# Stabilité de l'équation d'advection-diffusion et stabilité de l'équation d'advection pour la solution du problème approché, obtenue par la méthode upwind d'éléments-finis et de volumes-finis avec des éléments de Crouzeix-Raviart

Abstract : We consider the stationary linear convection-diffusion equation v(∇u, ∇v)+( β•∇u, v) = (f, v), the time dependent d/dt (u(t), v) + v(∇u,∇v)+( β•∇u, v)= (g(t), v) equation and the linear advection equation (β•∇u, v) = (f, v) on a two dimensional bounded polygonal domain. The diffusion term is discretized by Crouzeix-Raviart piecewise linear finite elements, and the convection term by upwind barycentric finite volumes on a triangular grid. For the stationary convection-diffusion problem, L²-stability (i.e. independent of the diffusion coefficient v) is proven for the approximate solution obtained by this combined finite-element finite-volume method. This result holds if the underlying grid satisfies a condition that is fulfilled, for example, by some structured meshes. Using again this condition on the grid, stability is shown for the time dependent convection-diffusion equation (without any link between mesh size and time step). An implicit Euler approach is used for the time discretization. It is shown that the error associated with this scheme decays linearly with the mesh size and the time step. This result holds without any link between mesh size and time step. The dependence of the corresponding error bound on the diffusion coefficient is completely explicit. For the stationary advection equation, an approach using graph theory is used to obtain existence, uniqueness and stability. As in the stationary linear convection-diffusion equation, the underlying grid must satisfy some geometric condition.
Keywords :
Document type :
Theses

Cited literature [31 references]

https://tel.archives-ouvertes.fr/tel-00839524
Contributor : Abes Star :  Contact
Submitted on : Friday, June 28, 2013 - 1:07:32 PM
Last modification on : Tuesday, January 5, 2021 - 5:24:02 PM
Long-term archiving on: : Sunday, September 29, 2013 - 4:37:02 AM

### File

MILDNER.pdf
Version validated by the jury (STAR)

### Identifiers

• HAL Id : tel-00839524, version 1

### Citation

Marcus Mildner. Stabilité de l'équation d'advection-diffusion et stabilité de l'équation d'advection pour la solution du problème approché, obtenue par la méthode upwind d'éléments-finis et de volumes-finis avec des éléments de Crouzeix-Raviart. Mathématiques générales [math.GM]. Université du Littoral Côte d'Opale, 2013. Français. ⟨NNT : 2013DUNK0316⟩. ⟨tel-00839524⟩

Record views