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Résumé

Dans les systèmes de vidéosurveillance, les algorithmes de vision assistée par ordinateur ont joué un rôle crucial

pour la détection d’événements liés à la sûreté et la sécurité publique. Par ailleurs, l’incapacité de ces systèmes

à gérer plusieurs scènes de foule est une lacune bien connue. Dans cette thèse, nous avons développé des algo-

rithmes adaptés à certaines difficultés rencontrées dans des séquences vidéo liées à des environnements de foule

d’une ampleur significative comme les aéroports, les centres commerciaux, les rencontres sportives etc. Nous

avons adopté différentes approches en effectuant d’abord une analyse globale du mouvement dans les régions

d’intérêt de chaque image afin d’obtenir des informations sur les comportements multimodaux de la foule sous

forme de structures spatio-temporelles complexes. Ces structures ont ensuite été utilisées pour détecter des événe-

ments de surveillance inhabituels au sein-même de la foule. Pour réaliser nos expériences, nous nous sommes

principalement appuyés sur trois ensembles de données qui ont suscité notre réflexion. Les résultats reflètent à la

fois la qualité et les défauts de ces approches. Nous avons également développé une distance pseudo-euclidienne.

Pour démontrer son utilité, une méthodologie qui lui est propre a été utilisée pour la détection de plusieurs événe-

ments de surveillance standards issus de la base TRECVID2008. Certains résultats montrent la robustesse de

cette méthodologie tandis que d’autres soulignent la difficulté du problème. Les principaux défis portent, entre

autres, sur le flux massif de personnes, l’importance de l’occlusion, la réflexion, les ombres, les fluctuations, les

variations de la taille de la cible, etc. Cependant, nos idées et nos expériences de ces problèmes d’ordre pratique

ont été particulièrement utiles. De plus, cette thèse développe un algorithme permettant de suivre une cible in-

dividuelle dans le cadre de plusieurs scènes de foule. Les séquences vidéo de la base de PETS2009 Benchmark

ont été prises en compte pour évaluer les performances de cet algorithme. Si on analyse ses avantages et ses

inconvénients, celui-ci fait toujours preuve d’une grande exactitude et sensibilité vis-à-vis des effets de variation

de la lumière, ce qui atteste de sa grande efficacité même lorsque la luminosité baisse, que la cible entre ou sort

d’une zone d’ombre ou en cas de lueur soudaine.

Mots-clés : détection d’événement, entropie, matrice, distance, flux optique, point d’intérêt, distance

pseudo-euclidienne, région d’intérêt, suivi.
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Abstract

Computer vision algorithms have played a vital role in video surveillance systems to detect surveillance events

for public safety and security. Even so, a common demerit among these systems is their unfitness to handle

divers crowded scenes. In this thesis, we have developed algorithms which accommodate some of the challenges

encountered in videos of crowded environments (e.g., airports, malls, sporting events) to a certain degree. We

have adopted approaches by first performing a global-level motion analysis within each frame’s region of interest

that provides the knowledge of crowd’s multi-modal behaviors in the form of complex spatiotemporal structures.

These structures are then employed in the detection of unusual surveillance events occurred in the crowds. To

conduct experiments, we have heavily relied on three thought-provoking datasets. The results reflect some unique

global excellences of the approaches. We have also developed a pseudo Euclidian distance. To show its usage,

a methodology based on it has been employed in the detection of various usual surveillance events from the

TRECVID2008. Some results report the robustness of the methodology, while the rest gives evidence of the

difficulty of the problem at hand. Big challenges include, but are not limited to, massive population flow, heavy

occlusion, reflection, shadow, fluctuation, varying target sizes, etc. Notwithstanding, we have got much useful

insights and experience to the practical problems. In addition, the thesis explores an individual target tracking

algorithm within miscellaneous crowded scenes. Video sequences from the PETS2009 Benchmark data have

been used to evaluate its performance. Viewing its pros and cons, the algorithm is still highly accurate and

its sensitivity to the effects of diversity in noise and lighting, which ascertains its high-quality performance on

disappearances, targets moving in and out of the shadow, and flashes of light.

Keywords: Event detection, Entropy, Matrix, Metric, Optical flow, Point of interest, Pseudo Euclidian

Distance, Region of interest, Tracking.
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1.1 Objective

The objective of this thesis is take some of the challenges in computer vision posed by interesting

event/behavior detection and individual target tracking in diverse crowded video scenes obtained by

surveillance video cameras. Both usual (normal) and unusual (abnormal) events detection in video

surveillance is an important task for public safety in locations such as airports, malls, banks, subways,

stations, town centers, hospitals, hotels, schools, concerts, cinema halls, parking places, sporting events,

political events, and rallies. As huge amount of video data makes it an exhausting work for people to
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2 CHAPTER 1. INTRODUCTION

monitor and find events, an automatic system is badly needed for detecting specially suspicious events

which would pose a potential threat. In spite of the concerted effort of computer vision research com-

munity, intelligent surveillance systems which process video feeds from real-world scenarios have not

yet attained the desirable level of applicability and robustness. This is widely due to the algorithmic

assumptions as well as the huge amount of video data analysis. This thesis develops approaches which

address some of the critical aspects of handling surveillance event detection in crowded scenes. Fig.1.1

shows instances of crowded scenes containing objects of different modalities. Targeting at automati-

cally detecting surveillance events should significantly improve the efficiency of video analysis, saving

valuable human attention for only the most salient content for security and safety. It adopts several

approaches and starts by performing a global-level crowd-flow motions analysis within each frame’s

region of interest that provides the knowledge of crowd’s multi-modal behaviors in the form of com-

plex spatiotemporal structures. These structures are then employed in the direction of detecting unusual

surveillance events in the diverse crowded scenes. Upon analyzing the motion in another direction, this

thesis develops a pseudo Euclidian distance and thereafter it employs a methodology based on the ob-

tained distance for the direction of detecting various usual surveillance events. This thesis also explores

an approach to tracking individual targets within the crowded scenes. The targets can be of a variety

of types including but not limited to people, cars, etc. For instance, Fig.1.2 shows an example to track

single targets in crowded scene. However, results of the approaches will be reported on diverse scenes

to emphasize the generic nature of the techniques developed in this thesis.

1.2 Motivation

Safety and security have always been a major issue for shopping centers, banks, official buildings,

enterprises, etc. Nowadays, nearly everybody looks for a way to keep its belongings safe and secure.

Improvements in new technologies are making possible the development of many systems of safeguard-

ing and surveillance for all necessities and budgets. Video surveillance is commonly used in security

systems, but requires more intelligent and robust technical approaches. Such systems, which used in air-

ports, subways, banks, concerts, cinema halls, sporting events, schools, supermarkets, parking places,

hospitals, hotels, town centers or other private/public spaces, can bring security to a high level. The sci-

entific challenge is to invent and implement automatic systems for obtaining detailed information about

the activities and behaviors of people or vehicles observed by sensors (e.g., cameras). Automatic video

surveillance is attractive because it promises to replace more costly option of staffing video surveillance
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Figure 1.1: Some instances of crowded scenes containing objects/targets of different modalities.

monitors with human observers. Gathering of people at both public and private spaces pose significant

challenges to public safety management officials from both normal and abnormal video event detection

point of view. Often at event involving a gathering, people move through confined locations. A video

event may be usual (normal) or unusual (abnormal), would vary greatly in duration, can be defined to

be an observable action or change of state in a video stream that would be important for security man-

agement. Depending on the context, a usual event would be an unusual and contrariwise; e.g., suddenly

a person starts running while others are walking or stops running while Marathon is running.

Unusual events are rare and occur infrequently and very hard to define. Fig.1.3 sketches a very

simple definition. Unusual events include, but are not limited to, people fighting on the streets, people

escaping from panic situations, person falling on the escalator, car violating the traffic rules on the

high-way, etc. Some scenarios of abnormal situation are illustrated in the first and second rows of

Fig.1.1. The first row in Fig.1.1 mainly concerns persons falling and rescuing the unfortunates who

suffered from adverse circumstances on the escalator exit, whereas the second row depicts escaping

in panics, fighting on the street, etc. It is quite obvious that to detect emergencies and provide useful
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Figure 1.2: How can be tracked in dense crowd the individuals marked A and B in the video sequences?

Figure 1.3: A simple example of usual and unusual behavior/event/situation. N1 and N2 are regions of
normal behavior. Points A1 and A2 as well as points in region A3 are anomalies, as their behavior or
pattern differs from the usual e.g., N1 and N2. Explicitly, they are deemed as outliers in this context.

data from such videos is a daunting task normally due to the various behaviors of people as well as the

shear number of people. There are many applications for vision systems that can detect emergencies

and provide useful and informative surveillance. For example, escalators have become an accepted

part of urban life. The United States Consumer Product Safety Commission estimates that there are

approximately 7300 escalator-related injuries in the United States each year [39]. In 2000, the accident

rate for escalator riding was about 0.815 accidents per million passenger trips through Taipei Metro

Rapid Transit (MRT) heavy capacity stations [33]. Large-scale video surveillance of escalators would

benefit from a system capable of recognizing perilous and inconsistent conditions and circumstances

to make the system operators fully aware and attentive. More clearly, computer vision algorithms can

make a significant contribution towards the security management.

Based on the context, e.g., TRECVID2008 [43], usual events include, but are not limited to, person

running, people meeting and splitting, opposing flow, embracing, object putting, etc. The third row in

Fig. 1.1 displays few examples of such scenarios. Although these normal video events do not often
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show vital threat for the security management, it would still be enthusiastic for the security personnel to

monitor the potential hazards if there would be certain information; e.g., a person may run suspiciously

through a crowded public place, or may put an abandoned object in the long run, or may stroll in the

opposite direction of the major flow of crowd, or may fight with another person, or may enter into the no

entry zone. On analyzing and studying the behavior of the crowd through a vision system, it is possible

to work in accordance with the public safety officials to ensure the safety of the public.

Individual target tracking in crowded video scenes is an eminent problem which arises in a wide va-

riety of domains such as robotics, vehicular traffic, navigation, and communication systems. The main

goal is to obtain a record of the trajectory of the moving targets over a space and time by processing

sensor data. Reliable tracking methods are of crucial eminence in many surveillance systems to make

possible human operators to remotely monitor activities across vast environments such as airports, rail-

way transportation, maritime transportation, urban and highway road networks, banks, shopping malls,

car parks, public buildings, industrial ambiences, military bases, prisons, strategic infrastructures, radar

centers, and hospitals. For instance, a public and/or private space security personal watching the video-

feed would be interested in tracking a few suspicious individuals within the crowd to keep an eye on

their activities. In crowded situations it is quite common to lose track of target objects due to a severe

occlusion arising from both the interaction of targets object with other members of the crowd and the

structure of the scene. An example scenario of tracking individual targets in a dense crowd is demon-

strated in Fig.1.2, where the individual targets marked A and B have to be tracked over crowded video

sequences.

Still limited research efforts in this direction have been spent in building vision systems which can

model various crowded scenes and provide useful information for public safety officials. One rational

reason for the lack of these efforts in this direction is the complexity and challenges inherent in the

problem.

1.3 Challenges

Successful techniques for handling a crowded visual scene will address a variety of problems, e.g.,:

• Depiction of Abnormality: An abnormal behavior or situation or event is difficult to be defined in

a formal manner; a highly crowded scene often spreads with a speed, which makes it challenging

to develop a general appreciation of abnormality by the gleaning information from the behavior

of an individual. Also, a suspicious behavior in one scene can be regarded as normal in another
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ambiences. For instances, people running is abnormal if most of the crowd is walking or standing;

people running in Marathon is normal but it is abnormal if a participating runner suddenly stops

running while Marathon is running; a car moving in a different way than the most other traffic is

also abnormal.

• Few Pixels on Target: In crowded situations, detection of an individual target becomes extremely

hard when the number of pixels on the target decreases with the increasing density of the objects

in the scene. The appearance information becomes further distorted due to the constant interaction

among individuals making up the crowd (e.g., Fig. 1.2).

• Appearance Ambiguity: Ideally, one would like to track all the visible objects throughout the

scene. Nevertheless, ambiguous appearance information resulting from too few pixels than rec-

ommendable on the target objects makes it arduous to persistently track the objects.

• Selection of Good Features: To detect surveillance events worthy of target/object scrutiny, it

is necessary to represent video data in terms of features which allow us to reliably distinguish

usual/unusual behaviors from the very ordinary occurrences. Feature or variable selection is

the technique of selecting a subset of relevant features for building robust learning models. It

serves two primary purposes. First, it makes training and applying a classifier more efficient

by decreasing the size of the effective vocabulary; thus it minimizes the train expense. Second,

it often increases classification accuracy by eliminating noisy features, which would increase

the classification error. Consequently, a good feature selection method based on the number of

features investigated for a sample classification is needed to speed up the processing rate and

predictive accuracy, and to avoid incomprehensibility.

• Handling of Occlusion: Occlusion can result from the interactions of objects among themselves

or the interactions of objects with the scene. Physical characteristics of a scene can act as sources

of an occlusion resulting in the loss of observations of the target objects.

• Effect of Lights and Shadows: In outdoor installations illumination varies significantly, while in

many indoor installations there may not be noticeable illumination variation but sometimes some

light reflection can appear in the scene.

• Estimation of Threshold: To select the boundary, beyond which a radically different state-of-affair

exists, is a crucial question in vision systems.
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1.4 Nomenclature

Some terms which are engaged to depict the phenomenon related to crowded scenes in this thesis are

used in some loose manner in the literature. To avoid confusion, some choice of words are:

• The term segmentation refers to the task of dividing a given crowded scene into dynamically

distinct crowd regions or groupings.

• The term abnormal (unusual) event, behavior, and situation are used interchangeably, referring to

a region of the scene where the behavior of the crowd is different from its usual (learnt) patterns.

• The term context refers to the contextual knowledge present in the crowded scene.

• The term crowded scene is used to refer to a video stream which contains a different density (low,

moderate, and high) of objects.

• The term motion history blob (MHB) and silhouetted region of motion component (SRMC) are

used interchangeably, referring to the silhouetted structure of more recently moving pixels of an

object of interest.

1.5 Contributions

The contributions of this thesis is three folded as stated below.

• First, we have developed six algorithms for abnormal events detection.

• Second, we have proposed the pseudo Euclidian distance (PED). As an usage of the PED, we

suggest a methodology for different kinds of usual video event detection (VED).

• Finally, an individual target tracking algorithm has been developed.

Unlike many traditional methods of processing a surveillance video, we start with computing a region

of interest based on the main motion activities of the video frames which specially speed up the pro-

cessing time. To detect abnormal events, we perform a frame based global motion analysis to generate

a representation of each scene frame which captures the dynamics of the crowd on the frame basis. The

global level analysis eliminates the need for low level change detection algorithms. To detect different

normal video events, we have proposed a methodology based on PED. To track individual target, we
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have introduced a temporal-spatial domain algorithm which concerns the calculation of motion history

blob regions and phase-correlation functions.

1.5.1 Detection of Unusual Video Events

We have investigated the conventional visual saliency, inspired by the fact that human attention may

focus only on the most salient contents of the video, to single out abnormal or unusual events within

streaming or archival videos. Saliency at a given location is determined primarily by how different this

location is from its neighborhood in color, orientation, motion, depth, etc. However, the conventional

saliency approach does not give us satisfactory results to analyze crowd behavior as a whole. Con-

sequently, several algorithms have been developed in this thesis to perform crowd behavior analysis

and to use those for the detection of abnormal events taking place in the crowd. The algorithms start

with treating the spatial extent of a video where the main motion primarily exists as a form of region

of interest (RoI) called motion heat map or motion map or region of interest image map. Points of

interest (PoI) are defined within the RoI. Motion of PoI from one frame region to another is controlled

by the optical flow. The significance of using the optical flow field to examine the temporal behavior

of PoI is that the optical flow of a scene helps in revealing the characteristics of the scene as optical

flow patterns vary in time inline with the crowd multi-modal behaviors. To distinguish any kind of

crowd events/behaviors/situations either usual or unusual, it is very important to analyze this complex

spatiotemporal structures exhibited by a moving crowd.

Spatiotemporal information takes into account motion as an informative feature to detect and seg-

ment interesting objects or targets by means of optical flow computation, block matching or other

motion detection methods. On analyzing the complex spatiotemporal information in various ways, we

have proposed the following approaches:

• Covariance Matrix 3.2([SID08a]),

• Normalized Continuous Rank Increase Measure 3.3([SD09a]),

• Mahalanobis Metric 3.4 ([SD09c]),

• Bhattacharyya Metric 3.5([SD10a]),

• Enumerated Entropy 3.6 ([SID08b],[SID10]),

• Shannon Entropy 3.7 ([SDb])



1.5. CONTRIBUTIONS 9

which have been annexed on the existing directional start-of-the-art. All the approaches have been

tested on surveillance videos obtained by single cameras. To conduct experiments, we have heavily

relied on the Escalator dataset [132], UMN dataset [137], and Web dataset [131]. Since the approaches

are based on the analysis of the spatiotemporal information, there are some unique global excellences

and breakages reflect on them.

1.5.2 Detection of Usual Video Events

In this direction of researches, we have lined up our efforts and successfully annexed the following

contributions ([SD09b]):

• First, we developed a new method which generates automatically the pseudo Euclidian distance

(PED) from the trigonometrically treatment of the motion history blob (MHB).

• Second, we proposed a methodology based on PED for various kinds of video event detection

(VED), e.g., PersonRuns, OpposingFlow, PeopleMeet, Embrace, PeopleSplitUp, and ObjectPut.

The developed algorithm generates automatically PED from the trigonometrical treatments of motion

history blob (MHB) obtained from motion history image (MHI). Given a point with its direction of

motion where the point coincides the center of a circle. How far the point can virtually travel inside the

circle with that direction? That virtual distance is called pseudo Euclidian distance (PED). The idea

of PED remains one of the important contributions of this thesis and would be used in a wider variety

of computer vision applications. If we use PED for normal VED, it is important to know the explicit

information of motion history blobs which can be gained by tracking objects of interest and thereof

can get more information that will be used for detecting specific video events. The results based on

the detection of several events at TRECVID2008 [43] in real videos have been exhibited. Some results

show the robustness of the methodology, while the rest gives evidence of the difficulty of the problem

at hand.

1.5.3 Individual Target Tracking in Crowded Scenes

We have also engaged many of our efforts in this research and contributed as the following.

• First, we have studied an extended method ([SMD08b]), which was originally proposed in [166].

The method is based on the spatial information. It follows the detection of a target in a video and
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the target is to be tracked in the subsequent frames using the region covariance matric method

introduced in [166]. The method works in some extent as a single covariance matrix extracted

from a region of interest matching the region in some other views and poses.

• Second, we have proposed an approach ([SDc]) based on temporal-spatial information suitable

for tacking individual targets in a sparse crowd, medium density crowd, and dense crowd.

The approach is based on the estimation of a target (region of interest over frame in time) and candi-

date (region of possible target over next frame in time) regions from the silhouetted structures of more

recently moving pixels of the object of interest by combining two techniques, namely motion history

image MHI [22] and Hu’s moments [80]. The MHI function, which uses temporal history of the position

or motion, helps to create a silhouetted region of motion component (SRMC) while Hu’s moments find

the center of mass or center of gravity or centroid of each SRMC. A great advantage behind of this hy-

brid technique is that it is not necessary to search the possible target region everywhere in the candidate

frame except for the candidate regions. Consequently, the searching process becomes extremely rapid.

The target region and its most representative candidate region in the next frame normally give a distinct

phase-correlation sharp peak as compared to the individual peaks between them. The height of the peak

gives a good similarity measure for image matching which is good for tracking targets one by one in

different crowded scenes. The video sequences of the PETS2009 Benchmark data [42] have been con-

sidered for performance evaluation of the approach. Deeming the favorable and the unfavorable factors

of the proposed approach, it is still highly accurate with respect to the effects of mutations in noise and

lighting, which assures high-quality performance on fades, targets moving in and out of the shade, and

flashes of light.

1.6 Organization of the Thesis

The structure of the thesis is as follows. Chapter 2 reviews the existing literature that focuses on

handling different aspects of crowded scenes. Chapter 3 presents the detailed abnormal video event

detection frameworks. Results are shown for very challenging sequences gathered from a variety of

resources. Chapter 4 develops the algorithm of the PED which is used for normal video events detec-

tion. Chapter 5 introduces the tracking algorithm that is specifically designed for tracking individuals

in crowded scenes. The thesis is concluded in Chapter 6 with a brief statement that presents the main

points of the contributions in a concise form and some clues for a further investigation.
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2.1 Overview

In this chapter, we review the approaches which have been developed to handle aspects of crowd be-

havior analysis and target tracking. We have divided the chapter into two primary parts. The first part

covers the algorithms and techniques which are used for crowd flow and behavior analysis in crowded

scenes. The second part gives a recent overview of the target tracking approaches.

2.2 Crowd flow and behavior analysis

We make a classificatory division of the works of crowd flow and behavior analysis: first division

relates to person count and density estimation, the second division concerns abnormal event detection

in mob flows, and the third division depicts specific video event. A common view of all those methods

is that they make interesting analysis for crowd surveillance, nevertheless they do not detect abnormal

situations/events/behaviors.

2.2.1 Estimation of Crowd Density

In computer vision, person count and density estimation is gaining popularity for the sake of security

and surveillance. The estimation of number or density of people in an area under surveillance is very

important for the problem of crowd monitoring. To address the crowd density estimation problem,

the initial research efforts ([40, 44, 35, 155, 34, 128, 129] ) can be found in the early to late nineties.

Global image features e.g., foreground pixels, textures, edges, optical flows, etc., were often put to use

in this assembly of works. More recently, there are some crowd density estimation and counting works

based on wavelet features and trajectory information. We have subclassified the works of crowd density

estimation.
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2.2.1.1 Pixel-based techniques

In [40], crowd density was estimate by extracting a set of features which included a number of edge

points, a number of maxima in the edge point histogram, and the sum of the amplitudes of the maxima in

the edge point histogram. Authors in [44] estimated the number of foreground pixels or number of edge

pixels from the image and used them in a linear regression framework to estimate the number of people

in the scene. In [35], the sizes of foreground regions and ratio of foreground to background regions

as features were used to train a fuzzy classifier that classified the scene into one of five categories: no

people, a few people, some people, many people overcrowding. In the same vein, in [155, 34], neural

networks were trained to classify the level of a crowd. Crowd estimation using color density have been

presented by [4]. However, these pixel-based techniques were simple and fast, but are not reliable when

the crowd density is high.

2.2.1.2 Texture-based techniques

There are some texture-based works [128, 129] which used crowd images of different densities as dif-

ferent texture patterns, and estimated the crowd density by texture analysis schemes. Texture measures

were extracted, in [128], from the images through gray level dependence matrices, straight line seg-

ments, Fourier analysis, and fractal dimensions. Crowd density estimations were given in terms of

the classification of the input images into densities of very low, low, moderate, high, and very high.

In a later work of [129], this method was extended where the Minkowski fractal dimension was used

for density estimation. An automatic method of estimating crowd density using texture analysis and

machine learning has been presented by [113].

2.2.1.3 Wavelet-based techniques

According to the definition of wavelet, a wavelet is an oscillating and attenuated function and its inte-

grals equal to zero. It is a mathematical function useful in digital signal and image processing. However,

the utility of wavelet features for density estimation was explored in the work of [116, 179]. In [116], the

Haar wavelet transform (HWT) is used to extract the featured area of the head-like contour, afterwards

support vector machine is used to classify these featured area as the contour of a head or not. At the

end, perspective transforming technique is used to estimate crowd size. Authors in [179] addressed an

algorithm to estimate the crowd density based on the combination of multi-scale analysis and a support

vector machine. Using wavelet transform, the crowd image transforms into multi-scale formats. Sta-
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tistical features at each scale of the transformed images are then extracted as density character vectors.

A classifier based on a support vector machine is designed to classify the extracted density character

vectors into different density levels.

2.2.1.4 Trajectory-based techniques

A trajectory is the path a moving object or target follows through frames. In [146] counted the number

of people by segmenting the moving objects in a dense crowded scene. Counting is typically performed

by clustering a set of extended tracked features where spatio-temporal conditioning was used to over-

come the fragmented nature of the tracks. Authors in [10] addressed a trajectory clustering outline for

crowd counting. They used some representations (e.g., independent component analysis, time series,

maximum of cross correlation) and compared different distance/similarity measures (e.g., Euclidian,

longest common subsequence, Hausdroff) under a common hierarchical clustering framework. Length

clustering, spatial clustering, and pedestrian counting are the stages of the hierarchy.

2.2.2 Detection of Unusual Events

Events detection is a classical task in computer vision. From a surveillance point of view, it is specially

important to detect unusual events and hence a wide variety of different approaches covering diverse

applications have been proposed. We have discussed some works which is based on the approach that

consists of modeling normal behaviors, then estimating the deviant behavior or attitudes between the

normal behavior model and the observed behaviors. Those deviations are labeled as abnormal. The

principle of the general approach is to exploit the fact that data of normal behaviors are generally

available, and data of abnormal behaviors are ordinarily less available. Consequently, the deviations

from examples of normal behavior are used to characterize abnormality. The major existing methods

for abnormal behavior understanding are outlined as follows:

2.2.2.1 Trajectory major approaches

One of the earliest approaches to behavior classification, proposed by [91], identified unusual behavior

by comparing new trajectories with a set of clusters representing typical sequences of typical local mo-

tion vectors in a given scene. A similar approach has been adopted by [62], where typical trajectories

are modelled with a more complex hierarchical clustering strategy. In the algorithm of [62] for learn-

ing motion patterns, trajectories are clustered hierarchically using spatial and temporal information and
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then each motion pattern is represented with a chain of Gaussian distributions. Based on the learned

statistical motion patterns, statistical methods are used to detect anomalies and predict behaviors. Ex-

perimental results of anomaly detection in the real traffic scene (mainly cars) and indoor model scene

have been reported. In a different vein, the work of [47] has shown that unusual trajectories can also

be identified using a rule-based approach, inspired by cognitive science, which quantifies the extent

to which the movements of a given individual could be regarded as goal-directed. A spatial model to

represent the routes in an image has been developed in [127]. One short coming of this method is that

solely spatial information is used for trajectory clustering and behavior recognition. The system can-

not differentiate between a person walking and a person lingering around, or between a running and a

walking person. On the other hand, a method for detecting nonconforming trajectories of objects has

been proposed in [92]. Authors in [162] detected events which have never occurred or occur so rarely

that they are not represented in the clustered activities. The method includes robust tracking, based on

probabilistic method for background subtraction. This system has been used to track people (from low

crowded scenes) in indoor environments, people and cars in outdoor environments, fish in a tank, ants

on a floor, and remote control vehicles in a lab setting. But the robust tracking method is not adapted

to crowd scene, in which it is too complex to track objects. In [124], a fuzzy support vector machine

based algorithm to detect the abnormal trajectory patterns of moving objects from surveillance video

has been proposed. However, the algorithm does not consider the analysis of multi trajectories.

2.2.2.2 Statistical model & classifier major approaches

A hidden Markov model (HMM) is a statistical model in which the system being modeled is assumed

to be a Markov process with unobserved state. An HMM can be considered as the simplest dynamic

Bayesian network. A Markov random field (MRF) is similar to a Bayesian network in its representation

of dependencies. A Markov random field, sometimes called as Markov network or undirected graphical

model, is a graphical model in which a set of random variables have a Markov property described by

an undirected graph. It can show certain dependencies that a Bayesian network cannot (e.g., cyclic

dependencies); but then again, it cannot represent certain dependencies that a Bayesian network can

(e.g., induced dependencies). The prototypical Markov random field is the Ising model; indeed, the

Markov random field was introduced as the general setting for the Ising model [103].

Automatic behavior analysis can consist of decomposing video data in terms of some low level rep-

resentational primitive, and modeling the sequential topology of behaviors in terms of such primitives.

The low-level representational currencies which have been employed for the global representations of



16 CHAPTER 2. LITERATURE REVIEW

changes in scene content employed by [177, 178]. Sequences of such low-level primitives are typically

represented using Hidden Markov Models (and variants thereof) or Bayesian Networks, which provide

a powerful probabilistic framework for identifying anomalous behavior. A location-based approach for

behavior modeling and abnormality detection has been addressed by [16]. The spatial and temporal

dependencies between motion labels obtained with simple background subtraction. A Markov random

field model is parameterized by a co-occurrence matrix, which contains the average behavior observed

in a training sequence. Abnormal events can be detected by detecting traces which significantly differ

from the normal model following a likelihood ratio test. The method was tested on various challenging

outdoor videos, which primarily present few people.

Authors in [52] proposed probabilistic models corresponding to behavior clusters, and use these

models to perform abnormal behavior detection. The method was tested by a highway video. For

recognizing rare events in aerial video, authors in [32] used hidden Markov models to represent the

spatiotemporal relations between objects and uncertainty in observations, where the data observables

are semantic spatial primitives encoded based on prior knowledge about the events of interest. The

effectiveness of the approach was demonstrated by using real aerial video and simulated data. In [189],

a semi-supervised adapted HMM framework has been proposed, in which usual event models are first

learned from a large amount of (commonly available) training data, while unusual event models are

learned by Bayesian adaptation in an unsupervised manner. The framework is good for cases in which

collecting sufficient unusual event training data is impractical and unusual events cannot be defined in

advance. Experiments on audio, visual, and audiovisual data streams illustrate the effectiveness of the

framework, but there is no golden hints how the approach would be handled in either few people or

crowd situation. For detecting abnormalities in surveillance video, author in [89] proposed a multi-

sample-based similarity measure, where HMM training and distance measuring are based on multiple

samples. These multiple training data are acquired by a dynamic hierarchical clustering method. Ex-

perimental results have been reported on real surveillance video with few persons. The approach of

[9] presented a set of theoretical and practical tools for the domain of behavior recognition, which have

been integrated within a unified, automatic, bottom-up system based on the use of multiple cameras per-

forming human behavior recognition in an indoor environment, without a uniform background. Their

methodology classifies behavior as normal or abnormal, by treating short-term behavior classification

and trajectory classification as two different classification problems. A support vector machine and a

continuous HMM treated as an one-class classifier. However, the methodology would not be interesting

for crowded scene.
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By carrying out change detection and congestion estimation, an MRF-based based approach for

real-time subway monitoring has been proposed by [141]. Their solution consisted of two steps. The

first step was a change detection algorithm that distinguished the background from the foreground by

using a discontinuity preserving MRF-based approach. In the MRF model, information from different

sources (background subtraction, intensity modeling) was combined with spatial constraints to provide

a smooth motion detection map. In the second step, the obtained change detection map was combined

with a geometry module to perform a soft auto-calibration to estimate a measure of congestion of the

observed area (platform). A space-time MRF model to detect abnormal activities in video has been

proposed by [101]. The nodes in the MRF graph correspond to a grid of local regions in the video

frames, and neighboring nodes in both space and time are associated with links. To learn normal

patterns of activity at each local node, the distribution of its typical optical flow with a mixture of

probabilistic principal component analyzers is captured. For any new optical flow patterns detected in

incoming video clips, the learned model and MRF graph to compute a maximum a posteriori estimate

of the degree of normality at each local node is used. The method would arouse interest for few people

scene but would not be interesting for crowded scene.

Authors in [178] addressed the problem of modeling video behavior captured in surveillance videos

for the applications of online normal behavior recognition and anomaly detection without any manual

labeling of the training data set. The similarity between behavior patterns are measured based on mod-

eling each pattern using a Dynamic Bayesian Network. The natural grouping of behavior patterns is

discovered through a novel spectral clustering algorithm with unsupervised model selection and feature

selection on the eigenvectors of a normalized affinity matrix. A composite generative behavior model

is constructed from a small training set to accommodate variations in unseen normal behavior patterns.

Finally, a runtime accumulative anomaly measure detects abnormal behavior, whereas normal behav-

ior patterns are recognized when sufficient visual evidence has become available based on an online

likelihood ratio test method. The effectiveness and robustness of the approach has been tested on data

sets collected from both indoor and outdoor surveillance scenarios. Nevertheless, human behavior was

monitored with one or few people at a time. Also there is no suggestions how the approach would be

handled in either some people or crowd situations.

The problem of detecting irregularities in visual data, e.g., detecting suspicious behaviors in video

sequences, or identifying salient patterns in images has been addressed by [24]. The method formulates

the problem of detecting regularities and irregularities as the problem of composing (explaining) the new

observed visual data (an image or a video sequence, referred to below as query) using spatiotemporal
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patches extracted from previous visual examples (the database). Regions in the query which can be

composed using large contiguous chunks of data from the example database are considered likely. The

larger those regions are, the greater the likelihood is. Regions in the query which cannot be composed

from the example database (or can be composed, but only using small fragmented pieces) are regarded

as unlikely/suspicious. Concisely, their method is posed as an inference process in a probabilistic

graphical model and would be arousing the attention for low crowded scenes but needs learning process

and/or training data. An algorithm which is based on multiple local monitors that collect low-level

statistics has been proposed by [1]. Each local monitor produces an alert if its current measurement is

unusual and these alerts are integrated to a final decision regarding the existence of an unusual event.

An approach to detect unusual events in terms of velocity and acceleration has been proposed by

[86]. The moving objects in the scene are detected and tracked. A supervised support vector machine

method is used to train the system with one or more typical sequences, and the resulting model is then

used for testing the proposed method with other typical sequences (different scenes and scenarios).

Experiments were carried out on two outdoor and two indoor video sequences. The algorithm proffered

by [59] shown the capabilities of their proposed system for analyzing complex threat detection scenarios

in thermal imaging e.g., detection of people lying down in a crowded environment. Their method was

based on the detection and segmentation of individuals within groups of people using a combination of

several weak classifiers in a boosting algorithm.

2.2.2.3 Optical flow major approaches

Optical flow or optic flow means tracking specific features (points of interest) in an image across multi-

ple frames. It is the pattern of apparent motion of objects, surfaces, and edges in a visual scene caused

by the relative motion between an observer (an eye or a camera) and the scene [29, 173]. In [23] pro-

posed to model the scene dynamics under consideration for the prevention of crowd related emergencies

in large crowds. They started by estimating the optical flow and clustered the optical flow vectors based

on direction and magnitude to segment different crowds. Afterwards, they detected a number of events

using a technique based on Hough voting space. The types of event detected by their method include

circular flow paths close to site exits indicating trapped crowds; crowd flow diverging from a point to all

directions, which might indicate a potential danger (e.g., fights, fire, etc.). Obstacles in the flow paths

that might correspond to injured pedestrians or deliberate flow disturbances. Afterwards, in the work

of [121], an automatic monitoring system was proposed for detecting overcrowding conditions in the

platforms of underground train services. Using a block matching scheme, optical flow, and filtering, au-
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thors in [25] proposed an algorithm for the detection of abnormal individual or crowd motion in subway

corridors. The underlying assumption of their algorithm was that for detection of any abnormal activity

the knowledge about direction of crowd motion is essential. The optical flow vectors were filtered and

then used for the construction of motion trajectories, which were finally used to detect counter flows in

one way corridors.

To detect emergency or abnormal events in the crowd, authors in [7, 8] encoded optical flow features

with HMMs. The crowd behavior was characterized at a global level by using the optical flow of the

video sequence. During the learning stage, a reduced order representation of the optical flow was

generated by performing principal component analysis on the flow vectors. The top few eigenvectors

were used as the representative features and spectral clustering was performed to identify the number of

distinct motion patterns present in the video. The features in the clustered motion segments were used

to train different HMMs which were later used for event detection in crowds. The methods would be

worth interesting but were not experimented on the real video data.

The mathematical framework, introduced by [5], used Lagrangian particle dynamics to detect the

flow instabilities from video streams characterized by extremely high crowd density e.g., marathon,

political rally, thousands of people circling around the Kabba in an anticlockwise direction, etc. They

obtained one mean field by calculating optical flow fields over several number (experimented 5 to 10)

of video frames. Several number (experimented 5 to 10) of mean fields are stacked together to obtain

one block of mean fields. A typical size of the block is 16× 16. Their framework is very suitable

to detect flow instabilities from the events where thousands of people primarily present like religious

festivals, parades, concerts, football matches, etc. However, the method would not be so interest-bearing

in the context of a crowd scene like airport, shopping malls, and so forth to detect abnormalities; more

precisely, in case the of escalators or narrow passages where people mainly go in one direction and the

density of people is never so high. Authors in [83] presented an approach to detect abnormal situations

in crowded scenes by analyzing the motion aspect instead of tracking subjects one by one.

Authors in [131] introduced a method by capturing the dynamics of the crowd behavior to detect

and localize abnormal behaviors in crowd videos using social force model. In this model an individual

is subject to long-ranged forces and the dynamics follow the equation of motion, similar to Newtonian

mechanics. A grid of particles is placed over the image and it is advected with the space-time average of

optical flow. By treating the moving particles as individuals, their interaction forces are estimated using

social force model. The interaction force is then mapped into the image plane to obtain force flow for

every pixel in every frame. Randomly selected spatiotemporal volumes of force flow are used to model
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the normal behavior of the crowd. By using a bag of words approach normal and abnormal frames are

classified. The regions of anomalies in the abnormal frames are localized using interaction forces. The

experiments were conducted on several challenging datasets. The results are interesting except several

number of false alarms.

2.2.2.4 Discussion

The brief overview of the research literature underscores the fact that most of the aforementioned ap-

proaches require a learning period to estimate various parameters of the system, and consequently,

reliable learning of unknown parameters is not always accurately possible. We have proposed several

algorithms, fall into the category of optical flow major approaches, to detect abnormal behaviors/events

in crowd videos without segmentation or tracking subject singly. Our proposed algorithms have several

important differences from these body of works as: (i) they expect region of interest; (ii) they detect all

events in videos where entropy variations are important as compared to previous events; (iii) they work

all directional flow of movers without imposing a restriction of their numbers in the videos; (iv) they do

not expect efficient learning process and training data but would look for a prior cut-off.

2.2.3 Detection of Usual Events

Action recognition in crowded environment is an important and challenging topic in computer vision,

with many important applications including video surveillance, automated cinematography and under-

standing of social interaction. Analysis of crowd behaviors is an important problem. It can be dealt

with at the individual level where the event of interest is defined in terms of individual objects, or it

can be defined at a global level where the behavior of the crowd is modeled at an extended spatial

scale. The analysis of the global level behavior is often carried out by using the motion information.

Many promising strategies have been identified which can be directly or indirectly employed for events

detection. We have broadly categorized into approaches based on tracking, spatiotemporal sequence,

spatiotemporal volume, and spatiotemporal point.

2.2.3.1 Tracking-based methods

Tracking-based approaches can incorporate existing domain knowledge about the target event in the

model and the system can support online queries since the video is processed a single frame at a time.

Initializing tracking models can be difficult, particularly when the scene contains distracting objects.
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Although the work of [148] has demonstrated significant progress in cluttered environments, tracking

remains challenging in such environments, and the tracker output tends to be noisy. An alternate ap-

proach to tracking-based event detection focuses on multi-agent activities, where each actor is tracked

as a blob and activities are classified based on observed locations and spatial interactions between blobs

[60, 78]. These models are well-suited for expressing activities such as loitering, meeting, arrival and

departure, etc. The algorithm proposed by [147] works by two steps: (i) tracking people in 2D and then,

using an annotated motion capture dataset; (ii) synthesizing an annotated 3D motion sequence matching

the 2D tracks. The 3D motion capture data is manually annotated off-line using a class structure that

describes everyday motions and allows motion annotations to be composed. They showed smoothed

annotation results for a sequence of jumping jacks (sometimes known as star jumps) from two such

annotation systems. Detection of events (e.g., PeopleMeet, personRuns, PeopleSplitUp, etc.) in the

surveillance video selected for TRECVID 2008[43] is an extremely difficult task. For example, people

meeting event usually happens in complex and crowded environments, where many pedestrians, moving

in different directions are present simultaneously. Also many pedestrians have similar appearances and

occlude each other and occlusions by other scene objects are also common. In the work of [109] peo-

ple meeting event was detected mainly by analyzing pedestrian trajectories. They detected and tracked

people in the scene by using the method described in [81]. To get reliable pedestrian trajectories for peo-

ple meeting event detection task, they proposed a detection-based hierarchical association method that

was capable of robustly tracking multiple pedestrians under such challenging conditions. Their method

generated pedestrian trajectories by means of progressively associating detection responses given by the

pedestrian detector as introduced by [176]. A combination of trajectory and domain knowledge based

subsystems can be found in [55]. The trajectory-based subsystem implements human detection and

tracking to generate trajectory and three-level trajectory features are used to detect PersonRuns, Peo-

pleMeet, PeopleSpiltUp, and Embrace. The domain knowledge-based subsystem constructs specific

models for PeopleMeet, Opposingflow, and ElevatorNoEntry depending on domain knowledge.

2.2.3.2 Spatiotemporal sequence-based methods

These kind of methods for event detection operate directly on the spatiotemporal sequences, attempting

to recognize the specified pattern by brute-force correlation without segmentation. Authors in [51]

correlated flow templates with videos to recognize actions at a distance. In [98] trained a cascade of

boosted classifiers to process the vertical and horizontal components of flow in a video sequence. An

algorithm for correlating spatiotemporal event templates against videos without explicitly computing
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the optical flow has been introduced by [159]. Their approach can detect very complex behaviors

in video sequences (e.g., ballet movements, pool dives, running water), even when multiple complex

activities occur simultaneously within the field-of-view of the camera. However, the approach can be

noisy on object boundaries. On the other hand, method for detecting events in crowded videos has

been proposed by [99]. The video is treated as a spatiotemporal volume and events are detected using

a volumetric shape descriptor in combination with flow descriptor of [159]. Their approach detected

events in difficult situations containing highly-cluttered dynamic backgrounds, and significantly out-

performs the baseline method of [159]. Experimental results e.g., picking up a dropped object or waving

in a crowd have been showed. Yet, the biggest limitation of this work is that the model is derived from

a single exemplar of the event, thus limiting the ability to generalize across observed event variations.

2.2.3.3 Spatiotemporal volume-based methods

These type of methods treat the spatiotemporal volume of a video sequence as a 3D object. Different

events in video generate distinctive shapes, and the goal of such methods is to recognize an event by

recognizing its shape. Human action in video sequences can be seen as silhouettes of a moving torso

and protruding limbs undergoing articulated motion. Authors in [72] regarded human actions as three-

dimensional shapes induced by the silhouettes in the space-time volume. They adopted the approach

of [56] for analyzing 2D shapes and generalize it to deal with volumetric space-time action shapes.

