜇𝜇  in order to keep regions with a consistent motion. 
Finally based on the motion attention map, the most appropriate scale for each region centered 
in the interest point is determined. 
 
In [Sevilmis08], authors focus on extracting all objects existent in the video flow, based on 
the following set of heuristic principles: 

• All objects (visually conspicuous or not) situated in the camera focus are salient; 
• Any moving object is identified as representative; 
• A face is always considered as salient because it indicates the presence of a person.  

 
So, initially the smoothed (filtered to remove noise and to flatten textures) frames are 
segmented into regions using a graph-based technique. Then, the region saliency is computed 
based on the set of heuristic principles presented above. The relevant regions are then tracked 
trough the entire shot in order to construct a salient an object.     
 
In [Hua09], a novel approach of distortion free video retargeting based on scale-space spatio-
temporal tracking is introduced. The technique aims at transforming an existent video in order 
to display it on lower resolution target devices. The saliency map is firstly estimated using the 
residue method presented in [Hou07] that is further extended to incorporate scale-space 
information. If we consider a set of n consecutive image frames: 

𝑆𝑆𝑡𝑡𝑛𝑛(𝑖𝑖, 𝑗𝑗, 𝑘𝑘) = {𝐼𝐼𝑡𝑡−𝑛𝑛+1(𝑖𝑖, 𝑗𝑗), 𝐼𝐼𝑡𝑡−𝑛𝑛+2(𝑖𝑖, 𝑗𝑗), … , 𝐼𝐼𝑡𝑡(𝑖𝑖, 𝑗𝑗) },                      (5.18)  

with 𝑘𝑘  indexing the individual frames, the phase spectrum of the 3D Fourier transform 
associated to the sequence 𝑆𝑆𝑡𝑡𝑛𝑛  is first computed. Next, an inverse FFT is applied 
simultaneously with a set of smoothing operations (with various kernels) in the spatial 
domain. Finally, all information from each scale is combined in one single map. The different 
phases of the approach are illustrated in Figure 5.9. 
 

 
Figure 5.9. Saliency detection in videos based using [Hua09]: (a) Original image; 

(b) Spectrum residue; (c) Phase spectrum. 
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A related technique that uses the spatio-temporal saliency fusion for video retargeting is 
introduced in [Lu10]. The attention map in this case is based on a non-linear scheme that 
combines spatial and temporal information. The spatial saliency is detected by the phase 
spectrum of Quaternion Fourier Transform applied on each color frame, which uses multiple 
channels to exploit conspicuous spatial features (e.g. intensity, color, texture…). The temporal 
saliency is measured by the local motion residue, while the global motion parameters are 
estimated from the matched feature points using a robust affine fitting (Least Median of 
Squares). In this case, the technique uses a sparse optical flow estimated based on feature 
points.  
 
Let us underline the nonlinear fusion principle employed here, which attempts to simulate 
several functions of the human perceptual system. First, in the absence of an excitation (e.g., 
the case of a uniformly distributed texture), the attention is focused in the center of the frame 
and not on the borders. Second, in the case of two regions with similar spatial saliencies, a 
human will be focused on the region with the highest motion.   
 
The visual saliency detection algorithm introduced in [Ma11] incorporates the motion 
trajectory in order to identify relevant objects. Each frame of a video flow is described using a 
quaternion representation (QR) which integrates the spatial image content, the motion 
trajectories and the temporal residuals. An overlapped block-based motion estimation 
(OBME) is applied in order to determine the temporal motion trajectory. After OBME, three 
temporal components are obtained: 𝑀𝑀𝑀𝑀𝑥𝑥(𝑖𝑖, 𝑗𝑗), 𝑀𝑀𝑀𝑀𝑦𝑦(𝑖𝑖, 𝑗𝑗) - the horizontal and vertical vector 
motion blocks centered in (𝑖𝑖, 𝑗𝑗) and 𝑃𝑃𝑃𝑃(𝑖𝑖, 𝑗𝑗) - the motion prediction error. The final saliency 
map is obtained from the phase of the Fourier spectrum as described by the following 
equation: 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑥𝑥, 𝑦𝑦) = 𝑔𝑔(𝑥𝑥,𝑦𝑦) ∗ �𝐹𝐹−1(exp�𝑖𝑖 ∙ 𝑝𝑝(𝑥𝑥, 𝑦𝑦)�)�2                  (5.19) 

where F and 𝐹𝐹−1 denote the direct and inverse Fourier transforms, 𝑝𝑝(𝑥𝑥, 𝑦𝑦) = 𝑃𝑃(𝐹𝐹(𝐼𝐼(𝑥𝑥, 𝑦𝑦))) is 
the phase spectrum, I(x,y) the original image and 𝑔𝑔(𝑥𝑥, 𝑦𝑦)  is a Gaussian filter used for 
smoothing. 
 
A multi-modal saliency detection method for audio-visual video streams is introduced in 
[Evangelopoulos08]. The audio saliency detection is based on signal modulation and related 
multi-frequency band features extracted through nonlinear operators and energy tracking. The 
audio signal is represented as a sum of narrowband amplitude and frequency varying, non-
stationary sinusoids that are further demodulated in amplitude and frequency using a set of 
frequency-tuned Gabor filters. For each frame, the dominant modulation component is 
defined as the one that maximize the average Teager energy.  
 
The spatio-temporal saliency map is obtained by decomposing the video into a set of features 
(intensity, color and orientation) that are further processed using three dimensional Gaussian 
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filters (𝐺𝐺3𝐷𝐷
𝜃𝜃 ,𝜑𝜑 ) and their Hilbert transforms (𝐻𝐻3𝐷𝐷

𝜃𝜃 ,𝜑𝜑 ). A single spatio-temporal saliency volume is 
obtained based on a Principal Component Analysis.   
 
A hybrid algorithm that includes stationary saliency models based on both top-down and 
bottom-up visual cues combined with motion information and prediction is introduced in 
[Guraya11]. The bottom-up saliency detection uses color, intensity and orientation visual 
feature as described in [Itti98]. Because the proposed model is applied on surveillance videos 
the authors also propose to integrate a face detector. The salient motion is determined based 
on the technique described in [Ying-Li05]. The improvement brought by the proposed method 
is given by the prediction algorithm that is able to compute the saliency map with the help of 
the previous saliency maps. So, the salient regions at frame t+1 are predicted as a 
combination of the saliency information from frame 1 to t, updated with the motion vectors 
magnitude computed between frame t and t+1 (Figure 5.10). 
 
The motion saliency detection method proposed by Xue et al [Xue12] makes use of the low 
rank and sparse decomposition of video slices along X-T and Y-T planes in order to separate 
the foreground moving objects from the background. Each X-T and Y-T slice (S) can be 
decomposed as described in the following equation: 

𝑚𝑚𝑚𝑚𝑚𝑚‖𝐵𝐵‖∗ + 𝜆𝜆‖𝑀𝑀‖1, such that     𝑆𝑆 = 𝐵𝐵 + 𝑀𝑀                      (5.20) 

where the low-rank component B corresponds to the background, M captures the motion 
objects in foreground, 𝜆𝜆 is a coefficient controlling the weight of the sparse matrix, ‖∙‖∗ and 
‖∙‖1respectively represent the nuclear [Jaggi10] and 𝐿𝐿1 norms of the considered matrices. The 
slices are then integrated together using a normalization process in order to construct the final 
saliency map.  
 

