K. Z. House, C. H. Aziz, M. J. Schrag, and D. P. , Carbon dioxide capture and related processes, International Patent WO, pp.14-16, 2008.

M. L. Frommell and E. A. , CO 2 sequestration with brine solution and fly ashes, Energy Conversion and Management, vol.47, pp.13-14, 2006.

M. Pinero and L. Esquivias, Chemically active silica aerogel ? wollastonite composites for CO 2 fixation by carbonation reactions, Industrial & Engineering Chemistry Research, vol.46, pp.103-107, 2007.

W. Li, W. Li, B. Li, and Z. Bai, Electrolysis and heat pretreatment methods to promote CO2 sequestration by mineral carbonation, Chemical Engineering Research and Design, vol.87, issue.2, pp.210-215, 2002.
DOI : 10.1016/j.cherd.2008.08.001

T. Hamilton, Capturing Carbon with enzymes [en ligne] In: Site de Technology Review, 2008.

G. M. Bond, J. Stringer, D. K. Brandvold, F. A. Simsek, M. G. Medina et al., Sequestration Using the Enzyme Carbonic Anhydrase, Energy & Fuels, vol.15, issue.2, pp.309-316, 2001.
DOI : 10.1021/ef000246p

S. Fradette and O. Ceperkovic, CO 2 Solution Inc. CO 2 absorption solution United States Patent US, pp.26-32, 2008.

F. Dutil, International Patent WO, pp.22-23, 2004.

C. Parent, A. Barry, S. Fradette, and R. Lepine, Solution Inc. Gas purification apparatus and process using biofiltration and enzymatic reactions, pp.27-33

J. Ge, R. M. Cowan, C. Tu, M. L. Mcgregor, and M. C. Trachtenberg, Enzyme-based CO 2 capture for advanced life support, Life support and biosphere Science, vol.8, pp.181-189, 2002.

W. J. Ward and W. L. Robb, Carbon Dioxide-Oxygen Separation: Facilitated Transport of Carbon Dioxide across a Liquid Film, Science, vol.156, issue.3781, pp.1481-1484, 1976.
DOI : 10.1126/science.156.3781.1481

S. R. Suchdeo and J. S. Schultz, Mass transfer of CO2 across membranes: Facilitation in the presence of bicarbonate ion and the enzyme carbonic anhydrase, Biochimica et Biophysica Acta (BBA) - Biomembranes, vol.352, issue.3, pp.412-440, 1974.
DOI : 10.1016/0005-2736(74)90232-6

H. Matsuyama, M. Teramoto, and K. Iwai, Development of a new functional cation-exchange membrane and its application to facilitated transport of CO2, Journal of Membrane Science, vol.93, issue.3, pp.237-244, 1994.
DOI : 10.1016/0376-7388(94)00082-4

H. Matsuyama, A. Terada, T. Nakagawara, Y. Kitamura, and M. Teramoto, Facilitated transport of CO2 through polyethylenimine/poly(vinyl alcohol) blend membrane, Journal of Membrane Science, vol.163, issue.2, pp.221-227, 1999.
DOI : 10.1016/S0376-7388(99)00183-0

M. C. Trachtenberg, Flue gas CO 2 capture by means of a biomimetic facilitated transport membrane [en ligne, Site de Carbozyme, 2008.

M. C. Trachtenberg, R. M. Cowan, D. A. Smith, D. A. Horazak, M. D. Jensen et al., Membrane-based, enzyme-facilitated, efficient carbon dioxide capture, Energy Procedia, vol.1, issue.1, pp.353-360, 2009.
DOI : 10.1016/j.egypro.2009.01.048

URL : http://doi.org/10.1016/j.egypro.2009.01.048

L. Bao and M. C. Trachtenberg, Facilitated transport of CO2 across a liquid membrane: Comparing enzyme, amine, and alkaline, Journal of Membrane Science, vol.280, issue.1-2, pp.330-334, 2006.
DOI : 10.1016/j.memsci.2006.01.036

B. C. Tripp, K. Smith, and J. G. Ferry, Carbonic Anhydrase: New Insights for an Ancient Enzyme, Journal of Biological Chemistry, vol.276, issue.52, pp.48615-48618, 2001.
DOI : 10.1074/jbc.R100045200

. Novozymes, Modular membrane reactor and process for carbon dioxide extraction

C. Domingo, E. Loste, J. Gomez-morales, J. Garcia-carmona, and J. Fraile, Calcite precipitation by a high-pressure CO2 carbonation route, The Journal of Supercritical Fluids, vol.36, issue.3, pp.202-215, 2006.
DOI : 10.1016/j.supflu.2005.06.006

L. K. Diamond and N. N. Akinfiev, Solubility of CO2 in water from ???1.5 to 100 ??C and from 0.1 to 100 MPa: evaluation of literature data and thermodynamic modelling, Fluid Phase Equilibria, vol.208, issue.1-2, pp.265-290, 2003.
DOI : 10.1016/S0378-3812(03)00041-4