Their method utilized properties of the solution to the Poisson equation to extract space-time features

such as local space-time saliency, action dynamics, shape structure, and orientation. They showed that

these features are useful for action recognition, detection, and clustering. A new view-based approach

to the representation and recognition of human movement has been presented by [22]. The basis of

the representation is a temporal template, which is a static vector-image where the vector value at each

point is a function of the motion properties at the corresponding spatial location in an image sequence.

For computational efficiency and greater robustness to action variations, authors in [22] projected the

spatiotemporal volume down to motion-history images, which authors in [175] extended to motion-

history volumes. In the work of [175] introduced Motion History Volumes (MHV) as a free-viewpoint

representation for human actions in the case of multiple calibrated, and background-subtracted, video

cameras. They presented algorithms for computing, aligning and comparing MHVs of different actions

performed by different people in a variety of viewpoints. Alignment and comparisons were performed

efficiently using Fourier transforms in cylindrical coordinates around the vertical axis. Results indicated

that their representation can be used to learn and recognize basic human action classes, independently
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of gender, body size and viewpoint.

A novel representation for actions using spatiotemporal action volumes has been proposed by [187].

When the object performs an action in 3D, the points on the outer boundary of the object are projected

as 2D (x, y) contour in the image plane. A sequence of such 2D contours with respect to time generates

a spatiotemporal volume (STV) in (x, y, t), which can be treated as 3D object in the (x, y, t) space. The

STV is analyzed by using the differential geometric surface properties to identify action descriptors

capturing both spatial and temporal properties. Several experimental results using video sequences

including dancing, falling, tennis strokes, walking, running, kicking, sit-down, stand-up, surrender,

hands-down, aerobics actions were presented. The hypothesis of [181] is that any instance of an action

can be expressed as a linear combination of spatiotemporal action basis, capturing different personal

styles of execution of an action, different sizes and shapes of people, and different rates of execution.

Based on this hypothesis, they have developed a framework for learning the variability in the execution

of human actions that is unaffected by the changes. Their test data included the actions e.g., sitting,

standing, falling, walking, dancing, running, etc.

2.2.3.4 Spatiotemporal interest point-based methods

Space-time interest points [108] have become popular in the action recognition community. In [156],

constructed video representations in terms of local space-time features and integrate such represen-

tations with SVM classification schemes for recognition. For the purpose of evaluation, they used a

new video database containing 2391 sequences of six human actions performed by 25 people in four

different scenarios. Authors in [48] showed that the direct 3D counterparts to commonly used 2D in-

terest point detectors are inadequate, and hence they proposed an alternative. Anchoring off of the

interest points, they devised a recognition algorithm based on spatiotemporally windowed data. The

recognition results were presented on a variety of datasets including both human and rodent behavior.

An unsupervised learning method for human action categories presented by [87]. A video sequence

is represented as a collection of spatial-temporal words by extracting space-time interest points. The

algorithm automatically learns the probability distributions of the spatial-temporal words and the inter-

mediate topics corresponding to human action categories. This is achieved by using latent topic models

such as the probabilistic latent semantic analysis (pLSA) model and latent Dirichlet allocation (LDA).

Experiments were conducted on three datasets. From a new video sequence, the algorithm can cate-

gorize and localize the human action(s) contained in the video. For event detection in crowd scenes,

authors in [14] used a global analysis of motion vectors, obtained from optical flow techniques. Authors
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in [15] presented an effective method for human action recognition using statistical models based on

optical flow orientations. The event detection algorithm of [53] found interest points, clustered them

into visual keywords and used a classifier to detect activities based on trained SVM models. In [61]

used optical flow features and SVM to detect surveillance events. To detect events (e.g., PersonRuns,

OpposingFlow, etc.), the optical flow was used for analyzing the motion of objects in [97]. To detect

single surveillance events, authors in [58] proposed systems which relied on low level vision properties

such as optical flow and image intensity as well as heuristics based on a given event and context.

2.2.3.5 Discussion

A large body of the aforementioned works have addressed that vast diversity of one event viewed from

different view angles, different scales, different degrees of partial occlusion, few pixels on targets, etc.,

make challenge for performance of the event detectors. Therefore, it is necessary to greatly improve

their effectiveness by further investigation. We have developed a new method which generates auto-

matically pseudo Euclidian distance (PED) from the trigonometrically treatment of the motion history

blob. Then we have proposed a methodology, falls into the category of tracking-based methods, based

on PED for various kinds of video event detection (VED), e.g., PersonRuns, OpposingFlow, People-

Meet, Embrace, PeopleSplitUp, ObjectPut, etc. Some results show the robustness of the methodology,

while the rests give evidence the dimension of the difficulty of the problem at hand.

2.3 Target Tracking in Crowds

Detection of individuals in dense crowds is one of the challenging research topics in computer vision be-

cause it is at once a problem of segmentation, recognition, and tracking. Most tracking algorithms pro-

posed on the common problem of tracking, without specifically addressing the challenges of a crowded

scene. We have reviewed the tracking approaches which are particularly designed for crowded situa-

tions. Readers interested in a detailed review of the state of the art in tracking are referred to a survey

by [185]. Herewith, tracking has been roughly categorized based on low and high levels information.

2.3.1 Low-level information based tracking

The Markov chain Monte Carlo (MCMC) methods, are a class of algorithms for sampling from proba-

bility distributions based on constructing a Markov chain that has the desired distribution as its equilib-
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rium distribution. The state of the chain after a large number of steps is then used as a sample from the

desired distribution. The quality of the sample improves as a function of the number of steps. Authors

in [100] used a MCMC based particle filter to deal with interactions among targets in crowded scenario.

The interactions among the targets were shaped by a Markov Random Field based motion priors which

were learnt on the fly using an MCMC sampling. The results were reported on videos of interacting

insects. Authors in [190] used the initial detection of people in crowds to initialize the ellipsoid based

human shape models and color histograms to accomplish tracking. Analogously, in [27], features points

were tracked and clustered over time. Finally, a separate trajectory for each single was generated.

There are sundry interesting and relevant body of works which put to the test to track e.g., sparse

crowds of ants [100], hockey players [30], crowds of densely packed people [70, 117, 118], a dense flock

of bats [57], and biological cells [111]. A multi-target tracking approach for tracking hockey players

in a video was presented by [30]. The approach consisted of a modified particle filtering algorithm

where they introduced a global nearest neighbor data association algorithm for assigning Ada-boost

based detections to existing tracks for the proposal distribution. Mean-shift algorithm was embedded

into the particle filter framework to stabilize the trajectories of the targets for robust tracking during

mutual occlusions. Using their approach, they were able to track multiple targets and correctly maintain

identities in the presence of background clutter, camera motions and mutual occlusion between targets.

In the work of [70], groups were defined on the basis of the position and velocity of targets. They used a

set of merging and splitting rules which were embedded into a Kalman filtering framework for tracking

multiple groups. The target of their work at scenarios where large number of targets form natural groups

that can be efficiently tracked together. The near regular texture (NRT) was used for tracking groups

of people in [117, 118]. The NRT is defined as a geometric and photometric deformation of a regular

texture. To track, the NRT was nested in a lattice based MRF model of a 3D spatiotemporal space. Then,

the tracking algorithm used the topological invariant property of the dynamic NRT by combining a

global lattice structure that characterizes the topological constraint among multiple textons (e.g., people)

and an image observation model that handles local geometry and appearance variations. An algorithm

was proposed by [57] to track a dense crowd of bats in thermal imagery. Multi target track initiation,

recursive Bayesian tracking, clutter modeling, event analysis, and multiple hypotheses filtering were

combined for this purpose. Impressive results were reported by tracking up to approximately eight

hundred thousand bats. In the area of biological cell tracking, authors in [111] developed an algorithm

for tracking thousands of cells in phase contrast time-lapse microscopy images. The tracking was

performed in two stages. At the first stage a track compiler operating in a frame-by-frame manner was
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producing intermediate tracking results, named track segments, which were linked into cell trajectories

at the second stage by a track linker overseeing the entire tracking history. A method to track in crowded

scenes using selective visual attention has been proposed by [183]. In the method, the early selection

process extracts a pool of attentional regions those were defined as the salient image regions which

have good localization properties, and the late selection process dynamically identified a subset of

discriminative attentional regions through a discriminative learning of the historical data on the fly.

There are several body of works which are based on region covariance and/or Riemannian matrices.

Authors in [139, 140] proposed approaches for detection, labelling and tracking multiple targets. The

targets are represented by region covariance matrices and particle filters perform the target tracking.

Authors in [63] developed a visual tracking framework based on the incremental tensor subspace learn-

ing. In a different flavor, authors in [64] developed a visual tracking framework based on the novel

Log-Euclidean Riemannian metric. In their framework, covariance matrices of image features in the

five modes had been used to represent object appearance.

2.3.2 High-level information based tracking

There are several works which are based on high level image information for human detection and

tracking in complex crowded situations. Authors in [68] used discrete choice models as motion prior

to predict human motion patterns and fused this model in a visual tracker for improved performance.

Discrete choice models are disaggregate behavioral models designed to forecast the behavior of indi-

viduals in choice situations. Another algorithm proposed by [6] which used high level knowledge of

the scene and the behavior of the crowd into the tracking algorithm by computing a number of floor

fields. Floor fields determine the probability of move from one location to another by converting the

long-range forces into local ones. The experimental results of tracking of individuals in high density

crowded scenes are impressive. A target tracking framework for unstructured crowded scenes can be

found in [149]. Unstructured crowded scenes are defined as those scenes where the motion of a crowd

appears to be random with different participants moving in different directions over time e.g., people

walking on a zebra-crossing in opposite directions. To test the approach they performed experiments on

a range of unstructured crowd domains, from cluttered time-lapse microscopy videos of cell populations

in vitro to videos of sporting events.

Tracking methods using object contours [125, 186] and appearances [182, 82], which represent

and estimate occlusion relationships between object by using the hidden variables of depth ordering of

objects toward the camera, have been introduced. Authors in [166] proposed region covariance matrix
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(RCM), which is a matrix of covariance of several image statistics computed inside a region defining

a target. RCM-based algorithms with feature mapping functions have achieved good results in people

detection, object tracking, and texture classification [144, 167, 166]. Other works using RCM can be

found in [139, 140], where authors brought forward approaches for detection, labeling and tracking

multiple targets. Targets are represented by region covariance matrices and particle filters carry out

the target tracking. Experiments were conducted on five people scenarios. A crowded scene has a

number of characteristics which makes the firsthand application of aforementioned tracking algorithms

extremely challenging. Firstly, in high density crowds it is hard to discern individuals from each other,

and consequently ownership of features cannot be computed reliably. Secondly, several occlusions

occur due to interactions among the members of the crowd; therefore, even if reliable features are

computed tracking over longer durations of time is difficult.

2.3.3 Discussion

A crowded scene has a number of characteristics which makes the direct application of many above-

mentioned tracking algorithms extremely difficult. The reasons include, but are not limited to:

(i) In high density crowds it is hard to discern individuals from each other, and therefore, ownership

of the features like color, spatial templates, interest points, contours, etc. cannot be computed reliably.

(ii) Severe occlusions occur due to interactions among the members of the crowd; consequently,

even if reliable features are computed, tracking over longer durations of time is difficult.

We have proposed a temporal-spatial domain algorithm, falls into the category of low-level infor-

mation based tracking, to track individual targets in the cases of sparse crowd, medium density crowd,

and dense crowd. We have pointed how to extract the region of interest over frame in time so-called

target by means of the MHI function and Hu’s moment. This gives us a general overview of the number

of individuals on the scene, which has been neglected on the existing directional literatures. We have

introduced how to use the phase-correlation techniques for targets detection and tracking using distinct

sharp peaks from the obtained peaks of target regions and the next frame’s candidate regions. If two

candidates or targets are similar, then their phase-correlation function gives a distinct sharp peak. Con-

versely, the peak of two dissimilar targets or candidates drops significantly. A great advantage behind

of this hybrid technique is that it is not necessary to search the possible target region everywhere on

the candidate frame except for the candidate regions. Consequently, the searching process becomes

extremely rapid.
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3.1 Study of Visual Attention

3.1.1 Overview

What happens if we focus our attention to a restricted part of our visual environment? We can not

perceive all the components lying our visual field with equal interest. Visual attention allows a certain

spatial location (salient location) and certain types of visual features (salient features). Salience (also

called saliency) at a given location is determined primarily by how different the location is from its

surround in color, orientation, motion, depth, etc. In video frame or image, our visual attention allows

the salient parts of the video which is more distinguishable from other parts. Since visual attention

allows to focus analysis and processing on some restrained parts of images and frames, it has emerged

in recent years as a convincing tool to make robot and computer vision more and more operative in a

wide variety of jobs.

3.1.2 Visual attention computational models

Computing visual saliency has become a good topic of recent technological interest. The detection of

salient regions in the visual field, which is similar to what is frequently called interest point detection in

computer vision. For example, a multi-scale algorithm for the selection of salient regions of an image

was introduced and its application to matching type problems such as tracking, object recognition and

image retrieval was demonstrated [94, 93]. However, visual salience provides a relatively inexpensive

and rapid mechanism to select a few likely candidates and annihilate explicit clutter [84, 135]. Several

computational models of visual attention have been suggested. Computational models have been de-

veloped which use known properties of the visual system to bring forth a saliency map or landscape of
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visual salience across an image [84, 106]. In these models, the visual properties present in an image

cause to happen to a 2D map that emphatically marks regions which are different from their surround

on image dimensions e.g., color, intensity, contrast, and edge orientation [84, 106, 142, 164], contour

junctions, termination of edges, stereo disparity, and shading [106], and dynamic factors such as mo-

tion [106]. The maps are generated for each image dimension over multiple spatial scales and are then

combined to create a single saliency map. Regions which are uniform along some image dimension

are scrutinized uninformative, whereas what differ from neighboring regions across spatial scales are

considered to be potentially informative and worthy of disorder. Many saliency algorithms have been

proposed in the computer and biological vision literatures. The classification of visual attention has

long been believed to be driven by the interaction of two complementary components bottom-up and

top-down. Saliency algorithms based on bottom-up (e.g., [84]) are fast and image-driven mechanism,

while top-down algorithms (e.g., [136, 69]) are slower and goal-driven mechanism. The bottom-up

component computes the visual salience of scene locations in different feature maps extracted at mul-

tiple spatial scales. The top-down component uses accumulated statistical knowledge of the visual

features of the desired search target and background clutter [136]. Both models are important in visual

surveillance, for example, it is important to detect goal-relevant (top-down) targets like suspects, and

also to notice unexpected visual events like person falling (bottom-up).

3.1.3 Itti-Koch computational model

We have discussed about the Itti-Koch [84] bottom-up model for computing visual attention. The Fig.

3.1 shows an overview of the model of Itti-Koch [84]. Visual features are computed using linear filtering

at eight spatial scales, followed by center-surround differences, which compute local spatial contrast

in each feature dimension for a total of 42 maps. An iterative lateral inhibition scheme instantiates

competition for salience within each feature map. After competition, feature maps are combined into

a single conspicuity map for each feature type. The three conspicuity maps then are summed into the

unique topographic saliency map. The WTA (winner-take-all) detects the most salient location and

directs attention towards it. An inhibition-of-return mechanism transiently suppresses this location in

the saliency map, such that attention is autonomously directed to the next most salient image location.

Input is provided in the form of digitized images, from a variety of sources including a consumer-

electronics NTSC video camera. However, they have considered the following four assumptions.

Firstly, visual input is represented in the form of iconic (appearance-based) topographic feature maps.

Two crucial steps in the construction of these representations consist of center-surround computations
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Figure 3.1: Schematic diagram for the saliency computational model used by Itti-Koch [84].

in every feature at different spatial scales, and within-feature spatial competition for activity. Secondly,

information from these feature maps is combined into a single map that represents the local saliency of

any one location with respect to its neighborhood. Thirdly, the maximum of this saliency map is the

most salient location at a given time, and it determines the next location of the attentional searchlight.

Finally, the saliency map is endowed with internal dynamics allowing the perceptive system to scan the

visual input such that its different parts are visited by the focus of attention in the order of decreasing

saliency. Input is allowed for the form of static color images, normally digitized at 640× 480 resolu-

tion. Low-level vision features (color channels tuned to red, green, blue and yellow hues, orientation

and brightness) are extracted from the original color image at several spatial scales, using linear fil-

tering. The different spatial scales are created using Gaussian pyramids, which consist of gradually

low-pass filtering and sub-sampling the input image. Pyramids have a depth of nine scales, providing

horizontal and vertical image reduction factors ranging from 1:1 (level 0; the original input image) to

1:256 (level 8) in consecutive powers of two [85, 84]. Each feature is computed in a center-surround

structure akin to visual receptive fields. Center-surround operations are implemented in the model as

differences between a fine and a coarse scale for a given feature. The center of the receptive field cor-

responds to a pixel at level c ∈ {2,3,4} in the pyramid, and the surround to the corresponding pixel at

level s = c +δ , with δ ∈ {3,4}. Six feature maps are computed for each type of feature at scales 2–5,
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Figure 3.2: An example of the model with an input 640× 480 pixels color image from a video of the
Escalator dataset [132] and inside of the yellow marked region belongs to the output attended location.
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2–6, 3–6, 3–7, 4–7, and 4–8. Seven types of features are computed in this manner from the low-level

pyramids: one feature type encodes for on/off image intensity contrast, two encode for red/green and

blue/yellow double-opponent channels, and four encode for local orientation contrast. The six feature

maps for the intensity feature type encode for the modulus of image luminance contrast, i.e., the abso-

lute value of the difference between intensity at the center (e.g., one of the three c scales) and intensity

in the surround (e.g., one of the six s = c+δ scales). To isolate chromatic information, each of the red,

green, and blue channels in the input image are first normalized by the intensity channel; a quantity is

then computed by center-surround differences across scales. Each of the six red/green feature maps is

created by first computing (red–green) at the center, then subtracting (green–red) from the surround,

and finally resulting the absolute value. Six blue/yellow feature maps are similarly created. Local ori-

entation is obtained at all scales through the creation of oriented Gabor pyramids from the intensity

image. Four orientations are used (0 ◦, 45 ◦, 90 ◦, and 135 ◦) and orientation feature maps are obtained

from absolute center-surround differences between these channels. These maps encode, as a group, how

different the average local orientation is between the center and surround scales. After normalization,

the feature maps for intensity, color, and orientation are summed across scales into three separate con-

spicuity maps: one for intensity, one for color, and one for orientation. The Fig. 3.2 shows an example

of the model with an input 640×480 pixels color image from a escalator video and inside of the yellow

marked region belongs to the output attended location. Feature maps are extracted from the input image

at several spatial scales, and are combined into three separate conspicuity maps (intensity, color and

orientation; see the Fig. 3.1) at scale 4 (30× 40 pixels). The three conspicuity maps that encode for

saliency within these three domains are combined and fed into the single saliency map (also 30× 40

pixels). The winner-take-all successively selects, in order of decreasing saliency, the attended locations.

Once a location has been attended to for some short interval, it is transiently suppressed in the saliency

map by the inhibition of return mechanism which helps to find the next attended location. The motiva-

tion for the creation of three separate channels and their individual normalization is the hypothesis that

similar features compete strongly for salience, while different modalities contribute independently to

the saliency map. Conspicuity maps are linearly summed into the unique saliency map, which resides

at scale 4 (reduction factor 1:16 compared to the original image). At any given time, the maximum

of the saliency map corresponds to the most salient stimulus to which the focus of attention should be

directed next, to allow for more detailed inspection. To find the most salient location, the maximum of

the saliency map is determined by means of a winner-take-all algorithm.
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3.1.4 Discussion

We tested on many varieties of real world images with Itti-Koch [84] bottom-up model1. All images

were in color, contained some amounts of noise, strong local variations in illumination, shadows and

reflections, large numbers of objects often partially occluded, etc. The results report that the system

scans the image in an order which makes functional sense in few behavioral situations.

The Fig. 3.2 shows an example of the working of the model with a 640× 480 pixels color image

having few people. The image depicts a situation on the escalator just before hitting the trolley to a

standing man. Parallel feature extraction yields the three conspicuity maps for color contrasts, intensity

contrasts, and orientation contrasts. These are combined to form input 6 to the saliency map. The most

human attended location is the pile of blue bags on the trolley which has been detected successfully.

On the other hand, image at the Fig. 3.3 illustrates the situation after falling the person on the escalator

exit. The first attended location has been detected as the dropped one of the colored bags, which were

laid on the trolley, near to the falling person. This most salient location was appeared very strongly in

color contrasts with a simulated time of 96.9 ms. After the inhibition-of-return feedback inhibits this

location in the saliency map, the next most salient locations are successively selected. For example,

second, third, fourth, and fifth attended locations were appeared very strongly in intensity (182.1 ms),

color (182.2 ms), intensity (254.6 ms), and intensity (320.7 ms) contrasts, respectively. Noticeably,

the region of the fallen person was marked as fourth attended location. As a result, the method cannot

detect the sudden person fall. Other image sequences also report the same undetected results. That

means, the method hardly detects abnormalities from the crowded scenarios. Most realizable reason

is that solely spatial information color (six hues within the color dimension), intensity (four intensities

within the luminance dimension), and orientation (four orientations within the orientation dimension)

are not enough to detect abnormalities.

Along with the temporal information, the spatial information can provide much better detection

result. In general, spatio-temporal information takes into account motion as an informative feature to

detect and segment interesting objects or targets by means of optical flow computation, block matching

or other motion detection methods. We (in [SMD08a]) have also investigated motion saliency, which

helps to detect moving objects whose motion is discontinuous to its background e.g., a vehicle moving

in the wrong direction while others are in the right direction would be detected as salient; a static per-

son/object among other moving persons/objects would also be salient (e.g., Fig. 3.4). When analyzing

1A good implemented can be found in http://ilab.usc.edu/toolkit/
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Figure 3.3: Cannot detect person falling event. Top-leftmost is the original image. In a decreasing order
of attention, the attended locations have been exhibited by yellow colored contours for the winners cen-
tered at (247,287), (593,242), (220,394), (321,270), and (69,299) with simulated time 96.9ms, 182.1ms,
182.2ms, 254.6ms, and 320.7ms, respectively. Centers are connected by red lines.

Figure 3.4: Example of four static objects among several moving objects. By definition, the four objects
are salient because they are detected as regions with motion discontinuities.
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video, visual saliency has to deal with moving objects. Motion is a very salient cue for bottom-up at-

tention and should be part of a model of saliency based attention [172]. Motion saliency models e.g.,

[158] detect regions of interest corresponding to moving objects whose motion is salient to its back-

ground. Authors in [158], implicitly estimating global and local motion, generated motion saliency by

using the rank deficiency of gray scale gradient tensors within the local region neighborhoods of the

image. However, with our investigation, so far, we can conclude that saliency based models can solely

be suitable for sparse crowd scenes like the Fig. 3.2 to detect abnormalities. As a result, we have to go

further for a good approach to detect anomalies in various densities crowded scenes like the Fig. 1.1.

In the next sections, we have proposed different spatiotemporal information based methods for

crowd behavior analysis and detection of abnormal activities.

3.2 Covariance Matrix Approach

3.2.1 Overview

Our approach (in [SID08a]) presented in this section detects abnormal events principally from unidirec-

tional flow of crowd (e.g., escalators). The video frames are labeled normal or abnormal based on the

distance measure between covariance matrices of the distributions of the optical flow vectors computed

on consecutive frames. These flow vectors are the result of tracking a set of features points discovered

by the Harris corner detector applied on each frame considering a region of interest. This region is

produced by background subtraction to form a two dimensional histogram of motion called motion heat

map. The approach is tested against a single camera data-set placed in the escalator exits in an airport.

A simple flow diagram of the proposed framework has been shown in Fig.3.5. The approach is

characterized by optical flow patterns of human behaviors followed by some statistical treatments, to

detect abnormal events mainly in onward crowd flow (e.g., escalators). An event is defined to be an

observable action or change of state in a video stream that would be important for security management.

We have started by calculating a motion heat map during a period of time to extract the main regions of

motion activity. The use of heat map image improves the quality of the results and reduces processing

time which is an important factor for real-time applications. Points of interest are extracted in the hot

regions of the scene. Optical flow is computed on these points of interest, delimited by the hot areas of

the scene. The optical flow information from video presents the crowd multi-modal behaviors as optical

flow patterns variate in time. There is sufficient perturbation in the optical flow pattern in the crowd

in case of abnormal and/or emergencies situations (e.g., Fig. 3.28). We have constructed covariance
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Figure 3.5: Block diagram of the proposed Covariance Matrix approach

matrix (CM) using the extracted spatiotemporal knowledge of optical flow. A CM is merely collection

of several variance-covariances in the form of a square matrix. We have computed the dissimilarity as a

distance measure between two consecutive CMs. We have studied the normalized distance measure to

differentiate normal or abnormal frame based on a defined value (label) called threshold.

3.2.2 Low-level features Extraction

3.2.2.1 Motion heat map

A heat map is a graphical representation of data where the values taken by a variable in a 2-dimensional

(2D) map are represented as colors. Motion heat map is a 2D histogram expressing briefly the most



40 CHAPTER 3. DETECTION OF UNUSUAL VIDEO EVENTS

important regions of motion activity. This histogram is built from the accumulation of binary blobs of

moving objects, which were extracted following background subtraction method [112]. The obtained

map is used as a mask to define the region o f interest for the next step of the method. Fig.3.6 makes

noticeable an occurrence of the obtained heat map from an escalator camera view. Better red region

(region of interest) expects longer video duration. The use of heat map ameliorates the quality of the

results and reduces processing time which is an important factor for real-time applications. The results

are more significant when the video duration is long. In practice, even for the same place, the properties

of abnormal events may vary depending on the context (day-night, indoor-outdoor, occasion, vacation,

etc.). We build a motion heat map for each set of conditions. It is not necessary to consider in detail

the whole scene, and fastidiously the scene where there are few motion intensities or no motions. Thus,

the approach directs the attention on the processing of specific regions where the density of motions is

high. The threshold related to the density elevation is a contextual information.

3.2.2.2 Points of interest extraction

Moravec’s corner detector [133] is a relatively simple algorithm that was used by Moravec and others,

but is now commonly considered out-of-date. It is not rotationally invariant (a property prevalent even

in more modern corner detectors) as the response is not invariant with respect to direction (anisotropic),

is considered to have a noise response, and is susceptible to reporting false corners along edges and at

isolated pixels so is sensitive to noise. Nevertheless, it is computationally efficient which was critical

for Moravec as he was interested in a real-time application and had minimal computational power at

his disposal. The other way around the Harris corner detector [76] is computationally demanding, but

directly addresses many of the limitations of the Moravec corner detector. In our approach, we consider

Harris corner as a point of interest. The Harris corner detector is a famous point of interest detector due

to its strong invariance to rotation, scale, illumination variation, and image noise [154]. It is based on

the local auto-correlation function of a signal, where the local auto-correlation function measures the

local changes of the signal with patches shifted by a small amount in different directions. Assume a

point (x,y) and a shift (∆x,∆y), then the local auto-correlation function is defined as:

c(x,y) = Σw[I(xi,yi)− I(xi +∆x,yi +∆y)]2 (3.1)

where I(., .) denotes the image function and (xi,yi) are the points in the smooth circular window w

centered on (x,y). The shifted image is approximated by a Taylor expansion truncated to the first order
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Figure 3.6: Images at (a) and (d) belong to camera view. The generated motion heat maps are depicted
at (b) and (e). Images at (c) and (f) are masked view where red regions recommend region of interests.

terms as:

I(X i
δ ,Y i

δ )≈ I(xi,yi)+ [Ix(xi,yi)Iy(xi,yi)]

[
∆x

∆y

]
(3.2)

where X i
δ = xi +∆x, Y i

δ = yi +∆y; and Ix(., .) & Iy(., .) denote the partial derivatives in x & y, respectively.

Substituting the right hand site of Eq. 3.2 into Eq. 3.1 yields:

c(x,y) = Σw( [I(xi,yi)Iy(xi,yi)]

[
∆x

∆y

]
)2 (3.3)

= [∆x∆y]M(x,y)

[
∆x

∆y

]
(3.4)

where

M(x,y) =

(
Σw(Ix(xi,yi))

2 ΣwIx(xi,yi)Iy(xi,yi)

ΣwIx(xi,yi)Iy(xi,yi) Σw(Iy(xi,yi))
2

)
. (3.5)
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The 2× 2 symmetric matrix M(x,y) captures the intensity structure of the local neighborhood. Let λ1

and λ2 are the eigenvalues of matrix M(x,y). The eigenvalues form a rotationally invariant description.

There are three cases to be considered [76]:

• No point of interest is found: If both λ1 & λ2 are small, so that the local auto-correlation

function is flat, i.e., little change in c(x,y) in any direction, then the windowed image region is of

approximately constant intensity.

• An edge is found: If one eigenvalue is high and the other is low, so the local auto-correlation

function is rigid shaped, then only shifts along the ridge (i.e., along the edge) cause little change

in c(x,y) and significant change in the orthogonal direction.

• A point of interest is found: If both λ1 & λ2 are high, so the local auto-correlation function is

sharply peaked, then shifts in any direction result in a significant increase in c(x,y).

The left image on Fig.3.7 lets on an example of Harris corner detector. We deem that in video surveil-

lance scenes, camera positions and lighting conditions admit to get a large number of corner features

that can be easily captured and tracked.

Figure 3.7: White points and red arrows pertain to Harris corner and optical flow vectors, respectively.
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3.2.2.3 Estimation of optical flow

Good feature selection plays a critical role for detection and classification issues. Color, edges, optical

flow, texture, gradient, and filter responses are some common example of features. Optical flow is

the velocity field which warps one image into another (normally very similar) image. Optical flow

algorithms provide estimation of the motion fields and are based on the idea that for most points in the

image, neighboring points have approximately the same brightness. The goal of optical flow technique

is to compute an approximation to the 2D motion field, a projection of the 3D velocities of surface

points onto the imaging surface, from spatiotemporal patterns of images intensity [79, 169]. Normally,

optical flow information is not the same as the motion field. The motion field is represented by the

field of vectors that show the displacement of points in the optical field relative to the observer, whereas

optical flow shows a velocity field of pixels in the image. Optical flow may be used to perform a wide

variety of tasks such as motion detection, object segmentation, time-to-collision and focus of expansion

calculations, motion compensated encoding and stereo disparity measurement.

There are number of ways to compute optical flow. The Lucas-Kanade method calculates the mo-

tion between two image frames which are taken at times t and t + dt at every pixel position, where dt

is the time deviation. This method is treated as differential since it is based on local Taylor series ap-

proximations of the image signal, i.e., it uses partial derivatives with respect to the spatial and temporal

coordinates. The advantage of this method is the comparative robustness in presence of noise. To calcu-

late the optical flow between successive video frames the well known combination of feature selection

as introduced by Shi and Tomasi [160] and the algorithm of Lucas and Kanade for feature tracking [123]

is used. Feature selection finds image blocks which are believed to allow the exact estimation of optical

flow translation vector. The Shi-Tomasi algorithm makes use of the smallest eigenvalues of an image

block as criterion to ensure the selection of features which can be tracked reliably by the Lucas-Kanade

tracking algorithm. This algorithm matches the selected image blocks with blocks in the next frame

using an efficient gradient descent technique. A pyramidal implementation of this algorithm is used to

deal with larger feature displacements by avoiding local minima in a coarse to fine approach [26]. This

combination has proven to allow fast and reliable computation of optical flow information [12]. The

parameters which control the performance of the pyramidal Lucas-Kanade algorithm are [104]: (i) the

block size, (ii) the number of resolution levels, and (iii) some termination criteria. The block size and

the number of resolution levels are determined by the image size and the expected block displacement

between two frames of an image sequence. The termination criteria are the maximum number of itera-
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tions for the gradient descent approach and an accuracy requirement for block matching to allow early

termination.

In our optical flow estimation step, we have used the pyramidal implementation of optical flow

algorithm. Once we define the points of interest (features), we track those features over the next frames

using the above combination feature tracker of Kanade-Lucas-Shi-Tomasi. An example of optical flow

vectors produced by the feature tracker shown in the right image on Fig. 3.7. After matching features

between frames, we can consider that the result is a set of vectors Vk(j) of n elements over time:

Vk(j) =





x1 y1 v1 α1

x2 y2 v2 α2

x3 y3 v3 α3

. . . .

. . . .

xi yi vi αi

. . . .

. . . .

xn yn vn αn





(3.6)

where k = 1,2,3, . . .n, i ∈ k, j ∈ {x, y, v, α}, and

• xi⇒ x-coordinate of any feature element i,

• yi⇒ y-coordinate of the i,

• vi⇒ velocity v of the i,

• αi⇒ moving direction α of the i.

Images in Fig.3.7 (b) and (c) give evidence of the set of vectors obtained by optical flow feature tracking

in two different situations. The image in Fig. 3.7 (b) divulges an orderly vector flow. The image in

Fig. 3.7 (c) substantiates a littered vector flow due to the breakdown situation. This step also allows

removal of static and noise features. Static features are the features that moves less than two pixels.

Noise features are the isolated features that have a big angle and distance difference with their near

neighbors due to tracking calculation errors.
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Figure 3.8: Moving direction αi of a feature i.

3.2.2.4 Estimation of velocity & direction of an interest point

Fig.3.8 illustrates any feature i in the frame f with its coordinate P(xt ,yt) and its matched in the frame

f +1 with coordinate Q(xt+δ t ,yt+δ t) and elapsed time δ t. We can easily calculate the displacement δ si

(change in position or place is called a displacement) of the feature i using Euclidean metric as:

δ si =
√

x2
i + y2

i (3.7)

where xi = Qxt+δ t
−Pxt

and yi = Qyt+δ t
−Pyt

. The rate of change of position is called velocity (the rate

of motion is called speed which is equal to the magnitude of velocity) v can be determined by the first

derivative of δ si with respect to time δ t:

vi =
δ si

δ t
=

√
(

xi

δ t
)2 +(

yi

δ t
)2. (3.8)

The direction of motion (αm) of the feature i can be calculated using the following trigonometric func-

tion:

αm = atan(
yi

xi

). (3.9)

Notwithstanding, there are several potential problems if we have a desire to calculate motion direction

using Eq. 3.9, for instances:
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• Eq. 3.9 does not show expected performance for a complete range of angles from 0 ◦ to 360 ◦.

Only angles between −90 ◦ and +90 ◦ will be returned, other angles will be (say 180 ◦) out-of-

phase. For example, let us consider two defined points (x1 = 3,y1 = 3) and (x2 =−3,y2 =−3).

Using the Eq. 3.9, the point (x2 = −3,y2 = −3) will produce the same angle as the point (x1 =

3,y1 = 3) will do, but from Fig.3.8 we could consider that these are not in same quadrant.

• Points on the vertical axis have xi = 0, hence, if we wish to calculate yi/xi we will get ∞ which

will generate an exception when calculated on the computer.

In order to keep away from these problems, we apply the atan2(yi,xi) function which takes both xi and

yi as arguments. Henceforth, the accurate direction of motion αi, where αi = atan2(yi,xi), of the feature

i can be calculated as:

αi =






φ .sign(yi) i f xi > 0,yi 6= 0

0 i f xi > 0,yi = 0
π
2 .sign(yi) i f xi = 0,yi 6= 0

undefined i f xi = 0,yi = 0

(π−φ).sign(yi) i f xi < 0,yi 6= 0

π i f xi < 0,yi = 0

where φ is the angle in [0,π/2] such that φ = atan(| yi

xi
|). The sign function sign(yi) can be defined as:

sign(yi) =






−1 i f yi < 0

0 i f yi = 0

1 i f yi > 0.

As a consequence, the function atan2(y,x) gracefully deals with infinite slope, and places the an-

gle in the correct quadrant. For instance, atan2(0,3) = 0, atan2(0,−3) = π , atan2(3,3) = π/4,

atan2(−3,−3) =−3π/4, etc.

3.2.3 Covariance Matrices Construction

Covariance is a statistical measure of correlation of the continual changes from one point or condition to

another of two different quantities. In statistics and probability theory, a covariance matrix or dispersion

matrix is a matrix of covariances between elements of a random vector. It is the bona fide generalization

to higher dimensions of the concept of the variance of a scalar-valued random variable. The diagonal
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entries of the covariance matrix represent the variance of each feature and the non-diagonal entries

represent the covariances. Due to symmetry covariance matrix has only (m2 + m)/2 different values,

where m is number of either rows or columns.

We construct a 4×4 CM for representing a video frame using the data obtained in Eq. 3.6 where xi

& yi as spatial information, and vi & αi as temporal information. Assume C f be a CM for a frame, we

define C f as:

C f =





x xy xv xα

yx y yv yα

vx vy v vα

αx αy αv α




(3.10)

where diagonal elements x, y, v, and α are variances, and non-diagonal elements are covariances. We

compute the (p,q)-th element of the C f in the following statistical formula:

C f (p,q) =
1

n−1

[
n

∑
k=1

Vk(p)Vk(q)− 1
n

n

∑
k=1

Vk(p)
n

∑
k=1

Vk(q)

]
(3.11)

where {p,q} ∈ {x, y, v, α}.

3.2.4 Covariance Matrices Dissimilarity Computation

Measuring the dissimilarity between images and parts of images is of central importance for low-level

computer vision [150]. Investigating covariance matrices is an elementary task in mensuration design

[65]. Mensuration is the branch of geometry that deals with the measurement of length, area, or volume.

Based on the eigenvalues of the covariance matrix, in 1972, Grafarend [73] proposed a development of a

satisfactory measure for comparing two covariance matrices. If the information of a Gaussian variable

σ2 (variance or standard deviation squared) increases with logeσ2, the author guessed the squared

sum d2 = Σilog2
eλi of the logarithms of the eigenvalues λi to be a better measure, as deviations in both

directions would be handled the same amount if measured in percentage. It would be worth wanting that

the similarity between two covariance matrices manifests the deviation in variance in both directions

according to the ratio of the variances. As a consequence, deviations in variance in both by a factor

ζ could be evaluated equally as a deviation by a factor 1/ζ , in case of ζ = 1 the factor indicates no

difference. Authors in [65], proposed a better metric for distance measure between symmetric positive

definite m×m matrices. Esteem as C fi
and C fi+1 are two consecutive 4× 4 CMs, then the distance
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measure d(C fi
,C fi+1) proposed in [65] to measure the dissimilarity of two covariance matrices can be

defined by dint of:

d(C fi
,C fi+1) =

√
4

∑
k=1

log2
eλk(C fi

,C fi+1) (3.12)

where λi(C fi
,C fi+1)i=1...4 are four generalized eigenvalues of C fi

and C fi+1 , computed from λiC fi
xi−

C fi+1xi = 0 and xi 6= 0 are generalized eigenvectors. The logarithm guarantees, that deviations are mea-

sured as factors, whereas the squaring guarantees factors ζ and 1/ζ being evaluated equally. Summing

squares is done in close resemblance with the Euclidean metric. The distance measure d(C fi
,C fi+1)

satisfies following metric axioms for positive definite symmetric matrices C fi
and C fi+1 [65]:

(i) Positivity: d(C fi
,C fi+1)≥ 0 and d(C fi

,C fi+1) = 0 only if C fi
= C fi+1 ;

(ii) Symmetry: d(C fi
,C fi+1) = d(C fi+1 ,C fi

) ;

(iii) Triangle inequality: d(C fi
,C fi+1)+d(C fi

,C fi+2)≥ d(C fi+1 ,C fi+2).

3.2.5 Normalization of Dissimilarity Distances

Now, we wish to transfer each dissimilarity distance measure into a normalized distance value ranges

between 0 and 1. Assume that d(C fi
,C fi+1) be any dissimilarity distance measure between any two

consecutive frames fi and fi+1. We could use the simple equation like Eq. 3.13 for moralization, but

the normalized values fall in a congested range (scaling problem) which will arise problem specially in

threshold selection.

Normalized value = (1− 1
logd(C fi

,C fi+1)
) (3.13)

To solve the scaling problem, we use cumulative distribution function (cd f ) which has strict lower

and upper bounds between 0 and 1. Assuming Φ(d(C fi
,C fi+1)) denotes the cd f of d(C fi

,C fi+1). Then

Φ(d(C fi
,C fi+1)) can be expressed in terms of a special function called the error f unction (er f ) or Gauss

error f unction, as:

Φµ,σ (d(C fi
,C fi+1)) =

1
2

[
1+ er f{d(C fi

,C fi+1)−µ

σ
√

2
}
]

(3.14)

where σ > 0 is the standard deviation and the real parameter µ is the expected value. The er f can be

defined as a Maclaurin series:

er f (d(C fi
,C fi+1)) =

2√
π

∞

∑
n=0

(−1)n{d(C fi
,C fi+1)}2n+1

n!(2n+1)
(3.15)
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=
2√
π
{d(C fi

,C fi+1)−
d(C fi

,C fi+1)
3

3
+

d(C fi
,C fi+1)

5

10
− d(C fi

,C fi+1)
7

42
+

d(C fi
,C fi+1)

9

216
− . . .}. (3.16)

Since d(C fi
,C fi+1) is skewed to the right (positive-definite) and variances also some what large, we

can use Log-normal distribution. Log-normal distributions are usually characterized in terms of the

log-transformed variable, using as parameters the expected value, or mean, of its distribution, and the

standard deviation. The structure of log-normal distribution of the Eq. 3.14 yields:

N(d(C fi
,C fi+1)) =

1
2

[
1+ er f{ log(d(C fi

,C fi+1))−µ

σ
√

2
}
]

(3.17)

where N(d(C fi
,C fi+1)) is the normalized value of d(C fi

,C fi+1). With the help of Eq. 4.48 and 3.16,

and knowing the values of µ and σ (say µ = 0, σ = 15) we can emphatically estimate the value of

N(d(C fi
,C fi+1)) between 0 and 1.

3.2.6 Deciding Normal or Abnormal Events

We considered that the characteristic of the state of a collapse situation as a signal of sudden change with

a high peak height of duration. If there exists such signal then there is an abnormal event. The decision

for normal or abnormal events is to be taken by comparing the calculated and normalized measure with a

specific threshold. We compare each calculated value of N(d(C fi
,C fi+1)) with a predefined normalized

threshold TN , i.e., abnormal frame can be detected if N(d(C fi
,C fi+1)) > TN , otherwise normal frame.

The theoretical aspect of computing TN is that we consider the maximum number of N(d(C fi
,C fi+1)) in

large videos those contain exclusively normal events:

TN = max
k=1...F

{N(d(C fi
,C fi+1))}k (3.18)

where F is the number of frames of the video database. The TN depends on the controlled environment,

namely the distance of the camera to the scene, the orientation of the camera, the type and the position

of the camera, lighting system, density of the crowd, period (working day, weekend, occasion, vacation,

etc.), etc. The more is the distance of the camera to the scene, the less is the quantity of optical flows and

blobs. In case of escalator, TN also depends on the escalator type and position. Taking into account of

these facts, we consider that we have at least one threshold by a controlled environment (video stream).