 
Figure 5.10. Saliency detection using predictive attention [Guraya11]: (a) Input frame; 

(b) Spatial saliency map; (c) Top-down attention; (d) Motion saliency map; (e) Predictive 
map; (f) Combined saliency map. 
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Whatever the features used for saliency detection, most of the previously presented methods 
generate an attention map without explicitly modeling the coherence of the results, either 
spatially or temporally. In [Wu11], authors claim that modeling such a coherence is a highly 
important issue that needs to be appropriately taken into account. In their approach, they 
consider: (1) the spatial coherence of low-level visual grouping cues (e.g. appearance and 
motion), which helps per-frame object-background separation, and (2) the temporal coherence 
of the object properties (e.g. shape and appearance), which ensures consistent object 
localization over time.  
 
Here, the saliency map extraction is formulated as a binary map problem. An energy function 
of the binary map associated to each frame 𝐸𝐸(𝐴𝐴𝑡𝑡|𝐼𝐼𝑡𝑡 ,𝑡𝑡−1,𝐴𝐴𝑡𝑡−1)  is defined as a linear 
combination of various terms, as described in the following equation: 

𝐸𝐸�𝐴𝐴𝑡𝑡�𝐼𝐼𝑡𝑡 ,𝑡𝑡−1,𝐴𝐴𝑡𝑡−1� = 𝑆𝑆(𝐴𝐴𝑡𝑡 , 𝐼𝐼𝑡𝑡 ,𝑀𝑀𝑡𝑡) + 𝛼𝛼𝐶𝐶𝑆𝑆(𝐴𝐴𝑡𝑡 , 𝐼𝐼𝑡𝑡 ,𝑀𝑀𝑡𝑡) + 𝛽𝛽𝐶𝐶𝑇𝑇(𝐴𝐴𝑡𝑡−1,𝐴𝐴𝑡𝑡 , 𝐼𝐼𝑡𝑡−1, 𝐼𝐼𝑡𝑡) ,   (5.21) 

where 𝑆𝑆(𝐴𝐴𝑡𝑡 , 𝐼𝐼𝑡𝑡 ,𝑀𝑀𝑡𝑡)  denotes the saliency map, 𝐶𝐶𝑆𝑆(𝐴𝐴𝑡𝑡 , 𝐼𝐼𝑡𝑡 ,𝑀𝑀𝑡𝑡)  is the spatial coherence, 
𝐶𝐶𝑇𝑇(𝐴𝐴𝑡𝑡−1,𝐴𝐴𝑡𝑡 , 𝐼𝐼𝑡𝑡−1, 𝐼𝐼𝑡𝑡) is the temporal coherence, 𝐴𝐴𝑡𝑡  is the salient object represented as a binary 
mask for each frame 𝐼𝐼𝑡𝑡 , 𝑀𝑀𝑡𝑡  is the optical flow field computed from frame 𝐼𝐼𝑡𝑡−1 to 𝐼𝐼𝑡𝑡  while α 
and β are real-valued, positive weights.  
 
The global energy defined in Equation (5.21) makes it possible to integrate both static and 
dynamic information within a unified framework.  
 
Finally, let us mention the emerging saliency detection methods dedicated to the case of 3D, 
stereoscopic videos. An additional feature can be here exploited, which corresponds to the 
depth maps that can be constructed from such data. The depth information significantly 
affects the human perception and it is mandatory to consider it when developing the saliency 
map. To our very best knowledge, the only work existent in the technical literature addressing 
the problem of 3D attention models in presented in [Zhang10].  
 
The authors develop a stereoscopic visual attention model with three attributes: depth 
information (D), spatial saliency map (𝑆𝑆𝑆𝑆) and motion saliency (𝑆𝑆𝑚𝑚 ): 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = {𝐷𝐷, 𝑆𝑆𝑆𝑆 , 𝑆𝑆𝑚𝑚 }                                                                    (5.22) 

The spatial saliency map is obtained by applying the method described in [Itti01]. The motion 
estimation is done using a block-based optical flow algorithm applied between successive 
frames. Regarding the depth map analysis, authors identify several major differences between 
3D video and traditional movies: 

• In the case of 3D videos the most interesting part are given by the regions that pop-up 
of the screen; 

• As depth increases the amount of interest of a specific object is reducing; 
• The objects situated out of the depth field of the camera system are usually not in the 

attention area. 
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Based on this assumption, the authors propose a depth-based dynamic fusion model that is 
able to combine all the three sources of information.  
 
The analysis of the literature shows that for a successful detection of the salient objects, it is 
of outmost importance to integrate various static and dynamic visual features within a unified 
framework. In order to achieve this goal, we have elaborated a novel bottom-up, data driven 
saliency detection technique that incorporates spatial, temporal and eventually 3D information 
(in the case of stereoscopic data). The next section describes in details the proposed saliency 
detection approach, in the case of 2D videos.  
 
 

5.2.   PROPOSED SALIENT OBJECT DETECTION APPROACH  
 
Figure 5.11 illustrates the proposed analysis framework, with the main phases involved. First, 
the video is temporally segmented into shots. For each determined shot, a set of representative 
key-frames is selected. Then, for each keyframe the salient regions are obtained, by 
combining the spatial and motion information in a dynamic fusion model. The selected 
regions are then applied as input to the GrabCut [Rother04] algorithm in order to extract the 
salient object. 

 
Figure 5.11. Spatiotemporal salient object detection framework. 
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The spatial and temporal attention models proposed and considered are detailed in the 
following sections. 
 

5.2.1.   Spatial attention model 
 
Current methods of saliency detection generate regions that have low resolution, poorly 
defined borders or are expensive to compute. Additionally, some methods produce high 
saliency values at the level of object edges instead of generating maps that uniformly cover 
the whole objects. As a consequence, such methods fail to exploit all the spatial frequency 
content of the considered images.  
 
The spatial saliency model introduced in this section aims at overcoming such shortcomings 
and is based on an enhanced stationary saliency technique, so-called region-based contrast 
(RC) [Cheng11]. The goal here is to separate large scale objects from the background. A 
segmentation-based principle is applied. Thus, each keyframe is over-segmented into regions 
using the classic Mean Shift algorithm [Comaniciu02]. Let us note that other generic 
segmentation algorithm can also be used in this stage as graph partition strategy 
[Felzenszwalb04], expectation-maximization technique [Carson02], contour and texture 
analysis [Malik01]...  
 
The Mean Shift segmentation is a local homogenization technique based on a clustering 
process that is very useful to eliminate shading or tonality differences in localized objects 
(Figure 5.12). 
 

 
Figure 5.12. Image segmentation using the Mean Shift algorithm: 

(a) Original image; (b) Segmented image. 
 
The technique replaces each pixel value with the mean of the neighborhood pixels in a range 
(r) and whose values are within a color distance (d). Different parameters need to be 
specified: 

• A distance function that determines the difference between pixels. In our case we used 
the Euclidian distance but any other function (e.g. Manhattan distance) can also be 
employed.  

• A spatial window radius that gives the number of pixels accounted for computation. In 
our case the radius was fixed at 10 pixels; 
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• The colour window radius, that constrains the color magnitude, used to select for mean 
computation only the pixels having the value below the threshold. In our case the 
value was fixed at 10.  

