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ABSTRACT 

 

The purpose of this study is to investigate how power management strategies can be 
efficiently exploited in actual platforms. Primarily, the challenges in multicore based 
embedded systems lies in managing the energy expenditure, determining the scheduling 
behavior and establishing methods to monitor power and energy, so as to meet the 
demands of the battery life and load requirements. The work presented in this 
dissertation is a study of low power-aware strategies in the practical world for single and 
multiprocessor platforms. The approach used for this study is based on representative 
multiprocessor platforms (real or virtual) to identify the most influential parameters, at 
hardware as well as application level, unlike many existing works in which these 
parameters are often underestimated or sometimes even ignored. The work analyzes and 
compares in detail various experimentations with different power policies based on 
Dynamic Voltage and Frequency Scaling (DVFS) and Dynamic Power Switching (DPS) 
techniques, and investigates the conditions at which these policies are effective in terms 
of energy savings.  

The results of these investigations reveal many interesting and notable conclusions that 
can serve as prerequisites for the efficient use of power management strategies. This 
work also shows the potential of advanced domain specific power strategies compared to 
real world available strategies that are general purpose based in their majority. Finally, 
some high level consumption models are derived from the different energy measurement 
results to let the estimation of power management benefits at early stages of a system 
development. 
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Chapter 1. INTRODUCTION   
 

Chapter 1 : INTRODUCTION 

This introduction aims at presenting the reader with a global outline of this study. The 
introduction part provides a general discussion on trends of energy consumption in 
modern systems, presents general objectives of this work and provides an outline of this 
thesis. A detailed literature review, work context, as well as problem statement are 
presented later in the respective chapter.  

In recent years, there has been a rapid and wide spread growth of nontraditional 
computing platforms, especially mobile and portable computing devices. It is a common 
experience that current mobile devices (laptops, PDAs, etc.) can operate just for few 
hours before the battery gets exhausted. As applications are becoming more and more 
complex and processing power is continuously increasing, there is a significant impact 
on battery life. Embedded systems due to the advancement made in fabrication of 
powerful tiny processors, with the ability of having multiple cores and variable 
frequencies can be integrated in small handheld devices. The small physical size and 
limited battery life of these devices impose several constraints on power and energy 
consumption of these devices. In this context, most systems should be designed in a way 
to adapt themselves according to environment needs, precisely they need to adapt at the 
lowest energy consumption for a given performance level. 

These constraints require rethinking the design process with power and energy issues as 
major concerns. It is really a waste if the equipments are not designed to be energy 
efficient with the abilities to power down during non-operating hours. Energy 
consumption is becoming more of a concern and is getting an increasingly larger 
percentage of the overall development costs as well. Reducing the energy consumption 
in embedded systems has become a prime criterion, motivated by the limited lifetime of 
battery operated systems.  

This thesis provides a characterization of real challenges encountered while providing 
advance power management solutions in actual embedded systems. This thesis also 
provides a detailed analysis of power management challenges and review power saving 
techniques available with today’s system-on-chip (SoC). We analyze different power 
management strategies on single and multiprocessor platforms and explore how different 
power management policies, each with their own methodologies, can really provide 
energy savings. The real implementation of different power management strategies 
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coincide with different issues therefore this work present a realistic approach by 
experimenting with different power management strategies in real world. This thesis 
demonstrates experimentation and analysis of three different domain specific power 
management strategies with the objective of pointing out different factors effecting the 
energy consumption. In addition, we provide different experimentation results to 
evaluate the effectiveness of these strategies and provide conditions under which the 
addressed strategies are feasible in modern systems. 

In next section, we present a global outline of our contribution to address the above 
issues. 

1.1 Contributions Outline 

Chapter 2: This chapter provides a detailed literature overview of our work. At the 
beginning of this chapter, we provide a detailed study of main power management 
solutions, industrial power management standards and academic research going in the 
field of power management. Afterwards, we introduce the focus and targets of our work 
to meet the power management challenges and consequently define our problem 
statement. The chapter then provides information about the target platforms and ends 
with the brief introduction to the different power strategies used to address the problem 
statement. 

Chapter 3: This chapter provides a detailed experimentation about the first DVFS based 
video power strategy. The DVFS based strategies are shown to provide significant 
energy gains, where scaling down the frequency mostly provides decrease in power 
consumption. The experimentation and results provided in this chapter shows that 
various conditions should be met to achieve this energy savings. The chapter also 
highlights the importance of using domain or application specific strategies. At the end, 
the effect of operating points on the efficiency of a DVFS strategy and their influence on 
the energy savings is also investigated. 

Chapter 4: This chapter provides experimentation of a second DVFS based Dynamic 
Stretch to Fit (DSF) strategy on single and multiprocessor platforms. DSF strategy is 
shown to provide significant energy gains in different platform configurations. The 
experimentations highlight the effects of load vs. idle power levels of the platforms. This 
chapter also provide certain application and platform limitations for using DSF strategy 
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as well as draw attention to the efficiency criteria of application or domain specific 
strategy. 

Chapter 5: This chapter provides an analysis and experimentation of a Dynamic Power 
Switching (DPS) based power strategy for multiprocessor platforms called Assertive 
Dynamic Power Management (AsDPM). The application specific strategy is analyzed 
for its energy consumption and is further investigated for the conditions under which it is 
more efficient on certain platform than other. The chapter also provides the effects 
introduced by different application parameters, platform characteristics and state 
switching latencies on the efficiency of the AsDPM strategy. In addition, this chapter 
provides a comparative analysis of energy gains obtained by AsDPM with previous DSF 
strategy.  

Chapter 6: This chapter provides major categorization of conditions obtained from the 
results of the above experimentations. First, it addresses power management 
effectiveness by classifying different application conditions, platform conditions, 
latencies of DVFS / DPS states and domain vs. general purpose strategies. Secondly, this 
chapter provides some high level power models derived from the results of energy gains 
obtained by our experimentations. At the end, this chapter provides a brief conclusion 
along with perspectives of furure work.  
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Chapter 2 : POWER MANAGEMENT CHALLENGES 

Moore's law states that the number of transistors in integrated circuits doubles 
approximately every two years [1]. As the technological advancement has proven this 
law to be correct, this decrease in size and increase in computational power impacts the 
power utilization of these highly complex components. Lower power consumption also 
means lesser heat dissipation, which increases system stability. However, this imposes 
major enhancements to the management of power for these new devices containing 
millions of transistors. The need for more complex and portable devices imposes new 
efforts on designing and implementing low power solutions. To increase the battery life 
of systems and give more reliability to the system, new techniques should be 
implemented to cope with power management issues. Power management challenges 
include considerations of overheating, energy cost as well as environmental concerns.  

In the past, boot delay of a device was very long when it was switched on and people 
used to leave their devices turned on to avoid this delay hence wasting a lot of energy. 
This led to introduce new power features allowing devices not to fully turn off when 
unused. To reduce power utilization when a device is not active, consumer electronic 
devices introduced the concept of sleep or standby states. Old versions included manual 
handling of going from one state to another based on user inputs. However, as the 
processor execution speed is much higher to that of a user, relying only on the user does 
not provide enough power reduction. As the technological era changed, new power 
management schemes were introduced to tackle automatically the power management 
problem without the need of the user.   

The power management in PCs and embedded systems has been handled historically 
with two different power managers i.e. Advanced Power Manager (APM) and Advance 
Configuration Power Interface (ACPI). Advanced Power Management (APM) represents 
the first stage, developed by Intel and Microsoft in 1992 [2]. Power management was 
performed through BIOS by turning off the display, disabling the hard disk after a preset 
period of idle time, or by idling CPU by entering in suspend state. APM lacked a lot of 
capabilities. For instance, power management was done as a background process by the 
BIOS instead of the Operating System (OS). For each different platform, this BIOS 
based APM was specific to the platform and had to be supplied by the manufacturer. The 
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second version named Advanced Configuration and Power Interface (ACPI) is still 
widely used in today’s operating systems. ACPI is an open industry specification 
establishing a standard interface for OS direct configuration and power management of 
laptops, desktops, and servers. First released in December 1996, ACPI defines platform 
independent interfaces for hardware discovery, configuration, power management and 
monitoring. ACPI is superior to APM as it addresses the drawbacks of APM. Although 
ACPI is fully adopted in windows based platforms, however Linux support for ACPI is 
still evolving.  

Besides these two major advancements of power managers, modern microprocessors 
also come with their own power management policies implemented in their BIOS. 
However, the evolution of these complex microprocessors does not fully compensate the 
energy demand and power optimization. Hence, operating systems may be limited by 
their general purpose software-based power management policies and could save further 
energy consumption for more demanding workloads like video and/or real-time 
processing for instance. In this work, we present a study of various power strategies on 
real-life applications and platforms. To do that, we investigate the conditions of energy 
gains of three distinct multiprocessor strategies: a Dynamic Voltage and Frequency 
Switching (DVFS) based strategy for video applications, a DVFS based deadline 
scheduling strategy and a Dynamic Power Switching (DPS) based deadline scheduling 
strategy. We also aim to investigate the conditions of efficiency and power reduction of 
these different strategies, so we promote a realistic investigation approach based on 
power measurements using actual multiprocessor platforms as much as possible.   

