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Summary 

Using GIS for the design of groundwater models motivates the search for numerical methods 

that do not require the discretization of the flow domain: GIS are natively vectorized. 

Numerical methods that relie on the discretization of the boundaries rather than the domain 

offer the advantage of retaining the native description of information in vector form as provided 

by the GIS, thus reducing the loss inherent to raterization and subsequent vectorization. The 

Analytic Element Method is especially promising. However, it lacks the capacity to handle a 

specifie type of object, NURBS curves. 

The functions necessary to allow the inclusion of these curves in the AEM are derived, and 

examples are provided. Their versatility is presented, also showing that existing smooth curves 

can be represented as NURBS, thus allowing backward compatibility, should they be replaced. 

A method is offered to allow for faster model response when using these curvilinear elements, 

based on the Direct Boundary Integral Method. Standard line elements are also improved to 

allow greater precision and control in the speed-improving scheme. 

Keywords: GIS, analytic elements, curvilinear elements, NURBS, Direct Boundary Integrais 

Résumé 

L'utilisation des SIG pour la conception de modèles d'écoulements souterrains motive la 

recherche de méthodes numériques qui ne requièrent pas la discrétisation du domaine de 

l'écoulement : les SIG sont par nature vectorisés. 

Les méthodes numériques qui se fient à la discrétisation des frontières plutôt que du domaine 

offrent l'avantage de garder le description originale de l'information sous forme vecteur, telle 

que fournie par le SIG, réduisant ainsi les pertes inhérentes à la rastérisation et la vectorisation 

ultérieure. La méthode des éléments analytiques est particulièrement prometteuse. Cependant, 

il lui manque la capacité à gérer un type spécifique d'objets, les courbes NURBS. 

Les fonctions nécessaires à l'inclusion de ces courbes dans le cadres de l' AEM sont dérivées, 

et des exemples sont fournis. Leur souplesse est présentée, et on montre que les formes courbes 

existantes dans l'AEM peuvent être représentées par des NURBS, permettant ainsi la compa­

tibilité, si elles devaient être supplantées. 

Une ,méthode est proposée pour améliorer le temps de réponse des modèles lorsque les 

éléments curvilinéaires sont utilisés, basée sur la méthode des intégrales frontières directes. Les 

éléments linéaires classiques sont également améliorés pour permettre meilleurs précision et 

contrôle dans la technique d'accélération. 

Mots clef : SIG, éléments analytiques, éléments curvilinéaires, NURBS, Intégrales Frontières 

Directes 
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Chapter 1 

Introduction 

In this dissertation, a new class of elements used in the modeling of groundwater flow is proposed 

for inclusion within the Analytic Element Method. These new elements allow the definition of 

boundary conditions along complex shapes known as Non-Uniform Rational B-Spline curves. 

NURBS curves are popular tools in many fields of engineering, as they allow the artist, the 

designer, the freedom he requires to project his vision onto the digital world of the computer, 

while giving the engineer the structured framework he needs to implement that vision. 

Another contribution to the field of groundwater modeling, needed in fact to render the 

Non-U niform Rational Bézier Spline curves usa ble as boundaries for analytic element mo dels, 

is the use of polygons as closed boundaries over which the direct boundary integral method is 

applied. This enables the creation of a new type of far-field, used here for the NURBS elements 

only, but that could be expanded to any collection of elements, still within the framework of 

the AEM. 

Much is written on NURBS curves, and it remains a vivid field of study in computer 

graphies. Most of what is to be found refers to their geometry, specifie algorithms to deal with 

seldom encountered cases, or to their application in fitting datasets, sometimes for the purpose 

of extrapolation. The present dissertation does not add knowledge on these curves per-se, 

except in the way that they can be related to potential theory. Instead much use is made of 

these shapes, and key concepts are described when needed. Although the literature is fairly 

extensive on the subject, dating back to the 1960's and the works of Bézier and de Casteljau, 

for Renault and Peugeot, respectively, reference is usually made to the reference text in the 

1 



1.1. ON THE APPROACH 2 

matter at the present time; The NURBS book, by Piegl and Tiller, contains all the elements 

necessary for the derivations herein. 

The direct boundary integral method is described in Liggett and Liu's The boundary integral 

method for porous media flow, and many more describe it extensively, but no other reference 

than Strack's Groundwater mechanics seem to detail it in its complex variable form, regardless 

of the field of application. 

1.1 On the approach 

Research in engineering fields differs greatly from its counterparts in liberal arts or pure sciences. 

It shares much in common with them in terms of methodology, as far as bibliography, subject 

definition or dissertation are concerned. However, the characteristic of the engineer, his capacity 

to produce new material out of the combination of knowledge acquired in diverse and previously 

unrelated sciences, set this type of research apart. 

The focus on GIS, used by many in hydrogeology as a CAD tool for the conception of 

groundwater models, is found primarily in the discussion of chapter 2. Its relative importance 

in the present dissertation is less than originally expected, since larger contributions to the 

field of modeling were found in other sections of the work. The argument to be found there 

remains central however, that an object centered modeling technique is inherently better than 

any other, be it simply for aesthetic reasons. 

The investigation of GIS revealed that the choices made there for the representation of 

information had repercussions on the requirements placed to numerical modeling techniques 

meant to interact with this design tool. In particular, the use of NURBS curves in sorne cases 

prompted an investigation of these shapes for the AEM. 

Much remains to be studied in connection with the accomplishments detailed here, in partic­

ular with respect to the choices made for the representation and storage of spatially continuously 

varying information. Sorne possible expansions are described in the conclusion; it is hoped that 

sorne will find here material to investigate. 

ADVANCED CURVILINEAR SHAPES FOR OBJECT CENTERED MODELING OF GROUNDWATER FLOW 



CHAPTER 1. INTRODUCTION 3 

1.2 On notation and symbols 

In dissertations that involve the analytic element method, the notation often becomes elaborate, 

because many things need to be numbered, ordered and sorted. However, computer code is 

often trivial, mainly because of the notion of scope: the first end point of a segment Si is may be 

noted e.g.ij in the literature, but in the computer code, a variable zl will be defined within the 

context of segment S j to contain 1j and will only make sense there. Thus, when the computer 

han dl es segment S j, it needs not worry about the first end points of other segments, which are 

simply not defined within its context: zl is explicit enough to be satisfactory. 

Considering that computers are essentially stupid, however fast they may be, the decision 

for the present dissertation was made to keep the notation as simple as possible by applying the 

same concept of scope, since the human reader will not be challenged by something that even 

his digital companion can grasp. This allows the reuse of symbols, greatly valuable considering 

the limited number of symbols available in the Greek and Roman alphabets. 

Another note of attention is brought to the symbols used to represent variables commonly 

used in the description of groundwater flow. Although this dissertation is submitted to a French 

institution, the standard chosen is the one used in the field of the AEM. The discharge potential 

is <P, the piezometrie head </J, the porosity is v and the flow is characterized by specifie discharge 

-sometimes integrated-, rather than velocity. These choices influence the look of Darcy's Law, 

which is expressed in a fashion that may be unusual to the French. It is offered in the chosen 

form for the sake of integration of the present work into the AEM. 

1.3 On the use of English 

The choice of language for this thesis was not easy. The need for a text published in France on 

the analytic element method, virtually ignored there, seemed to call for French to be used, as 

this would have maximized tl:ie size of the audience of the present text. However, the level of 

comfort of the author with English rather than French in technical writing, the fact that most 

-if not all- research revolving around the AEM is published in English, and the accepted fact 

that French researchers are comfortable when reading English led to choosing English in the 
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1.3. ON THE USE OF ENGLISH 4 

end. For clarity, and to facilitate the comprehension of the thesis, the following are provided in 

French: This introduction, the conclusion, and the synopsis at the beginning of each chapter. 
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Chapitre 1 

Introduction - version française 

Dans ce mémoire, une nouvelle classe d'éléments utilisés dans la modélisation des écoulements 

souterrains est proposée pour ajout à la méthode des éléments analytiques. Ces nouveaux 

éléments permettent la définition de conditions limites le long de formes complexes connues 

sous le nom de courbes NURBS. Les NURBS sont des outils populaires dans de nombreux do­

maines du génie, car ils permettent à l'artiste, le créateur, la liberté qu'il requière pour projeter 

sa vision sur le monde digital de l'ordinateur, tout en donnant à l'ingénieur le cadre structuré 

dont il a besoin pour implémenter cette vision. 

Une autre contribution au champ de la modélisation des eaux souterraines, nécessaire en fait 

pour rendre opérationnelle l'usage des NURBS comme frontières pour la méthode des éléments 

analytiques, se trouve dans l'utilisation de polygones en tant que frontières fermées suivant 

lesquelles la méthode des intégrales frontières directes est appliquée. Cela permet la création 

d'un nouveau type de champ lointain 1
, utilisé ici pour les NURBS seulement, mais qui pourrait 

être étendu à tout groupe d'éléments, toujours dans le cadre de l' AEM. 

Beaucoup a été publié sur les courbes NURBS, et ce domaine reste un champ d'études 

actif dans le graphisme informatique. La plupart concerne leur géometrie, des algorithmes 

spécifiques pour gérer des cas rarement rencontrés, ou à leur application à l'approximation de 

jeux de données spécifiques, parfois à des fins d'extrapolation. Le présent mémoire n'ajoute 

pas de connaissance sur ces courbes en tant que telles, si ce n'est dans la façon dont on peut 

les relier à la théorie des potentiels. On utilise plutôt ces formes autant que possible, si bien 

1 Far-Field en Anglais 

5 



1.1. DE L'APPROCHE 6 

que certains concepts clef sont décrits quand cela est nécessaire. Bien que la littérature soit 

relativement étendue sur le sujet, allant jusqu'aux années 60 et aux travaux de Bézier et de 

Casteljau, pour Renault et Peugeot respectivement, référence est faite à la référence en la 

matière à l'heure actuelle; The NURBS book, de Piegl et Tiller, contient tous les éléments 

nécessaires aux dérivations ci-contenues. 

La méthode des intégrales frontières directes est décrite dans The boundary integral method 

for porous media flow de Liggett et Liu, et d'autres la décrivent en détail, mais aucune autre 

référence que Groundwater mechanics de Strack ne semble la détailler sous sa forme en variable 

complexe, sans discriminer le domaine d'application. 

1.1 De l'approche 

La recherche dans les Sciences du génie diffère grandement de ses équivalents en sciences 

humaines et sciences pures. Elle partage beaucoup en matière de méthodologie, c'est a dire pour 

autant que la bibliographie, la définition du sujet ou l'écriture du mémoire soient concernés. 

Cependant, le propre de l' ingénieur est sa capacité à produire de la nouvelle matière à partir 

de la combinaison de connaissances acquises dans des sciences diverses et sans rapport au 

préalable ; cela place ce type de recherche dans une catégorie à part. 

Le point sur les SIG, utilisés par un grand nombre en hydrogéologie comme outil de CAO 

pour le conception de modèles d'écoulements souterrains, se trouve essentiellement dans le 

discours du chapitre 2. Son importance relative est plus faible qu'originalement supposée, 

compte tenu des plus importantes contributions à l'état de l'art dans les sections suivantes 

du travail. La discussion qui s'y trouve est cependant centrale, à savoir qu'une technique de 

modélisation centrée sur des objets est intrinsèquement meilleure, ne serait-ce que d'un point 

de vue esthétique. 

L'enquête sur les SIG a révélé que des choix faits pour la représentation de l'information a 

' 
eu des répercussions dans les contraintes placées sur les techniques numériques de modélisation 

sensées inter-agir avec l'outil de conception. En particulier, l'utilisation dans certains cas de 

courbes NURBS a provoqué l'analyse de ces formes pour l'AEM. 

Beaucoup reste à étudier en relation aux progrès détaillés ici, en particulier quand aux 
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choix opérés pour la représentation et le stockage d'information variant dans l'espace de façon 

continue. Quelques extensions possibles sont décrites dans la conclusion; on espère que certains 

trouveront là matière à recherche. 

1.2 De la Notation et des symboles 

Dans les mémoires qui traitent de la méthode des éléments analytiques, la notation de­

vient souvent élaborée, parce que nombre de choses doivent être numérotées, ordonnées et 

classées. Cependant, le code informatique est souvent trivial, principalement grâce à la notion 

de contexte : le premier sommet d'un segment Sj peut être dénoté e.g.1j dans la littérature, 

mais dans le code informatique, une variable zl sera définie dans le contexte du segment Sj 

pour contenir 1j et n'aura de sens que dans les limites de ce contexte. Ainsi, lorsque l'ordinateur 

opère sur le segment S j, il ne lui est pas nécessaire de se préoccuper des premières extrémités 

des autres segments, qui n'existent pas dans le contexte local : le nom zl est suffisamment 

explicite pour être satisfaisant. 

Considérant qu'un ordinateur est essentiellement stupide, tout aussi rapide qu'il -pmsse 

être, il a été décidé pour le présent mémoire de garder la notation aussi légère que possible en 

applicant le même concept de contexte, puisque le lecteur humain ne sera pas mis à mal par 

un concept que même son compagnon digital peut apprécier. Cela permet la réutilisation de 

symboles, chose fort précieuse compte tenu du nombre limité de symboles disponibles dans les 

alphabets grec et romain. 

On porte également l'attention sur les symboles utilisés pour représenter des variables cou­

ramment utilisées dans la description des écoulements souterrains. Bien que ce mémoire soit 

soumis à une institution française, la norme choisie est celle utilisée dans le champ des éléments 

analytiques. Le potentiel d'écoulement est noté li>, la charge piézométrique cp, la porosité v et 

l'écoulement est caractérisé par le flux spécifique -parfois intégré-, plutôt que par la vitesse. Ces 

choix influencent l'aspect de la Loi de Darcy, qui est exprimée d'une façon peu orthodoxe pour 

les Français. Elle est offerte sous cette forme pour le besoin d'intégration du présent travail 

dans l'AEM. 

ADVANCED CURVILINEAR SHAPES FOR OBJECT CENTERED MODELING OF GROUNDWATER FLOW 



1.3. DE L'UTILISATION DE L'ANGLAIS 8 

1.3 De l'utilisation de l'Anglais 

Le choix de la langue pour cette thèse ne fut pas facile. Le besoin d'un texte publié en 

Français sur la méthode des éléments analytiques, méthode pratiquement ignorée en France, 

semblait nécessiter l'utilisation du Français, maximisant ainsi l'audience du présent mémoire. 

Cependant, le niveau de confort de l'auteur en Anglais par rapport au Français en matière de 

rédaction technique, le fait que la plupart -sinon la totalité- de la recherche gravitant autour 

de l' AEM est publiée en Anglais, et le fait reconnu que les scientifiques français sont à l'aise à 

la lecture de l'Anglais, ont conduit au choix final de la langue de Shakespeare. Par un désir de 

clarté, et pour faciliter la compréhension de cette thèse, les passages suivants sont fournis dans 

les deux langues : cette introduction, la conclusion, et le résumé en tête de chaque chapitre. 
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Chapter 2 

GIS and Modeling in hydrogeology 

Synopsis 

Purpose: This chapter focuses on a description of the use of GIS in hydrogeological modeling. 

It brings a logical argument for a shift in using the GIS as an input and design interface to 

making numerical models an analysis tool among many. 

Outcome: The AEM is an important piece of a puzzle that should enable the creation of models 

centered on geographie features, objects. In order to improve the link between AEM and GIS 

in that context, a new element type along splines must be developed. 

The focus of the work of the scientist is moving towards a resource, outcome centered 

model. Methods based on vectorial description of data and results might therefore be preferred 

because they offer an object perspective. The processes involved might be required in advanced 

analyses, but for many common problems where the flow controls the decision, a simpler rep­

resentation of the process is sufficient. The limitation on the required number of parameters 

of the numerical model allows for a complexification and an increased amount of detail used 

in the representation of the geographie setting. Thus, the tool used for the management of 

geo-referenced information, the GIS, gains a central importance in modeling, as a design tool, 

as well as a repository of the information from field data and simulation results. 

Object oriented numerical method for the resolution of the flow problems exist: Boundary 
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methods, as discussed in chapter 3. They can be linked to the GIS without forcing the loss of 

the object structure. 

GIS are intrinsically object oriented because they were conceived for vectorial data. Raster 

data has gained a predominance in recent years, and sorne sources of information are only avail­

able in this object unfriendly format. Other than contouring of information by polylines, the 

only method available in popular GIS packages for translating continuously varying information 

into object representations produces a spline surface. Any method considered for the process 

modeling must handle spline geometries. Such capabilities are added to the analytic element 

method in chapter 4. 

Résumé en Français 

Objectif: Ce chapitre se concentre autour d'une description de l'utilisation des Systèmes 

d'Information Géographiques -SIG- en modélisation hydre-souterraine. Il apporte un argument 

logique à la redirection de l'utilisation des SIG d'outils de conception et de création de données 

d'entrées ar rôle de clef de voûte, dont les modèles numériques ne sont qu'un outil parmis 

d'autres. 

Résultat: L'AEM est une pièce importante d'un puzzle qui devrait permettre la création centrée 

sur les caractéristiques, ou éléments, géographiques. Afin d'améliorer le lien entre AEM et SIG 

dans ce contexte, un nouveau type d'élément le long de courbes spline doit être développé. 

L'intérêt du travail du scientifique se déplace vers des modèles centrés sur la ressource, 

ses sorties. Les méthodes basées sur des déscriptions vectorielles des données et des résultats 

peuventt par conséquent être préférables parce qu'elles offrent une perspective objet. Les pro­

cessus impliqués peuvent être obligatoires pour les analyses les plus avancées, mais pour de 

nombreux problèmes communs où l'écoulement controle la décision finale, une représentation 

plus simple du processus physique est suffisante. La limitation du nombre de paramètres re­

quis pour le modèle numérique, permet la complexification et l'augmentation du détail utilisé 
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dans la représentation de l'arrangement géographique local. Ainsi, l'outil utilisé pour la ges­

tion de l'information géo-référencée, le SIG, gagne une importance centrale dans l'activité de 

modélisation, comme outil de conception, de même qu'en tant qu' entrepot de l'information 

obtenue par observation sur le terrain et des résultats de simulation. 

Des méthodes numériques orientées objet existent pour la résolution de problèmes d'écoulements: 

les méthodes aux frontières, présentées au chapitre 3. Elles peuvent être liées au SIG sans avoir 

à forcer la perte de la structure objet. 

Les SIG sont intrinsèquement orientés objet parce qu'ils sont originellement conçus pour 

de l'information vectorielle. Les données Raster, en grille, ont tendance à prédominer dans les 

dernières années, et certaines sources d'information ne sont plus disponibles que dans ce format 

peu amical pour les objets. Autre que la production de lignes de niveau, la seule méthode 

disponible dans les outils SIG les plus populaires pour traduire de l'information variable continue 

dans une représentation objet est de produire une surface spline. Toute méthode considerée 

pour modéliser le processus physique d'écoulement doit pouvoir gérer ces géométries. Une telle 

capacité est ajoutée à la méthode des éléments analytiques dans le chapitre 4. 

2.1 Tools of hydrogeological modeling 

The modeling of hydrogeology, as in most natural sciences, involves many different fields of 

science, each requiring different tools. 

2.1.1 The three sides of modeling groundwater flow 

Unlike in industrial sciences, where an abject can be produced and re-produced, the geologist 

and geo-technical engineers are not at liberty to operate destructive testing, like disections 

and plasticity tests, on the main abject of their work. Instead, much like medical doctors, they 

learn from experience, individually evaluate each modeling challenge from indirect observations, 

classify it, and choose a method to face this challenge according to their experience. The 

hydrogeologist finds help from three colleagues: 
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• the physicist and mathematician provide descriptions of the movement of groundwater, 

either using deterministic mathematical models based on mechanics that are tested at 

sorne scale with laboratory physical models, or using advanced statistical tools. 

• the computer scientist makes the product of the physicist's work usable in the form of 

numerical tools meant to solve the mathematical model. 

• the geographer offers means of organizing and handling information as it relates to the 

site of the model, and to derive knowledge from the numerical model with respect to the 

specifie site. 

Aside from his knowledge of geology, he must therefore understand and use the techniques 

of these three fields. Sorne hydrogeologists specialize in one or the other of these areas as weil, 

making sure that the state of the art in each discipline is applied to hydrogeology. 

Mathematical modeling 

The mathematical modeling of groundwater flow can be done via: 

• Stochastic models, which deal with the identification and quantification of the variability 

of model parameters. They provide a probabilistic representation of the solution; they 

are better used for pollution and transport problems, estimating vulnerability, than to 

quantify flow. 