 
The spatial saliency value S of each region (𝑟𝑟𝑘𝑘 ) obtained after segmentation is defined by 
measuring the color contrast of the considered segment with respect to all the other regions 
present in the image, as described in the following equation: 

𝑆𝑆(𝑟𝑟𝑘𝑘) = � 𝑤𝑤(𝑟𝑟𝑖𝑖) ∙ 𝑑𝑑𝑟𝑟(𝑟𝑟𝑘𝑘 , 𝑟𝑟𝑖𝑖)
𝑟𝑟≠𝑟𝑟𝑘𝑘

 ,                                    (5.23) 

where 𝑤𝑤(𝑟𝑟𝑖𝑖) is the weight of region 𝑟𝑟𝑖𝑖 , computed as the total number of pixels included in the 
region while 𝑑𝑑𝑟𝑟(, ) is the quadratic color distance metric between regions defined as: 

𝑑𝑑𝑟𝑟(𝑟𝑟1, 𝑟𝑟2) = ��𝑝𝑝(𝑐𝑐1,𝑖𝑖) ∙ 𝑝𝑝(𝑐𝑐2,𝑗𝑗 )
𝑛𝑛2

𝑗𝑗=1

∙ 𝛿𝛿�𝑐𝑐1,𝑖𝑖 , 𝑐𝑐2,𝑗𝑗  � ,                 (5.24)
𝑛𝑛1

𝑖𝑖=1

 

where 𝑝𝑝(𝑐𝑐𝑘𝑘 ,𝑖𝑖) is the probability (estimated as the relative frequency of occurrence) of the i-th 
color 𝑐𝑐𝑘𝑘 ,𝑖𝑖  among all 𝑛𝑛𝑘𝑘  colors in the k region (𝑘𝑘 = 1,2). Note that the color space was initially 
quantized into 123 different colors, each color channel being uniformly divided into 12 levels. 
While the quantization of colors is performed in the RGB color space, we measure the color 
difference in the L*a*b color space, which is perceptually more pertinent. Here, 𝛿𝛿 denotes the 
𝐿𝐿1 distance in the L*a*b color space.  
 
For each region, in order to increase the influence of closer, neighboring regions and in the 
same time decrease the impact of regions located at farther locations (Figure 5.13) a spatial 
weighting term is introduced, as described in Equation (5.25).  
 

 
Figure 5.13. Spatial attention map extraction. (a) Original image; (b) Saliency map. 

  

𝑆𝑆(𝑟𝑟𝑘𝑘) = � exp�
𝑑𝑑𝑠𝑠(𝑟𝑟𝑘𝑘 , 𝑟𝑟𝑖𝑖)

𝜎𝜎2 �𝑤𝑤(𝑟𝑟𝑖𝑖) ∙ 𝑑𝑑𝑟𝑟(𝑟𝑟𝑘𝑘 , 𝑟𝑟𝑖𝑖)
𝑟𝑟≠𝑟𝑟𝑘𝑘

.                      (5.25) 

Here, 𝑑𝑑𝑠𝑠(𝑟𝑟𝑘𝑘 , 𝑟𝑟𝑖𝑖) is the spatial distance between the gravity centers of regions 𝑟𝑟𝑘𝑘  and  𝑟𝑟𝑖𝑖 , while 
𝜎𝜎2 is a parameter controlling the strength of the spatial weighting mechanism. 
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The spatial saliency is determined for each detected keyframe independently. In addition, a 
temporal saliency term is defined, in order to take into account the dynamic structure of the 
videos. This term is explicated in the next section.  
 

5.2.2.   Temporal attention model 
 
The salient motion in a video can be intuitively interpreted as the movement that attracts the 
attention of a human subject. Most of the previously developed methods [Ying-Li05], 
[Belardinelli09] are based only on the temporal difference of adjacent frames and cannot 
effectively identify the salient motion.  
 
We introduce a novel temporal attention technique that combines the previously described 
spatial (stationary) saliency model with a set of interest points (Ip) that are matched between 
successive video key-frames. In order to model the motion of moving regions, homographic 
transforms are used. More precisely, the algorithm consists of the following steps: 
 

Step 1: Interest point detection and matching – The Scale Invariant Feature Transform 
(SIFT) [Lowe04] is applied on two successive frames (by taking as starting frame each 
detected keyframe). The correspondence between the interest points is established using KD-
tree matching technique [Panigrahy08]. 

 
For untexured regions, or for low resolution videos the SIFT descriptor is not able to detect 
interest points. So, in order to have a complete structure of key-points, for any part of a frame, 
we propose to extract at least one point for any segmented region. Each region of each 
detected keyframe is put into correspondence with regions from the successive frame, with 
the help of the template matching technique introduced in [Briechle01]. 
 
Let 𝐼𝐼(𝑥𝑥,𝑦𝑦) denote the intensity value of the considered image at point (𝑥𝑥,𝑦𝑦) and 𝑁𝑁𝑥𝑥 ,  𝑁𝑁𝑦𝑦  the 
image dimensions. The region is considered as a template t of size 𝑀𝑀𝑥𝑥 × 𝑀𝑀𝑦𝑦 , with Mx and My 
being the sizes of the region’s bounding box. The position �𝑢𝑢𝑝𝑝𝑝𝑝𝑝𝑝 , 𝑣𝑣𝑝𝑝𝑝𝑝𝑝𝑝 � of the pattern in the 
successive frame is given by the normalized cross correlation value γ at each point (𝑢𝑢, 𝑣𝑣) of I 
and the template t (which has been shifted by u steps in the x direction and by v steps in the y 
direction). This procedure is illustrated in Figure. 5.14.  
 

 
Figure 5.14. The interest points correspondences between successive frames. 
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The normalized cross correlation coefficient is defined as: 

𝛾𝛾(𝑢𝑢, 𝑣𝑣) =
∑ (𝐼𝐼(𝑥𝑥, 𝑦𝑦) − 𝐼𝐼𝑢̅𝑢 ,𝑣𝑣)(𝑡𝑡(𝑥𝑥 − 𝑢𝑢, 𝑦𝑦 − 𝑣𝑣) − 𝑡𝑡̅)𝑥𝑥 ,𝑦𝑦

�∑ �𝐼𝐼(𝑥𝑥,𝑦𝑦) − 𝐼𝐼𝑢̅𝑢 ,𝑣𝑣�𝑥𝑥 ,𝑦𝑦
2 ∑ (𝑡𝑡(𝑥𝑥 − 𝑢𝑢,𝑦𝑦 − 𝑣𝑣) − 𝑡𝑡̅)2

𝑥𝑥 ,𝑦𝑦

                  (5.26) 

where 𝐼𝐼𝑢̅𝑢 ,𝑣𝑣  denotes the mean value of 𝐼𝐼(𝑥𝑥,𝑦𝑦) within the area of the template t shifted to (u, v) 
and it computes as: 

𝐼𝐼𝑢̅𝑢 ,𝑣𝑣 =
1

𝑀𝑀𝑥𝑥𝑀𝑀𝑦𝑦
� � 𝐼𝐼(𝑥𝑥, 𝑦𝑦)

𝑣𝑣+𝑀𝑀𝑦𝑦−1

𝑦𝑦=𝑣𝑣

𝑢𝑢+𝑀𝑀𝑥𝑥−1

𝑥𝑥=𝑢𝑢

                               (5.27) 

and 𝑡𝑡̅ is the mean value of template t. Due to the normalization obtained by the mean value 
substraction, the correlation coefficient 𝛾𝛾(𝑢𝑢, 𝑣𝑣)  is invariant to changes in brightness or 
contrast of the image. The desired position �𝑢𝑢𝑝𝑝𝑝𝑝𝑝𝑝 , 𝑣𝑣𝑝𝑝𝑝𝑝𝑝𝑝 � of the pattern is equivalent to 
determining the maximum value of the 𝛾𝛾 parameter.  
 
For each matched segment an interest point is associated to, located in the gravity center of 
the considered segment.  
 
