
HAL Id: tel-00838799
https://theses.hal.science/tel-00838799

Submitted on 26 Jun 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Evaluation of power management strategies on actual
multiprocessor platforms

Jabran Khan Jadoon

To cite this version:
Jabran Khan Jadoon. Evaluation of power management strategies on actual multiprocessor platforms.
Other. Université Nice Sophia Antipolis, 2013. English. �NNT : 2013NICE4012�. �tel-00838799�

https://theses.hal.science/tel-00838799
https://hal.archives-ouvertes.fr

UNIVERSITÉ DE NICE – SOPHIA ANTIPOLIS

ÉCOLE DOCTORALE STIC
SCIENCES ET TECHNOLOGIES DE L’INFORMATION ET DE LA

COMMUNICATION

THÈSE

pour obtenir le titre de

Docteur en Sciences
de l’Université de Nice – Sophia Antipolis

Mention : Électronique

Présentée et soutenue par

Jabran KHAN JADOON

Evaluation of Power Management Strategies
on Actual Multiprocessor Platforms

Thèse dirigée par Cécile BELLEUDY
Laboratoire LEAT, Université de Nice - Sophia Antipolis - CNRS

Soutenue en 25 Mars 2013

 Jury:
 Nathalie JULIEN Professeur, Université de Bretagne-Sud Rapporteurs

 François PECHEUX Maître de Conférence, Université Pierre et Marie Curie

 Smail NIAR Professeur, Université de Valenciennes et Hainaut-Cambrésis Examinateurs

 Michel Auguin Directeur de Recherche CNRS
 Cécile BELLEUDY Maître de Conférence, Université de Nice-Sophia Antipolis
 Sébastien BILAVARN Maître de Conférence, Université de Nice-Sophia Antipolis

@khan

ALL RIGHTS RESERVED

UNIVERSITÉ DE NICE – SOPHIA ANTIPOLIS

ÉCOLE DOCTORALE STIC
SCIENCES ET TECHNOLOGIES DE L’INFORMATION ET DE LA

COMMUNICATION

THÈSE

pour obtenir le titre de

Docteur en Sciences
de l’Université de Nice – Sophia Antipolis

Mention : Électronique

Présentée et soutenue par

Jabran KHAN JADOON

Evaluation of Power Management Strategies
on Actual Multiprocessor Platforms

Thèse dirigée par Cécile BELLEUDY
Laboratoire LEAT, Université de Nice - Sophia Antipolis - CNRS

Soutenue en 25 Mars 2013

 Jury:
 Nathalie JULIEN Professeur, Université de Bretagne-Sud Rapporteurs

 François PECHEUX Maître de Conférence, Université Pierre et Marie Curie

 Smail NIAR Professeur, Université de Valenciennes et Hainaut-Cambrésis Examinateurs

 Michel Auguin Directeur de Recherche CNRS
 Cécile BELLEUDY Maître de Conférence, Université de Nice-Sophia Antipolis
 Sébastien BILAVARN Maître de Conférence, Université de Nice-Sophia Antipolis

ABSTRACT

The purpose of this study is to investigate how power management strategies can be
efficiently exploited in actual platforms. Primarily, the challenges in multicore based
embedded systems lies in managing the energy expenditure, determining the scheduling
behavior and establishing methods to monitor power and energy, so as to meet the
demands of the battery life and load requirements. The work presented in this
dissertation is a study of low power-aware strategies in the practical world for single and
multiprocessor platforms. The approach used for this study is based on representative
multiprocessor platforms (real or virtual) to identify the most influential parameters, at
hardware as well as application level, unlike many existing works in which these
parameters are often underestimated or sometimes even ignored. The work analyzes and
compares in detail various experimentations with different power policies based on
Dynamic Voltage and Frequency Scaling (DVFS) and Dynamic Power Switching (DPS)
techniques, and investigates the conditions at which these policies are effective in terms
of energy savings.

The results of these investigations reveal many interesting and notable conclusions that
can serve as prerequisites for the efficient use of power management strategies. This
work also shows the potential of advanced domain specific power strategies compared to
real world available strategies that are general purpose based in their majority. Finally,
some high level consumption models are derived from the different energy measurement
results to let the estimation of power management benefits at early stages of a system
development.

Dedicated to my beloved mother, father, brothers and sisters

and

to my beloved wife Mahrukh.

ACKNOWLEDGEMENTS

One of the joys of completion is to look over the journey past and remember all the
friends and family who have helped and supported me along this long but fulfilling road.
Completion of my PhD required countless selfless acts of support, generosity, and time
by people in my personal and academic life. I can only attempt to humbly acknowledge
and thank the people and institutions that have given me so much help throughout my
PhD career and made this dissertation possible. I am thankful to the Higher Education
Commission (HEC) of Pakistan for providing funding throughout my Masters and PhD
career.

I am sincerely thankful to Miss. Cécile Belleudy, my advisor, for being a constant source
of invaluable encouragement, aid, and expertise during my years at LEAT. I would also
like to express my heartfelt gratitude to my co-supervisor Sébastien Bilavarn. He has
provided insightful discussions about the research. I am very grateful for his scientific
advice and knowledge and many insightful discussions and suggestions. The mentoring,
friendship, and collegiality of both Cécile Belleudy and Sébastien Bilavarn enriched my
academic life and have left a profound impression on how academic research and
collaboration should ideally be conducted.

I would also like to thank Professor Nathalie Julien and François Pecheux for being my
reviewers and thoroughly reading and acknowledging my thesis. In addition, I would
like to thank Professor Michel Auguin and Professor Smail Niar to be part of my jury. It
is no easy task, reviewing a thesis, and I am grateful for their detailed reviewing. To the
many anonymous reviewers at the various international conferences, thank you for
helping to shape and guide the direction of the work with your careful and instructive
comments.

LEAT has provided a rich and fertile environment to study and explore new ideas. At
LEAT, I would first like to thank Micheal Auguin who has been extremely supportive in
allowing me to participate in lab activities whilst pursuing my PhD studies. I am grateful
for the chance to be a part of the lab and thank for welcoming me as a friend and helping
to develop the ideas in this thesis. Other colleagues who I owe gratitude for their support
of my research or major PhD milestones include: Alain Pegatoquet, Bassem Ouni, Ons
Mbarek, Khurram Bhatti, and Zeeshan Khan.

My family and friends have been an unending source of love and inspiration throughout
my PhD career. I would not have contemplated this road if not for my parents,
Hameedullah Khan and Yasmeen Akhtar, who instilled within me a love of creative
pursuits, science and language, and believe in me, all of which finds a place in this
thesis. To my parents, thank you. My wife, Mahrukh, has offered unconditional
understanding and encouragement. My sisters, Madiha and Rawish, have kept me sane
with their humor and understanding even from distance. My brothers, Ajram and Ahmer,
have been great and selfless support to me throughout these years of my absence from
home. My friends in French Riviera, Sharique, Usman, Imran, Sabir, Umer, Taimour,
Ahmed, Wajahat, Waqas, and Asad have provided hours of enjoyable distraction from
my work. I will always remember the time I have shared with them.

TABLE OF CONTENTS

ABSTRACT .. IV

TABLE OF CONTENTS .. IV

LIST OF FIGURES ... VIII

LIST OF TABLES .. X

CHAPTER 1 : INTRODUCTION ... 1

1.1 Contributions Outline ... 1

1.2 List of Publications .. 3

CHAPTER 2 : POWER MANAGEMENT CHALLENGES .. 4

2.1 State of the Art ... 6

2.1.1 Overview and Classification of Work .. 7

2.1.2 Dynamic Power Switching (DPS) ... 7

2.1.3 DVFS Techniques ... 12

2.1.4 Available Market Standards .. 13

2.1.4.1 Intel... 14

2.1.4.2 AMD .. 16

2.1.4.3 ARM .. 17

2.1.4.4 Linux ... 19

2.1.4.5 Conclusion .. 23

2.1.5 Academic Research ... 23

2.1.5.1 Overview of Academic Research .. 23

2.1.5.2 Low Power Scheduling ... 25

2.1.6 Conclusion ... 28

iv

2.1.7 Focus and Objectives ... 29

2.2 Work Context ... 31

2.2.1 Problem Statement ... 32

2.2.2 Platforms ... 33

2.2.2.1 ARM11 MPCore .. 34

2.2.2.2 ARM 1176JZF-S ... 35

2.2.2.3 QEMU_ARM1176 ... 37

2.2.2.4 QEMU_CortexA9 .. 38

2.2.3 Power Strategies ... 39

2.2.3.1 DVFS Video Power Strategy ... 39

2.2.3.2 Low Power DSF Scheduler .. 39

2.2.3.3 Low Power AsDPM Scheduler .. 40

CHAPTER 3 : DVFS VIDEO POWER STRATEGY ... 42

3.1 Introduction .. 42

3.1.1 Case study: H.264 Decoder ... 44

3.1.2 DVFS Video Strategy Description .. 44

3.2 DVFS Strategy Implementation and Experimentation ... 46

3.2.1 DVFS Strategy Implementation ... 46

3.2.2 Power and Frame rate profiles .. 47

3.2.3 Energy Consumption Analysis ... 50

3.3 Further Investigation of Energy Saving Conditions .. 51

3.3.1 Operating Point Set up on the Virtual Platform .. 52

3.3.2 Accuracy and Behavior of Virtual Platform Estimations 53

3.3.3 Results and Discussion .. 54

3.4 Conclusion .. 57

v

CHAPTER 4 : DSF POWER STRATEGY .. 60

4.1 Introduction .. 60

4.1.1 DSF Strategy .. 61

4.1.2 Application Examples .. 61

4.2 DSF Implementation and Experimentation .. 64

4.2.1 DSF Implementation .. 64

4.2.2 Experimentation on a Single Processor ... 65

4.2.3 Experimentation with Application Parameters ... 67

4.3 Results and Analysis ... 69

4.3.1 Multiprocessor Energy Savings ... 69

4.3.2 Analysis of Results ... 70

4.4 Conclusion .. 71

CHAPTER 5 : ASDPM POWER STRATEGY .. 74

5.1 Introduction .. 74

5.1.1 AsDPM Strategy ... 75

5.1.2 Application Examples .. 76

5.2 AsDPM Implementation and Experimentation .. 78

5.2.1 AsDPM Implementation .. 78

5.2.2 Energy Savings ... 79

5.2.3 Further Analysis of Results .. 82

5.3 Energy Gain Comparison of DSF and AsDPM ... 83

5.3.1 Energy Gains for DSF ... 83

5.3.2 Comparison and Analysis of Results .. 85

5.4 Conclusion .. 87

vi

CHAPTER 6 : GLOBAL ANALYSIS AND CONCLUSION ... 90

6.1 Power Management Effectiveness .. 90

6.1.1 Characteristics of Operating Points ... 91

6.1.1.1 Operating Points Inefficiency ... 91

6.1.1.2 Operating Points Impact on Energy Savings .. 92

6.1.2 Latencies of Changing States ... 93

6.1.3 Application Level Conditions ... 94

6.1.4 Domain Specific Strategies .. 95

6.1.5 Efficiency of DVFS vs. DPS ... 96

6.1.5.1 DSF vs. AsDPM .. 96

6.1.5.2 DVFS vs. DPS ... 97

6.2 Power Models... 97

6.2.1 DVFS Video Strategy .. 98

6.2.2 DSF ... 99

6.2.3 AsDPM ... 100

6.3 Conclusion and Perspectives .. 101

6.3.1 Perspectives .. 103

VITA .. 104

BIBLIOGRAPHY .. 105

APPENDIX A – ACRONYM INDEX .. 112

vii

LIST OF FIGURES

Figure 2.1: Global System Power States and Transitions. [9] ... 9

Figure 2.2: Power management model with ACPI subsystem. [9] 11

Figure 2.3: Intelligent Energy Management Solution by ARM. [22] 19

Figure 3.1: Power and frame rate profiles for adaptation_constraint of 8 fps. 48

Figure 3.2: Power and frame rate profiles for adaptation_constraint of 9 fps. 48

Figure 3.3: Power and frame rate profiles for adaptation_constraint of 11 fps. 49

Figure 3.4: Power and frame rate profiles for adaptation_constraint of 16 fps. 49

Figure 3.5: Frequency and load power consumption of QEMU platform. 52

Figure 3.6: Energy consumption vs. Adaptation constraint. .. 55

Figure 3.7: Energy vs. adaptation_constraint for different platform configurations........ 57

Figure 4.1: Thales Task model of H.264 Encoder. .. 63

Figure 4.2: Percentage Energy gains for Example 1 on different platforms. 66

Figure 4.3: Percentage of Energy Gain vs. Application parameters. 68

Figure 4.4: Energy gains on QEMU_ARM1176 (blue) and QEMU_CortexA9 (green)
platforms for different applications and platform configurations. 69

Figure 5.1: Energy gains of Example 6 on QEMU platforms. ... 80

Figure 5.2: Energy gains of Example 7 on QEMU platforms. .. 80

Figure 5.3: Energy gains of H.264Encoder on QEMU platforms. 81

Figure 5.4: Energy Gains for DSF Strategy on QEMU platforms. 84

Figure 5.5: AsDPM vs. DSF energy gains for different examples on QEMU_ARM1176.
 .. 85

Figure 5.6: AsDPM vs. DSF energy gains for different examples on QEMU_CortexA9.
 .. 86

viii

Figure 6.1: Energy Model for DVFS based Video Power strategy. 98

Figure 6.2: Energy Model for DSF power strategy. ... 99

Figure 6.3: Energy Model for AsDPM strategy. .. 100

ix

LIST OF TABLES

Table 2.1: Supported Performance States for the Intel M-Processor [14] 13

Table 2.2: Supported Voltages and Frequencies for Low Power AMD-
K6TM2E+Processors[20] ... 17

Table 3.1: Performance Analysis table for ARM1176JZF-S ... 51

Table 3.2: Frequency vs. Energy for video Foreman (300 frames). 54

Table 3.3: Frequency and load power consumption for different configuration of QEMU
platform. ... 55

Table 4.1: Examples used for experimentation of DSF strategy 62

Table 4.2: Energy consumption of Example 1 on ARM1176JZF-S and
QEMU_ARM1176 platform. ... 65

Table 4.3: Power profile of QEMU_ARM1176 and QEMU_CortexA9 platform.......... 71

Table 5.1: Examples used for the experimentation of AsDPM strategy. 76

Table 5.2: Energy consumption of Example 5 on QEMU platforms. 79

Table 5.3: Energy Consumption and Gain for H.264Encoder. .. 82

Table 5.4: Idle vs. load power levels for QEMU platforms at maximum frequency. 83

x

This thesis is partially funded by COMCAS project (CA501), a project labeled within
the framework of CATRENE, the EUREKA cluster for Application and Technology
Research in Europe on NanoElectronics; and partially by HEC PAKISTAN under
program Overseas Scholarships for MS MS/MPHIL Leading to PhD in selected Fields
(Phase-II, Batch-II).

xi

Chapter 1. INTRODUCTION

Chapter 1 : INTRODUCTION

This introduction aims at presenting the reader with a global outline of this study. The
introduction part provides a general discussion on trends of energy consumption in
modern systems, presents general objectives of this work and provides an outline of this
thesis. A detailed literature review, work context, as well as problem statement are
presented later in the respective chapter.

In recent years, there has been a rapid and wide spread growth of nontraditional
computing platforms, especially mobile and portable computing devices. It is a common
experience that current mobile devices (laptops, PDAs, etc.) can operate just for few
hours before the battery gets exhausted. As applications are becoming more and more
complex and processing power is continuously increasing, there is a significant impact
on battery life. Embedded systems due to the advancement made in fabrication of
powerful tiny processors, with the ability of having multiple cores and variable
frequencies can be integrated in small handheld devices. The small physical size and
limited battery life of these devices impose several constraints on power and energy
consumption of these devices. In this context, most systems should be designed in a way
to adapt themselves according to environment needs, precisely they need to adapt at the
lowest energy consumption for a given performance level.

These constraints require rethinking the design process with power and energy issues as
major concerns. It is really a waste if the equipments are not designed to be energy
efficient with the abilities to power down during non-operating hours. Energy
consumption is becoming more of a concern and is getting an increasingly larger
percentage of the overall development costs as well. Reducing the energy consumption
in embedded systems has become a prime criterion, motivated by the limited lifetime of
battery operated systems.

This thesis provides a characterization of real challenges encountered while providing
advance power management solutions in actual embedded systems. This thesis also
provides a detailed analysis of power management challenges and review power saving
techniques available with today’s system-on-chip (SoC). We analyze different power
management strategies on single and multiprocessor platforms and explore how different
power management policies, each with their own methodologies, can really provide
energy savings. The real implementation of different power management strategies

1.1 CONTRIBUTION OUTLINE 1

coincide with different issues therefore this work present a realistic approach by
experimenting with different power management strategies in real world. This thesis
demonstrates experimentation and analysis of three different domain specific power
management strategies with the objective of pointing out different factors effecting the
energy consumption. In addition, we provide different experimentation results to
evaluate the effectiveness of these strategies and provide conditions under which the
addressed strategies are feasible in modern systems.

In next section, we present a global outline of our contribution to address the above
issues.

1.1 Contributions Outline

Chapter 2: This chapter provides a detailed literature overview of our work. At the
beginning of this chapter, we provide a detailed study of main power management
solutions, industrial power management standards and academic research going in the
field of power management. Afterwards, we introduce the focus and targets of our work
to meet the power management challenges and consequently define our problem
statement. The chapter then provides information about the target platforms and ends
with the brief introduction to the different power strategies used to address the problem
statement.

Chapter 3: This chapter provides a detailed experimentation about the first DVFS based
video power strategy. The DVFS based strategies are shown to provide significant
energy gains, where scaling down the frequency mostly provides decrease in power
consumption. The experimentation and results provided in this chapter shows that
various conditions should be met to achieve this energy savings. The chapter also
highlights the importance of using domain or application specific strategies. At the end,
the effect of operating points on the efficiency of a DVFS strategy and their influence on
the energy savings is also investigated.

Chapter 4: This chapter provides experimentation of a second DVFS based Dynamic
Stretch to Fit (DSF) strategy on single and multiprocessor platforms. DSF strategy is
shown to provide significant energy gains in different platform configurations. The
experimentations highlight the effects of load vs. idle power levels of the platforms. This
chapter also provide certain application and platform limitations for using DSF strategy

Chapter 1. INTRODUCTION 2

as well as draw attention to the efficiency criteria of application or domain specific
strategy.

Chapter 5: This chapter provides an analysis and experimentation of a Dynamic Power
Switching (DPS) based power strategy for multiprocessor platforms called Assertive
Dynamic Power Management (AsDPM). The application specific strategy is analyzed
for its energy consumption and is further investigated for the conditions under which it is
more efficient on certain platform than other. The chapter also provides the effects
introduced by different application parameters, platform characteristics and state
switching latencies on the efficiency of the AsDPM strategy. In addition, this chapter
provides a comparative analysis of energy gains obtained by AsDPM with previous DSF
strategy.

Chapter 6: This chapter provides major categorization of conditions obtained from the
results of the above experimentations. First, it addresses power management
effectiveness by classifying different application conditions, platform conditions,
latencies of DVFS / DPS states and domain vs. general purpose strategies. Secondly, this
chapter provides some high level power models derived from the results of energy gains
obtained by our experimentations. At the end, this chapter provides a brief conclusion
along with perspectives of furure work.

1.2 LIST OF PUBLICATIONS 3

1.2 List of Publications

Personal publications in International Conferences:

1) Khan, J., Bilavarn, S., and Belleudy, C.: "Impact of operating points on DVFS
power management," In proceedings of 7th International Conference on Design
& Technology of Integrated Systems in Nanoscale Era, DTIS’12, Tunisia, May
2012.

2) Khan, J., Bilavarn, S., and Belleudy, C.: "Energy analysis of a DVFS based
power strategy on ARM platforms, " In proceedings of FTFC 2012 : IEEE
Faible Tension Faible Consommation, FTFC’12, France, Jun 2012

3) Khan, J., Bilavarn, S., Belleudy, C., and Bhatti, K.: "Energy analysis of a real-
time multiprocessor control of idle states on ARM platforms," In proceedings of
Pervasive and Embedded Computing and CommunicationS PECCS’13,
Barcelona, Feb 2013.

Chapter 2. POWER MANAGEMENT CHALLENGES 4

Chapter 2 : POWER MANAGEMENT CHALLENGES

Moore's law states that the number of transistors in integrated circuits doubles
approximately every two years [1]. As the technological advancement has proven this
law to be correct, this decrease in size and increase in computational power impacts the
power utilization of these highly complex components. Lower power consumption also
means lesser heat dissipation, which increases system stability. However, this imposes
major enhancements to the management of power for these new devices containing
millions of transistors. The need for more complex and portable devices imposes new
efforts on designing and implementing low power solutions. To increase the battery life
of systems and give more reliability to the system, new techniques should be
implemented to cope with power management issues. Power management challenges
include considerations of overheating, energy cost as well as environmental concerns.

In the past, boot delay of a device was very long when it was switched on and people
used to leave their devices turned on to avoid this delay hence wasting a lot of energy.
This led to introduce new power features allowing devices not to fully turn off when
unused. To reduce power utilization when a device is not active, consumer electronic
devices introduced the concept of sleep or standby states. Old versions included manual
handling of going from one state to another based on user inputs. However, as the
processor execution speed is much higher to that of a user, relying only on the user does
not provide enough power reduction. As the technological era changed, new power
management schemes were introduced to tackle automatically the power management
problem without the need of the user.

The power management in PCs and embedded systems has been handled historically
with two different power managers i.e. Advanced Power Manager (APM) and Advance
Configuration Power Interface (ACPI). Advanced Power Management (APM) represents
the first stage, developed by Intel and Microsoft in 1992 [2]. Power management was
performed through BIOS by turning off the display, disabling the hard disk after a preset
period of idle time, or by idling CPU by entering in suspend state. APM lacked a lot of
capabilities. For instance, power management was done as a background process by the
BIOS instead of the Operating System (OS). For each different platform, this BIOS
based APM was specific to the platform and had to be supplied by the manufacturer. The

2. POWER MANAGEMENT CHALLENGES 5

second version named Advanced Configuration and Power Interface (ACPI) is still
widely used in today’s operating systems. ACPI is an open industry specification
establishing a standard interface for OS direct configuration and power management of
laptops, desktops, and servers. First released in December 1996, ACPI defines platform
independent interfaces for hardware discovery, configuration, power management and
monitoring. ACPI is superior to APM as it addresses the drawbacks of APM. Although
ACPI is fully adopted in windows based platforms, however Linux support for ACPI is
still evolving.

Besides these two major advancements of power managers, modern microprocessors
also come with their own power management policies implemented in their BIOS.
However, the evolution of these complex microprocessors does not fully compensate the
energy demand and power optimization. Hence, operating systems may be limited by
their general purpose software-based power management policies and could save further
energy consumption for more demanding workloads like video and/or real-time
processing for instance. In this work, we present a study of various power strategies on
real-life applications and platforms. To do that, we investigate the conditions of energy
gains of three distinct multiprocessor strategies: a Dynamic Voltage and Frequency
Switching (DVFS) based strategy for video applications, a DVFS based deadline
scheduling strategy and a Dynamic Power Switching (DPS) based deadline scheduling
strategy. We also aim to investigate the conditions of efficiency and power reduction of
these different strategies, so we promote a realistic investigation approach based on
power measurements using actual multiprocessor platforms as much as possible.

We address all these issues in detail in the following sections. Section 2.1 provides an
overview and discussion of existing works related to the general field of power
management. An overview and classification of work are presented in section 2.1.1. In
section 2.1.2 and section 2.1.3, we detail the two broadly used power management
techniques, i.e. DVFS and DPS. We then move to section 2.1.4, to review market
standards and their available power management solutions. We start with Intel platforms
and their power management infrastructure in section 2.1.4.1. Then we cover AMD
processors and their respective technologies in section 2.1.4.2. The ARM processors are
famous for their low-power consumption; we thoroughly study their PM infrastructure in
section 2.1.4.3. Afterwards in section 2.1.4.4, we move to the power management
provided by the Linux operating system. At the end in section 2.1.4.5, a conclusion is

Chapter 2. POWER MANAGEMENT CHALLENGES 6

established on the discussion of these standards. An overview of academic research work
is then shown in section 2.1.5 with a focus on low power scheduling techniques. In
section 2.1.6, we provide a global conclusion about the advantages, shortcomings, as
well as other possibilities of exploring the said techniques. In the end, section 2.1.7 puts
light on our focus and objectives related to power management for multiprocessor
platforms.

The second part of this chapter is to present our work context, why this work is carried
out and how we can address the encountered shortcomings related to the power
management on the representative platforms. Therefore, in section 2.2.1 we start by
providing the problem statement. Afterwards, in section 2.2.2 we give information
related to different platforms used in this work. We present the real platforms ARM11
MPCore and ARM1176JZF-S along with two QEMU based virtual platforms. At the
end, we provide a brief introduction of various power management strategies in section
2.2.3, where the first dynamic video power strategy is described in subsection 2.2.3.1. In
section 2.2.3.2, we introduce the DVFS based deadline scheduling technique and in
section 2.2.3.3, we introduce the DPS based deadline scheduling technique.