• Deterministic models, which attempt to provide quantitative analysis of the characteris­

tics of the flow. Most models provide a set of quantitative equations linking unknowns 

-head, discharge, etc.-, parameters -permeability, porosity, density, etc.-, and variables 

-location. 

The scope of this thesis is limited to deterministic modeling of the flow of groundwater. 

The mathematical model to be used is described in 3.1.2. 

N umerical modeling 

Within this thesis, numerical modeling is understood as a discipline of computer science which 

creates the tools necessary for the accurate solution of the differentiai equations provided by 
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the mathematical modeling of the physics and mechanics of groundwater flow. 

The numerical model sometimes has the drawback of forcing hypotheses that the mathemat­

ical model did not include for the purpose of efficiency, either in the amount of input needed, 

or in terms of computational cost -time necessary to compute a solution. 

Popular numerical models for groundwater flow include ModFlow -see [38]-, FeFlow -see 

[20]- or WhAEM -see [33]. 

Geologie setting modeling 

Here, the model of the geologie setting -or geologie model- is the description, through digital 

means, of the setting where the numerical model is to be applied. The components of the 

geologie model fall into two categories: 

• Hard data: 

- the field collected data 

- pre-existing data maps as relevant to the area of study. 

• Inferred data: 

- the geologie parameters relevant to the model in a manner that accounts for their 

spatial distribution and eventual variability. 

- the types and locations of the boundaries of the model, whether internai or external, 

and the constraints on the variables at those boundaries. 

It is important to note that the inferred data are the result of an inverse model. For example, 

permeability and storativity obtained from a pumping test may actually yield the coefficients 

that all~w a best fit of the specifie analytic function, e.g. the Theis solution -see e.g. [59]. 

Because of the increased complexity of models, the management of these forms of data, and 

the need to perform spatial analysis on them, has required the hydrogeologist to make use of 

new software tools. Geology handles information that is by nature related to a location on the 

earth: Geographie Information Systems -GIS- are these tools. 
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2.1.2 GIS: Geographie Information Systems 

A GIS is a system that handles geo-referenced information and can produce spatial analysis 

on that information [8]. Two different types of GIS can be identified, though many software 

implementations seamlessly include both: 

• Vectorized GIS. According to [60], the oldest type of GIS were meant to handle vectorized 

information, that is information whose localization could always be described as points, 

polygons, or polyhedra. Vectorized GIS is well suited for human geography, and land use 

analysis in particular. 

• Raster GIS. This more recent form of GIS owes its popularity to two factors: firstly, the 

method used to store information, as large arrays or grids, is appealing to the computer 

scientist of the late 1970's and early 1980's; secondly, the advent of remote sensing and 

telemetry, including satellite imagery, favored systems that could readily be automated: 

the human presence required for digitation was made unnecessary by the use of scanning 

methods. It is interesting to note that [60] proposes that the raster methods were made 

necessary by the attempt to integrate the representation of two dimensional continuous 

data and processes. 

The use of GIS in combination with flow models, deterministic or stochastic, is well documented 

in the literature. A review was found in [34], from which the au thors propose two categories of 

links between numerical model and GIS, and further review supports their point: models that 

are either developed directly inside the GIS -see e.g. [46]-, or external models that interact 

with the GIS through input and outputs -see e.g. [3, 16]. The research presented in this thesis 

concerns principally the latter. 

2.1.3 ' An Observation- Modeling: process centered activity 
.f 

The purpose of modeling groundwater is to allow a decision maker or a stake-holder to acquire 

the information they request on the response of an aquifer to a given set of stresses. Because 

it is driven by the expected output, rather than by the available inputs, the choices made 

for modeling do not take the available data as the limiting factor. The desired output, as 
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expressed by the end user -stake-holder-, drives the choice of mathematical model, the set of 

physical processes to be simulated. The choice of mathematical model drives the choice of 

riumerical model, and defines the set of parameters that need to be informed with data. 

Thus, the characteristics of an individual site is ignored in favor of the expectation of a 

few individuals. The paucity of information, the quality of available data occasionally force a 

lowering of expectations, but more often than not, three dimensional models are used when 

2+~-Dimensions would be enough, transient when steady state would suffice. 

2.2 Object centered modeling 

The use of Geographie Information Systems -GIS- raises an interesting issue for the hydro­

geologist. Unlike his surface water colleague, the hydrogeologist does not benefit to a great 

extent from the satellite collected raster data, because a plan view offers little information with 

respect to the sub-surface. In fact, once that data has been transformed into vector maps that 

describe the locations of most water features, the raster format is not usually needed to store 

the information needed by a groundwater model. The popular Finite Difference modeling tool 

Visual-MODFLOW, which is composed of a Graphical User Interface for model building and 

ModFlow -[38]-, as a computational engine, actually used zones of constant transmissivity to 

characterize the aquifer; the preprocessor is in charge of informing individual cells of the model 

what is their actual transmissivity value. This eases the sensitivity analysis and the inverse 

modeling. The hydrogeologist handles data which the original tools of Vectorized GIS were 

meant to represent: points, lines and polygons are sufficient to describe the input data of a 

groundwater model. 

2.2.1 Concept 

It is proposed that the modeling focus in hydrogeology could be shifted from an increased 

complexity of the mathematica1 representation of the physical phenomena and processes to an 

increased complexity of the geographie representation of the modeled area. 

By mathematical complexity, it is not meant reducing the level of mathematics necessary to 

represent of compute the solution: that is inherent to the solution itself and can therefore not 
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be the choice of the modeler. Instead, this complexity implies increased number of parameters, 

variables and unknowns, number and order of interacting differental equations, etc. 

2.2.2 Advantages and drawbacks 

The implications of this shift are multiple. 

• In the context of deterministic modeling, the reduction in the mathematical complexity 

implies a reduction in the number ofparameters, to which the model is often very sensitive. 

Sensitivity analysis is a key of efficient modeling. By reducing the number of parameters, 

the modeler will get a better chance to understand the behavior of the model with respect 

to each of those he chose to keep, thus furthering the quality of his judgment in supporting 

or making decisions based on his model. 

• By focusing on the abjects, the features, of the model rather than the physical phenom­

ena, the logical link between data, flow feature, and the results of the model will be 

more intuitive: beyond the use of GIS as a handy Graphical User Interface that serves 

the model, this abject centering provokes a shift in logic where the model serves the 

information management tool and its user. 

• Objects have been a means of improvement in computer science at large. Even computer 

languages like FORTRAN, traditionally procedural and array based, have had to insert 

abject orientation facilities in their most recent versions. The transfer of information 

through the web has become abject centered with the advent of the eXtensible Markup 

Language -XML-: as computer programs evolve to integrate such advances, it is possible 

to envision a situation where the GIS and model have no facilities explicitly defined for 

the inter-operation, and yet would be able to communicate because they each understand 

an,externally defined language based on XML. 

The main limitation to such a change in the practice of modeling is that the modeling tools 

must still understand abjects. Whether XML is used or not, the actual software must be able 

to understand abjects and translate them into its native mode: a gridding for finite difference 

software, a tessellation for finite elements. ln both of these cases, considerable effort would 
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need to be invested in modifying the software, not only to handle the format change of the 

Input/Output in XML, but also to make sense of the object centering. The only alternative is 

·for the GIS to know which tool is going to use its output and do sorne of the work for it.-

2.2.3 A method for object centered modeling of groundwater flow 

Methods for the object centered modeling of groundwater flow must therefore natively contain 

the notion of object and be able to handle the elementary features produced by a GIS: points, 

polygons, and arcs. Boundary methods -see 3.1.1- natively use these internai representation. 

One in particular, the analytic element method, fits the requirements. In recent research, object 

oriented frameworks were proposed that classify the elements in these three categories. In [5], 

elements are defined along precisely those geometries, and a few others -circle and disks in 

particular. In [56], elements are either located on points, lines, or collection thereof; polygons 

can be viewed as collections of lines. AEM software manuals -[58, 33, 32]- also show that this 

basic organization of data is part of the structure of the computer tools. The AEM is indeed 

able to handle the three types of elementary features. 

One type of data, continuously varying in two dimension, is used to justify representation on 

grids -see [60]. Although this projection on arrays of the information is convenient to operate, 

the following shows that it is not necessary, despite being a valid choice. 

Parameters varying in two dimensions 

Many parameters in hydrogeology are inferred from values obtained at points scattered around 

the domain of interest; this includes information on precipitation -rain gauges- or depth to 

bedrock -from bore logs. The value of a parameter at any given point may be interpolated by 

many methods: nearest neighbor produces polygonal area of constant values; linear interpola­

tion produces a triangular mesh. 

Interesting methods for the production of smooth data exist in two popular GIS software 

packages, Arc/INFO and GRASS, but their aim is for the production of raster data from 

the point values: the function Spline fits a spline through the data points that has minimum 

curvature. 
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Such a function is particularly appealing because it produces a geometrie object, the spline 

surface, that fits within an object centered view. The parameter is estimated at point where 

no observation was made as the elevation of the spline surface. ln the case of GRASS, an 

open-source software, it is possible to preserve the geometrie description of the spline used to 

produce the raster map of the parameter. This implies that for the description of complex 

parameters that vary continuously in two dimensions, splines can be added to the vectorized 

data types to extend the capabilities of polygons. 

lmporting raster data 

Despite the value of the object centered approach, the current state of the modeling practice 

imposes to a certain extent the use of raster data. On national scales, large data sets and maps 

are controlled by a limited number of organizations whose choices may become standards. This 

is the case in the United States in partieular with respect to geological maps stored and soldas 

Digital Elevation Models -DEM, grids- by the U.S. Geological Survey; it is noteworthy that the 

USGS is the principle funding agency of ModFlow, a Finite Difference tool. Similar situations 

exist in Europe: Elevation datais centralized in France by the IGN, who solely decides of the 

formats in which they are willing to sell the data with whieh they have been entrusted. Sorne 

information, maps of permeabilities, historical piezometrie maps, elevation of substratum from 

geophysical analysis, etc. may be available only in a grid format. 

Both ARC/INFO or GRASS provide global functions that allow the processing of a grid 

to produce contours -isopleths- as vector information. It is then possible to assume that the 

represented parameter is constant, orto use an interpolator between two consecutive contours. 

Although these may be suffi.cient for sorne parameters, the loss of information is substantial. 

A solution is to increase the number of contours, but this would produce a large number of 

objects. Again, the splines function can be used to represent the data: from the grid, a series 

of contours is obtained, and from the contours, which are vector data, a spline surface can be 

constructed and preserved, as in 2.2.3. 
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Conclusion 

In order to account for continuously varying information with the GIS tools currently available, 

the numerical modeling technique should handle information passed as spline surface. 

These surfaces are bounded by spline curves; any subdivision of such surfaces would also 

carry this type of bounds. Their isopleths are spline curves as well. Thus, for the numerical 

method to be able to make use of the spline surface, it must first be able to handle boundaries 

shaped like spline curves. 

In the following, the analytic element method is presented in chapter 3, and the required 

elements, along spline shaped boundaries, are developed in chapter 4, along with the innovations 

necessary to make them usable in practice. 
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Chapter 3 

The Analytic Element Method 

Synopsis 

Purpose: This chapter introduces the Analytic Element Method, abbreviated AEM, outlining 

the background concepts, and focusing on both the most recent developments, and the method's 

intrinsic limits. Examples of practical nature are referred to or provided. 

Outcome: The limits and limiting features of the AEM are detailed, thus bringing forth the 

needs for new development related to the AEM in the context of interfacing with GIS. 

As previously pointed out, the AEM is largely ignored in France; it is often dismissed for 

invoked reasons such as an incapacity to handle complex processes or simply the steep learn­

ing curve involved. Based on the principle of superposition, the method has the advantage of 

providing information over a 2-D or 3-D domain while containing unknowns along the inter­

nai or external boundaries only. This property makes it a natural favorite as a tool linked to 

vector-oriented data representations. Recent developments have allowed the models to achieve 

greater precision and efficiency, without adding much requirements on the data inputs. Sorne 

of these developments will be referred to or detailed in the present chapter. However, one 

must concede that the method is intrinsically limited by the range of phenomena that it can 

handle. The consequence is that in order to make it more attractive as a tool for groundwater 

modeling, a number of improvements are required. These are twofold: improvements related 
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(1) to increased complexity of the modeled phenomena, (2) to more sophisticated data repre­

sentations. The former will only be introduced in the present work, as it is not crucial to the 

subject and constitutes a field of study in and of itself; recent developments and leads will only 

be mentioned. The latter is a topic of this thesis and new elements will be provided in chapter 4. 

This introduction to the AEM is accompanied by examples meant mostly for the novice. 

Résumé en Français 

Objectif : Ce chapitre introduit la Méthode des Eléments Analytiques, abrégée AEM, en 

soulignant les concepts fondamentaux et en se concentrant sur les développements récents et les 

limites intrinsèques de la méthode. Des exemples de nature pratiques sont référencés ou fournis. 

Résultat : Les limites et caractéristiques limitantes de l' AEM sont détaillées, mettant ainsi 

en évidence le besoin de nouveaux développements liés à la méthode dans le contexte de l'in­

terfaçage avec le SIG. 

Comme précédemment mis en avant, l'AEM est largement ignorée en France; elle est sou­

vent écartée pour des raisons invoquées telles que son incapacité à manipuler des processus 

complexes, ou simplement que la courbe d'apprentissage associée est difficile à gravir. Basée 

sur le principe de superposition, l'AEM a l'avantage de fournir de l'information sur un do­

maine en deux ou trois dimensions en ne manipulant de l'information que sur les frontières 

internes ou externes du domaine. Cette propriété en fait un favorit naturel comme outil lié à 

des représentations de données vectorielles, ou orientées vecteurs. Des développements récents 

ont permis aux modèles d'achever une meilleure précision et efficacité, sans ajouter trop de 

contraintes sur les données entrées. Certains de ces développements seront référencés ou détaillés 

dans le présent chapitre. Cependant, on doit concéder que la méthode est intrinsèquement li­

mitée sur l'étendue des phénomènes qu'elle peut manipuler. Il en résulte que pour pour la rendre 

plus attrayante comme outil de modélisation, un certain nombre d'améliorations sont requises. 

Elles sont de deux catégories: améliorations liées (1) à un accroissement dans la complexité des 
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phénomènes modélisés, et (2) à des représentations plus sophistiquées de données. La première 

ne sera qu'introduite dans le présent travail, car elle n'est pas cruciale au sujet, et constitue un 

champ d'étude à part entière; des développements récents et des pistes de recherche ne seront 

que mentionnées. La seconde est un sujet de cette thèse, et de nouveaux éléments seront fournis 

dans le chapitre 4. 

Cette introduction à l'AEM est accompagnée d'exemples conçus pour le novice. 

3.1 Fundamental concepts of the AEM 

As mentioned in chapter 2, a description of the Analytic Element Method is required in order 

to understand one of the principal tools that will allow an Object-Oriented description of data 

to produce usable models. In the present section, the founding concepts of the method are 

depicted, following an outline of the placement of the AEM with respect to other numerical 

techniques. 

3.1.1 Position of the AEM compared to other numerical techniques 

Like other numerical techniques, the AEM is used to approximate the solution of a partial 

differentiai equation based on a distribution of error. It is related to the Boundary Element 

Method, and models produced with the AEM may often be connected to models produced by 

other methods. A classification of these methods is proposed so as to introduce similarities and 

differences between them. 

A classification of techniques 

Modeling techniques may be classified into three different categories, following e.g. [10] or [12]. 
1 

In all boundary value problems, the problem is set based on: 

• a differentiai equation 

• a set of boundaries and associated boundary conditions 
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When a numerical tool is needed to solve the problem, either one or both of the following have 

to be performed: 

• the domain is discretized: a set of points is created inside the domain. A set of relation­

ships between the unknowns and the parameters at these points is also formulated so as 

to represent the differentiai equation. The points that fall on or closest to the boundaries 

are constrained using the boundary conditions instead of these relationships. 

• the boundaries are discretized and the boundary conditions approximated in a functionally 

appropriate manner. The discretization of any boundary must be operated using geomet­

rically relevant tools, such as pieces of straight-lines to approximate a one-dimensional 

object or closed planar polygons for a two-dimensional object. 

The classical methods of Finite Differences -FDM- or Finite Elements -FEM- fall within the 

first category of methods, known as domain methods, where the domain only is discretized 

and the boundary conditions are represented exactly. With these methods, the boundary 

conditions are met exactly, although not always at the precise location of the boundary, but 

the governing equations are not met inside the domain. However, it is important to notice 

that, in practice, domain methods hardly accommodate for conditions located at infinity, and 

thus, boundaries are sometimes artificially inserted to replace such conditions. These methods 

provide an approximate solution to the original equation and spread the error throughout the 

domain. 

Originally, the Analytic Element Method falls in the second category. It is a boundary 

method as it meets the differentiai equation exactly inside the domain but meets the boundary 

conditions only in an approximate fashion and at approximate locations. As a consequence, 

for each differentiai equation, a complete set of solutions has to be provided for the method 

to produce a usable result. That remains its principal drawback, as such solutions, the Green 

Functions for the particular equation, are potentially hard to find, when it is not impossible. 

In recent developments, the AEM has moved towards a third category, known as mixed 

methods: although the domain is not discretized in the traditional sense associated to the 

FDM or FEM, the introduction ofnumerous polygonal elements for the representation ofleakage 

between aquifers may be regarded as a splitting of the domain. Also, the organization of aquifer 

ADVANCED CURVILINEAR SHAPES FOR OBJECT CENTERED MODELING OF GROUNDWATER FLOW 



CHAPTER 3. THE ANALYTIC ELEMENT METHOD 25 

and aquitard units in parallel horizontal entities is reminiscent of a discretization in the vertical 

direction. Furthermore, in the particular application of leakage, the differentiai equation is 

not exactly met. As a consequence, and in anticipation of future developments, it seems more 

suitable to place the AEM in the mixed methods, bearing in mind that it is the solution domain 

that is discretized rather than the physical domain. Therefore, the problem is still reduced to 

one with unknown located solely along the boundaries; the error in approximation is spread 

both over the boundaries and the domain. 

Other boundary or mixed techniques exist that may compare or be included under the 

description of AEM. the most popular are the method of Distribution of Singularities, also 

known as the Boundary Elements Method -see e.g. [21], [10],[43]. 

In practice, the AEM has been applied to groundwater modeling in The Netherlands with 

NAGROM [15, 17, 14], at Yucca Mountain in Nevada [4], in Minnesota with the Metropolitan 

Groundwater Model described in [47] and used in [28]. The method seems particularly attractive 

at regional scales, and [30] suggests its use prior to local modeling with domain methods as a 

screening model. 

Relationship between the Boundary and the Analytic Element Methods 

In essence, a brief review of the literature shows that the Boundary Element method relies 

on the transformation of the differentiai equation into a boundary integral equation. This 

is made possible by the use of Greens Identities and the Divergence theorem which relate 

domain integrais involving a vector field to boundary integrais. Thus, the problem is reduced 

to evaluation of the latter integrais. This first step brings the Boundary Integral Equation 

Method, BIEM. The BEM itself revolves around the approximation of the boundary by a set of 

polygons or polyhedra, and the use of a linear combination of the fundamental solutions to the 

equations: the Green Functions, named after mathematician George Green. The coefficients of 

the combinations are determined by collocation, that is by forcing its value -Dirichlet Problem­

or the value of its derivative -Neumann Problem- at certain points along the faces of the polygon 

or polyhedron. 

As shown in [51], relying on Cauchy Singular Integrais in the two-dimensional case, the 

Analytic Element Method is actually a more general technique that completely includes the 
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BEM solutions within its own. Since the AEM also used solutions produced by other techniques, 

such as conformai mapping -see [52]-, it may be argued that the BEM is a direct subset of the 

AEM. However, in the three-dimensional case, where neither ofthese two techniques is available, 

the AEM may be perceived as limited to the BEM. One must then consider the elements created 

by Haitjema [26], Steward [49], or Luther [37] for the representation of partially penetrating 

wells to be convinced otherwise: their use of imaging techniques -[26], [49]- and superposition 

of circular sinks outside of the flow domain -[37]- are examples of means of achieving usable 

basis functions for the AEM outside of the framework of the BEM. 

To summarize, the Analytic Element Method is a superset of the Boundary Element Method. 

The AEM has ali of the advantages of the BEM, but removes sorne of its main drawbacks, as 

will be shown in the section 3.2. 

The Analytic Element Method is therefore a boundary or mixed method. Exact solution to 

the differentiai equations are used in linear combination to approximate the specified boundary 

conditions. This general statement is further developed in the following. 

3.1.2 Foundations of the method 

As mentioned in 3.1.1, the Analytic Element Method is used to provide approximate solution 

to boundary-value problems defined by a differentiai equation and a set of boundary conditions. 

