C. N. Adams and G. W. Kattawar, Solutions of the equations of radiative transfer by an invariant imbedding approach, Journal of Quantitative Spectroscopy and Radiative Transfer, vol.10, issue.5, pp.341-366, 1970.
DOI : 10.1016/0022-4073(70)90101-9

N. Barbier, P. Couteron, C. Proisy, M. Yadvinder, and J. Gastellu-etchegorry, The variation of apparent crown size and canopy heterogeneity across lowland Amazonian forests, Global Ecology and Biogeography, vol.143, issue.1, p.493, 2009.
DOI : 10.1111/j.1466-8238.2009.00493.x

URL : https://hal.archives-ouvertes.fr/halsde-00454134

A. Belot, Simulation des échanges d'énergie et de masse d'un couvert végétal : Développement et validation d'un modèle quasi 3D, DART-EB. PhD, 2007.

A. Berk and . Bernstein, MODTRAN: a moderate resolution model for LOWTRAN 7, 1989.

A. Berk and . Bernstein, MODTRAN4 radiative transfer modeling for atmospheric correction, Optical Spectroscopic Techniques and Instrumentation for Atmospheric and Space Research III, pp.348-353, 1999.
DOI : 10.1117/12.366388

R. E. Bird and C. Riordan, Simple Solar Spectral Model for Direct and Diffuse Irradiance on Horizontal and Tilted Planes at the Earth's Surface for Cloudless Atmospheres, 1984.

A. Bulcholtz, Rayleigh-scattering calculations for the terrestrial atmosphere, Applied Optics, vol.34, issue.15, pp.2765-2773, 1995.
DOI : 10.1364/AO.34.002765

R. F. Cahalan, L. Oreopoulos, A. Marshak, K. F. Evans, A. Davis et al., The International Intercomparison of 3D Radiation Codes (I3RC): Bringing together the most advanced radiative transfer tools for cloudy atmospheres, pp.1275-1293, 2005.

S. Chandrasekhar, Radiative Transfer, p.49, 1960.

J. G. Chetwynd, J. Wang, and A. G. , FASCODE: An Update and Applications in Atmospheric Remote Sensing, Proceedings SPIE 2266, 1994.

S. A. Clough, M. W. Shephard, E. J. Mlawer, J. S. Delamere, M. J. Iacono et al., Atmospheric radiative transfer modeling: a summary of the AER codes, Journal of Quantitative Spectroscopy and Radiative Transfer, vol.91, issue.2, pp.233-244, 2005.
DOI : 10.1016/j.jqsrt.2004.05.058

S. A. Clough, F. X. Kneizys, L. S. Rothman, and W. O. Gallery, Atmospheric spectral transmittance and radiance: FASCOD1B. ProcSoc Photo Opt Instrum Eng, pp.152-66, 1981.

K. L. Coulson, J. V. Dave, and Z. Sekera, Tables related to radiation emerging from a planetary atmosphere with Rayleigh scattering, 1960.

S. Couturier, J. P. Gastellu-etchegorry, P. Patiño, and E. Martin, A model-based performance test for forest classifiers on remote-sensing imagery, Forest Ecology and Management, vol.257, issue.1, pp.23-37, 2009.
DOI : 10.1016/j.foreco.2008.08.017

URL : https://hal.archives-ouvertes.fr/ird-00405490

T. Deutschmann, S. Beirle, U. Friess, M. Grzegorski, C. Kern et al., The Monte Carlo atmospheric radiative transfer model McArtim: Introduction and validation of Jacobians and 3D features, Journal of Quantitative Spectroscopy and Radiative Transfer, vol.112, issue.6, pp.1119-1137, 2011.
DOI : 10.1016/j.jqsrt.2010.12.009

S. R. Drayson, Rapid computation of the Voigt profile, Journal of Quantitative Spectroscopy and Radiative Transfer, vol.16, issue.7, 1976.
DOI : 10.1016/0022-4073(76)90029-7

S. Duthoit, V. Demarez, J. P. Gastellu-etchegorry, E. Martin, and J. L. Roujean, Assessing the effects of the clumping phenomenon on BRDF and fAPAR of a maize crop based on 3D numerical scenes using DART code Agricultural and forest meteorology, pp.1341-1352, 2008.

D. P. Edwards, GENLN2: A general line-by-line atmospheric transmittance and radiance model, Version 3.0 description and users guide, National Center for Atmospheric Research, 1992.

D. P. Edwards, GENLN2: The new Oxford line-by-line atmospheric transmission/radiance model. Dept. of Atmospheric, Oceanic and Planetary Physics, 1987.