2.1 State of the Art

This state-of-the-art section provides an overview of historical approaches used by
systems. There are a lot of power management techniques that are proposed or
implemented in embedded systems. However, power management is a large domain and
cannot be summarized entirely. We start by differentiating and discussing the proposed
classification of work in the field of power management. In the following sections, we
focus on the two broadly used power management techniques, i.e. DVFS and DPS. The
presence of a large number of processor manufacturers result in a variety of techniques,
in spite of this we discuss the main approaches used by largely developed standards
(ARM, Intel, AMD, etc.) and their respective platforms. We give a clear view of how
these industrial and commercial available products manage power consumption. A
detailed discussion on power management policies and infrastructure used by the Linux
OS is also presented. The state-of-the-art section also provides an overview of ongoing
research in the field of power management in academic domain. As this is a very

large domain of research, we only focus on techniques used for processor level power
management. We also discuss low power scheduling policies as they provide interesting

2.1 STATE OF THE ART 7

solutions for power management in modern multiprocessor devices. At the end, we
provide a general analysis and conclusion of this state-of-the-art regarding the targets
and goals of our work.

2.1.1 Overview and Classification of Work

In this section, we emphasize different power management techniques used in embedded
systems. Power management can be done at different levels, i.e. operating system level,
component level or application level. CPU power consumption is significant and is the
main target of power management analysis in various studies. For example, numerous
power aware models studied in [3-7] are shown and integrated into present performance
simulators to investigate power consumption of the CPU, on a unit basis or for the
processor as whole. Our focus is also on techniques which are related to processor level
power management. Two popular techniques are mainly employed: Dynamic Power
Switching (DPS) to switch off the power of a part of the circuit to idle states, and
Dynamic Voltage and Frequency Scaling (DVFS) to tune a processor clock speed and
voltage. In some works as in [8], DPS techniques are also referred to as Dynamic Power
Management (DPM). DPM refers to an IBM and MontaVista initiative of developing a
general and flexible dynamic power management architecture which is now outdated.
We therefore use the term DPS instead of DPM in order to avoid confusion. In general,
DVFS and DPS techniques are controlled by a power policy or power strategy. The next
section provides a detailed discussion on these broadly used techniques.

2.1.2 Dynamic Power Switching (DPS)

Dynamic Power Switching (DPS) is a well-known technique that selectively shutdowns
or puts to sleep some active components in embedded systems, to manage energy
consumption and heat dissipation problems. In early stages, power switching was under
the control of Advanced Power Management (APM). APM provided different power
modes like full-on, enable, standby, suspend, and off. A brief description of these modes
is given below:

In full-on mode all components are fully powered and there is no power management
occurring. In enable mode CPU is slowed or stopped (depending on BIOS), all other
devices still draw full power and recover time is instantaneous. In APM standby mode,

Chapter 2. POWER MANAGEMENT CHALLENGES 8

CPU may be stopped depending on operation or activity, most devices are in low power
mode as well as monitor enters its first power management mode. An activity can trigger
a return to enable or full-on mode depending on the system and activity. In APM
suspend mode CPU is stopped, most power-managed devices are not powered (network
card may stay on) and APM provides maximum power savings. Activity can trigger a
return to standby, enable or full-on depending on the BIOS though recovery time is very
large. In APM Off mode operational parameters are saved, system turn off and draw no
power.

A decision to enter low-power modes was controlled by timers and the return to full
power (or higher-power modes) is directly triggered by activity from the keyboard,
mouse, modem, or network. Such activities generate interrupt requests, or IRQs, which
signal the processor that it needs to respond to them. Even when a PC has powered down
(but is not off), the BIOS still monitors IRQ activity. APM had a major drawback of its
dependence on the BIOS. Another shortcoming was lack of intermediate power states
and usually systems either uses full performance level or are always idle (inactive).
ACPI addressed these issues and was later adopted and enhanced by all market sharers,
and is still in use. ACPI allows direct power management by the Operating System.
ACPI is a hierarchical power management technique having different system and device
power states as shown in figure 2.1. ACPI naming convention divides the overall system
components in set of manageable components like Global G-states, System S-states,
Processor P-states, Busses B-states, Links L-states and Devices D-states. A numbering
convention is also used where '0' is the main active state like G0, S0, D0, etc. The
numbers from 1 to n represent the corresponding power levels. The higher number
indicates the lower power consumption state in comparison to its previous ones. For
example, P1 state consumes more power than P2, P3 or P4 state. ACPI subsystem uses
these states to handle power management of individual devices, components or the
overall system.

A summary of different states is discussed to give an idea of this dynamic power
switching mechanism. Here, G-states are the top-level states for the overall system and
reflect the user level perception. G-States are global operating states and are not
configurable by the user. These are just used in documentation to specify certain system
states such as on, off, sleeping. G0 is the working state, where the system is fully
operational. G1 is a sleeping state where power consumption is small, and the system
can be resumed without the need of booting. G2 is a soft off state in which the system

2.1 STATE OF THE ART 9

consumes a minimum amount of power, and the system must be restarted to be
functional. G3 is a mechanical off state, where all hardware information is lost, and
power consumption is zero. A hierarchical view of G-states with other system states is
shown in figure 2.1.

Figure 2.1: Global System Power States and Transitions. [9]

The S-states are types of sleeping states within the G1 sleeping state. These are set in the
BIOS and then configured in the power option's control panel (timeout in minutes). The
S-states allow the system to save a significant amount of power when not being used. S0
is the working or fully powered state. S1 and S2 are similar low wake-up latency states
except that in S2, the CPU and cache context are lost. S3 is a suspend to RAM state
where the memory image is maintained and powered, while the CPU chipset and I/O
devices lose their content. S4 is a suspend to disk or hibernate state where all devices are
powered off. This state has the longest wake-up latency. The RAM content is lost and
the platform content is maintained on the hard drive. The soft-off state S5 is similar to

Chapter 2. POWER MANAGEMENT CHALLENGES 10

S4 but here, the system requires complete re-boot when waking up. A system in S-state
can be triggered by a motion sensor, LAN or GPIO activity.

The CPU power state or C-states are the processor power consumption and thermal
management states within the global state G0. It reduces power consumption by putting
the processor to sleep when it does not have code to execute. The entry and exit from C-
states are much faster in comparison to S-states. C-states require low processor power
during idle light workloads. The C-states limits can be configured and set by the BIOS,
and a processor can go to C-states several thousand times per second. These states can
also be referred as operating, halt, sleep and deep sleep mode. The processor is in C0
state when it executes instructions. The C1 to Cn power states are processor sleeping
states, where the processor consumes less power and dissipates less heat than in the C0
state. C1 is the lowest latency power state where the processor is in a non-executing
state. C2 state offers improved power saving in comparison to C1. The contents of L1
cache are saved to L2 cache. C3 state also offers improved power scaling over C1 and
C2, but the time latency of entrance and exit increases. In the C3 state, the core flushes
the content of its L2 instruction cache and the shared L3 cache, while maintaining its
architectural state. All core clocks stop at this point. The C-states are processor model
specific, therefore some processors may contain further C4, C5, C6 states, etc.

While in the C0 state, ACPI allows the performance of the processor to be altered
through a defined throttling process and through transitions into multiple performance
states (P-states) as shown in figure 2.1. P0 provides maximum performance while
consuming maximum power (at a higher frequency). Similarly, P1 is a state where the
processor consumes less power than P0. The lesser power consumption also results in
reducing the performance below the maximum. The P-states also depend upon the
underlying hardware. The numbers of P-states are processor specific, where each state
corresponds to a different frequency and power consumption level. Pn is the state where
processor has lowest frequency and minimum power consumption. P-states are very
useful to control non-critical workloads that do not require maximum frequency and
power consumption throughout their execution.

ACPI also contains the device D-states (Figure 2.1) for managing power of peripheral
devices. D0 is the active state and consumes maximum power. Devices often come with
only on and off states. Therefore, D1 and D2 are rarely used. However, in devices like
modems, D1 state provides functionality like modem controller to go into low power

2.1 STATE OF THE ART 11

mode, phone interface powered by the phone line, and speaker off. D3 is the state when
a device is off. Like in case of a modem, the controller is switched off, phone interface
turned off, speaker off. Additionally, it can be D3 hot or D3 cold depending on if
primary power is removed or not.

The operating system uses these ACPI states with the help of a policy manager for
power and energy management. An example of such a policy manager is OSPM as
shown in figure 2.2. The policy manager defines a policy based on the different user,
application or environmental parameters. The policy manager directs the rules for using
efficiently the ACPI sleep states for the policy (or scheme). The ACPI sleep states are
mostly selected by the policy manager when there is no workload on the processor.
However, the processor is usually the most active element in embedded systems.
Handling smartly the processor states has the potential for significant energy and power
gains. Therefore, when a processor is active, the policy manager uses DVFS techniques
to select the P-states for managing power, as detailed in the next section.

Figure 2.2: Power management model with ACPI subsystem. [9]

Chapter 2. POWER MANAGEMENT CHALLENGES 12

2.1.3 DVFS Techniques

Dynamic Voltage and Frequency Scaling (DVFS) is widely used for power management
in modern processors, as it is an effective method for achieving low power consumption
of CPU while meeting the performance requirements. The purpose of DVFS techniques
is to scale dynamically the circuit speed and the supply voltage level of the processor, to
process the system workload. The frequency and supply voltage are directly related to
power consumption in CMOS technology as shown in [10]. Therefore, decreasing
frequency and voltage will impact overall power consumption and will increase/decrease
the total energy consumption. Modern microprocessors come with the built-in support
for DVFS along with the support for DPS. A number of new microprocessors such as
ARM1176JZF-S [11], ARM CortexA9 [12], AMD-K6TM-2E+Processors[13], Intel M
series [14], Transmeta Crusoe [15] are equipped with the DVFS functionality.

Microprocessors are also provided with power management software (policies) to make
use of DVFS techniques. A detailed description of some of the industry standards, as
well as their power management policies and DVFS techniques are detailed in section
2.1.4. DVFS in popular operating systems, like Windows and Linux, is supported by the
help of ACPI. The ACPI C0-states can be further divided into performance P-states as
described in section 2.1.2. Different policies are defined based on performance and
power needs, to use these P-states efficiently. For example, the OnDemand policy
(governor) in Linux allows adapting the frequency to the workload using P-states. This
governor allows the CPU to achieve maximum clock frequency when the system load is
high and minimum frequency when the system is idle. The detailed description of Linux
governors is given in section 2.1.4.4. Similarly, Windows OS comes with policies like
Balanced, Max Power Saving, Max Performance. These policies use the ACPI
infrastructure that allows the processor to change its frequency and voltage according to
the workload. For example, in case of a Balanced scheme, ACPI chooses the best P-state
level based on total average workload. An example of P-states of an Intel M-processor
using Enhanced Intel SpeedStep (EIST) technology is shown in table 2.1. The
corresponding frequency and voltage levels are also shown for each P-state. According
to ACPI, P0 is the state where frequency is maximum (1.6 GHz), and voltage is also
maximum (1.484 V). Similarly, the lowest P-state is P5 where the frequency and
voltages are at their lowest values as shown in table 2.1.

2.1 STATE OF THE ART 13

Table 2.1: Supported Performance States for the Intel M-Processor [14]

P-States Frequency Voltage
P0 (HFM) 1.6 GHz 1.484 V
P1 1.4 GHz 1.420 V
P2 1.2 GHz 1.276 V
P3 1.0 GHz 1.164 V
P4 800 MHz 1.036 V
P5 (LFM) 600 MHz 0.956 V

Another important aspect of implementing a DVFS based strategy (policy) is its
dependency on the operating points. Operating points in the context of DVFS are the
frequency/voltage levels that a processor support (equivalent to P-states shown in table
2.1). DVFS based policies should be defined in a way to use these operating points
efficiently. For instance, if the desired frequency for an application or workload is
between two discrete levels, the one with higher value should be used. In this way, we
can guarantee the temporal requirements. Researchers in [16], have proposed algorithms
to map such required continuous frequency/voltage levels to discrete values, to utilize
DVFS technology. Thanks to the advancements in micro architectures, modern
processors are able to operate in a wide range of the frequency/voltage spectrum. This
allows DVFS based policies to exploit a wide range of available P-states. For example,
Intel SpeedStep technology evolved from changing frequency by taking steps of 200
MHz in its first version (SpeedStep I, Table 2.1), to steps of 100 MHz in the latest
version (SpeedStep III).

2.1.4 Available Market Standards

Traditionally, first technologies in power management were based on dynamically
switching on and off the circuitry or components to achieve an overall lower power
utilization [17]. Power management for computer systems has focused on regulating the
power consumption in static modes (such as sleep, suspend). These de-activating states
often require a user action to re-activate the system. Latencies and overheads are usually
significant for entering and exiting of these states. In desktop and server systems, a
firmware layer is typically added to support these modes. However, many architectures

Chapter 2. POWER MANAGEMENT CHALLENGES 14

provide the equivalent of a halt instruction that reduces CPU power during idle periods,
with only a few clock cycles of latency.

With the advancement in technology and constraints such as size, cost and
environmental effects, no design is complete without a thorough analysis of the power-
supply architecture. Modern systems are therefore equipped with facilities such as
dynamically changing the frequency and voltage, flexible power management modes,
separate power domains, intelligent voltage regulators, etc. New micro architectures are
designed with CMOS technology to consume less power. Power consumption at the
processor level is generally divided into static and dynamic power. Accordingly, we
have to decrease both the static and dynamic power to decrease the total power
consumption. In the past, static power consumption has been small in comparison to
dynamic power. However, factors contributing to leakage power, including quantum
effects (such as gate-oxide layer tunneling) are becoming increasingly important with
shrinking silicon feature sizes as discussed in [18].

Voltage has a quadratic relationship with power for dynamic power consumption,
therefore decreasing voltage can significantly affect dynamic power utilization. With the
availability of techniques like DVFS, new policies and power management methods are
possible at different levels (i.e. OS, Hardware, etc.). ACPI is widely used to handle
power management as detailed in the above section 2.1.2. Besides ACPI, modern
microprocessors come with their own power management hardware and software to
handle power consumption. Examples of such processors include Intel SpeedStep[14],
AMD Cool'n'Quiet [19] and PowerNow [20], IBM EnergyScale [21] and ARM IEM
[22]. A brief overview of power management policies used by Intel, AMD and ARM
processors, as well as power management in Linux is detailed in the following sections.

2.1.4.1 Intel

There are several Intel® power management technologies that can be used by embedded
developers to manage the balance between power consumption and performance. First,
there are power states that define distinct “sleep” modes as well as different fully
functional operating modes. Second, Enhanced Intel SpeedStep® Technology enables
optimal performance at the lowest power by allowing the operating system to change the
processor frequency and supply voltage. Third, Intel® Turbo Boost Technology provides
additional processor frequency bins, above the base operating frequency (i.e. faster). An

2.1 STATE OF THE ART 15

embedded system only runs at the full throttle when workload demand is high, therefore,
energy is mostly saved during non-peak times. Intel power management technologies
give software developers granular control over the system operation.

Intel SpeedStep, that is a trademark for a series of dynamic frequency scaling
technologies (including SpeedStep I, SpeedStep II, and SpeedStep III) allow the clock
speed of the processor to be changed dynamically. This allows the processor to meet the
performance needs for the operation being performed, while minimizing power drawn
and heat dissipation. Power management in new Intel series processors, is provided by
the built in Enhanced Intel SpeedStep (EIST) technology. EIST allows the processor
performance and power consumption levels to be modified while a system is
functioning. This is accomplished via application software, which changes the bus-to-
core frequency ratio and the processor core voltage (Vcc). A variety of inputs such as the
system power source, processor thermal state, or OS power policy is used to determine
the proper operating state.

There are various versions of EIST present for Intel processors. The EIST V1.1 is used
by second generation Pentium III processors. It enables the CPU to switch between
predefined modes: the top and bottom modes are commonly known as high-frequency
mode (HFM) and low-frequency mode (LFM). The frequencies and voltages (operating
points) are stored within a read-only processor model specific register (MSR). This MSR
ensures BIOS will not allow transitions to invalid states above the HFM or below the
LFM. The other four operating points are stored within the BIOS code in a drop voltage
table provided by vendors. An example of P-states for Intel M processor at 1.6 GHz is
shown in table 2.1 in section 2.1.3, where the processor frequency is modeled to have
steps of 200 MHz. Using EIST, Pentium III processors consume about 20 Watts at 1
GHz and it can be reduced to 6 Watts at 600 MHz. EIST V2.1 (Enhanced SpeedStep) is
used in Pentium III-Mobile processors and is similar to the previous version. EIST V2.2
is adapted for Pentium 4-Mobile processors. With EIST V2.2, a 1.8 GHz Pentium 4-M
consuming about 30 Watts can lower its frequency to 1.2 GHz, thus reducing power
consumption to about 20 Watts. EIST V3.1 is used in the first and second generation of
Pentium M processors (Banias and Dothan cores, used in Centrino platforms). With this
technology, the CPU varies its frequency (and voltage) between about 40% and 100% of
its base frequency in increments of 100 MHz (for Banias core) or 133 MHz (for Dothan
core).

http://en.wikipedia.org/wiki/Trademark
http://en.wikipedia.org/wiki/Dynamic_frequency_scaling
http://en.wikipedia.org/wiki/Clock_speed
http://en.wikipedia.org/wiki/Clock_speed
http://en.wikipedia.org/wiki/Clock_speed

Chapter 2. POWER MANAGEMENT CHALLENGES 16

2.1.4.2 AMD

AMD provides several power management technologies that can be used by software
developers to deal with power and thermal issues. To manage power at the CPU level,
the two most efficient technological standards provided by AMD are Cool'n'Quiet and
PowerNow. Cool'n'Quiet is a CPU speed throttling and power saving technology
introduced in the Athlon64 processor line. The technology reduces the overall power
consumption and lower heat generation, allowing for slower cooling fan operation. The
objectives of cooler and quieter system execution result in the name Cool'n'Quiet. The
technology is similar to Intel SpeedStep and AMD PowerNow. Due to its different usage,
Cool'n'Quiet refers to the desktop and server chips, while PowerNow is used for laptops
and mobile chips. The technology is also introduced on e-stepping Opterons; however, it
is called Optimized Power Management (OPM), which is a re-tooled Cool'n'Quiet
scheme designed to work with registered memory.

Cool'n'Quiet technology controls the processor performance automatically by
dynamically adjusting the operating frequency and voltage up to 30 times per second to
the task at hand. It reduces the power in two ways. First, it reduces the leakage power at
idle. The Athlon64 puts itself to sleep when the HLT/STPGNT instruction is sent. At this
stage, only the leakage power is drawn. The power is further cut down significantly by
reducing the frequency and voltage. Secondly, it reduces the power needed during light
and medium load. When the processor can cope with the work at a low
frequency/voltage level, it stays at this level. The performance penalty of this solution is
negligible. All Athlon64 and all A64 based Semprons greater than 1.8 GHz support this
feature. Power can be saved significantly when an application does not require full
performance. The processor can also respond to increased workloads, allowing the
system to deliver a responsive computing experience.

Like Cool'n'Quiet, AMD PowerNow is also a speed throttling and power saving
technology of AMD processors used in laptops. All AMD-K6-2E+ and AMD-K6-IIIE+
low power embedded processors support PowerNow. The processor clock speed and
core voltages are automatically decreased (based on power policy) when the computer is
under low load or idle, to save battery power and to reduce heat (noise). The AMD
PowerNow technology supports a wide range of operating voltages ranging from
0.0925 V to 2 V (allowing 32 different core voltages with a step as small as 25 mV or
50 mV). The technology also supports frequency starting from as low as 133 MHz or

2.1 STATE OF THE ART 17

200 MHz (allowing steps of 33 MHz or 50 MHz) depending on the processor model.
Table 2.2 shows an example voltage and frequency levels using PowerNow technology.
The allowed voltage step is 0.1 volts with the respective frequency switching of
50 MHz.

Table 2.2: Supported Voltages and Frequencies for Low Power AMD-
K6TM2E+Processors[20]

Beside DVFS support, PowerNow technology provides different operating modes like
High performance, Power saver and Automatic mode defined for specific performance
and power requirements. The AMD PowerNow technology contains Enhanced Power
Management (EPM) Block that can be accessed by the OS to change operating
frequency and voltages. The OS based power management policies are responsible for
carrying the burden of invoking EPM block. However, locking of processor from
external interrupts, snoops, etc. during transition is handled automatically.

AMD has also provided other power management technologies like AMD PowerCap
Manager that allows IT data center managers to fix power consumption on server
processors. Similarly, Advanced Platform Management Link (APML) technology
provides new controls to monitor power and cooling. Detailed description of these
technologies can be seen in [13].

2.1.4.3 ARM

ARM is very well known for developing low-power processor IP technology. The ARM
power management kit contains a collection of standard cells specifically designed to
allow the implementation of various low power techniques. Almost all ARM processors

Chapter 2. POWER MANAGEMENT CHALLENGES 18

contain support for low power states (idle states); additionally, cores like ARM1176JZF-
S, CortexA9, CortexA15, etc. also contain support for DVFS. To allow DPS, the typical
ARM processor allows support for four sleep states which are Active or Run, Standby,
Dormant and Shutdown. The processor is in Run mode when everything is clocked and
powered up. In a Standby state, the CPU clock is stopped by executing a Wait For
Interrupt (WFI) instruction. WFI Standby mode disables most of the clocks in a
processor, while keeping its logic powered up. This reduces the power drawn to the
static leakage current, leaving a tiny clock power overhead requirement to enable the
device to wake up. The Dormant state enables the processor to be powered down while
leaving the caches powered up and maintaining their state. The Shutdown state powers
down the entire device and all states, including the cache content which must be saved
by an external software. The Power Management Controller (PMC) determines whether
the processor should be put into Active, Standby, Dormant, or Shutdown state. However,
the choice to use these states is controlled by a policy manager. For an example, Linux
OS with the help of ACPI infrastructure contains a CPUIdle driver, to direct PMC to use
one of the predefined low power states. The PMC informs the processor about the nature
of reset that has occurred. Whether the reset occurred due to exiting Dormant mode or
Shutdow mode, the processor is branched to the correct state restore routine.

To allow DVFS when in active state, ARM offers a system-level power management
scheme called Intelligent Energy Management (IEM) for energy and power
management. This is a combination of hardware and software technology that allows
DVFS to reduce energy consumption. The IEM solution is designed primarily for
battery-powered equipment, where the requirement is to have a long battery life. The
IEM solution is also ideal for portable devices, for example, smart phones, feature
phones, Personal Digital Assistants (PDA), handheld game consoles and media players,
etc. A typical IEM System on Chip (SoC) solution is shown in figure 2.3. A complete
IEM solution is made up of a number of hardware and software components. The IEM
software component uses information (based on workload) from the operating system to
build up a historical view of the application execution on the system. A number of
different software algorithms are applied to classify the types of activity and to analyze
their processor utilization patterns. The results of each analysis are combined to make a
global prediction about the future performance requirement for the system. This
prediction is used by the Intelligent Energy Controller IEC.

2.1 STATE OF THE ART 19

Figure 2.3: Intelligent Energy Management Solution by ARM. [22]

The IEC uses prediction performance level requests from the IEM software. The
performance setting is communicated to the IEC, so that the platform scaling hardware
can be controlled to bring the system to the required performance level. Battery life is
extended by lowering the operating frequency and voltage of SoC components (such as
the processor) which consequently reduces energy consumption. The IEC also measures
the work done in the system to ensure that the software deadlines are not going to be
missed. Additionally, the IEC also supports a maximum performance request feature.
Further information regarding IEM and IEC can be seen in [22] and [23].

In the following section, we discuss the power management provided by Linux, to
further understand how efficiently power can be saved. In addition, we also provide a
discussion of academic works on power strategies, to highlight other opportunities for
power management than workload based approaches.

2.1.4.4 Linux

Besides available market standards and their power management solutions, popular
operating systems like Linux, Windows, Mac OS also provide support for better power
solutions to deal with rapid technological advancements. Linux is an open-source
operating system that is widely used in modern devices. Linux supports two
implementations of power management: Advanced Power Management (APM) and
Advanced Configuration and Power Interface (ACPI). Detailed description of processor
sleep states available in APM and ACPI is presented in section 2.1.2. In the following,
we focus on the mechanisms and strategies used for proper exploitation of these states in
Linux. At system level, ACPI defines mechanisms for putting the computer as a whole

Chapter 2. POWER MANAGEMENT CHALLENGES 20

in and out of system sleeping states. It also provides a general mechanism for any device
to wake the computer. ACPI tables also describe motherboard devices, their power
states, the power plans the devices are connected to, and controls for putting devices into
different power states. This enables the OS to put devices into low-power states based on
application overall power usage. According to the description of the ACPI states
provided in section 2.1.2, each state introduces greater power savings but requires
commensurately more time to awaken and begin performing work. Linux device drivers
are generally responsible for saving device states before putting and restoring the device
in low power modes. Generally, applications are not involved in power management
state transitions.