An introduction to the principles that govern the AEM may be found in [52, 54]. A different yet 

similar one is proposed here, focusing mainly on the principle of superposition, and Helmholtz 

Theo rem. 

Hypotheses for modeling groundwater flow 

It is assumed, throughout this thesis, that by modeling of groundwater flow one refers to the 

production of a flow field describing the movement of water in a geologie rock formation rep­

resented as a porous medium. Although other types of flow may be included, such as fracture 

flow for karstic aquifers, they are set outside of the scope of the present work. As a result of 

this definition, it is always possible to describe the flow field in the subsurface as a continuous 

vector field of the variables of space (x, y, z) and time t. 
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Darcy's Law 

The first works published on the flow of fluid through a porous medium are due to Henry Dàrcy 

-[13, Appendix D]. There, He derives an experimental law relating by a law of proportionality 

the discharge of water through a pipe filled with sand with the hydraulic heads 1 applied 

upstream and downstream from the pipe. This law is referred to as Darcy's Law. Modern 

expressions of it may be found in [51], [18] or [7], and appear as: 

(3.1) 

where q is the specifie discharge in [m/s], cjJ is the hydraulic head in [rn] and K is a symmetric 

square matrix of the hydraulic conductivities in [m/s]. It is alway possible to find the eigenvec­

tors of the matrix K and to operate a change of variable based on these vectors to reduce the 

problem to that where K is a diagonal matrix. Furthermore, the ratios of the diagonal terms 

are often assumed to be constant in space, so that, using an appropriate non conformai change 

of variable, Darcy's Law may be rewritten as: 

q* =-k. V*h* (3.2) 

where k is a scalar function of space with dimensions [m/s] referred to as the hydraulic conduc­

tivity, and the space variable do not actually relate directly to the physical coordinate system 

-stretching has occurred-. Since it is always possible to bring oneself back to this situation, it 

is assumed throughout this thesis that the hydraulic conductivity matrix K is limited to k * I 
where I is the identity matrix. For the sake of simplicity of notation, Darcy's law will be written 

as: 

(3.3) 

Equation 3.3 is the form preférred for the presentation of the AEM. 

1The hydraulic head is in essence a representation of pressure in terms of equivalent water column elevation, 
just as pressure may be measured in millimeters of Mercury. The formula linking head cp, pressure p, elevation 
z, gravitational constant gand fluid density pis: cp= z +fa· See e.g. [51] for details 
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Helmholtz Theorem 

Evaluation of the specifie discharge vector field is the purpose of most modeling techniques, 

although many achieve it indirectly through the approximation of the hydraulic head, followed 

by a differentiation to obtain the discharge. As recently pointed out by [52], a theorem known 

for over 150 years in electromagnetism may be used to separate the specifie discharge vector 

field: Helmholtz Theorem. It states that any vector field may be separated into two vector 

fields, the first being divergence-free, and thus deriving from a vector-potential, the second 

being irrotational, and thus deriving from a scalar potential. Thus: 

(3.4) 

and, alternatively to finding a head distribution that satisfies the differentiai equation, one 

may solve for the scalar and vector potentials. 

A principal of the AEM which sets it a part from the other modeling techniques is to look for 

these function in a closed form, thus allowing the exact rather than numerical differentiation 

required to get the flow field. 

Conservation of mass 

In arder to produce a usable differentiai equation, one considers the law of conservation of mass: 

V· q = N(x, y, z, t) (3.5) 

where the right hand side is a source term, representing ali intake or out-takes of fluid from 

the system: wells, rivers, infiltration, release from phreatic storage, etc. Sorne are known 

independently of the flow or, head in the medium, such as wells, others are related by an 

equation, such as release from storage: N = - S,: ~~, others still constitute a boundary condition, 

e.g. head imposed along river boundary. 

Using equation 3.4 in equation 3.5, and bearing in mind that the divergence of the curl of 
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a vector field is zero, the scalar potential <I> is the solution of the following Poisson's equation: 

V· V<I> = .6.<!> = N(x, y, z, t) 

Similarly, applying the curl operator to equations 3.3 and 3.4: 

.6.'ÎÎ 

-Vk x Vh = vtn(k) x if 

(3.6) 

(3.7) 

(3.8) 

For the scope of this thesis, the permeability k will be assumed to be constant by part. 

Thus, with equation 3.8, the specifie discharge vector field may be assumed to be piecewise 

irrotational. 

Although these derivations may be operated in three dimensions as has been the case thus 

far, the application of the flow equations in practice often require the use of two dimensional 

horizontal flow models, which are faster and easier to handle. This approximation may take 

place by using the Dupuit-Forcheimer assumption: in the case of an aquifer bounded at the 

bottom, although a vertical component of flow exists, the resistance to flow in the vertical 

direction is neglected: the variation in head in the vertical direction is then negligible. Thus, 

the head along any verticalline defined by x= x0 , y= y0 , z E lR is constant along that line. It 

is then possible to assign a unique value of head to any point in the horizontal plane. 

In this case, a two-dimensional discharge vector may be defined as the total amount of water 

flowing through the aquifer at point (x, y) by integra ting the specifie discharge vector over the 

wetted thickness of the aquifer -the smallest of the total thickness of the geologie layer H and 

the water table elevation h: 

-+ 

Q (Qx,Qy) (3.9) 

•Qx(x, y) 
1min(h,H) 

0 
qx(x, y, z)dz (3.10) 

Qy(x, y) 
1min(h,H) 

0 

qy(x, y, z)dz (3.11) 

Using Darcy's law, restricting oneself to the two-dimensional differentiation operator and 
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considering the assumption that k is constant by parts, the discharge vector may be expressed 

in each zone of constant hydraulic conductivity as: 

Q = -k · min(h,H) · Vh (3.12) 

and introducing the function ci> defined as: 

H<h 
(3.13) 

H~h 

the discharge vector may be written as deriving from a potential: 

(3.14) 

As a result, following all these assumptions the governing equation for horizontal flow 

throughout this thesis reduced to Poisson's Equation: 

~ci>= V· Q = N(x, y, t) (3.15) 

The source term N(x, y, t) may be obtained from data, model, or assumption. Because of 

the non-linearity involved with the time-dependent source terms such as release from phreatic 

storage, the rest of this thesis will focus on steady-state phenomena, or phenomena that may 

be considered as piecewise steady-state. 

Linear operators and the principle of superposition 

As can be observed in equations 3.14 and 3.15, the differentiai operator involved in the problem 

at hand are well known and fairly simple: the Laplacian and the Gradient operators are known 

as linear operators, because 'their operations on a linear combination of functions is a linear 

combination of their operations on the functions. In other words, for the Laplace operator: 

(3.16) 
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See e.g. [11],[61] 

This property of linearity is essential for the AEM to be used to solve the boundary value 

problem: for any linear operator, assuming that a set of solutions { <I>n, n E N} exists that 

salves the differentiai equation exactly, then a particular solution that salves the problem may 

be built by linear combination of the solutions, in a manner that will minimize the distance 

between the constructed function at the boundaries and the boundary conditions. 

A simple example may be considered here. For instance, the one-dimensional wave equation: 

(3.17) 

with boundary conditions: f(O) = 1, ft= Oatt = 2n the set of solutions is {sin(wt), cos(wt)}. 

A complete solution is written as f(t) = a· cos(wt) + b · sin(wt) where a and b are unknown. 

A system of linear equations is set up by applying the boundary conditions: 

f(O) a=1 

-awsin(2nw) + bwcos(2nw) = 0 

(3.18) 

(3.19) 

so that the final solution is f(t) = cos(wt) +cot(2nw) ·sin(wt). The AEM works in the same 

fashion: (1) identifying the set of solutions to the governing equations, which will be referred 

to as the basis functions, and (2) combining the basis functions in linear form. This latter step 

is called superposition. A set of unknowns is then created, which is solved for by establishing a 

linear system of equations linking the values of the function at the boundary to the values of 

the boundary condition. Originally, as in the BEM, these coefficients were solved for based on 

a system of equations arising 'from collocation: as many points as there were unknowns were 

chosen along the boundary where the boundary conditions were enforced. It will be shown in 

section 3.2 that the system of equations may be built in a different way so as to minimize the 

overall error in the approximation. 
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Combining 2D and 3D models 

. As noted above, two-dimensional are sometimes preferable to three dimensional models, com­

monly for reasons of speed of execution as well as ease of representation of solutions. However, 

in sorne cases, the third dimension is essential to the appropria te representation of the problem, 

as is the case for horizontal collector wells -see e.g. [50]. The inclusion of such features in mod­

els is of interest for a specifie problem to be studied. Such embedding of locally 3D solutions 

within otherwise 2D models have been achieved -see e.g. [27]. The embedding is made possible 

by the facts that: 

• any 2D element actually produces a 3D specifie discharge vector, although the third 

component is zero. The principle of superposition still holds. 

• 3D elements usually approach 2D representation sorne distance away from the element. 

If 3D elements are far enough from the 2D ones, the latter are not significantly disturbed 

and their resolution process remains valid. 

Three dimensional solutions are a topic of their own, which falls outside of the scope of the 

present document. The remarks given here only intend to show that the work achieved on 

analytic element method in 2D has value even in the case of problems for which local 3D effects 

must be accounted. 

Intrinsic limitations 

The AEM is intrinsically limited by the principle of superposition to the case of linear equations. 

This limitations may sometimes be lifted if the equations are linearized, as is often the case 

for transient and unconfined flow: the best example of this is the common usage of the Theis 

solution for the evaluation of aquifer properties through pumping tests. 

The main limitation of the AEM in practice is due to the necessity for a complete base 

of solutions for each new differentiai equation: the amount of investigative research required 

to produce such a base is important, and the limited community of researchers in the AEM 

cannot produce bases as fast as others produce variations on differentiai equations. In sorne 

cases, a differentiai equation will already be known and be heavily studied in a different field 
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of physics, so that a solution base exists, but the practical use of such a base could be limited 

by the implementation of the computation of the functions, or of the linear combinations of 

· these functions. An obvious example of this phenomenon is the evaluation of series of Bessel 

functions for series of small coefficients for low orders, and large coefficients at high orders: a 

classical forward Clenshaw recurrence fails -see [ 45], requiring the use of an alterna te method of 

computation. These issues of stability of computational algorithms may undermine the AEM 

as the effort involved in resolving them may appear as overwhelming to the beginner. 

However, the Analytic Element Method do es remain a practical tool for modeling many 

groundwater flow problems, with many basic solutions already existing. These solutions are 

introduced in the following, and the most recent advances are discussed in section 3.2. 

3.1.3 Basic elements 

The purpose here is to introduce the basic concepts and solutions used in the most basic of 

solution bases for elementary problems in groundwater flow, so asto produce the framework of 

the building blacks around which the most recent advances were built. 

Introduction to 3D-elements 

In most of this thesis, the focus is placed on two-dimensional models only, but as is discussed 

in Chapter 2, the issue of three-dimensions may be conceptually taken into account: this is 

necessary to create a framework that will remain acceptable in the near future, as more elaborate 

solutions become available in 3D or transient settings. 

The basis of three dimensional elements is that they generate a fully 3D specifie discharge, 

that may not be approximated everywhere using the Dupuit-Forccheimer assumption. What 

may be assumed however, is that the functional basis of solutions approaches the basis of the 

corresponding 2D problem as the functions are evaluated further from the element, as pointed 

out above, if the aquifer or the water table elevation are somehow bounded. 

3D-solutions generally involve the use of the fundamental solution of Laplace's equation in 

three dimensions .6. <I> + .6. k = 0 where .6. k is a function equal to zero everywhere except at point 

Pk = (xk, Yk, zk), and such that JJR3 .6_kdT = Q, where Q is the discharge of water drawn from 
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the aquifer at point Pk. This solution is expressed as: 

(3.20) 

the flow results from application of Darcy's Law, and is expressed as: 

q(X) = _ _!__ . X- Pk 
47r r3 

(3.21) 

This solutions is then imaged across the relevant impermeable boundaries to create a solution 

which approaches the 2D solution as x and jory grow large -see [26]. 

Another approach, taken by Steward in his PhD dissertation -see [49]-, is to compute the flow 

field using a three dimensional solution of the vector potential, rather than a scalar potential. 

This method has the advantage of allowing future incorporation of rotational flow, which might 

be more relevant in three dimensions than divergent flow: in 3D divergent flow occurs because 

of elastic release from storage, which is generally small, while rotation in the flow would be 

inserted by phenomena as common as variable hydraulic conductivity. 

General solutions are obtained through integration of the solution for a given distribution 

of singular points. 

A review of the literature reveals that the 3D solutions are generally cumbersome to use, 

with each author often choosing his or her own notation to derive a solution. This makes them 

difficult to integrate within the present work, which relates not only to mathematical solu­

tions for practical problems, but also to the organization of data structures for the modeling 

of groundwater flow. It should also be mentioned that 3D data structures are thus far quasi 

inexistent in common GIS tools: these structures generally rely on a 2D+! dimension represen­

tation, where the third dimension is approximated by layers, which amounts to a discretization. 

As a result 3D solutions are set outside the scope of the present work. 
1 

This reduction of the problem to 2D settings only implies that specifie tools may be in-

troduced which use the assumption of independence of the solution from the third, vertical, 

dimension. ln sorne cases, these solution may also be used for 2D-flow in the vertical plane, 

where solutions are assumed to be independent of one of the two horizontal coordinates instead. 
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The complex variable for 2D flow 

One of the most interesting tools is complex calculus. It is based on the existence of a number, 

noted i such that i 2 = -1. This number falls outside of the set of real numbers, and it is possible 

to construct a complete field C = {z =x+ i *y, (x, y) E :IR.z}, with additive and multiplicative 

laws appropriately defined; such definitions may be found in most complex analysis textbooks, 

such as [48, 1]. The variable z =x+ i ·y is called the complex variable for 2D flow; it is in no 

way related to the elevation above the confining layer of an aquifer. 

In the case of an aquifer with constant anisotropy of hydraulic conductivity, z may be 

defined in a slightly different way, so asto account for the anisotropy and yet reduce the flow 

equation to those of the isotropie case: see [51, p211] for the definition of a new referential 

(X, Y), and define z =X+ i ·Y. 

The advantage of using the complex variable is that, in the case of non-divergent irrotational 

flow, the scalar potential and the third component of the vector potential that solve equation 

3.4, are conjugate harmonies -see e.g. [51], [7] or [61]-, so that they may be written as the real 

and imaginary part respectively of a complex function of the variable z, named the complex 

potential: 

n(z) = <I> + i. \Il (3.22) 

As a result, all superpositions may take place in the complex plane, rather than in the 

JR2 -plane, which in practice is much easier to perform. also, the isopleths of Psi turn out to be 

the streamlines of the flow, so that existing contouring algorithms may be used to trace them. 

Finally, a function W may be defined as: 

dO â<I> â<I> 
W(z) = -- = -- + i- = Qx - i · Q 

dz âx ây Y 
(3.23) 

which renders the computation of the discharge vector extremely easy to perform analytically, 

thus reducing numerically errors commonly associated to differentiation. These benefits may be 

perceived as outweighing the drawbacks of the assumptions required for the complex potential 

to exist, and justify their use in the present work. 
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Functions associated to elements 

The following three basic solutions are provided here to illustrate the ease with which basic 

functional bases may be found. An example follows, showing a practical possible use of the 

solutions. 

• Wells and dipoles 

Also referred to as point singularities, wells and dipoles originally derive from the fun­

damental solution of Laplace's equation in 2D, with withdrawal of water at discharge Q 

located at point zk = xk + i · Yk: 

~<I> + ~k = 0 

with: 

0 

-Q 

the real scalar solution to this problem, as provided by e.g. [10] or [43] , is: 

Q 
<I> = 

2
7r ln (r) + C, r = iz- zkl, CE lR 

which may also be expressed as the real part of the following complex potential: 

Q 
Sl(z) = 

2
7r ln (z- Zk) + C, CE CC 

(3.24) 

(3.25) 

(3.26) 

(3.27) 

(3.28) 

A dipole is derived from the solution of the weil problem. Detailed descriptions may be 

found in e.g. [51] or [35]. The principle is to superpose the complex potentials of two 
1 

wells of opposite discharge rate, placed symmetrically about a point zp, and to define the 

complex potential of the dipole as the limit of the sum as the distance between the wells 

and the point reduces to zero. In the limit, the product of the discharge by the distance 

to the point is assumed constant: 
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Figure 3.1: Setup for derivation of a line dipole 

O(z) = lim Q ·o. ln(z- (zp + o)) -ln(z- (zp- o)) _ ~. 1 
IJI~O,Q·J==-u 7r 28 7r Z - Zp 
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(3.29) 

Dipoles are used to locally direct the flow, as they create a singularity by absorbing water 

on one side and producing the same amount on another, at an angle a = arg(Œ), thus 

producing a local preferential channel. Mostly, dipoles are used in distributions along a 

line, to create such local flow modifying features as cracks or barriers. A major difference 

between the well and the dipole is their behavior as z becomes large: this behavior at 

infinity is an important characteristic of analytic elements as it informs the modeler on 

the global effect of an element on his model. Wells produce an infinite response at infinity, 

but in a weak 2 , logarithmic manner; this logarithmic behavior is observed for all elements 

that draw water out of an aquifer. Dipoles on the other hand tend to zero as z gets large. 

It is a characteristic of very local features. 

• U niform Flow 

It is possible to construct an element analogons to the dipole, but at infinity. The deriva­

tion is almost identical, except for the fact that o as defined in figure 3.1 grows to infinity, 

and the ratio 2~J is kept constant at -Q0 E C. Equation 3.30 gives the result of the 

computation to the limit, up to an imaginary constant, which may always be ignored. 

O(z) = -Q0 • z+C,C E C (3.30) 

2The choice of the term weak is made here because the logarithm is weaker than any power of z, 
· wa Till* 1· In(z) O I.e. v p E ll\'1. , lillJzi-+oo zf3 = 
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The complex discharge function W may also be computed, foilowing equation 3.23: 

(3.31) 

It is a complex constant, and corresponds to a constant discharge vector at infinity. In 

modeling, this element is used to represent a uniform flow field, which may constrain 

elements. It is commonly used by researchers to test new elements. It may also be 

particularly useful in smail studies of the interaction between a small weil and the aquifer: 

A uniform flow may be determined by three non-aligned measurements, thus providing a 

general field of flow, upon which a weil may be superposed. Figure 3.2 shows the flow-

net produced by such a setting. Dashed lines are piezometrie contours, solid lines are 

streamlines. 
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' ' ' ' 1' 1' '1 ''' 1 '1' 1' 1 1' '' 1 1 1''' 1''' 
'1 1 1 1 1 1 '1 1 1 ' ' '' 1 ' '' 
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1 1 1 ' ' 1 ' ' 1'' 1 

1' 1 ' ' '' 1 1 1' '' ''''''' 
1' 1 1 1 1'' '' 1 1' 1'''' 1' 

'1''' 1 1''''' 1 1' 1 ' ' 1 1 . ''''' '''''' '.''' ''. 

Figure 3.2: A weil in uniform flow, produced by superposition of solutions 3.30 and 3.28 

• Line elements 

Line elements are the third type of basic line element relevant with the present clisser-

tation. Others exist, such as area elements used for representation of ponds and such 

elements that produce divergence over specifie areas; The reader is referred to [51] or [31] 

for details on these elements. 
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The concept of line elements is to derive the complex potential for singularities distributed 

along lines. This is achieved by considering the superposed influence of many similar 

elements placed along that line: a line-dipole can thus be seen as a string of dipoles along 

line. If the strength of each elementary dipole located at point 8 E [z1 ; z2] is ;; À(8)d8, 

then the principle of superposition relates the complex potential of the line dipole to the 

Cauchy Singular Integral: 

O(z) = -~ t 2 

À(8) d8 
27rZ }Zl Z- 8 

(3.32) 

It is possible to introduce a local variable complex variable Z which maps the segment 

[-1; +1] in the complex plane to [z1 ; z2] in the physical plane. A simple linear transfor-

mation suffi.ces whenever z1 # z2 • 

(3.33) 

Applying this transformation to both z and 8 in eq.3.32, the complex potential of aline 

dipole may be written as: 

O(Z) = __ 1 11 À(~) d~ 
27ri -1 z- ~ 

(3.34) 

In the present work, upper case lettering will refer to the local plane while lower case 

will refer to the global physical coordinates, unless specified otherwise. For the sake of 

simplicity of notation, no distinction in symbols is given between functions that act on 

various representations of the same variable. Thus, the complex potential n generated 

by any element at a point defined by (x, y) E R2 in the traditional cartesian coordinate 

system or by z E C in the physical complex plane or by Z E C in the local complex plane 

will be designated by the same letter regardless of the chosen representation: O(x, y) = 

O(z) = O(Z) 

As proven in [51], assuming V is the domain of analyticity of À, it follows that: 
1 

3q E CC, Vz EV n {C \ [z1 ; z2]}, O(Z) = 2~i · [À(Z) ·ln(~~~)+ q(Z)l (3.35) 

The function q depends on the jump function À only. It guarantees that the behavior of 
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the complex potential as IZI gets large remains consistent with the expected behavior: a 

sum of poles behaves at infinity like a pole, and therefore: 

1 
D(z) ex: z 

jzj-too 
(3.36) 

Similarly, it is possible to considera sum of wells along aline segment; the elements thus 

constructed is called aline sink. However, as argued in [35], most arguments made based 

on the line dipole carry over to the case of a line sink by considering an integration by 

parts on the complex potential of the line sink of strength CT: 

D(z) 1 1Z2 -
2 

CT(8) ·ln (z- 8) d8 
7f Zl 

(3.37) 

1 [ 1Z2 ,\(8) l - · À(z2) ln(z- z2 ) - À(z1) ln(z- z1 ) + --=-s:d8 
27f Zl Z U 

(3.38) 

with dÀI - = CT(z) 
dz zE[Z!jZ2] 

(3.39) 

The last integral in eq.(3.38) is of the same form as eq.(3.32), thus establishing the link 

between line sinks and line dipoles. 