J. J. Carroll, J. D. Slupsky, and A. E. Mather, The Solubility of Carbon Dioxide in Water at Low Pressure, Journal of Physical and Chemical Reference Data, vol.20, issue.6, pp.1201-1209, 1991.
DOI : 10.1063/1.555900

R. Crovetto, O from 273 K to the Critical Point of Water, Journal of Physical and Chemical Reference Data, vol.20, issue.3, pp.575-589, 1991.
DOI : 10.1063/1.555905

S. Lindskog and J. E. Coleman, The Catalytic Mechanism of Carbonic Anhydrase, Proceedings of the National Academy of Sciences, vol.70, issue.9, pp.2505-2508, 1973.
DOI : 10.1073/pnas.70.9.2505

Y. Pocker and D. W. Bjorkquist, Stopped-flow studies of carbon dioxide hydration and bicarbonate dehydration in water and water-d2. Acid-base and metal ion catalysis, Journal of the American Chemical Society, vol.99, issue.20, pp.6537-6543, 1977.
DOI : 10.1021/ja00462a012

B. H. Gibbons and J. T. Edsall, Rate of hydration of carbon dioxide and dehydration of carbonic acid at 25°C, The Journal of Biological Chemistry, vol.238, issue.18, pp.3502-3507, 1963.

G. T. Tsao, The effect of carbonic anhydrase on carbon dioxide absorption, Chemical Engineering Science, vol.27, issue.8, pp.1593-1600, 1972.
DOI : 10.1016/0009-2509(72)80052-6

J. Berg, J. L. Tymoczko, and L. Stryer, Biochemistry 5th edition Edité par W.H. Freeman and campany, pp.0-600, 2002.

X. X. Wang, H. Fu, D. M. Du, Z. Y. Zhou, A. G. Zhang et al., The comparison of pKa determination between carbonic acid and formic acid andits application to prediction of the hydration numbers, Chemical Physics Letters, vol.460, pp.1-3, 2008.

G. Karp and J. Bouharmont, Biologie Cellulaire et moléculaire " . Edité par De Boeck, 2004.

C. Audigié and F. Zonszain, Biochimie métabolique

C. T. Supuran and A. Scozzafava, Carbonic anhydrases as targets for medicinal chemistry, Bioorganic & Medicinal Chemistry, vol.15, issue.13, pp.4336-4350, 2007.
DOI : 10.1016/j.bmc.2007.04.020

J. L. Gay-lussac and F. Arago, Annales de chimie et de physique tome 53, Edité par Crochard. 1833. P, pp.0-452

A. J. Brown, XXXVI.???Enzyme action, J. Chem. Soc., Trans., vol.81, issue.0, pp.373-388, 1902.
DOI : 10.1039/CT9028100373

V. Henri, Théorie générale de l'action de quelques diastases, Comptes Rendus de l'Académie des Sciences de Paris, pp.916-919, 1902.

A. Cornish-bowden, M. Jamin, and V. Saks, Cinétique enzymatique, Edité par EDP Sciences, pp.0-420, 2005.

N. Meldrum and F. J. Roughton, Carbonic anhydrase. Its preparation and properties, The Journal of Physiology, vol.80, issue.2, pp.113-142, 1933.
DOI : 10.1113/jphysiol.1933.sp003077

D. Keilin and T. Mann, Carbonic anhydrase. Purification and nature of the enzyme, Biochemical Journal, vol.34, issue.8-9, pp.1163-1176, 1940.
DOI : 10.1042/bj0341163

M. B. Guilloton, J. J. Korte, A. F. Lamblin, J. A. Fuchs, and P. M. Anderson, Carbonic anhydrase in Escherichia coli, a product of the cyn operon, The journal of biological chemistry, vol.267, pp.3731-3734, 1992.

S. Lindskog, Structure and mechanism of carbonic anhydrase, Pharmacology & Therapeutics, vol.74, issue.1, pp.1-20, 1997.
DOI : 10.1016/S0163-7258(96)00198-2

E. E. Rickli, S. A. Ghazanfar, H. Gibbons, and J. T. Edsall, Carbonic anhydrase from Human Erythrocytes, The journal of biological chemistry, vol.239, pp.1065-1078, 1964.

G. P. Miscione, M. Stenta, D. Spinelli, E. Anders, and A. Bottoni, New computational evidence for the catalytic mechanism of carbonic anhydrase, Theoretical Chemistry Accounts, vol.107, issue.1, pp.193-201, 2007.
DOI : 10.1007/s00214-007-0274-x

S. Lindskog and J. E. Coleman, The Catalytic Mechanism of Carbonic Anhydrase, Proceedings of the National Academy of Sciences, vol.70, issue.9, pp.2505-2508, 1973.
DOI : 10.1073/pnas.70.9.2505

K. M. Wilbur and N. G. Anderson, Electrometric and Colorimetric Determination of Carbonic Anhydrase, Journal of Biological Chemistry, vol.176, issue.1, pp.147-154, 1948.