Let 𝑝𝑝1𝑖𝑖(𝑥𝑥1𝑖𝑖 ,𝑦𝑦1𝑖𝑖) be the i-th key point in the first image and 𝑝𝑝2𝑖𝑖(𝑥𝑥2𝑖𝑖 ,𝑦𝑦2𝑖𝑖) be its correspondent 
in the second image. The associated motion vectors (𝑣𝑣𝑖𝑖𝑖𝑖 ,𝑣𝑣𝑖𝑖𝑖𝑖 ), expressed in polar coordinates 
with magnitude (𝐷𝐷𝑖𝑖(1,2)) and angle of motion (𝜃𝜃𝑖𝑖(1,2)) are also computed in this step: 

𝑣𝑣𝑖𝑖𝑖𝑖 = 𝑥𝑥2𝑖𝑖 −  𝑥𝑥1𝑖𝑖   ; 𝑣𝑣𝑖𝑖𝑖𝑖 = 𝑦𝑦2𝑖𝑖 −  𝑦𝑦1𝑖𝑖 ,                                  (5.28) 

𝐷𝐷𝑖𝑖(1,2) =  �𝑣𝑣𝑖𝑖𝑖𝑖2 + 𝑣𝑣𝑖𝑖𝑖𝑖2   , 𝑖𝑖 = 1,𝑛𝑛�����,                                      (5.29) 

𝜃𝜃𝑖𝑖(1,2) = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑣𝑣𝑖𝑖𝑖𝑖
𝐷𝐷𝑖𝑖(1,2)

, 𝜃𝜃 ∈ [0,2𝜋𝜋]                                      (5.30) 

where n is the total number of correspondences.  
 

Step 2: Interest points saliency initialization – For the current keyframe, the interest 
point’s spatial saliency values are determined based on the technique described in 
Section 5.2.1. The saliency value associated to each interest point is defined as the saliency of 
the region it belongs to. 
 

Step 3: Background / Camera motion detection –We start our analysis by identifying a 
subset of m keypoints located in the background (Figure 5.15). An interest point 𝑝𝑝1,𝑖𝑖  is 
defined as a background point if: 

𝑆𝑆𝑆𝑆𝑆𝑆�𝑝𝑝1,𝑖𝑖� ≤ 𝑇𝑇ℎ  ,                                                     (5.31) 

where 𝑆𝑆𝑆𝑆𝑆𝑆�𝑝𝑝1,𝑖𝑖� is the saliency value of point 𝑝𝑝1,𝑖𝑖  while 𝑇𝑇ℎ  is the average saliency value over 
the considered keyframe. 
 
The subset of m background interest points is used to determine the global geometric 
transform between the selected images, by considering a homographic motion model. A 
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mapping from 𝐼𝐼𝐼𝐼2 → 𝐼𝐼𝐼𝐼2  is a projectivity if and only if there exists a non-singular 3 x 3 
matrix H such that for any point x in 𝑅𝑅𝑅𝑅2 is mapped into 𝑯𝑯 ∙ 𝒙𝒙. Based on the m set of points 
and their correspondence we determine, by applying the RANSAC (Random Sample 
Consensus) [Lee07] algorithm, the optimal homographic matrix H.    
 

 
Figure 5.15. Camera motion estimation: (a) Initial interest points; (b) Subset of 
keypoints used for camera/background motion estimation; (c) Interest points 

belonging to camera / background movement. 
 
The RANSAC technique can be summarized as follows. Starting from a random sample of 4 
interest point correspondences, a homographic matrix H is computed. Then, each other pair of 
points is classified as an inlier or outlier depending of its concurrence with H. After all of the 
interest points are considered for the estimation of matrix H, the iteration that yields the 
largest number of inliers is selected. 
 
Based on the matrix H, for a current point 𝑝𝑝1𝑖𝑖 = [𝑥𝑥1𝑖𝑖 ,𝑦𝑦1𝑖𝑖 , 1]𝑇𝑇  expressed in homogeneous 
coordinates, its estimated correspondence position 𝑝𝑝2𝑖𝑖

𝑒𝑒𝑒𝑒𝑒𝑒 = [𝑥𝑥2𝑖𝑖
𝑒𝑒𝑒𝑒𝑒𝑒 ,𝑦𝑦2𝑖𝑖

𝑒𝑒𝑒𝑒𝑒𝑒 , 1]𝑇𝑇 is determined as: 
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�  ,                             (5.32)  

where: 

𝑤𝑤 =  1 (ℎ20 ∙⁄ 𝑥𝑥2𝑖𝑖
𝑒𝑒𝑒𝑒𝑒𝑒 + ℎ21 ∙ 𝑦𝑦2𝑖𝑖

𝑒𝑒𝑒𝑒𝑒𝑒 + ℎ22).                         (5.33) 

The estimation error is defined as the difference between estimated and actual position of the 
considered interest point, as described in Equation (5.34): 

𝜖𝜖(𝑝𝑝1𝑖𝑖 ,𝑯𝑯) = ‖𝑝𝑝2𝑖𝑖
𝑒𝑒𝑒𝑒𝑒𝑒 − 𝑝𝑝2𝑖𝑖‖ .                                  (5.34) 

Ideally 𝑝𝑝2𝑖𝑖
𝑒𝑒𝑒𝑒𝑒𝑒 = [𝑥𝑥2𝑖𝑖

𝑒𝑒𝑒𝑒𝑒𝑒 ,𝑦𝑦2𝑖𝑖
𝑒𝑒𝑒𝑒𝑒𝑒 , 1]𝑇𝑇should be as close as possible to 𝑝𝑝2𝑖𝑖 = [𝑥𝑥2𝑖𝑖 ,𝑦𝑦2𝑖𝑖 , 1]𝑇𝑇.  

 
In the case where the estimation error 𝜖𝜖(𝑝𝑝1𝑖𝑖 ,𝑯𝑯)  is inferior to a predefined threshold E, the 
corresponding pixels are marked as belonging to background. The outliers, i.e. pixels with 
estimation error 𝜖𝜖(𝑝𝑝1𝑖𝑖 ,𝑯𝑯) exceeding the considered threshold, are considered to belong to 
foreground objects. 
 
In our experiments, the background/foreground separation threshold E has been set to 5 
pixels. 
 

Step 4: Estimation of motion classes - In practice, multiple moving objects can be present in 
the scene. In this case, we determine a new subset of points formed by all the outliers and all the 
points not considered in previous step (obtained after subtracting from all the interest points the 
subset of m background points) (Figure 5.16).  

 

 
Figure 5.16. Interest points not assigned to camera / background motion. 

 
Then the considered points are agglomeratively clustered into classes. The basic principle 
behind agglomerative clustering techniques is to consider each individual point as a cluster and 
then successively reduce the number of classes by merging the two closest clusters until all 
points are assigned to a category [Cimiano04]. The key operation of the proposed algorithm is 
the proximity computation between two interest points that are classified into clusters based on 
the following steps:  
 

- Phase I - The motion vectors are sorted in descending order based on the number of 
occurrences of the motion vector angle. For the first interest point considered in the 
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current list, a new cluster is formed (𝑀𝑀𝑀𝑀𝑖𝑖) having as centroid its motion vector angular 
value (𝜃𝜃𝑐𝑐); 
 

- Phase II - For all the other interest points, not assigned to any motion class, we 
compute the angular deviation.  

𝐷𝐷𝐷𝐷𝐷𝐷(𝜃𝜃𝑖𝑖 ,𝜃𝜃𝑐𝑐) = |𝜃𝜃𝑖𝑖 − 𝜃𝜃𝑐𝑐 |                                                (5.35) 

If 𝐷𝐷𝐷𝐷𝐷𝐷(𝜃𝜃𝑖𝑖 ,𝜃𝜃𝑐𝑐) is beyond a predefined threshold 𝑇𝑇ℎ𝜃𝜃  (set to 30 degrees in our experiments) 
and the motion magnitude is equal with the cluster centroid then the current point will be 
grouped into 𝑀𝑀𝑀𝑀𝑖𝑖  cluster. Otherwise, a new motion class is created.  
 