Traditionally, line-sinks were used with constant strength, a single coefficient which was 

adapted to fit the boundary conditions at a single point in the middle of the element. 

With faster computers came a better representation of the strength CT with linear and 

quadratic approximations, using the end points as locations for meeting the boundary 

condition as well as the mid-point for the quadratic case. This logically resulted in the 

method of collocation, popular in boundary methods, for representation of higher degree: · 

the coefficients of a polynomial of degree N representing the strength were chosen to fit 
·1 

the boundary condition exactly at N uniformly spaced points along the line. This method 

produced accurate results at the time, but became intrinsically limited and did not benefit 

from the improvement of computers as much as domain methods, which may explain why 

many people lost interest for boundary methods. 
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3.2 Recent Advances 

. The purpose of this section is to introduce sorne of the recent concepts and advances in the field 

of the analytic element method. This section neither daims to be an exhaustive or a best-of ... 

list, but instead introduces such concepts as are either discussed or used in chapter 4. 

3.2.1 Over-specification 

The concept of over-specification is to be contrasted with collocation, mentioned in 3.1.3. It is 

a method related to the solving mechanism of high degree elements, with 20 or more degrees 

of freedom. 

The failings of the collocation method 

The collocation method fails when the number of unknowns gets large: as they are fitted to 

meet the specified values exactly at the specifie locations, error appears between the collocation 

points and at the ends of the fitting interval. This is particularly problematic for the analytic 

element method, because it relies heavily on the correct representation of singularities at the 

tips of its elements. Particularity pathologie is that increasing the degree of the element, i.e. 

adding degrees of freedom does not al ways reduce the error, and often even increases it -see fig. 

3.3 for a simple example, and [6] for an excellent demonstration with inhomogeneities. 

0.5 

-5 -0.5 

(a) fitted curve (b) overspecification error, zoom x 10 

Figure 3.3: a function and fitted polynomials of degree 21, (a) function F(x) -solid-, collocation 
fit Pc(x) -dotted-, over-specification fit P0 (x) -dashed-, (b) error F(x)- P0 (x) 
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To resolve this problem, Jankovié, in [31], proposes several tools to improve the overall error 

between the fitted and actual curves: 

• orthogonal functional bases, which are more accurate for fitting problems 

• solve the problem in the least square sense, by spreading the error throughout the fitting 

interval. This is achieved by setting a system of equations similar to that used in colloca­

tion but with many more points than unknowns: the system is over-specified; the points 

are called control points, rather than collocation points since the functions do not usually 

coïncide there. 

• optimized location of control points. 

Solving for unknowns in the least squares sense 

The principle of solving in the least square sense is well known in fitting theory, as is evident 

by its presence in popular numerical analysis books -see e.g. [45]. It is even mentioned in 

a few boundary element texts - see [12, 43]-, but usually as a side note, a point of interest 

that is rarely implemented. Solving for the unknowns in the least square sense is achieved by 

establishing an over-specified equation system -see 3.2.1- relating the vector of N unknowns À 

to the M values to attain v by an M by N matrix S: 

SÀ=V (3.40) 

The inversion of this system may not be operated exactly, since S is not square. This 

problem is circumvented by left multiplication by the transpose sr' and inversion of the square 

matrix sr s, so that: 

(3.41) 

It is possible to impose a value at any given point -collocation at that point- using the technique 

of Lagrange multipliers -see [31, 11]. This is particularly helpful for the purpose of obtaining 

the correct singularity at the tips of line elements. Figure 3.3(b) shows the error between a 

function and a polynomial fitted with over-specification, to be compared with fig.3.3(a). More 
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details on over-specification are offered in 4.5.2, where it is used in the context of the presented 

research. 

3.2.2 Superblocks 

The concept of superblocks is detailed in [41]. Their purpose is to increase both the capacity 3 

and the speed of computation of analytic elements models. 

Superblocks rely on the fact that the superposition of analytic functions is an analytic 

function itself. It can therefore be expanded as a Laurent series outside of the smallest circle 

that contains ali the singularities that generate the function. It can be expanded as a Taylor 

series within any disk that does not contain any singularities. 

The approach in [41] allows the use of superblocks for ali element geometries known in the 

AEM, at the step of evaluation of the complex potential and discharge function, as weil as 

during the phase of resolution of unknown coefficients. 

In principle, the complex potentials associated with each element that falls strictly within 

a given square block of the physical domain to be modeled have their sum represented outside 

of the circle that circumvents the square as a Laurent series. The sum of the potentials of the 

elements outside of that circle is represented inside as a Taylor series. 

Thus, for a point inside the block, the total complex potential is evaluated as the sum of 

complex potentials generated by ali the elements that are not outside of the circle plus the 

value of the Taylor series. Outside, the value of the Laurent series is added to the influence of 

ali the elements not inside the circle. 

In large models, the capability to locally represent the influence of a large number of elements 

as a single series can dramaticaliy reduce computational time, thus allowing either refinement 

-thus increasing model capacity-, or faster response time of the model -i.e. increasing speed. 

3.2.3 Curvilinear elements 

Curvilinear elements are elements defined along one dimensional features that are not necessar­

ily straight. Traditionally, such boundaries are replaced by a string of lines, usualiy chosen as 

3number and degree of elements in the model 
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chords of the actuallocus of the boundary. This has a major drawback, as the number of line 

segments rapidly becomes large, as demonstrated by the Weierstrass Approximation Theorem 

-see [9, 22]. This is especially true in the case that the boundary has a small radius of curvature. 

In order to reduce the number of line segments used to represent a boundary, orto obtain 

smooth boundaries, elements were created that have non-straight geometries. Prior to the 

research presented in this thesis, the published available geometries are circular and hyperbolic 

arcs. Sorne of the latter's applications include the modeling of leaky walls [29], and of a free 

surface [19]. 

These elements are discussed in detail in the chapter 4. 

3.2.4 Not-So-Analytic Elements ? 

In many cases that fall outside of the scope of the present work, elements may be defined 

and used in the context of the analytic element method that do not have an analytic complex 

potential. 

Indeed, elements with analytic complex potential are available only in the case of Laplace's 

equation, which would be truly limiting for the modeling of actual flow problems. 

Most notably is the case of the Area-sink -see e.g. [52], [51]-, used to represent an area 

where infiltration occurs. These elements do have a real potential, which fits the definition of a 

real analytic function -see [9]: they possess derivatives at all orders and agree with their Taylor 

series locally. 

The realm of problems that these functions make accessible include problems with specified 

infiltration, leakage between aquifer layers, flow with continuously varying fl.uid density, m 

aquifer with continuously varying hydraulic conductivity, etc. 

The two points below are offered as insights in the current developments on sorne of the 

fundamental research on the analytic element method. The published material is very limited, 

as they regard on-going research; they provide a sense of the direction taken and of the extended 

capabilities that the method should reach in practice in the near future. 
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Using Helmholtz's Theorem 

As mentioned in eq.3.4, the specifie discharge, like any vector field, may be represented as the 

sum of the gradient of a scalar function, the potential in irrotational flow, and the curl of a 

vector function, the vector potential in divergence free flow -see [52]. In two dimensions, the 

latter reduces to a scalar function as well, which identifies with the stream-function in the case 

of Laplace's equation. 

Producing area elements for divergent types of flow is already possible, but has remained a 

topic of research as the complexity and range of modeling needs has expanded. 

Rotational flow had been dismissed until the implications of Helmholtz's theorem in the 

AEM were fully realized. Functions developed for divergent flow will be readily available for 

rotational flow, as, in two dimensions, only a multiplicative factor of the imaginary i separates 

the two classes of problems. This re-discovery widens the scope of the AEM while reusing 

previous work. 

Using Wirtinger Calculus 

The functional analysis method by which a complex variable z = x + i · y and its conjugate 

z = x-i·y are taken as independent variables is known as Wirtinger Calculus, as communicated 

by Barnes -personal communication,2000- and Strack [55]. 

One of the features of this analysis is that the Laplacian operator may be expressed as: 

fP rP â â 
.6. = -+-=4--

âx2 ây2 âz âz 
(3.42) 

This identity was used in [39] to derive the potential associated with a circular area sink 

where the infiltration was represented as a polynomial of the variables (z, z), although the 

research 'was initiated prior to the realization of the link between 3.42 and Wirtinger Calcul us. 

The value of this method i~ in the ease it offers to create elements with non-zero divergence 

or rotation. Indeed, if the divergence 'Y= -.6.<1? is known, then the potential is: 

(3.43) 
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up to an harmonie function. 

The combination of Helmholtz's theorem and Wirtinger calculus will enable the creation of 

new solution and elements that will enable the expansion of the AEM within the field of mod­

eling of groundwater flow as well asto areas of engineering where the accurate representation 

of 2D vector fields is required. 

3.3 Examples of basic elements 

The following is a set of flownets produced using basic analytic elements. Solid lines are lines 

of constant stream function, dashed lines are piezometrie contours, unless specified otherwise. 
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Figure 3.4: Isolated constant strength line-sink 

Figure 3.5: Impermeable barrier in uniform flow 
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Figure 3.6: A zone of low permeability (kk;n 
out 

.1) in uniform flow 

Figure 3. 7: A circular area of infiltration. The stream function is not defined inside. 
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Chapter 4 

Analytic elements along curved shapes 

Synopsis 

Purpose: This chapter details the geometry and use of curvilinear elements in the Analytic 

Element Method. It provides an extended set of geometrie description for data, allowing a 

richer object description to be used in the AEM. 

Outcome: General and existing geometries are represented in a concise format, the Rational 

Bézier curves. Solutions and algorithms are provided for that specifie case and a methodology 

is derived for resolution of coefficients for the process model. The computation of these func­

tions is slow and requires improvements to enable them as practical tools, provided in chapter 5. 

The choice of managing information for the modeling of groundwater flow with GIS tools 

leads to the introduction of complex geometries for the representation of sorne features. In 

particular, smooth boundaries, such as those that may be obtained as the output of a GIS, are 

appealing to model designers. A new set of boundary shapes is offered that satisfies the appeal 

of smooth shapes and does not disrupt the boundary value problem. This implies: 

• providing a detailed description of the capabilities of such a new geometry and showing 

how it can be used to incorporate existing boundary shapes, such as straight line and 

circular or hyperbolic arcs. 
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• deriving the complex potential, which is needed to incorporate the element within the 

analytic element method. 

• offering a method for the local resolution of the boundary value problem which is not 

disruptive to the global solution of a model. 

Thus, this chapter provides a description of the geometry and modeling capabilities of Ra­

tional Bézier Splines, and relates them existing curvilinear elements. Mathematical functions 

and algorithms necessary for the computation of a complex potential associated with these ele­

ments is provided for their implementation into AEM code. Results are illustrated by textbook 

examples, with a validation of the mathematics in an ideal setting. 

Résumé en Français 

Objectif: Ce chapitre détaille la géometrie et l'utilisation d'éléments curvilinéaires dans la 

méthode des éléments analytiques. Il fournit un ensemble étendu de descriptions géométriques 

pour des données, permettant une description objet plus riche à utiliser avec l' AEM. 

Résultat : Les géométries générales et existantes sont représentées dans un format concis, 

les courbes rationelles de Bézier. Solutions et algorithmes sont fournis pour ce cas, et une 

méthodologie est dérivée pour la résolution des coefficients pour le modèle de processus. L'évaluation 

de ces fonctions est lente et requière des améliorations pour permettre leur utilisation dans la 

pratique, améliorations fournies au chapitre 5. 

Le choix de gérer l'information pour la modélisation des écoulements souterrains avec des 

outils SIG conduit à l'introduction de géométries complexes pour la représentation de certains 

traits du domaine physique à modéliser. En particulier, les frontières lisses, telles qu'obtenues 

en sortie de SIG, sont attirantes pour certains concepteurs de modèles. Un nouvel ensemble de 

formes est offert qui satisfait le critère attirant des courbes lisses, et ne perturbe pas le problème 

de valeur aux limites. Ceci implique : 

- la fourniture d'une description détaillée des possibilités d'une telle géométrie, et la démonstration 
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de la façon dont elle incorpore les formes déjà existantes, telles que segments de droite et 

arc de cercle ou d'hyperbole, 

- la dérivation du potentiel complexe associé, nécessaire à l'incorporation de l'élément dans 

l'AEM, 

- la proposition d'une méthode pour la résolution locale du problème de valeur aux limites 

qui ne perturbe pas la solution globale d'un modèle. 

Ainsi, le présent chapitre fournit une description de la géométrie et des capacités de modélisation 

des splines Rationelles de Bézier, et les relie aux éléments curvilinéaires existants. Les fonc­

tions mathématiques et algorithmes nécessaires pour le calcul du potentiel complexe associé à 

ces éléments sont fournis pour être implémentés dans tout code informatique des AEM. Les 

résultats sont illustrés par des exemples d'école, avec une validation des mathématiques dans 

une situation idéalisée. 

4.1 Curvilinear shapes in the Analytic Element Method 

Commonly, the Analytic Element method relies on the use of pieces of straight lin es to represent 

the boundaries where a condition is imposed. There is no actual restriction to such shapes 

however, since the potentials for line-sinks and line-poles are actually derived from the Cauchy 

Singular Integral, which may be operated on any Jordan curve- smooth, compactly supported 

contour: see [40]. In [51], a statement is made admitting the limited relevance of non-straight 

elements in the context of regional modeling, but specifie applications may make such elements 

desirable. 

4.1.1 Reason for existence 

The main purpose of curvilinear elements, elements along non-straight pieces of lines, seems to 

be used as connectors between regular line elements when an abrupt corner is unacceptable. In 

such a situation, the velocity 'of the flow is locally forced to infinity, because the direction of 

flow changes abruptly. This behavior is consistent with the exact analytical behavior, as may 

be illustrated by the flow around a corner; however, the way in which infinity is reached, the 

type of the singularity at the corner, is not usually represented exactly. Although this behavior 
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is acceptable for the mathematician, it is not for the modeler. Not only does it imply a local 

violation of Darcy's law, which is only valid for low Reynold's numbers and thus low velocities, 

it may also make the results of the model unusable in the vicinity of the singularity located at 

the corner point. In regional modeling, this may be inconsequential, because of the focus on the 

big picture rather than on the details, but in local modeling, this behavior may result in false 

interpretation of the model, and thus lead to wrong decisions in water management projects. 

Two solutions are available to the modeler, which both stem from the need to better represent 

the boundary: firstly, one may choose to use many more line segments locally, thus improving 

the resolution of the representation of the boundary, but at sorne scale, the issue of undesired 

singularities still exists. Secondly, one may choose a better, smoother geometry to represent 

the boundary, in the hope of removing the singularity from the velocity field. Focusing on the 

latter, elements have been provided that may be used to replace the tip of line elements and 

allow their smooth connection. Two such elements have come to the attention of the author: 

pieces of circular arcs, and pieces of regular hyperbolae, herein referred to as hyperbolic arcs. 

The most used AEM program, MLAEM, makes use of the latter. 

4.1.2 The circular arc 

The circular arc element is detailed extensively in [51], section 41, based on the work of [19]. 

To summarize, a bilinear -and therefore bijective- transformation is derived that maps the 

line-segment [ -1, 1] in the (-plane into the desired circular arc in the physical domain. 

By placing a standard straight line element in the (-plane, such as a line-dipole, a circular 

arc element is obtained in the physical domain - up to a constant. The jump across the arc, 

in the direction normal to the arc at each point is directly related to the jump across the 

line element at the corresponCling point in the (-plane, thus allowing control of the boundary 

condition along the arc at the same precision as can be achieved with line elements. 

Circular arcs are a powerful tool to achieve the connection of two straight line elements, 

limited only by their fixed radius of curvature. 
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4.1.3 The hyperbolic arc 

The hyperbolic arc is the more sophisticated of the two curvilinear elements presented here. It 

is arguably more tricky. Detail on these elements may be found in [42] and [53]. 

The elements relies on a quadratic mapping that links the normalized Z-plane and a (-plane 

in which most calculations occur: 

(4.1) 

In the case of the hyperbolic arc, the desired curve maps onto the line segment [-1, +1] -

as is becoming customary-, but there is no unique mapping back from that segment onto the 

Z-plane. lndeed, the line segment maps back not only to the desired boundary, but also to 

a second piece of hyperbola, symmetric to the original with respect to its origin. Because of 

arbitrary limitations placed upon the element -namely the fact that the hyperbola is regular-, 

the following can be demonstrated: 

• the desired boundary is always included within the unit circle in the Z-plane- see [35] 

• the second possible image of the line segment is outside of the said unit circle. This is a 

consequence of the above-mentioned symmetry. 

It follows that the complex potential associated with the element is associated to the complex 

potential of aline element in the (-plane when Z is within the unit circle, and that an analytic 

continuation can be provided as a Laurent series in Z outside, a far-field expansion. Thus, an 

element is constructed that is analytic everywhere but along the desired piece of hyperbola. 

Using the theorem of unicity; the derived solution is the only possible solution. 

The element is limited by the acceptable representations for the jump function, and by the 

fact that improvements to the line element cannot be carried through directly to this hyperbolic 

arc element without sorne analysis, particularly for the far-field expansion. 
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4.1.4 Remarks 

Mapping based elements 

The general concept behind the derivation of the complex potential for the existing curvilin­

ear analytic elements is the use of a conformai map -i.e. a bijective complex function- that 

transforms the chosen boundary shape into a straight line segment: the circular arc uses a 

bilinear transformation, while the hyperbolic element rests a particular quadratic map and one 

of its two possible inverses. The direct consequence is the difficulty in producing varied shapes; 

controlling both the map and its inverse often requires implementation for each specifie type of 

shape, and generalization is difficult. 

Another issue is that the correction function is related directly to the type of representation 

chosen for the jump function as weil as to the mapping used for the representation of the bound­

ary. As a result, improvement accomplished in computing the straight line element with various 

representations of the jump functions may not be directly applicable to the curvis, because the 

correction function must be re-derived for the new representation. In alllikelihood, a curvi will 

still use the power basis functions, and force any other representation to be projected on that 

basis before using it. As a result, ali the limitations of the power basis functions will stin apply 

to the curvis. It is also possible to envision using alternate representation for the jump function 

along a hyperbolic arc, such as rational functions: in that case, a correction function would 

have to be derived specifically for the arc, without regard for the correction function already 

derived for the straight line case. 

Geometrie limitations 

Given two lines that have to be joined with a smooth corner, either one of the representations 

allows at most one choice, and sometimes requires the use of more than one element. Indeed, in 

order to achieve continuity of the boundary, the end points are fixed, and the orientation of the 

lines to be connected determine the directions of the tangents to the curvi at the end points, 

thus using the two degrees of freedom available in either case. Regarding strings of curvilinear 

elements, the modification of a single parameter on one of the pieces of the structure impacts 

every piece of the string: this renders such construction somewhat cumbersome. 
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Other branches of engineering have been faced with issues, of limited geometrie capabilities 

for design, and alternative solutions have been found: the automotive industry in particular 

has been innovative in providing new shapes classes toits designers that could still be properly 

handled by its engineers. One must recognize the need in such industry for designer artistic 

freedom, because it usually leads to better sales, which does not exist in groundwater: the look 

of the boundary is far less consequential in a groundwater model than the shape of the body is 

in a car, in terms of customer approval. However, by limiting the capacity of the mo del designer 

to implement his conception of reality, his conceptual model, the results of the groundwater 

mo del are only approximately the answers sought by the decision maker. If a better answer is to 

be provided, a better implementation of the conceptual model - that is one less limited by the 

intrinsic restrictions of a tool or another- should be sought. By enhancing the number of shapes 

available to represent the boundaries of a problem, thus offering the possibility of a better fit of 

the conceptual boundaries, one allows the construction of better models. The following details 

the development of such elements, along geometrically diverse boundaries, which do not suffer 

from the restricting limitations of the current curvilinear elements. 