Linux contains an infrastructure pm_dev to maintain information about every power
management event. Device drivers must have to register themselves with Linux power
management subsystem. They do this by calling pm_register that contains necessary
device information like its type, identity (ID) and functionality. The Linux pm.h file
contains various types and IDs used by these drivers. When a power management event
occurs, arguments like device name, device state, device data, etc. are passed to device
drivers to perform specific tasks. For example, in case the device is a liquid crystal
display (LCD), an event could be pm_suspend to save the device state and turn off the
display. Similarly, if a pm_resume event occurs, the LCD driver should restore the saved
state back. When the device is not used anymore, its driver should unregister itself from
the power management infrastructure. When a device is unregistered, the power
management does not involve that device in future power management events.

At CPU level, power is controlled by using processor's idle power states (C-states) or by
changing the CPU frequency (P-states). The number of C-states and P-states depend
upon processor and can vary independently. These are typically implemented with the
help of ACPI as described in section 2.1.2. However, special infrastructures are present
to make use of these idle and performance states. The CPUIdle subsystem provides the
functionality of separating the layers to make use of C-states. The CPUIdle drivers are
found in architecture-specific ACPI code. On the other hand, the decision of choosing
which idle state is decided by the policy (power strategy). Linux contains CPUIdle
governors that allow the implementation of different policies for distinct needs. It should
be noted that deeper sleep (C-states) saves more power, but the downside is that they
have higher latency (the time the CPU needs to go back to C0).

2.1 STATE OF THE ART 21

Processor in operating state (C0 state) can be in one of different P-states. The CPUFreq
is used to set a static or dynamic power policy for the system. It uses the CPUFreq
driver to dynamically scale the processor frequencies at runtime. The CPUFreq provides
a common interface to the various low-level technologies and high-level policies. The
Linux in-kernel governors (policy governors that can change the CPU frequency based
on different criteria), and CPU specific drivers (CPUFreq) are used to implement the
technology for the specific processor. The processor consumes less power while still
doing work, and the tradeoff comes between power and performance, rather than power
and latency. Each governor has its own unique behavior, purpose, and suitability in
terms of workload. Generally, there are five different types of CPUFreq governors, i.e.
Performance, Powersave, OnDemand, Conservative and Userspace. A brief description
of these governors is given below:

Performance

The Performance governor forces the CPU to use the highest possible clock frequency.
This frequency is statically set and will not change. As such, this particular governor
offers no power saving benefit. It is usually suitable for hours of heavy workload, and
only during times wherein the CPU is rarely (or never) idle.

Powersave

The Powersave governor forces the CPU to use the lowest possible clock frequency.
This frequency is statically set and will not change. By itself, this specific governor
offers maximum power savings, but at the cost of the lowest CPU performance. The
Powersave governor is more a “speed limiter” for CPU than a “power saver”. It is most
useful in systems and environments where overheating can be a problem.

OnDemand

The OnDemand governor is a dynamic governor that allows the CPU to achieve
maximum clock frequency when the system load is high, and also minimum clock
frequency when the system is idle. The OnDemand governor uses parameters such as the
sampling-rate, up-threshold, sampling-down-frequency, ignore-nice-load, etc. to make
the frequency switch decision. As an illustration, the sampling-rate is used to let the
kernel decide how often (in microseconds) a transition is needed. Up-threshold is the
average CPU usage (CPU %) during sampling time. Similarly, other parameters have

Chapter 2. POWER MANAGEMENT CHALLENGES 22

their own special functionality. While the OnDemand governor allows the system to
adjust power consumption with respect to system load, it does so at the expense of
latency related to frequency switching. For most systems, the OnDemand governor can
provide the best compromise among heat emission, power consumption, performance,
and manageability. When the system is only busy at specific times of the day, the
OnDemand governor will automatically switch between maximum and minimum
frequency depending on the load without any further intervention.

Conservative

Like the OnDemand governor, the Conservative governor also adjusts the clock
frequency according to usage. However, while the OnDemand governor does so in a
more aggressive manner (that is from maximum to minimum and back), the
Conservative governor switches between frequencies more gracefully. This means that
the Conservative governor will adjust to a clock frequency that it deems fitting for the
load, rather than jumping to max speed the moment there is any load. A parameter called
freq_step is used to define frequency steps to smoothly increase or decrease frequency.
Conservative governor can possibly provide significant savings in power consumption
however; it does so at an ever greater latency than the OnDemand governor.

Userspace

The Userspace governor allows user programs (or any process running as root) to set the
frequency. This governor is normally used in conjunction with the cpuspeed daemon. A
parameter called Scaling_setspeed is used to write desired frequency. Consequently,
Userspace is the most customizable of all the governors and depending on how it is
used, it can actually provide a dynamic balance between performance and power
consumption for the system.

The above discussion summarizes our discussion on available technologies, market
standards and power management done in Linux OS. It also puts light on specific power
management techniques provided by different manufacturers. A conclusion highlighting
the benefits, drawbacks and limitations of these standards is given in the next section.

2.1 STATE OF THE ART 23

2.1.4.5 Conclusion

Based on the above discussion, power management can be broadly divided into two
categories. Firstly, OS based power management policies such as in Linux and secondly
vendor specific power management policies like Intel's EIST or ARM's IEM. In both
cases, such existing power management policies rely on the total workload of a system
(which is more related to the hardware state), during a certain period to deal with power
issues. These policies present the advantage of being applicable in all cases (general
purpose), but the drawback is probably a certain level of inefficiency (since they do not
really consider application knowledge).

Therefore, new power management solutions should be provided to overcome these
shortcomings. The idea is to make a tradeoff between power and performance through
power-aware algorithms. Currently, a lot of academic research is being done on
accurately predicting the workload during a certain time period or to exploit other
paradigms (e.g. Low power scheduling). Researchers are continuously exploring new
techniques (based on application properties) to use the underlying hardware efficiently.
Similarly, as some OS based policies give the user freedom to create its own custom
defined policy, novel parameters (other than workload) should be used to define such
custom policies, in order to further optimize energy and power consumption. The next
section presents academic research on power strategies that have room for higher power
savings.

2.1.5 Academic Research

2.1.5.1 Overview of Academic Research

Researchers have focused on how to estimate and minimize power in modern systems at
various levels of design. At the system level, dynamic power switching (DPS) can be
efficiently used to put active components in shutdown or low power states to conserve
energy. The fundamental principle for the applicability of DPS is that systems (and their
components) experience non-uniform workloads during operation time. Due to this
distinct behavior of workload, DPS techniques exhibit different behavior. A survey of
various DPS based strategies is shown in [17], where a system-level approach is used to
manage power. A dynamic power strategy (or policy) is used to control when and which

Chapter 2. POWER MANAGEMENT CHALLENGES 24

of the low-power states to apply. Existing policies are usually based on workload
predictions and a detailed comparison of the different algorithms has been provided in
the survey. From this survey and others like in [24], dynamic power policies are
categorized into two broad categories i.e. predictive and stochastic schemes. Predictive
schemes typically exploit temporal correlation between the past history of the workload
and it's near future, to predict the upcoming workloads. Stochastic techniques model the
workload behavior as a controlled Markov process and find the optimal power
management based on the model. Predictive techniques may cause extra penalties like
power loss in transition, wake-up state energy consumption, etc. when the workload is
varying widely. However, stochastic approaches have inaccuracies in modeling
workload variations and complexity involved in solving the optimization problem.

These issues primarily limit the use of both schemes for systems where the workload is
either very ir-regular or the workload model is not known a priori. Some advanced
history based heuristics and stochastic schemes have been shown in [25], to predict
varying workloads with high accuracy. However, their computational complexity
severely limits their use and may not be suitable for applications having huge workload
revisions. Besides system level dynamic power switching approach, another way to
reduce power consumption is the use of application knowledge because the application
knows the most about its future workload. An example of such work is shown in [26],
where a limited application knowledge such as the size and type of the frames is used for
applying DPS. These above methods have their advantages and are simple to design.
However, relying purely on policies that use only low power states can be efficient but
not always optimal or applicable. Therefore, researchers started to explore new methods
by utilizing the support of dynamic voltage and frequency scaling (DVFS).

A lot of work has been carried out for implementing DVFS based policies at the
processor level [16, 27-34]. Generally, these algorithms can be classified as static or
dynamic algorithms. Static algorithms have a complete knowledge of the task set and its
constraints, such as deadlines, computation times, precedence constraints, and future
release times. Frequency is statically decided before the execution of a task set. We can
obtain a single processor frequency that never changes, or obtain variable frequencies
that are statically decided before execution of a task set. An example of such an
algorithm is shown in [16], where Sys-Clock and PM-Clock algorithms determine the
frequency needed to complete the task set. The algorithm determines single clock
frequency at admission control and keep it constant until the taskset changes. Static

2.1 STATE OF THE ART 25

algorithms are based on the assumption that processor speed can vary continuously in a
given range. In practical world, processors only have discrete frequency levels so
choosing a higher-frequency level than calculated may result in granting performance,
but it may result in extra power consumption. Some static algorithms use task
parameters as selection criteria to obtain the needed frequency. Given a set of periodic
tasks, the sequence of frequency changes to be performed on the processor during
execution can be calculated offline. The task schedule is periodic and the voltage
schedule computed by this way is also periodic and can be stored in a table. An example
of such an assignment is shown in [35], where distinct speed is assigned to different
tasks, based on the voltage schedule table obtained by offline scheduling. However,
there is a major drawback of static assignment of frequency. If an activation of a task is
missed, the whole frequency assignment is affected and may become inefficient.

Dynamic algorithms, on the other hand, have knowledge of current active tasks
execution. The new task activations are not known to the algorithm when it is scheduling
the present task set. Therefore, the task schedule changes over time. The reclamation of
slack time resulting from the early completion of the current task set can be used to
reduce the processor frequency, for the execution of the following tasks. For example, in
[16] the authors propose an approach whereby each task is assigned a different speed.
After a regular interval, a critical interval is defined, which is the maximum of all idle
intervals. The tasks are scheduled at certain speeds by an EDF algorithm [36] which
calculates the new deadlines and executes tasks at the new reduced speeds. Similarly, in
[37], the algorithms rely on past and future predictions of idle periods, and accordingly,
task’s execution is stretched to lower speed. Dynamic techniques are often related to low
power scheduling techniques, as they have a direct impact on the ordering and the
execution of tasks. The following section describes more in detail such low power
scheduling techniques

2.1.5.2 Low Power Scheduling

Scheduling is used in embedded devices to balance the load effectively or to achieve a
desired quality of service. While scheduling tasks, processes or jobs, the scheduler
mainly focuses on some core issues like turnaround time, response time, waiting time,
deadlines, periods, etc. Low power scheduling refers to the scheduling of tasks keeping
in view the power utilization. Different approaches are used for low power scheduling at

Chapter 2. POWER MANAGEMENT CHALLENGES 26

CPU level in real time systems. However, when one of the core issues is addressed
others may be compromised. Therefore, an off-line scheduling analysis should always be
done, regardless of whether the final runtime scheduling algorithm is static or dynamic.
Mostly for some available resources, offline scheduling refers to identifying the
maximum set of tasks to be scheduled with their worst-case execution time and applying
a static scheduling algorithm to produce a fixed schedule. This schedule is used online
with well understood properties. Tasks may be given preference based on operating
system needs, application requirements or user needs. However, the timing constraints
are the most important factor for all real time systems. Therefore, based on the extent of
time importance, real time systems can be divided into two major classes. Real-time
systems with hard timing constraints are known as hard real-time systems, whereas those
with soft timing constraints are known as soft real-time systems.

There have been various studies on low power scheduling in real time systems [38-42].
Some authors categorize real time scheduling based on the clock driven, event driven or
a hybrid of both [40]. Clock-driven schedulers are those in which the scheduling points
are determined by the interrupts received from a clock. In event-driven schedulers, the
scheduling points are defined by certain events, which preclude clock interrupts. Hybrid
driven schedulers uses both clock interrupt as well as the event occurrence to define their
scheduling points. Clock driven schedulers have an advantage of lower overhead; though
they are not feasible to be used for tasks having non uniform periods (i.e. aperiodic or
sporadic tasks). Event driven schedulers are more flexible than clock driven schedulers,
as they can also handle aperiodic or sporadic tasks. However, a shortcoming of such
algorithms is their complexity and task switching overhead. Scheduling algorithms can
be further divided into fixed priority or dynamic priority algorithms. In a fixed priority
algorithm, all jobs generated by a specific task have the same priority throughout their
execution. An example of such an algorithm is the rate monotonic (RM) algorithm [38].
RM is a statically defined fixed priority algorithm that assigns priorities to tasks based
on their rate of occurrence. It is known to be good among the fixed priority based
algorithms for single processor platforms. A rate monotonic (RM) scheduler can be
implemented simply by assigning each task a fixed priority level which is inversely
proportional to its period. In a dynamic priority based algorithm, jobs generated by the
same task may have different priorities (based on different parameters). Earliest
Deadline First (EDF) is a well-known example of dynamic priority based algorithm [39].
However, implementing a dynamic scheme, like EDF, requires to keep track of all

2.1 STATE OF THE ART 27

deadlines and to perform an online mapping between absolute deadlines and priorities.
When a scheduling event occurs, the task with the smallest deadline is taken to be
executed. A scheduling test is also performed offline to check whether the overall tasks
are schedulable under EDF or not. EDF has proven to be an optimal single processor
scheduling algorithm by [43]. For a large number of tasks, EDF has a clear edge with
respect to RM algorithm. The EDF and RM algorithms are extensively investigated for
low power management of modern processors [43]. However, their use of power
management is generally limited to single processor systems.

Some authors use combinations of both static and dynamic algorithms as in [31-34, 44].
These algorithms can be further divided into an inter-task [31, 32, 45] and intra-task [33,
34, 44] scheduling techniques. Inter-task scheduling algorithm redistributes the dynamic
slack time at task boundaries to other tasks. Conversely, the available slack time is
reallocated inside the same task in the intra-task scheduling algorithms. However, the
most important step in implementing these strategies is the prediction of the future
workload. This workload prediction is used to choose the minimum frequency (thus
power) while satisfying performance. The intra-tasks strategies are difficult to manage
because of their constant tracking, extreme analysis and sometimes the need of
application source code modification. The number of excessive frequency switching may
also decrease their efficiency. In contrast, the downside of the inter-task approach is that
the interval boundaries are predetermined and independent of workload changes. Thus,
they can be late in responding to large, severe activity swings.

Another important aspect of low power scheduling in modern systems is the
applicability to multiprocessor platforms. Current microprocessors come with multiple
cores, having variable frequency and voltage supports. Scheduling in multiprocessor
environments is not an easy task, and this area has been an active topic of research in
recent years. Some authors divide the multiprocessor scheduling problem into two
classes i.e. partitioned scheduling and global scheduling [46, 47]. Partitioned scheduling
assigns each task set to a specific processor, and a processor can only execute the tasks
that are assigned to it. After partitioning, single processor scheduling algorithms (such as
EDF, RM, etc.) can be employed to each processor. In global scheduling, all prepared
tasks are put into a shared queue, and each idle processor fetches the next highest
priority ready task from this queue for execution. It has been shown in [47], that simple
global EDF or global RM could fail to schedule tasks having small execution time. In

Chapter 2. POWER MANAGEMENT CHALLENGES 28

[46], the authors use an extension of the RM algorithm, called RM first fit (RMFF), that
can schedule any system of periodic tasks with total utilization bounded by m(21/2−1),
where m is the number of processors in the system. They also show a better bound to be
(m+1) (21/(m+1) −1) for RMFF in [47]. In addition, various other algorithms have been
implemented to schedule tasks efficiently, and to reduce power consumption in
multiprocessor systems [46-51]. However, the authors in [46, 47] have shown that there
is no optimal online scheduling algorithm for multiprocessor systems. An extension of
EDF is also shown in [52] for a multi processor environment, where authors agree that
EDF is not the optimal algorithm for a multiprocessor environment. Even so, they still
provide compelling reasons for the use of the EDF algorithm in a multiprocessor
environment that are:

• The EDF scheduling algorithm has the least runtime complexity among job-level
fixed-priority algorithms for scheduling tasks on multiprocessor architecture.

• EDF is an optimal scheduling algorithm for single-processor systems.
• EDF is considered as efficient from an implementation point of view.

The work presented in this thesis will also be considering such EDF based scheduling, as
it seems to be a good basis for multiprocessor low power scheduling. The policies
described above claim to be efficient, however if we explore the implementation results,
we come to the conclusion that a very few are practically implemented in real
development world. The work is validated using specific high level simulation tools, but
not with actual platforms. Therefore the actual applicability of these works specially in a
multiprocessor environment remains questionable.

2.1.6 Conclusion

Power management plays an increasing role in modern electronic devices. Much
progress has been made on the technical side, for instance, latencies to switch on/off a
device or to change a processor frequency have been significantly reduced. At the
processor level, the availability of multiple voltage and frequencies has been really
helpful in decreasing power consumption extensively. Similarly, many power
management strategies have been proposed, both by the academia and industry, to
manage the available technology more efficiently in order to decrease overall energy
consumption.

2.1 STATE OF THE ART 29

However, there are certain limitations in implementing different power management
strategies in practice. From a hardware point of view, modern processors have a support
for multiple voltage and frequencies. Still, this number of discrete available frequencies
and the corresponding voltages do not allow deployment of policies that use continuous
frequency voltage mapping. Moreover, frequencies and related voltages vary for
different platforms. For instance, an AMD K6-III uses 1.4 V for 300 MHz, whereas, an
Intel M-processor uses 1.4 V for 1.4 GHz. Therefore, some power management solutions
may work for a particular platform but not for others. Furthermore, existing vendor
provided solutions are mostly workload based and may only work efficiently for
applications having workload variations that are not too fast. However, we will see that
there is still room for power savings using application or domain-specific strategies.
Another important issue regarding vendor particular power management strategies is that
they are non customizable. There is a very little room in modern platforms to define
application or domain-specific policies.

From a research point of view, a lot of theoretical works with formal proof or simulation
based verification has been done. However, there is very little work on implementing the
proposed techniques on real platforms because of the complexity and development time
implied. Consequently, a natural question arise that "Does the approach really works in a
real world"? There are very few works that respond to this question by actually
implementing the proposed techniques. The reason behind this is the complexity to
develop low power strategies, in particular, deadline schedulers. In many works, the
proposed strategies or policies often make simplified assumptions. They generally
neglect certain important real implementation issues like neglecting the effect of state
transition delay, limited number of available frequencies and power levels, continuous
frequency values, etc.

2.1.7 Focus and Objectives

The work presented in this PhD is a study of low power management techniques on
actual multiprocessor platforms. The work focuses on analyzing different power
management strategies in both single and multiprocessor platforms. The approach shown
in this work is built on experimentation, based on representative platforms (real or
virtual), rather than most works that rarely addresses the problem of power management
efficiency. The main goal is to investigate if and how power management strategies can

Chapter 2. POWER MANAGEMENT CHALLENGES 30

be efficiently exploited in real platforms. This is based on exploring the behavior of
different parameters such as effect of supported operating points (frequencies and
voltage couples), scheduling and transition delays, idle and load power, etc. of actual
platforms. Similarly, as discussed above in section 2.1.2 and section 2.1.3, DPS and
DVFS are two popular techniques used for power management in modern architectures.
The management of these mechanisms through an operating system requires software
(policy) that controls efficiently the behavior of the platform according to application
requirements or processor parameters. This work focuses on experimenting with such
policies (based on DVFS and DPS techniques) and explores the conditions at which a
certain policy is effective in terms of energy savings.

A first point is to experiment with full implementations of low power schedulers on real
platforms, and this will be based on the method described in [53]. Another problem of
investigating power management policies in real platforms is the non-availability of
power measurement and monitoring methods. Reliable power monitoring is a complex
issue, especially for multiprocessor platforms supporting power management, and should
be handled precisely. Mostly, the platforms provide methods for estimating the total
energy (or total power) consumption and normally could not handle the processor
energy consumption. The reason is the complexity of measurement of power consumed
by the core at extremely low voltage and very fast frequency switching. This study is
targeted to measure, monitor and handle the energy consumption purely related to the
processor. The platforms used (ARM1176JZF-S, QEMU) have been specifically chosen
to provide such access to the power consumption of cores.

In this work, we address different policies for energy management on ARM based
platforms. We assess the behavior of these policies in multiprocessor platform as well.
We provide a comparative analysis of a few DVFS, and DPS based strategies on
different ARM platforms, in distinct configuration of active cores, operating points,
application parameters, etc. At the end, we provide a global analysis result and
discussion of the measures, and conclude on the energy efficiency of these power
strategies.

2.2 WORK CONTEXT 31

2.2 Work Context

The work presented in this thesis is part of a European project named COMCAS
(COmmunication-centric heterogeneous Multi-Core Architectures). COMCAS is a
cross-industry research and development project consisting of many organizations,
including LEAT as a university partner from France. The project is labeled within the
framework of CATRENE, the EUREKA cluster for Application and Technology
Research in Europe on NanoElectronics. The COMCAS project aims at a breakthrough
low-power design solutions for (data) communication-centric heterogeneous multi core
architectures targeting 45 nm and 32 nm CMOS technologies. These architectures will
be exploited in a number of future applications (i.e. the next generation of programmable
multi-processor mobile phones and mobile digital entertainment devices). COMCAS
investigations concern the complete low-power design hierarchy looking at all aspects
from system-level choices, modeling of applications (algorithms, protocols) and
architectures, the maximization of reuse of existing IPs using the most appropriate tool
chains and minimal power design in technologies of 45 nm and beyond.

The topic on which our team is assigned to work is the processor level energy and power
management. We explore different energy and power management policies for ARM
based platforms. We have been working in close collaboration with the project partners:
TIMA labs [8], that provided the virtual platforms used in this work for evaluation of
power strategies, Thales Communication France and CEA LETI for applications. The
new technologies combined with various lower power techniques developed in the
COMCAS project allow for the design of smaller form factor devices capable of
delivering HD video, high-resolution imaging, desktop-class 3D graphics. The work
exposed here focuses specifically on software-based techniques to reduce the power
consumption of multicore platforms. Therefore, we investigate DVFS and DPS based
power strategies for multiprocessor ARM based platforms and their actual efficiency in
improving the energy consumption. At the end of the project, two demonstrations have
been made to show the actual achievements of this work within the goals of COMCAS.

In the next section, we start by defining the problem statement of this study and define
the goals of these experimentations with different power management strategies.

Chapter 2. POWER MANAGEMENT CHALLENGES 32

2.2.1 Problem Statement

Most previously mentioned industrial techniques for power management rely on
performance needs. The decision to adapt a low-power state or to change frequency and
voltage are usually taken based on the overall workload in existing power management.
When the workload needs higher performance, the system consumes maximum power.
Similarly, if performance demand is low, power consumption is decreased. Likewise,
vendor specific policies are for the most part general purpose, predefined and non
customizable. Even though a user can choose a given policy, the infrastructure does not
allow user defined power management for application-specific strategies. Therefore,
users can only rely on the power management policies provided by their vendors. They
are usually quite efficient for general-purpose applications and usage, but they can be
inefficient for other specific applications. Likewise, power management approaches used
by the operating systems are mostly workloads based. For example, the static policies
provided by Linux governors (i.e. Performance, Powersave) set the frequency to
maximum or minimum according to the workload, i.e. based on the processor activity.
Consequently, when the system uses maximum frequency, it consumes maximum power
which does not improve energy saving. Similarly, using minimum frequency allows
lesser power utilization at the expense of larger time to process the workload. As a
result, more energy is usually consumed even for lower power consumption at minimum
frequency. The dynamic approaches (i.e. OnDemand, Conservative) change the
frequency during run time based on the workload. For example, if a certain workload
requires higher performance, the governor will switch to a higher frequency
(dynamically) and remain at that value. This can provide power (as well as energy)
savings for applications which do not have too fast workload variations. However, in
case of applications having variation of workload on relative large scale, it cannot
provide the maximum potential savings.

The academic research of section 2.1.5 reviewed various power management strategies
using broadly DVFS and DPS techniques. Mostly, these techniques rely on past or future
workload predictions of a certain application. However, this prediction is usually
approximated and may not work as expected in a real implementation. The workload
predictions also require constant tracking and extreme analysis that may introduce
important overheads and further errors in approximation. It should be noted that most of
these techniques have been validated by simulations rather than implementation in real
life. In contrast to workload based, we can therefore explore techniques using

2.2 WORK CONTEXT 33

application parameters for power and energy management, and using more realistic
validation approach. Using such techniques, we can experiment with user defined power
management policies based on different application parameters (e.g. based on a quality
of video request in case of a video) to save energy. The use of specific or custom power
management strategies (in contrast to workload based) may provide extra room for
energy gains by utilizing DPS and DVFS techniques more finely and more efficiently.

In addition, a lot of algorithms and techniques exist for single and multiprocessor power
management. However, due to their complexity very few are actually implemented on
real platforms. In this work, we experiment with different policies for power
management that are fully operational on both single and multiprocessor platforms. The
validation of power management policies in a multiprocessor environment is also an
important issue. In this work, the validation is also based on considering representative
application examples including the H.264 video processing standard. Video processing
is an interesting example as it exposes high workload processing and variations that can
be efficiently exploited at a power management level. For instance, we experiment a
truly operating H.264 decoder and with different parallelization models of an H.264
encoder in various configurations of platforms (number of cores, operating points). We
also explore the effects of different application parameters (frame rate, parallelism, slack
time, etc.) on power and energy consumption for each configuration.