P. Mirjafari, K. Asghari, and N. Mahinpey, Sequestration Purposes, Industrial & Engineering Chemistry Research, vol.46, issue.3, pp.921-926, 2007.
DOI : 10.1021/ie060287u

E. Ozdemir, Sequestration: 1. Immobilization of Carbonic Anhydrase within Polyurethane Foam, Energy & Fuels, vol.23, issue.11, pp.5725-5730, 2009.
DOI : 10.1021/ef9005725

F. Larachi, Kinetic Model for the Reversible Hydration of Carbon Dioxide Catalyzed by Human Carbonic Anhydrase II, Industrial & Engineering Chemistry Research, vol.49, issue.19, pp.9095-9104, 2010.
DOI : 10.1021/ie101338r

R. S. Rowlett and D. N. Silverman, Kinetics of the protonation of buffer and hydration of carbon dioxide catalyzed by human carbonic anhydrase II, Journal of the American Chemical Society, vol.104, issue.24, pp.6737-6741, 1982.
DOI : 10.1021/ja00388a043

J. F. Domsic and R. Mckenna, Sequestration of carbon dioxide by the hydrophobic pocket of the carbonic anhydrases, BBA) -Proteins and Proteomics 1804, pp.326-331, 2010.
DOI : 10.1016/j.bbapap.2009.07.025

C. T. Supuran, Carbonic anhydrases ? an overview, Current Pharmaceutical Design, vol.7, pp.603-614, 2008.

C. T. Supuran, Carbonic anhydrase inhibitors: possible anticancer drugs with a novel mechanism of action, Drug Development Research, vol.60, issue.6, pp.297-303, 2008.
DOI : 10.1002/ddr.20262

D. Whitford, Proteines: structure and function, pp.0-528, 2005.

A. F. Ghannam, W. Tsen, and R. S. Rowlett, Activation parameters for the carbonic anhydrase II-catalyzed hydration of CO 2, The journal of biological chemistry, vol.261, issue.3, pp.1164-1169, 1986.

A. Thorslund and S. Lindskog, Studies of the Esterase Activity and the Anion Inhibition of Bovine Zinc and Cobalt Carbonic Anhydrases, European Journal of Biochemistry, vol.4, issue.1, pp.117-123, 1967.
DOI : 10.1016/0926-6569(64)90310-4

B. Kanbar, Enzymatic CO 2 sequestration by carbonic anhydrase, Th. Doct.: Biotechnology, p.55, 2008.

R. A. Sheldon, Enzyme Immobilization: The Quest for Optimum Performance, Advanced Synthesis & Catalysis, vol.39, issue.1, pp.1289-1307, 2007.
DOI : 10.1002/adsc.200700082

R. Brinkman, The occurrence of carbonic anhydrase in lower marine animals, The Journal of Physiology, vol.80, issue.2, pp.171-173, 1933.
DOI : 10.1113/jphysiol.1933.sp003079

F. J. Philpot and J. S. Philpot, CCCVI. A modified colorimetric estimation of carbonic anhydrase, pp.2191-2193, 1936.

A. Karout, C. Chopard, and A. C. Pierre, Immobilization of a lipoxygenase in silica gels for application in aqueous media, Journal of Molecular Catalysis B: Enzymatic, vol.44, issue.3-4, pp.117-127, 2007.
DOI : 10.1016/j.molcatb.2006.09.008

URL : https://hal.archives-ouvertes.fr/hal-00128576

S. Maury, P. Buisson, P. Perrard, and A. C. Pierre, Compared esterification kinetics of the lipase from Burkholderia cepacia either free or encapsulated in a silica aerogel, Journal of Molecular Catalysis B: Enzymatic, vol.32, issue.5-6, pp.193-203, 2005.
DOI : 10.1016/j.molcatb.2004.12.006

URL : https://hal.archives-ouvertes.fr/hal-00016941

A. Karout and A. C. Pierre, Silica xerogels and aerogels synthesized with ionic liquids, Journal of Non-Crystalline Solids, vol.353, issue.30-31, pp.2900-2902, 2007.
DOI : 10.1016/j.jnoncrysol.2007.06.024

URL : https://hal.archives-ouvertes.fr/hal-00116694

J. Ge, R. M. Cowan, C. Tu, M. L. Mcgregor, and M. C. Trachtenberg, Enzyme-based CO 2 capture for advanced life support, ions HCO 3 ou ou les ions du tampon. Il sera intéressant de voir si un extremum existe pour la même concentration enzymatique dans le cas d'une membrane SiO 2 synthétisée par procédé sol-gel. 4.5. Références bibliographiques, pp.181-189, 2002.