4.2 B-Splines shaped boundaries 

The purpose here is not to give an exhaustive description of the geometry of B-Splines, but 

instead to introduce them and to show their relevance in the design of groundwater analytic 

element models. For details on the actual geometry and versatility of these shapes, the reader 

is referred to [22] for a textbook-like introduction and to [44] for a complete presentation. 

Instead, the following focuses on introducing B-Splines, on showing how the most mathemati-

cally complex category of such splines may be represented using a simpler class of curves, and 

on the geometrie features that they provide. 

4.2.1 An introduction to B-Splines 

Splines originally stood for Smooth Polynomial Lines, although this is actually debated. What is 

commonly accepted is that splines are continuons smooth parametric curves or surfaces defined 

by a piecewise polynomial parametric function. Smoothness has actually become optional: 
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many curves have the ability to break, that is have an abrupt jump in the direction of their 

tangents at any given location. The functional basis used to define the curve has been expanded 

from polynomials to include ali rational functions, i.e. ratios of polynomials. 

The most widespread splines are used to model one dimensional functions in terms of their 

variable. For example, computing a numerical integral using Simpson's method uses piecewise 

quadratic representation of the integrand. Commonly used in function fitting are the Hermitian 

and cubic splines. In the one dimensional case, the parameter of the spline is replaced with the 

variable of the function. 

For n > 1 n-dimensional splines are defined using n fun etions of the same parameter, usually 

named u or v. In the case n = 2, a point (x, y) on a spline would be defined by: 

[
x= x(u)] VuE [u0,u1], ? z =x+ iy,z = z(u) 
y= y(u) 

(4.2) 

so that the two real functions may be replaced by a single complex parametric map. This 

feature is extendable to three and four dimensions, using quaternions; it is one of the keys to 

implementation of modern splines -see [44]-. Being able to represent the set of points on a 

curve as a complex parametric function is the feature that allows the derivation of the complex 

potential associated to spline shaped elements. This pointis emphasized in 4.3. 

History 

Splines were originally designed for the automotive industry. Unlike most technical advances, 

they were derived not for the benefit of engineers, but to allow designers to expand their 

ideas onto a framework that could la ter be used to actually manufacture a vehicle. The new, 

more complex curves, first developed by French engineer Pierre Bézier for Renault, allowed the 

introduction into the market of smoother, rounder cars, that followed closely the vision of the 

designers. 

Since the liberation of the automotive designers, Bézier curves and their successors have 

enabled the representation of many objects where a designer uses a computer tool: Graphie 

arts, notably for the entertainment industry, architecture, molding industry, and so on have all 
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integrated these curves to sorne degree. 

Even in geomatics, the science behind modern GIS, these curves are sometimes used to rep­

resent linear information. Topographie maps, for example, may include contour levels defined 

as NURBS curves. It is therefore logical that applications seeking to inter-operate with GIS 

would attempt to incorporate NURBS shaped features as part of their input; this argument is 

reinforced in the case of groundwater modeling, as the expansion of the shapes available to the 

model designer may free him the way it freed his counterpart in the automotive industry. 

Geometrie considerations 

The range of shapes that splines can represent is vast, if not infinite. Any continuons curve 

which can localiy be represented as a polynomial parametric function can be associated with 

a spline that will match it up to an arbitrary precision; this is a consequence of Weierstass's 

approximation theorem- see [9]. Notable exceptions are fractal curves. 

Although it is not always the best choice, because of storage requirement or because of 

the time necessary to display them through direct evaluation, splines are usualiy preferred in 

applications where the representation of the curvature of the curve matters as much as its 

location; as shown in [22], a spline converges faster to a desired continuons curve than a string 

of line segments whose vertices are constrained to lie on the curve. 

Splines are described mathematicaliy as parametric curves in an n-dimensional space with 

an array of piecewise polynomial functions, as outlined above. The shape of the spline is 

controlied through many parameters; ali splines have a set of control points and a degree. 

Below, the exhaustive list of controlling parameters is detailed for NURBS, the most general 

instance of splines. 

Geometricaliy, the main consideration is that the designer of a spline may control not only 

locations through which the spline must pass, but also the slope of the spline. This aliows for 

the creation of such shapes as circles, general closed curves -sometimes referred to as potatoids-, 

looping elements, or even stnl.ight lines. Not ali these shapes are acceptable in the context of 

the analytic element method: indeed, an hypothesis of the method used in the foliowing to 

compute a complex potential is that the curve be of Jordan type -see [40]- which excludes self 

intersecting curves. Looping elements, or folding elements, in the sense defined in [35], are both 
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explicitly prohibited for the following derivations to hold true. It is pointed out that the same 

solution as the case of intersecting line segments is acceptable: the element may be broken up 

into pieces that do not cross each other; a node must be inserted at the intersection -see figure 

4.1 for an example. 

Categories of Splines 

There are many categories of splines. The most common are presented in the following list, 

along with a few comments asto their relevance in this dissertation: 

• Hermitian splines -often used in their cubic forms-, are piecewise polynomiallines forced 

to pass through specifie points. They are largely used to represent injective functions, and 

are usually parametrized by the variable x, so that y= y (x). Little control is provided 

on the derivatives. These splines offer a smooth curve passing through given locations, 

and are sometimes used in curve or data fitting. Such splines have little interest in the 

present context. They can be represented by any other type of spline if required; issues 

specifie to these splines are ignored in the rest of the dissertation. 

• Bézier curves are the original tool invented by Pierre Bézier. They are parametrized·using 

the Bernstein Polynomials - see [35, eq. 3.10]. The most common type of Bézier splines 

is the cu bic form, controlled by 4 points, which allows the definition of the end points and 

the tangents at those points. These polynomials are independent of the curve. Derivation 

of the complex potential associated with Bézier splines of degree 3 or less is found in [35] 

• Rational Bézier Curves are an extension of the previous. Instead of the Bernstein poly-

nomial, the basis functional set is extended to specifie rational functions which depend 

·---------------------------~ ' / ' 
' ' ,, 

' 

----------- _, 
' 1 

Figure 4.1: A looping spline and the three element used instead to represent the same boundary 
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on a set of weights, making the functional base dependent on the curve. Such curves offer 

great flexibility. For practical purposes, such a curve of degree three allows the modeler 

enough flexibility to represent most boundaries. 

• B-splines are inspired from Bézier curves, which they extend by using a different piecewise 

polynomial basis. A set of values of the parameter, called the knots, is associated to each 

curve. The polynomials are computed iteratively using a recurrence relation seeded with 

step functions -see [22] or [44] for illustration. 

• Non-Uniform Rational B-Spline curves, or NURBS curves are the most general category 

of spline to date. They combine the characteristics of both branches of splines evolved 

from the original Bézier curves: they are parametrized by piecewise · rational functions. 

They have both a set of knots, and a set of weights. Ali other types of splines may be 

represented and stored as NURBS: they are the generalized spline. 

The two categories of splines considered in this dissertation are the NURBS and the Rational 

Bézier curves: the former for its versatility in the design process, the latter because its particular 

mathematical representation allows the -relatively- easy derivation of a complex potenÜal for 

a singularity distribution along such a shape. 

4.2.2 Relating NURBS curves to Rational Bézier curves 

The array of the capabilities of Non-Uniform Rational B-Splines far exceeds the scope of this 

dissertation, and implies a more complex mathematical description. Although such curves 

are geometrically comparable to simpler classes, especially in terms of the algorithms used to 

display them via a computer, their representation in mathematical terms requires much care 

of indices and local parameters which are not relevant to a groundwater model. The follow­

ing shows how a NURBS cu~ve may be represented as a sequence of Rational Bézier curves, 

thus allowing the generalization of results obtained for the latter to be applied to the former, 

should one decide to implement NURBS curve boundaries in a groundwater modeling program. 
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The parameters of NURBS curves 

NURBS curves are determined by many more parameters than any other spline classes. They 

require all the following: 

• an integer, called either the degree or order. This parameter defines the degree of the 

polynomials to be used as the numerator and denominator of the parametric represen­

tations. The degree of either may actually be smaller, for particular choices of other 

parameters; these degenerated cases do not warrant a change in the way the spline is 

defined or displayed, and are therefore practically inconsequential. All splines have a 

degree. Any spline may be represented without loss of its shape using a spline of larger 

degree 

• a sequence of control points, with cardinallarger than or equal to the degree of the spline 

plus one: Bézier splines -standard or rational- have as many control points as degree plus 

one, B-Splines have more. All valid NURBS are contained within their convex hull: the 

smallest convex polygon constructed with its control points. 

• a sequence of weights, one for each control point, all positive for valid splines; a negative 

weight in an otherwise positive sequence leads to the loss of the complex hull property: 

the spline may extend beyond its hull. Rational Bézier splines also have weights. NURBS 

with a constant sequence of weights, i.e. ali weights equal, reduce to B-splines. 

• a sequence of knots: it defines intervals within which the parametric function used to 

represent the spline is of the same continuity as the degree d of the curve, i.e. it is d-times 

continuously differentiable. B-Splines also have a sequence of knots. NURBS of degree d 

with a sequence of knots of cardinal 2d, defined such that the first d knots are zero and 

the last d are 1, reduce to Rational Bézier curves. 

Splines of any type may be represented as a special case of a NURBS. 

Equivalent sequence of Rational Bézier curves 

Rational Bézier curves are NURBS whose knots are all equal to zero or one. It is possible 

to obtain a list of such curves to represent any NURBS by using the following sequence of 
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operations, each detailed in [44]: 

1. the NURBS curve is subdivided: this is performed by knot multiple insertion at each of 

the knots of the original curve. For a NURBS of degree p, each of the knots must appear 

p + 1 times. Th us, for a regular knot at uk, which appears once, uk is inserted p times; for 

a double knot, uk is inserted p - 1 times, and so on. Clamped curves -curves which pass 

through their first and last control points- already have the correct multiplicity for their 

first and last knots. This operation results in a new set of control points { Qm}; at each 

of its knots uk, the curve passes through one of its control points, Qk·(p+l)· Sub-curves 

are defined between each of the original knots: considering knots { uk, uk+I}, a new curve 

Ck (u) is defined by a knot sequence of p + 1 times Uk followed by p + 1 times Uk+l, and 

by the control point subset { Qk·(p+l), ... , Q(k+l)·(p+I)} 

2. each sub-curve is rectified by linear reparametrization: its parameter is a:ffinely trans­

formed using v = u-uk • The new curve, defined by the above subset of control points 
Uk+l-Uk 

and the parameter v is a Rational Bézier curve. 

The operation presented in figure 4.1 made use of this technique, along with knot insertion 

at the crossing point. It is a good example of subdivision and reparametrization. 

4.2.3 Existing curvilinear shapes as Bézier curves 

Extensive study of the representatibility of quadratic curves -circular arcs and conics in particular­

can be found in [44]. Quadratic rational Bézier splines are shown to ena ble the representation 

of pieces of conics. As a result, both the circular and hyperbolic arcs geometries, which have 

analytic elements associated to them may actually be represented in the framework of splines. 

Here is presented a summary for these specifie shapes. Indeed, consider a conie C defined in 
1 

the two dimensional plane by the quadratic form: 

(4.3) 
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[
Œ(3 ~] where the 2 by 2 symmetric matrix Ais defined as: 

1 

and the 2 by 1 vector B is: [:] 

Such definitions of conics are commonplace, and may be found in most early university 

level geometry books. One is referred in particular to textbooks used in the French classes 

préparatoires, such as [25]. Using this representation for the conie, and defining the following 

parameters: 

• X 0 and X 2 two points on a conie 

• X 1 the intersection of the tangents to the conie at XO and X2 

• wl = 
f( XOtX2) - -

- /(Xl) , Wo - W2 - 1 

the rational Bézier curves B defined as follows: 

2 

VX E B, 3u E [0, l],X = L wkXkRk,2 (u) (4.4) 
k=O 

exactly coïncides with C between X 0 and X 2 . This may be verified by substitution of 4.4 

into f(X) as defined in 4.3. One should note the restrictions that result from the previous 

definitions: conie pieces must have end points where the tangents are non-parallel-this implies 

that a half-circle may not be represented in this fashion- and the particular conie branch 

represented by the rational Bézier spline is the shortest piece of the conie that connects the two 

endpoints. An interesting fact is that w1 may be replaced by its opposite, -w1 to obtain the 

longer branch, but in doing so one would include a large curve that reaches infinity twice in the 

case of hyperbolae; splines are traditionally defined for positive weights, so the particular case 

of negative w1 is ignored, although it might become useful in the future for the representation 

of truncated ellipses. 

The benefits of having such a representation are twofold: 

• firstly, the availability of this representation means that special cases of single isolated 

features can be developed for comparison with existing solutions. This step of comparison 
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of solutions is crucial in the Analytic Element Method, as it offers a validation of the newly 

developed element 

• secondly, programmers can consider replacing the existing representation of curvilinear 

elements with the new, more flexible spline elements while preserving the existing func­

tionality: models using the legacy elements may be reused with the new definition without 

requiring more effort from the modeler. This backward compatibility feature is necessary 

before such elements can even be considered for inclusion in existing programs. 

The geometrie capabilities of NURBS are extraordinary, explaining the success they have 

had in many fields where human design and perception is involved. From engineers to artists, 

they have found an audience to make use of their flexibility. However, in the context of ground­

water flow, they are not meant to be used only to represent results, but for the modeler to 

actually define the aquifer features. Given a NURBS curve and the equivalent sequence of 

Rational Bézier splines, the following provides the derivations needed to effectively solve the 

Laplace equation with such shaped boundaries. 

4.3 Complex Potential of Spline-shaped elements 

Computing the complex potential associated with a linear feature is achieved through the 

computation of the Cauchy singular integral. Severa! texts may be cited here, but the reader 

is directed especially to [51] for a description of the use of the singular integral in the specifie 

context of the Analytic Elements Method, and to [40] for proofs and conditions of integrability. 

The complex potential is defined to solve the Laplace equation exactly within the domain, 

while satisfying a specifie boundary condition, along a specifie boundary. Approximation of 

the actual solution in the AEM is due not to a discretization of the domain, as in the FDM 

or FEM, but to the choice of the shapes used to represent the boundary, and to the choice of 

functional bases onto which the boundary condition is projected. 

[40] provides the proof of existence of a solution for the case of smooth, non-self-intersecting 

boundaries- Jordanian curves. However, details for derivation are not provided, since it depends 

heavily on the curve and its mathematical representation. The present section provides those 
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details for the case of Rational Bézier curves or sequences of such curves, such as general 

NURBS curves. 

4.3.1 The line-dipole 

For the purpose of the present dissertation, only the specifie case of the line-dipole along 

Rational Bézier curves will be provided, as the extension of the derivation to line-sinks is 

analogous to the case of straight line-segments. Extensions using Wirtinger calculus are also 

possible, following the guidelines provided by [55] for straight line elements, but such extensions 

have only been tested by the author for very particular cases and are therefore not reported 

here; they are considered as beyond the scope of the present work. 

The complex potential for a line-dipole may be obtained by integrating the complex po­

tentials of superposed dipoles of elementary strength Àd8 along a curve 8 E C; see 3.1.3 for 

comparison with the straight line. Since the potential for a dipole of such strength at location 

8 is: 

n d ( z) = 2 À ( 8) d8 
p 27ri z- 8 

(4.5) 

the continuous summation can be expressed as the Cauchy singular integral: 

-11 À (8) 
nld (z) = -2 . --J:d8 

7rZ C Z- u 
(4.6) 

Equation 4.6 is valid for a straight line segment, and was used as such in 3.1.3. Passing 

from a discrete sum of point dipoles to a continuous one - an integral - is in fact possible as 

long as the curve C is smooth and the differentiai d8 is defined. The consequence is that the 

Cauchy Singular integral is defined everywhere except on the boundary itself, as long as C is a 

' 
Jordanian curve, as defined in [40]. The concept is valid for any strength distribution À along 

the curve, whether real -thus providing the line-dipole as defined by Strack-, pure imaginary 

-giving the line-doublet-, or a general complex function -considered in the present dissertation 

as leading to the generalized line-dipole, or line-dipole in short-. 
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If the curve C is defined by a parametric function, i.e.: 

(4.7) 

the smoothness condition implies the differentiability of the function r-if only by parts- along 

[u0, u1], and as a result, the differentiai dr5 may be expressed as: 

dr5 =dr du 
du 

so that the singular Cauchy integral may be rewritten as: 

-==-!_ {u1 
À (r (u)) dr du 

27ri luo z-r (u) du 

~ rU=Uu À (r (u)) d [ln (z-r (u))] 
27rZ Ju=uz 

(4.8) 

(4.9) 

(4.10) 

If the curve is defined by parts, that is, if there is a sequence { uk, k E [0, N]} such that 

u0 = u1 and uN= Uu, the integral may be expressed as: 

n,. (z) = 2~i ·y;,ll::>H À (r (u)) d [in (z-r (u))] (4.11) 

in which the function r is continuous and differentiable in each of the integration intervals. 

Applied to the case of NURBS, this implies that the Cauchy singular integral for a singularity 

distribution along a NURBS may be evaluated as the sum of the singular integrais over each 

segment of the curve included between the images of its knots. Since a NURBS can be decom­

posed into Rational Bézier curves between its knots -see 4.2.2-, the capability of evaluation of 

the Cal).chy Singular Integral along such splines would be extensible to the case of NURBS, by 

superposition as shown in 4.1,.1. 

In certain cases, the integral 4.10 may be formally evaluated. The following shows how the 

integration is performed in the case of Rational Bézier Curves. 
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4.3.2 Cauchy Singular Integral over Rational Bézier curves 

Considering the Rational Bézier Curve B of degree n defined by its set of control points zk and 

weights wk, with parameter u defined between 0 and 1, the function r (u) is defined as: 

with 

k=n 
r (u) = L WkZkRk,n (u) 

k=O 

Rk,n (u) 

D (u) 

Bk,n (u) 
D(u) 

p=n 
LwpBp,n (u) 
p=O 

(4.12) 

(4.13) 

(4.14) 

with Bk,n = (~) uk (1- ut-k the Bernstein Polynomial of order k and degree n- see [44]. 

The denominator D (u) is independent of the summation parameter k. 

Equation 4.10 may be modified to account for the particular parameterization of B. Indeed: 

so that, 

N(u) 

P (u, z) 

z-r (u) 

k=n 
L WkZkBk,n ( U) 
k=O 

k=n 
z · D (u)- N (u) = L Wk (z- zk) Rk,n (u) 

P (u, z) 
D (u) 

k=O 

ln (z-r (u)) =ln (P (u, z)) -ln (D (u)) 

( 4.15) 

(4.16) 

(4.17) 

(4.18) 

A well known result of algebra is that all complex polynomials of degree n may be expressed 

as a product of n monomials' and a complex constant: the field of polynomials with complex 

coefficients is a splitting field: all polynomials in C [ Z] can be expressed as a product of lin­

ear polynomials. P ( u, z) and D ( u) are both polynomials in u. Defining the roots of D as 

the set {ck,k E [1,ndJnN} and the roots of P(.,z) as the set {(k(z),k E [1,npJnN}, the 
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polynomials may be expressed as: 

k=nv 

P (u, z) Po (z) I1 (u- (k(z)) ( 4.19) 
k=1 

D (u) (4.20) 

Th us, defining A = >. o r, the Cauchy Singular integral becomes: 

2~;zA (u)d [ln ( P~~l) + ~ ln(u- (dzll-~ 1n ( u- (.)] (4.21) 

1 [k=nv Ju=1 A (u) k=nd Ju=1 A (u) ] 
-2 . L ( ( ) du - L * du 

1f'l u- k z r 
k=1u=O k=1u=O U-~k 

(4.22) 

The strength may be expressed as a polynomial in u along the boundary, there exists a set of 

complex coefficients Ak such that: 

k=nL 

A (u) = L AkPk(2u -1) (4.23) 
k=O 

where Pk is the eh Legendre polynomial. Considering the equality linking Legendre polynomial 

to Legendre functions of the second kind through the Cauchy singular integral -see [2] : 

+1 

Qk ( z) = ! 1 pk ( t) dt 
2 z- t 

-1 

(4.24) 

it follows that the complex potential for the line-dipole along a Rational Bézier Curve may be 

expressed as: 

(4.25) 

where Uzd (x) (4.26) 

This complex potential can be viewed as the superposition of the complex potential gen­

erated by a line-dipole located in [ -1, + 1] evaluated at np + nd locations. This observation is 
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particularly interesting because it implies that all equivalences established for straight line ele­

ments may be carried over to curvilinear elements without the need for supplementary work. All 

and any research yielding improvement for the straight line-dipole will provide improvements 

for the Rational Bézier curvilinear elements as well. 