In the following section, we detail the platforms used to address the above problems.

2.2.2 Platforms

The power management policies used in this work can be implemented on any platform
having Linux or Embedded Linux support. Mostly, the platforms only allow changing
frequency of a processor but do not provide access to monitor the power consumed by
the processor. Vendors have their intellectual property rights to their systems and do not
allow such access. Hence, it is practically impossible to access and monitor the power
utilization of the underlying core. The power policies used in this work are experimented
to analyze the power and energy consumption on different platforms, access to the
processor's power consumption is thus needed. Therefore, we rely on ARM based
platforms as they provide direct access to power monitoring registers of the cores. ARM
baseboards give user access to monitor the change in voltages and currents related to the

Chapter 2. POWER MANAGEMENT CHALLENGES 34

processor. By this mean, we can calculate the real instantaneous power, mean power as
well as energy directly related to the underlying core. In this work, we rely on these
ARM based platforms to implement the prescribed power management strategies.
Another reason of using these platforms is to address the target architecture (i.e. ARM)
in the COMCAS project.

At the beginning of this work, no platform supporting altogether multicore, DVFS and
power monitoring facilities were available. Therefore, we started working on an ARM
emulation baseboard containing an ARM11 MPCore processor but without DVFS
support. Then we used a mono processor platform containing a single core
ARM1176JZF-S, but supporting DVFS and power monitoring. Finally, we used virtual
platforms that support DVFS, multicore and power monitoring functionality. The virtual
platforms also permit to target perspectives of future architectures, based on Dual
CortexA9, that was not available at the beginning of the work. In the following sections,
we provide detailed information of all the platforms used in this work. We start by the
MPCore emulation baseboard, followed by the Versatile Baseboard ARM1176JZF-S.
We then detail the QEMU [54] based virtual platforms (QEMU_ARM1176,
QEMU_CortexA9). Additionally, we detail the methods for power and energy
monitoring on these platforms.

2.2.2.1 ARM11 MPCore

The study focuses on the experimentation and validation of different power management
strategies in the real world. For this purpose, we start by using a previous contribution
prior to this work, which investigated power strategies using an ARM emulation
baseboard containing an ARM11 MPCore chip. This multiprocessor platform provided
many results and the definition of a DVFS video strategy. The MPCore chip supports
dynamic voltage scaling as well as static frequency scaling; however, lack of real DVFS
support stopped us to further work on this platform. Therefore, we used another platform
(PB ARM1176JZF-S) to pursue these investigations and further experiment with the
video power strategy. The main features of the ARM emulation baseboard are briefly
highlighted below.

The emulation baseboard is a highly integrated development board containing tile
connectors to connect an ARM11 MPCore chip. It also contains a large FPGA (Xilinx
Virtex-II XC2V6000), 256 MB of 32 bits wide DDR SDRAM, 4 MB of 16 bits wide

2.2 WORK CONTEXT 35

cellular RAM, 128 MB of 32 bits wide NOR flash, Ethernet support, USB 2.0 controller,
VGA/DVI, Keyboard, Mouse connectors, SD Card slot, 4 UARTS and character LCD,
switches, LEDs and GPIOs. The MPCore chip contains four ARM11 cores, where each
processor has a 32 KB instruction memory and 32 KB data memory. The nominal
frequency for each core is 200 MHz. The platform supports embedded Linux however,
the support for Linux CPUFreq cannot be used due to lack of DVFS support by the
MPCore chip. The emulation baseboard does not support ARM's IEM or IEC technology
discussed in section 2.1.4.3.

2.2.2.2 ARM 1176JZF-S

We thus considered an ARM1176JZF-S platform to continue the study of power
strategies, but for a mono processor platform in this case. The first two power strategies
(based on DVFS) are experimented using an ARM1176JZF-S baseboard as it provides
all the required functionalities. The investigations on this platform require a power
monitoring module and a frequency switching mechanism. Therefore, we developed a
kernel module to monitor the processor’s power. Secondly, we created a user space
program which is able to change the frequency with the help of the Linux CPUFreq. The
main components of the ARM1176JZF-S platform are detailed below, followed by the
frequency switch mechanism and power monitoring drivers.

The baseboard is a mono processor development platform having an ARM1176JZF-S
core mounted on it. The basic system provides a good platform for developing systems
supporting ARM11 processors that feature TrustZone® Technology, CoreSight™, DVFS
and Intelligent Energy Management (IEM see section 2.1.4.3). The platform also
contains 128 MB of 32 bits wide mobile DDR RAM, 8 MB of 32 bits wide static
PSRAM, 2 x 64 MB of 32 bits wide NOR flash. The NOR flash is used to save a boot
loader and an embedded Linux OS image for auto boot. Other peripheral's devices
include connectors for VGA, Color LCD display, PCI, UART, GPIO, Keyboard/Mouse,
Smart Card, USB, audio, MMC and Ethernet.

The platform supports embedded Linux configured with CPUFreq. The CPUFreq
contains CPU_Freq driver that uses IEM to change frequency and adjust the desired
voltages. CPUFreq also contains a Userspace governor that can be used to switch
frequency as needed. We therefore created a user space program (using Userspace
governor) to change and monitor the frequency of the processor as required. It should be

Chapter 2. POWER MANAGEMENT CHALLENGES 36

noted that the ARM1176JZF-S processor has a nominal frequency of 240 MHz, and it
can switch to three other frequencies that are 160 MHz, 215 MHz and 265 MHz. To
experiment with the PM strategies, the latest available kernel image (i.e. Linux 2.6.32)
was used and cross compiled by Code Sourcery [55] development tools.

The platform also provides access to the processor’s voltage and current consumption
register. The register labeled PWR_VOLTAGE_CTL0 is used to monitor power
consumption. A kernel module is created to access this register at regular intervals of
time. The PWR_VOLTAGE_CTL0 register has two fields; the first [0:15] bits are used
to read the voltage of the core and the other [16:31] bits are for the current consumed in
the ARM1176JZF-S chip. The reading from the register must be converted to an
absolute value by the formula:

Core_Voltage = (PWR_VOLTAGE_CTL0 [15: 0] *18) / 655200 (Volt) Eq (1)

Core_Current =(PWR_VOLTAGE_CTL0 [31:16] *18) / 655200 (Amp) Eq (2)

The power is simply calculated as:

Core_Power = Core_Current * Core_Voltage (Watt) Eq (3)

The power monitoring driver measures the instantaneous power every 200 milliseconds.
It can also calculate the mean power and total energy consumed between two defined
points. Experimentation results and analysis of the power strategies on ARM1176JZF-S
platform with this measurement procedure is detailed in chapters 3 and chapter 4.

As the real goal of this work is to check the efficiency of power strategies for
multiprocessor platforms, we use QEMU based virtual platforms for this intent. QEMU
support was directly provided to us by TIMA laboratories in close cooperation during
the COMCAS project. Another reason for using QEMU platforms is the flexibility to
model different platforms (e.g. type of core, number of CPUs, operating points, idle/load
power, etc.). For instance, the DVFS based power strategies depend greatly upon the
characteristics of operating points. Therefore, we need to change the operating points to
further analyze the strategies behavior. Since, ARM1176JZF-S platform is not a
multiprocessor platform, and due to the unavailability of a real multiprocessor platform
with all necessary features, we use QEMU based virtual platforms for onward evaluation
and experimentations.

2.2 WORK CONTEXT 37

2.2.2.3 QEMU_ARM1176

We rely on QEMU [54, 56] based platforms for the experimentation of multiprocessor
power strategies. QEMU is a generic and open source machine emulator and virtualizer.
When used as a machine emulator, QEMU can run an OS and programs made for one
machine (e.g. an ARM baseboard) on a different machine (e.g. PC). We rely thus on
QEMU cycle accurate simulations to provide reliable performance and power
estimations of power strategies for ARM1176 and CortexA9 based multiprocessor
platforms. We start by using an ARM11 model based version of QEMU, where we have
introduced the operating points of the ARM1176JZF-S in order to compare QEMU
estimations with real ARM1176JZF-S measures. In rest of this document work, we refer
ARM11 based version of QEMU as QEMU_ARM1176. We configure this platform in
different operating point configurations detailed in chapter 3, for further evaluation of a
DVFS video strategy. The same platform is used for the implementation and
experimentation of the second DSF low power strategy. The following section puts light
on the main platform characteristics as well as the different features used.

The QEMU_ARM1176 virtual platform has almost the same capabilities as the real
ARM1176JZF-S. It supports embedded Linux and provides specific drivers to use DVFS
functionality. Additionally, we can configure it for single and multiprocessor
configuration. We can have a configuration up to eight processors using the QEMU
models. We are not bound to a fix number of available frequencies using virtual
platforms. The platform parameters (such as the number of available frequencies, power
levels, etc.) are flexible and can be modified. However, we limit ourselves to the
frequencies and power levels used by actual hardware platform (ARM1176JZF-S) to
provide realistic measures for the various power management strategies. Different
drivers, functions and scripts are created to use the DVFS and power monitoring features
of QEMU. A special function Mean_Power is used to measure the average power
consumed by the processor between two time intervals. The number of processors to be
used must be configured before starting the QEMU_ARM1176 platform. Once the
platform is started, it acts much like a real hardware platform and starts with the
initialized number of processors at nominal frequency (i.e. 240 MHz).

We completed experimentations and analysis of the first two strategies with the
QEMU_ARM1176 platform. It should be noted here that we work with the
QEMU_ARM1176 virtual platform as a starting point, keeping in mind that the final

Chapter 2. POWER MANAGEMENT CHALLENGES 38

target architecture was not yet available. Around halfway through the COMCAS project,
we were provided with the CortexA9 based model of QEMU (referred as
QEMU_CortexA9 in the following) by TIMA and Thales, which is presented in the next
section.

2.2.2.4 QEMU_CortexA9

We experiment with the power strategies using QEMU_CortexA9 platform to analyze
the energy savings on the new multiprocessor platform. In addition, this experimentation
allows us to check the efficiency of the PM strategies and further characterization of
platform parameters affecting the energy gains. We use the QEMU_CortexA9 platform
to analyze the energy gains of two strategies, DSF (DVFS based) and AsDPM (DPS
based), in the perspective of future multiprocessor architectures targeted in the
COMCAS project. It should be noted that the use of this virtual platform was a way to
target multicore CortexA9 based application processors that were not available as silicon
at this stage of the project. The CortexA9 version of the virtual platform is developed by
TIMA with inputs on the CortexA9 power and performance model provided by Thales
Communication France. The following summarizes the platform characterization and
power monitoring.

The new platform supports much higher frequencies (i.e. 300, 600, 1000 MHz) in
comparison to those of QEMU_ARM1176. The QEMU infrastructure of implementation
quickly allows us to export the already experimented power strategies (DSF and
AsDPM) on the latest QEMU_CortexA9 platform. The implementation of the strategies
is almost identical to the QEMU_ARM1176 platform with only few modifications in
power monitoring and frequency drivers. The corresponding power levels for each
frequency are also much more efficient in terms of idle and load power in comparison to
that of QEMU_ARM1176 platform.

With the help of this platform, we can check the efficiency of power strategies in the
perspective of CortexA9 multicore architectures which has very different characteristics
in terms of static and dynamic power, due to different integration technologies. In
addition, this also permits to compare the results obtained with previous architecture
generations based on ARM11 cores (in terms of amount of energy gains) and to identify
some conditions of efficiency at hardware level.

2.2 WORK CONTEXT 39

In the following section, we briefly introduce the power management strategies used for
this purpose.

2.2.3 Power Strategies

We experiment a total of three different power management strategies in this work. The
strategies are chosen depending upon the nature of applications used in our work,
platform characteristics and for the reasons explained in section 2.1.7 and 2.2.1. The first
two power management strategies are based on DVFS techniques, while the last strategy
relies on DPS to exploit processor sleeping states. By this way, we could later provide a
global evaluation and comparison of different PM strategies, along with the
characterization of influential parameters affecting their efficiency in actual and realistic
multiprocessor platforms.

2.2.3.1 DVFS Video Power Strategy

First, a DVFS based power strategy dedicated to video processing with an application to
an H.264 decoder is used. The power strategy is based on the exploitation of frame rate
variations of a video. Previous works [57] have shown variations in the frame decoding
time of around 40%. These variations are exploited to adapt the processor speed to
match the amount of processing for decoding frames. The DVFS based video strategy
uses average frame rate on a time window to decide the best suitable speed for the
processor. The adaptation strategy controls the decoder speed around a frame rate
constraint slightly slower than the average performance. The operating frequency of the
processor is decreased this way to fit the desired frame rate. By this way, processor
power consumption is decreased which in turn also reduces the overall energy
expenditure of video. In chapter 3, we present a detailed analysis on the effectiveness of
this strategy using ARM1176JZF-S and QEMU_ARM1176 platforms.

2.2.3.2 Low Power DSF Scheduler

DSF is a scheduler targeting multiprocessor execution of applications that exploits
DVFS techniques. Its principle is detailed in section 4.1.1 of chapter 4. This algorithm
has been defined at LEAT in the work described in [45]. This scheduler is one of the low
power strategies provided to the COMCAS project that has to be validated on the actual

Chapter 2. POWER MANAGEMENT CHALLENGES 40

target architectures (ARM1176 and CortexA9 based). This actual implementation is a
Linux based implementation described in [53] which allows to execute and experiment
this scheduler on any platform supporting Linux. The results of experimentations with
the DSF strategy in different configurations of multiprocessor platforms are detailed in
chapter 4.

2.2.3.3 Low Power AsDPM Scheduler

Assertive Dynamic Power Management (AsDPM) is also a low power scheduler for
multiprocessor platforms. The AsDPM take advantage of DPS techniques and is based
on a similar principle as DSF, using a Linux userspace scheduler. This scheduler is used
to execute the strategy on any multiprocessor platform supporting Linux. The principle
of this strategy is detailed in section 5.1.1 of chapter 5. This scheduler is developed at
LEAT on work described in [58]. In this work, we validate the implementation of this
scheduler on representative target platforms and analyze the obtained energy gains. The
results of experimentations with the AsDPM strategy are provided in chapter 5.

In the following, we thus experiment, analyze and discuss the results of above described
power strategies, using the different platforms mentioned: ARM11 MPCore,
ARM1176JZF-S, QEMU_ARM1176 and QEMU_CortexA9.

We first start with the DVFS based video strategy on ARM11 MPCore and
ARM1176JZF-S, then with the DFS strategy on QEMU_ARM1176 and
QEMU_CortexA9 and next by the AsDPM strategy on QEMU_ARM1176 and
QEMU_CortexA9. The numerous amounts of power measurement results will be
extensively analyzed in order to extract relevant meaningful conclusions on the
efficiency of power strategies in the real world. It should be noted that these
experimentation have been the subject of two demonstrators developed in the scope of
the COMCAS project that are fully part of this work and has been underlined by the
CATRENE evaluation committee.

Chapter 3. DVFS VIDEO POWER STRATEGY 42

Chapter 3 : DVFS VIDEO POWER STRATEGY

3.1 Introduction

Dynamic Voltage and Frequency Scaling (DVFS) is widely used for power management
in modern processors as stated in section 2.1.3. It is an effective method for achieving
low power consumption of CPU while meeting the performance requirements. In this
chapter, we present a DVFS based power strategy dedicated to video processing, with an
application to H.264 decoder. We analyze the potential of this DVFS power strategy
across different platforms with recent generations of ARM processors as discussed in
section 2.2.1.

Allowing OS and related software to gain control over power consumption is really
gaining more and more interest these days since energy reduction is one of the prime
concern in embedded systems. The management of power saving techniques through an
operating system requires software that must be able first, to identify the various
operating points of the processor(s) and second, to assess requirements derived from the
application and its environmental context. As seen in section 2.1.4.4, Linux operating
system lets the opportunity to define custom power management strategies resulting
from the availability of power management APIs (CPUFreq). Concerning DVFS, Linux
has different governors (i.e. Conservative, OnDemand, Userspace, Powersave and
Performance) as detailed in section 2.1.4.4, to adjust power levels statically or
dynamically according to the processor workload. In the strategy description and
implementation, we therefore rely on Linux for the implementation of this custom DVFS
based video power strategy. The use of application specific power management
techniques provides extra room for power saving by utilizing the application parameters,
as defined in section 2.1.7. The strategy discussed in this chapter is dedicated to video
decoding and uses DVFS technique to control the frame rate by the CPU frequency, and
thus to reduce power consumption. The new adaptive strategy can be used for future
implementation of adaptive systems to achieve performance goals as discussed in [59],
and for the reasons explained previously in section 2.1.6 and section 2.1.7. It is
implemented under the latest available kernel at the time of implementation (i.e. Linux
2.6.33) with CPUFreq support.

3.1 INTRODUCTION 43

It should be noted that this work mainly focuses on experimenting with the strategy in
actual implementation world as discussed in section 2.1.7. We see the effects of different
application parameters, as well as platform parameters that impacts power consumption.
Therefore rather than focusing on the description of a new power management strategy,
the work is mainly focused on experimenting with the DVFS based video strategy in the
real world, how efficiently it works for different platforms (real or virtual), which
platform parameters effect the energy savings, how much energy can be saved, and if it
is efficient for multiprocessor environments.

The application specific strategy can provide significant power and energy gains in
certain conditions. We analyze the effectiveness of this strategy using an ARM1176JZF-
S platform. We also analyze the effects of changing platform characteristics (power
levels associated with corresponding frequencies, Number of processors etc.) by
implementing the DVFS power strategy on the virtual QEMU platform. The results
reveal that in certain conditions, reducing the frequency is effective but in others it
actually increases energy consumption. So this study shows that due to different power
consumption levels related to a frequency for different platforms, decreasing the CPU
frequency may not always reduce the energy consumption. The results also provide
percentage of energy gains up to 57% by choosing correct adaptation constraints.
However, the experimentation shows that the efficiency of a DVFS strategy depends
upon the characteristics of operating points (frequency/voltage couples). In particular,
attention must be paid to the power level gap between consecutive frequencies, to
compensate the increase in execution time resulting from frequency downscaling.

The outcome of this chapter is the following. Section 3.1.1 discusses a previous case
study on H.264 video decoding on MP Core emulation baseboard. Based on the case
study, a description of the DVFS based video power strategy is presented in section
3.1.2. We then provide the detailed implementation and experimentations for the video
PM strategy in section 3.2. We provide DSF implementation in section 3.2.1, power and
performance profiles of the H.264 based video sequence on the ARM1176JZF-S
platform in section 3.2.2 and in section 3.2.3 we present an analysis of energy
consumption. In section 3.3, we further examine the energy saving conditions by
investigating the operating point effects on the efficiency of the DVFS strategy. For this
purpose, operating point setup using QEMU platform is presented in section 3.3.1. The
accuracy and behavior of virtual platform estimations is addressed in section 3.3.2 and

Chapter 3. DVFS VIDEO POWER STRATEGY 44

section 3.3.3 provides results and discussion of experimenting with the PM strategy in
different operating point configurations. In section 3.4, we present our conclusions on
the experimentations with the DVFS video strategy.

3.1.1 Case study: H.264 Decoder

A previous case study of application mapping of a H.264 decoder is detailed in [57].
Several H.264 videos (variable sizes) have been experimented and analyzed to observe
their behavior in different situations using MPCore emulation baseboard. The videos
have been divided into different slices versions, where each slice was taken as a thread.
A slice represents an independent zone of a frame and can refer previous frame for
decoding. Therefore decoding one slice of a frame is independent from another slice of
same frame. The slice is handled by a POSIX thread and this way decoder can process
different slices of a frame in parallel. The advantage of slice decomposition is its
regularity and homogeneity which is suited for SMP implementations and makes
balancing the workload between processors very easy. A detailed analysis of different
slices versions of H.264 video decoder (1, 2, 4 and 8 slices) for four different videos is
provided in this case study for different platform configurations (1, 2, 3 and 4
processors). The study pointed out that the frame rate (frames per second fps) is very
sensitive to motion properties in the video, with variations of about +/- 20%. This can be
exploited to define the dynamic video power strategy based on a frame rate adaptation
using frequency scaling, which is discussed in next section 3.1.2. Furthermore, the case
study also presents the power and energy behavior by trying to implement the power
strategy. However, the platform used (MPCore Emulation Baseboard) does not support
DVFS, it only supports static frequency scaling or dynamic voltage scaling. Therefore
the results do not provide real energy and power consumption results of the dynamic
power strategy. To overcome this, we experiment the strategy on ARM1176JZF-S
platform for real implementation results. In the next section, we present the DVFS based
video power strategy in detail.

3.1.2 DVFS Video Strategy Description

The principle of the adaptation strategy is to control the decoder speed around a frame
rate constraint slightly slower than the average performance in nominal conditions. By
this way, we can set dynamically the minimum processor frequency needed to comply
with the minimum frame rate constraint and save actual amounts of energy, instead of

3.1 INTRODUCTION 45

operating at the worst case maximum frequency. The adaptation is based on changing
the frequency when the frame rate is between two defined thresholds. The number and
values of these thresholds depend on the operating points (frequency/voltage) and on the
performance constraint to satisfy. In the following, we therefore define the thresholds
and the PM strategy for the ARM1176JZF-S platform.

In nominal conditions, the frequency of the ARM1176JZF-S core is 240 MHz. The
supported frequencies are 160 MHz, 215 MHz, 240 MHz and 265 MHz as stated in
section 2.2.2.2. To implement the DVFS video strategy on the ARM1176JZF-S, we
calculate four thresholds derived from the above supported frequencies. Each threshold
‘threshi’ is associated with a given frequency ‘fi’ which is computed as follows:

 threshi = adaptation _ constraint * fnom / fi Eq (4)

In equation (7), fnom is the nominal frequency (240 MHz). The decoder speed is
controlled by the adaptation_constraint. We set an adaptation_constraint lower than the
average frame per second decoded at nominal frequency, the video quality is slightly
decreased alternatively the frequency and power consumption also decreases. This
affects the overall energy consumption of the application. We therefore experiment with
the DVFS strategy for different values of adaptation constraints.

Another important factor of the video PM strategy is to minimize the number of clock
switching as it produces delay and extra energy overhead. We have defined two
variables namely Teval and Tmonitor to control the frequency switching. The frequency for
the strategy is switched every (Teval * Tmonitor) images. The value of these variables is
statically set by the user before executing the video strategy. The frame rate samples are
taken at regular time intervals (every Tmonitor images). Teval is the number of samples
needed to decide about switching the frequency or not, based on the average frame rate
on these samples. The record of Teval number of decoded frames is stored in a table
namely PM_Table. The average fps avg_fps of the PM_Table value for the last (Teval *
Tmonitor) frames is calculated. This avg_fps value is then compared with the pre-
calculated threshi levels. Based on this value, a decision whether to change the
frequency or not is taken. When the average decoder speed for (Teval * Tmonitor) images
remains in a zone delimited by two consecutive thresholds threshi, the processor
frequency is switched to the value associated with this zone.

Chapter 3. DVFS VIDEO POWER STRATEGY 46

We used the Linux CPUFreq to control the frequency of the processor. We have thus
developed a DVFS strategy on top of Linux CPUFreq with the following characteristics.
It handles the switching of operating points (frequency/voltage) with respect to the
decoding speed. It samples the frame rate at regular time intervals (every Tmonitor
images), and makes the decision of switching or not the operating point every
(Teval*Tmonitor) images. In the next section we detail the implementation of the video
strategy on the ARM1176JZF-S platform followed by the experimentation of an H.264
video sequence example.

3.2 DVFS Strategy Implementation and
Experimentation

The ARM1176JZF-S platform support for embedded Linux and detailed knowledge
about hardware and power monitoring registers is already given in section 2.2.2.2.
However, we still have to connect the PB ARM1176JZF-S to the host computer and to
load the developed programs on the platform. Section 3.2.1 details the implementation
procedure of DVFS video strategy and section 3.2.2 provide the power and frame rate
profiles of DVFS strategy on the multithreaded H.264 decoder. Subsequently, in section
3.2.3 we analyze the first obtained results.

3.2.1 DVFS Strategy Implementation

We first connect the PB ARM1176JZF-S platform to a host computer through serial
cable RS232. The commands are given to the platform through the standard Linux
terminal using the Minicom utility [60]. The host computer also contains a shared folder
(Arm) that contains the cross compiled executable files and sample videos for execution
on the ARM1176JZF-S platform. The Arm folder also contains a script that automates
all the measurement procedure and functions.

At the start, the script adds the developed power monitoring driver consumption_ARM11
to the ARM1176JZF-S platform. The consumption_ARM11 contains functions to read
the current and voltage values from the Virtex-4 FPGA controlling the programmable
power supply in the ARM1176JZF-S platform. The registers used for this purpose as
well as the formula to calculate power is explained in section 2.2.2.2. The
consumption_ARM11 reads and calculates the processor power consumption from these

3.2 DVFS STRATEGY IMPLEMENTATION AND
EXPERIMENTATION 47

 registers. This value is transferred to the Linux terminal console on the host computer to
be saved in a file for further analysis. The driver also calculates the mean power from the
start to end of its execution. Secondly, we have written a PM frequency function
(PM_driver) containing user functions to change the frequency dynamically with the
help of Linux CPUFreq. The CPUFreq contains a governor (Userspace) that can be
used to dynamically change CPU frequency. The PM_driver also contains functions to
initialize the frequency to the nominal as well to a user given value. However, the values
should correspond to the built-in available frequencies of the ARM1176JZF-S, otherwise
it does not change the frequency and give an error message. Thirdly, we use
PM_scheduler containing code for the power strategy described in section 3.1.2. The
PM_scheduler uses the PM_driver to change frequency when required based on the
PM_Table. The number of frequency switching is saved in a file for analysis along with
the total energy consumption.