L. Bao and M. C. Trachtenberg, Facilitated transport of CO2 across a liquid membrane: Comparing enzyme, amine, and alkaline, Journal of Membrane Science, vol.280, issue.1-2, pp.330-334, 2006.
DOI : 10.1016/j.memsci.2006.01.036

W. J. Ward and W. L. Robb, Carbon Dioxide-Oxygen Separation: Facilitated Transport of Carbon Dioxide across a Liquid Film, Science, vol.156, issue.3781, pp.1481-1484, 1976.
DOI : 10.1126/science.156.3781.1481

S. R. Suchdeo and J. S. Schultz, Mass transfer of CO2 across membranes: Facilitation in the presence of bicarbonate ion and the enzyme carbonic anhydrase, Biochimica et Biophysica Acta (BBA) - Biomembranes, vol.352, issue.3, pp.412-440, 1974.
DOI : 10.1016/0005-2736(74)90232-6

J. Ge, R. M. Cowan, C. Tu, M. L. Mcgregor, and M. C. Trachtenberg, Enzyme-based CO 2 capture for advanced life support, Life support and biosphere Science, vol.8, pp.181-189, 2002.

M. C. Trachtenberg, Flue gas CO 2 capture by means of a biomimetic facilitated transport membrane [en ligne, Site de Carbozyme, 2008.

. Figure, Photographies des xérogels X et aérogels A, synthétisés: X et A sans CO 2 ni CA, XCO2 avec de l'eau saturée en CO 2 , XCA et ACA avec de l'enzyme, et XCO2CA et ACO2CA avec de l'eau saturée en CO 2 et de l'enzyme L'influence du CO 2 aqueux et de l'anhydrase carbonique sur les isothermes d'adsorption d, p.41

. Respectivement, La plupart des xérogels, à l'exception de XCA, ont des isothermes proches du type I dans la classification de l'IUPAC 76

. Figure, Influence du CO 2 aqueux et l'anhydrase carbonique sur les isothermes d'adsorption d'azote des xérogels synthétisés: X sans CO 2 ni AC, XCO2 avec de l'eau saturée en CO 2 , XCA avec de l'enzyme, et XCO2CA avec de l'eau saturée en CO 2 et de l'enzyme

. Figure, 42: Distribution du volume poreux en fonction de la taille des pores des xérogels, déduites par la méthode BJH de la branche de désorption de leur isotherme d'adsorption d'azote à la Fig, p.40

. Globalement, il existe une différence notable entre XCA et X, ainsi qu'entre entre A et ACA, en ce qui concerne V sp et la taille des pores d max au maximum de la distribution en tailles

J. Hammersley, Percolation processes. II. The connective constant, Proceedings of the Cambridge Philosophical, pp.642-645, 1957.

S. Sallard, Etudes électrochimiques des cinétiques de polycondensation et de la fractalité des xérogels, Th. Doct.: Chimie, p.175, 2004.

H. E. Stanley, R. J. Birgeneau, P. J. Reynolds, and J. F. Nicoll, Thermally driven phase transitions near the percolation threshold in two dimensions, Journal of Physics C: Solid State Physics, vol.9, issue.20, pp.553-560, 1976.
DOI : 10.1088/0022-3719/9/20/001

T. Toupance, B. Jousseaume, G. Prabusankar, and A. Allouchi, Organic?Inorganic Sn12 and Organic Sn6 Oxide?Hydroxide Clusters, Angewandte Chemie, vol.118, pp.1277-1280, 2006.

Y. A. Shchipunov, T. Y. Karpenko, and A. A. Krekoten, Hybrid organic???inorganic nanocomposites fabricated with a novel biocompatible precursor using sol-gel processing, Composite Interfaces, vol.114, issue.8-9, pp.587-607, 2005.
DOI : 10.1163/1568554053148816

K. A. Mauritz, Organic-inorganic hybrid materials: perfluorinated ionomers as sol-gel polymerization templates for inorganic alkoxides, Materials Science and Engineering: C, vol.6, issue.2-3, pp.121-133, 1998.
DOI : 10.1016/S0928-4931(98)00042-3

C. Sanchez and M. In, Molecular design of alkoxyde precursors for the synthesis of hybrid organic-inorganic gels, Journal of Non-Crystalline Solids, vol.147148, pp.1-12, 1992.