For the remaining outliers, the process is applied recursively until all points belong to a 
motion class (Figure 5.17).  
 

 
Figure 5.17. Motion classes’ estimation. 

 
Step 5: Motion vector temporal consistency – In order to filter out the noisy vectors from 

the motion classes, which correspond to miss-matches of the considered interest points, we also 
compute the motion vectors with respect to the previous frame.   

 
Based on the new angular values and magnitudes we determined the novel cluster centroid as 
described in Step 4.I. With the new centroids we determine for each point the novel angular 
deviation. If the conditions imposed in Step 4 are not satisfied the interest point is excluded 
from the motion class and is automatically assigned to the background.  
 
This process is based on the hypothesis that the motion should be consistent for at least 3 
successive frames and makes it possible to reduce the number of outliers (Figure 5.18).  

 
Step 6: Interest point refinement – For all the interest points included in motion classes we 

applied next the k-NN algorithm [Zhang05] in order to verify that their assignment to the current 
class is not caused by an erroneous clustering. For the current point we determine its k nearest 
neighbors based on Euclidian distance (Figure 5.19). If at least half of the detected points do not 
belong to the same motion class then this point is eliminated from the motion cluster. In this 
case, its classification to the current group is considered erroneous and it is probably caused by 
template mismatching or instabilities in the homography estimation process.  
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Figure 5.18. Motion vectors computed between.(a) Successive frames; 

(b) Predecessor frames; (c) Motion classes correction. 
 

 
Figure 5.19. Refined salient motion classes 

 
In our experiments parameter k has been set to 5. After all interest points are verified and 
correctly clustered into motion classes, we determine the salient movement based on the 
associated spatial saliency map, as described here below in Step 7. 
 

Step 7: Salient motion detection – For all the motion classes determined at Step 5 we 
compute their saliency values as: 
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𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑀𝑀𝑖𝑖) =
∑ 𝑆𝑆𝑆𝑆𝑆𝑆�𝑝𝑝1,𝑖𝑖�
𝑚𝑚𝑖𝑖
𝑗𝑗=1

𝑚𝑚𝑖𝑖
, 𝑖𝑖 = 1,𝑁𝑁����� ,                     (5.36)  

where 𝑚𝑚𝑖𝑖  is the total number of points included in motion class 𝑀𝑀𝑖𝑖 , 𝑁𝑁 is the total number of 
classes and 𝑆𝑆𝑆𝑆𝑆𝑆�𝑝𝑝1,𝑖𝑖� is the value of an interest point 𝑝𝑝1,𝑖𝑖  in the spatial saliency map. In this 
case, the salient motion is determined as: 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 =  max
𝑖𝑖=1,𝑁𝑁

{𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑀𝑀𝑖𝑖)}                         (5.37) 

 
Step 8: Salient region detection – Using the interest points included in the salient motion 

class we determine next the corresponding salient regions. We have superimposed the salient 
interest points over the segmented image (Figure 5.12). A region is considered as salient if its 
associated interest point belongs to the salient motion class.  

 
In Figure 5.20 it is presented the temporal saliency map obtained. The regions marked with 
red contain at least one interest point belonging to the salient motion class while all other 
regions (without salient points) are marked with black. 
 

 
Figure 5.20. Salient regions detection based on interest points. 

 
Step 9: Object temporal consistency – In order to enhance the robustness and to reduce the 

computational time of our salient object detection method, we check in this stage for the 
temporal consistency of the detected regions. We assume that the salient region should 
generally be a smooth function in time, except for discontinuities at object borders or 
occlusions (in which case the region area will drastically change).  

 
We propose to consider the sequence of salient regions as a three-dimensional, binary 
function 𝑟𝑟𝑐𝑐𝑐𝑐𝑐𝑐 (x, y, t) with (x, y) being the spatial coordinates and t being the temporal 
coordinate. In this step we search for regions, between successive frames, that preserve the 
object area (𝑂𝑂𝐴𝐴) as much as possible.  

 
The detected object area region (𝑂𝑂𝐴𝐴) is tracked during an interval of T successive frames, with 
the help of a template matching technique if the following condition is satisfied: 

𝑂𝑂𝐴𝐴(𝑓𝑓𝑐𝑐𝑐𝑐𝑐𝑐 )�𝑂𝑂𝐴𝐴(𝑓𝑓𝑎𝑎𝑎𝑎𝑎𝑎 ) ≥ 0.8 ∙ 𝑂𝑂𝐴𝐴(𝑓𝑓𝑐𝑐𝑐𝑐𝑐𝑐 )                              (5.38) 
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where 𝑂𝑂𝐴𝐴(𝑓𝑓𝑐𝑐𝑐𝑐𝑐𝑐 ) denotes the object area in the current frame, 𝑂𝑂𝐴𝐴(𝑓𝑓𝑎𝑎𝑎𝑎𝑎𝑎 ) represents the area of 
the salient object in the previous frame (Figure 5.21). The result of the tracking provides the 
regions’ object support over time. In the case where the tracking is successful (in the sense of 
Equation (5.38)), the steps 1 to 8 are no longer applied to the corresponding frames, which 
makes it possible to speed up the detection process.  
 
If the condition presented in Equation (5.38) is not satisfied a new object area is constructed 
using the salient regions from the current frame. In this case the tacking is no longer 
performed and for the following frames the algorithm will begin with the first step. In our 
experiments, we have considered a value of 15 frames for parameter T.  
 
The spatial and temporal attention models are now combined in order to produce the final 
video saliency map. In scenes with no independently moving objects, the system detects a 
single motion class, corresponding to the camera motion. In this case, the segmentation is 
performed based solely on the spatial attention model.  
 

 
Figure 5.21. Area consistency between successive frames. 

 
Step 10: Object detection – The object is extracted with the help of the GrabCut 

algorithm (Figure 5.22) [Rother04], which is automatically initialized with a ternary saliency 
map obtained after step 8. More precisely, the pixels belonging to the salient region are 
labeled as certainly foreground, the regions outside the green rectangle (Figure 5.21) are 
marked as certain background, while the pixels inside the green rectangle not belonging to the 
salient regions are marked as probably foreground.  
 

 
Figure 5.22. Salient object detection. 
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5.2.3.   Experimental evaluation 
 
We tested the proposed methodology on a set of 20 general purpose videos. The video 
database is composed from the following subsets: 

• Set1: 8 videos from the TRECVid 2001/2002 evaluation campaigns (which are freely 
available on Internet (www.archive.org and www.open-video.org));  

• Set 2: 6 videos proposed in [Fukuchi09], for which the authors provide also the ground 
truth, (available at www.brl.ntt.co.jp/people/akisato/saliency3.html);  

• Set 3: 6 videos selected from [Lezama11] a database used to evaluate the performance 
of video segmentation algorithms, (available at www.di.ens.fr/willow/research/video).  

 
Some samples of the videos considered for evaluation and illustrated in this chapter, together 
with the corresponding ground truth salient object, are presented in Figures 5.23, 5.24 and 
5.25  
 

 
Figure 5.23. Video database - Set 1. 
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Figure 5.24. Video database - Set 2. 

 

 
Figure 5.25. Video database - Set 3. 

 
Each video segment contains a single salient object, corresponding to different semantic 
types: humans performing various activities, animals on the wild, vehicles (both on the 
ground and air). The videos in Set 1 are mostly documentaries, noisy, and vary in style and 
date of production, with a resolution of 341 x 256 pixels. The videos in Set 2 (with a 
resolution of 352 x 258 pixels) contain important camera and object movement, but with 
smooth background or without excessive texture, while the movies from Set 3 (with a 
resolution of 640 x 264 pixels) include dark, cluttered and highly dynamic scenes which make 
them very challenging for an automatic object extraction system. In addition, various types of 
both camera and multiple object motions are presented. 
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Some object detection results are presented in Figures 5.26, 5.27, 5.28 and 5.29. Let us first 
note that for videos with rich texture or including multiple objects, the result of a spatial 
attention model is, in most of the cases, unrepresentative (Column - Spatial saliency map). 
However, after incorporating the information associated to the temporal attention model, the 
method successfully detects the relevant moving regions. 
 