If we have M controlled environments (video streams), which are the case in sites such as airport,

shopping mall, bank, play ground, subway, concert, cinema hall, school, hospital, parking place, town
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center, political event, etc., then we select at least M thresholds. If the environment changes, then the

threshold should be regenerated.

3.2.7 Experimental Results and Discussion

To conduct experiments, we used a set of real videos provided by cameras installed in an airport to

monitor the situation of escalator exits. The videos were used to provide informative data for the

security team who may need to take prompt actions in the event of a critical situation such as collapsing.

The data sets are videos from a video surveillance system on escalator exits, taken in spanning days

and seasons, provided by a visual surveillance company. Initially, the method has been tested with

13 different length video streams. Each video stream consists of normal and abnormal events. The

normal situations correspond to crowd flows without collapsing in the escalator exits. Abnormal events

correspond to videos that contain collapsing events mainly in escalator exists. Generally, in the videos

we have two escalators corresponding to two-way-traffic of opposite directions. The original video

frame size is 640×480 pixels. We extract nearly 1500 features per frame for detection and tracking.

For example, the left image in Fig.3.9 describes a scenario of a collapsing event in an escalator exit

point. Some stuffs from a heavily loaded trolley have dropped just the exit point of the moving escalator

which causes an abnormal situation on the exit point. The situation was successfully detected. The blue

colored curve is the output of the proposed algorithm. Different video frames in normal and aberrant

situation have been differentiated by a threshold label TN = 0.82 (horizontal red line). The detection

result has been compared with ground truth. Ground truth is the process of manually marking what an

algorithm is expected to output. This simple algorithm does work in most of cases while in some cases

it shows its shortcomings. Normally, it is enough efficacious for monitoring the crowd behaviour where

the movement of crowd is in a linear direction like escalator.

However, the main noticeable shortcomings of the approach are listed below:

• It does not detect abnormal events in the crowd scenes which are a bit far from the camera e.g.,

the red marked activities of the right image in Fig.3.9. The most probable reason is that if the

video sequences include abnormal events appear at far distance from the camera, the quantity of

optical flow vectors is not sufficient to draw out abnormal frames.

• It does not handle overlapping situations. Of course, handling occlusion is a laborious work in

optical flow as occluded pixels violate a major assumption of optical flow that each pixel goes

somewhere. In theory, the pixels at the occlusion area should not be assigned any flow vector
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Figure 3.9: A heavily laden trolley drops some items off at the exit point of a escalator which creates
an aberrant situation on the exit point. The event has been detected by the algorithm. Yet, the activities
at the red circle in the right image cannot be detected by the Covariance matrix approach.
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since there is no correspondence available in the other frame. Since the proposed approach is

based on optical flow techniques, no flow vector can be got from occlusion areas. Consequently,

the problem of occlusion is still unsolved.

• At implementation stage, it may suffer from different initial indexing problem of two video

frames. The filtering process in the optical flow estimation can produce different indices of video

frames. For example, if the index is to count from 0 and the filtering process allows that the

features which move less than two pixels, then first video may produce index 0 which satisfies

filtering condition and second video may consider index from 1 (or 2, or 3, or 4, etc.) which does

not satisfies the condition. Suppose that the covariance approach is implemented on the basis of

0 indexing frame. Execution of the first frame of second video produces severe error as it has

no 0 indexing frame and hence it has to face with NaN (Not a Number). During the covariance

matrix construction (by Eq. 3.10) of the first frame Cf1 of this video, the variance of a NaN will

be again a NaN as well as the covariance of two NaN elements will be considered as zero:

Cf1 =





NaN 0 0 0

0 NaN 0 0

0 0 NaN 0

0 0 0 NaN




.

Assume that the next frame executes the following covariance matrix Cf2 :

Cf2 =





0.176 0.345 0.457 0.341

0.345 0.088 0.702 0.686

0.457 0.702 0.001 0.116

0.341 0.686 0.116 0.274




.

The problem of transforming a regular matrix into a singular matrix is referred to as the eigenvalue

problem. The generalized eigenvalue problem is to determine the nontrivial solutions of the
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equation of Cf1x = λCf2x or more precisely:





NaN 0 0 0

0 NaN 0 0

0 0 NaN 0

0 0 0 NaN





−1



0.176 0.345 0.457 0.341

0.345 0.088 0.702 0.686

0.457 0.702 0.001 0.116

0.341 0.686 0.116 0.274




x = λx (3.19)

where x is a length four column vector, and λ is a scalar. The values of λ which satisfy the above

equation are the generalized eigenvalues and the corresponding values of x are the generalized

right eigenvectors. But in the Eq. 3.19 any matrix must not contain any NaN. Consequently, there

exists severe error. Possible solutions for this problem would include to convert Not a Number to

zero, change the filtering process during optical flow estimation, etc.

3.3 Normalized Continuous Rank Increase Measure (NCRIM) Approach

3.3.1 Overview

Our approach (in [SD09a]) exposes in this section also detects exceptional motion frames from real

videos irrespective of both static and dynamic backgrounds. The approach is based on the use of the

spatiotemporal region of interest (ST-RoI) features obtained from ST-RoI, which is estimated using

motion history image (MHI). Within ST-RoI, exceptional motion makes the motion vectors (e.g., direc-

tions) change a lot as compared to normal motion. The normalized continuous rank-increase measure

(NCRIM) calculated from the ST-RoI features has been used as the judgement index for determining

normal or exceptional motion frame. To demonstrate the interest of the proposed approach, the results

based on the detection of exceptional motion frames in real videos (escalator dataset) obtained from a

single camera placed on the escalator exit in an airport have been presented.

Objects detection and tracking have been used for large-scale surveillance camera systems. Excep-

tional motions are rare, difficult to describe, and hard to predict. Exceptional motion frames detection

from the surveillance camera is becoming a very important research topic for next-generation security

system that can detect emergencies and provide useful and informative surveillance. An approach for

exceptional motion detection, that uses the probability distributions estimated by SVM, was introduced

by [54]. Authors in [191] put forward a method using the covariance matrix of video stream features.

The cubic higher-order local auto-correlation (CHLAC) features are used for event detection [105].
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The CHLAC features are extracted by applying set CHLAC patterns to binary images which are ob-

tained by using temporal deviation. So, the CHLAC features have information on the appearance of

motion. Authors in [134] proposed a method combining the CHLAC features with a linear subspace

method, which achieved a robust exceptional motion detection without using human detection and track-

ing. However, these conventional methods face a common problem when a background is dynamic or

objects which are not targets exist in the images, it is very difficult to detect the exceptional motion.

For instance, the method that uses CHLAC features and the linear subspace has difficulty for detecting

motion, because any exceptional motion that moves in the same direction as the dynamic background

will be buried in the feature space according to the properties of the CHLAC with the additivity of the

features. To detect exceptional motion frames in real videos with both static and dynamic backgrounds,

we focus on the following algorithmic steps: (i) estimation of spatiotemporal region of interest (ST-RoI)

using motion history image (MHI), (ii) color segmentation of MHI, (iii) calculation of ST-RoI features,

(iv) irregularity measure using normalized continuous rank-increase measure (NCRIM) (v) decision

of normal/exceptional motion frame by comparing between the calculated NCRIM and a predefined

threshold Rδ . The ST-RoI features contain information on the ST-RoI. The ST-RoI features are very

similar of the space-time patch (ST-patch) features proposed by [159]. In general, exceptional motion,

such as a person falling on the escalator, makes the motion vectors (directions) change a lot as compared

to normal motion. So, we can use NCRIM which is calculated from the ST-RoI features as the judge-

ment index for determining normal or exceptional motion. The NCRIM is considered as the measure

of irregular motion vectors within ST-RoI. Consequently, we make exceptional motion frame detection

possible by thresholding the processed value of NCRIM. Practical applications of our approach include

the detection of real-time exceptional motion frames, which could lead to potentially dangerous situa-

tions in long escalators or narrow passages. Another possible application is to monitor the exceptional

activity (e.g., opposite flow of vehicles in the same way) on the high ways, where vehicles primarily

flow in unidirection.

3.3.2 Estimation of the Spatiotemporal Region of Interest (ST-RoI)

ST-RoI can be defined by considering the main motion region, where foreground subjects would pri-

marily move unidirectionally. The ST-RoI can be built desirably from the accumulation of real-time

computer vision representation of object movements, so called Motion History Image (MHI) presented

by [46]. The MHI is a compact template representation of movement originally based on the layering of

successive image motions. To generate MHI for the movement sequence, we layer successive silhouette
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images rather than image differences.

In an MHI Hτ , pixel intensity is a function of the temporal history of position or motion at that

point. Based on time-stamping, a simple replacement and duration operator is used [22]:

Hτ(x,y, t) =

{
τ i f D(x,y, t) = 1

max(0,Hτ(x,y, t−1)−δ ) otherwise
(3.20)

The use of time-stamp allows for a more consistent port of the system between platforms where

speeds may differ. System time is consistent during processing where frame rate is not. Thus time

is explicitly encoded in the motion template. The above update function is called each time a new

image is received and the corresponding silhouette image is formed [45]. The result of the function

is a scalar-valued image where more recently moving pixels are brighter (see Fig.3.10). Explicitly,

the Eq. 3.20 indicates that the MHI pixels where motion occurs are set to the current time-stamp

τ , while the pixels where motion happened far ago are cleared. Now, if we wish to build a ST-RoI,

we need to store the information of pixels where motion happened far ago so that the accumulation

of object silhouettes in the motion template can yield useful motion information along the contours

of the silhouette. Fig.3.11 makes noticeable an occurrence of the obtained ST-RoI for an escalator

case. The results are very significant and desirable when the video duration is very long. The use

of ST-RoI ameliorates the quality of the results and reduces processing time significantly which is

an important factor for real-time applications. To reduce both static and dynamic noises in a great

amount we segment the MHI inside of the ST-RoI considering RGB color channels. The resulting color

segments (silhouetted contours) are suitable for allocating points of interest inside ST-RoI. We consider

Harris corner detector as a point of interest. This detector is a famous corner detector due to its strong

invariance to rotation, scale, illumination variation, and image noise [154]. It is based on the local auto-

correlation function of a signal, where the local auto-correlation function measures the local changes of

the signal with patches shifted by a small amount in different directions. However, since the approach

considers color silhouetted region, it minimizes the number of unnecessary corners caused by e.g., a

person wears/carries grid-dress-like cloth/stuffs within ST-RoI, there will be too many corners detected

from the his/her region.
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Figure 3.10: (a) & (c) depict camera views with dynamic & static backgrounds respectively; (b) & (d)
represent motion mask where only current silhouette motion has been colored as red.

Figure 3.11: (a) camera view, (b) the red colored region represents Spatiotemporal Region of Interest

(ST-RoI) or Motion Map (MM), (c) masked view.
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3.3.3 Calculation of ST-RoI features

Once we define n (say 2000) corners on the ST-RoI, we track those over the next ST-RoIs using the

feature tracker of Kanade-Lucas-Shi-Tomasi [123, 160]. After matching features between frames, the

result is a matrix Gn×3 formulated by:

Gn×3 =





Mx1 My1 Mα1

Mx2 My2 Mα2

Mx3 My3 Mα3

. . .

. . .

Mxi
Myi

Mαi

. . .

. . .

Mxn
Myn

Mαn





n×3

(3.21)

where

• Mxi
7→ x coordinate of any feature element i (where i ∈ n),

• Myi
7→ y coordinate of the i,

• Mαi
7→ moving direction α of the i.

Let constant optical flow within the ST-RoI, then the optical flow within the ST-RoI can be estimated

by solving the following 3-dimensional scatter matrix F as:

[F]3×3×





x

y

α





3×1

=





0

0

0





3×1

(3.22)

where F = GTG, which can be obtained by multiplying both sides of Eq. 3.21 by GT (the transpose of

G), more explicitly:

F =





∑
n
i=1 M2

xi
∑

n
i=1 Mxi

Myi
∑

n
i=1 Mxi

Mαi

∑
n
i=1 Myi

Mxi
∑

n
i=1 M2

yi
∑

n
i=1 Myi

Mαi

∑
n
i=1 Mαi

Mxi
∑

n
i=1 Mαi

Myi
∑

n
i=1 M2

αi



 (3.23)
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where the 3× 3 matrix F belongs to the spatiotemporal region of interest (ST-RoI) features. Thus F

contains information on both the appearance and motion direction simultaneously.

3.3.4 Irregularity measure using Normalized Continuous Rank Increase Measure

In general, Eq. 3.22 is a set of linear equations. Therefore, if the optical flows are constant within the

ST-RoI, there will be a non-zero solution of Eq. 3.22. As a result, the 3×3 coefficient matrix F should

be rank deficient, i.e., rank(F)≤ 2. Explicitly, if F is not rank deficient, i.e., its smallest eigenvalue λmin

is not equal to zero (λmin(F) 6= 0), then ST-RoI can not be motion consistent. The matrix F contains

information about the appearance and motion of the ST-RoI. Consequently, the rank of the coefficient

matrix F can be used to analyze the brightness distribution and motion types within the ST-RoI. In

case of rank(F) = 3, there will be multiple motions within the ST-RoI. A distributed spatial brightness

structure moves at a constant motion when rank(F) = 2. If we examine all possible ranks of the 3D

structural tensor F, which contains only uniform motion, then to come to know the spatial properties of

the ST-RoI we could consider the upper left minor Mxy of the tensor F as:

Mxy =

[
∑

n
i=1 M2

xi
∑

n
i=1 Mxi

Myi

∑
n
i=1 Myi

Mxi
∑

n
i=1 M2

yi

]
. (3.24)

The symmetric matrix Mxy captures the intensity structure of the ST-RoI. The common properties of

this symmetric matrix are: (i) real eigenvalues, (ii) real eigenvectors, and (iii) orthogonal eigenvectors.

Let us assume that ψ1 and ψ2 are the eigenvalues of matrix Mxy. The eigenvalues form a rotation-

ally invariant description. When there is only uniform motion within the ST-RoI, the added tempo-

ral component at the third row and column does not introduce any increase in rank. This condition

satisfies rank(F) = rank(Mxy). However, condition does not satisfy when the motion is not along a

single straight line. In such cases, the added temporal component introduces an increase in the rank,

rank(F) = rank(Mxy)+1. The difference in rank can not be more than 1, because only one column/row

is added in the transition from Mxy to F. Then measuring the rank-increase δr between F and Mxy re-

veals whether the ST-RoI contains a single or multiple motions:

δr = rank(F)− rank(Mxy) =

{
0 i f single motion

1 i f multiple motions.
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Simple way to estimate the rank-increase from rank(Mxy) to F is to compute their individual ranks and

then take the difference, which provides either 0 or 1. The rank of a matrix is determined by the number

of nonzero eigenvalues it has. Notwithstanding, in the presence of noise, eigenvalues are never zero.

Applying a threshold to the eigenvalues is mainly data dependent, and a wrong choice of a threshold

would lead to wrong rank values. If two motions are very similar but not identical - are they consistent

or not? Therefore, a normalized and continuous measure is needed to quantify the matrix deficiency.

Let λ1 ≥ λ2 ≥ λ3 and ψ1 ≥ ψ2 be the eigenvalues of F and Mxy, respectively. From the interlacing

property of eigenvalues in symmetric matrices [71], it follows that λ1 ≥ ψ1 ≥ λ2 ≥ ψ2 ≥ λ3 which

yields the following interest bearing observations:

λ1 ≥
λ1×λ2×λ3

ψ1×ψ2
=

det(F)

det(Mxy)
≥ λ3 (3.25)

1≥ λ2×λ3

ψ1×ψ2
≥ λ3

λ1
≥ 0 (3.26)

1≥ δr ≥
λ3

λ1
≥ 0 (3.27)

where the Normalized Continuous Rank Increase Measure (NCRIM) δr follows 0≤ δr ≤ 1 as well as

δr =
λ2×λ3

ψ1×ψ2
. (3.28)

The case of δr = 0 is an ideal case of no rank increase, and when δr = 1 there is a clear rank-increase.

Nevertheless, the δr allows to handle noisy data and provides varying degrees of rank-increases for

varying degrees of motion-consistencies. It is easy to show that the term det(F)
det(Mxy)

is the pure temporal

eigenvalue that was derived in [119] using a Galilean diagonalization of the matrix F . This diagonaliza-

tion compensates for the local constant velocity and the pure temporal eigenvalue encodes information

about the non-linearity of the local motion [119]. Fig.3.12 depicts an instance of the normalized contin-

uous rank increase measure δr calculation during normal and abnormal behavior. The estimated values

suit to distinguish between normal and abnormal events.

3.3.5 Decision of normal or abnormal motion frames

A predefined threshold Rδ value, calculated from large videos that contain exclusively normal motions,

can differentiate each frame with respect to its assigned δr value whether its motion is normal or ex-
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Normal Behavior : camera view frame Calculation of NCRIM

F =




75498 5278671 −495495

5278671 664134 −617319
−495495 −617319 24392





λ1 =−4917900, λ2 =−83203, λ3 = 5765100

Mxy =

[
75498 5278671

5278671 664134

]

ψ1 =−4917100, ψ2 = 5656700

δr = λ2×λ3
ψ1×ψ2

= −83203×5765100
−4917100×5656700 = 0.0172

Abnormal Behavior : camera view frame Calculation of NCRIM

F =




987447 4275963 −816385
4275963 919281 −920319
−816385 −920319 52979





λ1 =−3324700, λ2 =−221560, λ3 = 5505900

Mxy =

[
987447 4275963
4275963 919281

]

ψ1 =−3322700, ψ2 = 5229500

δr = λ2×λ3
ψ1×ψ2

= −221560×5505900
−3322700×5229500 = 0.0702

Figure 3.12: Normal and abnormal behaviors of crowd. Calculation of the normalized continuous rank

increase measure δr in both cases. Abnormal situation caused when the heavily loaded trolley suddenly
became unbalanced and hit two accompanied age-old persons. Consequently, they were forced down
on the opposite direction of the moving escalator along with their belongings.
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ceptional. Any frame having value of δr which is greater than the Rδ will be considered as exceptional

motion frame. The Rδ depends on the controlled environment namely the distance of the camera to the

scene, the orientation of the camera, the type and the position of the camera, lighting system, density of

the crowd, etc. If we have N video streams, then we select at least N thresholds. If the environment

changes, then Rδ should be regenerated as:

Rδ = max
i=1... f

{δr}i + min
i=1... f

[
1

(2π)2

∞

∑
k=0

(−1)k(δr)
2k+1

k!(2k +1)

]

i

where f is the number of frames of the video database.

3.3.6 Experimental Results and Discussion

To conduct the experiment, we used mainly, escalator data-set, unidirectional motion videos of frame

size 640×480 pixels, where both normal and exceptional movements exist. All images were in color,

contained some amounts of noise, strong local variations in illumination, shadows and reflections, large

numbers of objects often partially occluded, etc.

Fig.3.13 describes a scenario of exceptional motions which happens nearly in the middle of the

escalator. A heavily laden trolley suddenly became unbalanced and hit two accompanied persons.

Finally, they were forced down on the opposite direction of the moving escalator along with their items.

The proposed method can detect successfully the accidental circumstances by detecting aberrant motion

frames. The detection results have been compared with ground truth, which is the process of manually

marking what an algorithm is expected to output. However, the algorithm has seldom effect on the

video stream like Fig.3.13 (a). This is due to the fact that the video sequences include abnormal events

occur with occlusion. Hence, the quantity of extracted optical flow vectors is not sufficient to draw out

abnormal frames. Occlusion handling is a very difficult part of optical flow as occluded pixels violate

its major assumption.

3.4 Mahalanobis Metric Approach

3.4.1 Overview

In this section, we have presented another approach ([SD09c]), which detects abnormal events in

surveillance video systems (e.g., escalators, narrow passages, etc.), based on optical flow analysis of
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Figure 3.13: The peaked curve depicts exceptional motion frames (e.g., red marked frame), nevertheless
the NCRIM approach cannot detect events e.g., (a).
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crowd behavior followed by Mahalanobis and χ2 metrics. The Mahalanobis distance is a metric, i.e.,

it satisfies metric conditions: (i) non-negativity, (ii) identity of indiscernible, (iii) symmetry or commu-

tativity, and (iv) triangle inequality. Mahalanobis metric uses an appropriate correlation matrix to take

account of differences in variable variances and correlations between variables. The video frames are

flagged as normal or eccentric (abnormal) established on the statistical classification of the distribution

of Mahalanobis distances of the normalized spatiotemporal information of optical flow vectors. Those

optical flow vectors are computed from the small blocks of the specific region of successive frames

namely region of interest image (RII), which is discovered by region of interest image map (RIIM)

(e.g., Fig.3.14). The RIIM is obtained from specific treatment of foreground segmentation of moving

subjects. Like motion heat map (e.g., Fig.3.6) or motion map (e.g., Fig.3.11), the use of RIIM improves

the quality of the results and reduces processing time.

The approach primarily has been tested against a single camera data-set, Escalator dataset [132],

collected by installing the camera on the escalator egresses in an airport as well as the data-set of

Minnesota University so-called UMN dataset [137].

3.4.2 RIIM and Feature Extraction

3.4.2.1 Region of Interest Image Map (RIIM)

The RIIM can be defined automatically by building a color histogram [see Fig.3.14 (a) & (b) for es-

calator case], which is built from the accumulation of binary blobs of moving subjects, which were

extracted following foreground segmentation method [102]. The adaptive background subtraction al-

gorithm proposed by [102] is able to model a background from a long training sequence with limited

memory, works well on moving backgrounds, illumination changes, and compressed videos having

irregular intensity distributions. The RIIM will be brought into existence mainly off-line. On-line is

possible but it makes the system complicated. Off-line is better as the generated RIIM will be more

significant and accurate when the video duration will be very long. RIIM improves the quality of the

results and reduces processing time which is an imperative factor for real-time applications.

3.4.2.2 Spatiotemporal Information (ST-Info) Extraction

The region of interest image (RII), ascertained by RIIM, is separated into small blocks. Once we define

n (say 1500) points of interest in the RII, we track those points over the small blocks of two successive

region of interest images using the combination feature tracker of Kanade-Lucas-Shi-Tomasi [123, 160]
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Figure 3.14: (a) Camera view. (b) Generated Region of Interest Image Map (RIIM) and blue region on
the RIIM recommends Region of Interest Image (RII).

easily. But one encountered problem is that people near the camera are supposed to generate large op-

tical flow vectors and people far from the camera cannot generate such flow vectors even when they

would make very quick motion (e.g., running or falling). In order to get an acceptable distribution

of optical flow pattern over the RII, people near or far from the camera should be fairly treated. To

solve this problem, we take into account vertical coordinate of each block. Consequently, a weighing

coefficient λ is calculated according to the vertical coordinate of the block. A block far away from

the camera has small vertical coordinate, as a result its λ should be large. Equally, block with large

vertical coordinate get smaller λ . The value of λ heavily depends on the context of application and

implementation. However, for our escalator videos data-set typically λ limits 0.6≤ λ ≤ 1. Adjacent to

camera (starting of the RII) region the value of λ = 0.6 is appropriate, whereas λ bears the maximum

value 1 at the end of part of the RII. We also take down the static and noise features. Static features are

the features which moves less than two pixels. Noise features are the isolated features which have a big

angle and distance difference with their near neighbors due to tracking calculation errors. Finally, for

each frame irrespective of normal or eccentric events, we obtain an acceptable and workable spatiotem-

poral information, i.e., a n× 5 matrix which is a function of time, explicitly speaking a set of vectors

M(j)(k) of n elements as defined:

M(j)(k) =





x(1)(1) x(2)(1) x(3)(1) x(4)(1) x(5)(1)

. . . . .

x(1)(i) x(2)(i) x(3)(i) x(4)(i) x(5)(i)

. . . . .

x(1)(n) x(2)(n) x(3)(n) x(4)(n) x(5)(n)




(3.29)
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where j = 1,2, . . .5, k = 1,2,3, . . .n, i be any feature element in k, and

• x(1)(i) 7→ x coordinate of the i,

• x(2)(i) 7→ y coordinate of the i,

• x(3)(i) 7→ x velocity with multiply by λi of the i,

• x(4)(i) 7→ y velocity with multiply by λi of the i,

• x(5)(i) 7→ moving direction of the i.

3.4.3 Statistical treatments of the spatiotemporal information

3.4.3.1 Normalization of Raw Data

A normalized value is a value that has been processed in a way that makes it possible to be efficiently

compared against other values. For each column of M(j)(k), we calculate the average x j and standard

deviation σ j. Subtracting the average x j from each value in the columns of x( j)(k), and then dividing

by the standard deviation σ j for that column in x( j)(k) generated a new matrix z( j)(k) as:

x j =
1
n

n

∑
k=1

x( j)(k) (3.30)

σ j =

√
∑(x( j)(k)− x j)2

n−1
(3.31)

z( j)(k) =
x( j)(k)− x j

σ j

. (3.32)

All values in z( j)(k) are dimensionless and normalized, hence the new form of M(j)(k) yields:

Z(j)(k) =





z(1)(1) z(2)(1) z(3)(1) z(4)(1) z(5)(1)

. . . . .

z(1)(i) z(2)(i) z(3)(i) z(4)(i) z(5)(i)

. . . . .

z(1)(n) z(2)(n) z(3)(n) z(4)(n) z(5)(n)




. (3.33)



66 CHAPTER 3. DETECTION OF UNUSUAL VIDEO EVENTS

3.4.3.2 Calculation of Correlation Matrix

A covariance matrix is merely collection of several variance-covariances in the form of a square matrix.

Due to the symmetry property of covariances, it is necessarily a symmetric matrix. For a real symmetric

matrix all the eigenvalues and eigenvectors are real. A n×n symmetric matrix satisfies the following:

(i) it has exactly n (not necessarily distinct) eigenvalues, (ii) there exists a set of n eigenvectors, one

for each eigenvalue, that are mutually orthogonal. Clearly, a covariance (symmetric) matrix has n

eigenvalues and there exist n linearly independent eigenvectors (because of orthogonality) even if the

eigenvalues are not distinct. However, one problem with covariance is that it is sensitive to the scales.

We would like a measure of the strength of the link between two components of covariance that does

not depend on the units used to measure these quantities. To obtain a more direct indication of how

two components co-vary, we scale covariance to obtain correlation. Correlation is dimensionless while

covariation is in units obtained by multiplying the units of each variable. Using Z(j)(k), scaling is

performed by means of the following equations:

rpq =
Spq

SpSq

(3.34)

Spq =
1

n−1

n

∑
k=1

[zp(k)zq(k)] (3.35)

Sl =

√
1

n−1

n

∑
k=1

[zl(k)2] (3.36)

where {p,q} ∈ j and l ∈ {p,q}.

3.4.3.3 Calculation of Mahalanobis Distance Dm(i)

Distance metric is a key issue in many computer vision algorithms. In statistics, Mahalanobis distance

is a distance measure introduced by Mahalanobis [126]. It is based on correlations between variables by

which different patterns can be identified and analyzed. It is a useful way of determining similarity of an

unknown sample set to a known one. It differs from Euclidean distance in that it takes into account the

correlations of the data set and is scale-invariant, i.e., not dependent on the scale of measurements. The

region of constant Mahalanobis distance around the mean forms an ellipse in two dimensional space

(i.e., when only 2 variables are measured), or an ellipsoid or hyperellipsoid when more variables are

used. The Mahalanobis distance is the same as the Euclidean distance if the correlation matrix is the
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identity matrix. We calculate the Mahalanobis distance Dm(i) for each row of the normalized matrix

Z(j)(k) by multiplying the row by the inverted correlation matrix, then multiplying the resulting vector

by the transpose of the row of the Z(j)(k), then dividing the obtained result by the degree of freedom,

finally grasping square root of the up-to-the-minute result as:

Dm(i) =

√√√√√√√√√√√√

[
z(1)(i) z(2)(i) z(3)(i) z(4)(i) z(5)(i)

5

]





1 r12 r13 r14 r15

r21 1 r23 r24 r25

r31 r32 1 r34 r35

r41 r42 r43 1 r45

r51 r52 r53 r54 1





−1



z(1)(i)

z(2)(i)

z(3)(i)

z(4)(i)

z(5)(i)





(3.37)

where the number of columns contained in Z(j)(k) is referred to as the degree of freedom which is

5 in this case. The diagonal 1s indicate that a random variable co-varies perfectly with itself (auto-

correlation), and the off diagonal terms contain the correlation between two components. Like covari-

ance matrices, correlation matrices must be positive definite or positive semi-definite. Exactly same

as covariance matrix, there is a handy simple little formula τ×(τ−1)
2 that tells how many pairs (e.g.,

correlations) there are for τ number of variables.

Geometrically, samples with an equal Dm(i) lie on an ellipsoid (Mahalanobis Space). The Dm(i) is

small for samples lying on or close to the principal axis of the ellipsoid. Samples further away from the

principal axis have a much higher Dm(i). The larger the Dm(i) for a sample is, the more likely the sample

is an outlier. An outlier (extreme sample) is a sample that is very different from the average sample in

the data set. An outlier may be an ordinary sample, but of which at least one attribute has been severely

corrupted by a mistake or error (e.g., tracking calculation errors). An outlier may also be a bona fide

sample, that simply turns out to be exceptional. Since Mahalanobis distance satisfies the conditions

(symmetry, positivity, triangle inequality) of metric, it is a metric. The use of the Mahalanobis metric

removes several limitations of the Euclidean metric, e.g.,

• It automatically accounts for the scaling of the coordinate axes;

• It makes improvements for correlation between the different features;

• It can provide curved as well as linear decision boundaries.

Nonetheless, there is a disbursement to be paid for those advantages. The computation of the correlation

matrix can give rise to problems. When the investigated data are measured over a large number of



68 CHAPTER 3. DETECTION OF UNUSUAL VIDEO EVENTS

variables, they can keep under control much redundant or correlated information. This is so-called

multicollinearity in the data which leads to a singular correlation matrix that cannot be inverted. Another

precinct for the calculation of the correlation matrix is that the number of samples in the data set has

to be larger than the number of variables. Yet, in the proposed approach, both problems have been

minimized by dint of 5 variables and tracking about 1500 samples (points of interest) in each frame,

respectively.

3.4.4 Analysis of Mahalanobis Distances

Mahalanobis distance is a metric (a rule for calculating the distance between two points) which is better

adapted than the usual Euclidian metric to settings involving non-spherically symmetric distributions.

3.4.4.1 Classification of Mahalanobis Distances

Mahalanobis squared distances are calculated in units of standard deviation from the group mean.

Therefore, the calculated circumscribing ellipse formed around the samples actually defines the one

standard deviation of that group. This allows the designing of a statistical probability to that measure-

ment. In theory, Mahalanobis squared distance is distributed as a χ2 distribution with degree of freedom

equal to the number of independent variables in the analysis. The χ2 distribution is very important be-

cause many test statistics are approximately distributed as χ2. However, the χ2 distribution has only

one parameter called the degree of freedom. The shape of a χ2 distribution curve is skewed for very

small degrees of freedom and it changes drastically as the degrees of freedom increase. Eventually,

for large degrees of freedom, the χ2 distribution curve looks like a normal distribution curve. Like

all other continuous distribution curves, the total area under a χ2 distribution curve is 1.0. The three

sigma rule, or 68-95-99.7 rule, or empirical rule, states that for a normal distribution, about 68%, 95%,

99.7% of the values lie within 1, 2, and 3 standard deviation of the mean, respectively. Clearly, almost

all values lie within 3 standard deviations of the mean. Consequently, samples that have a squared

Mahalanobis distance larger than 3 have a probability less than 0.01. These samples can be classified

as members of non-member group. Samples those have squared Mahalanobis distances less than 3 are

then classified as members of member group. The determination of the threshold depends on the appli-

cation and the type of samples. In the proposed approach, we settle that each Dm(i) goes either member

group or non-member group. Sample with a higher Dm(i) than
√

3 is treated as non-member group,

otherwise member group. Member group contains absolutely the samples of a normal event, whereas
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non-member group contains essentially samples of eccentric events (including outliers). Fig.3.15 de-

S1

S2
S3

S4
S5

S6 S7

S8

Euclidean

Mahalanobis

Figure 3.15: Mahalanobis metric with respect to Euclidean metric.

picts, while Mahalanobis metric produces elliptical cluster where samples are well correlated, Euclidean

metric produces circular subsets. The non-member group consists of samples S1, S2, S3, S4, S5, S6, S7, and

the outlier S8, while the member group groups the rest samples. Presuming in any non-member group,

having M samples including outliers (where also assuming that in general M≫ outliers satisfies), we

sum up their Mahalanobis distances, Sd , with the help of:

Sd =
M

∑
i=1

Dm(i). (3.38)

3.4.4.2 Normalization of Sd

Now, we transfer each Sd into a normalized distance (probability) value ranges between 0 and 1. The

normalization may be done by using the simple formula like 1/log(Sd), but the normalized values fall

into a congested range (scaling problem) which will arise problem specially in threshold selection. To
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solve the scaling problem, we take the advantage of cumulative distribution function (cd f ), which has

strict lower and upper bounds between 0 and 1, we can easily pick up the normalized distance of each

Sd . Since all values of Sd are skewed to the right (positive-definite) and their variances are also large, we

can use Log-normal distribution. Skewed distributions are particularly common when mean values are

low, variances large, and values cannot be negative. Log-normal distributions are usually characterized

in terms of the log-transformed variable, using as parameters the expected value, or mean (location

parameter µ), of its distribution, and the standard deviation (scale parameter σ ). The σ is entitled as

scale as its value determines the scale or statistical dispersion of the probability distribution. If Nd be

the normalized value of Sd , then Nd can be gently estimated by means of:

Nd =
1
2

[
1+ er f{ log(Sd)−µ

σ
√

2
}
]
, er f (r) =

2√
π

[
r− r3

3
+

r5

10
− r7

42
+ . . .

]
(3.39)

where er f is a Gauss error f unction and r = log(Sd)−µ

σ
√

2
. Using Eq. 3.39, and placing congenial values

of µ & σ (say µ = 0, σ = 5) we can explicitly estimate the value of Nd between 0 and 1. Now, it

is important to define an appropriate threshold Td to make a distinction between normal and abnormal

frames. We make a similitude measure between Nd and Td to reach an explicit conclusion for each

frame, i.e., a frame is said to be eccentric if Nd > Td , otherwise normal.

3.4.4.3 Estimation of Td

The hypothetical outlook of the estimation of threshold Td is that we estimate it from long videos which

contain none but normal motions as:

Td =

√√√√
[

arg max
i=1... f

[Nd ]i

]2

+

[
arg min

i=1... f

[
2

π2

∞

∑
n=0

(−1)n(Nd)2n+1

n!(2n+1)

]

i

]2

(3.40)

where f be the total number of frames. The Td depends on the controlled environment namely the

distance of the camera to the scene, the orientation of the camera, the type and the position of the

camera, lighting system, density of the crowd in working, vacation, day, night, weekend, etc. In case

of escalator it depends also escalator type and position. Deeming these facts, we have minimum one

threshold by a video stream. If we have N video streams, then we choose at least N thresholds. If the

video stream changes, then Td should be regenerated.
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3.4.5 Experimental Results and Discussion

To conduct experiments, we have used Escalator dataset [132] and the dataset of Minnesota Univer-

sity (UMN dataset) [137]. The publicly available dataset of normal and abnormal crowd videos from

University of Minnesota [137] comprises the videos of 11 different scenarios of an escape event in 3

different indoor and outdoor scenes.

Figure 3.16: Curves are the outputs of the algorithm, which detect eccentric events on escalator exits.
But the state of affairs of eccentric events e.g., in images (a) & (b) cannot be detected due to occlusion.

An example of detection results as shown in the left image of Fig.3.16 which describes a scenario

of a collapsing event in an escalator exit point. Some stuffs from a heavily loaded trolley have dropped

just the egress point of the moving escalator which has caused one kind of emergency situation on the

egress point. The situation has been detected by the proposed algorithm. Nevertheless, the algorithm

does not work where video frames bear the situations like Fig.3.16 (a) and (b). This is due to the fact

that the video sequences which include abnormal events have occurred with occlusion. Consequently,

the quantity of extracted optical flow vectors is not sufficient to draw out abnormal frames. Beyond
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Figure 3.17: Anomaly detection results from a video in UMN [137] by Mahalanobis metric approach.

the escalator unidirectional flow of mob videos, the method has been tested on the videos existing both

normal and eccentric events, attributed 320× 240 pixels, where the movements of people are random

directions. Fig.3.17 depicts such a scenario. Initially, the movement of people was random, suddenly

they tent to leave their places with very quick motion.

3.5 Bhattacharyya Metric Approach

3.5.1 Overview

An important problem in computer vision is measuring the dissimilarity between distributions of fea-

tures, e.g., distributions of color and texture features [150]. The focus of this observation is mainly on

the Bhattacharyya measure and its derivatives. The χ2 statistic is used to provide a measure of simi-

larity between two distributions or histograms [110]. The Bhattacharyya measure approximates the χ2

statistic. The Mahalanobis distance is a particular case of the Bhattacharyya measure. By transform-

ing all variances to be constant the Bhattacharyya measure avoids the singularity problem of the χ2
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statistic when comparing empty histogram bins [2]. The author of [95] compared the Bhattacharyya

distance and the Kullback-Leibler divergence, and observed that Bhattacharyya yields better results in

some respects while in other respects they are equivalent. A number of measures (e.g., Bhattacharyya,

Euclidean, Kullback-Leibler, Fisher) have been studied for image discrimination and it was concluded

that the Bhattacharyya distance is the most effective discriminator [18]. Dissimilarity measures, based

on empirical estimates of the distribution of feature, have been developed for classification [138], im-

age retrieval [145, 151], unsupervised segmentation [77], edge detection [153], object tracking [38],

etc. Introductory benchmark studies have confirmed that distribution–based dissimilarity measures ex-

hibit excellent performance in image retrieval [145], in unsupervised texture segmentation [77], and

in conjunction with a k–nearest-neighbor classifier, in color-based or texture-based object recognition

[163, 138].

Our proposed approach ([SD10a, SDa]) estimates sudden changes and abnormal motion variations

of a set of interest points detected by Harris detector and tracked by optical flow technique and clas-

sified by K-means. The overhaul of normalized Bhattacharyya distance measure over time provides

the knowledge of the state of abnormal activity. Emphatically, we have noticed that distances between

clusters of tracked corners on movers are a reasonable way to characterize abnormal behavior as the

distances vary significantly in case of abnormalities. To demonstrate the interest of the approach, we

have conducted the experiments on both Escalator dataset [132] and UMN dataset [137].

3.5.2 Region of interest estimation

Both indoor and outdoor video surveillance would expect region of interest (RoI) for making video

processing faster. Depending on applications and type of videos, RoI would extend from few parts of

a video frame to the whole frame. There are some indoor and outdoor applications (e.g., to keep under

surveillance the linear passages, escalator egresses, high-way, etc.) where video processing region can

be fixed by using a mask instead of analyzing the whole video frame. We can use either motion heat

map (e.g., Fig. 3.6) or spatiotemporal region of interest (e.g., Fig. 3.11) or region of interest image map

(e.g., Fig. 3.14) for such applications. Such type map ameliorates the quality of the results and makes

the processing time faster as it is not necessary to take into account the whole frame and fastidiously

where there are few motion intensities or no motions.
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3.5.3 Points of interest estimation

The Harris corner detector [76] is a famous point of interest detector due to its strong invariance to

rotation, scale, illumination variation, and image noise [154]. It is based on the local auto-correlation

function of a signal, where the local auto-correlation function measures the local changes of the signal

with patches shifted by a small amount in different directions. A discrete predecessor of the Harris

detector was depicted by Moravec [133], where the discreteness refers to the shifting of the patches.

We consider Harris corner as a point of interest. But there is a potential problem for camera positions

and lighting conditions which allow to get an extremely large number of corner features that can be

not easily be captured and tracked. For example, Fig. 3.18 (a) is the original video frame with moving

subjects, if we apply Harris detector algorithm directly then the output contains lot of unwanted corners

as shown in Fig. 3.18 (b). To avoid this situation, we prefer to use a background and foreground

estimation method before applying Harris corner detector. An estimated foreground can be derived

after background estimation. Ideally, residual pixels obtained after applying background subtraction

should represent foreground subjects.

Foreground estimation is relatively easy in an indoor environment (see Fig. 3.18 (e) and (f)), because

the illumination conditions do not change significantly. An outdoor environment, on the other hand, is

much more complicated, as varying weather and sunlight (e.g., shadow of each subject in Fig. 3.18 (a))

affect the correct detection of foreground. Some authors have adopted the adaptive Gaussian approach

to model the behaviour of a pixel [161, 75, 193]. However, the background region of a video sequence

often contains several moving objects. Therefore, rather than explicitly estimating the values of all

pixels as one distribution, we would prefer to estimate the value of a pixel as a mixture of Gaussians

[161, 75, 193]. The foreground pixels obtained after applying background subtraction are shown in Fig.

3.18 (c), in which noise, caused by shadows, which are the result of extremely strong lighting condition

(e.g., sunlight). On the other hand, Fig. 3.18 (f) is almost light invariant.

3.5.4 Points of interest tracking

Once we define the points of interest, e.g., Fig. 3.18 (d), we track those points over the next frames

using optical flow techniques. For this, we use the pyramidal implementation of Kanade-Lucas-Tomasi

tracker [123, 160, 26]. Upon matching points of interest between frames, the result is a set of vectors

over time:

Ψ = {Ψ1 . . . ΨN |Ψi = (xi,yi,δi,αi)}
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Figure 3.18: The (a) & (e) are the original frames and the results of their foreground estimation have
been depicted in (c) & (f) successively; (b) & (d) point to the Harris corner for (a) & (c), respectively.

where

• xi 7→ x coordinate of a point of interest i,

• yi 7→ y coordinate of the i,

• δi 7→ displacement of the i from one frame to the next,

• αi 7→ direction of motion of the i.

If any feature i in the frame f with its coordinate U(xi,yi) and its matched in the frame f + 1 with

coordinate V (xi,yi), it is easy to calculate the change of position (displacement) δi of the feature i using

Euclidean metric as:

δi =
√

(Uxi
−Vxi

)2 +(Uyi
−Vyi

)2. (3.41)

Simple trigonometric function atan comes into notice few potential problems (as described in 3.2.2.4),

e. g., infinite slope, false quadrant. On the other hand, trigonometric function atan2 gracefully handles
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infinite slope and places the angle in the correct quadrant [e.g., atan2(1,1) = π/4, atan2(−1,−1) =

−3π/4, etc.]. Thus, the accurate moving direction αi of the feature i can be calculated as:

αi = atan2(Uyi
−Vyi

,Uxi
−Vxi

). (3.42)

Furthermore, we remove static and noisy features. Points of interest having δi ≅ 0 are considered as

static features. Noise features are the isolated features which have a big angle and distance difference

with their near neighbors due to tracking calculation errors. The resulting points of interest are suitable

for clustering.