We address all these issues in detail in the following sections. Section 2.1 provides an 
overview and discussion of existing works related to the general field of power 
management. An overview and classification of work are presented in section 2.1.1. In 
section 2.1.2 and section 2.1.3, we detail the two broadly used power management 
techniques, i.e. DVFS and DPS. We then move to section 2.1.4, to review market 
standards and their available power management solutions. We start with Intel platforms 
and their power management infrastructure in section 2.1.4.1. Then we cover AMD 
processors and their respective technologies in section 2.1.4.2. The ARM processors are 
famous for their low-power consumption; we thoroughly study their PM infrastructure in 
section 2.1.4.3. Afterwards in section 2.1.4.4, we move to the power management 
provided by the Linux operating system. At the end in section 2.1.4.5, a conclusion is 
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established on the discussion of these standards. An overview of academic research work 
is then shown in section 2.1.5 with a focus on low power scheduling techniques. In 
section 2.1.6, we provide a global conclusion about the advantages, shortcomings, as 
well as other possibilities of exploring the said techniques. In the end, section 2.1.7 puts 
light on our focus and objectives related to power management for multiprocessor 
platforms. 

The second part of this chapter is to present our work context, why this work is carried 
out and how we can address the encountered shortcomings related to the power 
management on the representative platforms. Therefore, in section 2.2.1 we start by 
providing the problem statement. Afterwards, in section 2.2.2 we give information 
related to different platforms used in this work. We present the real platforms ARM11 
MPCore and ARM1176JZF-S along with two QEMU based virtual platforms. At the 
end, we provide a brief introduction of various power management strategies in section 
2.2.3, where the first dynamic video power strategy is described in subsection 2.2.3.1. In 
section 2.2.3.2, we introduce the DVFS based deadline scheduling technique and in 
section 2.2.3.3, we introduce the DPS based deadline scheduling technique.  

2.1 State of the Art 

This state-of-the-art section provides an overview of historical approaches used by 
systems. There are a lot of power management techniques that are proposed or 
implemented in embedded systems. However, power management is a large domain and 
cannot be summarized entirely. We start by differentiating and discussing the proposed 
classification of work in the field of power management. In the following sections, we 
focus on the two broadly used power management techniques, i.e. DVFS and DPS. The 
presence of a large number of processor manufacturers result in a variety of techniques, 
in spite of this we discuss the main approaches used by largely developed standards 
(ARM, Intel, AMD, etc.) and their respective platforms. We give a clear view of how 
these industrial and commercial available products manage power consumption. A 
detailed discussion on power management policies and infrastructure used by the Linux 
OS is also presented. The state-of-the-art section also provides an overview of ongoing 
research in the field of power management in academic domain. As this is a very 

large domain of research, we only focus on techniques used for processor level power 
management. We also discuss low power scheduling policies as they provide interesting 
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solutions for power management in modern multiprocessor devices. At the end, we 
provide a general analysis and conclusion of this state-of-the-art regarding the targets 
and goals of our work.   

2.1.1 Overview and Classification of Work 

In this section, we emphasize different power management techniques used in embedded 
systems. Power management can be done at different levels, i.e. operating system level, 
component level or application level. CPU power consumption is significant and is the 
main target of power management analysis in various studies. For example, numerous 
power aware models studied in [3-7] are shown and integrated into present performance 
simulators to investigate power consumption of the CPU, on a unit basis or for the 
processor as whole. Our focus is also on techniques which are related to processor level 
power management. Two popular techniques are mainly employed: Dynamic Power 
Switching (DPS) to switch off the power of a part of the circuit to idle states, and 
Dynamic Voltage and Frequency Scaling (DVFS) to tune a processor clock speed and 
voltage. In some works as in [8], DPS techniques are also referred to as Dynamic Power 
Management (DPM). DPM refers to an IBM and MontaVista initiative of developing a 
general and flexible dynamic power management architecture which is now outdated. 
We therefore use the term DPS instead of DPM in order to avoid confusion. In general, 
DVFS and DPS techniques are controlled by a power policy or power strategy. The next 
section provides a detailed discussion on these broadly used techniques. 

2.1.2 Dynamic Power Switching (DPS) 

Dynamic Power Switching (DPS) is a well-known technique that selectively shutdowns 
or puts to sleep some active components in embedded systems, to manage energy 
consumption and heat dissipation problems. In early stages, power switching was under 
the control of Advanced Power Management (APM). APM provided different power 
modes like full-on, enable, standby, suspend, and off. A brief description of these modes 
is given below: 

In full-on mode all components are fully powered and there is no power management 
occurring. In enable mode CPU is slowed or stopped (depending on BIOS), all other 
devices still draw full power and recover time is instantaneous. In APM standby mode, 
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CPU may be stopped depending on operation or activity, most devices are in low power 
mode as well as monitor enters its first power management mode. An activity can trigger 
a return to enable or full-on mode depending on the system and activity. In APM 
suspend mode CPU is stopped, most power-managed devices are not powered (network 
card may stay on) and APM provides maximum power savings. Activity can trigger a 
return to standby, enable or full-on depending on the BIOS though recovery time is very 
large. In APM Off mode operational parameters are saved, system turn off and draw no 
power. 

A decision to enter low-power modes was controlled by timers and the return to full 
power (or higher-power modes) is directly triggered by activity from the keyboard, 
mouse, modem, or network.  Such activities generate interrupt requests, or IRQs, which 
signal the processor that it needs to respond to them. Even when a PC has powered down 
(but is not off), the BIOS still monitors IRQ activity. APM had a major drawback of its 
dependence on the BIOS. Another shortcoming was lack of intermediate power states 
and usually systems either uses full performance level or are always idle (inactive). 
ACPI addressed these issues and was later adopted and enhanced by all market sharers, 
and is still in use. ACPI allows direct power management by the Operating System. 
ACPI is a hierarchical power management technique having different system and device 
power states as shown in figure 2.1. ACPI naming convention divides the overall system 
components in set of manageable components like Global G-states, System S-states, 
Processor P-states, Busses B-states, Links L-states and Devices D-states. A numbering 
convention is also used where '0' is the main active state like G0, S0, D0, etc. The 
numbers from 1 to n represent the corresponding power levels. The higher number 
indicates the lower power consumption state in comparison to its previous ones. For 
example, P1 state consumes more power than P2, P3 or P4 state. ACPI subsystem uses 
these states to handle power management of individual devices, components or the 
overall system.   

A summary of different states is discussed to give an idea of this dynamic power 
switching mechanism. Here, G-states are the top-level states for the overall system and 
reflect the user level perception. G-States are global operating states and are not 
configurable by the user. These are just used in documentation to specify certain system 
states such as on, off, sleeping. G0 is the working state, where the system is fully 
operational. G1 is a sleeping state where power consumption is small, and the system 
can be resumed without the need of booting. G2 is a soft off state in which the system 
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consumes a minimum amount of power, and the system must be restarted to be 
functional. G3 is a mechanical off state, where all hardware information is lost, and 
power consumption is zero. A hierarchical view of G-states with other system states is 
shown in figure 2.1. 

 

Figure 2.1: Global System Power States and Transitions. [9] 

The S-states are types of sleeping states within the G1 sleeping state. These are set in the 
BIOS and then configured in the power option's control panel (timeout in minutes). The 
S-states allow the system to save a significant amount of power when not being used. S0 
is the working or fully powered state. S1 and S2 are similar low wake-up latency states 
except that in S2, the CPU and cache context are lost. S3 is a suspend to RAM state 
where the memory image is maintained and powered, while the CPU chipset and I/O 
devices lose their content. S4 is a suspend to disk or hibernate state where all devices are 
powered off. This state has the longest wake-up latency. The RAM content is lost and 
the platform content is maintained on the hard drive. The soft-off state S5 is similar to 
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S4 but here, the system requires complete re-boot when waking up. A system in S-state 
can be triggered by a motion sensor, LAN or GPIO activity. 

The CPU power state or C-states are the processor power consumption and thermal 
management states within the global state G0. It reduces power consumption by putting 
the processor to sleep when it does not have code to execute. The entry and exit from C-
states are much faster in comparison to S-states. C-states require low processor power 
during idle light workloads. The C-states limits can be configured and set by the BIOS, 
and a processor can go to C-states several thousand times per second. These states can 
also be referred as operating, halt, sleep and deep sleep mode. The processor is in C0 
state when it executes instructions. The C1 to Cn power states are processor sleeping 
states, where the processor consumes less power and dissipates less heat than in the C0 
state. C1 is the lowest latency power state where the processor is in a non-executing 
state. C2 state offers improved power saving in comparison to C1. The contents of L1 
cache are saved to L2 cache. C3 state also offers improved power scaling over C1 and 
C2, but the time latency of entrance and exit increases. In the C3 state, the core flushes 
the content of its L2 instruction cache and the shared L3 cache, while maintaining its 
architectural state. All core clocks stop at this point. The C-states are processor model 
specific, therefore some processors may contain further C4, C5, C6 states, etc. 

While in the C0 state, ACPI allows the performance of the processor to be altered 
through a defined throttling process and through transitions into multiple performance 
states (P-states) as shown in figure 2.1. P0 provides maximum performance while 
consuming maximum power (at a higher frequency). Similarly, P1 is a state where the 
processor consumes less power than P0. The lesser power consumption also results in 
reducing the performance below the maximum. The P-states also depend upon the 
underlying hardware. The numbers of P-states are processor specific, where each state 
corresponds to a different frequency and power consumption level. Pn is the state where 
processor has lowest frequency and minimum power consumption. P-states are very 
useful to control non-critical workloads that do not require maximum frequency and 
power consumption throughout their execution.   