 
Figure 5.26. Experimental results obtained on videos in Set 1 
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Figure 5.27. Experimental results obtained on videos in Set 2 
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For example; if we consider the case of the clip 17 in Figure 5.26, the salient object is a 
moving car of small size with similar color features as the background. As it can be observed, 
the spatial attention model detects as salient the sky, but after incorporated the motion 
information the system is able correct identify the car.  
 
For the videos presented in Figure 5.27 in which the salient object is of large dimensions, 
located in the centre of the image and without textured background or multiple moving 
objects the results obtained by the spatial attention models are more than satisfactory and the 
temporal attention model only consolidates the obtained result. 
 
The impact of motion information is even more important for scenes with rich texture, as in 
the case of the videos presented in Figure 5.28 and 5.29. Here, the output of a spatial saliency 
system is useless because the technique is not able to distinguish between different types of 
regions. However, with the help of the dynamic model the temporal attention becomes 
dominant and we are able to identify were interesting action happen. For these videos, the 
spatial attention model returns an erroneous salient map because all the objects presented in 
the videos are described by the same set of colors. But after incorporating the motion 
information the system performers well and detects were a relevant change occurs. 
 
In order to further demonstrate the quality of the proposed technique (Spatio-temporal visual 
saliency (STVS)) we compared it with one of the most representative methods existent in the 
technical literature called the Graph-Based Visual Saliency (GBVS) [Harel07], using the 
author’s own implementation which is available on the web 
[www.klab.caltech.edu/~harel/share/gbvs.php]. In Figure 5.30 and 5.31 we present the 
experimental results obtained. We used for evaluation the same video database of 20 movies 
considered.      
 
After analyzing the experimental results presented in Figure 5.30 and 5.31 we determine that 
both methods are able to correctly identify the position of a salient object. However, the 
GBVS technique suffers from the following limitations: 
 

• The salient regions are not uniformly highlighted, in this case the accent is put on the 
center or on distinctive elements (e.g. colors), 

• The object boundaries are not well defined. In the case the technique returns a region 
and not an object, 

• The high frequencies in the saliency map (colored with red) are generated in most of 
the cases by texture, noise or block artifacts. 

 
In contrast, the proposed method makes it possible to successfully achieve highly accurate 
detection results and overcomes, in most cases, such limitations.  
 
In the second phase of our experimental evaluation, we have examined the impact of different 
parameters involved in our method, on the detection performances. We started by determining 
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the effect the background/foreground separation threshold E (Equation (5.34)) on the camera 
motion estimation. We used for evaluation the video from Set 3 because in this case the 
number of interest points correctly matched is larger than 100, which allow us to determine 
accurately the influence of the considered parameter in the saliency map extraction process. 
 

 
Figure 5.30. Comparative evaluation of the proposed technique and the method 

introduces in [Harel07] on Set 2. 
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Figure 5.31. Comparative evaluation of the proposed technique and the method introduces in 

[Harel07] on Set 3. 
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As evaluation metrics, we have considered the traditional Recall (R), Precision (P) and F1 
norm (F1) measures, defined as follows:  

MDD
DR
+

= , 
FAD

DP
+

=  and 
RP

RPF
+
××

=
 21                         (5.39) 

where D is the number of the detected interest points belonging to the background, MD is the 
number of missed detections, and FA is the number of false alarms (points that should be 
included in motion classes but are erroneous considered as belonging to the background). 
Ideally, all three parameters should be equal to 100%, which correspond to the case where all 
existing interest points are assigned correctly to motion classes, without any false alarm. 
 
The obtained results are summarized in Table 5.1.  
 

Table 5.1. Camera motion estimation for different threshold parameters. 

Video 
title 

Nr. of 
interest 
points 

Threshold 
(pixels) 

False 
Alarm 
(FA)s 

Missed 
Detection 

(MD) 

Correctly 
Detected 

(D) 

Precision 
 

Recall 
 

F1 
score 

 

Clip 7 107 

2 0 13 92 1 0,8761 0,934 
5 0 11 95 1 0,8962 0,945 
7 2 8 99 0,9801 0,9252 0,951 

10 6 5 104 0,9454 0,9541 0,949 

Clip 8 218 

2 0 21 197 1 0,9036 0,949 
5 0 14 204 1 0,9357 0,966 
7 3 12 206 0,98563 0,9449 0,964 

10 8 4 214 0,9631 0,9596 0,961 

Clip 9 306 

2 7 23 283 0,9758 0,9248 0,949 
5 11 18 288 0,9632 0,9411 0,952 
7 18 15 291 0,9417 0,9509 0,946 

10 26 11 295 0,919 0,9640 0,940 

Clip 10 163 

2 0 15 148 1 0,9079 0,951 
5 3 12 151 0,9805 0,9263 0,952 
7 7 10 153 0,9562 0,9386 0,947 

10 9 8 155 0,9451 0,9509 0,948 

Clip 11 172 

2 0 12 160 1 0,9302 0,963 
5 0 11 161 1 0,9360 0,966 
7 2 7 164 0,9879 0,959 0,973 

10 4 6 166 0,9764 0,9651 0,970 

Clip 12 264 

2 0 14 250 1 0,9469 0,972 
5 2 12 252 0,9921 0,9545 0,972 
7 5 10 254 0,9806 0,9621 0,968 

10 8 7 257 0,9698 0,9734 0,968 
 
The following conclusion can be highlighted: with the increase of the threshold parameter the 
number of interest points assigned to the background is naturally increasing. In this case, the 
algorithm cannot correctly distinguish between motion classes and camera motion (a large 
number of false alarms) because the allowed estimation error is too big. If the threshold has a 
low value then the number of missed detected points (points that should belong to the 
background) is large. In most of the cases these points are errors of motion estimation, not 
correctly matched between successive frames and present large magnitude values of the 
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motion vectors. It should be noted that these points are further eliminated using step 5 of the 
proposed algorithm. As it can be notice our algorithm is not sensitive with the variation of the 
threshold parameter. So, a value between 2 and 10 pixels for the threshold will not affect the 
system overall efficiency situated around 95% in terms of F1 score. 
 
Let us now analyze the effect of the angular deviation threshold (𝑇𝑇ℎ𝜃𝜃 ) has on motion classes 
estimation. We used for evaluation the video from Set 3 because in this case the number of 
motion classes is superior to 2 which allow us to determine exactly the influence of the 
considered parameter in the saliency map extraction process.  
 
The results presented in Table 5.2 show the impact the angular deviation threshold has on 
motion vectors clustering. 
 

Table 5.2. Motion classes estimation for different angular deviation values. 