It remains to be defined whether sorne practicallimitations follow from the preceding deriva­

tion. It in volves the roots of polynomials P ( u, z) and D ( u) th us naturally bringing the issue 

of root finding. lt is detailed in the following discussion. 

4.3.3 Computing the discharge function 

The discharge function is defined, following [51], as the opposite of the derivative of the complex 

potential with respect to z, the complex variable related to the physical plane. By definition, 

the derivative of an analytic function exists throughout the domain of definition of the complex 

potential itself. See previous arguments in Chapter 3. 

Thus, at any point z such that all the roots (k satisfy r' ( (k) = ~ 1 =/:- 0, the discharge 
(k 

function associated with NURBS is: 

(4.27) 

(4.28) 

where 
d'U 

'Ttd = --
dx 

(4.29) 

and points not satisfying the condition, the cri ti cal points of the mapping r, are handled below. 

4.4 Evaluation issues 

Upon n~merical implementation, the following issues arose: 

' 
• Special points and possible singularities, weak or strong, introduced by the use of the 

parametric function r ( 6) must be identified and handled by the software pro gram. This 

is a common issue in the Analytic Elements Method, since it rests on the proper use of 

singular functions. 
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• The evaluation requires the finding of roots of polynomials. 

• The speed of computation using a straightforward direct implementation is slow. 

The following provides a discussion of the first two issues. The third is addressed in chapter 5. 

4.4.1 Special points 

Roots and poles of the mapping 

The mapping u E [0, 1] , z = r ( u) define each section of the spline and may be extended 

analytically, for a complex variable ( E C. This extension is defined by replacing u E [0, 1] with 

( E CC in equation 4.12. r (() is then defined by a rational function of the complex variable, 

and as such has a set of specifie points associated with it: roots -the roots of its numerator­

and poles -the roots of its denominator. 

In general, the roots do not cause any specifie issue, either analytically or numerically. It 

suffices to notice that they map to the point z = 0, the origin. 

The poles are no greater concern since they are mapped to infinity in the z-plane. The 

complex potential at infinity is never numerically evaluated because infinity is always outside 

of machine range. Analytically, it is pointed out that the roots of the polynomial P ( u, z) as z 

goes to infinity include all the poles of r, and that if the degree of N ( u) is larger than the degree 

of D (u), the remaining roots have infinite modulus. Referring to equation 4.25, the influence 

of these poles is removed in the second member of the right hand term of the equation: the 

only influences left are those of the other roots which sums to zero, since all these roots have 

infinite modulus. 

As a result, the roots and poles of the mapping do not require special handling. 

Critical points 

As demonstrated in 4.3.3, a special case arises wherever ~ = O. At these locations, the general 

form of computation for the complex potential still holds, but the computation of the discharge 

function breaks clown. Because the complex potential was derived using the Cauchy singular 

integral, it is analytic everywhere outside of the boundary: Unless a critical point occurs on the 
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boundary itself -which would violate the smoothness condition and may therefore be ignored­

the derivation guarantees that the discharge function is not singular at these points. A method 

is offered to achieve a numerical result at the critical points. This method fails in one very 

uncommon situation, which can be identified at the time of modeling and is detailed below. 

Such a case -called multiply critical point- is so rare and unlikely that it was decided to exclude 

the case from the implementation: curves presenting such critical points would be rejected and 

the modeler required to modify the input to the model - usually, adding a control point to the 

NURBS without actually modifying the shape was enough to remove the problem. 

At any point z E C -including at a critical point-, the sum of the roots of the polynomial 

P ( u, z) is related to its coefficients by the relationship -see e.g. [2]: 

k=np 
a1 (z) 

L(k (4.30) ---
ao (z) k=I 

k=np 
P (u, z) L ak (z) unp-k ( 4.31) 

k=O 

The denominator a0 (z) is never zero, since it is the leading coefficient of the polynomial of 

degree np- Taking the differentiai of 4.30: 

(4.32) 

At a regular cri ti cal point f, sorne of the roots (k of P ( u, f) equal one and only one of the 
c c 

roots (n of ~ 1 .By Taylor expansion of r about its critical point, it can be shown that if (n is 

of multiplicity mn in ~, the mn+I roots of P ( u, z) converge to it as z approaches fn = r ( Cn) . 

Reordering the set { (k} such that the roots that do so are first, the derivation of the discharge 

functioiJ- at the critical point may be modified as follows. 

1when the (k include more than one such root, the critical point f is multiply critical. Solution for this case is 
similar to the one proposed here, using more of the relationships between roots and coefficients of a polynomial. 
Such cases are extremely rare. 
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From 4.27: 

(4.33) 

(4.34) 

d~ 
Even in the most complex cases, ;1 is easy to compute. The numerous special cases are 

therefore not listed here; the reader can effortlessly consider them following the derivation for 

the two most common cases: 

• when deg [N (u)] = deg [D (u)] = deg [P ( u,fn) J = np, the polynomials N and D may 

be factored using their roots into: 

and therefore: 

N(u) 

D (u) 

a1 (z) 

ao (z) 

da1 1 ao 

dz zd 

k=np 

ow rr ( c - 'k) 
k=l 

k=np k=np 

-av L (kz +aN L (k 
k=l k=l 

avz- aN 

Ü!N l:~=~P ( (k - (k) 

(4.35) 

(4.36) 

(4.37) 

(4.38) 

(4.39) 
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• when deg [D (u)] = 0, D (u) = o:n, and deg [N (u)] > 1 

k=np 

a1 (z) ŒN L:ck (4.40) 
k=l 

ao (z) -ŒN ( 4.41) 
da1 
____!:Q_ 0 ( 4.42) 
dz 

It is pointed out that throughout this section, the assumption that the curve is smooth and 

regular leads to the necessity that no critical point may be located on the curve itself. The 

resolution process could not take place otherwise, without special handling. 

4.4.2 Roots of polynomials 

For each evaluation of the complex potential at any point z in the physical plane, the polynomial 

in u P ( u, z) must be decomposed, which requires the determination of its roots. For a Rational 

Bézier curve of degree n, this polynomial is generally of degree n as weil and therefore has n 

roots. At one specifie location, and one at most, the polynomial degenerates and its degree is 

reduced. This special case is described in 4.4.1; in the following, it is assumed that P (u, z) is 

of the degree of the spline. 

The root finding issue is twofold: 

• Firstly, for n ~ 5, a numerical algorithm must be used to compute the roots: There is no 

closed form analytic method for finding the roots of a polynomial of degree larger than 4. 

This poses an apparent philosophical problem, since the elements fit within the Analytic 

Element Method. The notion of using a numerical procedure for finding the roots suggests 

that it might be impossible to analytically differentiate the function, which is one of the 

main advantages of the method. However, since the complex potential for these elements 

is determined via the Cauchy Singular Integral, the analytic differentiation is guaranteed: 

ali derivatives exist, up' to an infinite order, wherever the complex potential itself exists 

as weil. 

The ability to compute effi.ciently the discharge function W = Qx - iQy = - ~~ is 

paramount for in the context of the AEM. The technique used for curvilinear elements 
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was shown above, in 4.3.3. It can be observed that no new root finding was necessary. 

• Secondly, the process offinding roots of a polynomial is slow. For high-precision elements, 

for which the jump function is approximated with a polynomial of degree 20 or smaller, 

a spline of degree 5 implied that more than 90 percent of the computational time was 

spent on finding the roots for any location in the z-plane; in other words, the evaluation 

of the potential of the spline was equivalent to evaluating a string of 10 straight line 

elements, each of degree eqaul to that of the spline. This phenomenon is worse for low 

degree elements, when up to 99 percent of the computational effort is spent on the root 

finding step. 

The issue of root finding is therefore linked to the issue of speed of computation. The 

method proposed in chapter 5 will provide a mean to reduce the need of using the actual roots 

only in the close vicinity of the curvilinear element. 

4.5 Solving a boundary value problem along a spline 

The resolution of the boundary value problem 1s very similar to the method used for the 

advanced line elements mentioned in chapter 3. 

A matrix is established by evaluation the influence of each individual component of the com­

plex potential or the discharge function at points located along the element. A linear system of 

equations is then defined that relates this influence matrix, the vector of unknown coefficients 

of the jump function, the influence of other features at the chosen locations, and the intended 

value. The linear system is then solved in the least squares sense. 

The issue is in correctly building the influence matrix. 

The present section details this procedure in the case of a relevant boundary condition: the 

head specified element. The choice of the Dirichlet boundary condition is argued and justified 

for its representativeness. The Matrix is then built, and flow nets are presented, showing that 

the condition in Laplacian flow is indeed fulfilled. 
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4.5.1 Representativeness of the Dirichlet problem 

In the applications defined as the focus of this thesis, the problems to be solved were limited to 

potential flow. In such a flow, two principal boundary conditions exist: Dirichlet -corresponding 

to the constraining the solution to a particular function along the boundary- and Neumann -the 

gradient of the solution normal to the boundary is specified. 

The Neumann problem is very similar to the Dirichlet problem, except that the influences 

to consider are in the discharge function -projected on a direction normal to the boundary­

instead of the complex potential. Thus, the method required to solve the one is extensible to 

the other: only one must be presented to provide the resolution scheme. 

It was argued that the results of 4.3 are transferable from line-dipoles to line-sink with mini­

mal efforts. The Dirichlet problem implies the use of line-sinks, and thus offers the opportunity 

to show the similarity between the two cases. 

Considering these two facts, the Dirichlet problem is solved here along a Rational Bézier 

curve. 

Other boundary conditions exist, which may involve the jump along the element directly, 

as discussed in 4.5.3. A general description of possible boundary conditions can be found in 

[31]. 

4.5.2 Setting up the resolution matrix 

The resolution matrix is dependent on the influence functions, which differ from the case of 

straight line elements. The case of the Dirichlet problem requires the use of Line-sink instead 

of line dipoles to represent the element. 

Line-sinks and branch cuts 

The line-sinks imply the addition of two logarithmic singularities at the tips of the element . 
. , 

Unlike the straight line elements, there is no obvious default orientation for the location of the 

cuts created by these singularities; placed in the (-plane, their location is not easily predictable. 

The endpoint singularities are therefore located in the physical plane. 

They are arbitrarily defined to lie tangential to the curve at the endpoints in the z-plane, 
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in the direction of the tangent; see figure 4.2. This definition makes it easy to track the cuts 

and to cancel out cuts in the case of smooth strings of Rational Bézier curves. 

From 4.25 and 4.26, the complex potential for a line-sink may be expanded into: 

~ u,d (2(, (z) -1)-~ 1J,d (2(, -1) 

+A (0) ln (z-r (0)) _A (1) ln (z-r (1)) 
21ri -r' (o) 21ri -r' (1) 

( 4.43) 

+ 2~i [A(O)ln(-r' (o)) -A(1)ln(-r' (1))] 

Another possibility is to ensure that the cuts always lie along horizontallines passing through 

each endpoint. In this case, the complex potential is: 

~ u,d (2(, (z)- 1)-~ u,d ( 2(,- 1) (4.44) 

A(O) A(1) 
+-. ln (z-r (0))- -. ln (z-r (1)) 

21rz 27rz 

The former is preferred over the latter in most cases, because the argument of the logarithms 

are, in essence, scaled to account for the curvature of the element at the tips. The numerical 

evaluation of the complex potential close to the tips, which involves a singularity -in the line 

dipole component- and its removal -through the logarithm-, seems more reliable in practice 

with the former expression. This observation was made empirically over a limited number of 

cases and for the evaluation of an element with known coefficients; it corresponds to similar 

experience for the case of straight elements, where the singularities are preferably removed in 

... 
1 ' 

Figure 4.2: Line-sink and possible locations of the branch cuts 

1 
'è 
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the Z-plane than the physical plane. It may be noted that the last term of 4.43 is a constant 

which is optional since all complex potentials are known up to a constant; its inclusion eases 

the connection of elements in a string. 

Influence functions 

Reorganizing 4.44 so as to express the complex potential in terms of a series with coefficients 

Ak, using 4.26: 

( 4.45) 
n=O 

n 
nls (z) :i {~ Qn (2(k- 1) -~ Qn (2(k- 1) 

k=O k=O 

( 4.46) 

+ (-; t ln [ z - r ( 0)] - ~ ln [ z - r ( 1)] } 

n 
where the 0 18 are the influence functions of the line-sink. It is pointed out that the singularity 

associated with the Legendre functions of the second kind is removed in each of the influence 

functions, so that their imaginary parts are defined at the endpoints -the real parts are multi­

valued because of the branch cuts. 

Matrix construction 

Given the influence functions associated with an element, construction of the matrix used in 

the resolution scheme depends only on the type of boundary condition to be achieved and on 

a choice of a set of control points on the spline curve: 

Dcp = {z E C,m E [1,M) nN,M > NL} ( 4.47) 

The control points are chosen in a mann er similar to that suggested in [31]: points are selected in 
1 

[-1, +1] in the (-plane, according to a particular distribution, usually a uniform or a Chebychev 

distribution. The images of these points are found by applying the mapping r, and the resulting 

set is the set of the control points. It may be noted that one of the roots of each of these control 

points is known and lies in [-1, +1]; this fact should be used in implementing the element, to 
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speed up the assembly of the matrix, and to avoid the insertion of numerical errors linked 

with the root finding process. It is pointed out that the dominant factors of the matrix were 

found to be the contributions from the functions evaluated at the roots located between -1 and 

+ 1; numerical error in these results in significant loss of accuracy in the solution. Thus, the 

following set of control points is defined, where M 2: N L is an arbitrary in te ger: 

m m m m-2 { ( 1) } Dcp = z = r ( u) , u =cos 1r M , mE [1, M] n N, M > NL ( 4.48) 

In the case of the Dirichlet problem, a head specified condition is imposed. This implies 

that the real part of the complex potential along the curve is imposed, following the definition 
0 

given in chapter 3; the value imposed at any point z on the curve is defined as <P (z). The 

coefficients Ak = i~-tk are purely imaginary; the cancellation of the leading i's yields expressions 
v 

of the complex potential that match those of [51] and [31]. Thus, defining as <P (z) the influence 

of all analytic elements other than the one being solved, the following reallinear equation may 

be established: 

(4.49) 

which leads to the matrix equation: 

A ( am,n) mE[l, M JnN , am,n = J (nzs (~)) 
nE(O,NL)n!ll 

A· 1-t = b, (4.50) 

If M = NL + 1, then the matrix Ais square.It may be inverted, thanks to all the restrictions 

placed on the acceptable shapes of the boundary -non self intersecting, no critical point on the 

boundary, etc.-, and the system 4.50 has a unique solution vector J-L. Otherwise, the system is 

over-determined and cannat be solved classically. It is solved in the least-squares sense instead, 

recognizing that the product of a matrix by its transposed is an invertible squared matrix: 

(4.51) 
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Other conditions may be added to the problem, such as imposing the value of the jump at 

either endpoint. The method used to enforce such conditions is based on Lagrange multipliers, 

as introduced in [31] and is detailed in [35]. 

4.5.3 On J ump-specified elements 

In sorne cases, the jump in the complex potential of the element is directly involved in the 

system of equations. This is the case in particular for elements used in joining domains of 

different physical properties, such as hydraulic conductivity, and for areas with rainfall. 

The most common instance, a jump in hydraulic conductivity across the boundary, is in-

troduced here. In that case, the real potential jumps, but the head must remain continuous. 

This implies that the coefficients of the jump function À are real. Because of the choice of 

relationship between head and potential, the condition can be reduced to: 

(4.52) 

where (.)+ indicates a the limit of a quantity as the evaluation location approaches the curve in 

the direction of the normal, and (.)- in the opposite direction. The value of the potential of the 

element on the boundary is not zero, unlike the case of the straight line element. Considering 

that if Ç is a point in the interval [0, 1], and zç = rç is the corresponding point on the curve in 

the physical plane, the potential evaluates to: 

(4.53) 

v 
Defining the influence of all other elements at location zç as c;T> (zç), eq.4.52 becomes: 

k+ ( 1 - v ) ( 1 - v ) k- 2À (Ç) + c;T> (zç) + c;T> (zç) = - 2À (Ç) + c;T> (zç) + c;T> (zç) (4.54) 
, 

Defining a= ~:~~= and reorganizing: 

(4.55) 
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This equation is similar to eq.4.49 established for the Dirichlet problem. The resolution 

from that point is therefore similar and not repeated here. 

The jump in potential across the element at zç along the direction normal to the curve is 

exactly the value of the jump function). (Ç). A set of curvilinear line-sinks must also be added 

to guarantee continuity of flow across the boundary, in a manner similar to the straight case. As 

a result, if the curve is the boundary of an area-sink, the resolution of the unknowns is virtually 

identical to the case of straight line element, except that it takes place in the (-domain rather 

than the physical plane; it is therefore not repeated here. Instead, reference is made to [31] and 

[57], although the shape of the interpolator should be chosen differently. 

4.5.4 Examples 

Two examples are offered here to show the flownets obtained using the new curvilinear elements. 

The degree chosen was moderately high: N = 32 and the number of control points is 40. The 

solutions do well overall, but attention is drawn to the irregular patterns of sorne streamlines in 

figures 4.3(c) and 4.3(b). These are explained by the fact that the entire curvilinear element has 

only 36 degrees of freedom. Were there need for more precision, the elements should be broken 

into two pieces -by subdivision-, and resolved; this would significantly slow all computations. 

Piezometrie contours are dashed lines, stream-function isopleths are solid line and corre­

spond to streamlines, up to the branch cuts. 

Both examples were solved only once. The complex potential was evaluated for each figure, 

on a grid of 401 by 401. The figure were crea ting using Scilab2 , see [24]. 

2Scilab is produced by INRIA- www-rocq.inria.fr. It is an open source software for mathematical operations. 
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(b) zoom on tip 
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(a) general view 
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( c) zoom on well location 

Figure 4.3: an impermeable barrier in uniform flow next to a well 
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(a) general view 
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(b) zoom on western tip of northern lake ( c) zoom on narrow section between the lakes 

Figure 4.4: Two head specified lakes m a field of uniform flow 
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Chapter 5 

Computational efficiency of curvilinear 

elements 

Synopsis 

Purpose: The elements along NURBS curves derived in chapter 4 are too slow to be used in a 

practical modeling setting. This chapter provides a method for speeding up computations. 

Outcome: A polygonal far-field, an approximation of a complex potential away from the bound­

ary to which it is associated, and a method for creating line elements of very large degree are 

detailed. 

As pointed out in 4.4.2, the speed of computation of the complex potential is hampered 

by the necessity to the find the complex roots of an nth degree polynomial. A second issue, 

as apparent in eq.4.25, is that the complex potential requires the evaluation of np series of 

Legendre functions, thus making this second step comparable in speed to the evaluation of np 

standard line elements. As a whole, the evaluation process is therefore so slow that the elements 

seem of little worth in practice. 

What is proposed here is a method to significantly speed up the evaluation -by an order of 

magnitude in most practical cases-, without adding complexity for the modeler; Thus, the design 

advantage of the Bézier shapes is preserved, with little added computational overhead compared 
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to standard line elements. This method relies on two concepts: (1) the complex potential can be 

approximated, using a direct boundary integral, outside any polygon surrounding the element 

by an analytic function that is faster to compute and does not require that the roots of the 

polynomial be found, and (2) the accuracy of the approximation can be chosen through the use 

of line elements of very large degree N ;:=: 50. 

Résumé en Français 

Objectif : Les éléments le long de courbes NURBS dérivés dans le chapitre 4 sont trop lents 

pour être utilisés dans un environnement réel de modélisation. Ce chapitre veut fournir une 

méthode pour accélérer ces calculs. 

Résultat : Sont détaillés ici, (1) Un champ lointain polygonal, une approximation du poten­

tiel complexe à distance de la frontière à laquelle il est associé, ainsi que (2) une méthode de 

création d'éléments linéaires de très haut degré. 

Comme mis en évidence au point 4.4.2, la vitesse de calcul du potentiel complexe est gênée 

par le besoin de trouver les racines complexes d'un polynome de degré n. Un second problème, 

apparent au travers de l'équation 4.25, est que le potentiel complexe requière l'évaluation de 

np séries de fonctions de Legendre, rendant ainsi cette seconde étape comparable à l'évaluation 

de np éléments linéaires classiques. En totalité, le processus d'évaluation est par conséquent si 

lent que ces éléments semblent être de peu de valeur dans la pratique. 