K. F. Evans, SHDOMPPDA: A Radiative Transfer Model for Cloudy Sky Data Assimilation, Journal of the Atmospheric Sciences, vol.64, issue.11, pp.3854-3864, 2007.
DOI : 10.1175/2006JAS2047.1

K. F. Evans, The Spherical Harmonics Discrete Ordinate Method for Three-Dimensional Atmospheric Radiative Transfer, Journal of the Atmospheric Sciences, vol.55, issue.3, pp.429-446, 1998.
DOI : 10.1175/1520-0469(1998)055<0429:TSHDOM>2.0.CO;2

F. F. Evans and G. L. Stephens, A new polarized atmospheric radiative transfer model, Journal of Quantitative Spectroscopy and Radiative Transfer, vol.46, issue.5, 1991.
DOI : 10.1016/0022-4073(91)90043-P

V. Eymet, R. Fournier, S. Blanco, and J. Dufresne, A boundary-based net-exchange Monte Carlo method for absorbing and scattering thick media, Journal of Quantitative Spectroscopy and Radiative Transfer, vol.91, issue.1, pp.27-46, 2004.
DOI : 10.1016/j.jqsrt.2004.05.049

R. D. Garcia and C. E. Siewert, The FN method for radiative transfer models that include polarization effects, Journal of Quantitative Spectroscopy and Radiative Transfer, vol.41, issue.2, pp.117-145, 1989.
DOI : 10.1016/0022-4073(89)90133-7

F. Gascon, Modélisation physique d'images de télédétection optique, 2001.

J. P. Gastellu-etchegorry and F. Zagolski, A simple anisotropic reflectance model for homogeneous multilayer canopies, Remote Sensing of Environment, vol.57, issue.1, pp.22-38, 1996.
DOI : 10.1016/0034-4257(95)00221-9

J. P. Gastellu-etchegorry, 3D modeling of satellite spectral images, radiation budget and energy budget of urban landscapes, Meteorology and Atmospheric Physics, vol.112, issue.1, pp.187-207, 2008.
DOI : 10.1007/s00703-008-0344-1

URL : https://hal.archives-ouvertes.fr/ird-00405362

P. Guillevic, J. P. Gastellu-etchegorry, J. Demarty, and L. Prévot, Thermal infrared radiative transfer within three-dimensional vegetation covers, Journal of Geophysical Research, vol.73, issue.8, 2003.
DOI : 10.1029/2002JD002247

L. L. Gordley, B. T. Marshall, and C. A. , Linepak: Algorithms for modeling spectral transmittance and radiance, Journal of Quantitative Spectroscopy and Radiative Transfer, vol.52, issue.5, pp.563-580, 1994.
DOI : 10.1016/0022-4073(94)90025-6

W. W. Gregg and K. L. Carder, A simple spectral solar irradiance model for cloudless maritime atmospheres, Limnology and Oceanography, vol.35, issue.8, pp.1657-1675, 1990.
DOI : 10.4319/lo.1990.35.8.1657

K. G. Gribanov, V. I. Zakharov, S. A. Tashkun, and T. G. Vl, A new software tool for radiative transfer calculations and its application to IMG/ADEOS data, Journal of Quantitative Spectroscopy and Radiative Transfer, vol.68, issue.4, pp.435-451, 2001.
DOI : 10.1016/S0022-4073(00)00035-2

R. N. Halthore, D. Crisp, S. E. Schwartz, G. P. Anderson, A. Berk et al., Intercomparison of shortwave radiative transfer codes and measurements, Journal of Geophysical Research, vol.41, issue.1???3, p.11206, 2005.
DOI : 10.1029/2004JD005293

J. E. Hansen, Multiple Scattering of Polarized Light in Planetary Atmospheres Part II. Sunlight Reflected by Terrestrial Water Clouds, Journal of the Atmospheric Sciences, vol.28, issue.8, pp.1400-1426, 1971.
DOI : 10.1175/1520-0469(1971)028<1400:MSOPLI>2.0.CO;2

J. Key and A. J. Schweiger, Tools for atmospheric radiative transfer: Streamer and FluxNet, Computers & Geosciences, vol.24, issue.5, pp.443-451, 1998.
DOI : 10.1016/S0098-3004(97)00130-1

F. X. Kneizys, E. P. Shettle, W. O. Gallery, J. H. Chetwynd, L. W. Abreu et al., Atmospheric transmittance/radiance: computer code LOWTRAN 6, 1983.
DOI : 10.1117/12.956522

S. Y. Kotchenova, E. F. Vermote, R. Matarrese, and K. F. Jr, Validation of a vector version of the 6S radiative transfer code for atmospheric correction of satellite data Part I: Path radiance, Applied Optics, vol.45, issue.26, pp.45-6762, 2006.
DOI : 10.1364/AO.45.006762

S. Y. Kotchenova and E. F. Vermote, Validation of a vector version of the 6S radiative transfer code for atmospheric correction of satellite data Part II Homogeneous Lambertian and anisotropic surfaces, Applied Optics, vol.46, issue.20, 2007.
DOI : 10.1364/AO.46.004455

S. Y. Kotchenova, E. F. Vermote, R. Levy, and A. Lyapustin, Radiative transfer codes for atmospheric correction and aerosol retrieval: intercomparison study, Applied Optics, vol.47, issue.13, 2008.
DOI : 10.1364/AO.47.002215

S. Y. Kotchenova and E. F. Vermote, A vector version of the 6S radiative transfer code for atmospheric correction of satellite data: an Overview " . presented at 29th Review of Atmospheric Transmission Models Meeting, 2007.