3.5.5 Classification of points of interest

After static error suppression points of interest, we apply K-means method to get clusters. The geo-

metric clustering method, k-means, is a simple and fast method for partitioning data points into clus-

ters, based on the work done by [120] (so-called Voronoi iteration). It is similar to the expectation-

maximization algorithm for mixtures of Gaussians in that they both attempt to find the centers of nat-

ural clusters in the data. On clustering we represent each class, which contains points of interest of an

unknown distribution, as a polygon, as shown in Fig. 3.19. To obtain a quantitative measure of how

separable are two classes, a distance measure is required. We calculate the Bhattacharyya distances of

all the classes between two consecutive frames over time.

3.5.6 Calculation of Bhattacharyya distance between classes

Original interpretation of the Bhattacharyya measure has few problems, hence we consider the Bhat-

tacharyya bound which commonly uses in pattern recognition. The Bhattacharyya distance has been

used as a class separability measure for feature selection and is known provide the upper and lower

bounds of the Bayes error.

3.5.6.1 Original Derivation of Bhattacharyya Measure

The original interpretation of the Bhattacharyya measure was geometric [19]. He considered two multi-

nomial populations each consisting of n classes with respective probabilities P(1), P(2), P(3), . . . , P(n)

and Q(1), Q(2), Q(3), . . . , Q(n). Since P(i) and Q(i) present probability distributions, where i ∈ n,

it is easy to write ∑
n
i P(i) = ∑

n
i Q(i) = 1. He observed that

√
P(1),

√
P(2), . . . ,

√
P(n) and

√
Q(1),
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Figure 3.19: Polygons on the two consecutive frames (a) & (b) are the classification of interest points
executed by K-means.

√
Q(2), . . . ,

√
Q(n) could be considered as the direction cosines of two vectors in n-dimensional space

referred to a system of orthogonal co-ordinate axes. He used the square of the angle between the two

position vectors as a measure of divergence between the two populations. Assume that θ be the angle

between the vectors, then we have:

cosθ =
n

∑
i

√
P(i)Q(i) (3.43)

θ = cos−1
n

∑
i

√
P(i)Q(i). (3.44)

If the two distributions are identical (e.g., P(i) = Q(i)), then we have:

θ = cos−1
n

∑
i

√
P(i)P(i) = cos−1

n

∑
i

P(i) = cos−11 = cos−1cos0◦ = 0◦. (3.45)

Consequently, we see the intuitive motivation behind the definition as the vectors are collinear. How-

ever, a potentially undesirable property of the Bhattacharyya measure or coefficient is that it does not

impose a metric structure since it violates at least one of the distance metric axioms [67]. The authors in

[38] proposed a derivative of the Bhattacharyya measure in the form of
√

1− cosθ which does indeed

represent a metric distance between distributions as this distance obeys all of the metric axioms. Yet,



78 CHAPTER 3. DETECTION OF UNUSUAL VIDEO EVENTS

we are interested in the going-over of Bhattacharyya bounds which usually use in pattern recognition.

3.5.6.2 Classification Error

X

p(x|ωi)P(ωi)

Reducible Error

ω2

ω1

R2R1

∫
R2

p(x|ω1)P(ω1)dx
∫
R1

p(x|ω2)P(ω2)dx

xB x∗

Figure 3.20: Components of the probability of error for equal priors and non-optimal decision point x∗.
If the decision boundary is instead at the point of equal posterior probabilities, xB, then the reducible
error is eliminated.

The classification error is the ultimate measure of the performance of a classifier. Bayesian decision

theory is a fundamental statistical approach to the problem of pattern classification. A pattern is rep-

resented by a set of m attributes or features, viewed as a m-dimensional feature vector x ∈ R
m. Let us

assume a pattern recognition problem, in which the class label ω is a random variable taking values in

the set of class labels Ω = {ω1,ω2, . . . ,ωn}. The priori probabilities, P(ωi) where i ∈ n, constitute the

probability mass function of the variable ω such that ∑
n
i=1 P(ωi) = 1. Let consider that the objects from

class ωi are distributed in x∈R
m according to the class-conditional probability density function p(x|ωi)
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such that p(x|ωi)≥ 0 for ∀x ∈R
m and

∫
Rm p(x|ωi)dx = 1 where i ∈ n. Given the prior probabilities and

the class-conditional probability density functions, we can calculate the posterior probability P(ωi|x)
that the true class label of the measured x is ωi using the Bayes rule as:

P(ωi|x) =
p(x|ωi)P(ωi)

p(x)
(3.46)

where the evidence is p(x) = ∑
n
i=1 p(x|ωi)P(ωi). The Eq. 3.46 provides the probability mass function

of the class label variable ω for the observed x. The decision for that particular x should be made with

respect to the posterior probability. If for some x we have p(x|ωi) = p(x|ωi+1) where {i, i+1} ∈ n, then

the decision hinges entirely on the prior probabilities. On the other hand, if P(ωi) = P(ωi+1), then the

decision is based entirely on the likelihoods p(x|ωi). In general, both of these factors are important in

making a decision, and the Bayes decision rule combines them to achive the minimum probability of

error. If we have an observation x for which P(ωi|x) is greater than P(ωi+1), we would be inclined to

choose ωi. Similarly, if P(ωi+1|x) is greater than P(ωi|x), we would be inclined to choose ωi+1. Thus,

we can minimize the probability of error. The average probability of error is given by [50]:

P(error) =
∫ ∞

−∞
P(error|x)p(x)dx (3.47)

where

P(error|x) = min[P(ωi|x),P(ωi+1|x)]. (3.48)

If for every x we insure that P(error|x) is as small as possible, then the integral must be as small as

possible. For instance, consider the reducible error in Fig. 3.20 where a dichotomizer (classifier) has

divided the space into two regions R1 and R2 in a possibly non-optimal way. There are two ways in

which classification error can occur: (i) an observation x falls in R2, (ii) x falls in R1. Since these

events are mutually exclusive and exhaustive, the probability of error is [50]:

P(error) = P(x ∈R2,ω1)+P(x ∈R1,ω2) =
∫

R2

p(x|ω1)P(ω1)dx+
∫

R1

p(x|ω2)P(ω2)dx. (3.49)

Since the decision point x∗ were chosen arbitrarily, the probability of error P(error) is not as small as

it might be. The triangular area marked reducible error can be eliminated if the decision boundary is

moved to xB. This is the Bayes optimal decision boundary and gives the lowest probability of error.

In general, the calculation of the error probability is a difficult task. Even when observation vectors
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have a normal distribution, we must resort to numerical techniques. However, a closed-form expression

for the error probability is the most desirable solution for a number of reasons [67]. Not only is the

computational effort greatly reduced, since we need only to evaluate a formula, but more importantly,

the use of the closed-form solution provides insight into the mechanisms causing the errors. When we

cannot obtain a closed-form expression for the error probability, we may take some other approach. We

may seek either an approximate expression for the error probability, or an upper bound on the error

probability.

3.5.6.3 The Chernoff and Bhattacharyya Bounds & Distances

In order to derive a bound for the error of Eq. 3.47, the following inequality [67, 50] is extremely

helpful:

min[a,b]≤ aξ b1−ξ f or a,b≥ 0 and 0≤ ξ ≤ 1. (3.50)

Using Eq. 3.48 & 3.46, we have:

P(error|x) = min

[
p(x|ωi)P(ωi)

p(x)
,

p(x|ωi+1)P(ωi+1)

p(x)

]
. (3.51)

On applying the inequality of the Eq. 3.50, we obtain:

P(error|x)≤
(

p(x|ωi)P(ωi)

p(x)

)ξ (
p(x|ωi+1)P(ωi+1)

p(x)

)1−ξ

. (3.52)

Using Eq. 3.52 and Eq. 3.47, the new equation yields:

P(error)≤ Pξ (ωi)P
1−ξ (ωi+1)

∫
pξ (x|ωi)p1−ξ (x|ωi+1)dx (3.53)

which is called the Chernoff bound where 0≤ ξ ≤ 1. In general, the Chernoff upper bound of error is

expressed as:

P(error) = Pξ (ωi)P
1−ξ (ωi+1)

∫
pξ (x|ωi)p1−ξ (x|ωi+1)dx. (3.54)

The optimal ξ can be found by minimizing P(error). The integral of Eq. 3.53 is over all feature

space, we do not need to impose integration limits corresponding to decision boundaries. If two density

functions are normal as N (µi,Σi) and N (µi+1,Σi+1), where µi & µi+1 and Σi & Σi+1 are the mean

vectors and covariance matrices of classes i & i + 1 respectively, then the integral in Eq. 3.53 can be
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evaluated analytically (a close-form expression), yielding [67, 50]:

∫
pξ (x|ωi)p1−ξ (x|ωi+1)dx = e−k(ξ ) (3.55)

where

k(ξ ) =
ξ (1−ξ )

2
[µi+1−µi]

T [ξ Σi +(1−ξ )Σi+1]
−1(µi+1−µi)+

1
2

loge

|ξ Σi +(1−ξ )Σi+1|
|Σi|ξ |Σi+1|1−ξ

. (3.56)

This expression of k(ξ ) is called the Chernoff disrance. The optimum ξ is the one which gives the

maximum value for k(ξ ). The Chernoff bound, on P(error) is found by analytically or numerically

finding the value of ξ that minimizes e−k(ξ ), and substituting the results in Eq. 3.53. The key benefit

here is that this optimization is in the one-dimensional ξ space, despite the fact that the distributions

themselves might be in a space arbitrarily high dimension [50]. The Chernoff error bound is loose for

extreme values (i.e., ξ → 1 and ξ → 0) and tighter for intermediate ones. While the precise value of the

optimal ξ depends on the parameters of the distributions and the prior probabilities, a computationally

simpler, but slightly less tight bound can be derived by merely asing the results for ξ = 1
2 . Substituting

ξ = 1
2 in Eq. 3.55 & 3.53 and rename k(1

2) as β (i.e., β = k(1
2)), we have the form:

P(error)≤
√

P(ωi)P(ωi+1)
∫

p(x|ωi)p(x|ωi+1)dx =
√

P(ωi)P(ωi+1)e−β (3.57)

which is the so-called Bhattacharyya bound on the error. Bhattacharyya error bound is always looser

than Chernoff error bound. In general, the Bhattacharyya upper bound on the error has the form as:

P(error) =
√

P(ωi)P(ωi+1)
∫

p(x|ωi)p(x|ωi+1)dx =
√

P(ωi)P(ωi+1)e−β . (3.58)

Substituting ξ = 1
2 in Eq. 3.56, we have for the normal distributions case:

β =
1
8

[µi−µi+1]
T
[

Σi +Σi+1

2

]−1

[µi−µi+1]+
1
2

loge

|Σi+Σi+1
2 |

√
|Σi||Σi+1|

(3.59)

where the term β is called the Bhattacharyya distance, which will be used as an important measure of

the separability of two distributions.
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3.5.6.4 Effective Distance Gβ Calculation

The first term of Eq. 3.59 gives the class separability due to the difference between class means, while

the second term gives the class separability due to the difference between class covariance matrices. To

compute the (p,q)-th element of the Σi or Σ j, where j = i+1, we use the following equation:

Σr(p,q) =
1

s−1

[
s

∑
r=1

Ψr(p)Ψr(q)− 1
s

s

∑
r=1

Ψr(p)
s

∑
r=1

Ψr(q)

]
(3.60)

where m and n are the number of points of interest in the classes of i and j respectively, r ∈ {i, j},
s ∈ {m,n}, {p,q} ∈ {xr, yr, δr, αr}. Now, we calculate the difference of class means by means of:

µi−µ j =





1
m ∑

m
i=1 xi− 1

n ∑
n
j=1 x j

1
m ∑

m
i=1 yi− 1

n ∑
n
j=1 y j

1
m ∑

m
i=1 δi− 1

n ∑
n
j=1 δ j

1
m ∑

m
i=1 αi− 1

n ∑
n
j=1 α j




. (3.61)

The Mahalanobis distance is a particular case of the Bhattacharyya, when the variances of the two

classes are equal, this would eliminate the second term (Eq. 3.59) of the distance. This term depends

solely of the variances of the distribution. If the variances are equal this term will be zero, and it

will grow as the variances are different. The first term, on the other hand will be zero if the means

are equal and is inversely proportional to the variances. Besides the mathematical formulation, it may

be interesting to consider some of its properties. Fig. 3.21 shows a one-dimensional example: as a

comparison of (a) and (c) we can come across that, while the Euclidean distance is the same in this two

cases, β is larger in (c) than that of (a). This is because the distance between the means is scaled by

the variances and expresses the degree of overlapping of the two distributions. The similar view can be

viewed by considering (a) and (b): in this case β is approximately the same, while the distance between

the means is different. Finally, (d) shows how the variances of the two variables may be differing in

general. Upon calculating all Bhattacharyya distances among classes, we calculate the geometric means

of the Bhattacharyya distances among classes and come together those means to calculate the final

geometric mean (or log-average) to represent a single effective distance Gβ between two consecutive

frames using Algorithm 1. The advantage of using the geometric mean is that it reduces the effect of

very high and low (perhaps even exponentially changing data) values in a number set. Theoretically,

clustering may be very sensitive and distances between clusters may change significantly from frame to



3.5. BHATTACHARYYA METRIC APPROACH 83

Figure 3.21: Bhattacharyya distance surrounds completely for one-dimensional example of twosomes
of Gaussian distributions: (a) and (c) present twosomes with the nondescript mean Euclidean distance
nevertheless different Bhattacharyya distances, (a) and (b) have in like manner Bhattacharyya distance
but different mean Euclidean distances; (d) depicts differing distributions and distances.

frame. The advantage of calculating single effective distance Gβ between consecutive frames is that it

minimizes such effect in a great amount.

In the crowd scene in case of abnormal and/or emergencies situations physically there exists suffi-

cient agitation and hence the positions, displacements, and directions of points of interest in the clus-

tering are noticeably different between frames. In such situation, clustering configurations like 3.21 (a)

or (b) or (d) tend to (c) between two consecutive frames. Explicitly, the value of β and hence is the Gβ

will be higher. Similarly, as compare to abnormal case, the clustering configurations of normal cases are

almost similar between two consecutive frames. Thus the value of β and so is the Gβ will be smaller,
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i.e., clustering configurations like 3.21 (a) or (b) or (d) remain almost the same. Intuitively speaking, the

distances between clusters of tracked corners on movers are a reasonable way to characterize abnormal

behavior as the distances vary significantly in case of abnormalities.

Algorithme 1: Effective Distance Gβ Calculation

� F: total number of classes in any frame f

� S: total number of classes in the frame f +1

� cm: class counter in frame f

� cn: class counter in frame f +1

cm← 1 ; cn← 1 ;

while cm ≤ F do

while cn ≤ S do

using Eq. 3.59 calculate β between classes of cm & cn, and store as βcn
cn← cn +1;

end

calculate the geometric mean of βcn
by means of:

Ωcm
=

[
cn

∏
i=1

βi

] 1
cn

= exp

[
1
cn

cn

∑
i=1

logeβi

]
(3.62)

and store the calculated Ωcm
;

F ← F−1;

cn = 1 ; cm← cm +1;

end

calculate geometric mean of Ωcm
by dint of:

Gβ =

[
cm

∏
j=1

Ω j

] 1
cm

= exp

[
1

cm

cm

∑
j=1

logeΩ j

]
(3.63)

3.5.7 Normalization

Now, we wish to transfer each Gβ into a normalized distance value between 0 and 1. For normalization

purpose, we could use the simple formula like 1/(1 + loge Gβ ), but the normalized values fall in a
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congested range (scaling problem) which will arise problem specially in threshold selection. To solve

the scaling problem, we would like to use a versatile distribution which has significant effect on its

shape and scale parameters. In this respect we use cumulative distribution function (cd f ) of Weibull

distribution [174] which has strict lower and upper bounds between 0 and 1. Due to accurate model

quality and performance characteristics of Weibull distribution and its flexibility that makes it ideal

for analysis on a dataset with unknown distribution. It is worth mentioning that Weibull distribution

can mimic the behavior of other statistical distributions such as the normal and the exponential. If Φβ

denotes the normalized distance value of Gβ , then Φβ can be formulated as:

Φβ = 1− e−(Gβ /λ )ν

(3.64)

where ν > 0 is the shape parameter and λ > 0 is the scale parameter of the distribution. Using Eq. 3.64,

and knowing the values of ν , λ , and Gβ we can explicitly estimate the value of Φβ between 0 and 1.

3.5.8 Threshold estimation

A predefined threshold Γβ value can differentiate each frame with respect to its assigned distance value

whether its motion is normal or abnormal. There are several methods which may apply to estimate Γp.

One of the simplest approaches of computing Γp is that we consider the maximum number of distances

in large videos that contain exclusively normal motions:

Γβ = arg max
k=1...t

[
Φβ

]
k
+arg min

k=1...t
[Gerror]k (3.65)

Gerror =
1√
π

∞

∑
m=0

(
Φβ

2m+1

m

∏
k=1

−Φβ
2

k

)
(3.66)

where t is the number of frames of the video database and the Gauss error function Gerror is exactly 0.5

at ∞. On affixing the order of the Eq. 3.66 series, Gerror depends on the Φβ .

Any frame having value of Φβ which is greater than the Γβ will be considered as abnormal motion

frame. The Γβ depends on the controlled environment, namely the distance of the camera to the scene,

the orientation of the camera, the type and the position of the camera, density of the crowd, varying

illumination, light reflection, over head light, shadowing, day-night, week days, winter-spring, indoor-

outdoor, occasion, vacation, etc. The more is the distance of the camera to the scene, the less is the

quantity of optical flows and blobs. Taking into account all of these facts, we assume that we have at
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least one threshold by a video stream. If we have M video streams, which are the case in sites such as

play grounds, sporting events, town centers, parking places, political events, airports, subways, stations,

banks, concerts, cinema halls, schools, shopping malls, hospitals, hotels, etc., then we select at least M

thresholds. If the environment changes, then the threshold should be regenerated.

3.5.9 Experimental Results and Discussion

To conduct experiments, we have used Escalator dataset [132] and the dataset of Minnesota University

so-called UMN dataset [137].

Fig. 3.22 describes an example of an abnormal situation on the escalator exit point in a video stream.

Two persons were standing on the moving escalator, suddenly a trolley rushed out toward them. One

person escaped by running while other did not. The non-escapee was rundown by the run-away trolley,

and subsequently fell down at the exit point of the moving escalator. The situation was detected by the

proposed algorithm.

The qualitative results of the abnormal behavior detection for a sample videos of UMN dataset have

been presented in Fig. 3.23. The video of the given sample abnormal motion includes a sudden situation

when a group of people start running and the assigned distance Φβ will be higher than any other before

assigned distances. The Gaussian like curve represents the abnormal motion when the group of people

is trying to leave the place with very quick motion. For explicitness, two arbitrary video frames and their

corresponding positions on the output curves have been indicated by arrows. Fig. 3.23 demonstrates that

the proposed framework accomplishes something to a greater degree to distinguish aberrant sequences.

So far, we can conclude that distances between clusters of tracked corners on movers are an acceptable

way to characterize abnormal behavior as the distances vary significantly in case of abnormalities.

However, the approach does not work on occlusion cases due to the shortcomings of optical flow

technique. As inconvenient, the approach used the distance to measure differences between clusters or

classes and compute a single value to determine the difference between activity in two frames. It would

presumably have difficulties when there are multiple co-occurring activities and one changes.

As a future work, one would in principle try to apply the same idea to individual clusters. It is also

noticeable that the lighting condition, which causes specially shadows of moving bodies, has a severe

effect on the background subtraction which has been mostly overlooked. It would be worth interesting

to count this effect in many computer vision applications. Accordingly, in future work the effect could

be taken into account and minimized.
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Figure 3.22: Person falling event on the escalator exit has been detected by Bhattacharyya metric ap-
proach.

3.6 Enumerated Entropy Approach

3.6.1 Overview

Likewise, the framework exposes in this section makes known abnormal motion frames from real

videos. The hypothesis of our approach ([SID08b, SID10, ISD08]) is to consider the detection of

abnormal events in a crowded context from video surveillance data. The framework does not consider

individual person tracking and consider the study of the general motion aspect and more particularly

assesses sudden shift and strange locomotion discrepancy of a set of interest points discovered by Harris

point of interest detector, instead of tracking persons one by one. The detection and tracking of indi-
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Figure 3.23: Qualitative results of the proposed Bhattacharyya metric approach for abnormality detec-
tion from a video in UMN dataset.

vidual persons are difficult in the case of crowded situations. The framework is composed of several

steps:

• The motion heat map is extracted. The heat map represents the motion intensities e.g., hot area

corresponds to high motion intensities, cold areas represent to low motion intensities, etc.

• Harris points of interest are extracted in the hot regions of the scene. In the simplest case, it is

applied in well limited areas. We consider a binary heatmap, white (movement), and black (no

movement). Points of interest are applied into white regions and blobs are extracted.

• Optical flows are computed on those points of interest, marked off the boundaries by the hot areas

of the scene.

• Mid-level features, the statistical scrutiny of the optical flow information, e.g., density, coefficient

of direction variation, coefficient of distance variation, and direction histogram, are computed.

• On the basis of mid-level features computed in the previous step, we define high-level features

(e.g., entropy) which classify events in abnormal/normal and return different types of abnormality.
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The 1-4 steps are generic and do not depend of a specific application domain. They concern the extrac-

tion of low and mid level of features. The fifth step is dependent of the application domain and requires

a specific learning process. The flow diagram of our planned work has been depicted in Fig.3.24, which

is articulated on a framework operating in three-level of features as noted below.

Input Video Streams

Update Motion Heat Map

Threshold

Points of Interest Extraction

Optical Flow Estimation

Statistical Analysis of Spatiotemporal Info

Decision of Abnormality

Low-level

Mid-level

High-level

Figure 3.24: Simple block diagram of the proposed framework.

• Low-level: It bears reference to measurements those extracted directly from the signal (visual

data), e.g., point of interests, region of interests (blobs), edges, ridges, optical flow, etc. We use

mixture of Gaussian to detect foregrounds in case of low crowded (low density) areas, and optical

flows on points of interest for high crowded (high density) areas.

• Mid-level: It concerns of features those are generated after a learning process directly from the

low-level features, and helps more to enhance the upper level features (semantics), e.g., crowd

density (ratio of the blobs in the scene), trajectory, velocity, direction, acceleration, energy, and

so forth. The mid-level features are computed on lowlevel features (e.g., interest regions, interest

points) and are stored in basic structures.
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• High-level: It pertains to the features with more semantics than mid-level, and they are enough

to take decision. Here we are in the possession of the normal/abnormal events.

3.6.2 Low-level Features

Motion heat map, points of interest extraction, and estimation of optical flow have been already ex-

plained in 3.2.2.1, 3.2.2.2, and 3.2.2.3, respectively. We will discuss a necessary part of optical flow.

On defining points of interest (features), we can obtain a set of vectors as:

V = {V1 . . . VN |Vi = (Xi,Yi,Di,θi)} (3.67)

where

• Xi 7→ x coordinate of some feature i,

• Yi 7→ y coordinate of the i,

• Di 7→ distance between the feature i in the frame f and its matched feature in frame f +1,

• θi 7→ direction of motion of the i.

If any feature i in the frame f with its coordinate P(xi,yi) and its matched in the frame f + 1 with

coordinate Q(xi,yi), it is easy to calculate the change of position (displacement) Di of the feature i

using Euclidean metric as:

Di =
√

(QXi
−PXi

)2 +(QYi
−PYi

)2. (3.68)

Also, the accurate moving direction θi of the feature i can be calculated as:

θi = atan2(QYi
−PYi

,QXi
−PXi

). (3.69)

3.6.3 Mid-level Features

We define some mid-level features those will be necessary to induce a specific abnormal event.

3.6.3.1 Motion area ratio MR

In each video frame, the MR estimates the ratio between the number of blocks containing motion and the

total number of defined blocks. In crowded scenes the area covered by the moving blobs is important as
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compared to uncrowded scenes. We use this measure as a density estimator. To estimate MR, we divide

each video frame into N×M blocks, where N & M are number of columns & rows respectively. For

any block (i, j), we define the moving block by means of:

movingblock(i, j) =

{
1; i f movement exists

0; otherwise

If there are several movements exist in one block, then that block will be enumerated as one moving

block. We count out the total number of moving blocks to define MR as:

MR =
∑

N
i=1 ∑

M
j=1 movingblock(i, j)

N×M
. (3.70)

3.6.3.2 Direction variance-mean ratio θR

To estimate direction variance (θV ), it is important to estimate the mean direction θ of the optical flow

vectors in each video frame. The θ is determined by:

θ =
1
n

n

∑
i=1

θi (3.71)

where n is cardinality of the optical flow vectors in the frame and 360 ◦ ≥ θi > 0 ◦. Having firsthand

knowledge of θ , we calculate the θV of those vectors as:

θV =
1

n−1

n

∑
i=1

(θi−θ)2 =
1

n−1

n

∑
i=1

θ 2
i −

n

n−1
θ

2
. (3.72)

The direction variance-to-mean ratio (coefficient of direction variation) is defined as the ratio of the

variance to the mean:

θR =
θV

θ
. (3.73)

3.6.3.3 Direction histogram θH

The θH gives directions to the direction tendencies and the number of peaks. In the histogram each

column puts an address on the number of vectors in a given angle. The θH , which is affiliated to the

frame, can be clearly characterized by the way of:

θH = {θH(θi), i = 1 . . .s} (3.74)
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θH(θi) =
∑

n
i=1 angle(i)

s
(3.75)

angle(i) =

{
1, i f angle(i) = θi

0, otherwise

where θH(θi) is the normalized frequency of optical flow vectors those have the same angle θi. The

θH is a vector of size s where s is the total number of angles considering the angle range between −π

and +π .

3.6.3.4 Distance variance-mean ratio DV

Observation shows that distance variance (DV ) increases in abnormal situations. With one or many

people walking even in different directions, they tend to have the same speed, which means a small

value of the motion distance variance. But in case of abnormal observable activities (e.g., collapsing

situations, a sudden overwhelming fear, escape circumstances, etc.) those often give rise to a big value

for the DV . The mean of distance variance D is clearly delimited by:

D =
1
n

n

∑
i=1

Di (3.76)

where n is the number of optical flow vectors in the frame. Having D it is easy to ascertain DV by:

DV =
1

n−1

n

∑
i=1

(Di−D)2 =
1

n−1

n

∑
i=1

D2
i −

n

n−1
D

2
. (3.77)

The distance variance-to-mean ratio (coefficient of distance variation) is defined as the ratio of the

variance to the mean:

DR =
DV

D
, where D > 0. (3.78)

3.6.4 High-level features

High-level features concern the decision of event which is either normal or abnormal. These features

are denoted as entropies. We developed a function entitled Entropy that extracts the features at the

frame f . The f is not explicated in the formula to keep the presentation simple.
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3.6.4.1 Entropy estimation

The enumerated function Entropy, that depends on motion area ratio, coefficient of direction variation,

coefficient of distance variation, and direction histogram characteristics at any frame f , is formulated

as:

{Entropy} f = P(E f )log
1

P(E f )
=−P(E f )logP(E f ) (3.79)

where 0 ≤ P(E f ) ≤ 1. In case of P(E f ) = 0, the P(E f )logP(E f ) will be considered as 0. The E f is

defined as:

E f = MR×θR×θH ×DR. (3.80)

What we propose here is a way to detect collapsing event, which is an eccentric event in a crowded

environment. The framework may be extended by any high-level features which are computed of mid-

level features.

To calculate P(E f ) we use cumulative distribution function (cd f ) which has strict lower and upper

bounds between 0 and 1. Deeming Ωµ,σ (E f ) denotes the cd f of E f . Then Ωµ,σ (E f ) can be expressed

in terms of a special function called the error f unction (er f ) or Gauss error f unction, as:

Ωµ,σ (E f ) =
1
2
[1+ er f{E f −µ

σ
√

2
}] (3.81)

where σ > 0 is the standard deviation and the real parameter µ is the expected value. The er f can be

defined as a Maclaurin series:

er f (E f ) =
2√
π

∞

∑
n=0

(−1)n{E f }2n+1

n!(2n+1)
(3.82)

=
2√
π
{E f −

E f
3

3
+

E f
5

10
− E f

7

42
+

E f
9

216
− . . .}. (3.83)

Since E f is skewed to the right (positive-definite) and variances also large, we can use Log-normal

distribution. Skewed distributions are particularly common when mean values are low, variances large,

and values cannot be negative. Log-normal distributions are usually characterized in terms of the log-

transformed variable, using as parameters the expected value, or mean, of its distribution, and the stan-

dard deviation. This characterization can be advantageous as log-normal distributions are symmetrical



94 CHAPTER 3. DETECTION OF UNUSUAL VIDEO EVENTS

again at the log level [115]. The structure of log-normal distribution of the Eq. 3.81 yields:

P(E f ) =
1
2
[1+ er f{ log(E f )−µ

σ
√

2
}]. (3.84)

By means of Eq. 4.48 & 3.83, and having extensive information of the values of µ and σ (say µ = 0,

σ = 10) we can explicitly estimate the value of P(E f ) between 0 and 1.

3.6.4.2 Threshold estimation

To decide the normality or abnormality of the event on the basis of the function analysis, we examine

and note the similarities or differences of each calculated value of Entropy with a beforehand defined

entropy threshold TE , i.e., a deviant frame can be detected if & only if Entropy < TE , otherwise stan-

dard frame. Hypothetical outlook of reckoning TE is that we pay attention to the minimum number of

entropies in large videos which keep under control snobbishly standard events:

TE = min
k=1...n

{Entropy}k (3.85)

where n is the number of frames of the video database. If we have N video streams, which are the

case in sites such as airport, shopping mall, bank, play ground, subway, concert, cinema hall, school,

hospital, parking place, town center, political event, etc., then we put forward at least N thresholds. If

the video stream leaves for another, then the threshold should be regenerated.

3.6.5 Experimental Results and Discussion

To conduct experiments, we have used Escalator dataset [132] as well as the dataset of Minnesota

University namely UMN dataset [137].

Fig.3.25 demonstrates a breakdown circumstances on the escalator exit points in the presence of

large amount of people respectively. Fig.3.25 manifests aberrant situation where suddenly the wheels

of a trolley clenched on the escalator egress and in the long run as a consequence causing perilous and

inconsistent circumstances on the escalator egress. The neurotic situations were successfully detected

by the proposed algorithm.

The approach has been tested on the videos where the movements of people are random directions

(e.g., UMN dataset [137]), for instance Fig.3.26. This video consists of 657 frames with attribute

320×240 where both normal and abnormal motion exist. Abnormal motion includes a sudden situation



3.6. ENUMERATED ENTROPY APPROACH 95

Figure 3.25: Suddenly the wheels of a trolley held firmly and tightly on the escalator exit and eventu-
ally as a result causing perilous and inconsistent circumstances on the egress. The blue colored curve
indicates the output of the algorithm.
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Figure 3.26: Aberrant event (canyon like part) has been detected by the algorithm when the group of
people has started rushing along random directions. Blue colored curve points to algorithm’s output.
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when a group of people start running. From frame 1 to 550 the motion of people is normal. People

tend to run from frame number 551. More precisely, the entropy of frame 551 will be lower than that

of any other before encountered. Consequently, this frame can be considered as the ground truth frame.

In Fig.3.26 the blue colored curve is the output of the proposed approach. The canyon like region

represents the abnormal motion activities when the group of people has started to leave their places

with very quick motion. For clarity, the ground truth frame 551 and the output abnormal video frame

553, and their corresponding positions on the output curve have been indicated by arrows.

In conclusion, we can explicitly come to an end that the approach is befitting for detection diverse

kind of abnormal events. Notwithstanding, it would presume a few limitations as directed in the fol-

lowing.

• First, we have defined the function Entropy ourselves, and hence it does not reflect the exact

definition of Entropy which normally used in information theory (so called Shannon Entropy).

Explicitly, our enumerated Entropy is constructed from a single probability rather than from a

set of probabilities summing to 1. It noteworthy that in Shannon Entropy the estimation of the

maximum entropy is interesting, but the interest of our defined entropy is the estimation of the

minimum entropy.

• Second, we considered that in video surveillance scenes, camera positions, and lighting condi-

tions allow getting a large number of Harris corners that can be easily captured and tracked. Since

the mid-level features are extracted based on the result of Harris corner detection, these features

might be sensitive to textures. For example, if a person wears a grid-dresslike cloth, there will

be too many corners detected from the region of him/her so that most motion directions (e.g.,

50% or more) in this frame are the same as the movement direction of the person. Features like

direction histogram would be distorted in this situation. Further investigation would take into

account this presupposition. A potential solution of this problem could be figured out as: each

object can be characterized by a set of corners obtained with a color Harris detector. Each corner

can be distinguished by its local appearance such as a vector of local characteristics. The use of a

set of corners allows tracking the object through partial occlusion as long as one or more corners

remain visible. To increase robustness, it could be important to exploit potential geometric rela-

tionships between the corners. Finally, it would be worth investigating to include more high level

features and using suitable classifiers to eliminate the threshold computing step and evaluating

the technique with a wide range of data-set.
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3.7 Shannon Entropy Approach

3.7.1 Overview

Estimation of entropy is an important problem that arises in statistical pattern recognition, adaptive

vector quantization, image registration and indexing, and other areas. Non-parametric estimation of

Shannon entropy has been of interest to many in non-parametric statistics, pattern recognition, model

identification, image registration and other areas [3, 168, 49, 90, 74, 13, 171].

In this section, we propose another simple but effective method ([SDb]) to detect anomalies in

videos using Entropies, which are measured on the statistical treatments of the spatiotemporal informa-

tion of a set of points of interest within a region of interest by measuring their degrees of disorder/chaos

over time. It does not depend on segmentation or individual subject tracking, instead it takes the ad-

vantages of the use of entropy such as robustness against variable number of subjects in the scenes.

Normalized entropies provide the knowledge of the state of anomalousness. Experiments have been

conducted on different real video datasets. Experimental results show that Entropies among video

frames on movers over time are a reasonable way to characterize abnormalcy as they change noticeably

in case of abnormalities. Fig.3.27 outlines the framework.

3.7.2 Low-level features Extraction

3.7.2.1 Region of Interest (RoI) Estimation

Irrespective of indoor and outdoor video surveillance, RoI makes the video processing faster. Based on

applications and type of videos, RoI would extend from few parts of a video frame to the whole frame.

In case of applications, e.g., to monitor escalators, linear passages, high-way, etc., video processing

region can be fixed by using a mask instead of analyzing the whole video frame. We build a RIIM or

MM for such applications.

3.7.2.2 Modeling of Spatiotemporal Information (STI)

To analyze the scene, we treat moving interest points as the main cue instead of tracking individual
subjects. The RoI, ascertained by MM, is divided into small blocks. Once we define n points of
interest in the RoI, we track those points over the small blocks of two successive region of interest
images using optical flow technique. We take down the static and noise features. Static features are
the features which moves less than two pixels. Noise features are the isolated features which have
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Figure 3.27: The summary of the proposed framework

a big angle and distance difference with their near neighbors due to tracking calculation errors. Yet,
one broadly problem in some applications is that people near the camera are supposed to produce
ample optical flow vectors and people far from the camera cannot produce such fully sufficient flow
vectors even if they would make very quick motion (e.g., running or falling). That might be right in
many examples but it does not generalize. For example, a fronto parallel wall has the same depth
everywhere in the RoI, same for a person close to the camera. In the direction of generalization one
reasonable solution would be a vertical coordinate system in the image. Moreover, authors in [180] used
vertical coordinate to model their motion vector. We can count vertical coordinate system of each block
where a weighing coefficient ζ is calculated according to the vertical coordinate of the block. Vertical
coordinate system is an implementation stage coordinate system, it depends on several factors of the
context of application and implementation e.g., area of RoI, number of defined blocks within RoI, etc.
A weighing coefficient ζ ≤ 1 is calculated according to the vertical coordinate of the block. A block far
away from the camera has small vertical coordinate, as a result its ζ should be large. Equally, block with
large vertical coordinate gets smaller ζ . If we see with attention the applications which are related to
fronto parallel wall, then ζ is just 1. Finally, for each video frame [e.g., Fig.3.28] irrespective of normal
or abnormal events, we come into possession of a reliable and workable spatiotemporal information

(STI), i.e., a n×5 matrix which is a function of time, broadly speaking a set of vectors V of n elements
variate in time, formulated as:

V =





x1 y1 δ1 α1

. . . .

xi yi δi αi

. . . .

xn yn δn αn




(3.86)

where i ∈ n, and
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• xi 7→ x coordinate of any feature element i,

• yi 7→ y coordinate of i,

• δi 7→ some weighing factor ζi is multiplied with the displacement of i from one frame to the next,

• αi 7→ moving direction of i.

We will use displacement and vector length interchangeably. As simple trigonometric function atan

comes into notice few potential problems e.g., infinite slope, false quadrant, etc., the trigonometric

function atan2 has been used to estimate the accurate moving direction αi of the feature i. On the

whole, the function atan2 gracefully handles infinite slope and places the angle in the correct quadrant

[e.g., atan(−1
−1) = π/4 differs from atan2(−1,−1) =−3π/4, etc.].

3.7.3 Statistical Treatments of the STI

In this subsection, we will formulate Entropy, which is a measure of the disorder or randomness of

video sequence, from its two crude elements namely degree of randomness of the directions (circular

variance) and the degree of randomness of the displacements (coefficient of displacement variation).

3.7.3.1 Degree of Randomness of the Directions

Consider two cars on the high-way have changed directions with respect to their original directions, i.e.,

one from 0 ◦ to 10 ◦ and other from 0 ◦ to 340 ◦. The arithmetic means of these pairs of direction changes

are 5 ◦ and 170 ◦, respectively. The direction mean 5 ◦ seems intuitively reasonable, while the average

Figure 3.28: Optical flow: (a) monomorphically directed vector flows normal case, (b) haphazardly
directed vector flows abnormal case. The more is the disorder/chaos presents in the video frame, the
more is the Entropy; e.g., entropy of (b) is greater than that of (a).
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of 170 ◦ is clearly in error. As the arithmetic mean is ineffective for angles, it is important to find a

good method to obtain both the mean value and measure for the variance of the angles. Assume that

X-X

Y

-Y

O(0,0)

∑i∈{α1,α2} sinαi

∑
i∈
{α

1
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2
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Figure 3.29: Elementary vectors and trigonometric analysis

two interest points of a frame went somewhere in the next frame with a maneuver of unit vector lengths

A and B having angles α1 and α2, respectively. Their directional mean R can be found graphically as

shown in Fig.3.29. But the graphical solution becomes extremely inefficient when a large number of

directions to be added and also often arises the problem of precision. Yet an elementary trigonometric

analysis can solve the problem with high accuracies. If α1, . . . , αi, . . . , αn, where i ∈ n, be a set of

directions of n interest points taken from a single origin, then the tangent of R , symbolized as θR, can

be defined by:

θR =






tan−1 ∑
n
i=1 sinαi

∑
n
i=1 cosαi

i f ∑
n
i=1 sinαi > 0, ∑

n
i=1 cosαi > 0

tan−1 ∑
n
i=1 sinαi

∑
n
i=1 cosαi

+180 ◦ i f ∑
n
i=1 cosαi < 0

tan−1 ∑
n
i=1 sinαi

∑
n
i=1 cosαi

+360 ◦ i f ∑
n
i=1 sinαi < 0, ∑

n
i=1 cosαi > 0.

(3.87)

An interesting manner is that the sum of the sines of the angular deviations from each observation to the

resultant is zero, mathematically this property can be shown as: ∑
n
i=1 sin(αi− θR) = 0. The variability of a

sample of directional measurements is indicated by the length of R , which can be defined for n vectors

using Pythagorean theorem as: OR =
√

(∑n
i=1 sinαi)

2 +(∑n
i=1 cosαi)

2 which means the larger sample sizes can

have longer resultant lengths than smaller samples without having less variability. A standardized

measure of variability can solve this unacceptable property. To develop such a measure of variability
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it is necessary to account for differing sample sizes. Let αi be a set of directional measurements with

sample size n where i ∈ n, then the degree of randomness of the directions or circular variance Cv is

defined as:

Cv = 1−

√
(∑n

i=1 sinαi)
2 +(∑n

i=1 cosαi)
2

n
= 1− OR

n
. (3.88)

The OR
n ranges from 0 to 1. Its extreme values have some agreeable properties. The case OR

n = 1 implies

that all the data points are coincident, whereas OR
n = 0 does not imply uniform dispersion around the

circle. Therefore, OR
n is not necessarily a useful indicator of dispersion or spread of the data unless they

constitute a single group. The Cv provides a smooth (0,1) scale. The smaller is the value of Cv, the

more is the concentration of distribution. It is worth mentioning that 0≤ Cv ≤ 1, unlike an ordinary

linear variance; and the interpretation of OR
n = 0, the estimation of Cv = 1 does not necessarily imply

a maximally dispersed distribution.

Forthwith, we wish to pay our attention on: How differently does the circular variance behave in

normal and abnormal situations? Superposable to the observation of Fig.3.28, where directions and

displacements of interest points vary randomly in abnormal case and they are almost symmetrically

directed in normal case, we have simulated the two cases in simpler way. Fig. 3.30 depicts the fate

of 50 interest points for two cases. The directions of interest points have been simulated in between

0 ◦ and 30 ◦ with their vector lengths between 0.5 and 1 for normal case. While in abnormal case,

directions vary in between 0 ◦ and 360 ◦ with vector lengths between 0 and 1. On account of simplicity

outlier has not been taken into account. Both linear and circular measures have been estimated in

each circumstances. In the symmetrically directed directions case, there is almost no pressure on the

choice of which preferred direction, either linear or circular, is to be used because they both perform

similarly. In other words, in normal case, either linear or circular direction can be the preferred direction

painlessly. In spite of that, circular measure is preferable because of its more accurateness. The circular

variance Cv = 0.0123 illustrates that the flow vectors of the interest points are well concentrated and the

interest points are systematically directed. Emphatically, the movements of crowd in video for normal

cases are hazard free. On the other hand, there is sufficient difference between linear and circular

measures in abnormal case. Nevertheless, the linear mean goes wrong and only choice is the circular

measure. The circular variance Cv = 0.8950 exemplifies that the flow vectors of the interest points are

highly scattered around. Intuitively speaking, the movements of crowd in video for abnormal cases

are full of hazard. Heretofore, we can conclude in a gross manner that the circular variance varies

consequentially in abnormal circumstances.
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(I) Vectors flow in normal case (e.g., Fig.3.28 (a)) and some statistical measures

∑
50
i=1 sinαi = 12.5190

∑
50
i=1 cosαi = 47.7709

θR = tan−1 12.5190
47.7709 = 14.6849 ◦

OR = √
(12.519)2 +(47.7709)2 = 49.384

Cv = 1− 49.3840
50 = 0.0123

Ldm = 14.6849◦

Llm = 0.8000

(4
9.