ACPI also contains the device D-states (Figure 2.1) for managing power of peripheral 
devices. D0 is the active state and consumes maximum power. Devices often come with 
only on and off states. Therefore, D1 and D2 are rarely used. However, in devices like 
modems, D1 state provides functionality like modem controller to go into low power 
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mode, phone interface powered by the phone line, and speaker off. D3 is the state when 
a device is off. Like in case of a modem, the controller is switched off, phone interface 
turned off, speaker off. Additionally, it can be D3 hot or D3 cold depending on if 
primary power is removed or not. 

The operating system uses these ACPI states with the help of a policy manager for 
power and energy management. An example of such a policy manager is OSPM as 
shown in figure 2.2. The policy manager defines a policy based on the different user, 
application or environmental parameters. The policy manager directs the rules for using 
efficiently the ACPI sleep states for the policy (or scheme). The ACPI sleep states are 
mostly selected by the policy manager when there is no workload on the processor. 
However, the processor is usually the most active element in embedded systems. 
Handling smartly the processor states has the potential for significant energy and power 
gains. Therefore, when a processor is active, the policy manager uses DVFS techniques 
to select the P-states for managing power, as detailed in the next section.  

 
Figure 2.2: Power management model with ACPI subsystem. [9] 
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2.1.3 DVFS Techniques 

Dynamic Voltage and Frequency Scaling (DVFS) is widely used for power management 
in modern processors, as it is an effective method for achieving low power consumption 
of CPU while meeting the performance requirements. The purpose of DVFS techniques 
is to scale dynamically the circuit speed and the supply voltage level of the processor, to 
process the system workload. The frequency and supply voltage are directly related to 
power consumption in CMOS technology as shown in [10]. Therefore, decreasing 
frequency and voltage will impact overall power consumption and will increase/decrease 
the total energy consumption. Modern microprocessors come with the built-in support 
for DVFS along with the support for DPS. A number of new microprocessors such as 
ARM1176JZF-S [11], ARM CortexA9 [12], AMD-K6TM-2E+Processors[13], Intel M 
series [14], Transmeta Crusoe [15] are equipped with the DVFS functionality.   

Microprocessors are also provided with power management software (policies) to make 
use of DVFS techniques. A detailed description of some of the industry standards, as 
well as their power management policies and DVFS techniques are detailed in section 
2.1.4. DVFS in popular operating systems, like Windows and Linux, is supported by the 
help of ACPI. The ACPI C0-states can be further divided into performance P-states as 
described in section 2.1.2. Different policies are defined based on performance and 
power needs, to use these P-states efficiently. For example, the OnDemand policy 
(governor) in Linux allows adapting the frequency to the workload using P-states. This 
governor allows the CPU to achieve maximum clock frequency when the system load is 
high and minimum frequency when the system is idle. The detailed description of Linux 
governors is given in section 2.1.4.4. Similarly, Windows OS comes with policies like 
Balanced, Max Power Saving, Max Performance. These policies use the ACPI 
infrastructure that allows the processor to change its frequency and voltage according to 
the workload. For example, in case of a Balanced scheme, ACPI chooses the best P-state 
level based on total average workload. An example of P-states of an Intel M-processor 
using Enhanced Intel SpeedStep (EIST) technology is shown in table 2.1. The 
corresponding frequency and voltage levels are also shown for each P-state. According 
to ACPI, P0 is the state where frequency is maximum (1.6 GHz), and voltage is also 
maximum (1.484 V). Similarly, the lowest P-state is P5 where the frequency and 
voltages are at their lowest values as shown in table 2.1.  
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Table 2.1: Supported Performance States for the Intel M-Processor [14] 

P-States Frequency Voltage 
P0 (HFM) 1.6 GHz  1.484 V 
P1 1.4 GHz 1.420 V 
P2 1.2 GHz 1.276 V 
P3 1.0 GHz 1.164 V 
P4 800 MHz 1.036 V 
P5 (LFM) 600 MHz 0.956 V 

Another important aspect of implementing a DVFS based strategy (policy) is its 
dependency on the operating points. Operating points in the context of DVFS are the 
frequency/voltage levels that a processor support (equivalent to P-states shown in table 
2.1). DVFS based policies should be defined in a way to use these operating points 
efficiently. For instance, if the desired frequency for an application or workload is 
between two discrete levels, the one with higher value should be used. In this way, we 
can guarantee the temporal requirements. Researchers in [16], have proposed algorithms 
to map such required continuous frequency/voltage levels to discrete values, to utilize 
DVFS technology. Thanks to the advancements in micro architectures, modern 
processors are able to operate in a wide range of the frequency/voltage spectrum. This 
allows DVFS based policies to exploit a wide range of available P-states. For example, 
Intel SpeedStep technology evolved from changing frequency by taking steps of 200 
MHz in its first version ( SpeedStep I, Table 2.1), to steps of 100 MHz in the latest 
version ( SpeedStep III).  

2.1.4 Available Market Standards 

Traditionally, first technologies in power management were based on dynamically 
switching on and off the circuitry or components to achieve an overall lower power 
utilization [17]. Power management for computer systems has focused on regulating the 
power consumption in static modes (such as sleep, suspend). These de-activating states 
often require a user action to re-activate the system. Latencies and overheads are usually 
significant for entering and exiting of these states. In desktop and server systems, a 
firmware layer is typically added to support these modes. However, many architectures 
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provide the equivalent of a halt instruction that reduces CPU power during idle periods, 
with only a few clock cycles of latency.  

With the advancement in technology and constraints such as size, cost and 
environmental effects, no design is complete without a thorough analysis of the power-
supply architecture. Modern systems are therefore equipped with facilities such as 
dynamically changing the frequency and voltage, flexible power management modes, 
separate power domains, intelligent voltage regulators, etc. New micro architectures are 
designed with CMOS technology to consume less power. Power consumption at the 
processor level is generally divided into static and dynamic power. Accordingly, we 
have to decrease both the static and dynamic power to decrease the total power 
consumption. In the past, static power consumption has been small in comparison to 
dynamic power. However, factors contributing to leakage power, including quantum 
effects (such as gate-oxide layer tunneling) are becoming increasingly important with 
shrinking silicon feature sizes as discussed in [18]. 

Voltage has a quadratic relationship with power for dynamic power consumption, 
therefore decreasing voltage can significantly affect dynamic power utilization. With the 
availability of techniques like DVFS, new policies and power management methods are 
possible at different levels (i.e. OS, Hardware, etc.). ACPI is widely used to handle 
power management as detailed in the above section 2.1.2. Besides ACPI, modern 
microprocessors come with their own power management hardware and software to 
handle power consumption. Examples of such processors include Intel SpeedStep[14], 
AMD Cool'n'Quiet [19] and PowerNow [20], IBM EnergyScale [21] and ARM IEM 
[22]. A brief overview of power management policies used by Intel, AMD and ARM 
processors, as well as power management in Linux is detailed in the following sections.  

2.1.4.1 Intel 

There are several Intel® power management technologies that can be used by embedded 
developers to manage the balance between power consumption and performance. First, 
there are power states that define distinct “sleep” modes as well as different fully 
functional operating modes. Second, Enhanced Intel SpeedStep® Technology enables 
optimal performance at the lowest power by allowing the operating system to change the 
processor frequency and supply voltage. Third, Intel® Turbo Boost Technology provides 
additional processor frequency bins, above the base operating frequency (i.e. faster). An 
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embedded system only runs at the full throttle when workload demand is high, therefore, 
energy is mostly saved during non-peak times. Intel power management technologies 
give software developers granular control over the system operation.   

Intel SpeedStep, that is a trademark for a series of dynamic frequency scaling 
technologies (including SpeedStep I, SpeedStep II, and SpeedStep III) allow the clock 
speed of the processor to be changed dynamically. This allows the processor to meet the 
performance needs for the operation being performed, while minimizing power drawn 
and heat dissipation. Power management in new Intel series processors, is provided by 
the built in Enhanced Intel SpeedStep (EIST) technology. EIST allows the processor 
performance and power consumption levels to be modified while a system is 
functioning. This is accomplished via application software, which changes the bus-to-
core frequency ratio and the processor core voltage (Vcc). A variety of inputs such as the 
system power source, processor thermal state, or OS power policy is used to determine 
the proper operating state. 