Ce qui est proposé ici est une méthode pour accélérer l'évaluation de façon significative -par 

un ordre de grandeur dans les cas pratiques-, sans ajouter de complexité pour le modélisateur; 

ainsi, l'avantage des formes de Bézier à la conception est conservé, avec un faible surcoût de 

calcul comparé à l'utilisation de segments de droite. Cette méthode repose sur deux concepts : 

(1) le potentiel complexe peut être approché, en utilisant une intégrale frontière directe, à 

l'extérieur d'un polygone quelconque entourant l'élément par une fonction analytique plus ra­

pide à calculer et qui ne nécessite pas la recherche des racines de polynomes, et (2) la précision de 
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l'approximation peut être choisie en utilisant des éléments linéaires de très haut degré N 2:: 50. 

5.1 Polygonal Far-Fields 

The concept of Far-Fields rests on the principal that as distance away from a singularity in­

creases, the complex potential associated with the singularity may be represented by an alter­

nate function. Most notably is the use of a Laurent series expansion of the potential of straight 

line elements outside of the unit disk. 

Whatever expansion is used, it must be defined in a domain free of the singularity distribu­

tion with which it is associated. In the case of curvilinear elements, the disk defined so that its 

diameter corresponds to the line between the end-points of the element does not, in general, 

contain the entire element: a Laurent series expansion of the complex potential is not usually 

a possible representation for such elements. 

Considering the property of NURBS curves relating the location of the object to the smallest 

convex polygon constructed with its geometrie control points, the convex hull, it is possible to 

surround any NURBS curve defined by n + 1 control points with an n + 1-sided polygon -in 

sorne cases, fewer thann+ 1 sides are needed. This type of boundary is always available, and 

the strict inclusion of the curvilinear element within such a polygon is guaranteed provided 

that all weights of the NURBS are non-negative -see [44, 22]. Using this polygon as boundary 

of the domain outside of which an expansion would be used is therefore general enough to be 

considered. 

Two issues related to these shapes need to be resolved: 

• Which expansion can be associated to polygons? 

• If the convex Hull is too large, can a polygon be constructed with tighter fit? 

5.1.1 Direct boundary integral over a polygon 

Using the direct boundary integral method -see e.g. [36] for a description in real variables, 

[51] in complex-, it is possible to represent the complex potential generated by the curvilinear 
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element outside of the polygon by the sum of the potentials of line elements located along the 

sides of the polygon. This produces a sort of" custom fitted" far-field evaluation method, which 

removes the need to find the complex roots of 4.16 for any point outside of the convex hull, 

and does not add computational effort since the number of line elements used along the convex 

hull of a Ràtional Bézier Curve is equal to the degree of the spline. As a result, speed is grea tl y 

improved. 

According to [51], a direct boundary integral in terms of complex variables over a simply 

closed contour C enclosing a domain V yields: 

v z ~ v, n ( z) = - 1.1 n ( o) do 
27r'l c z- 0 

(5.1) 

Choosing cas the closed polygon p = {zk, k E [0, n + 1] n N}' Zn+l = Zo, eq.5.1 becomes: 

k=n 1 1Zk+l n ( 0) 
Vz ~v, n (z) = L-=-: -Àdo 

21rz zk z- u k=O 
(5.2) 

which corresponds to the combined potentials of n + 1 straight line elements, each along one 
k 

side of the polygon and such that the jump À along the kth side equals the value of the complex 
r 

potential n of the curvilinear element along that line: 

k r 
Vz E [zk+l, Zk]' À (z) = n (z) (5.3) 

Thus, given the potential to be approximated and the location of the polygon, a set of line ele­

ments may be obtained whose combined contributions will equal the potential of the curvilinear 
k 

element outside of the polygon. When approximating the jump functions À with polynomials, 

the complex potential outside of the polygon is approximated as: 

k 
k=n 1 1Zk+l À ( 0) 

Vz ~v, n (z) = L-=-: -Àdo 
1 27r'l Zk Z- U k=O 

(5.4) 

Associating a line element with each side of the polygon, the problem of approximation reduces 
k 

to finding the À's. Fitting a complex polynomial to a known function is a well known problem 

of approximation theory and is not detailed here. Defining the complex potential associated 
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with side k as: 
k 

k -1~Zk+l À (6) 
rl(z)=-. -db 

27rz zk z- 6 
(5.5) 

the approximation is: 
k=n k 

Vz ~v, n (z) =Ln (z) (5.6) 
k=O 

5.1.2 Polygon refinernent 

The polygon can be refined using standard graphical techniques associated with NURBS curves, 

as described in e.g.(44]: knot insertion, knot refinement and/or curve subdivision in particular 

allow for the creation of a tighter polygon. 

• curve subdivision is the principle by which a NURBS curve is described as a sequence 

of Rational Bézier curves, as described in 4.2.2: each section on the NURBS between to 

consecutive distinct knots is replaced by a RB curve -see Fig.5.1 for an example. 

• knot insertion allows the NURBS to be replaced by an equivalent NURBS of identical 

locus, but described by more control points. -see Fig.5.2. 

• knot refinement is similar to knot insertion, except that more than one knot is inserted. 

Refinement is more efficient than multiple knot insertions. 

An issue with using the convex hull to produce a polygon surrounding each RB curve is that 

the resulting area has vertices on the curve or on its tips. Using the above mentionned refine-

ment techniques produces vertices on the curve itself. The direct boundary integral described 

in 5.1.1 is meant to use line elements along which the complex potential is represented as a 

polynomial: the chosen polygon cannot intersect the curve. Such a polygon may be obtained 

by slightly infiating the convex hull via an homothety -a dilation about its center of gravity. 

Thus, if the polygon pis defined by vertices {Zn, n E [1, N] n N, N E N}' then the new polygon 

P' is defined by the set {z~, n ,E (1, N] n N, NE N} obtained by: 

Zc 

(5.7) 

(5.8) 
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where a is a real number strictly larger than 1. Because P is convex, the newly created polygon 

contains the original, which contains the curve; therefore, the curve is necessarily strictly inside 

P' and the integral 5.2 may be operated. Figure 5.2 shows the inflated polygon for a = 1.2. 

Such large inflation is required for the visibility of the figure only. In practice, for computation 

only, a = 1.01 is sufficient. 

Another method of refinement of the polygon is consecutive subdivision and merging of the 

polygons of each sub-curve. The common point of the polygons of two consecutive sub-curves 

lies on the curve. Inflation cannot be used on the merged polygons, since this shape is usually 

not convex. Instead, the following techniques can be applied: 

• the polygons of each sub-curve are inflated and then merged. However, with this tech­

nique, the merged polygon often contains one or two very small sides relative to their 

neighbors, which results in inaccuracies in the evaluation of the complex potential, at a 

location that is very close to the curve. There is no simple technique for cleaning-up the 

polygon efficiently. This method is therefore abandoned. 

• The vertices that fall on the curve itself are moved away: 

- if the vertex is at the tip, by stretching away from the centroid of the the vertex and 

its follower and predecessor -see Fig.5.3. 

- otherwise, in the direction normal to he curve at that point -see Fig.5.4(a). Note 

that the case of a vertex at an inflexion in the curve is only a minor issue, where 

care must be taken in the order of the control points only -see Fig.5.4(b). 

It is also possible to design a custom fitted polygon by hand. The rules mentionned above 

are provided for handling by a computer while keeping the guarantee of inclusion of the curve 

inside the polygon. 

5.1.3 Examples 

The following examples were produced using customized Scilab scripts. In both examples, the 

curvilinear element is an impermeable barrier using 64 degrees of freedom to meet the boundary 

condition along a Rational Bézier curve of degree 5. It is placed in a field consisting of uniform 
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(a) general convex hull 

(b) hull refined by subdivision 

Figure 5.1: Polygon obtained as the union of the convex hull of the subdivisions of a NURBS 
curve 

Figure 5.2: The convex hull of a Rational Bézier Curve, its inflated substitute, and the polygon 
obtained by further subdivision 
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Figure 5.3: Changing the location of the endpoint vertex of the surrounding polygon 

(a) regular points (b) inflexion points 

Figure 5.4: moving polygon vertices away: (a) at regular points; (b) at inflexion points. 
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flow and a well. Figure 5.5 shows the undisturbed fields, before the impermeable element is 

added. Figure 5.6 represents the flow field after the impereable barrier has been added. 

general polygonal far-field 

In this case the chosen polygon is the convex hull inflated by 1 percent. Only 5 line elements are 

necessary: one of the control points of the spline is strictly inside the hull. Figures 5.8(a) and 

5.8(b) show the complex potential as evaluated throughout the domain of interest, and restricted 

to the inside the polygon, without approximation. Figure 5.8(c) shows the approximation 

obtained outside of the polygon. Figure 5.8(d) shows the logarithm of the absolute error, which 

is zero inside, by design, and heavily concentrated around the polygon outside, reaching 10-4 . 

The computation of the influence of the curvilinear element was twice as fast with the polygon 

as without. 

Figure 5.5: General flow field 
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refined polygon 

In this situation the polygon is refined manually to include one extra side, and by moving the 

lower two points so asto geta doser fit. This manual choice is performed because in the case of 

this example, the automatic treatment is not necessary. The speed of the evaluation outside is 

reduced by 20 percent, due to the addition of a side. If the number of sides had been doubled, 

the evaluation speed would have been eut in half: the time of computation varies linearly with 

the number of sides. The overall gain is speed was minimal-around 3 percent-, as the reduction 

in the number of evaluation inside the smaller polygon is barely sufficient to offset the cost of 

an extra line element. Thus, it is suggested that polygon refinement should be limited to cases 

where the area of interest is limited to a region very close to the curvilinear line element. The 

error remains concentrated along the edges of the polygon -see figure 5. 7. 

Figure 5.6: Flow field with the curvilinear barrier 
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Figure 5.7: Logarithm of absolute error for a refined polygon 
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(a) complex potential of the element- No approx­
imation 

( c) approximation outside of the polygon 

94 

(b) same as 5.8(a), restricted to the polygon 

( d) absolu te error log-plot 

Figure 5.8: The complex potential of a curvilinear element and polygonal Far-Field approxi­
mation 
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5.2 Line Elements of very large degree 

An issue must be raised with respect to the elements used in construction the polygonal far field 

expansions: although line elements of high degree are available for the modeling of groundwater 

flow, as shown in [31] and [6], these elements are made primarily for the purpose of matching 

boundary conditions of a groundwater flow problem; smalllocal errors are acceptable, and these 

elements are not usually used at their highest settings, because errors of a few centimeters or 

millimeters for a condition of head specified to several meters is actually acceptable. 

In the present context, these elements would be used for the evaluation of the complex 

potential of another element, essentially providing an analytic continuation of that potential 

outside of the polygon. This implies that the line elements are used based on the choice of the 

numerical engine developer, rather than on the wish of the modeler: they need to be able to 

match the potential to a great precision. It was found that these high-degree line elements 1 

have intrinsic limitations, which reduce their usability in the present context: 40 to 45 degrees 

of freedom seem to impose a limitation, especially when these elements come very close to the 

boundary of the NURBS. For this reason, a new look is taken at two different type of line 

element, the classical element as well as the double root element -see [51]-, which will enable 

more control, and more precision in the vicinity of the polygon. 

5.2.1 Double-Root line-elements 

The double root element is presented in [51, pp.462-470]. The main characteristic of the double­

root elements is that they rely on a map of the unit circle in the (-plane onto a slot in the 

Z-plane. This mapping may be introduced as: 

(5.9) 

1The authors of [31] and [6] actually refer to them as high-order line elements, but this is a slight misnomer, 
which could cause confusion in the future, when Wirtinger calculus is used toits fullest. The choice was made 
-as argued in [35] to rename them high degree line elements 
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Traditional view 

This map is NOT bijective, and one may choose the reverse map as either one of the following: 

(5.10) 

This equation implies that there exist square root singularities at both extremities of the 

slot, thus the name of the element; another designation, referring to equation 5.9, could be 

Hyperbolic Line Element. In [51], Strack chooses to map the outside of the unit circle onto the 

slotted Z-plane. 

The mapping chosen by Strack is called x = Z + J Z 2 - 1; th us, following Strack's expression 

for the complex potential [51, eq. (39.13)], 

n=oo 

0 = LWnX-n 
n=O 

Revisiting the Double-Root Line element 

(5.11) 

For purely cosmetic reasons, and because no use of poles will be made, the opposite is chosen 

here, leading to the following reverse map: 

(5.12) 

This map has a major fl.aw when implemented innocently: It not only provides the jump 

required along the slot, it also contains a discontinuity along the imaginary axis inside the unit 

disk. lndeed, the square root jump whenever its argument is real and negative, which implies: 

Z 2 
- 1 E JR- ===? { Z 2 E 1R} n { Z 2 

::; 1} 

===} {Z E JR, IZI::; 1} u {(iZ) E JR, IZI < 1} 

(5.13) 

(5.14) 

This can be remedied by noting that inside the complex field, the square root may be 

defined as the bijective inverse of the square, by identifying it to the halving power function: 
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v!z2 = Z2 ~ = Z. Noting that: 

1 - z-2 E R- ===> { Z 2 E R} n { Z 2 
:::; 1} n { Z 2 > o} 

===> {ZER,IZI:S1} 

the mapping may be computed in the foilowing manner: 

Eq.5.17 has the drawback of requiring special handling of the case Z =O. 

(5.15) 

(5.16) 

(5.17) 

Referring to [51] once again, it should be pointed out that the x mapping was computed as 

x = z + JZ+T JZ=l, thus dubbing the elements as double-root, since each root singularity, 

present at each tip, was expressly used for the evaluation of X· 

One may note that (·x= 1. Applying it into equation 5.11, 

n=oo 

(5.18) 

As noted in [51], it is possible to include other expansions about particular points. However, 

with this choice of mapping, adding other Taylor expansions would be useless since they would 

ail combine into one; therefore, the sum given above is sufficient to describe ail sums of Taylor 

expansions. An additional term is needed to account for discharge or vorticity added by the 

element. The complex potential is then defined as: 
1 

(5.19) 
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Local resolution procedure 

. The expression in eq.5.19 reduces along the slot to a classic Chebychev polynomial series2 when 

all the coefficients are real: 

n=oo 

<I>(X) = R [0 (X)] = L wnTn(X) (5.20) 
n=l 

where Tn is the Chebychev polynomial of order n. Thus, the problem of fitting the head along 

the slot to a specified polynomial -a Dirichlet condition- becomes entirely trivial: one does not 
t n=oo 

have to adapt the jump of the element to attain the target function <I> = E anTn(X), as the 
n=O 

orthonormality of the Chebychev polynomials guarantee that: 

(5.21) 

This equation begs the question of adapting the degrees of freedom of the element in a manner 

that willlead an objective function to achieve a minimum as proposed by Jankovié. Since these 

degrees of freedom are known exactly as soon as a target function is defined, it is sufficient to 

approximate a target function by combination of the condition imposed on the element and 

the influence of the other elements in the model. If the element is isolated, in the sense that 

no other element is crossing it, even at its tip, this is simply a problem of fitting a Chebychev 

series to the external influences, then adding the conditioning polynomial, and the degrees of 

freedom of the element will be exactly known. 

In summary, if we define: 

• The boundary condition, or value that should be observed along the element after reso-
BC n=oo 

lution of the problem <I> (X) = E f3nTn(X) 
n=l 

• The influence on the complex potential of all other elements in the model with respect to 
0 

local coordinates n (X) 

2When examined in the (-plane, the Chebychev series turn into Fourier Cosine Series in terms of the argument 
of(. 
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then, following the suggestion of [31] on orthogonal bases: 

Vn EN*, 

(5.22) 

Thus, if we approximate R ( O(X)) as: 

n=oo 

R ( n(X)) = L !:JnTn(X) (5.23) 
n=O 

with: 

(5.24) 

th en: 

Vn EN*, (5.25) 

and the only problem left is the issue of linking !:J0 and /30 to the pumping rate Q of the 

element. Two separate cases can be identified: 

• The element is isolated and used to represent a crack or a barrier with no net discharge 

or vorticity: Q = 0 

• The element does in fact draw or add water from/to the aquifer. Then Q depends on the 

other elements in the flow domain that also add/draw water, and the coefficient Q may 

only be computed with respect to the other discharges. This should be clone through the 

use of a reference point as presented in Strack, and in Jankovié. 

This applies in the case of a Dirichlet boundary conditions, and a similar computation may 

be operated in the case of a Neumann boundary condition. However, instead of solving for 

S'W (X) = -Qn (X), it was found that better results are achieved with the double root element 

when adapting S'~ ( (- ~) W =sin (acos (X)) Qn (X) 

Figure 5.9 shows the results obtained when representing a breaking impermeable wall with 

double root elements of degree N = 350, and a comparison with the results for the same 
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problem as generated by the program SPLIT set to maximum precision for the same problem. 

In the case of Neumann and Dirichlet conditions, the double root element provides much more 

control and therefore accuracy, than its standard counterpart. 

Evaluation of Double-Root elements 

The expression for the complex potential associated to a double-root element is a standard 

power series in (. Classical methods may be used to evalua te it, su ch as Horner's rule or 

Knuth's rule in the case of real or pure imaginary coefficients, as suggested by Barnes (personal 

communication). However, ( = Z · (1- v'1- z-2) must be evaluated at every point which 

may slow down computations. A number of tricks may be employed to speed up computations 

as suggested by Barnes. One of them consists in choosing judiciously the number of terms used 

to compute the complex potential as a function of the location where it is evaluated. Barnes 

uses the Near-field/far-field approach, using a Laurent expansion when IZI 2:: 1.1. The problem 

of choice of cutoff thresholds is therefore identical with the Far-field approach as it is with the 

double root series. What is interesting however, is that the far-field coefficient are not optimized 

with respect to the boundary condition but rather with respect to reduction of the error at the 

connection to the Near-field; thus, in theory, nothing actually allows the cutoff to take place 

other that the fact that the error induced by the cutoff is negligible in practice. 

In the case of a Dirichlet or Neumann problem, the coefficients of the double root element's 

complex potential are actually computed with respect to the Boundary Condition exactly, using 

an orthogonal functional basis; thus, a truncated series of N coefficients out of an original series 

of Mis exactly the same series as what would be obtained if only N coefficients were calculated 

in the first place. If we designate the exact solution to the flow problem with the chosen 

boundary condition along the slot as: 

n=oo 
00 00 "'""' 00 fl(Z) = Wo ln ( + L.....t Wn(n (5.26) 

n=O 

then the error induced by a truncation at order N at ( is exactly: 

EN(()= ln(Z)- n(z)l = ~ WnC 
n=N+l 

(5.27) 
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(a) full view (b) x20 zoom 

( c) xlOOO zoom (d) comparison of 5.9(c) to SPLIT 

Figure 5.9: Double Root elements for connected impermeable barriers in uniform flow. N 350 
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Defining J.L = sup ~~n~, which always exists in practice, the error may be bound as: 
n?:N+l 

102 

(5.28) 

If a relative error E is defined, a threshold !/€ can be computed such that, for any Z where 

I((Z) 1 2: !/€, the truncation error is less than J.L • E: 

(5.29) 

The domain D is an ellipse outside of which the sum may be truncated to the desired degree 

N. Figure 5.10 represents in dashed (resp. dotted) the ellipse inside which more that fifty 

(resp. twenty-five) terms must be used for the series in Ç and the disk inside which either a 

near-field or a Laurent expansion of more than fifty (resp. twenty-five) terms must be used in 

Z; also represented in this figure are the ellipse and disk corresponding to N = 250 (gray). The 

thresholds used for the Laurent series were provided by Dr. R. Barnes. Two means may be 

used for comparison of such domains where time of computation is similar, because the series 

have the same number of terms: firstly, one can compare the radius of the limiting disk for the 

Laurent expansion to the major axis of the limiting ellipse of the double root; secondly, as is 

apparent on the figure, a better means of comparison of the zones is the surface area that they 

cover. Table 5.1 shows the squared major axis/threshold values for different degrees, as weil as 

the surface area of the corresponding disk/ ellipse and the ratio of these areas for E = 10-9
• It 

is worthwhile noting that in practice, J.L gets very small as N increases. 