38
40

,1
4.

68
49
◦ )

(II) Vectors flow in abnormal case (e.g., Fig.3.28 (b)) and some statistical measures

∑
50
i=1 sinαi = 4.7016

∑
50
i=1 cosαi = 2.3341

θR = tan−1 4.7016
2.3341 = 63.5980 ◦

OR = √
(4.7016)2 +(2.3341)2 = 5.2491

Cv = 1− 5.2491
50 = 0.8950

Ldm = 155.4091◦

Llm = 0.8064

(5.2491,63.5980◦)

Figure 3.30: A simple example of how the circular variances behave in normal and abnormal cases. Lin-

ear mean of directions (Ldm
) and circular resultant vector lengths (OR) are shown using heavy red line

and heavy green arrow, respectively. Unlike OR, the linear mean of vector lengths (Llm) is normalized.
There is a significant variation in Cv between normal and abnormal situations.
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(I) Cv = 0.0123, Llm = 0.8302 (II) Cv = 0.8950, Llm = 0.8554

(49.3840,14.6849◦)

(5.2491,63.5978◦)

Figure 3.31: Linear mean of vector length (Llm) varies with the length variation of interest point. Con-
versely, there is no effect on Cv, OR, and Ldm

. Comprehensibly, circular variance does not change with
vector lengths variation of interest points but does vary only their directions variation.

How does the circular variance behave, if some (or all) points will move slower or quicker than

those of previous frame without changing their directions in the next frame? Normally, vector lengths

in running case are larger than that of walking. What does happen, in real world crowd video scenes, if

some persons will stop or start running suddenly without changing their direction of movements? Based

on the context both situations would be abnormal. For example, some persons stopped running while

Marathon running or some persons started running while others walking. Do these situations concern

with the circular variance, any way? Let us take into account the vector length variation while direction

remains unchanged in both cases of Fig. 3.30. Images in Fig.3.31 (I) and (II) depict circumstances

where some interest points changed their vector lengths only. The estimated circular variances, circular

resultant vector lengths, and linear mean of directions continue the same as estimated in Fig.3.30, solely

the linear mean of vector lengths has been changed from 0.8000 to 0.8302 and from 0.8064 to 0.8554

for normal and abnormal cases, respectively. From this estimation, it is easy to show that any change

of the vector length without varying their directions, the circular variance remains unaffected. Without

any shadow of doubt, we can conclude that the circular variance does not bear any information when

some persons stopped running while Marathon running or some persons started running while others

walking, if and only if the direction of movement be the same. From this knowledge of observation, we
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can reach a conclusion that the circular variance is an extremely important factor for direction changing

case but exclusively it is not always adequate to pick up abnormality from the real world video scenes.

Henceforth, it needs its complement for detecting wide varieties of aberration.

3.7.3.2 Degree of Randomness of the Displacements

We have observed that circular variance is a necessary factor but not sufficient for detecting abnormality

from the real world videos where both systematic and unsystematic movements exist. Along with

circular variance, it is important to take into consideration the vector lengths or displacements of the

point of interests for exemplifying the abberation detection purposes.

One common query would be: How does the displacement behave in normal and abnormal cases?

To accord the answer in a good way, let us simulate six different instances of the occurrence of a straight

avenue race (e.g., Marathon) and the number of participating runners is 40. Beginning of the run all

runners were walking with some 0.30 unit displacement per frame without changing their directions

as simulated in the Fig. 3.32 (a). In real world scene, this type of event usually holds up no surprisal

and thus it is normal. At certain frame, suddenly some runners started running with some 0.33 unit

displacement per frame without changing their directions as simulated in Fig.3.32 (b). Such type of

event poses some degree of visual attention for the primates and accordingly it would be abnormal.

Afterwards, all runners were running with some 0.40 unit displacement per frame without changing

their directions as simulated in Fig. 3.32 (c). It is a usual event like 3.32 (a) as very systematic run

or walk does not sustain interesting facts. After a while, some runners grew fatigued and at certain

frame suddenly they decided to run slowly at 0.37 unit displacement per frame without changing their

directions as simulated in Fig.3.32 (d). Such type of change in the crowd has connection with some

interesting information for the primates and in this way it would be an abnormal event. At certain

frame, all runners faced a sudden panic situation (e.g., explosion, gun shot, fire) and accordingly they

were randomly scattered, i.e., they changed their directions as well as displacements as simulated in

Fig.3.32 (e). This type of variation in the crowd bears very high degree of interest for the primates

and to this extent it is necessarily an abnormal event. After the explosion, all the scattered runners

were running without changing their directions and displacements (maybe varying displacements with

respect to others but constant for each runner) over frames as simulated in Fig.3.32 (f). This event

is similar to Fig.3.32 (a) and (c) and does not endorse interesting information and consequently it is

normal.

From Fig.3.32 it is noticeable that if an event where both direction and displacement vary, then
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Figure 3.32: Simulation of six different instances of the occurrence of an avenue race (e.g., Marathon).
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there will be high possibility to become that event an abnormal. So it is important to consider care-

fully both direction and displacement simultaneously. The directional measure circular variance (Cv) is

both dimensionless and normalized. On the other hand, displacement is neither a dimensionless nor a

normalized quantity. Henceforth, we put forward a reasonable solution of these problems in a different

way by taking ratio between two statistical measures of displacements. The displacement variance to

mean ratio would be a good solution. Customarily, variance to mean ratio is a measure used to quan-

tify whether a set of observed occurrences are clustered or dispersed compared to a standard statistical

model. It provides a good measure of the degree of randomness of the displacements and may be dealt

with normalization. But the variance of a variable has different units from the variable, for example

square centimeters when the variable is in centimeters. As a result, the displacement variance to mean

ratio has unit of centimeter. Since the displacement variance to mean ratio is dimensional, the unit does

not cancel, the ratio is not scale invariant. Scale invariance is a feature of rules which do not change if

length scales are multiplied by a mutual factor. One possible good solution of the scale invariance for

this problem would be the standard deviation (the square root of variance) which is a widely used mea-

sure of the variability or dispersion. A useful property of standard deviation is that, unlike variance, it is

expressed in the same units as the data (using the mean as a measure of scale). The unit of the displace-

ment standard deviation to mean ratio is canceled out as they are measured in the same scale and is thus

a pure number. Evidently, the obtained ratio is now scale invariant. The displacement standard devia-

tion to mean ratio (coefficient of displacement variation) is not only a dimensionless quantity but also

can provide a good measure of the degree of randomness of the displacements. Having a complement

factor of circular variance for a wide variety of aberration detections, the coefficient of displacement

variation plays an important role to detect some kind of abnormal activities from real world videos.

Considering Eq. 3.86, the mean of displacements δ is delimited by dint of:

δ =
1
n

n

∑
i=1

δi (3.89)

where n is the number of optical flow vectors in the frame. With this mean it is easy to ascertain

displacement of standard deviation by means of:

δstd =

√
1

n−1

n

∑
i=1

(δi−δ )2 =

√
1

n−1

n

∑
i=1

δ 2
i −

n

n−1
δ

2
. (3.90)

The displacement standard deviation to mean ratio or degree of randomness of the displacements is
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formulated as the ratio of the standard deviation to the mean with the help of:

Dr =
δstd

δ
(3.91)

where δ > 0. Accordingly, Dr is scale invariant and normalized particularly for positive distribution

such as the exponential distribution and Poisson distribution.

3.7.4 Entropy Estimation

Up until now, it is clear that circular variance and coefficient of displacement variation are necessary

and sufficient factors to detect various aberrations in videos. How can the effective power of them get

mixed together? One possible solution would be the usage of those statistical measures as the crude

parameters of the Entropy. The more is the entropy, the more is the disorder/chaos in the system. For

instance, to have order on the high-way means to have cars follow the order of lanes, speed limits,

directions, etc. When these things get mixed in, entropy increases causing disorder/chaos on the high-

way traffic system.

Thermodynamic entropy indicates a measure of how organized or disorganized a system of atoms

or molecules is. It has an enabling factor of energy. Information (Shannon) entropy with no inherent or

integral energy factor, thus it is solely related in form and not in function. Shannon entropy, a measure

of uncertainty, is the expectation value of −ln(p), where p is the probability assigned to the measured

value of a random variable. Shannon entropy is a broad and general concept which finds applications

in information theory and thermodynamics. Shannon entropy and information uncertainty can be used

interchangeably [88]. Definition of the Shannon entropy ES is, quite usual, and is expressed in terms of

a discrete set of n probabilities pi with i ∈ n as:

ES = p(x1)log
1

p(x1)
+ p(x2)log

1
p(x2)

+ · · ·+ p(xn)log
1

p(xn)
=−

n

∑
i=1

p(xi)log p(xi) (3.92)

where ∑
n
i=1 p(xi) = 1. If p(xi) = 0 for some i, the value of the corresponding summand 0 log0 is

taken to be 0. The entropy is zero signifies there is no uncertainty and hence there is no information.

Consequently, entropy always follows the nonnegativity rule (ES ≥ 0).

To fit for the statistical measures of Cv and Dr in the Eq. 3.92, the measures have been modeled

with their respective probabilities as:

p(cv) =
Cv

Cv +Dr

(3.93)



3.7. SHANNON ENTROPY APPROACH 109

p(dr) =
Dr

Cv +Dr

. (3.94)

Then the Shannon entropy at some frame f can be formulated as:

E f = p(cv)log
1

p(cv)
+ p(dr)log

1
p(dr)

(3.95)

where p(cv)+ p(dr) = 1. The more is the E f , the more is the disorder/chaos in the video frame. Higher

value of E f means the corresponding video frame has a high possibility to become a frame of abnormal

situation. The E f = 0 means the video frame bears no information and we are no longer interested

with that. To define and usage the Shannon entropy by Eq. 3.95 is an agreeable way. Up to this

point, we would apply a threshold on the obtained E f measure to get a decision whether the frame

belongs to normal or abnormal situations. But the Shannon entropy is not normalized, i.e., Eq. 3.95

needs a little correction to have a normalized structure. For instant, consider a probability space where

exists p(x1) = 0.51, p(x2) = 0.26, and p(x3) = 0.23; then Eq. 3.92 estimates ES = 1.0317, which is

not normalized. For the sake of normalization, we may use the function 1/(1 + lnE f ) but it does not

offers a friendly change option of E f measure for the user, i.e., scaling problem. To solve the scaling

problem, we would like to take up a versatile distribution which has significant effect on its shape and

scale parameters. In this respect, we take advantage of cumulative distribution function (cd f ) of Weibull

distribution [174] which has strict lower and upper bounds between 0 and 1. Due to accurate model

quality and performance characteristics of Weibull distribution and its flexibility that makes it ideal for

analysis on a dataset with unknown distribution. It is worth mentioning that Weibull distribution can

mimic the behavior of other statistical distributions such as the normal and the exponential. Now, we

can formulate the normalized entropy of some frame f as:

[Entropy] f = 1− e−(E f /λ )ν

(3.96)

where ν > 0 is the shape parameter and λ > 0 is the scale parameter of the distribution. Using Eq. 3.96,

and knowing the values of ν , λ , and E f we can desirably estimate the normalized entropy of a frame

f , [Entropy] f between 0 and 1. As a result the Weibull distribution not only provides a fair normalized

measure for E f between its strict lower and upper bounds but also offers a friendly change option of that

measure for the user by its shape (ν) and scale (λ ) parameters. With the help of 3.96, we can fully and

clearly estimate Entropy of the simulated situations as simulated on Fig. 3.30, 3.31, and 3.32. Table

3.1 demonstrates the estimated results where user friendly parameters have been selected as ν = 2 and



110 CHAPTER 3. DETECTION OF UNUSUAL VIDEO EVENTS

λ = 0.5.

Table 3.1: Entropy estimation of the simulated situations as simulated on Fig.3.30, 3.31, and 3.32.

Different Cases Cv Dr p(cv) p(dr) E f [Entropy] f Remarks

Fig. 3.30 (I) 0.0123 0.1525 0.0748 0.9252 0.2658 0.2462 Normal

Fig. 3.30 (II) 0.8950 0.1386 0.8659 0.1341 0.3940 0.4626 Abnormal

Fig. 3.31 (I) 0.0123 0.1399 0.0809 0.9191 0.2810 0.2709 Normal

Fig. 3.31 (II) 0.8950 0.1570 0.8508 0.1492 0.4214 0.5085 Abnormal

Fig. 3.32 (a) 0.0063 3.7992×10−6 0.9994 6.0069×10−4 0.0051 1.0225×10−4 Normal

Fig. 3.32 (b) 0.0063 0.0451 0.1230 0.8770 0.3729 0.4266 Abnormal

Fig. 3.32 (c) 0.0063 2.8494×10−6 0.9995 4.5058×10−4 0.0039 6.1533×10−5 Normal

Fig. 3.32 (d) 0.0063 0.0356 0.1508 0.8492 0.4240 0.5128 Abnormal

Fig. 3.32 (e) 0.9735 0.2959 0.7669 0.2331 0.5430 0.6926 Abnormal

Fig. 3.32 (f) 0.9735 0.0351 0.9652 0.0348 0.1510 0.0871 Normal

We can apply a threshold on the obtained Entropy measures data to get a decision of normal or

abnormal event frame. But any discrete value of Entropy which exceeds a predefined threshold TE

is not a clear evidence of abnormal event frame. It may frequently fear that at least one attribute (an

outlier) may have been severely corrupted by a mistake or error (e.g., tracking calculation errors) which

would lead an erroneous decision of the normal or abnormal event frame. An outlier is a sample that

is very different from the average sample in the data set. An outlier may be an ordinary sample, but of

which at least one attribute has been severely corrupted by a mistake or error (e.g., tracking calculation

errors). An outlier may also be a bona fide sample, that simply turns out to be exceptional. To minimize

this outlier problem, a polynomial fitting would be a good solution. Runge’s phenomenon [152] shows

that lower-order polynomials are normally to be preferred instead of augmenting the degree of the

interpolation polynomial, even if some of the badness of this interpolation may be overcome by using

Chebyshev polynomials instead of equidistant points. Accordingly, we can apply some lower degree

(e.g., 5) of polynomial fitting on the obtained Entropy measures data. As a consequence a more reliable,

workable, palatable, and much less erroneous measures over the originally obtained Entropy measures

data for a decision of normal or abnormal frame can be gained.
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3.7.5 Threshold Estimation

The decision of normal or abnormal frame can be taken either static way by comparing with polynomial

fitting data with a predefined threshold TE or dynamic way by detecting considerable sudden changes

of the polynomial fitting data over time. In static way, a predefined threshold TE , calculated from

video which contains exclusively normal activities, can differentiate each frame with respect to its

estimated Entropy whether it is normal or exceptional. An abnormal frame can be detected if & only if

Entropy > TE , otherwise normal frame. The TE (also Entropy) depends on the controlled environment

(video stream Vs), specifically the remoteness of the camera to the scene, the orientation of the camera,

the type and the position of the camera, lighting system, density of the crowd, etc. In general, the more

is the remoteness between the camera and the scene, the less is the considerable amount of optical flows

and blobs. In case of escalator, TE also places trust on the escalator type and position. Looking on these

facts, we have at least one threshold for a video stream. If we have N video streams, which are the

case in sites e.g., airports, malls, banks, subways, stations, hospitals, hotels, schools, concerts, cinema

halls, parking places, sporting events, political events, town centers, etc., then we put forward at least

N thresholds. If the video stream Vs−1 (where s-1∈N ) leaves for another Vs (where s ∈N ), then the

threshold TE of Vs will be made over by means of:

[TE ]Vs
= arg max

f =1...m
[Entropy] f +arg min

f =1...m

[
1

(2π)2

∞

∑
k=0

(−1)k(Entropy)2k+1

k!(2k +1)

]

f

(3.97)

where m is the number of frames in the video Vs and second term indicates some minimum Gaussian

error, which is added for a good estimation of the threshold.

3.7.6 Experimental Results and Discussion

In this subsection, we have presented experimental results a bit detailed as compared to other ap-

proaches. To conduct experiments, we have mainly used the Escalator dataset [132] and the two

datasets as operated by [131] so called, respectively, the UMN dataset [137] and the Web Dataset

[131]. Routinely ζ limits 0.65 ≤ ζ ≤ 1 and n = 2000. Adjacent to camera region, ζ = 0.65 suits well

while ζ bears 1 at opposite end. Shape and scale parameters have been friendly selected as ν = 2 and

λ = 0.5, consecutively.
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Figure 3.33: Two sample videos from the escalator dataset: first row concerns a person falling episode
on the escalator egress; second row presents an aberrant situation caused by a wheel broken trolley.

Figure 3.34: Method has hardly effect on handling occlusion anomalies e.g., (a), (b), (c), (d), (e), (f).
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3.7.6.1 The Escalator Dataset

The complete Escalator dataset [132] consists of 29 real videos, taken in spanning days and seasons,

of frame size 640×480 pixels, collected by cameras installed in an airport to monitor especially the es-

calator exits, provided by a video surveillance company2. The videos were used to provide informative

data for the security team. Each video stream consists of normal and abnormal events. The normal

situations correspond to crowd flows without any eccentric event on the escalator elsewhere. Eccentric

events correspond to videos which contain collapsing events mostly in the escalator egresses. Generally,

in the videos we have two escalators corresponding to two-way-traffic of opposite directions. Images in

Fig.3.33, are the output of the abnormal event detector, depict two crowd scenarios of collapsing events

on the escalator exits. First row (V1 listed on the Table 3.2) depicts a scenario where two persons were

standing on the moving escalator and suddenly a trolley became unbalanced and rushed out toward

them. One person got away by running and was not run down under the force of trolley, while other

was ill-fated. Hence the non-escapee was run down by the runaway trolley, and subsequently fell down

at the exit point of the moving escalator. Second row (V2 listed on the Table 3.2) describes another

inconsistent circumstances on the exit point where a wheel from the trolley has suddenly been broken

off by the friction during its travel over the escalator. Most of the inconsistent situations were detected

by the proposed approach. The detailed evaluation of the proposed algorithm considering static method

of thresholding for the provided escalator dataset has been listed on the Table 3.2. The algorithm has

scarcely effect on the video streams 6th, 9th, 14th, 17th, 22nd, and 28th listed on the Table 3.2 as

shown their sample frames in Fig.3.34 (a), (b), (c), (d), (e), and (f), respectively. This is due to the fact

that the video sequences include abnormal events occur with occlusion. Thus the estimated Entropy

obtained from the quantity of extracted information is insufficient to draw out anomalous frames. It

is well known that occlusion handling is an arduous part of optical flow technique. The fact is that

occluded pixels violate a major assumption of optical flow that each pixel goes somewhere. On the

Table 3.2, except six videos, the first detected abnormal frame DVs
of some video Vs has been compared

with the respective ground truth GVs
and thereof root mean squared error Ψ and mean absolute error Φ

have been estimated for 23 out of 29 videos. Ground truth is the process of manually marking what an

algorithm is expected to output. The estimation of Ψ = 0 and Φ = 0 corresponds to perfect detection

or ideal case or ground truth. However, the estimated Ψ ≈ 5 and Φ ≈ 5 fall within the fitting range of

many computer vision applications along with escalators.

2Thanks to the MIAUCE project, the EU Research Programme (IST-2005-5-033715).
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Table 3.2: Performance evaluation of the method using escalator dataset. GVs
and DVs

mark ground

truth and first detected atypical frames of some video Vs, respectively. [TE ]Vs
denotes TE of Vs.

Various Video Streams (Vs)s=1...29

Measures V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11 V12 V13 V14 V15 V16 V17 V18 V19 V20 V21 V22 V23 V24 V25 V26 V27 V28 V29

DVs 309 155 24 93 16 (a) 37 92 (b) 169 95 183 256 (c) 338 29 (d) 147 139 55 123 (e) 80 63 212 49 207 (f) 119

[TE ]Vs .38 .36 .34 .41 .36 .43 .39 .40 .42 .35 .37 .44 .37 .39 .42 .38 .33 .37 .43 .35 .33 .44 .45 .42 .38 .39 .41 .45 .37

GVs 312 158 28 99 13 54 31 97 62 175 99 179 261 923 331 33 553 151 144 52 128 71 86 67 217 56 211 411 125

∆Vs 9 9 16 36 9 — 36 25 — 36 16 16 25 — 49 36 — 16 25 9 25 — 36 16 25 49 16 — 36

Mean Root Mean Squared Error (Ψ) =
√

1
29 ∑

29
s=1 ∆Vs where ∆Vs = (GVs −DVs )

2 ⇒ Ψ=
√

571
23 ≈ 5

Errors Mean Absolute Error (Φ) = 1
29 ∑

29
s=1 |GVs −DVs | ⇒ Φ = 111

23 ≈ 5

3.7.6.2 The UMN Dataset

The publicly available dataset of normal and abnormal crowd videos from University of Minnesota

[137] comprises the videos of 11 different scenarios of an escape event in 3 different indoor and outdoor

scenes. Each video (frame 320×240 pixels) consists of an initial part of normal behavior and ends with

sequences of the abnormal behavior. The qualitative results of the abnormal behavior detection for four

sample videos (we named d1, d2, d3, d4 from top to bottom) of UMN dataset have been presented in

the Fig. 3.35. In all the sample videos, abnormal motion includes a sudden situation when the group

of people start running the measured Entropy will be higher than that of any other before estimated.

Gaussian like curves present the abnormal motions when those groups of people are trying to leave their

places with atypical motions. Results report that the proposed method performs something to a greater

degree to distinguish abnormal sequences. The results are likely a bit superior to [131] in the sense that

there is no reported false positives on the proposed method. Table 3.3 provides the quantitative results

of a comparison with Mehran et al.′s [131] results for the same four sample videos.

3.7.6.3 The Web Dataset

We also conducted the experiment on the same challenging set of videos that has been used by [131] and

collected from the sites like Getty Images and ThoughtEquity (http://www.thoughtequity.com) which

contain documentary and high quality videos of crowds in different urban scenes. The dataset encom-

passes 12 sequences of normal crowd scenes such as pedestrian walking, marathon running, and 8
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Figure 3.35: Qualitative results of abnormal behaviors detection using the proposed framework for the
same four sample videos as shown in [131] from the UMN dataset.

Table 3.3: Comparison of Mehran et al.′s [131] results

Approaches d1 d2 d3 d4 Ψ Φ False Positives

Mehran et al. [131] 482 593 741 696 16 16 6

Proposed 461 576 718 671 6 6 0

Ground Truth case 466 581 724 678 0 0 0
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Figure 3.36: Qualitative results of normal behaviors detection. First and second rows concern normal
activities of pedestrian walking and marathon running, respectively.

scenes of escape panics, protesters clashing, and crowd fighting as abnormal scenes. All frames have

been resized to the 320×240 pixels.

Fig.3.36 shows the qualitative results of normal behaviors detection from two sample videos of the

Web dataset [131]. The videos concern pedestrian walking and marathon running. Fig.3.37 shows the

qualitative results of abnormal behaviors detection from three sample videos of the Web dataset [131].

The videos bear reference to crowd fighting on the street and overwhelming feeling of fear and anxiety.

Beyond the crowd aberrant activities detection, the algorithm can monitor illegal traffic activities

on the high-way, e.g., car making illegal U-turn. Fig.3.38 depicts an illegal U-turn situation which has

been picked up by the algorithm. Since the approach considers circular variance Cv (as discussed in

3.7.3.1), it is too accurate and reliable to report any angular change as compared to linear measure.

3.8 Discussion

We have adopted six approaches namely Covariance (3.2), NCRIM (3.3), Mahalanobis metric (3.4),

Bhattacharyya metric (3.5), Enumerated Entropy (3.6), and Shannon Entropy (3.7) by first performing

a global-level motion analysis within each frame’s region of interest that provides the knowledge of

crowd’s multi-modal behaviors in the form of complex spatiotemporal structures. These structures are
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Figure 3.37: Qualitative results of abnormal behaviors detection. The 1st row demonstrates crowd
fighting on the street, while the 2nd and 3rd rows touch upon escape panics.

Figure 3.38: Example video in which cars are ensuing the regular traffic flow which hints that Entropies
are normal; while a car making an illegal U-turn which infers that Entropies are higher and consequently
the illegal traffic activity has been picked up by the pointed approach.
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then employed in the detection of unusual surveillance events within crowds. The global level analysis

eliminates the need for low level change detection algorithms.

We have employed three types of region of interest namely motion heat map (MHM), spatiotempo-

ral region of interest (ST-RoI), and region of interest image map (RIIM). Basically, their functions are

the same, only difference in construction. The approaches have been tested on videos of single cam-

era data-set. To conduct experiments, we have primarily relied on the Escalator dataset [132], UMN

dataset [137], and Web dataset [131]. Ignoring their own restrictions, the average performance of the

approaches is nearly close to each other. However, the approach Shannon Entropy has been test both

simple simulated data and real data-sets and can be taken into account the most effective one.

3.8.1 Pros and Cons of Different Approaches

Since all of the approaches are based on spatiotemporal information, hence there are some unique global

pros and cons reflect on them. The main noticeable excellences and disadvantages are listed below.

Advantages: The main benefits of the proposed frameworks are stated as:

• They do not expect low level change detection algorithms

• They are simple and easy to understand and implement

• They do not need explicit learning process and training data

• They work all directional flow of movers without imposing a condition of their numbers in videos

• They reduce processing time by considering a region of interest

Disadvantages: There are three main disadvantages widely be seen on the proposed approaches as:

• They expect a predefined threshold, which maybe either static or dynamic, to make a decision.

• They are based on optical flow concept, where occlusion handling is not considered and hence

the approaches do not pay any hint on occlusion handling.

• They detect abberations but do not localize where the abnormalities on the video frames are.
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3.8.2 Comparison with Internal Issues of Different Approaches

In this subsection, we have shown a comparison which is based on various internal issues of the dif-

ferent approaches, as listed on the Table 3.4. The developed algorithms accommodate some of the

challenges encountered in videos of crowded environments to a certain degree, while challenge like

occlusion does not concern at all. In the following, we have explained briefly how the developed al-

gorithms accommodate some of the challenges encountered in videos of crowded environments to a

certain degree.

3.8.2.1 Depiction of abnormality

Interactions between people are indiscernible in crowded scenarios, and as a result, individual centric

representation of abnormal events in crowds is very unlike. Furthermore, an abnormal event or situation

in a high density crowded scene often spreads very abruptly, which makes it even more challenging to

develop a general appreciation of the abnormal situation by gleaning information from an individual’s

behavior. Some existing works like Mehran et al. [131] localized the abberation on the video frames,

yet their final output is globally marked each frame either normal or abnormal. We have considered a

frame based evaluation of abnormal event without locating its real position on the frame. Having the

knowledge of threshold from the context of normal videos, if a frame exceeds the required threshold

level, then it is encountered as an abnormal frame. This helps to minimize the depiction of abnormality

in certain degree. For example, people running in Marathon is normal, if we have a standard threshold

of running level, then that could be apply to detect people walking level and vice versa.

3.8.2.2 Threshold estimation

In our approaches, the decision of normal or abnormal frame has been taken into account in the static

way. A predefined threshold has differentiated each frame with respect to its estimated distance value.

The theoretical aspect of estimating such threshold is that we have considered the maximum number of

estimated distance value in large videos those contain exclusively normal events and then added with it

some minimum Gaussian error, which helps to make a better estimation of the threshold. This threshold

technique minimizes some small degree of the threshold estimation challenges. Vast majority of the

problem remains yet. For example, such threshold heavily depends on the controlled environments

(video streams), which are the case in sites such as airport, mall, bank, play ground, subway, concert,

school, hospital, parking place, town center, political event, etc. If the environment changes, then the



120 CHAPTER 3. DETECTION OF UNUSUAL VIDEO EVENTS

Table 3.4: Comparison of different approaches: symbols +© and -© denote Yes and No , respectively.

Different Different Approaches

Internal Issues Cov. 3.2 NCRIMA 3.3 Mahal. 3.4 Bhatta. 3.5 E.Entropy 3.6 S.Entropy 3.7

Region of interest used? +© +© +© +© +© +©

Serious effect on NaN? +© +© +© +© -© -©

Outlier effect concerned? -© -© +© +© -© -©

Handling occlusion scenarios? -© -© -© -© -© -©

Singularity problem concerned? +© +© +© -© -© -©

Static threshold concerned? +© +© +© +© +© +©

Classification explicitly used? -© -© +© +© -© -©

Matrix explicitly used? +© +© +© +© -© -©

Matrix inversion involved? +© +© +© +© -© -©

Eigenvalues explicitly reckoned? +© +© -© -© -© -©

Eigenvectors explicitly reckoned? -© -© -© -© -© -©

Direction explicitly used? +© +© +© +© +© +©

Velocity/Displacement directly used? +© -© +© -© +© +©

Mean/Variance explicitly used? +© -© +© +© +© +©

Circular variance considered? -© -© -© -© -© +©

Segmentation explicitly used? -© +© -© +© -© -©

Shadow/lighting effect minimized? -© +© -© +© -© -©

Histogram concept considered? -© -© -© -© +© -©

For direction atan2() used? +© +© +© +© +© +©

Raw data normalization used? -© -© +© -© -© -©

Vertical coordinate used? -© -© +© -© +© +©

Foreground estimation estimated? -© +© -© +© -© -©

Rank of matrix directly counted? -© +© -© -© -© -©

Interest points clustering concerned? -© -© -© +© -© -©

Metric classification employed? -© -© +© -© -© -©

Final distance innerly normalized? -© +© -© -© +© +©

Color silhouetted region considered? -© +© -© -© -© -©

Frame-based abnormality concerned? +© +© +© +© +© +©
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threshold should be regenerated. Along with probabilistic model, a dynamically estimated threshold,

which would be estimated by detecting significant sudden change of the estimated distance values over

frame, would perform a bit more. Future directions would include this improvement.

3.8.2.3 Handling of occlusion

The phenomenon of occlusion is very frequent in crowd videos due to high density of distracting targets

in the scene. Sometimes physical features of the scene and camera motion may cause occlusion, result-

ing in the loss of visibility of the tracked target. Optical flow can be reliably estimated between areas

visible in two images, but not in occlusion areas, which disappear in the other images. The basic idea of

optical flow computation is maintaining the brightness constancy assumption, which relates the image

gradient. Occlusion handling is a major problem in optical flow techniques. There are two kinds of

occlusion may happen in optical flow estimation, in general. One is from motion occlusion, e.g., occlu-

sion generates due to object motion and the occluded areas from two frames which are not overlapped

at the same location. The second one is from mismatching e.g., the occluded regions from different

images are overlapped at the same position. The mismatching may happen under different conditions,

such as object appearing/disappearing, shadow, color change, or large object deformation (shrinking or

expanding), etc. However, occlusion handling is difficult as occluded pixels violate a major assumption

of optical flow that each pixel goes somewhere. In theory, the pixels at the occlusion area should not be

assigned any flow vector since there is no correspondence available in the other frame. Since our pro-

posed approaches are based on optical flow techniques, no flow vector can be obtained from occlusion

areas and as a result the problem of occlusion still remains.

3.8.2.4 Few pixels on targets

Harris corner detector estimates image feature points of interest and optical flow techniques track those

points over frames. However, the computed features such as interest points may become noisy and

unreliable. To overcome this shortcoming, we have contended that in a scene of a high density crowd,

detection of individual objects cannot be necessary, and consequently, modeling the crowds at a global

level is more practical. The proposed approaches expect a region of interest, which improves the quality

of the results and reduces processing time. To get comprehensible information of optical flow from each

frame, the region of interest of each frame is separated into small blocks. This helps to minimize the

few pixels on target problem a bit more.
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3.8.2.5 Effect of Lights and Shadows

In outdoor installations illumination varies significantly such as extremely strong lighting condition

(e.g., sunlight) which causes shadows of respective objects. This shadow, causes sturdy noise, serves

as an inherent structure of the object which is almost impossible to isolate in reality and this effect

does not concern in our approaches. On the other hand, in many indoor installations there may not be

significant illumination variation but sometimes some light reflection can appear in the scene. Some of

our proposed algorithms (e.g., NCRIMA 3.3 and Bhatta. 3.5) minimize this effect.

3.8.3 Comparison with some State-of-the-art and Proposed Approaches

Our proposed algorithms have several important differences from the most related and recent and also

frequently cited body of works, e.g., Andrade et al. [7, 8], Ali et al. [5], Mehran et al. [131], etc. A brief

overview of some important issues of these research works along with one of our approaches (Shannon

Entropy 3.7) have been listed on the Table 3.5.

Most of these methods require a learning period to estimate various parameters of the system, and

hence reliable learning of unknown parameters is not always accurately possible which could potentially

increase the rate of false alarms. For instance, Mehran et al. [131] have introduced a method to detect

and localize abnormal behaviors in crowd videos using social force model. They have presented that

their estimated social force model is capable of detecting the governing dynamics of the abnormal

behavior, even in the scenes that it is not trained. But the false positive detections in their model are

result of incorrect estimation of social forces. This is a severe shortcoming of their approach. In a

contrary manner, there is no explicit learning period in our approaches, consequently, the false alarm

rates are significantly low as compared to [131] (e.g., see Table 3.3).

For crowd segmentation, the method of Ali et al. [5] has been taken into account the goal-directed

nature of human crowds, where the members of the crowds have clear knowledge of what and where

their goals rest, e.g., extremely large number of people at sporting events, religious festivals, etc. This

goal-directed nature has been implemented on to the crowd segmentation framework, where segments

are distinguished from each other on the basis of the fate of the particles belong to that segment. The

particles with similar fate have similar goals, and, thus, characterize a distinct group of the crowd in

a given scene. Results showed some satisfactory results for extremely high crowded scenes but high

or medium or low crowded scenes such segmentation would be gone in vain. However, in such case,

approaches like Mehran et al. [131], Andrade et al. [7, 8], as well as our framework would show good
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performance.

Like our approaches, in the work of Andrade et al. [7, 8] crowd behavior has been characterized

at a global level by using the optical flow of the video sequence. Unlike our approaches, during the

learning stage, a reduced order representation of the optical flow was generated by performing PCA on

the flow vectors. Afterwards, top few eigenvectors were used as the representative features and spectral

clustering was performed to identify the number of distinct motion patterns present in the video. The

features in the clustered motion segments were used to train different HMMs which were then used for

event detection in crowds. The method was only tested by data obtained from simulation. A general

limitation of simulation is that models are typically unstructured and must be developed for problems

that are also unstructured. It is often impractical to realistically validate simulation results all of the

above. Besides, model building for simulation is often costly and time-consuming.

Table 3.5: Comparison of our best method with some state-of-the-art approaches in the direction of ab-

normality detection from crowded scenes: symbols +©, -©, and © denote Yes, No, and Unknown, respectively.

Different Different Approaches

Issues Andrade et al. [7, 8] Ali et al. [5] Mehran et al. [131] Our approach (e.g., 3.7)

Detected anomaly? +© +© +© +©

Training data used? +© +© +© -©

Learning process used? +© +© +© -©

Region of interest used? -© -© -© +©

Low rate of false alarm? © © -© +©

Fixed camera employed? © +© +© +©

Tested with real data-set? -© +© +© +©

Tested with simulated data? +© -© -© +©

Multi-camera data-set used? © -© -© -©

Localized where anomaly was? -© +© +© -©

Occlusion handling concerned? -© -© -© -©

Automatic threshold concerned? -© -© -© -©

Single target tracking concerned? -© -© -© -©

Usually affected with number of movers? -© -© -© -©

Fitted for extremely high crowded scenes? © +© © ©

Fitted for low/medium/high crowded scenes? +© © +© +©
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4.1 Overview

Event detection in video surveillance is an important task for the places of both private and public. As

huge amount of video surveillance data makes it an exhausting work for people to keep watching and

finding anomalous events, an automatic surveillance system is strongly needed for detecting suspicious

events. A video event is defined to be an observable action or change of state in a video stream that

would be important for the security management.

In this chapter we (in [SD09b]) have presented a system that generates automatically pseudo Eu-

clidian distance (PED) from the trigonometrically treatment of motion history blob (MHB) obtained

from motion history images (MHI) to extract efficient image features, which are pertinent to video event

detection (VED). Given a point with its direction of motion where the point coincides the center of a

circle. How far the point can virtually travel inside the circle with that direction? That virtual dis-

tance is called pseudo Euclidian distance. PED, would be potentially used in wide variety of computer

vision applications, remains a great contribution of the Thesis. To show the interest of the usage of

PED, we have proposed a PED based methodology for VED and the detection results of some events

at TRECVID2008[43] in real videos have been demonstrated. Since the surveillance video for events

detection is captured from an airport, it is unconstrained and has the characteristics, e.g., highly clutter,

massive population flow, heavy occlusion, reflection, shadow, fluctuation, varying target sizes, some-

times low video quality, etc. In spite of these difficulties, we have striven to extract efficient image

features that are pertinent to events of interest. As different individuals may have dramatically different

appearances, the most relevant image features of events are motion patterns (e.g., direction and position

of the motion history blob, etc.). Moreover, all the videos are taken from surveillance cameras which

means the position of the cameras is fixed and cannot be changed. As a result, all the motion informa-

tion extracted from the surveillance videos can be caused only by the activation of people in the videos.

No motion implies no activity on the video frames.

4.2 Related Works

Events may vary greatly in duration, from two frames to longer duration events that can exceed the

bounds of the excerpt. In crowded environments e.g., airports, malls, etc., objects merge and occlude

each other very frequently, as a result conventional background subtraction methods do not work as

appointively. Many single frame detection algorithms based on transfer cascades [170, 114] or recogni-
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tion [41, 157, 20] have demonstrated some high degree of promise for pedestrian detection in real world

busy scenes with occlusion. To detect pedestrian histogram of gradients was used in [41], while authors

in [157, 20] used biological inspired model for recognizing different classes including pedestrian. How-

ever, most of those pedestrian detection algorithms are significantly slow for real time applications. For

example, authors in [184] noted that the state-of-the-art algorithms for pedestrian detection e.g., [41]

takes around 0.5 seconds for recognition of 128× 64 size image frame, [157] takes 2 seconds/frame,

and [20] takes about 80 seconds/frame. A target detection and tracking algorithm based on the measure-

ments of a stereo audio and cycloptic vision sensor has been presented in [192]. To detect events in the

TRECVID’08 many algorithms have been proposed, e.g., based on: change detection [188], analysis of

trajectory [109], trajectory and domain knowledge [55], spatio-temporal video cubes [53], Haar based

pedestrian detection and histogram matching [184], optical flow concepts [61, 97, 58], etc. In the work

of [109] people meeting (PeopleMeet) event was detected mainly by analyzing pedestrian trajectories.

They detected and tracked people in the scene by using the method described in [81]. To get reliable

pedestrian trajectories for people meeting event detection job, they suggested a detection-based hier-

archical association method which was capable of robustly tracking multiple pedestrians under such

challenging conditions. Their method produced pedestrian trajectories by the help of progressively as-

sociating detection responses given by the pedestrian detector as introduced by [176]. A combination of

trajectory and domain knowledge based subsystems can be found in [55]. The trajectory-based subsys-

tem implements human detection and tracking to generate trajectory and three-level trajectory features

are used to detect PersonRuns, PeopleMeet, PeopleSpiltUp, and Embrace. The domain knowledge-

based subsystem constructs specific models for PeopleMeet, Opposingflow, and ElevatorNoEntry de-

pending on domain knowledge. Nevertheless, vast diversity of one event viewed from different view

angles, different scales, different degrees of partial occlusion, etc., make challenge for performance of

the event detectors; hence it is necessary to greatly improve their effectiveness by further investigation.

We have proposed a methodology based on pseudo Euclidian distance, PED, for video event de-

tection (VED). To extract image features, optical flow estimation would be a superior grade for the

crowd scene but it is too sensitive to the small noise because of the broadness of the camera view. If

there are many people in the videos, the existence of small motion noise will be extremely negative and

unreliable. Therefore, estimating the movement of objects by optical flow is difficult. Deeming this

fact we rest with confidence on motion history images (MHI), motion history blob (MHB), and trigono-

metric treatments of MHB which generate PED to extract efficient image features which are pertinent

to event of interests. The MHI is a representation of the history of pixel-wise changes, yet remains a
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computationally inexpensive method for analysis of object motions and effectively only previous frame

needs to be stored. We segment the MHI to grasp the essential sequence of motion components, object

of interest (OoI) or MHB, which are then tracked by using PED. Generation and usage of PED are the

unique contribution of our current investigation. There are several state-of-the-art algorithms for track-

ing OoI, e.g., particle filtering [11], hybrid strategy [31], etc. Since occlusions happen frequently in

limited camera scope, particle filtering may archive a commendable performance. But particle filtering

is a time-consuming process, especially when the object tracked is large. It is difficult to complete the

test on evaluation data within the limited time. Henceforth, we have taken up PED for MHB tracking

with the target for different kinds of VED.

4.3 Calculation of Pseudo Euclidian Distance (PED)

4.3.1 Extraction of Motion History Blobs (MHB)

The strength of the motion history images (MHI) is that although it is a representation of the history

of pixel-wise changes, only previous frame needs to be stored. It is easy to implement and adds little

computational cost to the real-time system. In a motion history image, Hτ(x,y, t), pixel intensity is a

function of the temporal history of position or motion at that point. The previous method of MHI as

described in [46] was based on frames rather than time. Currently, a simple replacement and duration

operator based on time-stamping is used [22]:

Hτ(x,y, t) =

{
τ i f ψ(x,y, t) = 1

max(0,Hτ(x,y, t−1)−δ ) otherwise
(4.1)

where x, y, and t demonstrate the position and time; τ is the current time-stamp; δ is the maximum time

duration constant (e.g., few seconds) associated with the template; ψ(x,y, t) = 1 signals object presence

or motion in the current video image. The ψ(x,y, t) can be computed from background subtraction,

frame differencing, optical flow, edges, stereo-depth silhouettes, flesh-colored regions, etc.

The use of time-stamps allows for a more consistent port of the system between platforms where

speeds may differ. System time is consistent during processing where frame rate is not. Thus time is

explicitly encoded in the motion template. The Eq. 4.1 indicates that the MHI pixels where motion

occurs are set to the current time-tamp τ , while the pixels where motion happened far ago are cleared.