There are various versions of EIST present for Intel processors. The EIST V1.1 is used 
by second generation Pentium III processors. It enables the CPU to switch between 
predefined modes: the top and bottom modes are commonly known as high-frequency 
mode (HFM) and low-frequency mode (LFM). The frequencies and voltages (operating 
points) are stored within a read-only processor model specific register (MSR). This MSR 
ensures BIOS will not allow transitions to invalid states above the HFM or below the 
LFM. The other four operating points are stored within the BIOS code in a drop voltage 
table provided by vendors. An example of P-states for Intel M processor at 1.6 GHz is 
shown in table 2.1 in section 2.1.3, where the processor frequency is modeled to have 
steps of 200 MHz. Using EIST, Pentium III processors consume about 20 Watts at 1 
GHz and it can be reduced to 6 Watts at 600 MHz. EIST V2.1 (Enhanced SpeedStep) is 
used in Pentium III-Mobile processors and is similar to the previous version. EIST V2.2 
is adapted for Pentium 4-Mobile processors. With EIST V2.2, a 1.8 GHz Pentium 4-M 
consuming about 30 Watts can lower its frequency to 1.2 GHz, thus reducing power 
consumption to about 20 Watts. EIST V3.1 is used in the first and second generation of 
Pentium M processors (Banias and Dothan cores, used in Centrino platforms). With this 
technology, the CPU varies its frequency (and voltage) between about 40% and 100% of 
its base frequency in increments of 100 MHz (for Banias core) or 133 MHz (for Dothan 
core).   
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2.1.4.2 AMD 

AMD provides several power management technologies that can be used by software 
developers to deal with power and thermal issues. To manage power at the CPU level, 
the two most efficient technological standards provided by AMD are Cool'n'Quiet and 
PowerNow. Cool'n'Quiet is a CPU speed throttling and power saving technology 
introduced in the Athlon64 processor line. The technology reduces the overall power 
consumption and lower heat generation, allowing for slower cooling fan operation. The 
objectives of cooler and quieter system execution result in the name Cool'n'Quiet. The 
technology is similar to Intel SpeedStep and AMD PowerNow. Due to its different usage, 
Cool'n'Quiet refers to the desktop and server chips, while PowerNow is used for laptops 
and mobile chips. The technology is also introduced on e-stepping Opterons; however, it 
is called Optimized Power Management (OPM), which is a re-tooled Cool'n'Quiet 
scheme designed to work with registered memory.  

Cool'n'Quiet technology controls the processor performance automatically by 
dynamically adjusting the operating frequency and voltage up to 30 times per second to 
the task at hand. It reduces the power in two ways. First, it reduces the leakage power at 
idle. The Athlon64 puts itself to sleep when the HLT/STPGNT instruction is sent. At this 
stage, only the leakage power is drawn. The power is further cut down significantly by 
reducing the frequency and voltage. Secondly, it reduces the power needed during light 
and medium load. When the processor can cope with the work at a low 
frequency/voltage level, it stays at this level. The performance penalty of this solution is 
negligible. All Athlon64 and all A64 based Semprons greater than 1.8 GHz support this 
feature. Power can be saved significantly when an application does not require full 
performance. The processor can also respond to increased workloads, allowing the 
system to deliver a responsive computing experience.   

Like Cool'n'Quiet, AMD PowerNow is also a speed throttling and power saving 
technology of AMD processors used in laptops. All AMD-K6-2E+ and AMD-K6-IIIE+ 
low power embedded processors support PowerNow. The processor clock speed and 
core voltages are automatically decreased (based on power policy) when the computer is 
under low load or idle, to save battery power and to reduce heat (noise). The AMD 
PowerNow technology supports a wide range of operating voltages ranging from     
0.0925 V to 2 V (allowing 32 different core voltages with a step as small as 25 mV or  
50 mV). The technology also supports frequency starting from as low as 133 MHz or 
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200 MHz (allowing steps of 33 MHz or 50 MHz) depending on the processor model. 
Table 2.2 shows an example voltage and frequency levels using PowerNow technology. 
The allowed voltage step is 0.1 volts with the respective frequency switching of            
50 MHz.     

Table 2.2: Supported Voltages and Frequencies for Low Power AMD-
K6TM2E+Processors[20] 

 

Beside DVFS support, PowerNow technology provides different operating modes like 
High performance, Power saver and Automatic mode defined for specific performance 
and power requirements. The AMD PowerNow technology contains Enhanced Power 
Management (EPM) Block that can be accessed by the OS to change operating 
frequency and voltages. The OS based power management policies are responsible for 
carrying the burden of invoking EPM block. However, locking of processor from 
external interrupts, snoops, etc. during transition is handled automatically. 

AMD has also provided other power management technologies like AMD PowerCap 
Manager that allows IT data center managers to fix power consumption on server 
processors. Similarly, Advanced Platform Management Link (APML) technology 
provides new controls to monitor power and cooling. Detailed description of these 
technologies can be seen in [13]. 

2.1.4.3 ARM 

ARM is very well known for developing low-power processor IP technology. The ARM 
power management kit contains a collection of standard cells specifically designed to 
allow the implementation of various low power techniques. Almost all ARM processors 
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contain support for low power states (idle states); additionally, cores like ARM1176JZF-
S, CortexA9, CortexA15, etc. also contain support for DVFS. To allow DPS, the typical 
ARM processor allows support for four sleep states which are Active or Run, Standby, 
Dormant and Shutdown. The processor is in Run mode when everything is clocked and 
powered up. In a Standby state, the CPU clock is stopped by executing a Wait For 
Interrupt (WFI) instruction. WFI Standby mode disables most of the clocks in a 
processor, while keeping its logic powered up. This reduces the power drawn to the 
static leakage current, leaving a tiny clock power overhead requirement to enable the 
device to wake up. The Dormant state enables the processor to be powered down while 
leaving the caches powered up and maintaining their state. The Shutdown state powers 
down the entire device and all states, including the cache content which must be saved 
by an external software. The Power Management Controller (PMC) determines whether 
the processor should be put into Active, Standby, Dormant, or Shutdown state. However, 
the choice to use these states is controlled by a policy manager. For an example, Linux 
OS with the help of ACPI infrastructure contains a CPUIdle driver, to direct PMC to use 
one of the predefined low power states. The PMC informs the processor about the nature 
of reset that has occurred. Whether the reset occurred due to exiting Dormant mode or 
Shutdow mode, the processor is branched to the correct state restore routine. 

To allow DVFS when in active state, ARM offers a system-level power management 
scheme called Intelligent Energy Management (IEM) for energy and power 
management. This is a combination of hardware and software technology that allows 
DVFS to reduce energy consumption. The IEM solution is designed primarily for 
battery-powered  equipment, where the requirement is to have a long battery life. The 
IEM solution is also ideal for portable devices, for example, smart phones, feature 
phones, Personal Digital Assistants (PDA), handheld game consoles and media players, 
etc. A typical IEM System on Chip (SoC) solution is shown in figure 2.3. A complete 
IEM solution is made up of a number of hardware and software components. The IEM 
software component uses information (based on workload) from the operating system to 
build up a historical view of the application execution on the system. A number of 
different software algorithms are applied to classify the types of activity and to analyze 
their processor utilization patterns. The results of each analysis are combined to make a 
global prediction about the future performance requirement for the system. This 
prediction is used by the Intelligent Energy Controller IEC. 
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Figure 2.3: Intelligent Energy Management Solution by ARM. [22] 

The IEC uses prediction performance level requests from the IEM software. The 
performance setting is communicated to the IEC, so that the platform scaling hardware 
can be controlled to bring the system to the required performance level. Battery life is 
extended by lowering the operating frequency and voltage of SoC components (such as 
the processor) which consequently reduces energy consumption. The IEC also measures 
the work done in the system to ensure that the software deadlines are not going to be 
missed. Additionally, the IEC also supports a maximum performance request feature. 
Further information regarding IEM and IEC can be seen in [22] and [23].   

In the following section, we discuss the power management provided by Linux, to 
further understand how efficiently power can be saved. In addition, we also provide a 
discussion of academic works on power strategies, to highlight other opportunities for 
power management than workload based approaches. 

2.1.4.4 Linux 

Besides available market standards and their power management solutions, popular 
operating systems like Linux, Windows, Mac OS also provide support for better power 
solutions to deal with rapid technological advancements. Linux is an open-source 
operating system that is widely used in modern devices. Linux supports two 
implementations of power management: Advanced Power Management (APM) and 
Advanced Configuration and Power Interface (ACPI). Detailed description of processor 
sleep states available in APM and ACPI is presented in section 2.1.2. In the following, 
we focus on the mechanisms and strategies used for proper exploitation of these states in 
Linux. At system level, ACPI defines mechanisms for putting the computer as a whole 
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in and out of system sleeping states. It also provides a general mechanism for any device 
to wake the computer. ACPI tables also describe motherboard devices, their power 
states, the power plans the devices are connected to, and controls for putting devices into 
different power states. This enables the OS to put devices into low-power states based on 
application overall power usage. According to the description of the ACPI states 
provided in section 2.1.2, each state introduces greater power savings but requires 
commensurately more time to awaken and begin performing work. Linux device drivers 
are generally responsible for saving device states before putting and restoring the device 
in low power modes. Generally, applications are not involved in power management 
state transitions. 

Linux contains an infrastructure pm_dev to maintain information about every power 
management event. Device drivers must have to register themselves with Linux power 
management subsystem. They do this by calling pm_register that contains necessary 
device information like its type, identity (ID) and functionality. The Linux pm.h file 
contains various types and IDs used by these drivers. When a power management event 
occurs, arguments like device name, device state, device data, etc. are passed to device 
drivers to perform specific tasks. For example, in case the device is a liquid crystal 
display (LCD), an event could be pm_suspend to save the device state and turn off the 
display. Similarly, if a pm_resume event occurs, the LCD driver should restore the saved 
state back. When the device is not used anymore, its driver should unregister itself from 
the power management infrastructure. When a device is unregistered, the power 
management does not involve that device in future power management events.  