J ump-specified elements 

The main disadvantage of the double root element is in problems where the jump in the complex 

potential along the element i's specified as a polynomial. Indeed, if the Jump along the line 

J (X), XE [-1, +1] is known as a series of Chebychev polynomials: 

J (X) = L J.LnTn (X) (5.30) 
n?:O 
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Threshold squared Exclusion ellipse Area 
Degree N Double Root Standard Double Root Standard ratio 

1 624942673.9969 2229361453.1191 1963315311.9728 70037 45563.3154 3.56 
2 4604 79.1793 1707402.2724 1446636.4361 5363962.4357 3.70 
3 12520.9165 47324.5106 39334.0486 148674.3349 3.77 
4 1443.9285 5515.9893 4534.6641 17328.9916 3.82 
5 342.7416 1318.5594 1075.1826 4142.3767 3.85 
6 122.9749 475.0441 384.7633 1492.3951 3.88 
7 57.3685 221.1065 178.6508 694.6267 3.89 
8 31.7899 122.0473 98.2878 383.4230 3.90 
9 19.9086 75.8969 60.9540 238.4374 3.91 
10 13.6345 51.4660 41.2334 161.6855 3.92 
15 4.3884 15.2951 12.1142 48.0510 3.97 
20 2.5759 8.0949 6.3295 25.4310 4.02 
25 1.9237 5.4668 4.1876 17.1745 4.10 
35 1.4399 3.4513 2.5002 10.8427 4.34 
50 1.2104 2.4217 1.5853 7.6080 4.80 
75 1.0943 1.8256 1.0089 5.7353 5.68 

100 1.0538 1.5804 0.7478 4.9649 6.64 
150 1.0245 1.3645 0.4979 4.2866 8.61 
200 1.0141 1.2662 0.3750 3.9779 10.61 
250 1.0091 1.2100 0.3014 3.8013 12.61 

Table 5.1: Comparison of squared thresholds and corresponding areas 
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Figure 5.10: exclusion ellipses for N = 25(dotted), N = 50(dashed) and N = 250(solid gray) 
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and the potential of the double root element is defined following eq.5.19, then the following 

objective function may be defined and minimized with respect to the coefficients of the double 

root element, where x = cos ( 0): 

(5.31) 

This problem closely resembles the attempt to match a sine series to a eosine series. This would 

be impossible to resolve over an integration interval (} E [-7r, 71"], but may be achieved to sorne 

extend over (} E [0, 7r]. It was observed that the fit obtained is usually poor, forcing the use of 

severa! thousands of terms in the double root element to obtain an approximation of the jump 

to 10-7
, which is at the limit of the acceptable for the application described in 5.1. 

This is due to the fact that the jump function of a Double-Root element always reaches 0 at 

its tips. In order to imitate a non-zero value, the element forces a type of behavior similar to a 

Gibbs phenomenon there. This uses many degrees of freedom. The use of double root elements 

in the case of jump matching problems leads to a high computational cost, thus going against 

the intended objective of the polygonal far fields. Although the number of terms can rapidly 

drop as distance from the polygon increases, the cost remains too high for most application. 

5.2.2 lmproving High Degree Line Element 

Since double-root elements are prohibitively expensive for this particular application, a method 

is proposed to improve the High Degree Line Element so as to remove the limit to the maximum 

degree of the polynomial used to represent the strength. 

The failings of High Degree Line Element 

The main limitation of line elements of high degree is that the polynomial used to represent their 

jump function is limited to a degree N ::::; 45. This restriction is induced a numerical -rather 

than an analytical- issue: for elevated orders, and for an argument inside the unit disk, the 

numerical evaluation of the complex potential requires either the use of a Clenshaw recursion 

-see [45]- to compute a series of Legendre functions, or, as proposed in [31], the multiplication 
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of a power series by a logarithm and subsequent subtraction of a correction polynomial. The 

former breaks clown weil within the unit disk, even for moderate degrees, as shown in Figure 

5.11. The latter can be pushed to be satisfactory up do degree 45. Both break clown because 

past their respective limits, their algorithms require the subtraction of very large numbers from 

very large numbers: the small numerical error relative to such large values are often what 

remains after the subtraction. The limit of 45 results from the observation that below that 

limit, it is possible to accurately compute the potential inside and a little beyond the unit 

circle and to switch to a Laurent series outside without any occurrence of numerical error; 

thus the function can be evaluated accurately throughout the domain of interest. It is pointed 

out that this limit is valid when using double precision computing; the limit is lower in single 

precision. 

As a consequence, if a far-field expansion of the Legendre series, other than an Laurent 

expansion, can be provided to approximate the influence of the line element that satisfies the 

following conditions: 

• can match the Legendre series to a chosen precision at a given boundary 

• can be computed accurately and efficiently outside of the boundary 

• is associated to a boundary within which the Legendre series can be accurately computed 

then this expansion could be used to represent the Legendre series in place of the Laurent series. 

It can be experimentally observed that the standard Clenshaw recursion provides an accu­

rate result within ellipses with foci ±1. Thus, an elliptical domain can be defined for each value 

of N within which the Legendre series can be directly evaluated using this recursion. 

To determine the size of the ellipses, experiments were run to find their maximum extent: A 

Legendre series is used to represent a known function. The chosen series solves the problem of an 
' 1 

isolated line element in uniform flow. The actual solution is the double root: D = Z- (Z2
- 1) 2 . 

The Legendre series was solved for 1024 coefficients. It was then evaluated along the imaginary 

axis for an array of truncations, that is for N E {32, 64,128,256,512, 1024}. The distance to 

the actual solution was then plotted versus the location on the axis; figure 5.12(a) shows this 

plot for N = 64. A location was then visually found below which no numerical error occurred. 
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These location bn empirically fit the curve: 

b - 32 
n-

n 
(5.32) 

Since the domains were assumed to be ellipses of foci ±1, the bn correspond to their minor axis, 

and their major axis can be found through: 

(5.33) 

The domains are validated by evaluating the Legendre series along the ellipse of axes (an, bn) 

and verifying that the error remains small, compared to the exact solution. Figure 5.12(b) 

shows that these errors are indeed negligible, both in terms of maximum and average. 

Double-root elements as far-fields 

The appearance of ellipses of foci ±1 is reminiscent of the zones define in the evaluation of the 

double root elements. It is therefore proposed that the expansion of the Legendre series outside 

of the limiting ellipse should be a double root series, in the fashion of eq.5.19. 

To obtain the coefficients of the double root expansion when the coefficients of the Legendre 

series are known, the following method is proposed. It consists in a single matrix multiplication. 

A relationship may be derived between Legendre functions and the variable (, using the 

expressions of Qn as hypergeometric functions of z -see [2, eqs. 8.1.3, 8.1.7]- and quadratic 

transformations on the hypergeometric functions -see [2, eq. 15.3.19]: 

Q (Z) = r(n+ 1)r G) ;-n+lFl (n+ 1 !.n+ ~.;-2) 
n r(n+~) ., 2 '2' 2'"' 

(5.34) 

so that ,given the complex potential as a series of Legendre functions of the second kind, one 

can obtain an equivalent representations as a power series of the variable(: 
1 

n (z) 

(5.35) 
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where: 

with the matrix: 

h 

Q [ h l Qr,c 

h 

a= [an]n~O = Q,.\ 

r~O,c~O 

0, c 2: r 

r (~) r (9') 1- (-1r-e 
r (r~c + 1) r (r-~+1) 2 

r>c 

(5.36) 

(5.37) 

(5.38) 

(5.39) 

This hypergeometric series converges slowly, and in fact not at all for ( = Z = + 1. This 

is mostly due to the presence of log singularities in the Legendre functions of the second kind, 

which the hypergeometric series has difficulties emulating. This problem can be circumvented 

by explicitly removing the singularities using the following relationships: 

ln(Z±1) 

ln (1 =t= () 

2ln (1 ± () - ln (2() 

±(F~ (1, 1; 2; ±() 

(5.40) 

(5.41) 

For a truncation at Nq = 512 of the Legendre series 3 , evaluates without numerical discrep­

ancies within an ellipse of minor axis 0.0625 and major axis 1.001951, which is include within 

the ellipse defined by 0.9577 :::; 1(1 :::; 1. For such a threshold, the truncation in the zeta series 

must be operated at Nç = 607 so that the relative error f remains bound by 10-10 • 

In this manner, the use of line dipoles of very high degrees is made possible. In turn, the 

availability of such elements allows the construction of a polygon surrounding any NURBS 

as outlined in 5.1 for the construction of a far-field complex potential based on the Direct 

Boundary Integral Method. Such a construction can potentially be extended to any group of 

analytk elements, thus bringing the possibility of constructing superblocks4 of any polygonal 

shape. This technique, relying on the use of the Direct Boundary Integral, is an original product 
1 

of the research presented here. 

3using the standard technique, as provided by Jankovié -see [31]-, a small experiment may be run for N as 
large as 3500. Larger numbers may probably be obtained if the operator if willing to give the computer enough 
time, but there does not seem to be a use for such large numbers 

4see [41] 
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Figure 5.11: Numerical output of a clenshaw recursion for a Legendre series with N = 64 
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Figure 5.12: Analysis for the definition of elliptical domains of Legendre series 
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Chapter 6 

Conclusion 

6.1 Summary 

In this thesis, the following points were addressed: 

• Current tools for the design of groundwater flow models are inherently object centered 

and the use of domain discretization for the purpose of solving the mathematical model 

adds uncertainty. 

• A method exists to solve many flow problems that does not require domain discretization, 

the AEM, but it currently limits the range of addressable problems because of its state of 

development. The lack of availability of certain shapes generated by pre-processing tools 

may also induce uncertainty in the model. 

• Complex potential and discharge function for analytic elements along NURBS curves were 

provided to address the shape issue. 

• Far-fields by Direct boundary integral along polygons were developed to enable the use 

of NURBS curve in practice by reducing their computational cost. 

• Line elements of very high degree were introduced to enforce the assurance of high accu­

racy of the polygonal far-field expansions. 

What results are three original tools that can be implemented in any analytic element code 

which should simplify the dialogue between GIS prefpost-processing and numerical model. The 
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following presents possible extensions for the research work using these three new tools. 

6.2 Extensions 

6.2.1 Relating model Inputs to Outputs 

As pointed out in chapter 2, the modeler benefits when the outputs of his model directly relate 

to the inputs he provided: such direct links foster his understanding not only of the flow process, 

but also of the particular setting where he is attempting to simulate flow. GIS tools are object 

centered, and the AEM is inherently object oriented, so that producing a direct link between 

the two should be possible. The ideal tools for doing so seems available right now: XML, the 

eXtensible Markup Language, offers the facilities for defining a language for the storage and 

retrieval of analytic elements, which both the GIS and the computational engine can be taught. 

Similarly, results in the form of piezometrie contours or well capture zones can be represented 

as objects, rather than obtained by interpolation on a grid. 

6.2.2 Interface elements for the combination of resolution methods 

The concept of polygonal far-field can be extended to produce elements that would allow the 

insertion of local domain models within an analytic element: this may be valuable to create 

contaminants transport models, where the differentiai equation's complexity need- only apply 

close to the phenomenon. In a way, this is akin to the method of domain decomposition for the 

resolution of differentiai equations. Mathematical proofs exist that support the decomposition 

method, but no tool exists to implement it within the AEM; creating a far-field by direct 

boundary integral, an analytic extension for any domain model, that matches the heads and 

discharges at the boundary, might be that tool. 

6.2.3 Beyond hydrogeology 

The techniques provided in this thesis might be brought outside of the field of hydrogeology 

with limited effort. 
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Expanding to other physical processes 

Sorne physical pro cesses, su ch as heat transfer, share a co mm on or similar mathematical rep­

resentation as groundwater flow. In these instances, where the AEM can be directly used, the 

new improvements obviously may be applied as weiL This may be particularly valuable in 

fields that study man-made products: many of these make use of NURBS curves in the design 

process, so that the boundary will be represented exactly instead of being approximated. This 

might prove a great advantage: the fewer approximations, the greater the accuracy. 

Geo-referenced Information - A property model 

The concept of property model is originally due to Pr. Otto Strack. In summary, the property 

model would allow the representation of any continuous information in the form of an analytic 

element model, with superposed influence functions. An Elevation Property Model would be 

to the AEM what Digital Elevation model is to Finite Differences, with a regular data grid, or 

Terrain Information Networks are to Finite Elements, with a triangulation of the domain. The 

advantage is that the Elevation Property model could be formally differentiated, thus providing 

a slope devoid of numerical noise; This could prove very useful in hydrology. In applications 

where information is stored directly rather than a model that attempt to simulate a physical 

process, the accuracy of the shape of the boundaries or location of jumps -e.g. for cliffs- is even 

more valuable: evaluating the size of farming fields, terrain grading for roads where the volume 

of soil to be moved could be obtained more accurately, etc. 

It is the hope of the author that sorne of these suggestions for further research will be 

undertaken, and that the accomplishments of the present work will be fruitful for the scientific 

and engineering community. 
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Chapitre 6 

Conclusion - version française 

6.1 Bilan 

Dans cette thèse, les points suivants ont été présentés : 

- Les outils courants pour la conception de modèles d'écoulements souterrains sont in­

trinsèquement centrés objets et l'utilisation de discrétisation du domaine afin de résoudre 

le modèle mathématique ajoute de l'incertitude. 

- Il existe une méthode pour la résolution de nombreux problèmes d'écoulement qui ne 

nécessite pas la discrétisation du domaine, l'AEM, mais qui limite pour l'heure l'étendue 

des problèmes gérables du fait de son état de développement. Le manque de disponibilité 

de certaines formes produites par certains outils de pré-production peut également induire 

de l'incertitude dans le modèle. 

- Le potentiel complexe et la fonction de flux pour les éléments analytiques le long de 

courbes NURBS ont été fournis pour répondre au problème des formes. 

- Des champs lointains par intégrales frontières directes le long de polygones ont été 

développés pour permettre l'utilisation des ces courbes NURBS dans la pratique, en 

réduisant leur coût de calcul. 

- Des éléments linéaires de très haut degré ont été introduits pour assurer la production de 

séries asymptotiques de haute précision par les champs lointains polygonaux. 

Ce qui en découle est un jeu de trois outils originaux, qui peuvent être implémentés dans 

n'importe quel code informatique d' éléments analytiques, et qui devrait simplifier le dialogue 
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entre la pré/post -analyse par SIG et le modèle numérique. La suite présente des extensions 

possibles au travail de recherche en utilisant ces nouveaux outils. 

6.2 Extensions 

6.2.1 Lier entrées et sorties de modèles 

Comme avancé dans le chapitre 2, le modélisateur bénéficie d'une relation directe entre les 

sorties de son modèle et les entrées qu'il a fournies : un tel lien direct favorise sa compréhension 

non seulement du processus d'écoulement, mais aussi de l'arrangement particulier du domaine 

physique où il cherche à simuler l'écoulement. Les outils SIG sont centrés objet, et l'AEM est 

intrinsèquement orientée objet, si bien que produire un lien direct entre les deux devrait être 

possible. Les outils idéaux pour ce faire semblent être maintenant disponibles : XML, le langage 

par étiquettes extensibles, offre le cadre pour la définition d'un langage pour le stockage et la 

récupération d'éléments analytiques, que le SIG comme l'outil de calcul peuvent apprendre. De 

façon similaire, des résultats sous la forme de contours piézométriques ou de zones de captages 

peuvent être représentés comme objets, plutôt qu'obtenus par interpolation sur une grille. 

6.2.2 Eléments interface 

pour l'association de méthodes de résolution 

Le concept de champs lointain polygonal peut être étendu pour produire des éléments qui 

permettrait l'insertion de modèles locaux à l'intérieur d'un élément analytique : cela peut être 
i 'ji 

de grande valeur pou~ préer des modèles de transport de contaminant, où la complexité de 
. {, 1 

l'équation différentielle n'a à s'appliquer qu'à proximité du phénomène. D'un certain point de 
·,, . __ ,, ·"'' 

vue, cela est proche de la méthode de d~composition de domaines pour la résolution d'équations 

différentielles. Les preuves mathématiques sous-jacente à la méthode de décomposition existent, 

mais aucun outil ne l'implémente dans le contexte de l'AEM; un nouveau type d'outil créant 

un champ lointain par intégrale frontière directe, une extension analytique pour n'importe 

quel modèle par discrétisation de domaine qui fasse correspondre charge et flux à la frontière, 

pourrait être intéressant. 
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6.2.3 Au delà de l'hydrogéologie 

Les techniques fournies dans cette thèse pourraient être transférées en dehors du champs de 

l'hydrogéologie à moindre effort. 

Etendre à d'autres processus physiques 

Certains processus physiques, tel que le transfert calorifique, partagent une représentation 

mathématique commune ou similaire aux écoulement souterrains. Dans ces cas, où l' AEM peut 

être directement appliquée, les innovations peuvent évidemment être intégrées. Cela peut être 

particulièrement utile dans les domaines qui étudient les produits issus de production humaine : 

un bon nombre de ces produits fait usage des courbes NURBS dans la phase de conception, si 

bien que la frontière sera représentée exactement au lieu d'être approchée. Cela pourrait devenir 

un grand avantage : moins d'approximation signifie plus d'exactitude. 

Information Geo-référencée - Un modèle de propriété 

Le concept de modèle de propriété est originalement dû au Pr. Otto Strack. En bref, il per-

mettrait la représentation de n'importe quelle information continue sous la forme d'un modèle 

par éléments analytiques, avec des fonctions d'influence superposées. Un modèle de propriété 

d'élévation serait à l'AEM ce qu'un Digital Elevation madel est aux différences finies, avec 

une grille de données régulière, ou un Terrain Information Networks aux éléments finis, avec 

une tesselation du domaine. L'avantage du modèle de propriété d'élévation est qu'il peut être 

différencié de façon formelle, fournissant ainsi une pente sans ajout 'de bruit numérique. Cela 

serait fort utile en hydrologie. Dans les applications où l'inform~tion ~st"'stockée directement, 
·( .(,.·, ~~1.'r·~ ._~f('.· 

contrairement aux modèles de simulation, la justesse et la précision de la forme de la frontière 
. ,. ; i : 1. f ·, 1. ,. '-; • _ _._ s-. ! j .' ~. -!: 

ou de la localisation de discontinuités -e.g. pour des falaise~- ont d'autant plus d'importance : 
"' ~ ' ; ' ' J ; ' l 1 ! 1 ' ' ~ : 

évaluation de la surface de champs agricoles, gradàtion de terrain pour les routes, etc. 

L'auteur espère que ces suggestions de.futures redl1ei~h~~ s~ro~t entreprisès, et que les pro-
·• 

duits du présent travail seront sources d'avancées pour les communautés scientifique et du génie. 
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Summary 

Using GIS for the design of groundwater models motivates the search for numerical methods 

that do not require the discretization of the flow domain: GIS are natively vectorized. 

N umerical methods that relie on the discretization of the boundaries rather than the domain 

offer the advantage of retaining the native description of information in vector form as provided 

by the GIS, thus reducing the loss inherent to raterization and subsequent vectorization. The 

Analytic Element Method is especially promising. However, it lacks the capacity to handle a 

speçific type of object, NURBS curves. 

The functions necessary to allow the inclusion of these curves in the AEM are derived, and 

examples are provided. Their versatility is presented, also showing that existing smooth curves 

can be represented as NURBS, thus allowing backward compatibility, should they be replaced. 

A method is offered to allow for faster model response when using these curvilinear elements, 

based on the Direct Boundary Integral Method. Standard line elements are also improved to 

allow greater precision and control in the speed-improving scheme. 

Keywords: GIS, analytic elements, curvilinear elements, NURBS, Direct Boundary Integrais 

Résumé 

L'utilisation des SIG pour la conception de modèles d'écoulements souterrains motive la 

recherche de méthodes numériques qui ne requièrent pas la discrétisation du domaine de 

l'écoulement : les SIG sont par nature vectorisés. 

Les méthodes numériques qui se fient à la discrétisation des frontières plutôt que du domaine 

offrent l'avantage de garder le description originale de l'information sous forme vecteur, telle 

que fournie par le SIG, réduisant ainsi les pertes inhérentes à la rastérisation et la vectorisation 

ultérieure. La méthode des éléments analytiques est particulièrement prometteuse. Cependant, 

il lui manque la capacité à gérer un type spécifique d'objets, les courbes NURBS. 

Les fonctions nécessaires à l'inclusion de ces courbes dans le cadres de l'AEM sont dérivées, 

et des exemples sont fournis. Leur souplesse est présentée, et on montre que les formes courbes 

existantes dans l'AEM peuvent être. repr~sentées par des NURBS, permettant ainsi la compa­

tibilité, si elles devaient être supplantées. 

Une méthode est proposée pour améliorer le temps de réponse des modèles lorsque les 

éléments curvilinéaires sont utilisés, basé~ sur la méthode des intégrales frontières directes. Les 

éléments lin,éaires classiques sont également améliorés pour permettre meilleurs précision ec 
' 

contrôle dans la technique d'accélération. 

Mots clef : SIG, éléments analytiques, éléments curvilinéaires, NURBS, Intégrales Frontières 

Directes 