Video 
title 

Nr. of 
interest 
points 

Threshold 
(degrees) 

False 
Alarm 
(FA) 

Missed 
Detection 

(MD) 

Correctly 
Detected 

(D) 

Precision 
 

Recall 
 

F1 
score 

 

Clip 7 17 

15 0 12 5 1 0,2941 0,4545 
25 0 5 12 1 0,7058 0,8275 
35 0 2 15 1 0,8823 0,9375 
45 0 0 17 1 1 1 

Clip 8 12 

15 8 1 11 0,5789 0,9166 0,7096 
25 8 0 12 0,6 1 0,75 
35 11 0 12 0,5217 1 0,6857 
45 12 0 12 0,5 1 0,6666 

Clip 9 16 

15 0 12 4 1 0,25 0,4 
25 0 7 9 1 0,5625 0,72 
35 0 5 11 1 0,6875 0,8148 
45 0 5 11 1 0,6875 0,8148 

Clip 10 34 

15 4 10 24 0,8571 0,7058 0,7741 
25 4 6 28 0,875 0,8235 0,8484 
35 4 5 29 0,8787 0,8529 0,8656 
45 5 4 60 0,8529 0,8787 0,8656 

Clip 11 42 

15 6 22 20 0,7692 0,4761 0,5882 
25 7 18 24 0,7741 0,5714 0,6575 
35 7 14 28 0,8 0,6667 0,7272 
45 10 12 30 0,75 0,7142 0,7317 

Clip 12 30 

15 0 11 19 1 0,6333 0,7755 
25 0 7 23 1 0,7666 0,8679 
35 2 5 25 0,9259 0,8333 0,8771 
45 2 5 25 0,9259 0,8333 0,8771 

 
With the increase of the maximum value allowed for the angular deviation the number of 
missed detected (not clustered into motion classes) interest points is reduced due to a higher 
level of freedom when estimating the current position of an interest point between successive 
frames. In the same time the number of false alarms, the number points erroneous assigned to 
motion classes is also increasing due to the motion displacement inconsistency. A value between 
25 and 35 degree for angular deviation will ensure a compromise between the motion classes 
correctly detected and the number of false alarms. 
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The promising results obtained, led us to investigate how the proposed spatio-temporal 
saliency model can be enhanced with other visual information. In particular, we have 
considered the issue of extending the proposed method to stereoscopic video data, as 
described in the next section.  

 
5.2.4.   Stereoscopic visual attention model 

 
In the case of 3D videos the depth perception it is another important factor that affects the 
human visual attention much more than any motion or texture contrast existent for traditional 
2D videos. Because the stereoscopic perception can also be represented as a 2D video and its 
associated depth (which indicates the relative distance between video objects and the camera) 
we introduce an enhanced salient object detection system that integrates a stereoscopic visual 
attention model.   
 
Depth maps are generated from the disparities between neighbouring views. Then a novel 
dynamic fusion model is developed that integrates all information from each saliency map 
(spatial, temporal and depth).  
 
The depth maps are generated based on the technique presented in [Smith09]. For a stereo 
image pair 𝐼𝐼1 and 𝐼𝐼2 we determine the associated disparity maps 𝐷𝐷1 and 𝐷𝐷2 by minimizing the 
following objective function Φ: 

Φ(𝐷𝐷1,𝐷𝐷2) = Φ𝑝𝑝ℎ(𝐷𝐷1,𝐷𝐷2) + Φ𝑠𝑠𝑠𝑠 (𝐷𝐷1) + Φ𝑠𝑠𝑠𝑠 (𝐷𝐷2)                    (5.40) 

where Φ𝑝𝑝ℎ  measure the photo consistency and Φ𝑠𝑠𝑠𝑠  regularizes the depth maps.  
In order to determine the photo consistency we used the following equation that incorporates the 
geometric visibility:  

Φ𝑝𝑝ℎ(𝐷𝐷1,𝐷𝐷2) =  �𝜙𝜙𝑝𝑝ℎ(𝑑𝑑𝑝𝑝 ,𝑑𝑑𝑞𝑞)
𝑝𝑝𝑝𝑝 𝐼𝐼1

                                          (5.41) 

where 𝑑𝑑𝑝𝑝 = 𝐷𝐷1(𝑝𝑝) is the disparity for pixel p in 𝐼𝐼1 , 𝑞𝑞 = 𝑝𝑝 + 𝐷𝐷1(𝑝𝑝) is the pth corresponding 
pixel in 𝐼𝐼2 and 𝑑𝑑𝑞𝑞 = 𝐷𝐷2(𝑞𝑞) is the disparity for q in 𝐼𝐼2. 𝜙𝜙𝑝𝑝ℎ  is defined as: 

𝜙𝜙𝑝𝑝ℎ = �

0, 𝑖𝑖𝑖𝑖 𝑑𝑑𝑝𝑝 < 𝑑𝑑𝑞𝑞
min(0, |𝑥𝑥| − 𝑣𝑣𝑣𝑣𝑣𝑣) ∙ ��𝑐𝑐𝑝𝑝 − 𝑐𝑐𝑞𝑞�

2� , 𝑖𝑖𝑖𝑖𝑑𝑑𝑝𝑝 = 𝑑𝑑𝑞𝑞
∞, 𝑖𝑖𝑖𝑖 𝑑𝑑𝑝𝑝 > 𝑑𝑑𝑞𝑞  

� ,             (5.42) 

where 𝑐𝑐𝑝𝑝 = 𝐼𝐼1(𝑝𝑝), 𝑐𝑐𝑞𝑞 = 𝐼𝐼2(𝑞𝑞) and val is a robust measure for photo consistency.  
 
The regularization term Φ𝑠𝑠𝑠𝑠 (𝐷𝐷) is given by the following formula: 

Φ𝑠𝑠𝑠𝑠 (𝐷𝐷) = �𝜙𝜙𝑠𝑠𝑠𝑠 (𝑑𝑑𝑝𝑝 , �𝑑𝑑𝑞𝑞�𝑞𝑞𝜖𝜖𝑁𝑁𝑝𝑝 )
𝑝𝑝∈𝐼𝐼

 ,                                  (5.43) 

where 𝜙𝜙𝑠𝑠𝑠𝑠  models the correlation between the disparity 𝑑𝑑𝑝𝑝  for pixel p and the other disparity 
𝑑𝑑𝑞𝑞  in p’s neighborhood 𝑁𝑁𝑝𝑝 . 
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After computing the disparity maps (Figure 5.32) as presented above we include the depth 
information in the proposed spatio-temporal attention model. 
 
In this case, the Step 7 of our algorithm (cf. Section 5.2.1) is modified as follows:  
 
Step 7: Salient motion detection – For all the motion classes determined at Step 3 and 4 we 
compute their depth values as: 

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷ℎ𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑀𝑀𝑖𝑖) =
∑ 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷ℎ�𝑝𝑝1,𝑖𝑖�
𝑚𝑚𝑖𝑖
𝑗𝑗=1

𝑚𝑚𝑖𝑖
, 𝑖𝑖 = 1,𝑁𝑁����� ,                     (5.44)  

where 𝑚𝑚𝑖𝑖  is the total number of points included in motion class 𝑀𝑀𝑖𝑖 , 𝑁𝑁 is the total number of 
classes and 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷ℎ�𝑝𝑝1,𝑖𝑖� is the value of an interest point 𝑝𝑝1,𝑖𝑖  in the image depth map. In this 
case, the salient motion is determined as: 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 =  max
𝑖𝑖=1,𝑁𝑁

{𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷ℎ𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑀𝑀𝑖𝑖)}.                        (5.45) 

 
Figure 5.32. Disparity map extraction. (a) Original image; (b) Disparity map. 

 
In order to evaluate the performance of the proposed stereoscopic visual attention model we 
perform detection experiments on 3D videos provided by the Heinrich Hertz Institute 
[Feldmann08] and from the videos acquired within the framework of the French FUI7 3D-LIVE 
project (www.3dlive-project.com).  
 
Figure 5.33 and 5.34 illustrate some experimental results obtained. 
 