At CPU level, power is controlled by using processor's idle power states (C-states) or by 
changing the CPU frequency (P-states). The number of C-states and P-states depend 
upon processor and can vary independently. These are typically implemented with the 
help of ACPI as described in section 2.1.2. However, special infrastructures are present 
to make use of these idle and performance states. The CPUIdle subsystem provides the 
functionality of separating the layers to make use of C-states. The CPUIdle drivers are 
found in architecture-specific ACPI code. On the other hand, the decision of choosing 
which idle state is decided by the policy (power strategy). Linux contains CPUIdle 
governors that allow the implementation of different policies for distinct needs. It should 
be noted that deeper sleep (C-states) saves more power, but the downside is that they 
have higher latency (the time the CPU needs to go back to C0).  
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Processor in operating state (C0 state) can be in one of different P-states. The CPUFreq 
is used to set a static or dynamic power policy for the system. It uses the CPUFreq 
driver to dynamically scale the processor frequencies at runtime. The CPUFreq provides 
a common interface to the various low-level technologies and high-level policies. The 
Linux in-kernel governors (policy governors that can change the CPU frequency based 
on different criteria), and CPU specific drivers (CPUFreq) are used to implement the 
technology for the specific processor. The processor consumes less power while still 
doing work, and the tradeoff comes between power and performance, rather than power 
and latency. Each governor has its own unique behavior, purpose, and suitability in 
terms of workload. Generally, there are five different types of CPUFreq governors, i.e. 
Performance, Powersave, OnDemand, Conservative and Userspace. A brief description 
of these governors is given below:  

Performance 

The Performance governor forces the CPU to use the highest possible clock frequency. 
This frequency is statically set and will not change. As such, this particular governor 
offers no power saving benefit. It is usually suitable for hours of heavy workload, and 
only during times wherein the CPU is rarely (or never) idle. 

Powersave 

The Powersave governor forces the CPU to use the lowest possible clock frequency. 
This frequency is statically set and will not change. By itself, this specific governor 
offers maximum power savings, but at the cost of the lowest CPU performance. The 
Powersave governor is more a “speed limiter” for CPU than a “power saver”. It is most 
useful in systems and environments where overheating can be a problem. 

OnDemand 

The OnDemand governor is a dynamic governor that allows the CPU to achieve 
maximum clock frequency when the system load is high, and also minimum clock 
frequency when the system is idle. The OnDemand governor uses parameters such as the 
sampling-rate, up-threshold, sampling-down-frequency, ignore-nice-load, etc. to make 
the frequency switch decision. As an illustration, the sampling-rate is used to let the 
kernel decide how often (in microseconds) a transition is needed. Up-threshold is the 
average CPU usage (CPU %) during sampling time. Similarly, other parameters have 
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their own special functionality. While the OnDemand governor allows the system to 
adjust power consumption with respect to system load, it does so at the expense of 
latency related to frequency switching. For most systems, the OnDemand governor can 
provide the best compromise among heat emission, power consumption, performance, 
and manageability. When the system is only busy at specific times of the day, the 
OnDemand governor will automatically switch between maximum and minimum 
frequency depending on the load without any further intervention. 

Conservative 

Like the OnDemand governor, the Conservative governor also adjusts the clock 
frequency according to usage. However, while the OnDemand governor does so in a 
more aggressive manner (that is from maximum to minimum and back), the 
Conservative governor switches between frequencies more gracefully. This means that 
the Conservative governor will adjust to a clock frequency that it deems fitting for the 
load, rather than jumping to max speed the moment there is any load. A parameter called 
freq_step is used to define frequency steps to smoothly increase or decrease frequency. 
Conservative governor can possibly provide significant savings in power consumption 
however; it does so at an ever greater latency than the OnDemand governor. 

Userspace  

The Userspace governor allows user programs (or any process running as root) to set the 
frequency. This governor is normally used in conjunction with the cpuspeed daemon. A 
parameter called Scaling_setspeed is used to write desired frequency. Consequently, 
Userspace is the most customizable of all the governors and depending on how it is 
used, it can actually provide a dynamic balance between performance and power 
consumption for the system.  

The above discussion summarizes our discussion on available technologies, market 
standards and power management done in Linux OS. It also puts light on specific power 
management techniques provided by different manufacturers. A conclusion highlighting 
the benefits, drawbacks and limitations of these standards is given in the next section.  
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2.1.4.5 Conclusion 

Based on the above discussion, power management can be broadly divided into two 
categories. Firstly, OS based power management policies such as in Linux and secondly 
vendor specific power management policies like Intel's EIST or ARM's IEM. In both 
cases, such existing power management policies rely on the total workload of a system 
(which is more related to the hardware state), during a certain period to deal with power 
issues. These policies present the advantage of being applicable in all cases (general 
purpose), but the drawback is probably a certain level of inefficiency (since they do not 
really consider application knowledge).  

Therefore, new power management solutions should be provided to overcome these 
shortcomings. The idea is to make a tradeoff between power and performance through 
power-aware algorithms. Currently, a lot of academic research is being done on 
accurately predicting the workload during a certain time period or to exploit other 
paradigms (e.g. Low power scheduling). Researchers are continuously exploring new 
techniques (based on application properties) to use the underlying hardware efficiently. 
Similarly, as some OS based policies give the user freedom to create its own custom 
defined policy, novel parameters (other than workload) should be used to define such 
custom policies, in order to further optimize energy and power consumption. The next 
section presents academic research on power strategies that have room for higher power 
savings. 

2.1.5 Academic Research 

2.1.5.1 Overview of Academic Research 

Researchers have focused on how to estimate and minimize power in modern systems at 
various levels of design. At the system level, dynamic power switching (DPS) can be 
efficiently used to put active components in shutdown or low power states to conserve 
energy. The fundamental principle for the applicability of DPS is that systems (and their 
components) experience non-uniform workloads during operation time. Due to this 
distinct behavior of workload, DPS techniques exhibit different behavior. A survey of 
various DPS based strategies is shown in [17], where a system-level  approach is used to 
manage power. A dynamic power strategy (or policy) is used to control when and which 
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of the low-power states to apply. Existing policies are usually based on workload 
predictions and a detailed comparison of the different algorithms has been provided in 
the survey. From this survey and others like in [24], dynamic power policies are 
categorized into two broad categories i.e. predictive and stochastic schemes. Predictive 
schemes typically exploit temporal correlation between the past history of the workload 
and it's near future, to predict the upcoming workloads. Stochastic techniques model the 
workload behavior as a controlled Markov process and find the optimal power 
management based on the model. Predictive techniques may cause extra penalties like 
power loss in transition, wake-up state energy consumption, etc. when the workload is 
varying widely. However, stochastic approaches have inaccuracies in modeling 
workload variations and complexity involved in solving the optimization problem.  

These issues primarily limit the use of both schemes for systems where the workload is 
either very ir-regular or the workload model is not known a priori. Some advanced 
history based heuristics and stochastic schemes have been shown in [25], to predict 
varying workloads with high accuracy. However, their computational complexity 
severely limits their use and may not be suitable for applications having huge workload 
revisions. Besides system level dynamic power switching approach, another way to 
reduce power consumption is the use of application knowledge because the application 
knows the most about its future workload. An example of such work is shown in [26], 
where a limited application knowledge such as the size and type of the frames is used for 
applying DPS. These above methods have their advantages and are simple to design. 
However, relying purely on policies that use only low power states can be efficient but 
not always optimal or applicable. Therefore, researchers started to explore new methods 
by utilizing the support of dynamic voltage and frequency scaling (DVFS).  

A lot of work has been carried out for implementing DVFS based policies at the 
processor level [16, 27-34]. Generally, these algorithms can be classified as static or 
dynamic algorithms. Static algorithms have a complete knowledge of the task set and its 
constraints, such as deadlines, computation times, precedence constraints, and future 
release times. Frequency is statically decided before the execution of a task set. We can 
obtain a single processor frequency that never changes, or obtain variable frequencies 
that are statically decided before execution of a task set. An example of such an 
algorithm is shown in [16], where Sys-Clock and PM-Clock algorithms determine the 
frequency needed to complete the task set. The algorithm determines single clock 
frequency at admission control and keep it constant until the taskset changes. Static 
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algorithms are based on the assumption that processor speed can vary continuously in a 
given range. In practical world, processors only have discrete frequency levels so 
choosing a higher-frequency level than calculated may result in granting performance, 
but it may result in extra power consumption. Some static algorithms use task 
parameters as selection criteria to obtain the needed frequency. Given a set of periodic 
tasks, the sequence of frequency changes to be performed on the processor during 
execution can be calculated offline. The task schedule is periodic and the voltage 
schedule computed by this way is also periodic and can be stored in a table. An example 
of such an assignment is shown in [35], where distinct speed is assigned to different 
tasks, based on the voltage schedule table obtained by offline scheduling. However, 
there is a major drawback of static assignment of frequency. If an activation of a task is 
missed, the whole frequency assignment is affected and may become inefficient.  