H. Schmidt, Chemistry of material preparation by the sol-gel process, Journal of Non-Crystalline Solids, vol.100, issue.1-3, pp.1-3, 1988.
DOI : 10.1016/0022-3093(88)90006-3

P. Audebert and F. Miomandre, Procédé sol-gel de polymérisation, 2005.

A. C. Pierre, Introduction to sol-gel processing Edité par Klumer academic publishers, pp.0-394, 1998.
DOI : 10.1007/978-1-4615-5659-6

P. J. Flory, Molecular size distribution in three dimensional polymers, 1941.

P. J. Flory, Molecular size distribution in three dimensional polymers, 1941.

P. J. Flory, Principles of Polymer Chemistry, pp.0-672, 1953.

P. P. Kistler, Coherent Expanded-Aerogels, The Journal of Physical Chemistry, vol.36, issue.1, pp.52-64, 1932.
DOI : 10.1021/j150331a003

C. Brinker, Sol gel Science. The physics and chemistry of sol-gel processing Edité par Academic Press Inc. 1990, pp.0-910

N. Hüsing and U. Schubert, Aerogels???Airy Materials: Chemistry, Structure, and Properties, Angewandte Chemie International Edition, vol.37, issue.1-2, pp.22-45, 1998.
DOI : 10.1002/(SICI)1521-3773(19980202)37:1/2<22::AID-ANIE22>3.0.CO;2-I

L. L. Hench and J. K. West, The sol-gel process, Chemical Reviews, vol.90, issue.1, pp.33-72, 1990.
DOI : 10.1021/cr00099a003

J. Livage, C. Sanchez, M. Henry, and S. Doeuff, The chemistry of the sol-gel progress, Solid state ionics, pp.32-33, 1989.

I. Hatsuo and G. Kumar, Molecular characterisation of composite interfaces, pp.0-265, 1987.

L. Banyai and S. W. Koch, Semiconductors Quantum Dots, Edité par World Scientific Publishing, pp.0-407, 1993.

N. Agoudjil, S. Kermadi, and A. Larbot, Synthesis of inorganic membrane by solgel, Desalination, vol.223, pp.1-3, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00333002

V. Platschek, T. Schmidt, M. Lerch, G. Muller, L. Spanhel et al., Quantized aggregation phenomena in II-VI-semiconductor colloids, Berichte der Bunsengesellschaft f??r physikalische Chemie, vol.267, issue.No. 1, pp.85-95, 1998.
DOI : 10.1002/bbpc.19981020111

M. P. Piléni, Magnetic Fluids: Fabrication, Magnetic Properties, and Organization of Nanocrystals, Advanced Functional Materials, vol.11, issue.5, pp.323-336, 2001.
DOI : 10.1002/1616-3028(200110)11:5<323::AID-ADFM323>3.0.CO;2-J

T. Tawara, I. Suemune, and H. Kumano, Strong coupling of CdS quantum dots to confined photonic modes in ZnSe-based microcavities, Physica E: Low-dimensional Systems and Nanostructures, vol.13, issue.2-4, pp.403-407, 2002.
DOI : 10.1016/S1386-9477(02)00152-2

I. Gill and A. Ballesteros, Bioencapsulation within synthetic polymers (Part 1): sol???gel encapsulated biologicals, Trends in Biotechnology, vol.18, issue.7, pp.282-296, 2000.
DOI : 10.1016/S0167-7799(00)01457-8

H. H. Weetall, Immobilized enzymes: Analytical applications, Analytical Chemistry, vol.46, issue.7, pp.602-615, 1974.
DOI : 10.1021/ac60343a721

S. Fabiano, Immobilisation d'enzymes dans des films de polymère conducteur : le PEDT

L. Cao, L. Van-langen, and R. A. Sheldon, Immobilised enzymes: carrier-bound or carrier-free?, Current Opinion in Biotechnology, vol.14, issue.4, pp.1-8, 2003.
DOI : 10.1016/S0958-1669(03)00096-X

O. Ariga, T. Suzuki, Y. Sano, and Y. Murakami, Immobilization of a thermostable enzyme using a sol-gel preparation method, Journal of Fermentation and Bioengineering, vol.82, issue.4, pp.341-3145, 1996.
DOI : 10.1016/0922-338X(96)89147-1

D. L. Jürgen-lohmann and R. L. Legge, Immobilization of bovine catalase in sol???gels, Enzyme and Microbial Technology, vol.39, issue.4, pp.621-633, 2006.
DOI : 10.1016/j.enzmictec.2005.11.015

H. Choi, E. Stathatos, and D. D. Dionysiou, Sol???gel preparation of mesoporous photocatalytic TiO2 films and TiO2/Al2O3 composite membranes for environmental applications, Applied Catalysis B: Environmental, vol.63, issue.1-2, pp.60-67, 2006.
DOI : 10.1016/j.apcatb.2005.09.012

B. Liu, Y. Cao, D. Chen, J. Kong, and J. Deng, Amperometric biosensor based on a nanoporous ZrO2 matrix, Analytica Chimica Acta, vol.478, issue.1, pp.59-66, 2003.
DOI : 10.1016/S0003-2670(02)01480-0

J. P. Chen, W. S. Lin, and C. M. , Synthesis of geranyl acetate by esterification with lipase entrapped in hybrid sol-gel formed within nonwoven fabric, Journal of the American Oil Chemists' Society, vol.20, issue.3, pp.309-314, 2002.
DOI : 10.1007/s11746-002-0479-5

J. Livage, T. Coradin, and C. Roux, Encapsulation of biomolecules in silica gels, Journal of Physics: Condensed Matter, vol.13, issue.33, 2001.
DOI : 10.1088/0953-8984/13/33/202

S. Shtelzer, S. Rappoport, D. Avnir, M. Ottolenghi, and S. Braun, Properties of trypsin and of acid phosphatase immobilized in sol-gel glass matrices, Biotechnology and applied biochemistry, vol.15, issue.3, pp.227-235, 1992.