3.2.2 Power and Frame rate profiles

We start the experimentations by monitoring the performance of a 1 minute 20 seconds
video sequence at nominal condition on ARM176JZF-S platform (at 240 MHz). The
video sequence is decoded at an average speed of 11.6 fps as shown in figure 3.3 (blue
dotted line). The video sequence consumes 52 Joules. Afterwards, we changed the
adaptation_constraint as stated in section 3.2.1. The value of Teval is chosen as 5 and
Tmonitor is initialized to 50. Therefore, a decision to either switch frequency or not is
taken after 250 (5 x 50) frames. The power and frame rate profiles of the video
sequences are given in figure 3.1 to figure 3.4, for adaptation_constraint of 8, 9, 11 and
16 fps respectively. The figures show traces of the original (full red lines) and regulated
(dotted blue lines) frame rate, as well as the trace of power consumption. On the power
profiles (lower part of each figure), we can clearly observe different frequency domains,
thus the DVFS switches that can be identified by distinct zones of stable values.

Chapter 3. DVFS VIDEO POWER STRATEGY 48

Figure 3.1: Power and frame rate profiles for adaptation_constraint of 8 fps.

Figure 3.2: Power and frame rate profiles for adaptation_constraint of 9 fps.

3.2 DVFS STRATEGY IMPLEMENTATION AND
EXPERIMENTATION 49

Figure 3.3: Power and frame rate profiles for adaptation_constraint of 11 fps.

Figure 3.4: Power and frame rate profiles for adaptation_constraint of 16 fps.

Chapter 3. DVFS VIDEO POWER STRATEGY 50

Figure 3.1 shows the power profile for adaptation_constraint of 8, where video is
decoded in 228 seconds. For an adaptation constraint of 8 fps, we have the following
thresholds: 12.00, 8.93, 8.00 and 7.25 fps defined respectively for 160, 215, 240 and
265 MHz. When the decoder speed remains in a zone delimited by two consecutive
thresholds during the last 250 (5 x 50) frames, the processor frequency is switched to the
value associated with this zone. As an illustration, if the average frame rate is between
7.25 and 8.00 fps during last 250 frames, the operating point is set to 160 MHz. When
the decoder speed is between 8 to 8.93 fps, frequency is switched to 215 MHz. In figure
3.1, we can see three frequency switches along with the corresponding switch in power
consumption profiles.

Figure 3.2, figure 3.3 and figure 3.4 show the respective frame rate and power profiles
for adaptation_constraint of 9, 11 and 16 fps respectively. The values of threshi are
calculated separately for each case and a frequency switch occurs based on these values.
Figure 3.2 shows three frequency switches and three similar levels for corresponding
power switch. In figure 3.3, we have an adaptation_constraint equal to average frame
rate at nominal frequency, therefore, there is no switch. In case of figure 3.4, we have
chosen larger adaptation_constraint to observe the behavior of the PM video strategy. In
this case, there is one frequency switch and a corresponding single shift in power
consumption level. In the next section, a detailed analysis of these results along with the
energy consumption is given.

3.2.3 Energy Consumption Analysis

The performance profiles of figure 3.1 to figure 3.4 allow comparing the evolution of the
decoder performances at 240 MHz (full red line) versus scaling frequency (dotted blue
line) at different adaptation constraints of 8, 9, 11 and 16 respectively. In table 3.1, a
summary of total energy consumption for different values of adaptation_constraint for
the above video sequence is given. We also record the total decoding time, mean power
and time per frames to better analyze the behavior of the PM strategy.

3.3 FURTHER INVESTIGATION OF ENERGY SAVING
CONDITIONS 51

Table 3.1: Performance Analysis table for ARM1176JZF-S

Adaptation
constraint

Mean
Power
(mW)

Total
Energy
(Joules)

Time /
Frame
(ms)

Time
(s)

Fps

Energy
Gain (%)

No 311 52 86.4 168 11.6 0
4 262 64 126.1 244 7.9 - 23
8 270 62 117.6 228 8.5 - 19
9 290 56 101.4 196 9.9 - 8
11 311 52 86.5 168 11.6 0
16 325 50 81.2 157 12.3 4

Surprisingly, these results show an increase in energy utilization when the adaptation
constraint is 4, which is the lowest performance level. As an illustration, the decoder
speed for an adaptation constraint of 4 limits the decoder to stay in a zone limited by
thresholds of 3.62 to 4.0 fps, so that the decoder uses the lowest available frequency
(thus power level). Hence a decrease in energy utilization is expected, but it is not the
case because the execution time has also increased in great proportion and this is directly
linked to the operating point's characteristics.

In the next section, we investigate the above hypothesis by experimenting with the video
power strategy on a QEMU platform, in order to analyze the effect of changing the
operating points.

3.3 Further Investigation of Energy Saving Conditions

To complement previous results on the ARM1176JZF-S platform, we implement the
video power strategy on the QEMU platform. The negative energy gains obtained are
probably due to the different power level consumption associated with the respective
frequencies. The differences of power level in consecutive operating points are small for
the target platform we have used. The ARM1176JZF-S platform does not allow us to
change the operating points, as they are provided by the vendor. Therefore, in order to
evaluate the surprising energy consumption behavior, we analyze the video strategy by
changing the power levels with the help of the virtual platform. In the following section,
we start this investigation by setting the virtual platform in different operating point
configurations.

Chapter 3. DVFS VIDEO POWER STRATEGY 52

3.3.1 Operating Point Set up on the Virtual Platform

The purpose of using the virtual platform is to define more efficient operating points and
to check the impact on energy. Figure 3.5 shows the power levels associated with each
frequency for ARM1176JZF-S platform as well as different configurations of QEMU
platform. We must emphasize here that the measures are made on a versatile platform
baseboard, which is for the early prototyping purpose and has performance limitations
(especially concerning operating frequencies). A production device will have different
characteristics, so the conclusions concerning the efficiency of operating points on
ARM1176JZF-S cannot be generalized.

Figure 3.5: Frequency and load power consumption of QEMU platform.

We set up the QEMU platform in several configurations with respect to different
operating points. A configuration for the ARM1176JZF-S is a set of four operating
points, one for each frequency and its corresponding power consumption levels. As an
illustration, for each available frequency of 160, 215, 240 and 265 MHz, the
corresponding power levels with and without load are defined in the QEMU
configuration file. These will be the operating points for the video power strategy. We
have thus set three other configurations that are reported in figure 3.5. The choice of

3.3 FURTHER INVESTIGATION OF ENERGY SAVING
CONDITIONS 53

these points depends upon the power level associated with each frequency. The power
strategy relies on nominal frequency (240 MHz in this case), so we fix this point as
reference and increase the power level gap between the subsequent upper and lower
frequencies. We have set three configurations derived from the original ARM1176JZF-S
operating points, but with increased power levels.

3.3.2 Accuracy and Behavior of Virtual Platform Estimations

Several different videos are allowed to run on both platforms to check the performance
and energy consumption behavior. We analyze the energy and performance behavior for
every frequency individually. Similarly, the energy consumption for the video sequence
(flavors_cut) is also considered for comparison of these platforms. The energy
consumption for video sequence (flavors_cut) on ARM1176JZF-S is 52273 mJ and on
the virtual QEMU platform is 52109 mJ at a nominal frequency (240 MHz). The time
taken to decode on real and virtual platform are 167.4 and 168 ms respectively. These
results and simulations for several test videos show that both the platforms perform,
approximately, similar behavior in terms of energy consumption and performance. There
is a negligible error of 0.035% in timing analysis. Similarly, the energy consumption is
also approximately, similar on both platforms with an error of 0.31%.

To better understand the effect of different operating point configurations, we also
analyze the platforms behavior statically (fixed frequencies) and without using the
DVFS power strategy. The total energy consumption by decoding a short video sequence
of 300 frames (namely foreman) for each available frequencies (160, 215, 240 and 265
MHz) is shown in table 3.2. The energy consumption in case of Config1 is 14 J at
265 MHz and 15.3 J at 160 MHz. This implies that when frequency is decreased, the
energy consumed by the application is increased. Similarly, in case of ARM1176, we
have an energy consumption of 13.4 J at 265 MHz and 16.6 J at 160 MHz (same
behavior as previous Config1). In both cases lowering the frequency increases the energy
consumption.

Chapter 3. DVFS VIDEO POWER STRATEGY 54

Table 3.2: Frequency vs. Energy for video Foreman (300 frames).

Frequency
(MHz)

Energy (Joules)

Config1 Arm1176 Config2 Config3

160 15.3 16.6 12 6.2

215 14.4 14.6 13.1 11.1

240 14.2 14.2 14.2 14.2

265 14 13.4 14.6 15.8

However in case of Config2 , the energy consumption measured at 265 MHz is 14.6 J
and at frequency of 160 MHz is 12 J. This implies a decrease in energy consumption for
a decrease in frequency. Similarly, for Config3 we have energy consumption of 15.8 J
and 6.2 J respectively, for the frequency of 265 MHz and 160 MHz. In both cases,
lowering the frequency decreases energy consumption. From these observations we can
conclude that for platform configurations Config1 and ARM1176, lowering the
frequency does not result in energy gains. Conversely, Config2 and Config3 provide
energy gains. In the following analysis, we have further investigated this behavior and its
causes but using the dynamic video power strategy.

3.3.3 Results and Discussion

We start by evaluating the DVFS video power strategy with the different operating point
configurations and observe the overall performance and energy consumption for
different adaptation_constraint. Figure 3.6 shows energy consumption for the video
sequence (flavors_cut) at different adaptation constraints under different platform
configuration. In figure 3.6, we can clearly remark that the energy consumption is
increasing for platform configurations Config1 and ARM1176, while decreasing for
Config2 and Config3. This is contradictory because the level of video quality decreases
the frequencies at which the processor operates and would logically succeed in saving
energy. This is not the case and the negative energy gains obtained are due to the fact
that differences of power consumption in consecutive operating points are too small for
the case of ARM1176 and Config1 as shown in table 3.3. Because of this, power
reduction does not compensate the increase of execution time resulting from frequency
reduction.

3.3 FURTHER INVESTIGATION OF ENERGY SAVING
CONDITIONS 55

Figure 3.6: Energy consumption vs. Adaptation constraint.

As an illustration, the differences of power level between the consecutive frequencies of
240 MHz and 215 MHz for Config1 and ARM1176 are 30 mW and 20 mW respectively.
This power level gap is not enough to compensate the execution time increase implied
from 35 MHz downscaling. On the contrary, the same differences of power level for
Config2 and Config3 are 50 mW and 90 mW respectively as indicated in table 3.3.
Therefore we can see the energy gain is more significant as this gap increases as shown
in figure 3.6.

Table 3.3: Frequency and load power consumption for different configuration of
QEMU platform.

Frequency
(MHz)

Load Power (mW)
Config 1 ARM1176 Config 2 Config 3

160 230 250 180 90
215 280 290 260 220
240 310 310 310 310
265 345 330 360 390

Chapter 3. DVFS VIDEO POWER STRATEGY 56

Similarly, the power level gap between frequencies 160 MHz and 215 MHz for Config1
and ARM1176 is 50 mW and 40 mW respectively, whereas the corresponding gap for
Config2 and Config3 is 80 mW and 120 mW respectively. Again the energy is gained in
case of Config2 and Config3 as shown in figure 3.6. This also means that not all
platforms will provide energy gains when reducing dynamically the frequency and that
the characteristics of operating points have a key impact on the efficiency of a DVFS
strategy. This is the case on the Versatile Baseboard ARM1176JZF-S used for the
experiments, for which decreasing the frequency increases the energy consumption.
Thus the differences of power level between consecutive frequencies of the processor
have important effects on energy consumption.

Secondly, the energy gain depends on the request of video quality (in terms of decoding
speed required); the more quality, the less energy gains. In this case the
adaptation_constraint controls the decoder speed, at low speed the decoder consumes
less energy. Figure 3.7 summarizes the corresponding energy consumption in joules for
the H.264 decoder in different platform configurations as well as at different
adaptation_constraint. Figure 3.7 shows that the power strategy provides gains that are:

 1. -2.05%, -6.46% and -8.54 % for Config1,
 2. -4.1%, -14% and -17.5% for ARM1176,
 3. +3.82%, +13.28% and +15.39% for Config2,
 4. +13.6%, +46.55% and +57.68% for Config3.

3.4 CONCLUSION 57

Figure 3.7: Energy vs. adaptation_constraint for different platform configurations.

The gain depends upon different adaptation_constraint (4, 6 and 8 respectively) for each
different platform configurations. The results are coherent with the previous works and
the results of the same DVFS strategy on a multi-core platform (MPCore Emulation
Baseboard) that have reported energy gains from real measures, between 9.7% and
30.6% [57].

3.4 Conclusion

We have presented and analyzed the effectiveness of a DVFS power strategy dedicated
to video decoding on an ARM1176JZF-S platform. Putting aside the energy gains, these
results show that DVFS can be effective under certain conditions. In some cases
decreasing frequency can actually increase the energy consumption. The operating
points play an important role in the efficiency of a DVFS based power strategy. The
differences of power between consecutive frequencies of the processor have important
effects on energy consumption. In case of the Versatile Baseboard ARM1176JZF-S used
for the experiments, the differences of power level between consecutive frequencies are

Chapter 3. DVFS VIDEO POWER STRATEGY 58

too small and result in an increase of energy consumption when scaling down the
frequency. However, we have shown that if this gap is larger for two consecutive
frequencies, there is a point where the energy gain becomes effective.

The research presented in this chapter is implemented on the real ARM1176JZF-S and
on the virtual QEMU platform, to be able to consider different characteristics (matching
those of ARM processors). The values provided on real and virtual platforms were equal
in energy consumption (only 0.3% deviation). Using the virtual platform, we thus
explored the effect of operating point characteristics on the efficiency of a DVFS
strategy. It has been shown that the power level gaps should compensate the execution
time increase resulting from a frequency decrease, in order to grant the energy gains.
Under these conditions, the power strategy provides gain that ranges up to 57.68%
depending upon the adaptation constraints.

The above work summarizes our discussion of the first DVFS based video power
strategy. We would now switch to analyze the second DVFS based power strategies (i.e.
DSF) on respective platform (i.e. ARM1176JZF-S, QEMU) in order to explore its
effectiveness in the real development world. In addition, we further analyze the impact
of operating points for the second DVFS strategy, and explore if generalization is
possible and at which conditions.

Chapter 4. DSF POWER STRATEGY 60

Chapter 4 : DSF POWER STRATEGY

4.1 Introduction

In real-time systems, the use of variable frequency and voltage of a processor has a
direct impact on processor’s speed and consequently, on the ordering and the execution
of tasks. Hence, scheduling techniques and voltage/frequency selection mechanisms are
tightly coupled and should be addressed together to ensure the feasibility of application
tasks under timing constraints. Real-time applications potentially exhibit variations in
their Actual Execution Time (AET) and as a result, often finish earlier than their
estimated Worst-Case Execution Time (WCET). DVFS techniques can exploit these
variations to adjust the frequency and voltage of processors to reduce power and energy
consumption (section 2.1.5). However, one of the challenges of these techniques is to
preserve the feasibility of scheduling and provide deadline guarantees.

Experimentation with a second DVFS based strategy called Dynamic Stretch to Fit
(DSF) is detailed in this chapter. DSF strategy is shown to be able to make significant
energy savings while providing the required efficiency (real time scheduling). We detail
the effects of this DVFS based power strategy on both single and multicore platforms.
The experimentations are carried out with mainly three objectives in mind: (a) to check
the effectiveness of the DSF power strategy on the ARM1176JZF-S platform and the
two virtual platforms, (b) to characterize the range of energy gains from application
parameters and (c) to analyze the effect of platform characteristics on the efficiency of
the DSF strategy. The corresponding energy gains are presented in the results section.

We present the analysis study of the DSF strategy in the following manner. Section 4.1.1
describes the DSF strategy in detail. Section 4.1.2 provides information about the
examples used for the experimentation. Section 4.2 is divided into three parts: section
4.2.1 explains the implementation of the DSF strategy, section 4.2.2 focuses on the
experimentation of DSF using ARM1176JZF-S and in section 4.2.3 we put light on the
effects of varying different application parameters on the energy savings. Afterwards, in
section 4.3.1 we show the results of energy gains by experimenting with the DSF
strategy in different multiprocessor configurations and in section 4.3.2 we give an
analysis of these results. At the end, we present our conclusions in section 4.4.

4.1 INTRODUCTION 61

4.1.1 DSF Strategy

The DSF low power technique uses Dynamic Slack Reclamation algorithm (DSR) as the
principal slack reclamation algorithm. The AET of tasks within an application is always
less or equal to the WCET. These differences produce time slacks by the current tasks to
be used by the following tasks. The DSR algorithm assigns dynamic slack produced by
the current tasks to the next priority ready tasks. This allocation provides more time for
the new ready tasks, therefore the processor speed can be changed. Using DSR
algorithm, the slack is fully consumed on the same processor by the task to which it is
once attributed. Such allocation allows the DSR algorithm to have a large slowdown
factor for scaling frequency and voltage for a single task, which eventually results in
improved energy savings. DSR works in conjunction with global scheduling algorithms
on symmetrical multiprocessor real time systems. The algorithm exploits the fact that
distinct scheduling events have a different impact on an application's schedule. For
instance, a terminating job may produce dynamic slack, but it does not increase
concurrent utilization of the platform’s resources and therefore, can only update the
priority order of remaining ready tasks. A release event, on the other hand, increases the
simultaneous platform utilization and may cause preemptions as well. This difference in
the impact of scheduling events is exploited by DSR. At every scheduling event, the
dynamic slack (difference between the AET and WCET) produced by the current tasks,
is added to the WCET of the next ready tasks. By this way revised WCET for the new
tasks (on the same processors) are calculated. Hence, novel frequency is calculated
based on the updated WCET, and the tasks are allowed to run with the lowered
frequency. This decreases power consumption and impacts the total energy
consumption.

The next section presents a description of various examples used in our work.

4.1.2 Application Examples

To experiment with the DSF strategy, we created five distinct application examples for
four different platform configurations. Example 1 (see Table 4.1) is used to test the
scheduling accuracy and energy savings of the DSF strategy for the ARM1176JZF-S and
QEMU_ARM1176 platforms (single processor configuration). Example 1 is also used
for the evaluation of energy savings on the QEMU_CortexA9 platform. Afterwards, we

Chapter 4. DSF POWER STRATEGY 62

use three other application examples (Example 2, Example 3 and Example 4) to
experiment with the DSF strategy in a multiprocessor configuration. In the end, we also
experiment the DSF strategy on an H.264Encoder which is the application use case of
the COMCAS project. The main parameters used in these examples are listed in table
4.1.

Table 4.1: Examples used for experimentation of DSF strategy

 Example 1 Example 2 Example 3 Example 4 H.264Encoder
Task 2 4 6 8 4

 WCET BCET WCET BCET WCET BCET WCET BCET WCET BCET
T1 5.5 2 5 2 5 2 4 1 20.63 5.65
T2 4.5 3 4 3 6 3 5 1.5 20.63 5.65
T3 3.2 1.5 7 4 6 2 8.25 3.38
T4 3.4 2.5 4 2 7 2.5 5.78 1.81
T5 4.2 3 3 1
T6 4.5 4 3.2 1.5
T7 3.4 2
T8 3.5 2.5

Note: Here time is in 10-1seconds.

Example 1 is composed of two tasks with the parameters specified in table 4.1. It is
defined specifically for a single processor configuration. The AET of task T1 is taken
between BCET and WCET with different values (i.e. 2, 2.6, 3.3, 4, 5, 5.5 10-1s) to
characterize the range of energy gains. The AET of task T2 is fixed at an average value
between BCET and WCET. By this way, we have a variation of slack produced by the
difference of AET and WCET of task T1 that allows to measure the range of energy
consumption. For ease of implementation, we choose deadlines of tasks equal to their
periods in most cases.

Example 2 consists of four tasks for the execution on a configuration of two processors.
We choose different AET for tasks T1 and T2 in a similar way as for the task T1 of
Example 1. The difference between the values of AETs and WCETs for the
corresponding tasks T1 and T2 produce different slacks. These slacks are added to the
WCET of tasks T3 and T4 respectively by the DSF strategy. Example 3 contains six
tasks for the execution on three processors and Example 4 contains eight tasks for the
execution on four processors. In Example 3 we vary the AET for the tasks T1, T2 and T3

4.1 INTRODUCTION 63

that produce slacks for the tasks T4, T5 and T6. Similarly in Example 4, we change AET
of tasks T1, T2, T3 and T4 that produce different time slacks for the tasks T5, T6, T7
and T8.

The DSF strategy is then applied to the video H.264Encoder example. It should be noted
that the H.264Encoder is not the real encoder application. It is a task model provided by
Thales group for our experimentations. It consists of four tasks T1, T2, T3 and T4,
where T1 and T2 are tasks used for motion estimation. T3 is used for intra prediction,
texture encoding and syntax writing. T4 is a post processing filter. A graphical
presentation of this task model is presented in figure 4.1. The first two tasks should be
completed in parallel, however tasks T3 and T4 can be completed afterwards. This is
controlled by the deadline of these tasks as shown in figure 4.1. Here T1 and T2 have
deadline of 21 ms, T3 has a deadline of 31 ms and for T4 is 40 ms. The period is fixed to
40 ms for all tasks.

Figure 4.1: Thales Task model of H.264 Encoder.

In normal cases, tasks within an application execute with random values of AET
between their BCET and WCET. However, we use static values of the AET for the
execution of these examples. This allows us to have a same sequence of scheduling

Chapter 4. DSF POWER STRATEGY 64

events with and without the DSF strategy. In addition, the total execution time of the
application is also not affected and provides the required deadline guarantees as well.
This is needed in order to compute the relative energy savings with and without using
the strategy, in the most comparable conditions of execution. In the next section, we
present the actual implementation and experimentation of the DSF power strategy.

4.2 DSF Implementation and Experimentation

This section describes the actual experimentation of the DSF strategy on ARM1176JZF-
S and QEMU platforms. We start by describing the DSF strategy implementation for
these platforms in section 4.2.1. The accuracy of virtual platforms has already been
presented in chapter 3 for several test applications. In section 4.2.2, we experiment with
the DSF strategy to observe the energy gains for a single processor configuration.
Afterwards in section 4.2.3, we analyze the effects of different application parameters
(slack time, simulation duration, time granularity of tasks) on energy consumption and
correctness of scheduling results.

4.2.1 DSF Implementation

We implement the strategy using the DSF_Scheduler code. It is based on a user space
Linux scheduler developed at LEAT and described in [53]. It uses Linux and POSIX
thread APIs to perform a schedule of tasks under deadline and priority constraints. With
the association of Linux DVFS drivers (CPUFreq), this scheduler is able to apply a
multitask, multiprocessor DSF strategy on any execution platform, provided it supports
Linux and the required APIs (POSIX, CPUFreq, CPU affinity).

The DSF_Scheduler uses the respective PM_Driver for each platform to change the
frequency based on the DSR algorithm. We use the previously defined PM_Driver used
for the video strategy implementation. In case of QEMU_CortexA9, we modify the
QEMU PM_Driver to use the frequencies of the CortexA9 processor. The
DSF_Scheduler also uses the previously defined power driver (consumption_ARM11) to
monitor the power of the ARM1176JZF-S core. The scheduler loads the
consumption_ARM11 driver at the start of the application and unloads it after its
completion. The consumption_ARM11 returns the mean power and time taken by the
application during this period. The energy consumed by the application is calculated by

4.2 DSF IMPLEMENTATION AND EXPERIMENTATION 65

 the DSF_Scheduler and is sent to the console for analysis. In case of QEMU platforms,
the DSF_Scheduler relies on QEMU built-in functions for power monitoring and energy
calculation (section 2.2.2.3 and section 2.2.2.4).

4.2.2 Experimentation on a Single Processor

The experimentation results of the DSF strategy using Example 1 are shown in table 4.2
and in figure 4.2. The QEMU platforms are configured for a single processor. We first
focus on providing comparative gains for the ARM1176JZF-S and QEMU_ARM1176
platforms. The percentage of energy gain is calculated by comparing the energy
consumed by the application with and without the use of the DSF strategy. The energy
consumption, mean power, execution time and the percentage of energy gain for
different values of AET on both platforms are reported in table 4.2. These values are
obtained by changing the AET of task T1 between BCET and WCET as stated in section
4.1.2. This allows the processor to switch between different frequencies, providing
different value of energy consumptions.

Table 4.2: Energy consumption of Example 1 on ARM1176JZF-S and
QEMU_ARM1176 platform.