Dynamic algorithms, on the other hand, have knowledge of current active tasks 
execution. The new task activations are not known to the algorithm when it is scheduling 
the present task set. Therefore, the task schedule changes over time. The reclamation of 
slack time resulting from the early completion of the current task set can be used to 
reduce the processor frequency, for the execution of the following tasks. For example, in 
[16] the authors propose an approach whereby each task is assigned a different speed. 
After a regular interval, a critical interval is defined, which is the maximum of all idle 
intervals. The tasks are scheduled at certain speeds by an EDF algorithm [36] which 
calculates the new deadlines and executes tasks at the new reduced speeds. Similarly, in 
[37], the algorithms rely on past and future predictions of idle periods, and accordingly, 
task’s execution is stretched to lower speed. Dynamic techniques are often related to low 
power scheduling techniques, as they have a direct impact on the ordering and the 
execution of tasks. The following section describes more in detail such low power 
scheduling techniques  

2.1.5.2 Low Power Scheduling 

Scheduling is used in embedded devices to balance the load effectively or to achieve a 
desired quality of service. While scheduling tasks, processes or jobs, the scheduler 
mainly focuses on some core issues like turnaround time, response time, waiting time, 
deadlines, periods, etc. Low power scheduling refers to the scheduling of tasks keeping 
in view the power utilization. Different approaches are used for low power scheduling at 
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CPU level in real time systems. However, when one of the core issues is addressed 
others may be compromised. Therefore, an off-line scheduling analysis should always be 
done, regardless of whether the final runtime scheduling algorithm is static or dynamic. 
Mostly for some available resources, offline scheduling refers to identifying the 
maximum set of tasks to be scheduled with their worst-case execution time and applying 
a static scheduling algorithm to produce a fixed schedule. This schedule is used online 
with well understood properties. Tasks may be given preference based on operating 
system needs, application requirements or user needs. However, the timing constraints 
are the most important factor for all real time systems. Therefore, based on the extent of 
time importance, real time systems can be divided into two major classes. Real-time 
systems with hard timing constraints are known as hard real-time systems, whereas those 
with soft timing constraints are known as soft real-time systems. 

There have been various studies on low power scheduling in real time systems [38-42]. 
Some authors categorize real time scheduling based on the clock driven, event driven or 
a hybrid of both [40]. Clock-driven schedulers are those in which the scheduling points 
are determined by the interrupts received from a clock. In event-driven schedulers, the 
scheduling points are defined by certain events, which preclude clock interrupts. Hybrid 
driven schedulers uses both clock interrupt as well as the event occurrence to define their 
scheduling points. Clock driven schedulers have an advantage of lower overhead; though 
they are not feasible to be used for tasks having non uniform periods (i.e. aperiodic or 
sporadic tasks). Event driven schedulers are more flexible than clock driven schedulers, 
as they can also handle aperiodic or sporadic tasks. However, a shortcoming of such 
algorithms is their complexity and task switching overhead. Scheduling algorithms can 
be further divided into fixed priority or dynamic priority algorithms. In a fixed priority 
algorithm, all jobs generated by a specific task have the same priority throughout their 
execution. An example of such an algorithm is the rate monotonic (RM) algorithm [38]. 
RM is a statically defined fixed priority algorithm that assigns priorities to tasks based 
on their rate of occurrence. It is known to be good among the fixed priority based 
algorithms for single processor platforms. A rate monotonic (RM) scheduler can be 
implemented simply by assigning each task a fixed priority level which is inversely 
proportional to its period. In a dynamic priority based algorithm, jobs generated by the 
same task may have different priorities (based on different parameters). Earliest 
Deadline First (EDF) is a well-known example of dynamic priority based algorithm [39]. 
However, implementing a dynamic scheme, like EDF, requires to keep track of all 
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deadlines and to perform an online mapping between absolute deadlines and priorities. 
When a scheduling event occurs, the task with the smallest deadline is taken to be 
executed. A scheduling test is also performed offline to check whether the overall tasks 
are schedulable under EDF or not. EDF has proven to be an optimal single processor 
scheduling algorithm by [43]. For a large number of tasks, EDF has a clear edge with 
respect to RM algorithm. The EDF and RM algorithms are extensively  investigated for 
low power management of modern processors [43]. However, their use of power 
management is generally limited to single processor systems. 

Some authors use combinations of both static and dynamic algorithms as  in [31-34, 44]. 
These algorithms can be further divided into an inter-task [31, 32, 45] and intra-task  [33, 
34, 44] scheduling techniques. Inter-task scheduling algorithm redistributes the dynamic 
slack time at task boundaries to other tasks. Conversely, the available slack time is 
reallocated inside the same task in the intra-task scheduling algorithms. However, the 
most important step in implementing these strategies is the prediction of the future 
workload. This workload prediction is used to choose the minimum frequency (thus 
power) while satisfying performance. The intra-tasks strategies are difficult to manage 
because of their constant tracking, extreme analysis and sometimes the need of 
application source code modification. The number of excessive frequency switching may 
also decrease their efficiency. In contrast, the downside of the inter-task approach is that 
the interval boundaries are predetermined and independent of workload changes. Thus, 
they can be late in responding to large, severe activity swings. 

Another important aspect of low power scheduling in modern systems is the 
applicability to multiprocessor platforms. Current microprocessors come with multiple 
cores, having variable frequency and voltage supports. Scheduling in multiprocessor 
environments is not an easy task, and this area has been an active topic of research in 
recent years. Some authors divide the multiprocessor scheduling problem into two 
classes i.e. partitioned scheduling and global scheduling [46, 47]. Partitioned scheduling 
assigns each task set to a specific processor, and a processor can only execute the tasks 
that are assigned to it. After partitioning, single processor scheduling algorithms (such as 
EDF, RM, etc.) can be employed to each processor. In global scheduling, all prepared 
tasks are put into a shared queue, and each idle processor fetches the next highest 
priority ready task from this queue for execution. It has been shown in [47], that simple 
global EDF or global RM could fail to schedule tasks having small execution time. In 
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[46], the authors use an extension of the RM algorithm, called RM first fit (RMFF), that 
can schedule any system of periodic tasks with total utilization bounded by m(21/2−1), 
where m is the number of processors in the system. They also show a better bound to be 
(m+1) (21/(m+1) −1) for RMFF in [47]. In addition, various other algorithms have been 
implemented to schedule tasks efficiently, and to reduce power consumption in 
multiprocessor systems [46-51]. However, the authors in [46, 47] have shown that there 
is no optimal online scheduling algorithm for multiprocessor systems. An extension of 
EDF is also shown in [52] for a multi processor environment, where authors agree that 
EDF is not the optimal algorithm for a multiprocessor environment. Even so, they still 
provide compelling reasons for the use of the EDF algorithm in a multiprocessor 
environment that are: 

• The EDF scheduling algorithm has the least runtime complexity among job-level 
fixed-priority algorithms for scheduling tasks on multiprocessor architecture. 

• EDF is an optimal scheduling algorithm for single-processor systems. 
• EDF is considered as efficient from an implementation point of view. 

The work presented in this thesis will also be considering such EDF based scheduling, as 
it seems to be a good basis for multiprocessor low power scheduling. The policies 
described above claim to be efficient, however if we explore the implementation results, 
we come to the conclusion that a very few are practically implemented in real 
development world. The work is validated using specific high level simulation tools, but 
not with actual platforms. Therefore the actual applicability of these works specially in a 
multiprocessor environment remains questionable.   

2.1.6 Conclusion 

Power management plays an increasing role in modern electronic devices. Much 
progress has been made on the technical side, for instance, latencies to switch on/off a 
device or to change a processor frequency have been significantly reduced. At the 
processor level, the availability of multiple voltage and frequencies has been really 
helpful in decreasing power consumption extensively. Similarly, many power 
management strategies have been proposed, both by the academia and industry, to 
manage the available technology more efficiently in order to decrease overall energy 
consumption. 
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However, there are certain limitations in implementing different power management 
strategies in practice. From a hardware point of view, modern processors have a support 
for multiple voltage and frequencies. Still, this number of discrete available frequencies 
and the corresponding voltages do not allow deployment of policies that use continuous 
frequency voltage mapping. Moreover, frequencies and related voltages vary for 
different platforms. For instance, an AMD K6-III uses 1.4 V for 300 MHz, whereas, an 
Intel M-processor uses 1.4 V for 1.4 GHz. Therefore, some power management solutions 
may work for a particular platform but not for others. Furthermore, existing vendor 
provided solutions are mostly workload based and may only work efficiently for 
applications having workload variations that are not too fast. However, we will see that 
there is still room for power savings using application or domain-specific strategies. 
Another important issue regarding vendor particular power management strategies is that 
they are non customizable. There is a very little room in modern platforms to define 
application or domain-specific policies. 

From a research point of view, a lot of theoretical works with formal proof or simulation 
based verification has been done. However, there is very little work on implementing the 
proposed techniques on real platforms because of the complexity and development time 
implied. Consequently, a natural question arise that "Does the approach really works in a 
real world"? There are very few works that respond to this question by actually 
implementing the proposed techniques. The reason behind this is the complexity to 
develop low power strategies, in particular, deadline schedulers. In many works, the 
proposed strategies or policies often make simplified assumptions. They generally 
neglect certain important real implementation issues like neglecting the effect of state 
transition delay, limited number of available frequencies and power levels, continuous 
frequency values, etc. 

2.1.7 Focus and Objectives 

The work presented in this PhD is a study of low power management techniques on 
actual multiprocessor platforms. The work focuses on analyzing different power 
management strategies in both single and multiprocessor platforms. The approach shown 
in this work is built on experimentation, based on representative platforms (real or 
virtual), rather than most works that rarely addresses the problem of power management 
efficiency. The main goal is to investigate if and how power management strategies can 
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be efficiently exploited in real platforms. This is based on exploring the behavior of 
different parameters such as effect of supported operating points (frequencies and 
voltage couples), scheduling and transition delays, idle and load power, etc. of actual 
platforms. Similarly, as discussed above in section 2.1.2 and section 2.1.3, DPS and 
DVFS are two popular techniques used for power management in modern architectures. 
The management of these mechanisms through an operating system requires software 
(policy) that controls efficiently the behavior of the platform according to application 
requirements or processor parameters. This work focuses on experimenting with such 
policies (based on DVFS and DPS techniques) and explores the conditions at which a 
certain policy is effective in terms of energy savings.  