H. Frenkel-mullerad and D. Avnir, Sol???Gel Materials as Efficient Enzyme Protectors:?? Preserving the Activity of Phosphatases under Extreme pH Conditions, Journal of the American Chemical Society, vol.127, issue.22, pp.8077-8081, 2005.
DOI : 10.1021/ja0507719

M. T. Reetz, Entrapment of biocatalysts in hydrophobic sol-gel materials for use in organic chemistry, Advanced Materials, vol.116, issue.137, pp.943-954, 1997.
DOI : 10.1002/adma.19970091203

M. T. Reetz, P. Tielmann, W. Wiesenhöfer, W. Könen, and A. Zonta, Second Generation Sol-Gel Encapsulated Lipases: Robust Heterogeneous Biocatalysts, Advanced Synthesis & Catalysis, vol.345, issue.67, pp.717-728, 2003.
DOI : 10.1002/adsc.200303016

URL : http://hdl.handle.net/11858/00-001M-0000-000F-987F-7

A. Karout, C. Chopard, and A. C. Pierre, Immobilization of a lipoxygenase in silica gels for application in aqueous media, Journal of Molecular Catalysis B: Enzymatic, vol.44, issue.3-4, pp.117-127, 2007.
DOI : 10.1016/j.molcatb.2006.09.008

URL : https://hal.archives-ouvertes.fr/hal-00128576

Q. Chen, G. L. Kenausis, and A. Heller, Stability of Oxidases Immobilized in Silica Gels, Journal of the American Chemical Society, vol.120, issue.19, pp.4582-4585, 1998.
DOI : 10.1021/ja971750k

A. K. Gupta and A. K. Singh, Aqueous sol-gel process for protein encapsulation, Chemistry of Materials, vol.12, issue.8, pp.2434-2441, 2000.

S. A. Yamanaka, N. P. Nguyen, B. Dunn, J. S. Valentine, and J. I. Zink, Enzymatic activity of oxalate oxidase and kinetic measurements by optical methods in transparent sol-gel monoliths, Journal of Sol-Gel Science and Technology, vol.105, issue.7, pp.117-121, 1996.
DOI : 10.1007/BF00401891

A. Karout, P. Buisson, A. Perrard, and A. C. Pierre, Shaping and Mechanical Reinforcement of Silica Aerogel Biocatalysts with Ceramic Fiber Felts, Journal of Sol-Gel Science and Technology, vol.60, issue.2, pp.163-171, 2005.
DOI : 10.1007/s10971-005-5288-z

URL : https://hal.archives-ouvertes.fr/hal-00016940

G. M. Bond, J. Stringer, D. K. Brandvold, F. A. Simsek, M. G. Medina et al., Sequestration Using the Enzyme Carbonic Anhydrase, Energy & Fuels, vol.15, issue.2, pp.309-316, 2001.
DOI : 10.1021/ef000246p

N. Liu, G. M. Bond, A. Abel, B. J. Mcpherson, and J. Stringer, Biomimetic sequestration of CO 2 in carbonate form: Role of produced waters and other brines, Fuel Processing Technology, vol.86, pp.14-15, 2005.

B. Krajewska, Application of chitin- and chitosan-based materials for enzyme immobilizations: a review, Enzyme and Microbial Technology, vol.35, issue.2-3, pp.126-139, 2004.
DOI : 10.1016/j.enzmictec.2003.12.013

C. Parent and A. Belzil, Méthodes de qualification des immobilisations chimiques d'une enzyme sur un support solide, Biochemistry and Cell Biology, vol.83, pp.70-77, 2005.

K. M. Wilbur and N. G. Anderson, Electrometric and Colorimetric Determination of Carbonic Anhydrase, Journal of Biological Chemistry, vol.176, issue.1, pp.147-154, 1948.

Y. T. Zhang, T. T. Zhi, L. Zhang, H. Huang, and H. L. Chen, Immobilization of carbonic anhydrase by embedding and covalent coupling into nanocomposite hydrogel containing hydrotalcite, Polymer, vol.50, issue.24, pp.5693-5700, 2009.
DOI : 10.1016/j.polymer.2009.09.067

Y. T. Zhang, L. Zhang, H. L. Chen, and H. M. Zhang, Selective separation of low concentration CO2 using hydrogel immobilized CA enzyme based hollow fiber membrane reactors, Chemical Engineering Science, vol.65, issue.10, pp.3199-3207, 2010.
DOI : 10.1016/j.ces.2010.02.010

B. Assaker and I. , Synthèse électrochimique de films d'hydroxydes doubles lamellairesapplication aux biocapteurs. Th Doct: chimie:Université d'Evry Val d'Essonne, p.189, 2009.