For sequences with complex background the spatial attention model is not accurate enough to 
detect the interest object in 3D videos. When large motion contrasts are encountered in video 
stream the method tends to focus on these regions as potential attention areas. However, this 
is not always true, for example when an attention object has a shadow the shadow has the 
same high motion contrast but is not an interesting area. This situation can be avoided by 
using the depth maps. Obviously, we cannot expect to detect the visual attention only by using 
the disparity maps because the area situated near the camera focus in not always an attention 
area. Therefore we incorporated all information in order to take a decision and to overcome 
the inherent shortcomings of each individual attention model. 
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5.3.   CONCLUSIONS 
 
 
In this chapter we have addressed the problem of salient object detection in image/video 
streams. First, we have drawn the state of the art in the field for both still images and videos. 
The analysis of the literature reveals the importance of considering the motion information. 
Thus, existing video-dedicated methods combine relevant motion models with spatial attention 
in order to build efficient saliency models. However, in practice, the video motion can be caused 
by the salient objects, but also by background objects or camera movement. In this case, 
different types of motion need to be analyzed and appropriately taken into account. 
 
Then, we have proposed an automatic salient object extraction system based on a 
spatiotemporal attention detection framework. The spatial model is developed starting from the 
region-based contrast, while the temporal model rely on the interest points correspondence, 
geometric transforms (between keyframes based on a homographic motion model), motion 
classes estimation (using agglomerative clustering and k-NN algorithm) and regions temporal 
consistency.  
 
The technique was validated on three video sets including more than 20 videos and it is 
characterized by robustness with complex background distracting motions and does not require 
any initial knowledge about the object size or shape. The various experimental results and 
comparisons, with other relevant methods existent in the technical literature, demonstrate the 
effectiveness of the proposed algorithm.  
 
Finally, we have extended the proposed algorithm to 3D stereoscopic videos by incorporating 
the information extracted from disparity maps. The proposed model is not only able to 
efficiently simulate stereoscopic visual attention of humans, but can also eliminate noise and 
maintain high robustness for videos presenting objects with shadows and various artifacts. 
 
 
 
 
 



 

 

 
 
 
 
 
 
 

6.   CONCLUSIONS AND PERSPECTIVES 
 
 
 
In this thesis, we have proposed a novel methodological framework for high level temporal 
video structuring and segmentation, which includes shot boundary detection, keyframe 
extraction, scene identification and salient object detection/segmentation. 
 
In Chapter 2 we introduced an enhanced shot segmentation technique based on graph partition 
method and multi-resolution analysis. The key stage of our algorithm concerns the scale space 
filtering of the derivatives of the similarity vector associated to the graph partition model. 
Notable, this mechanism makes it possible to enhance the robustness of the detector with 
respect to camera/large object motion. The filtering stage helps eliminating signal variations 
caused by motions, while preserving the peaks corresponding to the true transitions. The 
experimental results clearly demonstrate the superiority of our approach compared with the 
most salient methods existent in the technical literature, for both abrupt and gradual 
transitions, with global gains in terms of recall and precision rates of 9.4% and 7.7%, 
respectively.  
 
In the next stage we have introduced a two-pass analysis process, aiming at reducing the 
computational complexity. The experimental results obtained demonstrate the improvement 
due to our technique with respect to the state of the art algorithms, with savings in 
computational time greater than 25%, for equivalent detection performances. 
 
The video abstraction issue has been tackled in Chapter 3. Here, a novel leap extraction 
technique has been introduced, which generates static storyboards by selecting a variable 
number of representative frames based on the input video content variation. The proposed 
approach makes it possible to increase the computational efficiency with more than 23% and 
ensures that the story board captures all informational content of the original movie without 
any irrelevant. 
 
The extracted keyframes are exploited to form scenes (Chapter 4) defined as a collection of 
shots that present the same theme and share similar coherence in space and time. By 
exploiting the observation that shots belonging to the same scene have similar visual features, 
we introduce a novel temporally constrained clustering algorithm that uses adaptive 
thresholding and neutralized shots. The experimental evaluation conducted on a large set of 
videos validates our approach, when using as representative features either interest points 
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extracted using SIFT descriptor or HSV colour histogram. The evaluation is done using 
traditional metrics as precision, recall and F1 norm. The F1 measure, when applying our 
method on sitcoms scene detection is 84%, while for DVD chapter the detection performance 
is 77%.  
 
In Chapter 5, we considered the issue of visual saliency defined as the perceptual quality that 
allows an object, person or pixel to stand out from his neighbors by capturing our attention. In 
this context, we have introduced a novel bottom-up approach for modeling the spatiotemporal 
attention in videos. The spatial model is developed starting from a region-based contrast 
measure associated to individual keyframes. The temporal model relies on interest points 
correspondence, geometric transforms (i.e. homographic motion model), motion classes 
estimation (using agglomerative clustering) and regions temporal consistency. Finally, the 
interest object is extracted with the help of GrabCut segmentation which takes as input to the 
saliency map previously determined. The technique is robust to complex background 
distracting motions and does not require any initial knowledge about the object size or shape. 
The various experimental results and comparisons with existent methods demonstrate the 
effectiveness of the proposed technique.  
 
Our perspectives of future work concern the integration of our method within a more general 
framework of video indexing and retrieval applications, including object recognition 
methodologies. On one hand, this can further refine the level of description required in video 
indexing applications. On the other hand, identifying similar objects in various scenes can be 
helpful for the scene identification process and for semantic concept detection.  
 
The semantic concept detection will be a natural way of exploiting the results presented in this 
work, by annotating the identified features existent in the extracted keyframes. Such concepts 
can be objects, activities, events, scenes…. and can serve for automatic indexing and 
organization of multimedia collections. 
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Abstract 
 
Recent advances in telecommunications, collaborated with the development of image and video 
processing and acquisition devices has lead to a spectacular growth of the amount of the visual 
content data (still images, video streams, 2D graphical elements, 3D models...) stored, 
transmitted and exchanged over Internet. Within this context, elaborating efficient tools to access, 
browse and retrieve video content has become a crucial challenge. 
 
From the spatio-temporal structural point of view, a digital video can be decomposed into four 
different levels of detail, corresponding to scenes/chapters, shots, keyframes and objects. The 
detection of the structural elements represents a key and mandatory stage that needs to be 
performed prior to any effective description/classification of video documents. In this thesis, we 
notably tackle this issue, and propose solutions for the detection of each of the above-mentioned 
structural elements involved. 
 
In Chapter 2 we introduce and validate a novel shot boundary detection algorithm able to identify 
abrupt (i.e., cuts) and gradual transitions (i.e., fades, wipes…). The technique is based on an 
enhanced graph partition model, combined with a multi-resolution analysis and a non-linear 
filtering operation. The global computational complexity is reduced by implementing a two-pass 
approach strategy. 
 
In Chapter 3 the video abstraction problem is considered. In our case, we have developed a 
keyframe representation system (based on a leap-extraction algorithm) that extracts a variable 
number of images from each detected shot, depending on the visual content variation.  
 
The Chapter 4 deals with the issue of high level semantic segmentation into scenes. Here, a novel 
scene/DVD chapter detection method is introduced and validated. Spatio-temporal coherent shots 
are clustered into the same scene based on a set of temporal constraints, adaptive thresholds and 
with the help of a new concept - neutralized shots. Concerning the keyframe visual similarity 
involved in the above-described process, we have considered two different approaches, based on 
chi-square distance between HSV color histograms and the number of matched interest points 
extracted based on SIFT descriptors.  
 
Chapter 5 considers the issue of object detection and segmentation. Here we introduce a novel 
spatio-temporal visual saliency (STVS) system based on: region contrast, interest points 
correspondence, geometric transforms, motion classes’ estimation (using agglomerative 
clustering) and regions temporal consistency. The proposed technique is extended on 3D videos 
by representing the stereoscopic perception as a 2D video and its associated depth. The technique 
is robust to complex background distracting motions and does not require any initial knowledge 
about the object size or shape.  
 