V. C. Laurent, W. Verhoef, J. G. Clevers, and M. E. Schaepman, Estimating forest variables from top-of-atmosphere radiance satellite measurements using coupled radiative transfer models, Remote Sensing of Environment, vol.115, issue.4, pp.1043-1052, 2011.
DOI : 10.1016/j.rse.2010.12.009

J. Lenoble, M. Herman, J. L. Deuze, B. Lafrance, R. Santer et al., A successive order of scattering code for solving the vector equation of transfer in the earth's atmosphere with aerosols, Journal of Quantitative Spectroscopy and Radiative Transfer, vol.107, issue.3, pp.479-507, 2007.
DOI : 10.1016/j.jqsrt.2007.03.010

A. I. Lyapustin, Radiative transfer code SHARM for atmospheric and terrestrial applications, Applied Optics, vol.44, issue.36, pp.7764-7772, 2005.
DOI : 10.1364/AO.44.007764

J. Mahfouf, A. Manzi, J. Noilhan, H. Giordani, and M. Déqué, The Land Surface Scheme ISBA within the M??t??o-France Climate Model ARPEGE. Part I. Implementation and Preliminary Results, Journal of Climate, vol.8, issue.8, pp.2039-2057, 1993.
DOI : 10.1175/1520-0442(1995)008<2039:TLSSIW>2.0.CO;2

Z. Malenovsky, E. Martin, L. Homolová, J. P. Gastellu-etchegorry, R. Zurita-milla et al., Influence of woody elements of a Norway spruce canopy on nadir reflectance simulated by the DART model at very high spatial resolution, Remote Sensing of Environment, vol.112, issue.1, pp.1-18, 2008.
DOI : 10.1016/j.rse.2006.02.028

URL : https://hal.archives-ouvertes.fr/ird-00405279

B. T. Marshall and L. L. Gordley, BANDPAK: Algorithms for modeling broadband transmission and radiance, Journal of Quantitative Spectroscopy and Radiative Transfer, vol.52, issue.5, pp.581-599, 1994.
DOI : 10.1016/0022-4073(94)90026-4

E. Martin, DART Modèle 3D Multispectral et Inversion d'Images Optiques de Satellite -Application aux couverts forestiers. PhD, 2006.

B. Mayer and A. Kylling, Technical note: The libRadtran software package for radiative transfer calculations - description and examples of use, Atmospheric Chemistry and Physics, vol.5, issue.7, pp.1855-1877, 2005.
DOI : 10.5194/acp-5-1855-2005

URL : https://hal.archives-ouvertes.fr/hal-00295701

E. J. Mlawer, S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Claugh, RRTM, a validated correlated-k model for the longwave, J. Geophys. Res, vol.102, issue.16, pp.663-682, 1997.

G. N. Plass, G. W. Kattawar, and C. F. , Matrix Operator Theory of Radiative Transfer 1: Rayleigh Scattering, Applied Optics, vol.12, issue.2, pp.314-329, 1973.
DOI : 10.1364/AO.12.000314

P. Ricchiazzi, S. R. Yang, C. Gautier, and D. Sowle, SBDART: A research and teaching software tool for plane-parallell radiative transfer in the Earth's atmosphere. Bulleton of the American meteorological soc, pp.2101-2114, 1998.

J. Ross, The Radiation regime and architecture of plant stands. The Hague, 1981.

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk et al., The HITRAN 2004 molecular spectroscopic database, Journal of Quantitative Spectroscopy and Radiative Transfer, vol.96, issue.2, pp.139-204, 2005.
DOI : 10.1016/j.jqsrt.2004.10.008

A. Rozanov, V. Rozanov, M. Buchwitz, A. Kokhanovsky, and J. P. Burrows, SCIATRAN 2.0 ??? A new radiative transfer model for geophysical applications in the 175???2400nm spectral region, Advances in Space Research, vol.36, issue.5, pp.1015-101910, 2005.
DOI : 10.1016/j.asr.2005.03.012

H. Schwander, A. Kaifel, A. Ruggaber, and P. Koepke, Spectral radiative-transfer modeling with minimized computation time by use of a neural-network technique, Applied Optics, vol.40, issue.3, pp.331-335, 2001.
DOI : 10.1364/AO.40.000331

N. A. Scott and . Chedin, A Fast Line-by-Line Method for Atmospheric Absorption Computations: The Automatized Atmospheric Absorption Atlas, Journal of Applied Meteorology, vol.20, issue.7, pp.802-812, 1981.
DOI : 10.1175/1520-0450(1981)020<0802:AFLBLM>2.0.CO;2

G. Sepulcre-cantó, P. J. Zarco-tejada, J. A. Sobrino, J. A. Berni, J. Muñoz et al., Discriminating irrigated and rainfed olive orchards with thermal ASTER imagery and DART 3D simulation Agricultural and forest meteorology, pp.962-975, 2009.