E. Ozdemir, Sequestration: 1. Immobilization of Carbonic Anhydrase within Polyurethane Foam, Energy & Fuels, vol.23, issue.11, pp.5725-5730, 2009.
DOI : 10.1021/ef9005725

B. Kanbar, Enzymatic CO 2 sequestration by carbonic anhydrase, Th. Doct.: Biotechnology, p.55, 2008.

L. L. Hartdegen, F. J. Hahn, and P. A. Us-patent, Enzymes bound to polyurethane, pp.3-08

M. Bakker, F. Van-de-velde, F. Van-rantwijk, and R. A. Sheldon, Highly efficient immobilization of glycosylated enzymes into polyurethane foams, Biotechnology and Bioengineering, vol.53, issue.3, pp.342-348, 2000.
DOI : 10.1002/1097-0290(20001105)70:3<342::AID-BIT11>3.0.CO;2-A

T. Romaskevic, K. Pielichowski, S. Budriene, and J. Pielichowski, Application of polyurethane-based materials for immobilization of enzymes and cells: a review, Chemija, vol.17, issue.4, pp.74-89, 2006.

S. Budriene, T. Romaskevic, K. Pielichowski, and J. Pielichowski, Synthesis and characterization of polyurethane microspheres and their application for immobilization of maltogenase, Polymers for Advanced Technologies, vol.23, issue.1, pp.67-71, 2007.
DOI : 10.1002/pat.797

J. A. Berberich, L. W. Yang, J. Madura, I. Bahar, and A. J. Russell, A stable three-enzyme creatinine biosensor. 1. Impact of structure, function and environment on PEGylated and immobilized sarcosine oxidase, Acta Biomaterialia, vol.1, issue.2, pp.173-181, 2005.
DOI : 10.1016/j.actbio.2004.11.006

J. A. Berberich, L. W. Yang, J. Madura, I. Bahar, and A. J. Russell, A stable three enzyme creatinine biosensor. 2. Analysis of the impact of silver ions on creatine amidinohydrolase, Acta Biomaterialia, vol.1, issue.2, pp.183-191, 2005.
DOI : 10.1016/j.actbio.2004.11.007

J. A. Berberich, L. W. Yang, J. Madura, I. Bahar, and A. J. Russell, A stable three-enzyme creatinine biosensor. 3. Immobilization of creatinine amidohydrolase and sensor development, Acta Biomaterialia, vol.1, issue.2, pp.193-199, 2005.
DOI : 10.1016/j.actbio.2004.11.008

I. A. Veselova and T. N. Shekhovtsova, Visual determination of mercury(II) using horseradish peroxidase immobilized on polyurethane foam, Analytica Chimica Acta, vol.392, issue.2-3, pp.151-158, 1999.
DOI : 10.1016/S0003-2670(99)00164-6

D. L. Graf, Crystallographic tables for rhombohedral carbonates, The American Mineralogist, vol.46, pp.1283-1316, 1961.

A. C. Pierre, Introduction to Sol-Gel Processing, Chap. 3 Colloidal particles and Sols, pp.91-163, 1998.
DOI : 10.1007/978-1-4615-5659-6

J. Y. Gal, J. C. Bollinger, H. Tolosa, and N. Gache, Calcium carbonate solubility: a reappraisal of scale formation and inhibition, Talanta, vol.43, issue.9, pp.1497-1509, 1996.
DOI : 10.1016/0039-9140(96)01925-X

N. Favre, M. L. Christ, and A. C. Pierre, Biocatalytic capture of CO2 with carbonic anhydrase and its transformation to solid carbonate, Journal of Molecular Catalysis B: Enzymatic, vol.60, issue.3-4, pp.163-170, 2009.
DOI : 10.1016/j.molcatb.2009.04.018

URL : https://hal.archives-ouvertes.fr/hal-00431144

T. Siemieniewska, Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984), Pure and Applied Chemistry, vol.57, pp.603-619, 1985.

G. Reichenauer and G. W. Scherer, Nitrogen adsorption in compliant materials, Journal of Non-Crystalline Solids, vol.277, issue.2-3, pp.162-172, 2000.
DOI : 10.1016/S0022-3093(00)00304-5

E. P. Barrett, L. G. Joyner, and P. H. Halenda, The Determination of Pore Volume and Area Distributions in Porous Substances. I. Computations from Nitrogen Isotherms, Journal of the American Chemical Society, vol.73, issue.1, pp.373-380, 1951.
DOI : 10.1021/ja01145a126

S. Brunauer, P. H. Emmett, and E. Teller, Adsorption of Gases in Multimolecular Layers, Journal of the American Chemical Society, vol.60, issue.2, pp.309-319, 1938.
DOI : 10.1021/ja01269a023

G. W. Scherer and C. J. Brinker, Sol-gel Science: Hydrolysis and Condensation of Silicon Alkoxides " . Edité par Academic Press, pp.108-145, 1990.