A first point is to experiment with full implementations of low power schedulers on real 
platforms, and this will be based on the method described in [53]. Another problem of 
investigating power management policies in real platforms is the non-availability of 
power measurement and monitoring methods. Reliable power monitoring is a complex 
issue, especially for multiprocessor platforms supporting power management, and should 
be handled precisely. Mostly, the platforms provide methods for estimating the total 
energy (or total power) consumption and normally could not handle the processor  
energy consumption. The reason is the complexity of measurement of power consumed 
by the core at extremely low voltage and very fast frequency switching. This study is 
targeted to measure, monitor and handle the energy consumption purely related to the 
processor. The platforms used (ARM1176JZF-S, QEMU) have been specifically chosen 
to provide such access to the power consumption of cores. 

In this work, we address different policies for energy management on ARM based 
platforms. We assess the behavior of these policies in multiprocessor platform as well. 
We provide a comparative analysis of a few DVFS, and DPS based strategies on 
different ARM platforms, in distinct configuration of active cores, operating points, 
application parameters, etc. At the end, we provide a global analysis result and 
discussion of the measures, and conclude on the energy efficiency of these power 
strategies.  
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2.2 Work Context  

The work presented in this thesis is part of a European project named COMCAS 
(COmmunication-centric heterogeneous Multi-Core Architectures). COMCAS is a 
cross-industry research and development project consisting of many organizations, 
including LEAT as a university partner from France. The project is labeled within the 
framework of CATRENE, the EUREKA cluster for Application and Technology 
Research in Europe on NanoElectronics. The COMCAS project aims at a breakthrough 
low-power design solutions for (data) communication-centric heterogeneous multi core 
architectures targeting 45 nm and 32 nm CMOS technologies. These architectures will 
be exploited in a number of future applications (i.e. the next generation of programmable 
multi-processor mobile phones and mobile digital entertainment devices). COMCAS 
investigations concern the complete low-power design hierarchy looking at all aspects 
from system-level choices, modeling of applications (algorithms, protocols) and 
architectures, the maximization of reuse of existing IPs using the most appropriate tool 
chains and minimal power design in technologies of 45 nm and beyond. 

The topic on which our team is assigned to work is the processor level energy and power 
management. We explore different energy and power management policies for ARM 
based platforms. We have been working in close collaboration with the project partners: 
TIMA labs [8], that provided the virtual platforms used in this work for evaluation of 
power strategies, Thales Communication France and CEA LETI for applications. The 
new technologies combined with various lower power techniques developed in the 
COMCAS project allow for the design of smaller form factor devices capable of 
delivering HD video, high-resolution imaging, desktop-class 3D graphics. The work 
exposed here focuses specifically on software-based techniques to reduce the power 
consumption of multicore platforms. Therefore, we investigate DVFS and DPS based 
power strategies for multiprocessor ARM based platforms and their actual efficiency in 
improving the energy consumption. At the end of the project, two demonstrations have 
been made to show the actual achievements of this work within the goals of COMCAS. 

In the next section, we start by defining the problem statement of this study and define 
the goals of these experimentations with different power management strategies. 
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2.2.1 Problem Statement 

Most previously mentioned industrial techniques for power management rely on 
performance needs. The decision to adapt a low-power state or to change frequency and 
voltage are usually taken based on the overall workload in existing power management. 
When the workload needs higher performance, the system consumes maximum power. 
Similarly, if performance demand is low, power consumption is decreased. Likewise, 
vendor specific policies are for the most part general purpose, predefined and non 
customizable. Even though a user can choose a given policy, the infrastructure does not 
allow user defined power management for application-specific strategies. Therefore, 
users can only rely on the power management policies provided by their vendors. They 
are usually quite efficient for general-purpose applications and usage, but they can be 
inefficient for other specific applications. Likewise, power management approaches used 
by the operating systems are mostly workloads based. For example, the static policies 
provided by Linux governors (i.e. Performance, Powersave) set the frequency to 
maximum or minimum according to the workload, i.e. based on the processor activity. 
Consequently, when the system uses maximum frequency, it consumes maximum power 
which does not improve energy saving. Similarly, using minimum frequency allows 
lesser power utilization at the expense of larger time to process the workload. As a 
result, more energy is usually consumed even for lower power consumption at minimum 
frequency. The dynamic approaches (i.e. OnDemand, Conservative) change the 
frequency during run time based on the workload. For example, if a certain workload 
requires higher performance, the governor will switch to a higher frequency 
(dynamically) and remain at that value. This can provide power (as well as energy) 
savings for applications which do not have too fast workload variations. However, in 
case of applications having variation of workload on relative large scale, it cannot 
provide the maximum potential savings. 

The academic research of section 2.1.5 reviewed various power management strategies 
using broadly DVFS and DPS techniques. Mostly, these techniques rely on past or future 
workload predictions of a certain application. However, this prediction is usually 
approximated and may not work as expected in a real implementation. The workload 
predictions also require constant tracking and extreme analysis that may introduce 
important overheads and further errors in approximation. It should be noted that most of 
these techniques have been validated by simulations rather than implementation in real 
life. In contrast to workload based, we can therefore explore techniques using 
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application parameters for power and energy management, and using more realistic 
validation approach. Using such techniques, we can experiment with user defined power 
management policies based on different application parameters (e.g. based on a quality 
of video request in case of a video) to save energy. The use of specific or custom power 
management strategies (in contrast to workload based) may provide extra room for 
energy gains by utilizing DPS and DVFS techniques more finely and more efficiently.  

In addition, a lot of algorithms and techniques exist for single and multiprocessor power 
management. However, due to their complexity very few are actually implemented on 
real platforms. In this work, we experiment with different policies for power 
management that are fully operational on both single and multiprocessor platforms. The 
validation of power management policies in a multiprocessor environment is also an 
important issue. In this work, the validation is also based on considering representative 
application examples including the H.264 video processing standard. Video processing 
is an interesting example as it exposes high workload processing and variations that can 
be efficiently exploited at a power management level. For instance, we experiment a 
truly operating H.264 decoder and with different parallelization models of an H.264 
encoder in various configurations of platforms (number of cores, operating points). We 
also explore the effects of different application parameters (frame rate, parallelism, slack 
time, etc.) on power and energy consumption for each configuration. 

In the following section, we detail the platforms used to address the above problems.   

2.2.2 Platforms 

The power management policies used in this work can be implemented on any platform 
having Linux or Embedded Linux support. Mostly, the platforms only allow changing 
frequency of a processor but do not provide access to monitor the power consumed by 
the processor. Vendors have their intellectual property rights to their systems and do not 
allow such access. Hence, it is practically impossible to access and monitor the power 
utilization of the underlying core. The power policies used in this work are experimented 
to analyze the power and energy consumption on different platforms, access to the 
processor's power consumption is thus needed. Therefore, we rely on ARM based 
platforms as they provide direct access to power monitoring registers of the cores. ARM 
baseboards give user access to monitor the change in voltages and currents related to the 
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processor. By this mean, we can calculate the real instantaneous power, mean power as 
well as energy directly related to the underlying core. In this work, we rely on these 
ARM based platforms to implement the prescribed power management strategies. 
Another reason of using these platforms is to address the target architecture (i.e. ARM) 
in the COMCAS project. 

At the beginning of this work, no platform supporting altogether multicore, DVFS and 
power monitoring facilities were available. Therefore, we started working on an ARM 
emulation baseboard containing an ARM11 MPCore processor but without DVFS 
support. Then we used a mono processor platform containing a single core 
ARM1176JZF-S, but supporting DVFS and power monitoring. Finally, we used virtual 
platforms that support DVFS, multicore and power monitoring functionality. The virtual 
platforms also permit to target perspectives of future architectures, based on Dual 
CortexA9, that was not available at the beginning of the work. In the following sections, 
we provide detailed information of all the platforms used in this work. We start by the 
MPCore emulation baseboard, followed by the Versatile Baseboard ARM1176JZF-S. 
We then detail the QEMU [54] based virtual platforms (QEMU_ARM1176, 
QEMU_CortexA9). Additionally, we detail the methods for power and energy 
monitoring on these platforms. 

2.2.2.1 ARM11 MPCore 

The study focuses on the experimentation and validation of different power management 
strategies in the real world. For this purpose, we start by using a previous contribution 
prior to this work, which investigated power strategies using an ARM emulation 
baseboard containing an ARM11 MPCore chip. This multiprocessor platform provided 
many results and the definition of a DVFS video strategy. The MPCore chip supports 
dynamic voltage scaling as well as static frequency scaling; however, lack of real DVFS 
support stopped us to further work on this platform. Therefore, we used another platform 
(PB ARM1176JZF-S) to pursue these investigations and further experiment with the 
video power strategy. The main features of the ARM emulation baseboard are briefly 
highlighted below. 