 ARM1176JZF-S QEMU_ARM1176

AET Energy

(mJ)

Mean
Power
(mW)

Time
(sec) % Gain

Energy
(mJ)

Mean
Power
(mW)

Time
(sec)

% Gain

Conf 1 2730.72 323 8.809
17.73

2722.29 309 8.81
17.80 2246.48 256 8.81 2237.74 254 8.81

Conf 2 2792.58 323 8.809
11.04

2783.96 316 8.81
11.39 2484.3 281 8.81 2466.8 280 8.808

Conf 3 2801.42 323 8.809
11.10

2792.77 317 8.81
11.15 2490.47 287 8.81 2481.47 282 8.809

Conf 4 2810.25 323 8.809 7.83 2801.58 318 8.81 7.86 2590.11 294 8.81 2581.33 293 8.81

Conf 5 2819.09 323 8.809 4.06 2810.39 319 8.81 4.08 2704.64 307 8.81 2695.86 306 8.81

Conf 6 2845.6 323 8.809
0.00

2836.82 322 8.809
0.00 2845.6 323 8.809 2836.82 322 8.81

Chapter 4. DSF POWER STRATEGY 66

For each configuration Confn, the upper value represents the energy consumption of the
application itself without power strategy, while the lower value is the energy using DSF.
The results show that we can have a gain varying between 4.06% and 17.73% for the
ARM1176JZF-S platform and 4.08% to 17.81% for the QEMU_ARM1176 platform. It
should be noted that we use operating points of ARM1176JZF-S for the
QEMU_ARM1176 platform throughout the experimentation.

We then implement the DSF strategy on the QEMU_CortexA9 platform and start
experimenting with Example 1. Figure 4.2 summarizes the percentage of energy gain for
various values of AET and for all the three platforms.

Figure 4.2: Percentage Energy gains for Example 1 on different platforms.

The energy consumptions (as well as the percentage of gains) are not the same for the
CortexA9 and ARM1176. This distinct energy behavior is probably related to different
operating points of these different platforms and is further analyzed in section 4.3.2. The
results also show that we can have a gain varying between 1.56% and 31.27% for the
QEMU_CortexA9. It should be noted that the percentage of energy gains for the
ARM1176JZF-S baseboard and QEMU_ARM1176 platform are almost equal, having a
negligible error of 0.3% as seen previously (hence this further confirm the virtual
platform accuracy).

4.2 DSF IMPLEMENTATION AND EXPERIMENTATION 67

4.2.3 Experimentation with Application Parameters

Before analyzing the results of the DSF strategy on a multiprocessor example, we first
explore the effects of varying application’s parameters on a single processor. There are
many parameters that can vary from one application’s execution to another. These
parameters may affect the scheduling behavior and/or the energy consumption by the
applications. For instance, such a parameter in our examples is simulation time which is
used for calculating the energy consumption by an application. Certain applications may
require more time to complete their execution than others (like video sample of 100
frames vs. sample of 1000 frames), therefore changing simulation time may affect their
energy consumption. Moreover, this can also cause influence on energy savings as larger
simulation time may introduce additional frequency switching and computational
overhead by the power strategy. Therefore, we first explore the effect of changing the
total simulation time for Example 1 that also helps us to evaluate the DSF strategy for
other applications. Secondly, as the switching of frequency also imposes actual time
penalties in real systems, therefore we define the application's parameters using different
units of time (i.e. 10-3, 10-2, 10-1, 100 seconds) to see the influence of these solutions of
task execution time (referred as time granularity of tasks in the following) on the
efficiency of strategy.

We explore the effect of changing the total simulation time by the following procedure.
First, we calculate maximum percentage of energy gain for Example 1, by fixing the
AET of task T1 to BCET and note down the energy consumption with and without the
DSF strategy. Secondly, we use a variable loop to control the number of iterations of the
tasks T1 and T2, so that the total simulation time of the application can be changed.
Thirdly, we note the percentage of energy gains for different values of loop on both
ARM1176JZF-S and QEMU_ARM1176 platform for Example 1.

Chapter 4. DSF POWER STRATEGY 68

Figure 4.3: Percentage of Energy Gain vs. Application parameters.
Results in figure 4.3a show that although the total energy consumption with and without
the DSF strategy changes, however, the percentage of energy gain is not affected by the
different values of the loop variable. We then analyze the effect of decreasing the time
granularity of tasks on the efficiency of DSF. Figure 4.3b shows that when the execution
time of tasks is close to a certain limit (10-3s), the percentage of energy gains decreases
significantly. In other words, the strategy becomes inefficient and this is clearly because
the delays for changing processor frequency, which is typically in the order of
magnitude of a few hundred of microseconds. Task's definitions below a certain time
limit (i.e. 10-3s) provide abnormal scheduling behavior, as well as false energy
consumption. However, the behavior of the DSF strategy can be considered as correct
for values of time granularity higher or equal to 10-2s.

In the following DSF experiments, we choose different values for simulation time
(different values for the loop variable) and consider task granularities higher than 10-2s
in order to neglect the delays of changing frequency.

4.3 RESULTS AND ANALYSIS 69

4.3 Results and Analysis

4.3.1 Multiprocessor Energy Savings

We experiment with four other application examples to analyze the energy savings and
to verify the correctness of DSF execution on the multicore platforms. The results of
energy gains for the different applications (i.e. Example 2, Example 3, Example 4 and
H.264Encoder) using DSF strategy are shown in figure 4.4. We use distinct
configurations of the platforms for each application as stated in section 4.1.2. We
implement the examples using only the QEMU based platforms as the ARM1176JZF-S
is not a multiprocessor platform.

Figure 4.4: Energy gains on QEMU_ARM1176 (blue) and QEMU_CortexA9

(green) platforms for different applications and platform configurations.

Chapter 4. DSF POWER STRATEGY 70

Figure 4.4a shows energy gains of Example 2 varying between 3.99% and 12.89% for
QEMU_ARM1176 (blue) and between 1.96% and 22.93% for QEMU_CortexA9
platform (green). Figure 4.4b shows the energy gains of Example 3 ranging from 3.08%
to 12.69% for QEMU_ARM1176 and 0.65% to 24.92% for QEMU_CortexA9 platform.
Energy gains for Example 4 is between 4.16% and 15.76% for QEMU_ARM176 and
between 3.12% and 38.59% for QEMU_CortexA9 as shown in figure 4.4c. Figure 4.4d
shows the results of the DSF strategy on the H.264 video encoder model with energy
savings ranging between 5.93% and 16.70% on QEMU_ARM1176 and between 10.21%
and 51.46% on QEMU_CortexA9 platform.

The scheduling and performance of the applications, with and without the DSF strategy
are correct on both platforms. However, it should be noted that we have bigger
percentages of energy gains for QEMU_CortexA9 compared to QEMU_ARM1176. This
behavior is present for all five examples. The next section explores this effect in detail
for these platforms.

4.3.2 Analysis of Results

The different energy gains for QEMU_ARM1176 and QEMU_CortexA9 are strongly
related to the operating points of these platforms. The power levels of each frequency
with and without load are given in table 4.3 for each platform. The differences in power
levels between frequencies are quite different on these platforms and this impacts the
energy efficiency of the power strategy. DSF strategy allows dynamically changing
between maximum and minimum frequency values depending upon the slack produced
by a previous task and the WCET of the next task (see section 4.1.1). The different
power consumptions of distinct platforms have power level gaps between consecutive
operating points that are not the same. This gap plays an important role in energy
consumption for these platforms. For instance, when the frequency is downscaled on
QEMU_CortexA9 from 1000 MHz to 300 MHz (i.e. maximum to minimum), we can
clearly see that the power gap is 125 mW (Load = 177, Idle = 52). However, the same
power gap for downscaling the frequencies from 265 MHz to 160 MHz (maximum to
minimum) on QEMU_ARM1176 is 51 mW (Load = 80, Idle = 29). Hence, a larger
power gap provides more energy savings and that is why QEMU_CortexA9 to have
significantly bigger gains as compared to QEMU_ARM1176 platform.

4.4 CONCLUSION 71

Table 4.3: Power profile of QEMU_ARM1176 and QEMU_CortexA9 platform.

Platforms Frequency
MHz

Power (Idle)
mW

Power (Load)
mW

QEMU_ARM1176

160 223 250
215 238 290
240 245 310
265 252 330

QEMU_CortexA9
300 38 143
600 60 215

1000 90 320

Another effect seen in figure 4.4 is higher energy gains for H.264Encoder. The reason of
different energy gains is due to the downscaled frequency by an application on these
platforms. The required frequency is chosen from the available frequencies of the
platform. If the calculated frequency is a value between the two available frequencies,
the one with the higher value is chosen to provide deadline guarantees and this can cause
different energy consumption for different applications. As an illustration, if we
precisely analyze the scheduling and frequency switches of Example 2, we observe that
the processor frequency downscales to a minimum value of 160 MHz in case of
QEMU_ARM1176. However, the same Example 2 downscale the frequency to 600 MHz
for QEMU_CortexA9. Therefore, we conclude that we can have a further margin of
energy gains for some applications for QEMU_CortexA9 that can downscale the
frequency to 300 MHz. This is the case of the H.264Encoder example, where we have
larger gains in comparison to Example 2 (Figure 4.4) for the same number of processors.

4.4 Conclusion

We have presented and analyzed the effectiveness of a DVFS based low power
scheduling strategy on various applications (including video encoding) on different
platforms. The results of the DSF strategy on real ARM1176JZF-S and the virtual
prototype of ARM11 (QEMU_ARM1176) provided correct scheduling and execution
with a negligible deviation of 0.3% of energy consumption and provided energy gains
around 18%. We have also validated the efficiency of DSF strategy on multicore
platforms (i.e. QEMU_ARM1176 and QEMU_CortexA9) with significant energy gains
ranging between 0.65% and 51.46% under different operating conditions. In addition,

Chapter 4. DSF POWER STRATEGY 72

the experimentations revealed the limits of the DSF scheduler that it is efficient for
execution time granularity of greater than 10-2 seconds due to switching delays.

Furthermore, we have lightened the important effect of operating points that influence
greatly the amount of energy gains. The experimentation pointed out that the CortexA9
model due to efficient power consumption (low Idle vs. load power) provided more
energy savings in comparison to the ARM11 model. Therefore, we can conclude that
efficiency of any DVFS based strategy is highly dependent upon the Idle vs. load power
levels of a processor. Besides, our experimentations also indicated the dependence of
energy gains on application parameters, as larger dynamic slack provided higher energy
savings. In addition, we also pointed out that the energy gains of a particular application
on two different platforms can be different due to distinct values of available
frequencies.

In the next chapter, we target a DPS based strategy in order to check the conditions of its
applicability on real systems, and eventually compare the efficiency of DVFS vs. DPS
based strategies.

Chapter 5. ASDPM POWER STRATEGY 74

Chapter 5 : ASDPM POWER STRATEGY

5.1 Introduction

This chapter focuses on the analysis of a dynamic low power strategy called Assertive
Dynamic Power Management (AsDPM) on ARM platforms. The AsDPM strategy
considers mainly the processors for power and energy consumption optimization during
the execution of a certain application. It works on the principle of admission control for
ready tasks, by delaying the execution of ready tasks as much as possible. This controls
the maximum number of active/running processors in the system at any time instant. The
availability of ready tasks during the execution of a program is random. The choice to
when exactly a ready task is executed on certain processor and how many processors are
required for the remaining tasks can save a significant amount of energy consumption.
This chapter focuses on the energy efficiency of the AsDPM strategy for real-time tasks,
which decides when exactly a ready task shall execute thereby reducing the number of
active processors, which eventually reduces energy consumption.

AsDPM technique is shown to be able to bring significant energy savings, while
satisfying real time constraints for different applications in embedded systems. The
strategy is particularly designed to be used in a multiprocessor environment, therefore
we experiment it using the QEMU based multicore platforms. Several example
applications are experimented on both QEMU_ARM1176 and QEMU_CortexA9
platforms to analyze the energy savings and to explore the efficiency of the AsDPM
strategy. Moreover, we analyze the results of energy gains from the experimentation of
the AsDPM power strategy in different platform and application configurations. In
addition, we compare the AsDPM and DSF strategies for the same set of examples to
provide an effective evaluation. For this reason, we initially used same examples defined
previously in chapter 4, unfortunately the examples do not provided enough results.
Therefore, we define new set of examples so that we have a better evaluation and
detailed energy analysis of these strategies for each distinct platform configurations. By
this way, we are also able to provide several conditions for the applicability of the DVFS
and DPS strategies.

5.1 INTRODUCTION 75

We experiment and analyze the AsDPM multiprocessor strategy in the following
manner. Section 5.1.1 describes the AsDPM strategy in detail. Section 5.1.2 provides
information about the examples used for the experimentation. Section 5.2 is divided into
three parts: (a) section 5.2.1 explains the implementation of the AsDPM strategy, (b)
section 5.2.2 focuses on the energy savings provided by the AsDPM strategy and (c)
section 5.2.3 presents an analysis of results and energy saving conditions. In section 5.3,
we compare the results of energy gains of the AsDPM strategy with the DSF strategy.
Section 5.3.1 presents the results of energy gains by the DSF strategy for the new set of
examples. In section 5.3.2, a comparison of results for DSF and AsDPM strategies for
both QEMU_ARM1176 and QEMU_CortexA9 are given. At the end, we present our
conclusions in section 5.4.

5.1.1 AsDPM Strategy

AsDPM strategy is a DPS based low power strategy in which the required number of
processors depends upon the amount of remaining tasks and their deadlines. AsDPM
technique exploits the idle time intervals within an application to shutdown or idle the
processors. The strategy is based on the algorithm defined in [58]. At the start, all tasks
within an application are sorted according to their priority. The strategy then performs a
Laxity Bottom Test (LBT) at every scheduling event, starting with the assumption that at
most one processor is running to accommodate most of the workload (tasks) and
gradually increases the computational resources. Here, laxity within context of AsDPM
is the anticipative laxity of a task’s job and is the measure of its urgency to execute
relative to its deadline, in the presence of all higher-priority released job(s) running and
deferred on a particular processor. The highest priority tasks are assigned to the required
number of processors. For the rest of the ready tasks, LBT is performed considering the
first target processor. If a task passes LBT, it is deferred from execution at current
scheduling event. Otherwise, if a task does not pass LBT then it implies that currently
available running processors are not sufficient to satisfy the concurrent resource
requirement of ready tasks and some tasks may miss their deadline in future. In this case,
all tasks which are deferred or running are put into ready task queues again and more
processors are activated. This procedure is repeated until all tasks are moved to the
running task queue. Upon the arrival of the next scheduled event, the same process
repeats itself and as a result the number of active processors may change.

Chapter 5. ASDPM POWER STRATEGY 76

Finally, if an application requires only one processor, the second highest priority task is
executed on the same processor after finishing the first one. If an application requires
two processors, the first higher priority task is executed on the first processor, the second
priority task on second and similarly the process goes on until the completion of the
remaining tasks. By this way we execute the application on the least number of
processors required, hence minimizing the total energy utilization. At the end of
application's execution the higher priority tasks finish earlier; this means that an
executing task on the first processor completes earlier than the remaining tasks.
Therefore when a scheduling event occurs, the task on second processor is moved to the
first processor for its completion. Hence we minimize the total number of processors
needed for the execution of an application after each scheduling event as well as at the
end.

5.1.2 Application Examples

Based on its definition, the multiprocessor AsDPM strategy needs a platform with at
least two processors to be applicable. We therefore need at least three different examples
for the detailed experimentation and analysis to use three possible distinct configurations
for the QEMU platforms. Beside these examples, we also experiment the AsDPM
strategy with an application to H.264 video encoder model to evaluate its energy
consumption. The main parameters used in these examples are listed in table 5.1.

Table 5.1: Examples used for the experimentation of AsDPM strategy.

Note: Here time is in order of 10-1 seconds; D = Deadline.

 Example 5 Example 6 Example 7
Tasks / Period 4 / 20 6 / 22 8 / 34

 WCET BCET D WCET BCET D WCET BCET D
T1 6 3 8 7 2 9 5 2 9
T2 7 4 8 6 3 9 6 3 9
T3 4 2 14 5 4 9 7 4 9
T4 5 3 20 2 2 18 8 5 9
T5 3 3 20 3 2 13
T6 4 4 22 4 3 20
T7 5 3 26
T8 6 4 34

5.1 INTRODUCTION 77

Example 5 is used to experiment with the AsDPM strategy using a maximum of two
processors. It consists of four tasks T1, T2, T3 and T4 with the parameters specified in
table 5.1. These parameters are defined in a way that the first tasks T1 and T2 need two
processors for their execution. This is controlled by defining deadlines that are different
from their periods and where the total sum of their BCET is greater than their period. As
an illustration, the tasks T1 and T2 are defined with a deadline for T1 = 8x10-1s and
T2 = 8x10-1 s. This forces their completion time to be 8 x 10-1 seconds before completion
of their period of 20x10-1s. Hence Example 5 requires at least two processors before the
start of the next period for its execution. To have a wide range of energy savings, we use
the same procedure as we used in the previous experimentation of the DSF strategy. The
AET of tasks T1 and T2 are set to different values between their BCET and WCET,
while fixing the AET of T3 and T4 to an average between their BCET and WCET. By
this way, we obtain a wide range of the energy gain spectrum for distinct values of AET.
It should be noted that, we can obtain maximum and minimum energy gains just by
using the maximum and minimum values of AET. However, the different values of AET
are later used to compare the energy gains obtained by DSF and AsDPM strategies for a
common set of examples.

Example 6 contains six tasks and is used with a maximum of three processors, and
Example 7 contains eight tasks and is used with a platform configuration of four
processors. In Example 6 we allow the tasks T1, T2 and T3 to change their AET, while
in Example 7 we allow tasks T1, T2, T3 and T4 to have variable AET. We use the same
H.264Encoder model (see section 4.2.1) which consists of four tasks T1, T2, T3 and T4,
where T1 and T2 are tasks used for motion estimation. T3 is used for intra prediction,
texture encoding and syntax writing. T4 is a post processing filter. The first two tasks
should be completed in parallel, however tasks T3 and T4 can be completed afterwards.
The tasks T1 and T2 have deadline of 21 ms, T3 has a deadline of 31 ms and T4 has a
deadline of 40 ms. The period is fixed to 40 ms for all tasks.

In the next section, we present the implementation and experimentation of the AsDPM
strategy using the above-mentioned examples.

Chapter 5. ASDPM POWER STRATEGY 78

5.2 AsDPM Implementation and Experimentation

Here, we describe an actual implementation and experimentation of the AsDPM strategy
using different multiprocessor platforms. Section 5.2.1 presents the implementation and
execution correctness of the AsDPM strategy using Example 5. Energy savings (using all
previously described application examples) for distinct platforms configurations are
shown in section 5.2.2 and in section 5.2.3, we present a comparative analysis of energy
savings for ARM1176 and CortexA9 platform.

5.2.1 AsDPM Implementation

The implementation of AsDPM is based on a similar principle as DSF, using a Linux
userspace scheduler [53]. This scheduler is used to actually execute the strategy on any
multiprocessor platform supporting Linux and C-States. For our experimentation, we use
AsDPM_scheduler containing the code for the AsDPM strategy. The experimental
procedure consists in running the scheduler on the previously described examples in
different configurations, using the platform specific power monitoring drivers
(PM_Driver) already developed in order to trace power consumption and derive energy
values. The AsDPM strategy uses the C-states (instead of P-states), therefore we modify
the PM_Driver function to allow the use of C-states. PM_Driver is therefore used here
to change the required processor state to one of the following C-states: Idle, Sleep,
Running. The AsDPM_Scheduler, PM_Driver and the test application are placed in the
shared Arm folder of QEMU platforms.

We start experimenting with the AsDPM strategy using Example 5 to verify its
execution correctness on QEMU_ARM1176 platform. The AET of tasks T1 and T2 of
Example 5 are set to different values as stated in section 5.1.2, to verify the scheduling
behavior and obtain a wide range of the energy gain. The results of energy consumption
with and without the AsDPM strategy and the resulting percentage of energy gains are
shown in table 5.2. Similarly, we test the correctness of the AsDPM using Example 5 on
QEMU_CortexA9 platform. Table 5.2 shows the results of this implementation for both
platforms using maximum of two processors.

5.2 ASDPM IMPLEMENTATION AND EXPERIMENTATION 79

Table 5.2: Energy consumption of Example 5 on QEMU platforms.

 QEMU_ARM1176 QEMU_CortexA9

AET (10-1 sec) E1 (mJ) E2 (mJ) % Gain E1 (mJ) E2 (mJ) % Gain

3, 4, 3, 2 7482.23 4888.07 34.67 4236.11 3045.4 28.11

4, 5, 3, 4 7596.38 5212.34 31.38 4692.85 3734.38 20.42

4.5, 5.5, 3 4 7650.37 5332.44 30.30 4867.97 3990.64 18.02

5, 6, 3, 4 7655.37 5440.56 28.93 4965.08 4146.9 16.48

5.5, 6.5, 3, 4 7666.35 5560.63 27.47 5140.01 4327.21 15.81

6, 7, 4, 5 7674.39 5764.80 24.88 5440.53 4755.96 12.58

Note: E1 = Energy without AsDPM strategy, E2 = Energy with AsDPM strategy

The correctness of scheduling and coherence of energy consumption results have been
checked for both platforms. The scheduling behavior and the energy consumption with
and without the AsDPM strategy proved to be correct. In addition, the experimentation
allow the energy savings for Example 5 on both platforms. The percentage of energy
gains lie between 24.88% and 34.67% on QEMU_ARM1176 platform, and between
12.58% and 28.11% on QEMU_CortexA9 platform. In the next section, we provide
detailed results of energy gains by applying AsDPM strategy on the other application
examples.

5.2.2 Energy Savings

The results of energy savings for Example 6 using a maximum of three processors and
Example 7 using four processors are shown in figure 5.1 and figure 5.2 respectively.
Figure 5.1 shows the percentage of energy gains for Example 6 ranging between 38.65%
and 49.88% for QEMU_ARM1176 and between 20.51% and 40.55% for
QEMU_CortexA9 platform. The energy savings are maximum where AET of tasks is
taken equal to their BCET and minimum when AET of tasks is taken equals to their
WCET. This point out that AsDPM strategy provides higher gains for a larger slack
produced by the different of their AET and WCET. Moreover, the AsDPM strategy also

Chapter 5. ASDPM POWER STRATEGY 80

provides energy gains for AET of the tasks equal to WCET due to the least number of
processors used for application execution.

Figure 5.1: Energy gains of Example 6 on QEMU platforms.

Figure 5.2 shows the results of Example 7 having energy gains ranging between 50.64%
and 59.18% on QEMU_ARM1176 and between 30.95% and 47.69% for
QEMU_CortexA9 platform. Again, we have maximum energy savings for larger slack.
These examples show the ability of AsDPM strategy to actually save energy in
configurations up to 4 processors for both platforms. In each case, we have also verified
the correctness of application scheduling with and without the AsDPM strategy.

Figure 5.2: Energy gains of Example 7 on QEMU platforms.

5.2 ASDPM IMPLEMENTATION AND EXPERIMENTATION 81

The AsDPM strategy is then applied to the video H.264Encoder example on both
platforms. We set six different values of AET for the Tasks T1 and T2 (presented as
Confign in table 5.3) to obtain different energy consumptions for the H.264Encoder
example. At start, the H.264Encoder requires two processors for the execution of tasks
T1 and T2, while the remaining tasks T3 and T4 need one processor for their completion
when scheduled by the AsDPM_scheduler. The second processor is idled depending
upon the value of slack produced by the tasks T1 and T2. Figure 5.3 shows the result of
energy gains obtained from this implementation where energy gain for H.264Encoder
ranges between 24.05% and 46.73% on QEMU_ARM1176 and between 15.32% and
42.72% on QEMU_CortexA9 platform.

Figure 5.3: Energy gains of H.264Encoder on QEMU platforms.

From the above results, we can assume that ARM1176 consumes less energy as it
provides more energy savings, however, it is not the case. In fact what is expected is that
the CortexA9 consumes less energy, and actually, it does consume less as pointed out by
the results of Example 5 in table 5.2 and H.264Encoder in table 5.3. As an illustration,
the energy consumption of H.264Encoder example (Config 1, Table 5.3) with and
without AsDPM is 3915 mJ and 7350 mJ respectively on QEMU_ARM1176 and the
same energy consumption is 2909 mJ and 5080 mJ on QEMU_CortexA9. As a matter of

Chapter 5. ASDPM POWER STRATEGY 82

fact, this is true in case of all examples used for experimentation that CortexA9
consumes less energy than ARM1176 (which is what we expect from smaller scale
technology integration). What we additionally remark on the other hand, is that the
energy gains resulting from using AsDPM are more important on the ARM11 than on
CortexA9. This is further analyzed in the next section.

Table 5.3: Energy Consumption and Gain for H.264Encoder.