The above update function is called each time a new image is received and the corresponding silhouette



128 CHAPTER 4. DETECTION OF USUAL VIDEO EVENTS

image is formed. The result of the function is a scalar-valued image where more recently moving pixels

are brighter; only we wish to deal with those brighter part (region of motion component) which we

called motion history blob (MHB) or silhouetted region of motion component (SRMC). We get absolute

Figure 4.1: (a): camera view; (b): blue regions are the current silhouettes (motions mask) or motion

history blobs (MHBs); (c): view after suppression of the little MHBs from (b), and red arrows point
towards global motion orientations of the rest motion components.

difference between two frames and threshold it and using the thresholded frame update function of Eq.

4.1 to get MHB:

ψ(x,y, t) =

{
1 i f D(x,y, t)≥ η

0 else
(4.2)

where η be a threshold and signal D(x,y, t) with difference distance δ can be estimated by dint of:

D(x,y, t) = |I(x,y, t)− I(x,y, t±δ )| (4.3)

where I(x,y, t) is the intensity value of pixel location with coordinate (x,y) at the tth frame of the video.

Since the motion history image encodes in a single image the temporal nature for the motions over

some time interval, the motion segmentation should be easier than in methods those attempt to segment

and propagate motion between frames. Fig. 4.1 (a) and (b) depict a snapshot of original image and the

current silhouette motion or MHB respectively. To get sequence of motion components, it is important

to segment motion regions which were produced by the movement of parts or the whole of the object

of interest. On getting sequence of silhouetted motion component (MHB or SRMC), we calculate

number of points within each component so that it will be easy to check out the case of little motion,

which will be neglected under an experienced threshold Th (say 50-point). On filtering, we estimate the
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center of each remaining motion component (motion history blob) by applying Hu’s moments [80]. A

circle with fix radius is drawn coincident with each center of motion history blob as marked by a green

colored circle in Fig. 4.1 (c). The centroid and global motion orientation Φ of each motion component

(marked red arrow in Fig.4.1 (c)) have been estimated in the following subsections. Finally, each region

of motion component or motion history blob has an explicit center (e.g., P(x0,y0) in Fig.4.2) and a

global motion of orientation Φ. After the trigonometrical treatments of the circle of the each motion

history blob, the position and angle information (P(x0,y0), Φ) will be used to generate pseudo Euclidian

distances (PED). In our current investigation PED will be measured in terms of pixels length which will

play the vital role for tracking the region of motion components (MHB) in video frames.

4.3.2 Estimation of the Centroid of Motion History Blob

Centroid is the term given to the center of a region, area, etc. Moments give us an indication of the

center, spread, skewness etc. of what we are measuring (e.g., pixel values and locations). Image

moments are useful to describe objects after segmentation. As we are dealing with image regions,

we need to work with two dimensional moments. The use of moments for image analysis and object

representation was introduced in 1962 by Hu [80]. Moments can give us a highly compressed indication

of the shape of the object being measured in our image.

The two-dimensional moment mpq of order p + q of a density distribution function ρ(x,y) (e.g.,

image intensity) are defined in terms of Riemann integrals as:

mpq =
∫ ∞

−∞

∫ ∞

−∞
xpyqρ(x,y)dxdy. (4.4)

The two-dimensional moment for a discretized image ρ(x,y) is given by:

mpq =
∞

∑
−∞

∞

∑
−∞

xpyqρ(x,y). (4.5)

A complete moment set of order n consists of all moments mpq, such that p + q ≤ n. Hu’s uniqueness

theorem states that if ρ(x,y) is piecewise continuous and has nonzero values only in a finite region, then

the moments of all orders exist. Moreover, the theorem proves that the moment set {mpq} is uniquely

determined by ρ(x,y) and oppositely, ρ(x,y) is uniquely determined by {mpq}. Since an image segment

(e.g., MHB) has a finite area and, in the worst case, is piece-wise continuous, moments of all orders

exist, and a moment set can be computed that will uniquely describe the information contained in



130 CHAPTER 4. DETECTION OF USUAL VIDEO EVENTS

the image segment. To characterize all of the information contained in an image segment requires a

potentially infinite number of moments. The challenge is to select a meaningful subset of moments that

contain sufficient information to accurately characterize the image. The definition of the zero-th order

moment m00 of the image ρ(x,y) is

m00 =
∞

∑
−∞

∞

∑
−∞

ρ(x,y). (4.6)

This moment represents the total mass of the given image. When computed for a silhouette image, the

zero-th moment represents the total object area. The two first order moments {m10,m01} are used to

locate the center of mass (centroid) of the object. The centroid defines a unique location with respect

to the object that may be used a reference point to describe the position of the object within the field of

view. The coordinates of the centroid can be defined through moments as shown:

x̂ =
m10

m00
(4.7)

ŷ =
m01

m00
. (4.8)

Using Eq. 4.7 and 4.8, the central moments µpq are defined as:

µpq =
∫ ∞

−∞

∫ ∞

−∞
(x− x̂)p(y− ŷ)qρ(x,y)d(x− x̂)d(y− ŷ). (4.9)

Using Eq. 4.5 yields:

µpq =
∞

∑
−∞

∞

∑
−∞

(x− x̂)p(y− ŷ)qρ(x,y). (4.10)

It is well-known that under the translation of coordinates, the central moments do not change, and are

therefore invariants under translation. It is quite easy to express the central moments µpq in terms of the

ordinary moments mpq. For the first four orders, we have:

µ00 = m00 (4.11)

µ10 = 0 (4.12)

µ01 = 0 (4.13)

µ20 = m20−m00x̂2 (4.14)
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µ11 = m11−m00x̂ŷ (4.15)

µ02 = m02−m00ŷ2 (4.16)

µ30 = m30−3m20x̂+2m00x̂3 (4.17)

µ21 = m21−3m20ŷ−2m11x̂+2m00x̂2ŷ (4.18)

µ12 = m12−m02ŷ−2m11ŷ+2m00x̂ŷ2 (4.19)

µ03 = m03−3m02ŷ+2m00ŷ3 (4.20)

To achieve invariance with respect to orientation and scale, we normalize central moments as follows:

ηpq =
µpq

µ
[(p+q)/2]+1
00

(4.21)

where (p+q)≥ 2. For arbitrary shapes, a potentially infinite number of moments {ηpq} can uniquely
describe that shape. These image moments are invariant with respect to translation and scale operations,
but an infinite number of moments are obviously impractical, and in any case, we want a compressed
representation of shape. Since objects in video images contain a large amount of noise, only moments
up to the third order are generally practicable. There are ten moments up to the third order, but scale
normalization and translation invariance fix three of these moments at constant values. Rotation invari-
ance takes away one more degree of freedom leaving us with six independent dimensions. Hu uses
seven variables however: six to span the six degrees of freedom, and a final seventh variable who’s sign
removes reflection invariance. Only the first six of the Hu variables below give reflection invariance.
The seven moment-based features proposed by Hu that are functions of normalized moments up to the
third order are:

ψ1 = η20 +η02 (4.22)

ψ2 = (η20−η02)
2 +4η2

11 (4.23)

ψ3 = (η30−3η12)
2 +(3η21−η03)

2 (4.24)

ψ4 = (η30 +η12)
2 +(η21 +η03)

2 (4.25)

ψ5 = (η30−3η12)(η30 +η12)
2[(η03 +η12)

2−3(η21 +η03)
2]+ (3η21 +η03)(η21 +η03)[3(η30 +η12)

2− (η21 +η03)
2]

(4.26)

ψ6 = (η20 +η02)[(η30 +η12)
2− (η21 +η03)

2]+4η11(η30 +η12)(η21 +η03) (4.27)

ψ7 = (3η21 +η03)(η30 +η12)[(η30 +η12)
2−3(η21 +η03)

2]− (η30−3η12)(η21 +η03)[3(η30 +η12)
2− (η21 +η03)

2]

(4.28)

Equations ψ1 and ψ2 provide scale and translation independence, ψ3 to ψ6 ensure rotation with reflection
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invariance, and ψ7 provides reflection discrimination in it’s sign.

4.3.3 Global Motion Orientation Φ Estimation

We calculate global motion orientation Φ of each remaining component or motion history blob as used

in [45]:

Φ = 2π−Φre f −
∑x,y angDi f f (Φcon(x,y),Φre f )×N(τ,δ ,Hτ(x,y, t))

∑x,y N(τ,δ ,Hτ(x,y, t))
(4.29)

where 2π accommodates the adjustment for images with top-left origin; Φre f be the base reference

angle (peaked value in the histogram of orientations); N(τ,δ ,Hτ(x,y, t)) be a normalized motion history

image value (linearly normalizing the motion history image from 0-1 using the current time-stamp τ

and duration δ ); angDi f f (Φcon(x,y),Φre f ) be the minimum signed angular difference of an orientation

from reference angle; and Φcon(x,y) be the motion orientation map found from gradient convolutions.

For the convolution, the Sobel gradient masks can be used as:

Fx =





−1 0 1

−2 0 2

−1 0 1



 (4.30)

Fy =





1 2 1

0 0 0

−1 −2 −1



 . (4.31)

With the gradient images Fx(x,y) and Fy(x,y) calculated from the motion history image, it is a easy

matter to obtain the gradient (motion) orientation for a pixel by:

Φcon(x,y) = tan−1 Fy(x,y)

Fx(x,y)
. (4.32)

Care should be taken, when calculating the gradient information as it is only valid at particular locations

within the MHI. The surrounding boundary of the MHI layering should not be used because non-

silhouette (zero valued) pixels would be included in the gradient calculation, thus corrupting the result.

Only MHI interior silhouette pixels should be examined. Additionally, we should not use gradients

of MHI pixels that have a contrast which is too low (inside a silhouette) or too high (large temporal

disparity) in their local neighborhood [45].
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4.3.4 Pseudo Euclidian Distance
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[x−x0]

[y−y0]
Φ

Figure 4.2: Global motion orientation Φ of a motion history blob inside of an ellipse. Circle is an
exceptional ellipse in which the two foci are coincident at the center of the ellipse.

We take into account four motion directions, based on its previous motion directions, namely for-

ward (+), backward (-), upward (around +π/2), and downward (around -π/2) as shown in Fig.4.2,

which illustrates a situation where the center of a motion history blob P(x0,y0) (center of circle/ellipse)

moves in forward direction with respect to its previous motion direction, e.g., from point P(x0,y0) tends

to R(x,y), i.e.,
−→
PR =

−→
PQ +

−→
QR, and having this fact it is evident that:

Φ = tan−1 y− y0

x− x0
⇒ y = y0 +(x− x0)tanΦ. (4.33)

Although we are dealing with only circle, the global motion orientation Φ has been shown inside of an

ellipse for better presentation as a circle is a special case of an ellipse. An ellipse is defined as the locus

of points equidistant to two fixed points called the foci. Deeming that the ellipse is centered at (0,0) and

foci are located at (±c,0) then the standard equation of it can be formulated by dint of:

x2

a2 +
y2

a2− c2 = 1 (4.34)
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where a and
√

a2− c2 are the semi-major and semi-minor axes respectively. The foci always lie on the

semi-major axis, spaced equally each side of the center of the ellipse. If the lengths of semi-major axis

a and semi-minor axis
√

a2− c2 are identical, i.e., c = 0, then both foci are coincident at the center

of ellipse, explicitly, the ellipse Eq. 4.34 comes into existence an equation of a circle, x2 + y2 = a2,

where a is renamed as the radius of the circle. The area enclosed by the circle is π multiplied by the

radius squared a2. Since we are considering unit area, i.e., πa2 = 1, the Eq. 4.34 can be rewritten as:

x2 +y2 = 1
π . Substituting y from Eq. 4.33 into this new circle equation, the following quadratic equation

yields:

(1+ tan2Φ)x2 +2tanΦ(y0− x0tanΦ)x+(y0− x0tanΦ)2− 1
π

= 0. (4.35)

On solving Eq. 4.35, we get two solutions or roots, say x+ and x−, formulated as:

x+ =
−tanΦ(y0− x0tanΦ)+

√
(tanΦ(y0− x0tanΦ))2− (1+ tan2Φ)((y0− x0tanΦ)2− 1

π )

1+ tan2Φ
(4.36)

x− =
−tanΦ(y0− x0tanΦ)−

√
(tanΦ(y0− x0tanΦ))2− (1+ tan2Φ)((y0− x0tanΦ)2− 1

π )

1+ tan2Φ
(4.37)

and their corresponding y components y+ and y− are as follows:

y+ = y0 +(x+− x0)tanΦ (4.38)

y− = y0 +(x−− x0)tanΦ. (4.39)

There are three variables namely x0, y0, Φ in Eq. 4.36− 4.39 of which Φ can be easily calculated using

Eq. 4.29. However, x0, y0 are merely the positions of the moving component which can be obtained

from their x and y coordinates respectively. Since we are using unit scale, there will be a severe error if

we want to use their corresponding coordinates directly. Normalization can uniquely solve that problem.

Assuming that the frame size is fx× fy (e.g., 640×480, etc.) pixels, then to obtain workable values of

x0 and y0 normalization can be performed as:

Nxy =

x
fx

+ y
fy

2
(4.40)

x0 =
2Nxy−1√

π
(4.41)
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y0 =

√
1
π
− x2

0 (1−2Nxy) (4.42)

where Nxy be a pseudo number, between 0 and 1, generated by using the x and y coordinates of any point

on the frame. Take into consideration the position (x0,y0) and those two points (x+,y+) and (x−,y−), it

is easy to compute their respective pseudo Euclidean distance (PED), signified λ+ and λ−, by dint of:

λ+ =
√

(x0− x+)2 +(y0− y+)2 (4.43)

λ− =
√

(x0− x−)2 +(y0− y−)2. (4.44)

Let us give a simple example of PED calculation. Fig. 4.3 depicts the PED calculation where in

video frames the center of motion history blob of a person has been moved from position (150,100) to

(640,100) with global motion direction diversifications roundabout 15 ◦ and an invariant velocity of 10

pixels per frame.

Once we get PED, many routines can be employed to use the raw information for analysis or recog-

nition. For instance, it is possible to detect video events using PED on employing some routines, as

stated in the following subsections. We are confident that the future detailed investigation results of

PED would work somewhat in parallel to the assumption and prediction algorithms e.g., local and/or

global optical flow techniques, Kalman filter, particle filters, etc.

4.4 Video Events Detection (VED)

We wish to use PED for VED. For this aim, we need the explicit information of motion history blobs that

can be gained by tracking objects of interest and thereof can get more information which will be used

for specific VED, e.g., PersonRuns, ObjectPut, OpposingFlow, PeopleMeet, Embrace, PeopleSplitUp.

4.4.1 Motion History Blobs (MHB) Tracking

Assuming that the radius a is unit and consists of S number of pixels. PED in Eq. 4.44 can be expressed

in term of pixels length λ+
pixel & λ−pixel respectively:

λ+
pixel = Number o f pixels to pass on λ+ = ⌈S∗λ+⌉ (4.45)

λ−pixel = Number o f pixels to pass on λ− = ⌈S∗λ−⌉ (4.46)
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Figure 4.3: A simple example of PED calculation concerning the movement of the center of circle of the
Motion History Blob of a person from (150,100) to (640,100) with global motion orientation variations
about 15 ◦ and a constant velocity of 10 pixels per frame. λ− exhibits concave up or convex cup; λ+

substantiates concave down or convex cap.
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which use as the judgement index for tracking MHB in the following algorithm.

Algorithm [M: total number of circles in any frame f , N: total number of circles in frame f +1, m:

circle counter in frame f , n: circle counter in frame f +1]

1. begin

2. if N = 0 then exit

3. initialization: m = 1, n = 1

4. if m ≤M

4.1 then

4.1.1 if n ≤ N

(i) Calculate Euclidean distance d(Cm
f ,Cn

f +1) between two centers of circle Cm
f & Cn

f +1 in f & f +1

and store it

(ii) Increase n by 1

(iii) Repeat step 4.1.1

4.2 else

4.2.1 Select the minimum distance dmin, caused by two centers minCm
f & minCn

f +1 with angles Φ f & Φ f +1

respectively, and estimate its normalized pixel value Tpixel

dmin = d(minCm
f ,minCn

f +1) = arg min
k=1...N

[
d(Cm

f ,Cn
f +1)

]
k

(4.47)

Tpixel =

⌈
S∗ 1

2

[
1+

2√
π

∞

∑
k=0

(−1)k{dmin}2k+1

k!(2k +1)

]⌉
(4.48)

4.2.2 Select λ+
pixel f

or λ−pixel f
with respect to previous direction of movement, if same then use λ+

pixel f
,

otherwise use λ−pixel f
, and save current motion direction

4.2.3 The area of circle with radius (λ+
pixel f

+ Tpixel) (leading edge of the convex cap) or (λ+
pixel f +1

+

Tpixel) (falling edge of the convex cap) will be greater than or equal to than that of caused by (λ+
pixel f +1

−
Tpixel) or (λ+

pixel f
−Tpixel), explicitly:

π(λ+
pixel f

+Tpixel)
2 ≥ π(λ+

pixel f +1
−Tpixel)

2 or π(λ+
pixel f +1

+Tpixel)
2 ≥ π(λ+

pixel f
−Tpixel)

2.

If there exists : Tpixel ≥
⌈∣∣∣∣∣

λ+
pixel f +1

−λ+
pixel f

2

∣∣∣∣∣

⌉
& Tpixel ≥ 2 (4.49)
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4.2.3.1 then [in 4.2.3 the λ−pixel f
has not been considered for simplicity]

(i) A new motion of the motion history blob has been detected

(ii) Assign minCm
f completely convergence to minCn

f +1

(iii) If there exists occlusion (Tpixel < 3) & (λ+
pixel f

= λ+
pixel f +1

) then choose reasonable range of same

orientation for each motion history blob and after occlusion compare its new orientation with the

previous orientations.

4.2.3.2 else

The motion history blob has insignificant motion or out of frame

4.2.4 Disregard center of circles minCm
f and minCn

f +1

4.2.5 Decrease both M and N by 1

4.2.6 Increase m by 1 and set n = 1

4.2.7 Repeat step 4

5. end

When those explicit information of motion history blobs are available, the algorithm can easily be

made suitable for different kinds of video event detection, e.g., PersonRuns, ObjectPut, OpposingFlow,

PeopleMeet, Embrace, PeopleSplitUp.

4.4.2 PersonRuns (PR)

We set three experienced T values, as thresholds, in Eq.4.49. If we use one T value then one encountered

problem is that people near the camera are supposed to generate large motion and people far from the

camera cannot generate such motion even when they would make very quick motion (e.g., running).

To obtain an acceptable distribution of motion flow pattern, people near or far from the camera should

be fairly treated. To solve this problem, we take into account three T values namely T1 adjacent region

to camera (d1), T2 middle region (d2), and T3 far region from camera (d3) where T1 > T2 > T3. If the

distance of the camera observing region is d then the d is divided into three experienced distances d1,

d2, and d3 where d1 > d2 > d3. If the camera is fixed the division can be accomplished easily. If the

direction variation between two circles is about |Φ f −Φ f +1| ≤ π
4 and each time Eq. 4.49 satisfies then

the event is judged as PR.



4.4. VIDEO EVENTS DETECTION (VED) 139

4.4.3 ObjectPut (OP)

The OP event is commonly characterized if there is downward motion over several frames. The down

ward motion, which is stored over a period of frames, may pose variable direction between −5π
12 and

−7π
12 over several frames. The approach does not consider any event as a positively detected which goes

different from down ward motion (e.g., throw a bottle in dustbin). Hence it use downward motion, it

can recognize the event if someone sitting down as a false positive OP.

4.4.4 OpposingFlow (OF )

The algorithm can easily be adapted to detect the person opposing the general flow of the scene, even

without a predefined direction of opposing flow. The general direction of the scene can be calculated

by considering forward motion or backward motion of the object of interests for some period in some

defined region (e.g., door entry/exit). On defining the scene direction, if there exist any forward motion

or backward motion with respect to it, then there is an OF event.

4.4.5 PeopleMeet (PM)

Assuming that people will away from each other before meeting and keep a minimum distance dm

to them during meeting. Two events may occur either crossing or meeting. The relative distance dr

between persons will be larger than dm at the beginning of appearance and will decrease towards dm and

go beyond dm in time and their relative orientation are in reasonable range, with these conditions if one

or both persons stop (few or disappear motions) within dm, then PM event occurs, otherwise crossing

(which causes false positives) occurs.

4.4.6 Embrace (Em)

This event is close to PM and hence assuming that Em event happens immediately after PM. After

detecting PM the meeting region is encompassed by a circle with approximate radius of dm and within

this region calculate dr again. An Em is said to be detected where dr and orientation are below the given

thresholds.
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4.4.7 PeopleSplitUp (PS)

Considering that PS event happens after a while of detecting event PM when one or more person will

separate from a group (out of the circle). Compute and update each crowd center in consecutive frames

to detect if a person is decided to leave the corresponding crowd circle. If the relative distance between

the person and the crowd center is larger than dm, then a PS event is said to be occurred. The vast majority

of the false positives are brought forth by frowzy background, occlusions of people, and sophisticated

interactions among influential personages.

4.5 Experimental Results

A wide variety in the appearance of the event types makes the events detection task in the surveillance

video selected for the TRECVID2008 extremely difficult. The source data of TRECVID2008 comprise

about 100 hours (10 days * 2 hours per day * 5 cameras) of video obtained from Gatwich Airport

surveillance video data. A number of events for this task were defined. Since all the videos are taken

from surveillance cameras which means the position of the cameras is still and cannot be changed.

However, it was not practical for us to analyze 100 hours of video except some hours.

Different running cases in the crowd scenes have been depicted on Fig.4.4, 4.5, 4.6, 4.7, 4.8, and

4.9. All of those events have been detected as true positive PersonRuns PR event. Nevertheless, the PR

event detector can not detect accurately event like a little girl is running while her father is walking on

the waiting area. It can not also differentiate between a person runs and a wagon runs. These type of

events have have been detected as false positive which occurs when we are observing a PR event when

in truth there is none. Fig.4.10, 4.11, 4.12, and 4.13 demonstrate some events detected as false positive

PR events. On the other hand, it has almost no effect on detection events e.g., a kid or child is running

far from the camera, etc. Fig.4.14 shows some failure or false negative cases where persons inside red

marked rectangles cannot be detected as PR event. There are several reasons behind such cases:

• Video events have taken place significantly far distance from the camera and hence the consider-

able amount of motion components were insufficient to analyze over the threshold Th.

• Sometimes the amount of motion components are enough but threshold is not applicable, e.g., a

little girl is running while her father is walking on the waiting area.

• Different type of overlapping events.
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The ObjectPut OP detector detected several events as true positive. Some OP events detection from

crowd scenes have been shown on Fig.4.15, 4.16, and 4.17. Nevertheless, the OP detector recognized

the event if someone sitting down on the bench as false positive, e.g., Fig. 4.18. It can not detect

partially overlapping events, e.g., someone is putting bottles or bags which are partially occluded by

other object, etc. or non-overlapping small object e.g., somebody is putting small stuff on the shelf, etc.

A considerable portion of the false positives appear also from object get. Because it is often very hard

to distinguish between object put and object get. Fig. 4.19 and 4.20 demonstrate several examples of

failure or false negative cases where the object inside red marked rectangles cannot be detected as OP

event.

Usually, people pass through a unidirectional main gate, if somebody comes out opposite of the

normal direction, then such event should be detected as OpposingFlow OF event. Some true positive

detection examples of OF event have been depicted in Fig. 4.21 and 4.22. Nonetheless, the detector has

hardly effect on detection event like Fig.4.23 where a person is coming out in opposite of the normal

direction and putting a stop to somewhere on the crowd.

Fig.4.24 shows few true positive detection examples of PeopleMeet PM and Embrace Em events.

Fig.4.25 also demos few true positive detection examples of PM and PeopleSplitUp PS events. There

are failure of PS detections, for instance, a person suddenly left the meeting place by running (e.g.,

Fig.4.26).

Figure 4.4: A little girl is running on the waiting area which was detected as true positive PR event.

The results obtained from our methodology along with ground truth events of those videos have

been demonstrated on the Table 4.1. The sensitivity (or recall) and precision rates of the methodology

have been listed. Normally, high recall and precision rates are expected by minimizing the number of

false positive and false negative events. A detector is said to be ideal if its sensitivity is equal to 1. Table

4.2 shows some selected good results concerning PersonRuns event detection from the TRECVID2008

[43]. Authors in [58] used a total of 314 PersonRuns events of which undetected 170 and successfully
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Figure 4.5: A boy is crossing the waiting area by running which was detected as true positive PR event.

Figure 4.6: A person is running which was detected as true positive PR event.

Figure 4.7: A person is crossing the region near to the waiting chair area by running which was detected
as true positive PR event.

Figure 4.8: A person is also passing by running in different direction near to the waiting chair area
which was detected as true positive PR event.
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Figure 4.9: Two children are playing sometimes by running which was detected as true positive PR

event.

Figure 4.10: A little girl is running while her father is walking on the waiting area which was detected
as false positive PR event.

Figure 4.11: A little boy is running while a person is carrying baggages by walking which was detected
as false positive PR event.

Figure 4.12: A wagon is passing on the waiting area which was detected as false positive PR event.



144 CHAPTER 4. DETECTION OF USUAL VIDEO EVENTS

Figure 4.13: A cleaning craft is rolling quickly on the waiting area which was detected as false positive

PR event.

Figure 4.14: Failure or false negative detection: Persons inside red marked rectangles cannot be de-
tected as PR event.

Figure 4.15: A person is putting a hand bag on the waiting bench which was detected as true positive

OP event.
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Figure 4.16: A person is putting clothes on a trolley which was detected as true positive OP event.

Figure 4.17: Some stuff from the hand of a baby is suddenly dropping on the floor which was detected
as true positive OP event.

Figure 4.18: Somebody is sitting on the bench which was detected as false positive OP event.

Table 4.1: Achievement appraisal of the output of the detectors

Different Measures
Video Events

PR OP OF PM Em PS

Number of ground truth events (gt) 95 75 10 55 50 55
Number of false negative events (fn) 48 54 3 32 38 36
Number of false positive events (fp) 53 36 3 38 52 43
Number of true positive events (tp) 47 21 7 23 12 19

Recall rate (rr) = tp/(tp + fn) = tp/gt 49% 28% 70% 41% 24% 34%
Precision rate (pr) = tp/(tp + fp) 47% 36% 70% 37% 18% 30%
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detected 144, which considered the best PersonRuns detection in TRECVID2008 [43]. However, the

Table 4.2: Selected good results of PersonRuns from TRECVID2008 [43]

Different Approaches
Different Measures

gt fn fp tp rr pr

Orhan et al. [58] 314 170 7291 144 45.85% 1.94%
Kawai et al. [97] 314 233 1382 81 25.80% 5.53%
Guo et al. [55] 314 291 639 23 7.32% 3.47%

events detection results of PR and OF of the proposed methodology were quite reliable along with false

positives, and perhaps (specially PR) a little bit superior to the result of Orhan et al. [58] where about

45% PR events successfully detected. The event detectors output of PM and PS may have some degree

of average acceptance, on the other hand, the output of Em and OP event detectors had performed much

below than anticipations. Challenges which make circumscribe the performance of event detectors

encompass mainly:

• a wide variety in the appearance of event types with different view angles

• divergent degrees of imperfect occlusion

• complicated interactions among people

• unilluminated area on the video frame

• varying target sizes and poses

• massive population flow

• miscellaneous scales

• light reflection

• fluctuation

• etc.
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Figure 4.19: Failure or false negative detection: Putting object inside red marked rectangles cannot be
detected as OP event.

Figure 4.20: Partial occlusion: Putting object inside red marked rectangles cannot be detected as OP

event.

Figure 4.21: Normally people pass the main entry gate unidirectionally. But a person is following
opposite of the normal direction which was detected as true positive OF event.

Figure 4.22: A person is slowly coming out from opposite of the normal direction of the main entry
gate which was detected as true positive OF event.
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Figure 4.23: Failure or false negative detection: A person is coming out from opposite of the normal
gate entry direction as marked by red rectangles but this event cannot be detected as OF event.

Figure 4.24: The right most image was detected as true positive PM event while the rest images were
detected as true positive Em event.

Figure 4.25: Right two images were detected as true positive PM event while left two images were
detected as true positive PS event.

Figure 4.26: Failure or false negative detection: A person suddenly scattered from a meeting by a run
as marked red rectangles, but this event cannot be detected as PS event.
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4.6 Conclusion

We (in [SD09b]) keyed out a new method which generates automatically pseudo Euclidian distance

(PED) from the trigonometrically treatments of motion history blob (MHB) aiming for different kinds

of video events detection (VED). The PED is defined as the virtually traveled distance of a moving

point inside of a circle towards its direction when it coincides the center of the circle. The concept

of PED remains one of the best contributions of this Thesis and would be used in wide variety of

computer vision applications. To show the interest of the usage of PED, we proposed a PED based

methodology for VED. The results based on the detection of some events at TRECVID2008 [43] in

real videos have been demonstrated. Some results show the robustness of the methodology, while the

remains reflect the magnitude of the difficulty of the problem at hand. A vast majority of the false

positives is induced by occlusions, cluttered background, and complicated interactions among people.

Problem also includes the motion history blob tracking, which heavily depends on direction and position

of the blob. Consequently, MHB tracker is inefficient where there needs more information than only

direction and position, e.g., if the blob of a person occludes long time or moves long time with occlusion

or does not move an elongated period of time etc. The TRECVID2008 surveillance event detection task

is a big challenge to test the applicability of such methodologies in a real world setting. Big challenges

include highly clutter, massive population flow, heavy occlusion, reflection, shadow, fluctuation, varying

target sizes, low video quality, etc.

Nonetheless, we take the view that we have got ahead much valuable insights to practical problems

and future PED based evaluation of more effective VED methodologies have the potential to produce

better results.
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5.1 Overview

Target or object tracking, which aims at detecting the position of a moving object from a video sequence,

is a challenging research topic in computer vision. Tracking algorithms are used in a wide variety of

domains, such as robotics, vehicular traffic, navigation and communication systems. The main goal

is to obtain a record of the trajectory of the moving object(s) over space and time by processing the

sensor data. Reliable tracking methods are of crucial importance in many surveillance systems in order

to enable human operators to remotely monitor activity across large environments such as: (i) transport

systems (e.g., railway transportation, airports, urban and motorway road networks, maritime transporta-

tion, etc.), (ii) banks, shopping malls, car parks, and public buildings, (iii) industrial environments, and

(iv) government establishments (military bases, prisons, strategic infrastructures, radar centers, hos-

pitals, etc.). Obstacles in tracking targets can grow due to quick target motion, changing appearance

patterns of both the target and the scene, nonrigid target structures, dynamic illumination, inter-target

and target-to-scene occlusions, multi-target confusion, etc. Authors in [166] introduced the concept of

region covariance matrices for object detection and texture classification. Region covariance matrices

can be used for detection of a target in a video and the target can be tracked in the following frames

using the same approach as they proposed. By inspiring the concept of [166], authors in [139, 140]

proposed approaches for detection, labelling and tracking multiple targets. The targets are represented

by region covariance matrices and particle filters perform the target tracking. Their approach would

pay the attention but would not be workable for tracking targets separately in the cases of sparse crowd,

medium density crowd, and dense crowd as the results were reported only five people scene. Hence-

forth, it is noteworthy for developing an algorithm capable of handling these type of crowded scenes

towards tracking targets on an individual basis. In crowded scenes, tracking a running person is rela-

tively easy as compared to track a single person who is moving at same speed with other people in the

scene. The Motion History Blobs (MHB) tracking described in 4.4.1 is inefficient where only direction

and position are not enough information for tracking, e.g., if the blob of a person occludes long time or

moves long time with occlusion or does not move long time, etc.

In this chapter, we have directed two sort of target tracking methods, fall into 2.3.1 category, as fol-

lows: Firstly, we (in [SMD08b]) have investigated an object tracking method in video using covariance

matrices, as proposed in [166], straightforwardly. The method is relevant to the methods of [139, 140].

Authors in [166] described covariance as a region descriptor and applied it for object detection and

texture classification. Covariance matrices do not lie on Euclidean space, therefore it is useable for
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a distance metric involving generalized eigenvalues which also follows from the Lie group structure

of positive definite matrices. Secondly, we (in [SDc, SD10b]) have proposed a temporal-spatial do-

main algorithm to track individual targets in the cases of sparse crowd, medium density crowd, and

dense crowd. There are two key differences with previous MHB tracking method (PedVed). Firstly, we

have proposed how to extract the region of interest over frame in time (target) by means of the MHI

function, which uses temporal history of position or motion. The target extraction is same as MHB or

silhouetted region of motion component (SRMC), except after getting center of each MHB or SRMC,

we consider the original video frame and get that rectangular MHB from the video frame as a target

region. Secondly, we have introduced how to use the phase-correlation techniques for targets detection

and tracking using distinct sharp peaks from the obtained peaks of target regions and the next frame’s

candidate regions. If two candidates or targets are similar, then their phase-correlation function gives

a distinct sharp peak. Conversely, the peak of two dissimilar targets or candidates drops significantly.

The inspiration of the usage of phase-correlation technique is the fact that unlike many spatial-domain

algorithms, the phase-correlation means is resilient to noise, occlusions, and other defects typical of

medical or satellite images.

5.2 Target Tracking using Covariance Matrices

The goal of the detection drudgery is to identify the presence and possibly the location of a given object

in a video sequence, whereas the goal of the tracking task is to estimate the successive positions of an

object or region using discriminating features through video frames. Tuzel et. al. [166] proposed to use

the covariance of several image statistics computed inside a region of interest, as the region descriptor.

They used integral images for fast covariance computation. Integral images are intermediate image

representations used for fast calculation of region sums [170]. We have investigated this covariance-

based descriptor for tracking objects in a video sequence.

5.2.1 Image features

Good feature selection plays a critical role for detection and classification issues. Color, edges, optical

flow, texture, gradient, and filter responses are some common example of features. Image features such

as color, gradient, and filter responses, used in [28, 130], are not robust for tracking in the case of illumi-

nation changes or non-rigid motion. As opposed to rigid motion, which is a transformation consisting

of rotations and translations that leaves a given arrangement unchanged. Besides, effective matching
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algorithms are restricted by the high dimensional feature representation. AdaBoost [66] selects a small

number of critical visual features from a larger set and yields extremely efficient classifiers. Low dimen-

sional projections have been used for classification in [165] and tracking in [21]. In [37], histograms

were widely used for non-rigid object tracking. Fast histogram construction methods were explored to

find an optimum and complete solution for the histogram-based search problems [143]. However, the

joint representation of several different features through histograms is exponential with the number of

features [166]. The integral images were used for fast calculation of region histograms in [143] and for

fast calculation of region covariances in [166]. The idea of integral image was first commenced in [170]

for the computation of Haar-like features very quickly. Although they found better performance for face

detection, the algorithm requires a long training time for the object classifiers. In [122], scale-space ex-

trema are detected for keypoint localization and arrays of orientation histograms were used as keypoint

descriptors. The descriptors are very effective in matching local neighborhoods but miss global context

information [166].

5.2.2 Covariance as a Region Descriptor

Covariance is a statistical measure of correlation of the continual changes from one point – or condition

– to another of two different quantities. A covariance matrix is merely collection of various covariances

in the form of a square matrix. There are several benefits of using covariance matrices as region de-

scriptors. A single covariance matrix extracted from a region can match the object in dissimilar views

and poses, assuming that the covariance of a distribution is enough to discriminate it from other dis-

tributions. Let I be either one dimensional intensity or three dimensional color image. Assume F be

the W ×H × d dimensional feature image, where W , H, and d are the width, height, and dimension

(number of color channels) of the feature points of the image respectively, extracted from I. For each

feature point, F(x,y) = φ(I,x,y), where the function φ can be any mapping such as intensity, color,

gradients, filter responses, etc. For a given rectangular region R⊂ F , deeming that zk where k ∈ [1,n] is

the d-dimensional feature points inside region R where n be the total number of points in R. The region

R with the d×d covariance matrix of the feature points can be presented as:

CR =
1

n−1

n

∑
k=1

(zk−µ)(zk−µ)T (5.1)

where µ is the mean of the points. The CR is invariant regrading the ordering and the number of points

in the region of R. This signifies a certain scale and rotation invariance over the regions in different
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images. The covariance matrix provides a natural way of melting multiple features which might be

correlated [166]. The diagonal entries of the covariance matrix represent the variance of each feature

and the non-diagonal entries represent the correlations. The covariance matrices are low-dimensional

compared to other region descriptors [166] and due to symmetry CR has only d2+d
2 different values.

Expanding the mean and rearranging the terms of the above equation, it is easy to write the (i, j)-th

element of the covariance matrix of the feature points as:

CR(i, j) =
1

n−1

[
n

∑
k=1

(zk(i)zk( j)− 1
n

n

∑
k=1

zk(i)
n

∑
k=1

zk( j)

]
. (5.2)

To find the covariance in a given rectangular region R, it is important to compute the sum of each feature

dimension, z(i) where i ∈ [1,n], as well as the sum of the multiplication of any two feature dimensions,

z(i)z( j) where {i, j} ∈ [1,n]. We can construct d + d2 integral images for each feature dimension z(i)

and multiplication of any two feature dimensions z(i)z( j). Integral images could be used to calculate

either region histograms or region covariances. Each pixel of the integral image is the sum of all the

pixels inside the rectangle bounded by the upper left corner of the image and the pixel of interest [166].

For an intensity image I, its integral image is defined as:

Integral Image(x′,y′) = ∑
x<x′,y<y′

I(x,y). (5.3)

5.2.3 Target Tracking

We track a given object from a video frame by estimating its positions in the next video frame where

the object may appear with a change in pose, or after a non-rigid transformation. Feature matching,

which is a simple nearest neighbor search under distance metric, is accomplished quickly using the

integral images. In the search process, we use a variable size sliding window at nine different scales

(four smaller, four larger, with a 15% scaling factor between two consecutive scales). For the smallest

size of the window, we jump 3 pixels horizontally or vertically between two search locations. For

larger windows, we jump 15% more and round to the next integer at each scale, as recommended in

[1]. Since covariance matrices do not lie in an Euclidean space, it is often appropriate to use a distance

metric involving generalized eigenvalues. To increase robustness towards possible occlusions and large

illumination changes, we consider 5 covariance matrices extracted from overlapping regions of the

object feature image, corresponding to (1) the whole region, (2-3) the half-left/right sub-regions, and
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(4-5) the half-up/down subregions. We search the target frame for a region having the closest covariance

matrix and the dissimilarity is measured through following equations. The distance measure proposed

in [65] to measure the dissimilarity of two covariance matrices is:

ρ(c1,c2) =

√
n

∑
i=1

ln2 λi(c1,c2) (5.4)

where {λi(c1,c2)} and i ∈ [1,n] are generalized eigenvalues of c1 and c2, computed from:

λic1xi− c2xi = 0 (5.5)

where i ∈ [1,d] and xi 6= 0 are the generalized eigenvectors. The dissimilarity of the object model and a

target region is computed by:

ρ(O,T ) = argmin j

[
5

∑
i=1

ρ(cO
i ,cT

i )−ρ(cO
j ,cT

j )

]
(5.6)

where O, T , cO
i , and cT

i indicate the object, the target, the object covariance and target covariance for the

5 sub-regions, respectively. Target region with smallest dissimilarity is selected as the matching region.

5.2.4 Experimental Results

To conduct experiment, we have mainly relied on the people tracking data set of the PETS 2009 Bench-

mark Data so-called Dataset S2: People Tracking [42], which is organized as sparse crowd, medium

density crowd, and dense crowd.

Fig.5.1 depicts the tracking results of a person inside the red marked rectangle from some video

Figure 5.1: The images concern the possible extended method of [166] as implemented in [SMD08b].
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sequences of [42]. The results make noticeable that a single covariance matrix extracted from a region

of interest can match the region in some else views and poses. Nevertheless, if there are large scale,

orientation, and illumination changes, the detection is erroneous as can be seen the last image where

the target is undetected (marked as "?").

5.3 A Temporal-spatial Framework

We have proposed a temporal-spatial domain algorithm to track individual targets in the cases of sparse

crowd, medium density crowd, and dense crowd. There are two key contributions within this approach.

Firstly, we have proposed how to extract the target (region of interest over frame in time) and

candidate (region of possible target over next frame in time) regions from the silhouetted structures

of more recently moving pixels of the object of interest by combining two techniques, namely motion

history image MHI [22] and Hu’s moments [80]. MHI, which uses temporal history of position or

motion, helps to create a silhouetted region of motion component (SRMC) while Hu’s moments find the

center of gravity of SRMC. A key advantage behind of this hybrid technique is that it is not necessary

to search the possible target region everywhere on the candidate frame except for the candidate regions.

Consequently, the searching process becomes overpowering rapid.

Secondly, we have introduced individual target tracking techniques using distinct maximum peaks,

obtained by phase-correlation techniques, from the resulting peaks of target regions and the candidate

frame’s candidate regions. When two target and/or candidate regions are similar, their phase-correlation

function gives a distinct sharp peak (see Fig 5.3 (a) and (b)). Conversely, the peak of two dissimilar

target and/or candidate regions drops in a clearly noticeable manner (see Fig 5.3 (c)). The motivation

of the usage of phase-correlation techniques is the fact that unlike many spatial-domain algorithms, the

phase-correlation means is resilient to noise, occlusions, and other defects typical of medical or satellite

images.

In temporal-spatial framework, we ([SDc]) focus on the following algorithmic steps:

• Foreground is estimated to get SRMC;

• Segmentation is performed on the obtained SRMCs to get a sequence of SRMC;

• Center of mass or center of gravity or centroid is estimated to get the center of each SRMC (Hu

center);
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• Target and/or candidate regions are estimated by the coordinates of the centroid;

• Phase-correlation techniques are performed to get the highest peak heights for target and/or can-

didate;

• The highest peak heights are processed by a tracking algorithm, which tracks target based on

highest geometric mean. If the highest geometric mean is greater than an experienced dynamic

cut-off then tracking is typically performed, else the target is motionless or the state of being

occluded or out of the video frame.

In evaluation method, if a ground truth ellipse interacts with the system output rectangle, then we

said a correct detection has been performed. The video sequences of PETS 2009 Benchmark data have

been considered for performance evaluation of the approach.

5.3.1 Foreground Estimation and Segmentation

In video surveillance system, the first step is to have a good process for detection of foreground objects.