J. Sobrino, C. Mattar, J. C. Jiménez-muñoza, J. P. Gastelllu-etchegorry, and E. Grau, Evaluation of the DART 3D model in the thermal domain using satellite/airborne imagery and ground-based measurements, International Journal of Remote Sensing, vol.32, issue.22, 2011.
DOI : 10.1109/TGRS.2004.834196

URL : https://hal.archives-ouvertes.fr/ird-00657976

K. Stamnes, S. Tsay, W. Wiscombe, and K. Jayaweera, Numerically stable algorithm for discrete-ordinate-method radiative transfer in multiple scattering and emitting layered media, Applied Optics, vol.27, issue.12, pp.2502-2509, 1988.
DOI : 10.1364/AO.27.002502

K. Stamnes, S. Tsay, W. Wiscombe, and I. Laszlo, DISORT, a General-Purpose Fortran program for Discrete-Ordinate-Method Radiative Transfer in Scattering and Emitting Layered Media: Documentation of Methodology, Tech. rep., Dept. of Physics and Engineering Physics, 2000.

R. Buras and B. Mayer, Efficient unbiased variance reduction techniques for Monte Carlo simulations of radiative transfer in cloudy atmospheres: The solution, Journal of Quantitative Spectroscopy and Radiative Transfer, vol.112, issue.3, pp.434-447
DOI : 10.1016/j.jqsrt.2010.10.005

G. S. Campbell, Derivation of an angle density function for canopies with ellipsoidal leaf angle distributions Agricultural and forest meteorology, pp.173-1760168, 1990.

K. Chance and R. L. Kurucz, An improved high-resolution solar reference spectrum for earth's atmosphere measurements in the ultraviolet, visible, and near infrared, Journal of Quantitative Spectroscopy and Radiative Transfer, vol.111, issue.9, pp.1289-1295
DOI : 10.1016/j.jqsrt.2010.01.036

J. M. Chen and S. G. Leblanc, A four-scale bidirectional reflectance model based on canopy architecture, IEEE Transactions on Geoscience and Remote Sensing, vol.35, issue.5, pp.1316-1337, 1997.
DOI : 10.1109/36.628798

J. M. Chen, T. A. Black, and R. S. Adams, Evaluation of hemispherical photography for determinig plantare index and geometry of a forest stand Agricultural and forest meteorology, pp.129-143, 1991.

X. X. Chen, L. Vierling, E. Rowell, and T. Defelice, Using lidar and effective LAI data to evaluate IKONOS and Landsat 7 ETM+ vegetation cover estimates in a ponderosa pine forest, Remote Sensing of Environment, vol.91, issue.1, pp.14-26, 2004.
DOI : 10.1016/j.rse.2003.11.003

M. L. Clark, D. A. Roberts, J. J. Ewel, and D. B. Clark, Estimation of tropical rain forest aboveground biomass with small-footprint lidar and hyperspectral sensors, Remote Sensing of Environment, vol.115, issue.11, pp.2931-2942
DOI : 10.1016/j.rse.2010.08.029

J. Dauzat, Radiative-transfer simulation on computer-models of Elazis-Guineensis, Oleagineux, vol.49, issue.3, pp.81-90, 1994.

. Dewitt, Photosynthesis of leaf canopies, Agricultural Research Report, vol.663, p.46, 1965.

J. B. Drake, R. O. Dubayah, D. B. Clark, R. G. Knox, J. B. Blair et al., Estimation of tropical forest structural characteristics using large-footprint lidar, Remote Sensing of Environment, vol.79, issue.2-3, pp.305-319, 2002.
DOI : 10.1016/S0034-4257(01)00281-4

J. B. Drake, R. G. Knox, R. O. Dubayah, D. B. Clark, R. Condit et al., Above-ground biomass estimation in closed canopy Neotropical forests using lidar remote sensing: factors affecting the generality of relationships, Global Ecology and Biogeography, vol.6, issue.2, pp.147-159
DOI : 10.1080/014311600210939

S. Duthoit, V. Demarez, J. P. Gastellu-etchegorry, E. Martin, and J. L. Roujean, Assessing the effects of the clumping phenomenon on BRDF of a maize crop based on 3D numerical scenes using DART model Agricultural and forest meteorology, pp.8-91341, 2008.

J. Feret, C. Francois, G. P. Asner, A. A. Gitelson, R. E. Martin et al., PROSPECT-4 and 5: Advances in the leaf optical properties model separating photosynthetic pigments, Remote Sensing of Environment, vol.112, issue.6, pp.3030-3043, 2008.
DOI : 10.1016/j.rse.2008.02.012

J. P. Gastellu-etchegorry, V. Demarez, V. Pinel, and F. Zagolski, Modeling radiative transfer in heterogeneous 3-D vegetation canopies, Remote Sensing of Environment, vol.58, issue.2, pp.131-156, 1996.
DOI : 10.1016/0034-4257(95)00253-7

URL : https://hal.archives-ouvertes.fr/ird-00405222

J. P. Gastellu-etchegorry, E. Martin, and F. Gascon, DART: a 3D model for simulating satellite images and studying surface radiation budget, International Journal of Remote Sensing, vol.16, issue.1, pp.73-96, 2004.
DOI : 10.1145/127719.122739

J. P. Gastellu-etchegorry, E. Grau, and N. Lauret, DART model : Remote sensing images, radiative budget and energy budget of Earth Surfaces. Modeling and Simulation in Engineering, p.204, 2012.