A. Williams, H. Guenzler, and U. Gremlich, Handbook of Analytical Techniques: Infrared and raman Spectroscopy, pp.465-507

G. Socrates, Infrared and Raman Characteristic Group frequencies: Tables and Charts, pp.0-347, 2004.

A. Ueno and C. O. Bennett, Infrared study of CO2 adsorption on SiO2, Journal of Catalysis, vol.54, issue.1, pp.31-41, 1978.
DOI : 10.1016/0021-9517(78)90024-6

N. Kröger, R. Deutzmann, and M. Sumper, Polycationic Peptides from Diatom Biosilica That Direct Silica Nanosphere Formation, Science, vol.286, pp.1129-1132, 1999.

J. N. Cha, K. Shimizu, Y. Zhou, S. C. Christiansen, B. F. Chmelka et al., Silicatein filaments and subunits from a marine sponge direct the polymerization of silica and silicones in vitro, Proceedings of the National Academy of Sciences, pp.361-365, 1999.
DOI : 10.1073/pnas.96.2.361

H. R. Luckarift, M. B. Dickerson, K. H. Sandhage, and J. C. Spain, Rapid, Room-Temperature Synthesis of Antibacterial Bionanocomposites of Lysozyme with Amorphous Silica or Titania, Small, vol.1668, issue.5, pp.640-643, 2006.
DOI : 10.1002/smll.200500376

V. Abbate, A. R. Bassindale, K. F. Brandstadt, R. Lawson, and P. G. Taylor, Enzyme mediated silicon???oxygen bond formation; the use of Rhizopus oryzae lipase, lysozyme and phytase under mild conditions, Dalton Transactions, vol.256, issue.39, pp.9361-9368, 2010.
DOI : 10.1039/c0dt00151a

M. Frampton, A. Vawda, J. Fletcher, and P. M. Zelisko, Enzyme-mediated sol???gel processing of alkoxysilanes, Chemical Communications, vol.343, issue.194, pp.5544-5546, 2008.
DOI : 10.1039/b812389f

P. Buisson, H. El-rassy, S. Maury, and A. C. Pierre, Biocatalytic gelation of silica in the presence of a lipase, Journal of Sol-Gel Science and Technology, vol.278, pp.373-379, 2003.
URL : https://hal.archives-ouvertes.fr/hal-00007277

A. C. Pierre and G. M. Pajonk, Chemistry of Aerogels and Their Applications, Chemical Reviews, vol.102, issue.11, pp.4243-4265, 2002.
DOI : 10.1021/cr0101306

URL : https://hal.archives-ouvertes.fr/hal-00007182

L. Bao, M. C. Trachtenberg, . Publications, . La, . Publications et al., Facilitated transport of CO2 across a liquid membrane: Comparing enzyme, amine, and alkaline, Journal of Membrane Science, vol.280, issue.1-2, pp.330-334, 2006.
DOI : 10.1016/j.memsci.2006.01.036

N. Favre, M. L. Christ, and A. C. Pierre, Biocatalytic capture of CO2 with carbonic anhydrase and its transformation to solid carbonate, Journal of Molecular Catalysis B: Enzymatic, vol.60, issue.3-4, pp.163-170, 2009.
DOI : 10.1016/j.molcatb.2009.04.018

URL : https://hal.archives-ouvertes.fr/hal-00431144

N. Favre, Y. Ahmad, and A. C. Pierre, Biomaterials obtained by gelation of silica precursor with CO2 saturated water containing a carbonic anhydrase enzyme, Journal of Sol-Gel Science and Technology, vol.278, issue.2, pp.442-451, 2011.
DOI : 10.1007/s10971-011-2411-1

URL : https://hal.archives-ouvertes.fr/hal-00602752

*. Favre and A. C. Pierre, Biocatalytic aided CO 2 transfer through an aqueous membrane, at relatively high CO 2 partial pressure, Procedings of the " 2010 Duke- UAM Conference on Biofiltration for air Pollution Control, pp.107-116
URL : https://hal.archives-ouvertes.fr/hal-00533634

N. Favre, A. C. Pierre, and *. , Interaction of a carbonic anydrase with SiO 2 aerogels for CO 2 capture Communication orale invitée dans le symposium (POLY) Aerogels, Foams, and Nanoporous Materials, Foams and Other Nanoporous Materials st National Meeting, pp.27-28, 2011.

N. Favre and A. C. Pierre, CO 2 transfer using hybrid polymer sol-gel SiO 2 membranes with immobilized carbonic anhydrase