The background image is associated to the static constituent of the scene and the foreground image is

associated to the dynamic constituent of the scene. Consequently, foreground objects are the moving

objects on the scene. Instead of using the mixture-of-Gaussian based adaptive background modeling

method [161] to generate foreground mask for each frame, we use on the silhouetted structures of more

recently moving pixels of the object of interest. With this end, we rely on the motion history image

(MHI) function which was introduced by [22]. The strength of the function is that it is easy to implement

and adds little computational cost, a detailed about MHI has been discussed in the subsection 4.3.1.

The result of the function is a scalar-valued image where more recently moving pixels are brighter.

The function is called each time a new image is received and the corresponding silhouetted image is

formed. We only deal with that silhouetted brighter part while suppressing other parts, which we named

silhouetted region of motion component (SRMC) or motion history blobs (MHB), which is produced

by more recently movement of part or the whole of the object of interest. To get sequence of SRMCs,

it is important to segment the obtained SRMCs. On segmentation, we count number of points within

each SRMC so that it will be easy to check for the case of very little motion (e.g., noise), which will be

neglected under an experienced threshold. Finally, we estimate the center of mass for each remaining

SRMC.
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Figure 5.2: The 1st, 2nd, and 3rd rows depict, respectively, the camera view, the silhouetted region of

motion components hedged in red colored fixed rectangles, and the target regions enclosed by identical
rectangles. Green points (Hu centers) are the centers of mass of SRMCs estimated on applying Hu’s
moments.
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5.3.2 Center of Mass Estimation

Center of mass or center of gravity or centroid is the term given to the center of a region, area, etc.

Image moments are useful to describe objects after segmentation. Moments give us an indication of the

center of SRMC (e.g., pixel values and regions). The use of moments for image analysis and object

representation was introduced by Hu [80]. The moments of Hu are fast and accurate to represent shapes

than most of the other methods. A detailed investigation of centroid estimation has been described in

the subsection 4.3.2. The coordinates of the Center of Mass can be defined through moments as:

x̂ =
m10

m00
ŷ =

m01

m00
(5.7)

To achieve invariance with respect to orientation and scale, the normalized central moments are formu-

lated as follows:

ηpq =
1

µ
[(p+q)/2]+1
00

∞

∑
−∞

∞

∑
−∞

(x− x̂)p(y− ŷ)qφ(x,y) (5.8)

where (p + q) ≥ 2. For any SRMC, a potentially infinite number of moments {ηpq} can uniquely

describe SRMC. These image moments are invariant with respect to translation and scale operations,

but an infinite number of moments are obviously impractical and only ten moments up to the third order

are practical. Since the centroid of SRMC defines a unique location with respect to the object, it can be

used a reference point to describe the position of the object on the camera view image. As a result, we

represent all coordinates of the centroid of SRMC (Hu center) to their corresponding positions on the

original image with fixed rectangles along with identical centers. Such representation of object shapes

on the camera view frame are highly commendable for the phase-correlation techniques. The Fig. 5.2

hints the process for sparse (in left side) and dense (in right side) crowded scenes. The superiority of

this technique is that it is not important to search the object through the whole image during tracking.

As a result, the searching process becomes swift overwhelmingly.

5.3.3 Phase-correlation Techniques

The input to a phase-correlation algorithm [107] may consist of a pair of images or a pair of co-sited

rectangular blocks of identical dimensions belonging to consecutive frames or fields of a moving se-

quence sampled at successive time interval; and the output commonly concerns single phase-correlation

peak. Let I0(x,y) and I1(x,y) be the two images which differ only by a displacement of (∆x,∆y), i.e.,
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I1(x,y) = I0(x−∆x,y−∆y). Their corresponding Fourier transformations F0 and F1 will be related by:

F1(u,v) = F0(u,v)e−2π j(u∆x+v∆y). (5.9)

One can then calculate the normalized cross-power spectrum to factor out the phase difference:

P(u,v) =
F1(u,v)F∗0 (u,v)

|F1(u,v)F∗0 (u,v)| =
F0(u,v)F∗0 (u,v)e2π j(u∆x+v∆y)

|F0(u,v)F∗0 (u,v)e2π j(u∆x+v∆y)| = e2π j(u∆x+v∆y) (5.10)

where F∗0 is the complex conjugate of F0. It directs that the phase of the normalized cross-power spec-

trum is equivalent to the phase difference between the images I0 and I1. If the two images are identical

but shifted, the result will be an impulse at (∆x,∆y) which represents the translation displacement be-

tween the two images. By computing the linear phase of P(u,v), the translation displacement can be

determined. Furthermore, the inverse Fourier transform of a complex exponential is a Kronecker delta,

i.e., a single peak. By taking the Inverse Fourier Transform of P(u,v), it is easy to obtain its spatial

representation:

p(u,v) = IFT (P(u,v)) = δ (x+∆x,y+∆y) (5.11)

where p(u,v) is a Kronecker delta function which is zero everywhere except at the displacement,

namely the phase-correlation peak. This result would have been brought together calculating the cross-

correlation directly. But the boon of this phase-correlation method is that the discrete Fourier transform

and its inverse can be performed using the fast Fourier transform, which is much faster than correlation

for large images. Over and above computational efficiency, phase-correlation puts up key plus points in

terms of its convincing response to edges and outstanding picture features, its immunity to illumination

changes and moving shades, and its finesse to assess notable dismissals.

5.3.4 Tracking Techniques

To track target in the scene, knowledge about what the target looks like is absolutely essential. Such

cognition can be gained from the rectangular template in the original video frame as marked on Fig.5.2.

On defining the target region T, we calculate the phase-correlation between the target region and each

rectangular template from the next frame (candidate frame) e.g., Fig.5.3 (b) and (c). We search for the

first order candidate peak height which is the highest peak height among the resulting peak heights. We

may select a second order candidate peak height, which is supposed to be the best match of the target in
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Figure 5.3: Peak value shows the highest peak height and A is target while B & C are candidates.
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the next frame, by finding the highest peak height from all of the calculated first order candidate peak

heights. But there maybe more than one first order candidate peak heights which are close to each other

and cause ambiguity and difficulty in selection process. To minimize this dismay, we count each first

order candidate peak height which has exceeded a 50% cut-off of the current target peak height; namely

the second order candidate peak height C . Such a cut-off makes the processing faster by suppressing

the first order candidate peak heights which do not exceed the 50% of the current target peak height. We

segment each C as well as T to get their respective segmented phase-correlation highest peak heights.

Afterwards, we estimate the geometric mean of the obtained unsegmented and segmented highest peak

heights. Suppose that there are n numbers of C and each C is segmented into s number of small regions.

Upon applying phase-correlation technique, let T
∮
©C denote the obtained highest peak height between T

and C . Similarly, let Ti
∮
©Ci denote the highest peak height between segments Ti and Ci, where i∈ s. Thus,

a set of highest peak height Ωs+1= {T ∮
©C,T1

∮
©C1,T2

∮
©C2, . . . ,Ts

∮
©Cs} can be gained and their geometric mean

can be estimated by means of:

Gm =

[
s+1

∏
i=1

Ωi

] 1
s+1

= exp

[
1

s+1

s+1

∑
i=1

logeΩi

]
. (5.12)

Consequently, we have n numbers of Gm of which we may have to select the best match for T . An

example of the segmented phase-correlation has been depicted on the Fig. 5.3 (d), (e), (f), (g), and (h)

mooting s = 5 segments and their geometric mean with (b) is 0.6293. Estimation is better if the number

of segments is higher. However, finally, we find the special C which posses the highest geometric mean

as:

Highest geometricmean = arg max
k=1...n

[Gm]k . (5.13)

If the highest geometric mean is greater than a dynamic experienced threshold then the target is said to

be detected and we relocate the target region to that C corresponding region and repeat the process; else

the target is deemed as motionless or the state of being occluded or out of the video frame. If the target

does not match in some extended period of video sequences then it counts as out of the video frame; else

it views as motionless or the state of being occluded and repeat the process without relocate its region.

Similar way the algorithm is suitable for tracking multiple targets individually and simultaneously.
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5.3.5 Experimental Results

To conduct experiment, we have heavily relied on the people tracking data set of the PETS 2009 Bench-

mark Data so-called Dataset S2: People Tracking [42], which is organized as sparse crowd, medium

density crowd, and dense crowd. The experienced dynamic cut-off for the next frame has been deemed

as 75% of the highest geometric mean of the current target region with s = 10 segments.

5.3.6 Evaluation Method

We have annotated the target person ourselves. In general, the annotator draws an ellipse where a target

is taking place and keeps track of the target throughout the under investigation frame sequences. Each

annotator works separately and the number of employed annotators depends on the number of individual

targets will have to be tracked simultaneously. Normally, our system draws rectangle as a target tracking

result. If a ground truth ellipse overlaps with the system output rectangle in any frame, we define it to

be a true positive or correct detection. If there is no overlapping system output within the ground truth

ellipse, we define it as a false negative or miss detection. If there is no ground truth but there is a

system output, then it is a false positive or false alarm. If there is no ground truth ellipse as well as

there is a system output rectangle, then we define it as a true negative or correct rejection. Normally,

true negative occurs when the target is motionless or the state of being occluded or out of the video

frame. We have considered different statistical probability measures e.g., precision rate (also called

sensitivity), recall rate (also called true positive rate), specificity (also called true negative rate), and

accuracy. Precision is the probability that can be seen as a measure of exactness or fidelity, whereas

recall is also the probability that is a measure of completeness. A sensitivity of 100% means that

the algorithm recognizes all actual positives, whereas a specificity of 100% means that the algorithm

recognizes all actual negatives. Accuracy indicates proximity of measurement results to the true value,

precision to the repeatability or reproducibility of the measurement. Normally, a measurement system

is said to be valid if it is both accurate and precise.

5.3.7 Evaluation Result Analysis

Although manually labeling is a time consuming task, we have verified the approach by such labeling at

different challenging video sequences involving illumination change, flash light, different scale, and low

video quality. In principle, we can track multiple individual targets simultaneously. The most common

cause of false alarms comes from occlusion cases in the video sequences where our system considers
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another person to be a target due to its highest geometric mean, which is very close to the latest highest

geometric mean of the real target. Another common reason of false alarms is due to small image size

of targets which are far away from the camera. In the following, we have presented the tracking results

of two persons (targets) in dense crowd and six persons (targets) in medium dense crowd from two

different video sequences of [42]. Two and six annotators were employed separately to create targets

ground truth data from the under considering video sequences. As a result, the annotators produced 8

sets of ground truth data individually. In case of two individual persons tracking considering 114 video

frames, two annotators were employed separately to produce two separate data sets containing 68 & 74

frames with ellipses and 46 & 40 frames without ellipse, for first and second persons, respectively. If

a target is either motionless or in the state of occlusion or out of video frame, then the annotator does

not mark ellipse on respective frame. Tracking results of 60 video frames have been presented in case

of six single persons.

Figure 5.4: Two single persons (magenta and yellow note to A1.2 and B1.2, respectively) true positive

tracking results in dense crowd from the video sequences of PETS2009 [42]. Ellipse and rectangle
denote ground truth and algorithm output, respectively.

Fig.5.4, 5.5, 5.6, 5.7, and 5.8 show some example images for the results of two and six individ-

ual persons tracking. The results of the algorithm (rectangles) have been interacted most of the target
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Figure 5.5: Tracking of person A1.2 is true positive, while after occlusion person B1.2 is false negative.

Figure 5.6: On occlusion, tracking of person A1.2 is still true positive and person B1.2 is a failure.
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Figure 5.7: Six single persons true positive tracking results in medium dense crowd from the PETS2009
[42] video sequences. Ellipse and rectangle note to ground truth and algorithm output, respectively.

Figure 5.8: Two single persons tracking (red and blue) scored failure while rests are still true positive.
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Figure 5.9: Above and underneath graphs, respectively, represent trajectories of the centers of mass
for two and six single persons tracking results of the algorithm. Heavy black line shows false negative

tracking while white dots inside it point to false positive. Heavy green dot lines indicate occlusion.
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ground truth regions (ellipses) accurately. The results represent that the system is very accurate and

its sensitivity to the effects of deviation in noise and lighting, which guarantees high-quality perfor-

mance on fades, targets moving in and out of the shadow, and flashes of light. Fig.5.9 demonstrates the

trajectories (of the centers of mass) of two and six individual persons tracking results, which concern

successful detection, false alarm, missed detection, correct rejection, etc.

Table 5.1: Tracking results analysis

Different Measures
2-Person 6-Person
1 2 1 2 3 4 5 6

Number of ground truth frames (gt) 114 114 56 60 60 60 60 60
Number of false negative frames ( fn) 26 0 32 0 26 0 0 0
Number of false positive frames ( fp) 6 0 4 0 10 0 0 0
Number of true positive frames (tp) 42 74 24 60 24 60 60 56
Number of true negative frames (tn) 46 40 0 0 10 0 0 4

Recall Rate = tp/(tp + fn) = tp/gt 0.36 0.64 0.42 1.00 0.40 1.00 1.00 0.93

Specificity = tn/(tn + fp) 0.88 1.00 0.00 0.00 0.50 0.00 0.00 1.00

Precision rate = tp/(tp + fp) 0.87 1.00 0.85 1.00 0.70 1.00 1.00 1.00

Accuracy = (tp + tn)/(tp + tn + fp + fn) 0.73 1.00 0.40 1.00 0.48 1.00 1.00 1.00

Average Recall Rate 72%
Average Specificity 42%

Average Precision rate 93%
Average Accuracy 82%

The above graph of Fig.5.9, the blue and cyan stars are the starting places of 1st and 2nd persons,

while heavy magenta and yellow lines belong to the trajectories of their centers of mass, respectively. In

the video sequences, both persons gradually went forward to the incoming crowd and faced both light

reflection and occlusion. Heavy green dot lines depict their occlusion, consecutively. False positive

tracking started as soon as the 1st person had partially occluded, a region of very similar person was

falsely recognized and tracked over the next video sequences. Primarily, the lighting condition helped

to make the falsely recognized person similar to the real person. As a result, the highest geometric mean

of that person’s region was closer to than that of the real person. White dots inside heavy black line

indicate the false alarm. False negative tracking has been presented by heavy black line. False negative

was begun abruptly when the real person fully appeared again. But the algorithm could not detect any

more the real person as it had already considered the false person as a real one. Irrespective of light



5.4. SUMMARY AND DISCUSSION 169

reflection and occlusion, 2nd person was successfully recognized and tracked over the video sequences.

The beneath graph of Fig.5.9, stars are the starting places 1st, 2nd, 3rd, 4th, 5th, and 6th persons,

while heavy red, magenta, blue, yellow, green, and cyan lines belong to the trajectories of their centers

of mass, respectively. False negative tracking, as marked heavy black lines, broke out just after the

partial or full occlusion of the persons. False negative became false positive when the 1st person was out

of video frames as well as the 3rd person was fully occluded. Regardless of light reflection, occlusion

and scale change, 2nd, 4th, 5th, and 6th persons were successfully recognized and tracked over the

video sequences.

Table 5.1 makes a detail evaluation of the obtained results and the average measures are satisfactory

for many applications of computer vision. Besides scale, orientation, and illumination changes, the

approach can handle the occlusion with high accuracy. The framework is likely a bit superior to the

similar approaches e.g., [139, 140] in the sense that it can track multiple targets irrespective of sparse

crowd, medium density crowd, and dense crowd scenes. Yet, a draw back of this approach is that if the

target is confused or misdirected once, then false positive or false negative detection breaks out and it

is hard to get the true positive tracking result as the probability to get back the real target is limited.

5.4 Summary and Discussion

We (in [SMD08b]) have studied, a possible extended method of [166], which follows the detection of

a target in a video and the target is to be tracked in the following frames using the region covariance

method as by [166], can work in some extent as a single covariance matrix extracted from a region of in-

terest can match the region in some else views and poses. We have proposed a better framework ([SDc])

for tracking individual targets in diverse crowded scenes. The noticeable difference with [SMD08b],

[SDc], and few directional existing works e.g., [139, 140] are stated below:

• Tracking in [SMD08b] based on spatial information only, whereas the method proposed in [SDc]

based on both spatial and temporal information.

• In [SMD08b] region covariance has been used as target descriptor and integral images are used for

fast covariance computation. Target region with smallest dissimilarity is selected as the matching

region and track that region in the next frame. In [SDc] the region of motion history blob on

the original frame has been used as a target descriptor and phase correlation techniques are used

to find similarity measure. The highest similarity measure of phase correlation techniques is
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considered as the best match of the target in the next frame.

• A key advantage behind the approach of [SDc] is that it is not necessary to search the possible

target region everywhere on the candidate frame except for the candidate regions. Consequently,

the searching process becomes overpowering rapid.

• Approaches of [139, 140] work well with five people scenes whereas approach of [SDc] can track

multiple targets irrespective of sparse crowd, medium density crowd, and dense crowd scenes.

• Experimental results reported that the proposed framework of [SDc] is good for individual target

tracking. The average precision and accuracy rates are also satisfactory for the applications of

computer vision. Nevertheless, a deficiency of this approach is that if the target will be confused

or misdirected once, then it will be laborious to win back the real target.

• The framework of [SDc] performs better in sparse and medium crowded scenes as compared to

high crowded scenes as the rate of ambiguous appearance resulting from high dense is very high.

Considering the excellence and disadvantage of the framework of [SDc], it is yet highly accurate with

respect to the effects of mutations in noise and lighting, which assures high-quality performance on

fades, targets moving in and out of the shade, and flashes of light.

Future work would primarily focus to overcome the shortcoming of the framework, i.e., if the target

is confused or misdirected once, then it is hard to get back the real target. Future work would also

make an adaptation of the approach for tracking individual targets in very high density crowded scenes

containing thousands or millions of people, e.g., track persons from the pilgrims circling around Kabba

in Mecca. The potential problems of persons tracking in such extremely challenging scene include the

small number of pixels on targets, ambiguous appearance resulting from dense, etc.
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6.1 Summary of the Contributions

Detecting human behaviors efficiently in vast amounts surveillance video, both retrospectively and in

realtime, is fundamental technology for a variety of higher-level applications of critical importance

to public safety and security. Video surveillance systems have proven to be promising approaches in

many security-intensive applications. The focus is to identify real challenges in intelligent surveillance

systems and technology and to investigate practical solutions to the core problems of computer vision

applications in both theoretical and practical perspectives. The cooperative effort of the computer vi-

sion research community, intelligent surveillance systems which process video feeds from real-world

scenarios have not yet attained the desirable level of applicability and robustness. This is widely due to

the algorithmic assumptions as well as the huge amount of video data analysis.

The objective of this thesis is to accommodate some of the challenges in computer vision, posed

by interesting event/behavior detection and individual target tracking in diverse crowded scenes, to a

certain degree. We have three contributions in this thesis namely unusual or abnormal event detection,

usual or normal event detection, and individual target tracking in crowded scenes.

6.1.1 Unusual Event Detection

For safety and security, abnormal (unusual) event detection is an important task in video surveillance

system. But it is a very challenging task as abnormal event is rare and occurs infrequently and very hard

to define. Automatic video surveillance is attractive because it promises to replace more costly option

of staffing video surveillance monitors with human observers. The scientific challenge is to invent

and implement automatic systems to achieve detailed information about the activities and behaviors of

people or vehicles observed by sensors (e.g., cameras). A good deal of research works have been carried

out in the direction of crowd behavior analysis and detection of abnormal activities. Nevertheless, each

work consists of both excellence and disadvantage. We also contributed some same directional works.

Since visual attention allows to focus analysis and processing on some restrained parts of images and

frames, it has emerged in recent years as a convincing tool to make robot and computer vision more and

more operative in a wide variety of jobs. We started by investigating both static and space-time saliency

detection to detect abnormalities in various crowded scenes. We concluded that saliency based models

would solely be suitable for sparse crowd scenes (e.g., Fig. 3.2) to detect abnormalities. Consequently,

we went further in quest of a good approach and proposed different spatiotemporal information based

methods for crowd behavior analysis and detection of abnormal activities in crowd scenes with various
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densities (e.g., Fig. 1.1).

Spatiotemporal information takes into account motion as an informative feature to detect and seg-

ment interesting objects or targets by the help of optical flow computation, block matching or other

motion detection methods. Upon analyzing the multifarious spatiotemporal information in miscella-

neous ways, we brought forward approaches:

• Covariance Matrix 3.2([SID08a]),

• Normalized Continuous Rank Increase Measure 3.3([SD09a]),

• Mahalanobis Metric 3.4 ([SD09c]),

• Bhattacharyya Metric 3.5([SD10a]),

• Enumerated Entropy 3.6 ([SID08b],[SID10]),

• Shannon Entropy 3.7 ([SDb])

which have been affixed on the existing directional start-of-the-art.

Irrespective of indoor and outdoor video surveillance, region of interest (RoI) makes the video

processing faster. Based on applications and type of videos, RoI would extend from few parts of a

video frame to the whole frame. In case of applications, e.g., to monitor escalators, linear passages,

high-way, etc., video processing region can be fixed by using a mask instead of analyzing the whole

video frame. We introduced three types RoI namely motion heat map (MHM), motion map (MM)

or spatiotemporal region of interest (ST-RoI), region of interest image map (RIIM). Basically, their

functions are the same, only difference in construction. The MHM expects long video to produce the

hot region on the image indicating the main motion activity, whereas both MM and RIIM expect much

less long video to generate a general maneuver of the motion. In general, RoI ameliorates the quality

of results and makes the processing time fast a bit more.

6.1.1.1 Covariance Matrix Approach

This approach detects unusual events principally from unidirectional flow of crowd (e.g., escalators).

The video frames are labeled normal or abnormal based on the distance measure between covariance

matrices of the distributions of the optical flow vectors computed on consecutive frames. Those flow

vectors are the result of tracking a set of features points discovered by the Harris corner detector applied
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on each frame considering a RoI. The MHM has been constructed to represent RoI. The approach has

been tested against a single camera data-set placed in the escalator exits in an airport or so-called

Escalator dataset [132]. The approach is simple and easy to understand. But it may suffer from

initialization problem at the implementation stage.

6.1.1.2 NCRIM Approach

This approach also detects abnormal motion frames from real videos irrespective of both static and

dynamic backgrounds. The approach is based on the use of the spatiotemporal region of interest (ST-

RoI) features obtained from ST-RoI, which is estimated using motion history image (MHI). Within ST-

RoI, exceptional motion makes the motion vectors (e.g., directions) change significantly as compared to

normal motion. The normalized continuous rank-increase measure (NCRIM) calculated from the ST-

RoI features has been used as the judgement index for determining normal or abnormal motion frame.

To demonstrate the interest of the proposed approach, the results based on the detection of abnormal

motion frames in real videos obtained from escalator dataset have been presented. The approach is

better than that of Covariance matrix due to the fact that it can eliminate few hindrances of Covariance

matrix approach, e.g., it can detect the undetected unusual event of Fig. 3.9.

6.1.1.3 Mahalanobis Metric Approach

The approach detects abnormal events mainly in surveillance video systems (e.g., escalators, narrow

passages, etc.), based on optical flow analysis of crowd behavior followed by Mahalanobis and χ2 met-

rics. The video frames are flagged as normal or abnormal based on the statistical classification of the

distribution of Mahalanobis distances of the normalized spatiotemporal information of optical flow vec-

tors. Optical flow vectors are computed from the small blocks of the specific region of successive frames

namely region of interest image (RII), which is discovered by region of interest image map (RIIM). The

RIIM is obtained from specific treatment of foreground segmentation of moving subjects. The Ma-

halanobis metric removes several limitations of the Euclidean metric:(i) it automatically accounts for

the scaling of the coordinate axes, (ii) it corrects for correlation between the different features, (iii) it

can provide curved as well as linear decision boundaries. On the other hand, as breakages it faces the

problem e.g., multicollinearity or the restriction e.g., the number of samples in the data set has to be

larger than the number of variables. Yet, in the proposed approach, both problems have been minimized

by dint of 5 variables and tracking about 1500 samples (points of interest) in each frame, respectively.
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Each estimated Mahalanobis distance (Dm(i)) belongs to either member group or non-member group.

Sample with a higher Dm(i) than
√

3 is treated as non-member group, otherwise member group. The

member group contains solely the samples of a normal event, whereas non-member group contains pri-

marily samples of abnormal events including outliers. To make a decision about a video frame whether

it goes to usual or unusual, we have only processed the samples of the non-member group. The approach

has been tested against both Escalator dataset [132] and UMN dataset [137].

6.1.1.4 Bhattacharyya Metric Approach

This approach lies in the use of the Bhattacharyya distance to measure differences in properties of

clusters over time between frames. It estimates sudden changes and abnormal motion variations of

a set of interest points detected by Harris detector and tracked by optical flow technique and classi-

fied by K-means. Estimation of Bhattacharyya distance between classes and thereof the normalized

Bhattacharyya distance measure provides the knowledge of the state of abnormality. The Mahalanobis

distance is a particular case of the Bhattacharyya distance. Original interpretation of the Bhattacharyya

measure has few problems, i.e., it does not impose a metric structure since it violates at least one of

the distance metric axioms [67]. The authors in [38] proposed a derivative of the Bhattacharyya mea-

sure in the form of
√

1− cosθ which does indeed represent a metric distance between distributions as

this distance obeys all of the metric axioms. Instead of using the proposed measure of [38], we have

considered the Bhattacharyya bound which commonly uses in pattern recognition. The Bhattacharyya

distance has been used as a class separability measure for feature selection and is known provide the

upper and lower bounds of the Bayes error. On estimating all Bhattacharyya distances among classes,

we have estimated their geometric means and come together those means to calculate the log-average

to represent a single effective distance (Gβ ) between two consecutive frames using Algorithm 1. The

normalized Gβ provides the knowledge of the state of abnormal activity in video frames over time.

To conduct experiments, we have used the Escalator dataset [132] and the UMN Dataset [137]. We

have concluded that distances between clusters of tracked corners on movers are a reasonable way to

characterize abnormal behavior as the distances vary significantly in case of abnormalities.

6.1.1.5 Enumerated Entropy Approach

Entropy estimation is an important problem that arises in statistical pattern recognition, adaptive vector

quantization, image registration and indexing, and other areas. The proposed entropy approach makes
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known abnormal motion frames from real videos based on an defined Entropy function. Upon obtaining

the spatiotemporal information of each frame, we have analyzed that and got the factors motion area

ratio, coefficient of direction variation, coefficient of distance variation, and direction histogram char-

acteristic. We have defined the function Entropy on the basis of these factors. The approach has been

tested on both Escalator dataset [132] and UMN dataset [137]. Although the approach is suitable to

detect a wide variety of abnormalities, it presumes a few limitations, e.g.,:

• First, we have defined the function Entropy ourselves, and hence it does not reflect the exact

definition of Entropy which normally used in information theory (so called Shannon Entropy).

Explicitly, our enumerated Entropy is constructed from a single probability rather than from a set

of probabilities summing to 1.

• Second, as the mid-level features are extracted based on the result of Harris detector, these fea-

tures might be sensitive to textures and hence features like direction histogram may be distorted.

6.1.1.6 Shannon Entropy Approach

We have put forward this simple but effective approach (in [SDb]) to detect anomalies in videos based

on Shannon Entropy, which is estimated on the statistical treatments of the spatiotemporal information

of a set of interest points within a region of interest by measuring their degree of randomness of both

directions and displacements. Entropy is a measure of the disorder/randomness in video frame. On es-

timating the entropy, we can detect anomalies directly without segmentation or tracking subject singly.

It has been showed that degree of randomness of the directions (circular variance) changes markedly

in abnormal state of affairs and does change only direction variation but does not change with displace-

ment variation of the interest point. Degree of randomness of the displacements has been applied to

counterbalance this deficiency. Simple simulations have been exercised to see the characteristics of

these crude elements of entropy. Normalized entropy measure provides the knowledge of the state of

anomalousness. Experiments have been conducted on various real world video datasets e.g., Escalator

datset [132], UMN dataset [137], Web dataset as operated by Mehran et al. [131], etc. Both simulation

and experimental results have reported that entropy measures of the frames over time is an outstanding

way to characterize aberrations in videos. Results have also reported that the proposed method performs

something to a greater degree to distinguish abnormal sequences. The results are likely a bit superior

to the work of Mehran et al. [131] in the sense that there is no reported false positives on the proposed



6.1. SUMMARY OF THE CONTRIBUTIONS 177

method. Table 3.3 provides the quantitative results of a comparison with Mehran et al.′s [131] results

for the same four sample videos.

6.1.1.7 Favoring and Disfavoring factors inside Approaches

We introduced six different approaches to detect abnormalities in crowd videos. They are based on the

analysis of the spatiotemporal information, hence there are some unique global pros and cons reflect on

them. They have been tested on surveillance videos obtained by single camera.

Their key excellences include: (i) simple and easy to understand, (ii) do not need explicit learning

process and training data, (iii) omnidirectional, (iv) do not impose limitation on the number of movers

in the videos, (v) reduce processing time by deeming region of interest on each video frame, (vi) detect

abnormalities directly without segmentation or tracking subject individually, (vii) do not necessitate

low level change detection algorithms.

On the other hand, their main shortcomings include: (i) expect a predefined threshold to make a

decision, (ii) do not effectively handle occlusion due to the assumption of optical flow method, (iii) do

not localize the abnormalities on the video frames.

6.1.2 Usual Event Detection

Detection of usual events in the surveillance video, e.g., TRECVID2008 [43], is an extremely difficult

task. The serious challenges include, but are not limited to: (i) a wide variety in the appearance of

event types with different view angles, (ii) divergent degrees of imperfect occlusion, (iii) complicated

interactions among people, (iv) unilluminated area on the video frame, (v) varying target sizes and

poses, (vi) massive population flow, (v) miscellaneous scales, (vi) light reflection, (vii) fluctuation, etc.

In this direction of researches, we lined up our efforts and successfully annexed the following con-

tributions ([SD09b]):

• First, we keyed out a new method which generates automatically pseudo Euclidian distance

(PED) from the trigonometrically treatment of the motion history blob (MHB).

• Second, we proposed a methodology based on PED for the video event detection (VED).

To extract image features, optical flow estimation would be a superior grade for the crowd scene but it is

too sensitive to the small noise due to the broadness of the camera view. If there are many people in the

videos, the existence of small motion noise will be extremely negative and unreliable. Thus, estimating
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the movement of objects by optical flow is difficult. Deeming this fact we rest with confidence on

motion history image (MHI), motion history blob (MHB), and trigonometric treatments of MHB which

generate PED to extract efficient image features. The MHI is a representation of the history of pixel-

wise changes, yet it remains a computationally inexpensive method for analysis of object motions and

effectively only previous frame needs to be stored. Given a point with its direction of motion where

the point coincides the center of a circle. How far the point can virtually travel inside the circle with

that direction? That virtual distance is called pseudo Euclidian distance (PED). Circle is an exceptional

ellipse in which the two foci are coincident at the center of the ellipse. The global motion orientation of

a motion history blob inside of an ellipse has been figured at Fig. 4.2. Fig. 4.3 shows a simple example

of PED. The PED, would be potentially used in wide variety of computer vision applications, remains

an important contribution on this thesis. There are several state-of-the-art algorithms for tracking object

of interest (OoI) based on e.g., particle filtering [11], hybrid strategy [31], etc. Since occlusions happen

frequently in limited camera scope, particle filtering may archive a commendable performance. But

particle filtering is a time-consuming process, especially when the object tracked is large. It is difficult

to complete the test on evaluation data within the limited time. Henceforth, we have taken up PED for

MHB or OoI tracking with the aim of different kinds of VED. To show the interest of the usage of PED,

we proposed a PED based methodology for various video events detection, e.g., PersonRuns, ObjectPut,

OpposingFlow, PeopleMeet, Embrace, and PeopleSplitUp. The results based on the detection of several

events at TRECVID2008 in real videos have been demonstrated. Some results show the robustness of

the methodology, while the rests give evidence the dimension of the difficulty of the problem at hand.

The TRECVID2008 surveillance event detection task is a big challenge to test the applicability of such

methodologies in a real world setting. Big challenges include highly clutter, massive population flow,

heavy occlusion, reflection, shadow, fluctuation, varying target sizes, low video quality, etc. Problem

also includes the MHB tracking, which heavily depends on direction and position of the blob. Hence,

MHB tracker is inefficient where there needs more information than only direction and position, e.g.,

if the blob of a person occludes long time or moves long time with occlusion or does not move an

elongated period of time, etc. Yet, we hold firmly the view that we have achieved much valuable

insights and experience to practical problems and future PED based evaluation of more effective VED

methodologies have the potential to come across with better results.
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6.1.3 Individual Target Tracking

Individual target tracking is a challenging research topic in computer vision. Obstacles in tracking indi-

vidual targets can grow due to quick target motion, changing appearance patterns of both the target and

the scene, nonrigid target structures, dynamic illumination, inter-target and target-to-scene occlusions,

multi-target confusion, etc.

We also employed many of our efforts in this direction of researches and contributed as stated below.

• First, we have studied a possible extended method ([SMD08b]), which was originally proposed

by [166]. The method is based on spatial information. It follows the detection of a target in a

video and the target is to be tracked in the following frames using the region covariance matric

method as introduced by [166]. The method can work in some extent as a single covariance

matrix extracted from a region of interest can match the region in some else views and poses.

• Second, we have proposed an approach ([SDc]) based on temporal-spatial information suitable

for tacking individual targets in parse crowd, medium density crowd, and dense crowd. This

approach differs from the MHB tracking method (PedVed [SD09b]) by two key directions:

– We have proposed how to extract the target (or the region of interest over frame in time)

and candidate (or the region of possible target over next frame in time) regions from the

silhouetted structures of more recently moving pixels of the object of interest by combining

two techniques, namely MHI [22] and Hu’s moments [80]. The MHI, which uses tempo-

ral history of position or motion, helps to create an MHB or silhouetted region of motion

component (SRMC) while Hu’s moments find the center of mass of the SRMC (Hu center).

Extraction of target/candidate is similar to the MHB tracking method (PedVed [SD09b]),

except after getting the center of mass from each SRMC, we consider the original video

frame to locate that center. A key advantage behind of this hybrid technique is that it is not

necessary to search the possible target region everywhere on the candidate frame except for

the candidate regions. Accordingly, searching process grows overpoweringly rapid.

– We have introduced individual target tracking techniques using distinct maximum peaks,

obtained by phase-correlation techniques, from the resulting peaks of target regions and

the candidate frame’s candidate regions. When two target and/or candidate regions are

similar, their phase-correlation function gives a distinct sharp peak (see Fig. 5.3 (a) and (b)).

Conversely, the peak of two dissimilar target and/or candidate regions drops significantly
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(see Fig. 5.3 (c)). The motivation of the usage of phase-correlation techniques is the fact that

unlike many spatial-domain algorithms, the phase-correlation means is resilient to noise,

occlusions, and other defects typical of medical or satellite images. There would be more

than one candidates which will have almost the same peak heights and cause ambiguity

and difficulty in tracking process. To solve the problem, we propose tracking techniques

based on the highest geometric mean. In the evaluation method, if a ground truth ellipse

overlaps with the system output rectangle in any frame, we define it to be a true positive or

correct detection. If there is no overlapping system output within the ground truth ellipse,

we define it as a false negative or miss detection. If there is no ground truth but there is a

system output, then it is a false positive or false alarm. If there is no ground truth ellipse as

well as there is no system output rectangle, then we define it as a true negative or correct

rejection. Normally, true negative occurs when the target is motionless or the state of being

occluded or out of the video frame.

The video sequences of the PETS 2009 Benchmark data have been considered for performance

evaluation of the approach. The noticeable differences among [SMD08b], [SDc], and [139, 140] are:

• Tracking in [SMD08b] exclusively based on spatial information, whereas the method proposed

in [SDc] based on both spatial and temporal information.

• In [SMD08b] region covariance has been used as target descriptor and the integral images are

processed for fast covariance computation. Target region with smallest dissimilarity is selected

as the matching region and track that region in the next frame. In [SDc] the silhouetted region

of motion component on the original frame has been used as a target descriptor and phase cor-

relation techniques are used to find similarity measure. The highest similarity measure of phase

correlation techniques is considered as the best match of the target in the next frame.

• A key superiority behind the approach of [SDc] is that it is not necessary to search the possible

target region everywhere on the candidate frame except for the candidate regions. Consequently,

the searching process becomes overpowering rapid.

• The approaches of [139, 140] work well with five people scenes; whereas the approach of [SDc]

can work to track multiple targets irrespective of sparse crowd, medium density crowd, and dense

crowd scenes.
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• Experimental results reported that the proposed framework of [SDc] is good for individual target

tracking. The average precision and accuracy rates are also satisfactory for the applications of

computer vision. In spite of that, a deficiency of this approach is that if the target will be confused

or misdirected once, then it will be laborious to win back the real target.

Experimental results reported that the proposed approach [SDc] is suitable for individual target

tracking in diverse crowd scenes. Nevertheless, an imperfection of this approach is that if the target

will be confused or misdirected once, then it will be challenging to get back the real target. Deeming

the favorable and the unfavorable factors of the approach, it is still highly accurate and its sensitivity to

the effects of mutations in noise and lighting, which assures high-quality performance on fades, targets

moving in and out of the shade, and flashes of light.

6.2 Conclusion

In this thesis, we have developed algorithms which accommodate some of the challenges encountered in

videos of crowded environments to a certain degree. We have developed six approaches namely, Covari-

ance Matrix, NCRIM, Mahalanobis Metric, Bhattacharyya Metric, Enumerated Entropy, and Shannon

Entropy. Approaches have been adopted by first performing a global-level motion analysis within each

frame’s region of interest that provides the knowledge of crowd’s multi-modal behaviors in the form

of complex spatiotemporal structures. These structures are then employed in the detection of unusual

surveillance events within crowds. To conduct experiments, we have heavily relied on three thought-

provoking datasets so-called Escalator dataset [132], UMN dataset [137], and Web dataset [131]. The

results reflect some unique global excellences and breakages of the approaches. After analyzing motion

in an else view, we have keyed out a metric called pseudo Euclidian distance. To show its usage, a

methodology based on it has been employed in the detection various usual surveillance events from the

TRECVID2008. Some results report the robustness of the methodology, while the rests give evidence

the dimension of the difficulty of the problem at hand. Big challenges include, but are not limited to,

massive population flow, heavy occlusion, reflection, shadow, fluctuation, varying target sizes, etc. Yet,

we have obtained much useful insights and experience to the practical problems. Furthermore, the the-

sis explores a single target tracking algorithm within miscellaneous crowded scenes. Video sequences

from the PETS2009 Benchmark data have been utilized to evaluate its performance. Viewing its pros

and cons, the algorithm is still highly accurate and its sensitivity to the effects of diversifications in noise

and lighting, which ascertains high-quality performance on disappearances, targets moving in and out
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of the shadow, and flashes of light.

6.3 Future Directions

6.3.1 Automatic Estimation of Threshold

Automatic threshold estimation is still one of the major challenges in computer vision. All the methods

introduced in this thesis use some sort of threshold anyway. All of the thresholds have been defined

statically. Future work would make inquiry how to estimate threshold automatically.

6.3.2 Occlusion Handling

Occlusion handling is another major challenge in computer vision. All the approaches in Chapter 3

based on the optical flow method and the analysis of the spatiotemporal information obtained by it. In

optical flow technique occlusion handling is not taken into account, because the occluded pixels violate

a major assumption of optical flow technique that each pixel goes somewhere. Consequently, occlusion

handling has been looked over all of the approaches. Future work would investigate how to minimize

the occlusion problem.

6.3.3 Multi-camera Involvement

Advances in sensing technologies as well as the increasing availability of computational power and

efficient bandwidth usage methods are favoring the emergence of applications based on distributed sys-

tems combining multiple cameras and other sensing modalities. Multiple cameras can provide different

viewpoints of a region of interest. Since all experiments have been conducted on videos of single

fixed camera, it would be interesting to test the approaches with moving single camera datasets or

multi-camera datasets. Future work would take into account the dedication of multiple cameras so

that videos, like escalators, could be conclusively broken down into its essential features properly in

all parts (e.g., commencement, halfway point, and outlet) of an elongated escalator to proclaim the ec-

centric event if there will exist any. Consequently, the engagement of multiple cameras would help to

analyze many region of interests which would be occluded by a single camera.
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7.1 Récapitulatif des contributions

Détecter de manière efficace les comportements humains à partir d’un grand nombre de séquences

de vidéosurveillance - tant sur le plan rétrospectif qu’en temps réel - est une technologie fondamen-

tale pour beaucoup d’applications de haut niveau, dont l’importance se révèle cruciale en matière de

sûreté et de sécurité publique. Pour de nombreuses applications de sécurité intensive, les systèmes

de vidéosurveillance ont été soumis à des approches prometteuses. L’objectif consiste à identifier les

vraies problématiques liées aux systèmes et aux technologies de surveillance, et de trouver des solu-

tions concrètes pour résoudre des questions essentielles relatives aux applications de vision assistée par

ordinateur selon des perspectives à la fois théoriques et pratiques.

Cette thèse a pour objectif de minimiser ou de surmonter certains problèmes liés à la vision assistée

par ordinateur générés par la détection d’événements/comportements intéressants et le suivi d’individus-

cibles dans diverses scènes de foule. Cette thèse s’appuie sur les trois contributions suivantes : la dé-

tection d’événements inhabituels ou anormaux, la détection d’événements habituels ou normaux et le

suivi d’individus-cibles dans des scènes de foule.

7.1.1 Détection d’événements inhabituels

Dans les domaines de la sûreté et de la sécurité, la détection d’événements anormaux (inhabituels)

est une tâche cruciale pour les systèmes de vidéosurveillance. Mais c’est également une mission par-

ticulièrement ambitieuse puisque ce type d’événement se produit de manière irrégulière. Il est donc

difficile d’en donner une définition. La vidéosurveillance automatique est séduisante car elle a pour but

de remplacer des observateurs humains par des systèmes intelligents de vidéosurveillance moins coû-

teux. Le défi scientifique consiste donc à inventer et appliquer des systèmes automatiques permettant de

restituer des informations détaillées sur les activités et les comportements d’individus ou de véhicules

observés grâce à des capteurs (par exemple des caméras). La plupart des travaux de recherche se sont

orientés vers l’analyse des comportements d’une foule et la détection d’activités anormales. Cependant,

chaque étude comporte des avantages et des inconvénients. Les travaux auxquels nous avons contribués

s’orientent également dans cette direction.

Puisque l’attention visuelle permet d’orienter l’analyse et le traitement vers certaines parties d’une

image, un outil convaincant est apparu ces dernières années pour accroître la performance de la robo-
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tisation et de la vision assistée par ordinateur dans de nombreux domaines. Nous avons commencé par

examiner la saillance/visibilité statique et spatio-temporelle pour détecter des événements anormaux

dans une scène de foule. Nous en sommes arrivés à la conclusion que, pour détecter des événements

anormaux, les modèles de saillance/visibilité seraient uniquement adaptés aux scènes dans lesquelles

la foule est clairsemée (e.g., Fig. 3.2). Nous avons ainsi recherché une approche convenable et proposé

plusieurs méthodes basées sur les informations spatio-temporelles pour analyser les comportements

d’une foule et détecter des événements anormaux dans des scènes où la foule est plus ou moins dense

(e.g., Fig. 1.1).