R. Gerber, A. Marion, S. Olioso, B. R. Jacquemoud, S. Da-luz et al., Modeling directional???hemispherical reflectance and transmittance of fresh and dry leaves from 0.4??m to 5.7??m with the PROSPECT-VISIR model, Remote Sensing of Environment, vol.115, issue.2, pp.404-414
DOI : 10.1016/j.rse.2010.09.011

URL : https://hal.archives-ouvertes.fr/hal-01337522

S. A. Gerstl and C. C. Borel, Principles of the radiosity method versus radiative transfer for canopy reflectance modeling, IEEE Transactions on Geoscience and Remote Sensing, vol.30, issue.2, pp.271-275, 1992.
DOI : 10.1109/36.134077

N. Gobron, B. Pinty, M. M. Verstraete, and Y. Govaerts, A semidiscrete model for the scattering of light by vegetation, Journal of Geophysical Research: Atmospheres, vol.95, issue.D8, pp.9431-9446, 1997.
DOI : 10.1029/96JD04013

M. Govaerts, A model of light scattering in three-dimensional plant canopies : a Monte Carlo ray tracing approach, p.124, 1996.

M. Govaerts and M. M. Verstraete, Raytran: a Monte Carlo ray-tracing model to compute light scattering in three-dimensional heterogeneous media, IEEE Transactions on Geoscience and Remote Sensing, vol.36, issue.2, pp.493-505, 1998.
DOI : 10.1109/36.662732

E. Grau and J. P. Gastellu-etchegrry, Radiative transfer modeling in the Earth -Atmosphere system with DART model. Remote Sensing of the Environment, p.204, 2012.

J. P. Grau, F. Gastellu-etchegorry, J. Gascon, A. Rubio, E. Brut et al., Earth-Atmosphere radiative transfer in DART model First workshop on hyperspectral image and signal processing, Workshop on Hyperspectral Image and Signal Processing - Evolution in Remote Sensing, pp.320-323, 2009.

B. W. Hapke, R. M. Nelson, and W. D. Smythe, The Opposition Effect of the Moon: The Contribution of Coherent Backscatter, Science, vol.260, issue.5107, pp.509-511
DOI : 10.1126/science.260.5107.509

J. Harding, M. A. Lefsky, G. G. Parker, and J. B. Blair, Laser altimeter canopy height profiles: methods and validation for closed-canopy, broadleaf forests, Remote Sensing of Environment, vol.76, issue.3, pp.283-297
DOI : 10.1016/S0034-4257(00)00210-8

M. A. Hofton, J. B. Minster, and J. B. Blair, Decomposition of laser altimeter waveforms, IEEE Transactions on Geoscience and Remote Sensing, vol.38, issue.4, pp.1989-1996, 2000.
DOI : 10.1109/36.851780

M. A. Hofton, L. E. Rocchio, J. B. Blair, and R. Dubayah, Validation of Vegetation Canopy Lidar subcanopy topography measurements for a dense tropical forest, Journal of geodynamics, vol.34, pp.3-4

R. Hyde, B. Dubayah, J. B. Peterson, M. Blair, C. Hofton et al., Mapping forest structure for wildlife habitat analysis using waveform lidar: Validation of montane ecosystems, Remote Sensing of Environment, vol.96, issue.3-4
DOI : 10.1016/j.rse.2005.03.005

S. Jacquemoud and F. Baret, PROSPECT: A model of leaf optical properties spectra, Remote Sensing of Environment, vol.34, issue.2, pp.75-91, 1990.
DOI : 10.1016/0034-4257(90)90100-Z

F. Jacquemoud, J. F. Baret, and . Hanocq, Modeling spectral and bidirectional soil reflectance, Remote Sensing of Environment, vol.41, issue.2-3
DOI : 10.1016/0034-4257(92)90072-R

C. Jacquemoud, H. Bacour, J. P. Poilve, and . Frangi, Comparison of Four Radiative Transfer Models to Simulate Plant Canopies Reflectance Direct and Inverse Mode, Remote Sensing of Environment, vol.74, issue.3, pp.471-481, 2000.
DOI : 10.1016/S0034-4257(00)00139-5

. Ustin, PROSPECT plus SAIL models : A review of use for vegetation characterization Remote Sensing of Environment, pp.56-66

D. S. Kimes and J. A. Kirchner, Radiative transfer model for heterogeneous 3-D scenes, Applied Optics, vol.21, issue.22, pp.4119-4129, 1982.
DOI : 10.1364/AO.21.004119

D. S. Kimes, K. J. Ranson, G. Sun, and J. B. Blair, Predicting lidar measured forest vertical structure from multi-angle spectral data, Remote Sensing of Environment, vol.100, issue.4, pp.503-511
DOI : 10.1016/j.rse.2005.11.004