 QEMU_ARM1176 QEMU_CortexA9

AET (10-1 sec) E1 (mJ) E2 (mJ) % Gain E1 (mJ) E2 (mJ) % Gain

Config 1 7350.12 3915.76 46.73 5080.23 2909.96 42.71

Config 2 7866.55 4660.13 40.76 5746.56 3936.97 31.49

Config 3 7922.68 4851.23 38.77 5956.56 4202.35 29.45

Config 4 7974.64 5458.08 31.56 6185.15 4754.58 23.13

Config 5 7996.6 5816.76 27.26 6291.68 5291.3 15.9

Config 6 8022.99 6092.99 24.05 6461.38 5471.49 15.32

5.2.3 Further Analysis of Results

The higher percentage of energy gains in case of QEMU_ARM1176 in comparison to
QEMU_CortexA9 platform is related to the operating points of these platforms. We
implement the AsDPM strategy using the maximum frequency of the platforms. Table
5.4 shows the idle vs. load power levels for both platforms. As the Cortex based
platform uses a smaller recent integration technology (45 nm), we should expect a higher
proportion of idle power consumption (related to static power) for the CortexA9. But it
can be noted here that surprisingly, the idle power of the ARM1176 is much more
important (252 mW instead of 90 mW for the CortexA9). This is due to the same reasons
explained in chapter 3 concerning the inefficiency of operating points. The
ARM1176JZF-S Versatile Baseboard is a development platform used for early
prototyping that has important performance limitations. This is why the maximum
frequency is limited only to 265 MHz while a production device would be able to run at
800 MHz. Given this, the results of table 5.3 show a higher share of energy gains for
QEMU_ARM1176 which is not necessarily representative.

5.3 ENERGY GAIN COMPARISON OF DSF AND ASDPM 83

Table 5.4: Idle vs. load power levels for QEMU platforms at maximum frequency.

Platforms Frequency Power (Idle) Power (Load)
MHz mW mW

QEMU_ARM1176 265 252 330
QEMU_CortexA9 1000 90 320

In fact, AsDPM, and DPS based techniques in general, should be more efficient for
small factor integration technologies as they address static power by switching off some
processors. This shows again the importance of platform characteristics on the efficiency
of power strategies. In the following, we also check the efficiency of DPS to address
static power consumption by comparing the energy savings to a DVFS strategy.

5.3 Energy Gain Comparison of DSF and AsDPM

5.3.1 Energy Gains for DSF

We have set four application examples (Example 5, Example 6, Example 7 and
H.264Encoder) to be common with AsDPM to compare the two strategies. The
examples exhibit different workload (number of tasks) vs. processing power (number of
processors) in order to span different use cases. We therefore start by implementing the
DSF strategy on these set of examples with platform configuration having two, three and
four processors. The AET of the tasks are varied between their BCET and WCET to
observe energy savings for these examples.

Figure 5.4 a), b), c), and d) show the results of energy savings using respectively
application (Example 5, Example 6, Example 7 and H.264Encoder), where figure 5.4a
reports energy gains ranging from 3.34% to 9.50% for QEMU_ARM1176 and from
2.82% to 12.73% for QEMU_CortexA9 platform. Figure 5.4b shows percentage of
energy gains for Example 6 ranging between 1.58% and 13.59% for QEMU_ARM1176
and between 1.30% and 22.24% for QEMU_CortexA9. In figure 5.4c, the percentage of
energy gains for Example 7 lie between 2.44% and 10.44% for QEMU_ARM1176 and
between 0.89% and 14.24% for QEMU_CortexA9. Figure 5.4d shows the result of
energy gains for H.264Encoder example which lie between 6.01% and 16.72% for
QEMU_ARM1176 platform and between 1.34% and 40.14% for QEMU_CortexA9
platform.

Chapter 5. ASDPM POWER STRATEGY 84

Figure 5.4: Energy Gains for DSF Strategy on QEMU platforms.

The energy gains are present in all cases, and are more important in case of the
H.264Encoder. This is obvious as the slack produced by the tasks of H.264Encoder are
much larger than other examples and allows the processors to downscale frequency to
the minimum allowed value (as already observed in chapter 4). In addition, the energy
gains for DSF strategy are higher on CortexA9 platform for all examples due to efficient
operating points (as discussed previously in chapter 4). Furthermore, the amount of
energy savings depends upon the dynamic slack and we can see from these results that
the DSF strategy does not provide any energy gain when AET is set equal to WCET
(min gain is zero).

In the next section we focus on the comparison and analysis of these examples using
AsDPM results.

5.3 ENERGY GAIN COMPARISON OF DSF AND ASDPM 85

5.3.2 Comparison and Analysis of Results

Here, we provide the comparative results of AsDPM and DSF using the same set of
examples considered previously in section 5.3.1. The respective results of Example 5 (4
tasks, 2 CPUs), Example 6 (6 tasks, 3 CPUs), Example 7 (8 tasks, 4 CPUs) and
H.264Encoder (4 tasks, 2 CPUs) are provided in figure 5.5 a), b), c), and d) for
QEMU_ARM1176 platform and in figure 5.6 a), b), c), and d) for QEMU_CortexA9
platform.

Figure 5.5: AsDPM vs. DSF energy gains for different examples on

QEMU_ARM1176.

Chapter 5. ASDPM POWER STRATEGY 86

Figure 5.6: AsDPM vs. DSF energy gains for different examples on
QEMU_CortexA9.

We can clearly remark that AsDPM provides higher energy gains than DSF strategy and
this difference is significant for all applications. In addition, AsDPM also provides
energy gains in cases where DSF does not provide any energy gain at all. Indeed, when
AET of a task is set equal to its WCET, DSF strategy cannot save energy because there
is no frequency switch in this case, however in same conditions, AsDPM provides
significant energy gains because of fewer number of processors used for execution.
Another reason of higher gains for AsDPM is due to the operating points of the
platforms. QEMU_CortexA9 is representative of recent technologies (45 nm) as the

5.4 CONCLUSION 87

model is derived from load vs. idle power consumption measured on a real platform (ST-
Ericsson-based Snowball [55]). QEMU_ARM1176 is not representative of a smaller
factor technology, but the actual power levels of this platform (obtained from actual
measures on a Versatile Baseboard ARM1176JZF-S) exposes a very high share of idle
power, in the same way as a recent technology. This is due to different limitations
inherent to the use of an evaluation platform (operating points, performances, and power
levels), which is not a final production device. Both platform results are thus coherent
with the assumption that DPS should be more efficient than DVFS to address recent
technologies with an important share of static power consumption.

Nevertheless, DPS applicability is subject to conditions related to the application, in
particular concerning tasks execution times that should permit to neglect delays for
switching to processor sleeping states. This is why beside the above observations, we
can notice from figure 5.6 that the difference of energy savings of H.264Encoder on
CortexA9 platform is not too much for the DSF and AsDPM strategies.

5.4 Conclusion

We have presented and analyzed the effectiveness of AsDPM, a DPS based power
strategy, on various applications (including video encoding) for different ARM based
platforms. To provide a relevant characterization of energy gains, we have considered
the execution of the different test applications on different multiprocessor configurations
(up to 4 processors). The AsDPM strategy provides significant energy gains in all cases
ranging between 12.58% and 60%. The comparisons of results on QEMU_ARM1176
and QEMU_CoretxA9 have also highlighted the effect of idle vs. active power on the
level of AsDPM energy savings. These results further show the importance of platform
characteristics (here, idle vs. load power levels) on the efficiency of a DPS strategy.

Finally, we have also compared the energy gains of DSF vs. AsPDM considering a
common set of applications. The results have shown AsDPM outperforms DSF in terms
of energy gains for all applications on both QEMU_ARM1176 and QEMU_CortexA9.
As discussed in the analysis of results, this leads to expect AsDPM to be more efficient
for systems based on recent integration technologies where static power is a significant
part of total power. Nevertheless, as will be discussed in next chapter, DPS based

Chapter 5. ASDPM POWER STRATEGY 88

strategies are not always applicable in practice because of the latencies related to
switching of idle states, especially when an application cannot afford large waiting time.

Chapter 6. GLOBAL ANALYSIS AND CONCLUSION 90

Chapter 6 : GLOBAL ANALYSIS AND CONCLUSION

This work explored power management issues and opportunities to manage efficiently
the overall energy consumption of battery powered embedded systems. We addressed
actual multicore platforms and analyzed in depth their energy consumption by providing
a detailed experimentation and analysis of different domain or application specific power
strategies. We have chosen an experimental approach based on representative
multiprocessor platforms (real or virtual) to consider the real impact of different
parameters such as the effect of supported frequencies, voltages, scheduling and
transition delays, idle and load power, application execution time and workload. The
following section presents global analysis and conclusion based on the rich results from
this work. We can categorize these conclusions into two main areas. First, the actual
implementation and experimentation approach enabled us to identify the important
conditions from the hardware and application viewpoints that highly determine the
efficiency of power management strategies. Second, we propose some high level models
of the different strategies that have been used, in order to help designers as well as
application developers to evaluate the benefits of power management at early stages of a
system development, in the particular context of multiprocessor platforms.

6.1 Power Management Effectiveness

The following section describes platform and application conditions that have been
identified to influence greatly the effectiveness of power strategies. Actually, three
important conditions have been identified in our experiments: (a) the characteristics of
operating points, (b) latencies of changing states, and (c) application level conditions.
Then we present two additional considerations of power management effectiveness
related to the use of domain specific strategies and the effectiveness of DVFS and DPS
in saving energy. We discuss each of these points separately in the following sections.

6.1 POWER MANAGEMENT EFFECTIVENESS 91

6.1.1 Characteristics of Operating Points

The characteristics of operating points play an important role on energy consumption.
The amount of energy savings of a given platform is highly dependent upon its
supported frequencies and their corresponding voltage levels. In our experimentation, we
observed two distinct effects of platform characteristics that are discussed below.

6.1.1.1 Operating Points Inefficiency

The majority of power strategies are based on the hypothesis that decreasing the
frequency of processors actually results in saving energy. Although this fundamental
assumption is verified on most platforms, in fact there are some cases where it is not.
Decreasing frequency decreases power at which a processor operates but at the same
time results in an increase of execution time. As energy is the product of power by time,
energy savings are dependent on the condition that the proportion of power decrease is
greater than the proportion of time reduction, which depends on the characteristics of
operating points in terms of frequency values and associated power levels.

The experimentations of the DVFS based video strategy in chapter 3 have shown that
using this strategy on the ARM1176JZF-S platform actually results in an increase of
energy consumption, despite decreasing the frequency. Indeed the operating points of the
ARM1176JZF-S platform do not allow to compensate the increase of execution time due
to frequency downscaling, and therefore results in an increase of energy consumption.
With the help of a virtual prototype, we have been able to modify the original power
levels associated with each operating point, and we have verified that increasing the
power level gaps results in effective positive energy gains. The experimentation has been
conducted on a set of four configuration of operating points (Figure 3.5), where energy
savings (Figure 3.7) are negative in case Config1 and ARM1176 whereas the energy
savings are positive in case of Config2 and Config3. This shows that some platforms are
not relevant for actual efficient DVFS. The decrease of power levels between two
consecutive decreased frequencies must be sufficient to compensate the increase of
execution time and energy. In case of the ARM1176JZF-S platform, such inefficiency
can be explained by the fact it is an early evaluation platform that does not operate at full
performance potential. Typically, this platform is limited to 265 MHz while a production

Chapter 6. GLOBAL ANALYSIS AND CONCLUSION 92

platform runs at 800 MHz. At this frequency, operating points are more suited and can
provide effective energy savings.

Although it is rather uncommon, the example of the ARM1176JZF-S platform is not an
isolated example of suboptimal operating point characteristics. Actual platforms might
present non-performing DVFS implementation that can be due to different reasons like
poor voltage regulators efficiency, too important switching delay latencies, same level of
voltage for different frequencies or, like previously, performance limitations due an early
evaluation platform. Because of this, the actual efficiency of operating points in terms of
power / frequency characteristics must be addressed before any power strategy is
envisaged.

6.1.1.2 Operating Points Impact on Energy Savings

As discussed in previous section, operating points and more generally platform
characteristics impose essential prerequisites that can prevent the actual effectiveness of
any well-defined power strategy. These characteristics also naturally affect to a different
degree the level of achievable energy savings. Power management policies usually
account for supported frequencies but do not consider the related differences in power
consumption. The power levels associated to the frequencies of a processor also play an
important role in energy consumption. The power consumptions with and without load
for a frequency vary from one platform to another due to different voltages and leakage
power. We have shown two examples of this which result in different energy
consumption for a same application.

The experimentations of the first power strategy for video have shown that the load
power levels between two frequencies contribute directly to the amount of energy
savings. Large differences in load power between two frequencies provide more energy
savings, while smaller differences result in complete inefficiency of the strategy. This is
shown by the results of table 3.2 where Config2 and Config3 have large load power
gaps between different frequencies permitting energy reductions that exceed noticeably
the increment due to execution time. However Config1 and ARM1176 having smaller
power differences both result in an actual increase of energy consumption while the
power strategy operates correctly by decreasing the frequency.

6.1 POWER MANAGEMENT EFFECTIVENESS 93

This impact of idle vs. load power levels of operating points on energy savings is also
present in the experimentation of the DSF strategy in chapter 4. For the two platforms
used, the differences of power level (load vs. load, idle vs. idle) for different frequencies
are not the same. Hence, these differences affect the overall energy savings and
experimentations show that the platform with the largest power gaps provides the
highest energy gains. Table 4.3 shows for example that when the frequency (fi) is
downscaled from 1000 MHz to 300 MHz (maximum to minimum) on
QEMU_CortexA9, the Load Power (LP) gap is 177 mW (LPf1 = 320, LPf2 = 143), and
Idle Power gap (IP) is 52 mW (IPf1 = 90, IPf2 = 38). However, the same power gaps for
the frequencies downscaled from 265 MHz to 160 MHz (maximum to minimum) on
QEMU_ARM1176 are 80 mW (PLf1 = 330, PLf2 = 250) and 29 mW (NPLf1 = 252,
NPLf2 = 223). Hence, larger power gaps on QEMU_CortexA9 provide more energy
gains than QEMU_ARM1176 (i.e. maximum gain of 51.46% on CortexA9 and 16.70%
on ARM1176).

The influence of operating points is also visible in the energy saving results of the
AsDPM strategy. The determining factor here is the load power consumption associated
to an operating frequency when processors are not idle. On both experimented platforms,
these powers are not the same, therefore the resulting energy consumption differs and
the amount of energy savings obtained by idling a processor also varies. For example in
case of QEMU_CortexA9 platform, we have less overall energy consumption due to
lower load power levels associated to the maximum frequency (320 mW at 1000 MHz)
in comparison to QEMU_ARM1176 platform which consumes much more energy due
to higher power levels (330 mW at 265 MHz). However, the resulting energy gains are
higher for QEMU_ARM1176 than for QEMU_CortexA9 due to a wider margin of
power saving when a processor is idle (see Table 5.4).

6.1.2 Latencies of Changing States

Ideal DVFS based policies are often based on the assumption that voltage/frequency
values can be changed instantaneously. However in reality, it takes time to change the
CPU frequency/voltage due to factors such as the internal PLL (phase lock loop) locking
time and capacitances that exist in the voltage path. A frequency transition results in the
processor core and shared cache being unavailable for a small period during the
transition. A real time application may be sensitive to this period of unavailability,

Chapter 6. GLOBAL ANALYSIS AND CONCLUSION 94

especially if the processor is switching between frequency transitions at a high rate. The
experimentation with DSF strategy have shown that decreasing the execution time of
tasks below the order of a millisecond alters the effectiveness of the strategy very
quickly. In other words, the strategy becomes inefficient when the execution time of
tasks becomes close to the delays for changing a processor frequency, which is typically
in the order of magnitude of a few hundred of microseconds. Therefore the latency of
frequency switching of a platform should also be considered before implementing any
DVFS based strategy. Frequency switching of more than several milliseconds may not
always be used in case of demanding applications like real time systems and video
decoding (typically 40 ms frame processing), for example. In addition, the
experimentation with the DVFS video strategy has pointed out that increasing the
number of frequency switching degrades the performance of the video strategy.
Therefore, we must keep in view these latency constraints that might prevent the actual
effectiveness of a strategy, and which effect is amplified with the number of frequency
switching.

In case of DPS based strategies, the delays of CPU mode transitions are typically higher
than those of changing frequency. This may prevent any DPS based strategy to be
efficient in advanced and high performance applications, which is typical in real time
processing.

6.1.3 Application Level Conditions

An important condition for the efficiency of a power strategy is its ability to exploit
application variability. All the strategies we have considered depend on different
application knowledge for energy savings. The amount of energy saved depends strongly
on the value of different application parameters at run time, frame rate for the video
strategy and slack time for DSF and AsDPM. The maximum energy gains will thus often
rely upon the ability of a strategy to use the lowest processor frequencies. For the DVFS
based video strategy, this will highly depend on the performance of the application
implementation, as high video decoding frame rate permit lowest CPU frequency
processing. Similarly in case of AsDPM and DSF strategies, the amount of energy
savings depend upon the value of slack produced by the application actual execution
time. Both strategies provide more energy saving when the application’s tasks generate
large dynamic slacks (i.e. when AET values are close or equal to BCETs).

6.1 POWER MANAGEMENT EFFECTIVENESS 95

Another condition affecting the energy and scheduling behavior of an application is the
time definition of its tasks. Application time parameters are defined using different units
of time according to the application domain or system requirements and two different
applications can have different timing definition for their tasks. As stated in previous
section, the effect of switching delays, either from changing a CPU frequency or idle
state, can lead to ineffective results of power strategies. For example, if we consider the
example of a real time sensor providing temperature readings of a chemical every
100 ms. Accordingly, a decision is taken by a boiler unit to control the input heat of the
system to avoid overheating and damages. The system can allow a delay of few
milliseconds, however a larger delay in decision may cause immediate damages. As
deeper sleep state provides more delay in waking up from its state, therefore DPS based
policies will be inefficient and do not provide the needed power management solutions.
Hence, a DPS solution could better suit scenarios when, either there is a low delay for
entering and exiting deeper sleep states, or an application can afford large waiting time
with respect to wakeup time latencies. In general, if there is lower power consumption
for an idle mode then there is less benefit in using DVFS, however spending longer time
to idle may increase power consumption due to wakeup overhead. To operate properly,
WCET of application's tasks must be large enough to be able to consider switching
delays as negligible. Regarding our results, WCET higher than 10% of frequency
switching delays are satisfying for an efficient implementation of DVFS and DPS based
strategies.

6.1.4 Domain Specific Strategies

General purpose policies cannot always bring the maximum potential savings compared
to domain or application specific strategies. A typical example is the one of video. In
chapters 3, 4 and 5, the three power strategies used provide each significant energy
gains: up to 52% for the DVFS video strategy, and up to 60% for DSF and AsDPM on a
H.264 encoder model (CortexA9 based platforms). Using a typical workload based
policy (such as Linux OnDemand for example), the power consumption would have
been set to the maximum since video processing always represent a high workload
demanding maximum processor frequency, for all the video processing duration.

This illustrates the usefulness of using domain specific low power strategies. General
purpose strategies have the advantage of being applicable in all cases, but the

Chapter 6. GLOBAL ANALYSIS AND CONCLUSION 96

counterpart is that they do not always exploit all the energy saving potential. Sometimes
they are even completely inefficient at saving power like in the example of video
processing. We have shown on concrete examples that we can actually save energy up
to 17% on the ARM1176 platform and 52% on the CortexA9 platform using DSF, up to
60% on ARM1176 and 48% on CortexA9 platform using AsDPM, which are two
domain specific (real time scheduling) power strategies.

6.1.5 Efficiency of DVFS vs. DPS

Many works investigate the field of low power scheduling techniques but very few (none
to our knowledge) have been faced with real implementation results, probably because
of the very high complexity inherent to multiprocessor scheduler development. In this
work, we have shown very realistic results based on a real scheduler prototyping under
Linux based on the work described in [53], also developed by LEAT in the scope of the
COMCAS project.

Under these conditions, the implementation and effectiveness of deadline scheduling has
been shown in the real world to be possible and to provide actual energy savings. In
addition, we have used the same set of application examples for DSF and AsDPM as
much as possible which let us make an efficiency comparison of DSF vs. AsDPM. In the
following, we present an analysis of both techniques in order to derive which of two
techniques, and by extension which of DVFS and DPS, has the best ability to save
energy.

6.1.5.1 DSF vs. AsDPM

In our experimentation context of application and multiprocessor platforms, AsDPM
outperforms DSF in all configurations of measures. DSF provides maximum energy
gains up to 17% for QEMU_ARM1176 and 40% on QEMU_CortexA9. On the other
hand, AsDPM provides maximum energy gains of 60% on QEMU_ARM1176 and 48%
on QEMU_CortexA9. This is a notable result, but the difference of energy gains
between both techniques is not always very large. For instance, the DSF strategy
provides energy savings of 40% for the H.264Encoder model on QEMU_CortexA9
platform, while AsDPM strategy provides energy savings of 42% for the H.264Encoder
model on same platform. This shows that the difference of energy gains is not always
significant and depends upon a lot of parameters such as platform, application and

6.2 POWER MODELS 97

strategy characteristics. Because of the variety of influential factors, it is difficult to
generalize on the efficiency of DPS vs. DVFS techniques. Nevertheless, these results
indicate that DPS based strategies are likely to save more energy than DVFS based
strategies. We further develop this effectiveness analysis in the next section.

6.1.5.2 DVFS vs. DPS

Despite above conclusions, an important applicability criterion to consider relates to the
latencies of switching states and operating points. The latencies of entering and leaving
DPS states are usually higher than those of changing processor frequency with DVFS.
This implies that DVFS strategies are usable in a larger number of applications than DPS
based strategies. DPS usage is more constrained by the latencies of switching states as
explained in section 6.1.3, and will not always be applicable depending on the time
granularity of application’s tasks. In addition, DVFS strategies are also limited by the
latencies of switching frequencies, so there are some cases where both DPS and DVFS
are likely to be inefficient. As stated in section 6.1.3, it is thus much recommended to
investigate switching states latencies before any DVFS or DPS implementation decision.

A second consideration about DVFS vs. DPS effectiveness is related to the share of
static power in recent integration technologies. DVFS addresses only dynamic power of
a CPU, while DPS impacts also the static power with more or less deep sleeping states.
DPS is thus a privileged solution for recent integration technologies where transistor
leakage is significant. This is however confirmed by our results on two platforms that
have power levels characteristics of a high share of static power, and where AsDPM has
been more effective in all application cases.

6.2 Power Models

From the results of chapters 3, 4 and 5, we can derive some simple models that can help
in estimating the benefits of these strategies on application energy consumption. The
principle is to derive from the various measurement results energy saving curves
depending on the strategy’s respective leading application parameter (i.e. frame rate,
slack time). In each case, the model is standardized in a common representation of
percentage of energy gains versus the driving application parameter (varying from
maximum to minimum).

Chapter 6. GLOBAL ANALYSIS AND CONCLUSION 98

6.2.1 DVFS Video Strategy

The power model of the DVFS video strategy is derived from the achieved energy gains
reported in chapter 3 which depend on the frame rate constraint that is set by the user.

Figure 6.1: Energy Model for DVFS based Video Power strategy.

Figure 6.1, obtained from the measures of chapter 3, represents the range of energy gains
from maximum (processor always operating at minimum frequency) to minimum (frame
rate set to the average decoder speed). Since different configurations of operating points
were evaluated, this representation can be used to quickly derive an estimation of energy
savings for different characteristics of operating points, using a simple interpolation. It is
thus also easy to know the benefits of using the DVFS video strategy and the amount of
energy gain to expect given a level of performance of the application, here a H.264
decoder.

6.2 POWER MODELS 99

It should be noted that the energy savings reaches a certain threshold (i.e. 4 fps in this
case), as the DVFS strategy can only downscale the frequency to a certain allowed limit.
In addition, if user needs maximum performance then the adaptation constraint is set
equal to the average video decoding speed at nominal conditions (i.e. 11 fps in this case)
but there will be no energy saving in such case.

6.2.2 DSF

The energy model for the DSF strategy is derived from the results of chapter 4. It is
based on averaging the different results of energy savings on all application examples
and for both experimentation platforms. The two corresponding energy models are thus
shown in figure 6.2 reflecting the level of energy saving according to the main driving
application parameter, here the slack time.

Figure 6.2: Energy Model for DSF power strategy.

The maximum energy gains correspond to a situation where 100% of the application
slack time can be exploited to run processors at their minimum frequency, while the
minimum correspond to the application running at its WCET (implying maximum

Chapter 6. GLOBAL ANALYSIS AND CONCLUSION 100

processors frequency in a DSF strategy) corresponding to no energy saving. This simple
characterization is both realistic (as based on actual measurements) and useful to provide
early estimation of the benefits for power strategies developing efforts.

6.2.3 AsDPM

Similarly, an energy model for the AsDPM strategy is derived from the average values
of energy savings in the measures of chapter 5. The corresponding model of expected
energy gains is shown in figure 6.3 for the entire possible range of dynamic slack, for
both platforms experimented.

Figure 6.3: Energy Model for AsDPM strategy.

Like DSF, maximum energy gains correspond to the case where all application slack can
be exploited to decrease processors execution at their minimum frequency. Conversely,
the minimum energy gain is reached when no slack is produced by the application tasks,
which means that their executions are close to their WCET. Here the minimum energy
gain does not correspond to zero because even when there is no slack, processors are put
to sleep (instead of idle) when they are unused. The energy gains at these boundaries
correspond respectively to the maximum and minimum energy gains of the strategy and

6.3 CONCLUSION AND PERSPECTIVES 101

for the target platform. From these curves, we can thus more easily apprehend the
cost/benefit tradeoff resulting from using an AsDPM strategy for a given
application/platform mapping.