Les informations spatio-temporelles prennent en compte les données de mouvement pour détecter

et segmenter les cibles ou objets d’intérêt grâce au calcul du flux optique, à la correspondance des blocs

ou aux autres méthodes de détection du mouvement. Pour analyser des informations spatio-temporelles

complexes, nous proposons les approches suivantes :

– La matrice de covariance (3.2 [SID08a]),

– La MNACR (Mesure Normalisée de l’Augmentation Continue du Rang) (3.3 [SD09a]),

– La distance de Mahalanobis (3.4 [SD09c]),

– La distance de Bhattacharyya (3.5 [SD10a]),

– L’entropie énumérée (3.6 [SID08b, SID10]),

– L’entropie de Shannon (3.7 [SDb])

Ces approches ont été annexées aux états de l’art directionnels existants.

Quel que soit l’environnement de vidéosurveillance (en intérieur ou en extérieur), la région d’in-

térêt (RdI) permet un traitement plus rapide de la vidéo. Selon les applications et les types de vidéos,

la RdI peut s’étendre d’une petite partie de l’image à son ensemble. Dans certains cas pratiques (pour

contrôler, par exemple, des escalators, des couloirs linéaires, une autoroute etc.), la région de traitement

de la vidéo peut être définie en utilisant un masque plutôt qu’en analysant l’ensemble de l’image. Nous

avons introduit les trois types de RdI suivants : le MHM (Motion Heat Map), le MM (Motion Map), et le

RIIM (Region of Interest Image Map). En fait, si leurs fonctions respectives sont identiques, la seule dif-

férence concerne leur implémentation. Le MHM requiert une longue vidéo pour pouvoir produire une

région chaude sur l’image indiquant la principale zone d’activité, tandis que le MM et le RIIM néces-

sitent une séquence vidéo beaucoup plus courte pour générer une manœuvre générale de mouvement.

Généralement, les RdI améliorent la qualité des résultats et accélèrent la durée de traitement.
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7.1.1.1 La matrice de covariance

Cette approche détecte les événements inhabituels découlant principalement du flot unidirection-

nel de la foule (par exemple, des escalators). Les images vidéo sont étiquetées comme normales ou

anormales selon la mesure de distance entre les matrices de covariance relatives à la distribution des

vecteurs de flux optique calculés sur plusieurs images consécutives. Ces vecteurs de flux sont le résultat

du suivi d’un ensemble de points caractéristiques déterminés par le détecteur de Harris appliqués sur

chaque image selon une RdI. Le MHM a été conçu pour représenter les RdI. La Fig. 3.5 est un simple

organigramme représentant la structure proposée. Cette approche a été testée à partir d’un ensemble

de données émises par une caméra unique placée à la sortie des escalators dans un aéroport (appelé

ensemble de données Escalator [132]).

L’approche est simple et facile à comprendre. Un problème d’initialisation peut être ressenti pendant

l’étape de mise en application.

7.1.1.2 La MNACR

Cette approche permet de détecter également les images anormales à partir de vidéos dont l’arrière-

plan est indifféremment statique ou dynamique. Elle s’appuie sur l’utilisation de caractéristiques ob-

tenues à partir d’une région d’intérêt spatio-temporelle (RdI-ST), estimée grâce au MHI (Motion His-

tory Image). Dans les RdI-ST et contrairement à un mouvement normal, un mouvement exceptionnel

va modifier les vecteurs de mouvement (la direction, par exemple) de manière significative. La mesure

normalisée de l’augmentation continue du rang (MNACR) calculée à partir des caractéristiques RdI-ST

a été utilisée en tant qu’indice pour déterminer la normalité ou l’anormalité d’une image. Les résultats

liés à la détection d’images anormales dans des séquences vidéo réelles, obtenues à partir des données

Escalator ([132]), ont été présentés pour démontrer l’intérêt de l’approche proposée.

Cette approche, qui permet de détecter des événements anormaux non détectés par la matrice de

covariance (e.g., voir Fig. 3.9), est donc plus performante.

7.1.1.3 La distance de Mahalanobis

Comme les approches précédentes, celle-ci permet de déceler des événements anormaux principa-

lement dans les systèmes de vidéosurveillance (par exemple des escalators, des couloirs étroits etc.) en

s’appuyant sur l’analyse du flux optique correspondant au comportement de la foule selon les calculs de

Mahalanobis et χ2. Les images vidéo sont signalées comme normales ou anormales selon la classifica-
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tion statistique donnée par la distribution des distances de Mahalanobis, qui portent sur les informations

spatio-temporelles normalisées des vecteurs de flux optique. Ces vecteurs sont calculés à partir de petits

blocs présents dans une région spécifique formée par des images successives, à savoir le RII (Region of

Interest Image), mis en évidence par le RIIM (Region of Interest Image Map). On obtient le RIIM grâce

à un traitement spécial issu de la segmentation au premier plan des sujets en mouvement.

La distance de Mahalanobis est une mesure qui satisfait les conditions de distance suivantes : (i) la

non-négativité, (ii) l’identité des indiscernables, (iii) la symétrie ou la commutativité, et (iv) l’inégalité

triangulaire. Cette distance s’appuie sur les corrélations entre les variables à partir desquelles plusieurs

modèles peuvent être identifiés et analysés. Cette méthode est utile pour déterminer la similarité d’un

ensemble d’échantillons inconnu par rapport à un ensemble connu. Cette mesure diffère de la distance

euclidienne puisqu’elle prend en compte les corrélations entre l’ensemble des données et que l’échelle

est invariante. En effet, l’échelle des mesures n’est pas prise en compte. De nombreuses statistiques de

test sont approximativement distribuées, comme χ2. La distance au carré de Mahalanobis est distribuée

de la même manière qu’une distribution χ2 avec un degré de liberté égal au nombre de variables indé-

pendantes de l’analyse. Cependant, la distribution χ2 ne comporte qu’un seul paramètre appelé degré

de liberté. La courbe de distribution χ2 a une forme oblique générée par de très faibles degrés de li-

berté, et elle change radicalement lorsque les degrés de liberté augmentent. Enfin, lorsque les degrés de

liberté sont élevés, la courbe de distribution χ2 semble normale. Comme pour toutes les autres courbes

de distribution continue, la surface totale sous une courbe de distribution χ2 est égale à 1.0. La règle des

trois sigmas indique que dans le cas d’une distribution normale, environ 68%, 95% et 97,7% des valeurs

comportent des déviations de moyenne standard d’une valeur de 1, 2 et 3. De toute évidence, presque

toutes les valeurs atteignent le niveau 3. Par conséquent, les échantillons dont la distance au carré de Ma-

halanobis est supérieure à 3 ont une probabilité inférieure à 0,01. Ces échantillons sont classés comme

appartenant à un groupe non-membre. Les échantillons dont la distance au carré de Mahalanobis est

inférieure à 3 sont classés dans un groupe membre. La détermination du seuil dépend de l’application et

des types d’échantillons. Dans l’approche que nous proposons, chaque distance de Mahalanobis estimée

(Dm(i)) appartient soit à un groupe membre soit à un groupe non-membre. L’échantillon dont la Dm(i)

est supérieure à
√

3 est considéré comme appartenant à un groupe non-membre. Sinon, il appartient à un

groupe membre. Un groupe membre comporte exclusivement des échantillons relatifs à un événement

normal, tandis qu’un groupe non-membre contient essentiellement des échantillons relatifs à un événe-

ment anormal, notamment les aberrations (outliers). Pour s’assurer qu’une image vidéo est normale ou

anormale, nous traitons simplement les échantillons du groupe non-membre. L’utilisation de la distance
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de Mahalanobis fait disparaître les limitations liées à la distance euclidienne, par exemple :

– Elle indique systématiquement l’échelle de l’axe des coordonnées ;

– Elle améliore la corrélation entre les différentes caractéristiques ;

– Elle produit des limites décisionnelles à la fois courbées et linéaires.

Néanmoins, ces avantages ne sont pas sans conséquence. Le calcul de la matrice de corrélation peut

soulever quelques problèmes. Lorsque les données étudiées sont mesurées sur un grand nombre de

variables, elles peuvent contrôler beaucoup d’informations redondantes ou corrélées. C’est cette multi-

colinéarité des données qui aboutit à une matrice de corrélations unique ne pouvant être inversée. Par

ailleurs, le nombre d’échantillons présents dans l’ensemble de données doit être supérieur au nombre

de variables. Cependant, dans notre approche, ces deux problèmes ont été minimisés grâce, respective-

ment, à 5 variables et au suivi de 1500 échantillons (points d’intérêt) dans chaque image. Enfin, cette

approche a été testée à partir de l’ensemble des données Escalator ([132]) et UMN ([137]).

7.1.1.4 La distance de Bhattacharyya

L’un des problèmes majeurs en vision assistée par ordinateur consiste à calculer la différence entre

les distributions des caractéristiques, notamment de couleurs et de textures [150]. Notre étude s’inté-

resse principalement à la distance de Bhattacharyya et à ses dérivés. La statistique χ2 est utilisée pour

apporter une mesure de similarité entre deux distributions ou histogrammes [110]. Cette mesure estime

la statistique χ2. En transformant toutes les variances pour les rendre constantes, la mesure de Battha-

charyya élude le problème de singularité de la statistique χ2 au moment de comparer les classes vides

(empty bins) des histogrammes [2]. Après avoir comparé la distance de Bhattacharyya et la divergence

de Kullback-Leibler, l’auteur de [95] a remarqué que, pour certains points, la distance de Bhattacharyya

aboutit à de meilleurs résultats tandis que pour d’autres les résultats sont équivalents. De nombreuses

mesures (Bhattacharyya, euclidienne, Kullback-Leibler, Fisher) ont été examinées pour la différentia-

tion d’image, et il en a été conclu que la distance de Battacharyya est le différentiateur le plus efficace

[18]. Les mesures de différentiation, qui s’appuient sur des estimations empiriques de la distribution des

caractéristiques, ont été développées pour la classification [138], la récupération d’images [145, 151],

la segmentation non-surveillée [77], la détection des contours [153], le suivi d’objets [38], etc. Des

études de référence préliminaires ont confirmé que les mesures de différentiation basées sur la distri-

bution présentent des résultats excellents dans les domaines suivants : récupération d’images [145],

segmentation non-surveillée des textures [77], conjonction avec un classificateur k-plus proche voisin

(k–nearest-neighbor), et reconnaissance d’objets basée sur la couleur et la texture [163, 138].
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Dans notre approche, nous estimons les changements soudains et les variations anormales de mou-

vement au sein d’un ensemble de points d’intérêt identifiés par le détecteur de Harris, suivis par la

technique du flux optique et le classement par l’algorithme K-means. La distance de Mahalanobis est

un cas particulier de la distance de Bhattacharyya, dont l’interprétation initiale suscite quelques pro-

blèmes. Ainsi, elle n’impose aucune structure métrique car elle transgresse au moins un des axiomes

de mesure de distance [67]. Les auteurs de [38] ont proposé une méthode dérivée de la mesure de

Bhattacharyya sous la forme
√

1− cosθ (avec θ l’angle formé par les deux vecteurs de positons) qui

représente en effet la distance entre les distributions, puisque cette distance obéit à tous les axiomes

métriques. Au lieu de recourir à la mesure proposée par [38], nous prenons en compte la borne de

Bhattacharyya communément utilisée pour la reconnaissance de modèle. La distance de Bhattacha-

ryya a été utilisée comme mesure de séparabilité de classe dans la sélection des caractéristiques, et est

connue pour indiquer les bornes supérieures et inférieures de l’erreur de Bayes. Pour calculer toutes les

distances de Bhattacharyya, on procède au calcul des moyennes géométriques (geometric means) des

distances de Bhattacharyya dans les classes et l’on regroupe ces moyennes pour calculer le log-average

et représenter la distance effective unique (Gβ ) entre deux images consécutives en utilisant l’algorithme

1. La distance normalisée Gβ fournit les informations relatives à l’état d’une activité anormale dans

des images vidéo à travers le temps. Pour mener nos expérimentations, nous avons utilisé l’ensemble

de données Escalator ([132]) et UMN ([137]). Nous en avons déduit que les distances entre les amas

des coins suivis dans les zones en mouvement (movers) représentent une méthode convenable permet-

tant de définir un comportement anormal puisque les distances varient de manière significative en cas

d’anomalie.

7.1.1.5 L’entropie énumérée

Cette approche permet de déceler des images anormales dans des vidéos en temps réel. Elle se

déroule en plusieurs étapes :

1. Extraction du MHM (Motion Heat Map). La carte de chaleur représente les intensités de mouve-

ment. Les zones chaudes correspondent par exemple aux mouvements de grande intensité, tandis

que les zones froides représentent les mouvements de faible intensité, etc.

2. Extraction des points d’intérêt de Harris dans les régions chaudes de la scène. Dans les cas les

plus simples, cette étape est appliquée dans des zones bien délimitées. On considère un MHM

binaire (binary MHM), blanc (mouvement) et noir (absence de mouvement). Les points d’intérêt
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sont appliqués dans les régions blanches, et les tâches sont extraites.

3. Calcul des flux optiques sur les points d’intérêt dont les limites sont définies par les régions

chaudes de la scène.

4. Calcul des caractéristiques de niveau intermédiaire comme la densité, le coefficient de variation

directionnelle et l’histogramme directionnel.

5. A partir du calcul des caractéristiques de niveau intermédiaire tel qu’indiqué dans l’étape précé-

dente, définition des caractéristiques de haut niveau (comme l’entropie) définissant la normalité

ou l’anormalité des événements et renvoyant plusieurs types d’anormalités.

Les étapes 1 à 4 sont génériques et ne dépendent pas d’un domaine d’application particulier. Elles

concernent l’extraction des caractéristiques de bas niveau. La cinquième étape dépend du domaine

d’application et requiert un processus d’apprentissage spécifique. L’organigramme de nos travaux est

indiqué en Fig. 3.24 et s’articule autour d’une structure comportant les trois niveaux de caractéristiques

suivants :

– Bas niveau (Low-level) : il s’applique aux calculs directement extraits du signal (données vi-

suelles) comme les points d’intérêt, les régions d’intérêt, les tâches (blobs), les contours, les

stries (ridges), le flux optique, etc. Nous utilisons un mélange gaussien pour détecter les premiers

plans dans les zones où la foule est clairsemée (faible densité), et les flux optiques dans les zones

où la foule est importante (forte densité).

– Niveau intermédiaire (Mid-level) : il concerne les caractéristiques générées après un processus

d’apprentissage directement à partir des caractéristiques de bas niveau, et contribue à rehausser

les caractéristiques de haut niveau (sémantiques) comme la densité de la foule (proportion de

tâches dans la scène), la trajectoire, la vitesse, la direction, l’accélération etc. Les caractéristiques

de niveau intermédiaire sont calculées à partir des caractéristiques de bas niveau (par exemple les

régions d’intérêt, les points d’intérêt etc.) et sont classées en structures.

– Haut niveau (High-level) : il s’applique aux caractéristiques comportant plus de sémantiques

qu’au niveau intermédiaire et en nombre suffisant pour prendre des décisions. Nous sommes

ici en présence d’événements normaux/anormaux. Nous avons développé une fonction appelée

entropie qui utilise les caractéristiques de niveau intermédiaire telles que le MAR (Motion Area

Ratio), le coefficient de variation directionnelle, le coefficient de variation de la distance, et les

caractéristiques de l’histogramme directionnel. Pour savoir si une image (frame) est normale ou

anormale, nous observons son entropie minimale.
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Cette approche a été testée à partir des ensembles de données Escalator et UMN. Bien qu’elle

permette de détecter un grand nombre d’anomalies, elle est sujette aux restrictions suivantes :

– En premier lieu, nous avons nous-mêmes défini la fonction d’entropie, qui par conséquent ne

reflète pas la définition normalement utilisée en théorie de l’information (aussi appelée entropie

de Shannon). De manière plus explicite, notre entropie énumérée est conçue à partir d’une unique

probabilité et non d’un ensemble de probabilités dont la somme est égale à 1.

– De plus, puisque les caractéristiques de niveau intermédiaire sont extraites selon les résultats

de la détection des coins de Harris, ces caractéristiques peuvent être sensibles à la texture. Des

caractéristiques comme celle de l’histogramme directionnel pourraient être déformées dans une

telle situation.

7.1.1.6 L’entropie de Shannon

Estimer l’entropie est un problème crucial qui se pose lors de la reconnaissance de modèle statis-

tique, de la quantification vectorielle, de l’indexation et de l’enregistrement d’images, etc. L’estimation

non-paramétrique de l’entropie de Shannon a suscité l’intérêt dans de nombreux domaines comme la

statistique non-paramétrique, la reconnaissance de modèle, l’identification de modèle, l’enregistrement

d’image etc. [3, 168, 49, 90, 74, 13, 171].

Nous proposons une approche simple mais efficace (dans [SDb]) permettant de détecter des anoma-

lies dans des vidéos en utilisant l’entropie de Shannon. Le calcul du degré du caractère aléatoire (degree

of randomness) permet d’estimer l’entropie de Shannon lors du traitement statistique des informations

spatio-temporelles relatives à un ensemble de points d’intérêt dans une région d’intérêt. L’entropie est

une mesure calculant le caractère désordonné/aléatoire d’une image vidéo. Il a été démontré que dans

les situations anormales, le degré du caractère aléatoire des directions (variance circulaire) change de

manière notable et que seule la variation de la direction change, ce qui n’est pas le cas lorsqu’il y a

variation du déplacement du point d’intérêt. Le degré du caractère aléatoire des déplacements a été ap-

pliqué afin de compenser cette faiblesse. Des simulations simples ont été effectuées pour reconnaître les

caractéristiques de ces éléments rudimentaires relatifs à l’entropie. Le calcul de l’entropie normalisée

fournit des informations sur l’état d’anormalité. La Fig. 3.27 expose l’approche proposée.

Notre premier objectif consiste à présenter une méthode holistique, indépendante de la segmentation

ou du suivi d’un individu, pour détecter les anomalies en calculant le degré de désordre/chaos contenu

dans des vidéos. Nos travaux et ceux de [8, 7, 83] indiquent qu’en cas d’urgence, le modèle de flux

optique comporte suffisamment de perturbations. De même, dans les travaux de [86], les auteurs ont
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utilisé quelques termes s’approchant des nôtres tels que vitesse et accélération. D’une certaine manière,

notre approche pourrait être considérée comme une prolongation de ces travaux. Toutefois, nous avons

pris une direction différente en utilisant deux mesures statistiques appelées degré du caractère aléatoire

des directions (variance circulaire) et degré du caractère aléatoire des déplacements (coefficient de va-

riation des déplacements) des points d’intérêt. Ces éléments sont à la fois essentiels et rudimentaires

pour définir notre calcul de l’entropie, c’est-à-dire le calcul du caractère désordonné et aléatoire d’une

image vidéo. Plus le désordre/chaos est présent dans une image, plus il y a d’entropie, c’est-à-dire que

les images anormales ont une entropie plus élevées que les images normales. Nous avons démontré que

la variance circulaire - l’un des deux principes essentiels de l’entropie - change de manière significative

dans des circonstances anormales, et qu’elle change non pas lorsque le vecteur de longueur du point

d’intérêt varie mais uniquement lorsqu’il y a variation directionnelle du point d’intérêt. Pour compen-

ser ce défaut lié à la variance circulaire, nous avons utilisé une quantité normalisée et adimensionnelle

appelée degré du caractère aléatoire des déplacements - un autre principe essentiel de l’entropie - qui

consiste en un calcul statistique du rapport entre déviation standard et moyenne. De plus, nous avons

précisé qu’une anomalie concerne également les déplacements. Par conséquent, le degré du caractère

aléatoire des déplacements - un facteur suffisant dans le calcul de l’entropie - joue un rôle important

dans la détection de certains types d’aberrations dans les vidéos. Lors de l’estimation de l’entropie, on

peut directement détecter des anomalies sans procéder à la segmentation ou au suivi d’un individu. Par

ailleurs, ce système fonctionne tout autant avec des scènes comportant de hautes densités de mouve-

ment qu’avec des scènes de faible densité. Il y a également d’autres avantages : (i) il détecte tous les

événements d’une vidéo comportant des variations d’entropie importantes par comparaison aux précé-

dents événements ; (ii) il autorise tous les flux directionnels de mouvement sans restriction de nombre ;

(iii) il ne nécessite pas de lourd processus ni de données d’apprentissage mais un seuil doit être défini

au préalable.

Nous avons mené nos expériences en conditions réelles à partir de divers ensembles de données

Escalator, UMN, Web ([131]), etc. Les résultats des simulations et des expériences indiquent que le

calcul de l’entropie des images à travers le temps est une manière efficace de déterminer les aberra-

tions présentes dans une vidéo. Les résultats montrent que la méthode proposée fonctionne à un niveau

avancé pour détecter des anomalies dans une séquence, et qu’elle est un peu plus performante que celle

présentée dans les travaux de Mehran et al. [131], puisqu’en effet aucun faux positif n’a été reporté dans

la méthode proposée. Le tableau 3.3 présente les résultats quantitatifs obtenus après comparaison avec

les résultats de Mehran et al. [131] à partir de quatre échantillons vidéo identiques.
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7.1.1.7 Avantages et inconvénients de ces approches

Nous avons présenté six approches différentes permettant de détecter les anomalies présentes dans

des vidéos impliquant des scènes de foule. Elles s’appuient toutes sur l’analyse des informations spatio-

temporelles, ce qui implique des avantages et inconvénients particuliers sur le plan général. Toutes ces

méthodes ont été testées à partir de séquences de vidéosurveillance produites par une seule caméra.

Avantages - Les principaux atouts des systèmes proposés sont les suivants :

– Pour la plupart, ces méthodes sont simples, facilement compréhensibles et applicables ;

– Elles ne requièrent pas de processus ni de données d’apprentissage explicites ;

– Elles supportent tous les flux directionnels de mouvement sans restriction de nombre dans les

vidéos ;

– La durée de traitement est réduite grâce à la prise en compte d’une région d’intérêt ;

– Les anomalies sont directement détectées sans recourir à la segmentation ou au suivi individuel.

Inconvénients - Les trois principaux inconvénients des approches proposées sont les suivants :

– Pour qu’une décision soit prise, ces approches nécessitent qu’un seuil soit préalablement défini ;

– Elles sont basées sur le concept de flux optique. Celui-ci ne prend pas en compte la gestion des

occlusions, incompatibles avec l’un des principes de base du flux optique. Par conséquent, la

gestion des occlusions est ignorée.

– Elles détectent les aberrations mais ne les localisent pas dans la vidéo.

7.1.2 Détection d’événements habituels

Dans des environnements très fréquentés comme les aéroports, les centres commerciaux, les gares,

les parkings, les centres-villes etc., il est très fréquent que les objets se confondent et s’obstruent les

uns les autres. Par conséquent, les méthodes conventionnelles de soustraction de l’arrière-plan ne fonc-

tionnent pas de manière très efficace. De nombreux algorithmes de détection d’image, s’appuyant sur

des cascades de transfert [170, 114] et de reconnaissance [41, 157, 20] ont montré des résultats très

prometteurs en matière de détection de piétons dans un environnement réel très fréquenté comportant

des occlusions. Pour détecter les piétons, un histogramme de gradients a été utilisé dans [41], tandis que

les auteurs de [157, 20] ont eu recours à un modèle inspiré de la biologie pour reconnaître différentes

catégories, dont les piétons. Cependant, la plupart de ces algorithmes de détection de piétons est parti-
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culièrement lente pour être utilisée par des applications fonctionnant en temps réel. Ainsi, les auteurs

de [184] ont remarqué que les algorithmes complexes permettant de détecter les piétons, ont besoin

d’environ 0,5 secondes pour reconnaître une image de dimension 128x64 dans [41], de deux secondes

par image dans [157] et de 80 secondes par image dans [20]. Un algorithme de détection et de suivi

d’une cible, s’appuyant sur les calculs réalisés par un capteur audio stéréo et de vision cyclopique, a

été présenté dans [192]. Pour détecter les événements de surveillance issus de TRECVID2008 [43], de

nombreux algorithmes ont été proposés, basés notamment sur les éléments suivants : la détection des

changements [188], l’analyse de la trajectoire [109], la connaissance de la trajectoire et du domaine

[55], les cubes vidéo spatio-temporels [53], la méthode de Haar pour détecter les piétons et la concor-

dance d’histogrammes [184], les concepts de flux optique [61, 97, 58], etc. Dans les travaux présentés

dans [109], l’événement rencontre de personnes (PeopleMeet) a été essentiellement détecté grâce à

l’analyse de la trajectoire des piétons. Les personnes ont été détectées et pistées dans la scène grâce à la

méthode décrite dans [81]. Pour obtenir des trajectoires piétons fiables dans le cadre de la détection d’un

événement où des personnes se rencontrent, les auteurs ont proposé une méthode d’association hiérar-

chique basée sur la détection, méthode qui permet de suivre de manière efficace plusieurs piétons dans

des conditions difficiles. Leur méthode a permis de déterminer les trajectoires en associant progressi-

vement les réponses envoyées par le détecteur de piétons présenté dans [176]. La combinaison de la

trajectoire et des sous-systèmes de connaissance du domaine est présentée dans [55]. Un sous-système

trajectoire applique la technique de détection humaine et de suivi pour générer la trajectoire. Trois ni-

veaux de caractéristiques sont utilisés pour la détection : PersonsRuns, PeopleMeet, PeopleSplitUp et

Embrace. Le sous-système domaine élabore des modèles spécifiques pour PeopleMeet, OpposingFlow

et ElevatorNoEntry, selon la connaissance du domaine. Néanmoins, le grand nombre de possibilités

liées à un événement observé sous différents angles, à différentes échelles, à différents degrés d’occlu-

sion partielle etc., complique le travail des détecteurs d’événement. Par conséquent, il est nécessaire

d’en améliorer l’efficacité en procédant à des recherches plus poussées.

C’est dans cette direction que nous avons orienté nos efforts et ajouté avec succès les contributions

suivantes (4 [SD09b]) :

– Nous avons d’abord adapté une nouvelle méthode permettant de générer automatiquement la

distance pseudo-euclidienne (Pseudo Euclidean Distance - PED) à partir du traitement trigono-

métrique relatif au ciblage de l’historique des blobs dans l’image (Motion History Blob - MHB).

– Puis nous avons proposé une méthodologie basée sur le PED pour la détection d’un événement

vidéo (Video Event Detection - VED).



7.1. RÉCAPITULATIF DES CONTRIBUTIONS 195

Pour procéder à l’extraction des caractéristiques d’une image, l’estimation du flux optique pour-

rait être un outil performant dans le cas de scènes de foule. Cependant, il est trop sensible au bruit,

même faible, car l’angle de vue de la caméra est trop large. Lorsqu’une vidéo implique beaucoup de

monde, la présence d’un faible bruit dans une image sera extrêmement préjudiciable et peu fiable. Par

conséquent, il est difficile d’estimer le mouvement des objets par le biais du flux optique. Ceci dit, nous

nous appuyons avec confiance sur le MHI (Motion History Image), le MHB (Motion History Blob) et

le traitement trigonométrique des MHB qui génère des PED pour extraire efficacement les caractéris-

tiques d’une image. Le MHI est une représentation de l’historique des changements rencontrés par les

pixels. Cette méthode de calcul est peu coûteuse pour analyser les mouvements d’un objet, et il est

vrai que seules les images précédentes doivent être mémorisées. Prenons un point et la direction de son

mouvement. Ce point coïncide avec le centre d’un cercle. Quelle distance ce point peut-il virtuellement

parcourir à l’intérieur du cercle dans cette même direction ? La distance virtuelle est appelée distance

pseudo-euclidienne (Pseudo Eclidian Distance - PED). Le cercle a la forme d’une ellipse exceptionnelle

dans laquelle deux foyers coïncident avec le centre de cette ellipse. L’orientation générale de l’image

d’un MHB dans une ellipse est indiquée dans la Fig. 4.2.

Un exemple basique de calcul du PED est indiqué dans la Fig. 4.3. Le PED, qui pourrait être utilisé

dans un grand nombre d’applications de vision assistée par ordinateur, occupe une part importante de

cette thèse. Il existe plusieurs algorithmes performants permettant de suivre des objets d’intérêt (OdI)

à partir, par exemple, du filtrage de particules (particle filtering) [11], d’une stratégie hybride [31], etc.

Dans la mesure où des occlusions se produisent de manière fréquente lorsque le champ de la caméra

est restreint, le filtrage de particules pourrait donner des résultats remarquables. Mais le filtrage est un

processus qui requiert beaucoup de temps, particulièrement lorsque les dimensions de l’objet à suivre

sont grandes. Il est difficile de tester des données d’évaluation sur un temps limité. Par conséquent,

nous avons opté pour le suivi PED plutôt que pour le MHB ou le PdI afin d’obtenir plusieurs types de

VED. Afin de démontrer l’intérêt du PED, nous avons proposé une méthodologie pour détecter plusieurs

types d’événements dans une vidéo, tels que PersonRuns, ObjectPut, OpposingFlow, PeopleMeet, Em-

brace et PeopleSplitUp. Les résultats relatifs à la détection de plusieurs événements dans des vidéos

réelles issues de TRECVID2008 ont été démontrés. Certains d’entre eux montrent la robustesse de

cette méthode, d’autres la difficulté à résoudre ce problème. La détection d’un événement vidéo issu de

TRECVID2008 [43] est particulièrement complexe pour tester l’applicabilité de telles méthodologies

en conditions réelles. Cette complexité découle des éléments suivants : un encombrement important, un

flux massif de personnes, une occlusion très élevée, la réflexion, les ombres, les fluctuations, le chan-
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gement de taille des cibles, la mauvaise qualité de la vidéo etc. D’autres problèmes portent également

sur le suivi MHB, fortement dépendant de la direction et de la position des blobs. Au final, le pisteur

MHB est inefficace dans les cas où la direction et la position ne sont pas des informations suffisantes

(par exemple, lorsque qu’un blob représentant une personne est soumise à une occlusion pendant une

longue durée, qu’il se déplace longtemps avec l’occlusion, ou encore qu’il ne bouge pas pendant un

certain temps, etc.).

Néanmoins, nous sommes persuadés que nos idées et nos expériences ont été bénéfiques pour ré-

soudre des problèmes pratiques relatifs à l’évaluation future des PED en faveur de méthodologies VED

plus efficaces et performantes.

7.1.3 Suivi d’une cible individuelle

Le suivi d’une cible individuelle est un sujet de recherche complexe dans le domaine de la vision

assistée par ordinateur. En effet, les obstacles rencontrés sont toujours plus nombreux lorsqu’il s’agit

de suivre des cibles individuelles. Diverses raisons peuvent intervenir à savoir le déplacement rapide de

la cible, des changements intervenants dans les modèles d’apparence tant de la cible que de la scène,

la structure non-rigide de la cible, l’éclairage dynamique, les occlusions entre les cibles ou entre la

scène et la cible, la confusion entre plusieurs cibles etc. Une bonne sélection des caractéristiques joue

un rôle fondamental dans le suivi. Cette étape est en effet étroitement liée à la représentation de la

cible. Une cible peut être représentée par une forme géométrique primitive comme un rectangle, une

ellipse etc. Un certain nombre d’algorithmes ont été utilisés pour le suivi de cible. Ces algorithmes

diffèrent d’abord dans le sens où ils ont recours aux caractéristiques d’une image et au modèle de

mouvement, ainsi qu’à l’apparence et à la forme de la cible [185]. Lors du suivi de silhouette, par

exemple, la silhouette est pistée à la fois par le biais de la concordance de formes [96] et par l’évolution

des contours [17]. Le suivi d’un corps en conditions réelles et le système d’animation d’un humanoïde

sont illustrés dans [36]. Dans le suivi du kernel, la cible peut être suivie en calculant le mouvement

du kernel dans des images consécutives [6, 149]. Le kernel peut être de forme elliptique et associé à

un histogramme [38] suivi d’une procédure mean-shift permettant de localiser la cible ou un modèle

rectangulaire associé à une matrice de covariance [139] donnant lieu par la suite à une recherche de

force brute pour localiser la cible. Les auteurs de [166] ont présenté le concept de matrice de région de

covariance pour détecter un objet et localiser la cible. La caractéristique de concordance de ce concept

consiste à effectuer une recherche simple du plus proche voisin sous la mesure de distance, une tâche

accomplie rapidement en utilisant des images intégrales. Les matrices de région de covariance peuvent
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être utilisées pour détecter une cible dans une vidéo, cette cible pouvant être suivie dans les images

suivantes grâce à l’approche que ces auteurs ont proposée. En s’inspirant de ce concept, les auteurs de

[139, 140] ont proposé d’autres approches pour détecter, classer et suivre plusieurs cibles. Les cibles

sont représentées par des matrices de région de covariance, et des filtres particulaires effectuent le suivi.

Leurs approches sont intéressantes mais ne peuvent pas fonctionner pour suivre des cibles séparément

lorsque la foule se disperse, ou que la densité de la foule est moyenne ou dense. En effet, les résultats

indiquent seulement des scènes comportant 5 personnes. Par conséquent, il est nécessaire de développer

un algorithme capable de prendre en considération ces types de scènes pour ensuite suivre des cibles

individuelles.

Nous avons également orienté nos efforts dans cette direction et apporté notre contribution de la

manière suivante (5 [SMD08b, SDc]) :

En premier lieu, nous avons étudié la possibilité de développer notre méthode ([SMD08b]), initia-

lement proposée par [166]. Cette méthode s’appuie sur les informations d’ordre spatial. Elle consiste

à pister la détection d’une cible dans une vidéo, la cible étant suivie dans les images suivantes grâce

à l’utilisation de la matrice de région de covariance telle que présentée dans [166]. Dans une certaine

mesure, une telle méthode peut fonctionner en tant que simple matrice de covariance extraite d’une

région d’intérêt, région qui peut concorder avec d’autres vues et d’autres poses.

Par ailleurs, nous avons proposé une approche ([SDc]) basée sur les informations spatio-temporelles

adaptées au suivi de cibles individuelles dans une foule dispérsée, de densité moyenne ou de haute den-

sité. Cette approche diffère de la méthode de suivi MHB (PiedVed [SD09b]) de par les deux directions-

clés suivantes :

– Nous avons proposé une méthode pour extraire une cible (ou une région d’intérêt sur une image

dans le temps) ou des régions candidates (régions avec des cibles possibles sur l’image suivante)

à partir de structures indiquant les contours des pixels ayant les plus récemment été soumis à un

mouvement dans un objet d’intérêt. Cette méthode combine deux techniques, à savoir le MHI

[22] et le Mouvement de Hu (Hu’s moments) [80]. Le MHI a recours à l’historique temporel

d’une position ou d’une image, et permet de créer un MHB ou un SRMC (Silhouetted Region

of Motion Component), tandis que l’approche de Hu consiste à trouver le centre de masse du

SRMC. L’extraction de la cible/du candidat est identique à la méthode de suivi MHB (PedVed

[SD09b]) à ceci près qu’après avoir obtenu le centre de masse de chaque SRMC, nous prenons en

considération l’image vidéo originale pour localiser le centre. L’un des principaux avantages de

cette technique hybride est qu’il est inutile de rechercher la région-cible dans toute l’image can-
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didate, sauf dans les cas de région candidate. Par conséquent, le processus de recherche devient

beaucoup plus rapide.

– Nous avons présenté des techniques pour pister des cibles individuelles en utilisant les pics maxi-

mum distincts obtenus via des techniques de corrélation de phases à partir des pics résultants

des régions-cibles et des régions des images candidates. Lorsque deux cibles et/ou régions candi-

dates sont identiques, la fonction de corrélation de phases fait apparaître un brusque pic distinct

(voir Fig. 5.3 (a) et (b)). Inversement, le pic correspondant à deux cibles et/ou régions candidates

diminue considérablement lorsque celles-ci sont différentes (voir Fig. 5.3 (c)). L’utilisation de

techniques de corrélation de phases est motivée par le fait que contrairement à nombre d’algo-

rithmes espace-domaine, la corrélation de phases résiste au bruit, aux occlusions et à d’autres

défauts typiques des images satellites ou médicales. Sachant que plus d’un candidat rencontrera

des hauteurs de pics identiques, créant ainsi des ambiguïtés et des difficultés dans le processus

de suivi, nous proposons des techniques basées sur la plus haute moyenne géométrique (highest

geometric mean) pour résoudre ce problème.

Notre approche comporte les étapes algorihtmiques suivantes :

– Estimation du premier plan pour obtenir le SRMC ;

– Segmentation du SRMC pour obtenir une séquence SRMC ;

– Estimation du centre de masse, de la gravité ou du centroïde pour obtenir le centre de chaque

SRMC ;

– Estimation des cibles ou des régions candidates par le biais des coordonnées du centroïde ;

– Application des techniques de corrélation de phases pour obtenir les plus grandes hauteurs de

pics des cibles et/ou des candidats ;

– Traitement des hauteurs de pics les plus grandes via l’algorithme qui suit la cible grâce à la plus

haute moyenne géométrique. Si la plus haute moyenne géométrique est supérieure à la limite

dynamique connue, alors le suivi est normalement effectué. Sinon, la cible est immobile, en état

d’occlusion ou en dehors de l’image.

Selon la méthode d’évaluation, si une ellipse de réalité terrain chevauche le rectangle correspondant

au résultat du système, nous la qualifions de vrai positif (true positive) ou détection correcte. S’il

n’y a pas de chevauchement, nous la qualifions de faux négatif (false negative) ou détection manquée

(miss detection) . S’il n’y a pas d’ellipse de réalité terrain mais qu’il y a un rectangle correspondant au

résultat du système, il s’agit alors de faux positif (false positive) ou fausse alarme (false alarm). S’il

n’y a ni ellipse ni rectangle, on parle de vrai négatif (true negative) ou rejet correct. Normalement, un
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vrai négatif se produit lorsque la cible est immobile, en état d’occlusion ou en dehors de l’image. Les

séquences vidéo issues de la base PETS 2009 Benchmark [42] ont été prises en compte pour procéder

à l’évaluation de cette approche. Les différences les plus manifestes parmi [SMD08b], [SDc], et [139,

140] sont les suivantes :

– Dans [SMD08b], le suivi est effectué à partir d’informations d’ordre spatial uniquement, tandis

que dans [SDc] il se fait à partir d’informations spatio-temporelles.

– Dans [SMD08b], la région de covariance a été utilisée en tant que descripteur de cible, et des

images intégrales sont utilisées pour un calcul rapide de la covariance. La région-cible ayant la

dissemblance la plus faible est sélectionnée comme la région de concordance, puis cette région

est pistée dans l’image suivante. Dans la région [SDc] correspondant à l’historique de l’image, le

blob fait office de descripteur de cible, et des techniques de corrélation de phases sont utilisées

pour trouver une mesure de similarité. La mesure ayant la similarité la plus élevée après applica-

tion des techniques de corrélation de phases est considérée comme la meilleure correspondance

pour la cible dans l’image suivante.

– L’un des principaux avantages de l’approche [SDc] est qu’il est inutile de rechercher la région

cible possible dans toute l’image candidate, à l’exception des régions candidates. Le processus

de recherche est ainsi considérablement accéléré.

– L’approche proposée dans [139, 140] fonctionne bien lorsque la scène est limitée à 5 personnes.

En revanche, l’approche présentée dans [SDc] permet de suivre plusieurs cibles quelle que soit la

densité de la foule (dispersement, moyennement dense, très dense).

– Les résultats expérimentaux ont montré que le cadre proposé dans [SDc] est adapté au suivi de

cibles individuelles. Les degrés moyens de précision et d’exactitude sont également satisfaisants

pour des applications de vision assistée par ordinateur. Cependant, cette approche souffre de la

faiblesse suivante : lorsque la cible est floue ou mal orientée, il est difficile de la retrouver.

Les résultats expérimentaux ont montré que le cadre proposé dans [SDc] est adapté au suivi de cibles

individuelles. Si l’on considère les avantages et les inconvénients de cette approche, elle fait toujours

preuve d’une grande exactitude et bénéficie d’une bonne sensibilité aux changements de bruit, de lumi-

nosité (permettant ainsi d’obtenir de très bons résultats lorsque la lumière faiblit), aux cibles entrant et

sortant des zones d’ombres, et aux lueurs soudaines.
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7.2 Orientations futures

7.2.1 Estimation automatique du seuil

L’estimation automatique du seuil est encore l’un des principaux défis à relever en matière de vision

assistée par ordinateur. Toutes les méthodes présentées dans cette thèse ont recours, d’une manière

ou d’une autre, au seuil. Tous les seuils ont été définis manuellement. Des travaux complémentaires

devraient s’orienter vers une méthode permettant d’estimer ce seuil automatiquement.

7.2.2 Gestion des occlusions

La gestion des occlusions est un autre défi. Toutes les approches présentées dans le chapitre 3

s’appuient sur la méthode du flux optique et sur l’analyse des informations spatio-temporelles obtenues.

La méthode du flux optique ne prend pas en compte la gestion des occlusions car les pixels soumis à

l’occlusion sont incompatibles avec le principe de base selon lequel chaque pixel a une position précise.

Par conséquent, toutes ces approches ont ignoré la gestion des occlusions. Des travaux complémentaires

devraient s’orienter vers une méthode permettant de minimiser les problèmes d’occlusion.

7.2.3 Utilisation de plusieurs caméras

Les progrès accomplis dans le domaine des technologies de perception, ainsi que la disponibilité

des méthodes relatives à la puissance informatique et à l’efficacité de la bande passante favorisent

l’émergence d’applications basées sur des systèmes de distribution combinant plusieurs caméras et

d’autres modes de perception. La présence de plusieurs caméras permet d’obtenir des angles de vue

différents pour une région d’intérêt. Dans la mesure où toutes les expériences ont été conduites via

l’installation d’une seule caméra, il serait intéressant de tester ces approches à partir d’un ensemble de

données issues d’une seule caméra mobile ou de plusieurs caméras. Ainsi, dans une scène d’escalators

par exemple, les caractéristiques essentielles de chaque partie de l’escalator (l’entrée, le milieu, la sortie)

seraient décomposées de manière concluante afin de déterminer l’événement anormal qui se produit le

cas échéant. Par conséquent, l’implication de plusieurs caméras permettrait d’analyser de nombreuses

régions d’intérêt alors qu’actuellement, l’utilisation d’une seule caméra engendre des occlusions.
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