B. Koetz, F. Baret, H. Poilve, and J. Hill, Use of coupled canopy structure dynamic and radiative transfer models to estimate biophysical canopy characteristics, Remote Sensing of Environment, vol.95, issue.1, pp.115-124
DOI : 10.1016/j.rse.2004.11.017

B. Koetz, G. Sun, F. Morsdorf, K. J. Ranson, M. Kneubuehler et al., Inversion of Combined Radiative Transfer Models for Imaging Spectrometer and LIDAR Data, 2006 IEEE International Symposium on Geoscience and Remote Sensing, pp.395-398, 2006.
DOI : 10.1109/IGARSS.2006.106

J. Kucharik, J. M. Norman, and S. T. Gower, Characterization of radiation regimes in nonrandom forest canopies: theory, measurements, and a simplified modeling approach, Tree Physiology, vol.19, issue.11, pp.695-706, 1999.
DOI : 10.1093/treephys/19.11.695

A. Kuusk, The angular-distribution of reflectance and vegetation index in barley an clover canopies

J. M. Lacaze, J. L. Chen, S. G. Roujean, and . Leblanc, Retrieval of vegetation clumping index using hot spot signatures measured by POLDER instrument, Remote Sensing of Environment, vol.79, issue.1, pp.84-95, 2002.
DOI : 10.1016/S0034-4257(01)00241-3

M. A. Lefsky, Application of Lidar Remote Sensing to the Estimation of Forest Canopy and Stand Structure, p.161, 1997.

M. A. Lefsky, W. B. Cohen, S. A. Acker, G. G. Parker, T. A. Spies et al., Lidar Remote Sensing of the Canopy Structure and Biophysical Properties of Douglas-Fir Western Hemlock Forests, Remote Sensing of Environment, vol.70, issue.3, pp.339-361, 1999.
DOI : 10.1016/S0034-4257(99)00052-8

M. A. Lefsky, D. J. Harding, M. Keller, W. B. Cohen, C. C. Carabajal et al., Estimates of forest canopy height and aboveground biomass using ICESat, NOV 1, 2005.

. Lewis, Three-dimensional plant modelling for remote sensing simulation studies using the Botanical Plant Modelling System, Agronomie, vol.19, issue.3-4, pp.3-4185, 1999.
DOI : 10.1051/agro:19990302

URL : https://hal.archives-ouvertes.fr/hal-00885924

X. W. Li, A. H. Strahler, and C. E. Woodcook, A hybrid geometric optical-radiative transfer approach for modeling albedo and directional reflectance of discontinuous canopies, IEEE Transactions on geoscience and remote sensing, vol.33, issue.2, pp.466-480, 1995.

S. Liang and J. R. Townshend, A parametric soil BRDF model: a four stream approximation for multiple scattering, International Journal of Remote Sensing, vol.97, issue.7, pp.1303-1315, 1996.
DOI : 10.1364/AO.27.002502

R. H. Macarthur and H. S. Horn, Foliage Profile by Vertical Measurements, Ecology, vol.50, issue.5, pp.802-804, 1969.
DOI : 10.2307/1933693

S. Magnussen and P. Boudewyn, Derivations of stand heights from airborne laser scanner data with canopy-based quantile estimators, Canadian Journal of Forest Research, vol.28, issue.7, pp.1016-1031, 1998.
DOI : 10.1139/x98-078

C. Mallet and F. Bretar, Full-waveform topographic lidar : State-of-the-art. ISPRS Journal of photogrammetry and remote sensing, pp.1-16, 2009.

. Mckee, Use of large-footprint scanning airborne lidar to estimate forest stand characteristics in the Western Cascades of Oregon. Remote Sensing of Environment, pp.298-308, 1999.

M. E. Miller, M. Lefsky, and Y. Pang, Optimization of Geoscience Laser Altimeter System waveform metrics to support vegetation measurements. Remote Sensing of Environment, pp.298-305

R. B. Mynemi, G. Asrar, R. B. Burnett, and K. , Radiative-transfer in an anisotropically scattering vegetative medium Agricultural and forest meteorology, pp.97-121, 1987.

R. B. Myneni and G. Asrar, Photon interaction cross-sections for aggregations of finite dimensional leaves. Remote Sensing of Environment, pp.219-2240034, 1991.

N. Nethercote and J. Seward, Valgrind, ACM SIGPLAN Notices, vol.42, issue.6, pp.89-100
DOI : 10.1145/1273442.1250746

URL : http://doi.org/10.1016/s1571-0661(04)81042-9

A. L. Neuenschwander, L. A. Magrude, and M. Tyler, Landcover classification of smallfootprint , full-waveform lidar data, Journal of applied remote sensing, vol.3, issue.26, 2009.