6.3 Conclusion and Perspectives

A great part of our everyday life is somehow linked with electronic devices today.
Efficient embedded systems, especially low power wireless systems, have become an
important challenge for engineering design processes. The designs of these systems are
under increasing pressure to extend battery time and at the same time offer more features
and performance. The upcoming generation of embedded systems is going to need lower
active and sleep power consumption while simultaneously increasing the ease of power
management development needed to meet time-to-market requirements. In the near
future, most sophisticated high performance applications will be deployed on complex
platforms based on heterogeneous, multicore and many core architectures, and this
perspective will pose new challenges at the power management level. This work already
addressed realistic constraints of multicore systems at near-term perspective, based on
Dual Cortex A9 in the context of the COMCAS project. Inevitably, the evolutions in
platform architectures and application complexity especially given the very fast trends of
mobile technology will stress the need for effective and fast development approaches.

This thesis has brought a contribution to the characterization of real constraints
encountered in advance power management solutions on actual platforms. The realistic
energy measurement approach adopted has led to define helpful guidelines for the
effective use of power management. Mainly, existing power management solutions can
be categorized on the basis of two broad techniques which are DPS and DVFS, and our
state of the art also pointed out that the majority of available operational solutions were
general purpose and workload based. Therefore, we have further investigated domain or
application specific power management solutions in search of the greatest net energy
gains possible. The results obtained indicate consistent energy savings accompanied by
certain platform and application conditions, which can greatly affect the efficiency of
any power strategy. The most relevant achievements in addressing the effectiveness of
power management are summarized below.

Chapter 6. GLOBAL ANALYSIS AND CONCLUSION 102

• Reducing power consumption using DVFS based policies does not always
provide satisfying energy savings. In practice, the efficiency of DVFS is highly
dependent upon the characteristics of operating points of the target platform.
These characteristics must be analyzed before deciding to use a DVFS based
strategy.

• To further help the evaluation of power policy relevance for an application and
target platform, early estimations can serve a very useful purpose. This study has
also proposed some high level energy models to let the estimation of power
management benefits that can be applied at very early stages of a system
development.

• Energy savings for different DPS and DVFS power strategies pointed out the
effectiveness of using application and domain specific power management
solutions, which provide further room for energy improvements in contrast to
general purpose power strategies that are sometimes in efficient in case of
specific, advanced or demanding applications.

• Different results highlighted the important effects of state transition latencies
inherent to the platforms, which could at some point limit (and sometimes
prevent) the applicability of a power management strategy.

• Findings in respect of actual energy savings for DPS and DVFS based strategies
helped in finding out the effects of platform/application parameters on the
achievable gains. By this way, we also categorized the conditions for the
effectiveness of a specific strategy and better instruct which solution is suited for
a particular platform and technology.

• Another contribution relates to the relative lack of real world experimentation
based research in the field of power management, especially concerning
multiprocessor systems. This work also demonstrates the feasibility of advanced
power management approaches such as those based on real multiprocessor
scheduling, thanks to a prototyping method developed at LEAT.

• Finally, this work has brought a successful contribution within the COMCAS
project in a close cooperation with some project partners (Thales
Communications, TIMA, CEA LETI), which results have been presented for

6.3 CONCLUSION AND PERSPECTIVES 103

demonstrations at the project reviews for the CATRENE office held at Nijmegen
and Grenoble, with very positive feedback from the project reviewers.

6.3.1 Perspectives

The work was carried out in the context of the COMCAS project, to address the
challenge of finding a breakthrough in ultra-low-power design for data communication-
centered, heterogeneous, multicore architectures, targeting 45 nm and 32 nm CMOS
technologies. In future works, this contribution can serve a basis for further
investigations of power management strategies in the scope of the next project proposal
which is under submission.

This will focus however on heterogeneous system for upcoming technologies beyond 32
nm. Therefore, an axis of research will be to address for instance many core
architectures and low power scheduling techniques based on the use of dynamically
reconfigurable accelerators.

Another interesting and necessary area to explore would be to consider application
development standards for power management, which could be a subpart or super part of
ACPI. Such a standard would add information regarding various factors (platform
parameters, application limitations, operating points, switching latencies etc.) that should
be accounted before developing new applications. By this way, the developer would be
able to consider minimizing the energy consumption at development stages by
integrating the power management solutions within an application.

Finally, as emerging solutions such as Energy Harvesting or Wireless Sensor Networks
tend to suggest, future systems will certainly have to reach higher orders of magnitude in
energy efficiency. A promising solution lies in the investigation of hybrid power
management that combines and adapts different techniques to fit dynamically the
environment of context of execution with the most suited power strategies.

104

VITA

Name: Jabran Khan Jadoon

Address: Laboratory of Electronics, Antennas and Telecommunications
 University of Nice Sophia Antipolis
 Campus Sophi@tech-Batiment forum
 BP 145 - 930 Route des Colles
 06903 sophia antipolis cedex

Email Address: jkhan@unice.fr

Education: B.Sc Computer Engineering
 COMSATs University of Information Technology, PAKISTAN

 M.Sc Telecommunications and System Microelectronics
 University of Nice Sophia Antipolis, France

 105

BIBLIOGRAPHY

[1] G. E. Moore, “Cramming more components onto integrated circuits, Reprinted
from Electronics, volume 38, number 8, April 19, 1965, pp.114,” Solid-State
Circuits Newsletter, IEEE, vol. 11, no. 5, pp. 33-35, 2006.

[2] I. Microsoft, Advanced Power Management (APM) : BIOS Interface Specification,
Revision 1.2 ed., February 1996.

[3] D. M. Brooks, P. Bose, S. E. Schuster et al., “Power-aware microarchitecture:
design and modeling challenges for next-generation microprocessors,” Micro,
IEEE, vol. 20, no. 6, pp. 26-44, 2000.

[4] D. Brooks, V. Tiwari, and M. Martonosi, "Wattch: a framework for architectural-
level power analysis and optimizations," In proceedings of 27th international
symposium on Computer Architecture, pp. 83-94, 2000.

[5] A. Sinha, and A. P. Chandrakasan, "JouleTrack-a Web based tool for software
energy profiling," In proceedings of Design Automation Conference pp. 220-225,
2001.

[6] T. Simunic, L. Benini, and G. De Micheli, “Energy-efficient design of battery-
powered embedded systems,” Very Large Scale Integration (VLSI) Systems, IEEE
Transactions on, vol. 9, no. 1, pp. 15-28, 2001.

[7] W. Ye, N. Vijaykrishnan, M. Kandemir et al., “The design and use of
simplepower: a cycle-accurate energy estimation tool,” in Proceedings of the 37th
Annual Design Automation Conference, Los Angeles, California, USA, 2000, pp.
340-345.

[8] TIMA. "Techniques de l'informatique et de la Microélectronique pour
l'Architecture des systems intégrés,"

 http://tima.imag.fr/tima/fr/timalaboratory/overview.html.

106

[9] Intel, ACPI Component architecture User Guide and Programmer Reference 5.10

16, Oct 2012.

[10] G. Bruno, and N. Nicolas, “Dynamic voltage scaling under EDF revisited,” Real-
Time Syst., vol. 37, no. 1, pp. 77-97, 2007.

[11] ARM, ARM1176JZF Development Chip - Technical Reference Manual, 2007-
2012. http://www.arm.com/product/processor/classic/arm11/arm1176.php

[12] ARM, Cortex™- A9 MPCore® Technical Reference Manual, 2008-2012.
http://www.arm.com/product/processor/classic/arm11/arm11-mpcore.php

[13] AMD, Revision Guide for AMD Family 10h Processors, 3.92 ed., March 2012.

[14] Intel, Enhanced Intel® SpeedStep® Technology for the Intel® Pentium® M
Processor, March 2004.

[15] Transmeta, "Transmeta™ Crusoe™ TM5800 Processor for Embedded
Applications,"
http://datasheets.chipdb.org/Transmeta/pdfs/brochures/crusoe_for_embedded_appl
ications.pdf.

[16] S. Saowanee, and R. Rajkumar, "Practical voltage-scaling for fixed-priority RT-
systems," In proceedings of the 9th IEEE symposium on Real time embedded
Technology and applications, pp. 106-114, 2003.

[17] L. Benini, A. Bogliolo, and G. De Micheli, “A survey of design techniques for
system-level dynamic power management,” Very Large Scale Integration (VLSI)
Systems, IEEE Transactions on, vol. 8, no. 3, pp. 299-316, 2000.

[18] K. Roy, S. Mukhopadhyay, and H. Mahmoodi-Meimand, “Leakage current
mechanisms and leakage reduction techniques in deep-submicrometer CMOS
circuits,” Proceedings of the IEEE, vol. 91, no. 2, pp. 305-327, 2003.

[19] AMD, "AMD Cool'n'Quiet™ Technology,"
 http://www.amd.com/us/products/technologies/cool-n-quiet/Pages/cool-n-quiet.aspx.

[20] AMD, AMD PowerNow! Technology, November 2000.

 107

[21] M. Broyles, C. Francois, A. Geissler et al., "IBM EnergyScale for POWER7

Processor-Based Systems," In IBM journal of Research and development, Vol 55
Issue 3 May 2001.

[22] ARM, Intelligent Energy Manager (IEM) Hardware Control System in the
ARM1176JZF-S Development Chip, Nov 2006.

[23] ARM, Intelligent Energy Controller - Technical Overview, 2003-2005.

[24] Pushkar singh, and V. Chinta, "Survey Report on dynamic Power Management,"
In survey report of University of illnois,Chicago (ECE Department), Chicago,
USA 2008 .

[25] J. Haris, S. Muhammad, H. rg et al., “System-level application-aware dynamic
power management in adaptive pipelined MPSoCs for multimedia,” in
Proceedings of the International Conference on Computer-Aided Design, San
Jose, California.

[26] C. Kihwan, D. Karthik, C. Wei-Chung et al., “Frame-based dynamic voltage and
frequency scaling for a MPEG decoder,” in Proceedings of the 2002 IEEE/ACM
international conference on Computer-aided design, San Jose, California, 2002.

[27] Inki Hongy, Gang Quy, Miodrag Potkonjaky et al., “Synthesis Techniques for
Low-Power Hard Real-Time Systems on Variable Voltage Processors,” In
proceedings of the 9th IEEE synmposium on REAL Time Systems, pp. 178-187,
1998.

[28] I. Tohru, and Y. Hiroto, “Voltage scheduling problem for dynamically variable
voltage processors,” in Proceedings of the 1998 international symposium on Low
Power Electronics and Design, Monterey, California, United States, 1998.

[29] W. Mark, W. Brent, D. Alan et al., “Scheduling for reduced CPU energy,” in
Proceedings of the 1st USENIX conference on Operating Systems Design and
Implementation, Monterey, California, 1994.

108

[30] G. Quan, and X. Hu, “Minimum Energy Fixed-Priority Scheduling for Variable

Voltage Processor,” in Proceedings of the conference on Design, automation and
test in Europe, 2002.

[31] N. Navet, and B. Gaujal, "Ordonnancement temps réel et minimisation de la
consommation d'énergie," Systèmes temps réel 2 - Ordonnancement, réseaux et
qualité de service.

[32] F. Gruian, “Energy-Centric Scheduling for Real-Time Systems”, Doctoral
dissertation 15, Department of Computer Science - Lund Institute of Technology,
2002.

[33] W. Weixun, and P. Mishra, "PreDVS: Preemptive dynamic voltage scaling for
real-time systems using approximation scheme," in proceedings of 47 ACM/IEEE
Design Automation Conference, pp. 705-710, 2010.

[34] S. Youngsoo, C. Kiyoung, and S. Takayasu, “Power optimization of real-time
embedded systems on variable speed processors,” in Proceedings of the 2000
IEEE/ACM international conference on Computer-aided design, San Jose,
California, 2000.

[35] H. Aydin, R. Melhem, D. Mosse et al., “Power-aware scheduling for periodic real-
time tasks,” Computers, IEEE Transactions on, vol. 53, no. 5, pp. 584-600, 2004.

[36] P. Minkyu, H. Sangchul, K. Heeheon et al., “Comparison of Deadline-Based
Scheduling Algorithms for Periodic Real-Time Tasks on Multiprocessor*This
work is supported in part by Brain Korea 21 project and in part by ICT,” IEICE -
Trans. Inf. Syst., vol. E88-D, no. 3, pp. 658-661, 2005.

[37] M.-A. Pedro, L. Eugene, and M. Daniel, “Adaptive scheduling server for power-
aware real-time tasks,” ACM Trans. Embed. Comput. Syst., vol. 3, no. 2, pp. 284-
306, 2004.

[38] S. Lui, R. Rajkumar, and S. S. Sathaye, “Generalized rate-monotonic scheduling
theory: a framework for developing real-time systems,” Proceedings of the IEEE,
vol. 82, no. 1, pp. 68-82, 1994.

 109

[39] C. L. Liu, and W. L. James, “Scheduling Algorithms for Multiprogramming in a

Hard-Real-Time Environment,” J. ACM, vol. 20, no. 1, pp. 46-61, 1973.

[40] J. W. S. Liu, "Real-Time Systems," pp. - 2000.

[41] K. Jeffay, D. F. Stanat, and C. U. Martel, "On non-preemptive scheduling of
period and sporadic tasks," In proceedings of 12th Real Time Systems Symposium,
pp. 129-139, Dec - 1991.

[42] S. Lui, A. Tarek, E. Karl et al., “Real Time Scheduling Theory: A Historical
Perspective,” Real-Time Syst., vol. 28, no. 2-3, pp. 101-155, 2004.

[43] M. Ali, and C. Chaitali, “Variable voltage task scheduling algorithms for
minimizing energy,” in Proceedings of the 2001 international symposium on Low
power electronics and design, Huntington Beach, California, United States, 2001.

[44] S. Dongkun, K. Jihong, and L. Seongsoo, “Low-energy intra-task voltage
scheduling using static timing analysis,” in Proceedings of the 38th annual Design
Automation Conference, Las Vegas, Nevada, United States, 2001.

[45] M. K. Bhatti, C. Belleudy, and M. Auguin, "An inter-task real time DVFS scheme
for multiprocessor embedded systems," in conference on Design and
Architectures for Signal and Image Processing (DASIP), pp. 136-143, Oct 2010.

[46] M. L. Dertouzos, and A. K. Mok, “Multiprocessor online scheduling of hard-real-
time tasks,” Software Engineering, IEEE Transactions on, vol. 15, no. 12, pp.
1497-1506, 1989.

[47] Sudarshan K. Dhall, and C. L. Liu, “On a Real-Time Scheduling Problem,” in
Journal of Operation Research, pp. 26:127-140, 1978.

[48] B. Sanjoy, and F. Nathan, “Component-Based Design in Multiprocessor Real-
Time Systems,” in Proceedings of the 2009 International Conference on
Embedded Software and Systems, 2009.

[49] Shelby Funk, Vincent Nelis, Joel Goossens et al., “On the Design of an Optimal
Multiprocessor Real-Time Scheduling Algorithm under Practical Considerations, ”
in archiveslibrary of Cornell University library ArXiv e-prints, January 2010.

110

[50] Tse Lee, Albert Mo, and K. Cheng, “Multiprocessor Scheduling of Hard-Real-

Time Periodic Tasks with Task Migration Constraints, ” International workshop
on RTCS and Application, 2007.

[51] K. Shinpei, and Y. Nobuyuki, “Real-Time Scheduling with Task Splitting on
Multiprocessors,” in Proceedings of the 13th IEEE International Conference on
Embedded and Real-Time Computing Systems and Applications, 2007.

[52] K. Bhatti, “Energy-aware Scheduling for Multiprocessor Real-time Systems,” PhD
dessertion - LEAT, University of Nice Sophia Antipolis, June 2011.

[53] Sébastien Bilavarn, KhurramBhatti, and C. Belleudy, "Procédé d'ordonancement
avec contraintes d'échéances, en particulier sous Linux, réalisé en espace
utilisateur", Patent pending CNRS - France, France

[54] Thomas Ritzau, and R. Warnke," QEMU - qemu-kvm & libvirt", 2010.

[55] M. Graphics. "Code Sourcery Tool Chain," http://www.mentor.com/embedded-
software/codesourcery.

[56] F. Bellard. "QEMU Open Source Processor Emulator,"
http://wiki.qemu.org/Main_Page.

[57] S. Bilavarn, C. Belleudy, M. Auguin et al., "Embedded Multicore Implementation
of a H.264 Decoder with Power Management Considerations," in 11th
EUROMICRO conference on Digital System Design Architectures, Method and
Tools, DSD'08, pp. 124-130, 2008.

[58] M. K. Bhatti, M. Farooq, et al., “Assertive dynamic power management (AsDPM)
strategy for globally scheduled RT multiprocessor systems,” in Proceedings of the
19th international conference on Integrated Circuit and System Design: power
and Timing Modeling, Optimization and Simulation, Delft, The Netherlands, 2010,
pp. 116-126.

[59] M. D. Santambrogio, H. Hoffmann, J. Eastep et al., "Enabling technologies for
self-aware adaptive systems," in conference on Adaptive Hardware and Systems
(AHS), NASA / ESA, pp. 149-156, 2010.

 111

[60] M. A., and G. Fri, "Linux / Unix Command: minicom,"

 http://linux.about.com/od/commands/l/blcmdl1_minicom.htm, Feb 2011].

112

APPENDIX A – ACRONYM INDEX

ACPI Advance Configuration Power Interface
AET Actual Execution Time
AsDPM Assertive Dynamic Power Management
APM Advance Power Manager
API Application Programming Interface
BCET Best Case Execution Time
BIOS Basic Input Output System
CMOS Complementary Metal-Oxide Semiconductor
D Deadline
DDR Double Data Rate
DSR Dynamic Slack Reclamation
DSF Dynamic Stretch to Fit
DVFS Dynamic Voltage and Frequency Scaling
DVI Digital Visual Interface
DPS Dynamic Power Switching
EDF Earliest Deadline First
EIST Enhanced Intel Speedstep Technology
EPM Enhanced Power Management
FPGA Field Programmable Gate Array
GPIO General Purpose Input Output
IEC Intelligent Energy Controller
IEM Intelligent Energy Manager
IT Information Technology
LAN Local Area Network
LCD Liquid Crystal Display
MMC Multi Media Card
OPM Optimized Power Management
OS Operating System
P Period
PCI Peripheral Component Interconnect
PMC Power Management Controller
PM Power Management

 113

POSIX Portable Operating System Interface
PSRAM Pseudo Random Access Memory
RM Rate Monotonic
RAM Random Access Memory
SDCARD Secure Digital Card
SDRAM Synchronous Dynamic Random Access Memory
SMP Symmetric Multiprocessing
T Time
UARTS Universal Asynchronous Receiver / Transmitter
USB Universal Serial Bus
VGA Video Graphic Array
WCET Worst Case Execution time
WFI Wait For Interrupt

114

ABSTRACT

The purpose of this study is to investigate how power management strategies can be
efficiently exploited in actual platforms. Primarily, the challenges in multicore based
embedded systems lies in managing the energy expenditure, determining the scheduling
behavior and establishing methods to monitor power and energy, so as to meet the
demands of the battery life and load requirements. The work presented in this
dissertation is a study of low power-aware strategies in the practical world for single and
multiprocessor platforms. The approach used for this study is based on representative
multiprocessor platforms (real or virtual) to identify the most influential parameters, at
hardware as well as application level, unlike many existing works in which these
parameters are often underestimated or sometimes even ignored. The work analyzes and
compares in detail various experimentations with different power policies based on
Dynamic Voltage and Frequency Scaling (DVFS) and Dynamic Power Switching (DPS)
techniques, and investigates the conditions at which these policies are effective in terms
of energy savings.

The results of these investigations reveal many interesting and notable conclusions that
can serve as prerequisites for the efficient use of power management strategies. This
work also shows the potential of advanced domain specific power strategies compared to
real world available strategies that are general purpose based in their majority. Finally,
some high level consumption models are derived from the different energy measurement
results to let the estimation of power management benefits at early stages of a system
development.

 115

Résumé

L’objectif de cette thèse est d’étudier l’efficacité énergétique des stratégies basse
consommation pour des plateformes représentatives. Principalement, nous nous
intéresserons aux stratégies énergétiques pour des systèmes embarqués multicœur en
étudiant le comportement de politiques logicielles qui permettent la réduction effective
de l’énergie tout en répondant aux exigences applicatives.
Le travail présenté dans ce mémoire vise à étudier des stratégies de gestion de la
consommation pour des plateformes monoprocesseur puis multiprocesseur concrètes.
L’approche utilisée pour cette étude fut basée sur des plateformes représentatives afin
d’identifier les paramètres significatifs, aussi bien au niveau matériel qu’au niveau
applicatif, à l’inverse de nombreux travaux dans lesquels ces paramètres sont assez peu
pris en compte voir ignorés. Ce travail analyse et compare diverses expérimentations
menées sur des politiques énergétiques basées sur des techniques DVFS (Dynamic
Voltage and Frequency Scaling) et DPS (Dynamic Power Switching) et définit les
conditions sous lesquelles ces stratégies sont efficaces.

Ces expérimentations ont permis d’établir des conclusions remarquables qui peuvent
servir de pré-requis lors de la définition de stratégies efficaces de gestion de la
consommation. Ces résultats montrent également que pour obtenir des stratégies
efficientes il est nécessaire de tenir compte du domaine applicatif. Enfin, il faut noter
que les modèles de haut de niveau de consommation ont été définis sur la base des
mesures effectuées et afin d’estimer les gains énergétiques dès les premières étapes d’un
flot de conception.

116

	ABSTRACT
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	: Introduction
	1.1 Contributions Outline
	1.2 List of Publications

	: Power Management Challenges
	2.1 State of the Art
	2.1.1 Overview and Classification of Work
	2.1.2 Dynamic Power Switching (DPS)
	2.1.3 DVFS Techniques
	2.1.4 Available Market Standards
	2.1.4.1 Intel
	2.1.4.2 AMD
	2.1.4.3 ARM
	2.1.4.4 Linux
	2.1.4.5 Conclusion

	2.1.5 Academic Research
	2.1.5.1 Overview of Academic Research
	2.1.5.2 Low Power Scheduling

	2.1.6 Conclusion
	2.1.7 Focus and Objectives

	2.2 Work Context
	2.2.1 Problem Statement
	2.2.2 Platforms
	2.2.2.1 ARM11 MPCore
	2.2.2.2 ARM 1176JZF-S
	2.2.2.3 QEMU_ARM1176
	2.2.2.4 QEMU_CortexA9

	2.2.3 Power Strategies
	2.2.3.1 DVFS Video Power Strategy
	2.2.3.2 Low Power DSF Scheduler
	2.2.3.3 Low Power AsDPM Scheduler

	: DVFS Video Power Strategy
	3.1 Introduction
	3.1.1 Case study: H.264 Decoder
	3.1.2 DVFS Video Strategy Description

	3.2 DVFS Strategy Implementation and Experimentation
	3.2.1 DVFS Strategy Implementation
	3.2.2 Power and Frame rate profiles
	3.2.3 Energy Consumption Analysis

	3.3 Further Investigation of Energy Saving Conditions
	3.3.1 Operating Point Set up on the Virtual Platform
	3.3.2 Accuracy and Behavior of Virtual Platform Estimations
	3.3.3 Results and Discussion

	3.4 Conclusion

	: DSF Power Strategy
	4.1 Introduction
	4.1.1 DSF Strategy
	4.1.2 Application Examples

	4.2 DSF Implementation and Experimentation
	4.2.1 DSF Implementation
	4.2.2 Experimentation on a Single Processor
	4.2.3 Experimentation with Application Parameters

	4.3 Results and Analysis
	4.3.1 Multiprocessor Energy Savings
	4.3.2 Analysis of Results

	4.4 Conclusion

	: AsDPM Power Strategy
	5.1 Introduction
	5.1.1 AsDPM Strategy
	5.1.2 Application Examples

	5.2 AsDPM Implementation and Experimentation
	5.2.1 AsDPM Implementation
	5.2.2 Energy Savings
	5.2.3 Further Analysis of Results

	5.3 Energy Gain Comparison of DSF and AsDPM
	5.3.1 Energy Gains for DSF
	5.3.2 Comparison and Analysis of Results

	5.4 Conclusion

	: Global Analysis and Conclusion
	6.1 Power Management Effectiveness
	6.1.1 Characteristics of Operating Points
	6.1.1.1 Operating Points Inefficiency
	6.1.1.2 Operating Points Impact on Energy Savings

	6.1.2 Latencies of Changing States
	6.1.3 Application Level Conditions
	6.1.4 Domain Specific Strategies
	6.1.5 Efficiency of DVFS vs. DPS
	6.1.5.1 DSF vs. AsDPM
	6.1.5.2 DVFS vs. DPS

	6.2 Power Models
	6.2.1 DVFS Video Strategy
	6.2.2 DSF
	6.2.3 AsDPM

	6.3 Conclusion and Perspectives
	6.3.1 Perspectives

	VITA
	BiblioGraphy
	Appendix A – Acronym Index