D. L. Ni-meister, R. Jupp, and . Dubayah, Modeling lidar waveforms in heterogeneous and discrete canopies, IEEE Transactions on Geoscience and Remote Sensing, vol.39, issue.9, pp.1943-1958, 2001.
DOI : 10.1109/36.951085

T. Nilson, A. Kuusk, M. Lang, J. Pisek, and A. Kodar, Simulation of statistical characteristics of gap distribution in forest stands Agricultural and forest meteorology, pp.895-905

P. R. North, Three-dimensional forest light interaction model using a Monte Carlo method, IEEE Transactions on Geoscience and Remote Sensing, vol.34, issue.4, pp.946-956, 1996.
DOI : 10.1109/36.508411

Y. Pang, Z. Li, M. Lefsky, S. Guoqing, X. Yu et al., Model Based Terrain Effect Analyses on ICEsat GLAS Waveforms IEEE ; IEEE Geosci & Remote Sensing Soc ; Canadian Remote Sensing Soc ; NASA ; NOAA ; Off Naval Res ; Natl Polar Orbiting Operat Environm Satellite Syst ; Japan Aerosp Explorat Agcy ; Ball Aerosp & Technologies Corp ; Cooperat Inst Res Atmosphere, IEEE International geoscience and Remote Sensing Symposium, VOLS 1-8, IEEE International Symposium on Geoscience and Remote Sensing (IGARSS)830}. IEEE International geoscience and Remote Sensing Symposium (IGARSS), pp.3232-3235, 2006.

S. K. Park and K. W. Miller, Random number generators and the minimal standard, Communications of the ACM, vol.32, issue.8, pp.1023-1024, 1989.

G. G. Parker, J. P. Neill, and D. Higman, Vertical profile and canopy organization in a mixed deciduous forest. vegetation, DEC, vol.85, issue.15, pp.1-11, 1989.

M. Pharr and G. Humphrey, Physically Based Rendering, From Theory to Implementation, p.124, 2004.

B. Pinty, N. Gobron, J. L. Widlowski, S. A. Gerstl, M. M. Verstraete et al., Radiation transfer model intercomparison (RAMI) exercise, Journal of Geophysical Research: Atmospheres, vol.58, issue.D11, pp.937-948, 1029.
DOI : 10.1029/2000JD900493

URL : https://hal.archives-ouvertes.fr/ird-00405091

B. Pinty, J. L. Widlowski, M. Taberner, N. Gobron, M. M. Verstraete et al., Radiation Transfer Model Intercomparison (RAMI) exercise: Results from the second phase, Journal of Geophysical Research: Atmospheres, vol.95, issue.D6, pp.6210-6220, 1029.
DOI : 10.1029/2003JD004252

C. Proisy, N. Barbier, M. Guéroult, M. Pélissier, J. P. Gastellu-etchegorry et al., Biomass Prediction in Tropical Forests: The Canopy Grain Approach, p.204, 2012.
DOI : 10.5772/17185

URL : https://hal.archives-ouvertes.fr/hal-01267823

W. Qin and S. Gerstl, 3-D Scene Modeling of Semidesert Vegetation Cover and its Radiation Regime, Remote Sensing of Environment, vol.74, issue.1
DOI : 10.1016/S0034-4257(00)00129-2

H. Rahman, B. Pinty, and M. M. Verstraete, Coupled surface-atmosphere reflectance (CSAR) model
DOI : 10.1029/93jd02071

URL : http://publications.jrc.ec.europa.eu/repository/handle/JRC10633

J. Reitberger, P. Krzystek, and U. Stilla, Analysis of full waveform LIDAR data for the classification of deciduous and coniferous trees, Workshop on 3D Remote Sensing in Forestry, pp.1407-1431, 2006.
DOI : 10.1016/j.isprsjprs.2005.12.001

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards et al., THE HITRAN MOLECULAR SPECTROSCOPIC DATABASE AND HAWKS (HITRAN ATMOSPHERIC WORKSTATION): 1996 EDITION, Journal of quantitative spectroscopy and radiative transfer, pp.665-710, 1998.
DOI : 10.1016/S0022-4073(98)00078-8

URL : https://hal.archives-ouvertes.fr/hal-00525189

J. L. Roujean, M. Leroy, and P. Y. Deschamps, A bidirectional reflectance model of the Earth's surface for the correction of remote sensing data, Journal of Geophysical Research, vol.24, issue.3, pp.20455-20468
DOI : 10.1029/92JD01411

J. Rubio, E. Grau, J. P. Gastellu-etchegorry, G. Sun, and K. J. Ranson, Lidar modeling with the 3d dart model (poster), p.134, 2009.

R. Shrestha and R. H. Wynne, Estimating biophysical parameters of individual trees in an urban environment using small footprint discrete-return imaging lidar. Remote Sensing, pp.484-5082072

J. A. Sobrino, C. Mattar, J. P. Gastellu-etchegorry, J. C. Jimenez-munoz, and E. Grau, Evaluation of the DART 3D model in the thermal domain using satellite/airborne imagery and ground-based measurements, International Journal of Remote Sensing, vol.32, issue.22, pp.7453-7477, 2011.
DOI : 10.1109/TGRS.2004.834196

URL : https://hal.archives-ouvertes.fr/ird-00657976

U. Soderman, A. Persson, J. Topel, S. Ahlberg, 2. St et al., On analysis and visualization of full-waveform airborne laser scanner data, Laser Radar Technology and Applications X, pp.184-192, 1000.
DOI : 10.1117/12.604655

. Corp, Coll Opt & Photon ; Florida Space Inst ; FOI, Swedish Defense Res Agcy

G. H. Suits and G. R. Safir, Verification of a reflectance model for mature corn with applications to corn blight detection, Remote Sensing of Environment, vol.2, issue.10, pp.183-192, 1973.
DOI : 10.1016/0034-4257(71)90092-7

G. Sun, K. J. Ranson, D. S. Kimes, J. B. Blair, and K. Kovacs, Forest vertical structure from GLAS: An evaluation using LVIS and SRTM data, Remote Sensing of Environment, vol.112, issue.1, pp.107-117, 2008.
DOI : 10.1016/j.rse.2006.09.036

G. Q. Sun and K. J. Ranson, Modeling lidar returns from forest canopies, IEEE Transactions on geoscience and remote sensing, vol.38, issue.6, pp.2617-2626, 2000.

G. Sun, K. Jon-ranson, Z. Guo, Z. Zhang, P. Montesano et al., Forest biomass mapping from lidar and radar synergies, Remote Sensing of Environment, vol.115, issue.11, pp.2906-2916
DOI : 10.1016/j.rse.2011.03.021

L. Richard, N. S. Thompson, and . Goel, El chichon volcanic ash effects on atmospheric haze measured by NOAA7 AVHRR data, Remote Sensing of Environment, vol.16, issue.2, pp.157-207, 1998.
DOI : 10.1016/0034-4257(84)90059-2

. Drake, Vegetation profiles in tropical forests from multibaseline interferometric synthetic aperture radar, field, and lidar measurements, Journal of geophysical research-atmospheres, vol.114, issue.15, p.161, 2009.

N. R. Vaughn, L. M. Moskal, and E. C. Turnblom, Tree species detection accuracies using discrete point lidar and airborne waveform lidar. Remote Sensing, pp.377-4032072

W. Verhoef, Light scattering by leaf layers with application to canopy reflectance modeling: The SAIL model, Remote Sensing of Environment, vol.16, issue.2, pp.125-141, 1984.
DOI : 10.1016/0034-4257(84)90057-9

D. Verstraete and . Xie, The third RAdiation transfer Model Intercomparison (RAMI) exercise : Documenting progress in canopy reflectance modelling, Journal of Geophysical Research, vol.112, issue.D09111, pp.10-1029, 2006.

R. Wirth, B. Weber, and R. J. , Spatial and temporal variability of canopy structure in a tropical moist forest, Acta Oecologica, vol.22, issue.5-6, pp.235-244, 2001.
DOI : 10.1016/S1146-609X(01)01123-7

L. Xiaowen and A. H. Strahler, Geometric-optical bidirectional reflectance modeling of a conifer forest canopy. Geoscience and Remote Sensing, IEEE Transactions, issue.6, pp.24906-919, 1986.

Y. Xing, A. De-gier, J. Zhang, and L. Wang, An improved method for estimating forest canopy height using ICESat-GLAS full waveform data over sloping terrain : A case study in Changbai mountains, China. International journal of applied earth observation and geoinformation, pp.385-392

W. Yang, W. Ni-meister, and S. Lee, Assessment of the impacts of surface topography, off-nadir pointing and vegetation structure on vegetation lidar waveforms using an extended geometric optical and radiative transfer model, Remote Sensing of Environment, vol.115, issue.11, pp.2810-2822
DOI : 10.1016/j.rse.2010.02.021

G. Zhifeng, C. Hong, and S. Guoqing, Estimating forest aboveground biomass using HJ-1 Satellite CCD and ICESat GLAS waveform data, Science China -Earth sciences, vol.53, issue.1, pp.16-25, 2010.

B. Somers, dont les arbres sont agés 9 ans, située a Wellington en Afrique du sud (33°36S 18°56E) La description de la scène est absée sur des données acquises parUniversité Catholique de Leuven, Belgique), durant une importante campagne de mesure en Ils ont fourni une description détaillée de la structure 3D de 10 arbres de la plantation et de leur propriétés optiques (figure IV.28, qui servent de modèles pour reconstituer la totalité de la plantation. Chaque modèle est répliqué à environ 100 positions, La scène représente ici une plantation de Citrus, 2006.

. Vza-=-12°, . Vaa-=-134°-fig, and .. Iv-la-lumière, 27: Orangeraie FIG. IV.28: Citrus : Propriétés optiques (réflectance, transmittance) moyennes (les valeurs min et max sont indiquées par les barres d'erreur) des feuilles des modèles Citrus en fonction du numéro de bande. Spectre électromagnétique de

2. Schéma and .. , explication des erreurs sur la réflectance d'ordre 1 pour des triangles obliques, dues à la discrétisation des directions, p.178

L. Différents, turbide3D triangles" et "3D turbide, IV.9 Comparaison des réflectances des simulations

I. La-forêt-clairsemée........., 10 comparaison des simulations " triangle " vs