The emulation baseboard is a highly integrated development board containing tile 
connectors to connect an ARM11 MPCore chip. It also contains a large FPGA (Xilinx 
Virtex-II XC2V6000), 256 MB of 32 bits wide DDR SDRAM, 4 MB of 16 bits wide 
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cellular RAM, 128 MB of 32 bits wide NOR flash, Ethernet support, USB 2.0 controller, 
VGA/DVI, Keyboard, Mouse connectors, SD Card slot, 4 UARTS and character LCD, 
switches, LEDs and GPIOs. The MPCore chip contains four ARM11 cores, where each 
processor has a 32 KB instruction memory and 32 KB data memory. The nominal 
frequency for each core is 200 MHz. The platform supports embedded Linux however, 
the support for Linux CPUFreq cannot be used due to lack of DVFS support by the 
MPCore chip. The emulation baseboard does not support ARM's IEM or IEC technology 
discussed in section 2.1.4.3. 

2.2.2.2 ARM 1176JZF-S 

We thus considered an ARM1176JZF-S platform to continue the study of power 
strategies, but for a mono processor platform in this case. The first two power strategies 
(based on DVFS) are experimented using an ARM1176JZF-S baseboard as it provides 
all the required functionalities. The investigations on this platform require a power 
monitoring module and a frequency switching mechanism. Therefore, we developed a 
kernel module to monitor the processor’s power. Secondly, we created a user space 
program which is able to change the frequency with the help of the Linux CPUFreq. The 
main components of the ARM1176JZF-S platform are detailed below, followed by the 
frequency switch mechanism and power monitoring drivers. 

The baseboard is a mono processor development platform having an ARM1176JZF-S 
core mounted on it. The basic system provides a good platform for developing systems 
supporting ARM11 processors that feature TrustZone® Technology, CoreSight™, DVFS 
and Intelligent Energy Management (IEM see section 2.1.4.3). The platform also 
contains 128 MB of 32 bits wide mobile DDR RAM, 8 MB of 32 bits wide static 
PSRAM, 2 x 64 MB of 32 bits wide NOR flash. The NOR flash is used to save a boot 
loader and an embedded Linux OS image for auto boot. Other peripheral's devices 
include connectors for VGA, Color LCD display, PCI, UART, GPIO, Keyboard/Mouse, 
Smart Card, USB, audio, MMC and Ethernet.  

The platform supports embedded Linux configured with CPUFreq. The CPUFreq 
contains CPU_Freq driver that uses IEM to change frequency and adjust the desired 
voltages. CPUFreq also contains a Userspace governor that can be used to switch 
frequency as needed. We therefore created a user space program (using Userspace 
governor) to change and monitor the frequency of the processor as required. It should be 
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noted that the ARM1176JZF-S processor has a nominal frequency of 240 MHz, and it 
can switch to three other frequencies that are 160 MHz, 215 MHz and 265 MHz. To 
experiment with the PM strategies, the latest available kernel image (i.e. Linux  2.6.32) 
was used and cross compiled by Code Sourcery [55] development tools.  

The platform also provides access to the processor’s voltage and current consumption 
register. The register labeled PWR_VOLTAGE_CTL0 is used to monitor power 
consumption. A kernel module is created to access this register at regular intervals of 
time. The PWR_VOLTAGE_CTL0 register has two fields; the first [0:15] bits are used 
to read the voltage of the core and the other [16:31] bits are for the current consumed in 
the ARM1176JZF-S chip. The reading from the register must be converted to an 
absolute value by the formula: 

Core_Voltage = ( PWR_VOLTAGE_CTL0  [15: 0] *18 )  / 655200   (Volt)   Eq (1) 

Core_Current =( PWR_VOLTAGE_CTL0 [31:16] *18 ) / 655200   (Amp)  Eq (2) 

The power is simply calculated as: 

Core_Power =  Core_Current * Core_Voltage   (Watt)    Eq (3) 

The power monitoring driver measures the instantaneous power every 200 milliseconds. 
It can also calculate the mean power and total energy consumed between two defined 
points. Experimentation results and analysis of the power strategies on ARM1176JZF-S 
platform with this measurement procedure is detailed in chapters 3 and chapter 4.  

As the real goal of this work is to check the efficiency of power strategies for 
multiprocessor platforms, we use QEMU based virtual platforms for this intent. QEMU 
support was directly provided to us by TIMA laboratories in close cooperation during 
the COMCAS project. Another reason for using QEMU platforms is the flexibility to 
model different platforms (e.g. type of core, number of CPUs, operating points, idle/load 
power, etc.). For instance, the DVFS based power strategies depend greatly upon the 
characteristics of operating points. Therefore, we need to change the operating points to 
further analyze the strategies behavior. Since, ARM1176JZF-S platform is not a 
multiprocessor platform, and due to the unavailability of a real multiprocessor platform 
with all necessary features, we use QEMU based virtual platforms for onward evaluation 
and experimentations. 
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2.2.2.3 QEMU_ARM1176 

We rely on QEMU [54, 56] based platforms for the experimentation of multiprocessor 
power strategies. QEMU is a generic and open source machine emulator and virtualizer. 
When used as a machine emulator, QEMU can run an OS and programs made for one 
machine (e.g. an ARM baseboard) on a different machine (e.g. PC). We rely thus on 
QEMU cycle accurate simulations to provide reliable performance and power 
estimations of power strategies for ARM1176 and CortexA9 based multiprocessor 
platforms. We start by using an ARM11 model based version of QEMU, where we have 
introduced the operating points of the ARM1176JZF-S in order to compare QEMU 
estimations with real ARM1176JZF-S measures. In rest of this document work, we refer 
ARM11 based version of QEMU as QEMU_ARM1176. We configure this platform in 
different operating point configurations detailed in chapter 3, for further evaluation of a 
DVFS video strategy. The same platform is used for the implementation and 
experimentation of the second DSF low power strategy. The following section puts light 
on the main platform characteristics as well as the different features used. 

The QEMU_ARM1176 virtual platform has almost the same capabilities as the real 
ARM1176JZF-S. It supports embedded Linux and provides specific drivers to use DVFS 
functionality. Additionally, we can configure it for single and multiprocessor 
configuration. We can have a configuration up to eight processors using the QEMU 
models. We are not bound to a fix number of available frequencies using virtual 
platforms. The platform parameters (such as the number of available frequencies, power 
levels, etc.) are flexible and can be modified. However, we limit ourselves to the 
frequencies and power levels used by actual hardware platform (ARM1176JZF-S) to 
provide realistic measures for the various power management strategies. Different 
drivers, functions and scripts are created to use the DVFS and power monitoring features 
of QEMU. A special function Mean_Power is used to measure the average power 
consumed by the processor between two time intervals. The number of processors to be 
used must be configured before starting the QEMU_ARM1176 platform. Once the 
platform is started, it acts much like a real hardware platform and starts with the 
initialized number of processors at nominal frequency (i.e. 240 MHz).  

We completed experimentations and analysis of the first two strategies with the 
QEMU_ARM1176 platform. It should be noted here that we work with the 
QEMU_ARM1176 virtual platform as a starting point, keeping in mind that the final 
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target architecture was not yet available. Around halfway through the COMCAS project, 
we were provided with the CortexA9 based model of QEMU (referred as 
QEMU_CortexA9 in the following) by TIMA and Thales, which is presented in the next 
section. 

2.2.2.4 QEMU_CortexA9 

We experiment with the power strategies using QEMU_CortexA9 platform to analyze 
the energy savings on the new multiprocessor platform. In addition, this experimentation 
allows us to check the efficiency of the PM strategies and further characterization of 
platform parameters affecting the energy gains. We use the QEMU_CortexA9 platform 
to analyze the energy gains of two strategies, DSF (DVFS based) and AsDPM (DPS 
based), in the perspective of future multiprocessor architectures targeted in the 
COMCAS project. It should be noted that the use of this virtual platform was a way to 
target multicore CortexA9 based application processors that were not available as silicon 
at this stage of the project. The CortexA9 version of the virtual platform is developed by 
TIMA with inputs on the CortexA9 power and performance model provided by Thales 
Communication France. The following summarizes the platform characterization and 
power monitoring. 

The new platform supports much higher frequencies (i.e. 300, 600, 1000 MHz) in 
comparison to those of QEMU_ARM1176. The QEMU infrastructure of implementation 
quickly allows us to export the already experimented power strategies (DSF and 
AsDPM) on the latest QEMU_CortexA9 platform. The implementation of the strategies 
is almost identical to the QEMU_ARM1176 platform with only few modifications in 
power monitoring and frequency drivers. The corresponding power levels for each 
frequency are also much more efficient in terms of idle and load power in comparison to 
that of QEMU_ARM1176 platform.  

With the help of this platform, we can check the efficiency of power strategies in the 
perspective of CortexA9 multicore architectures which has very different characteristics 
in terms of static and dynamic power, due to different integration technologies. In 
addition, this also permits to compare the results obtained with previous architecture 
generations based on ARM11 cores (in terms of amount of energy gains) and to identify 
some conditions of efficiency at hardware level.  
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In the following section, we briefly introduce the power management strategies used for 
this purpose. 

2.2.3 Power Strategies 

We experiment a total of three different power management strategies in this work. The 
strategies are chosen depending upon the nature of applications used in our work, 
platform characteristics and for the reasons explained in section 2.1.7 and 2.2.1. The first 
two power management strategies are based on DVFS techniques, while the last strategy 
relies on DPS to exploit processor sleeping states. By this way, we could later provide a 
global evaluation and comparison of different PM strategies, along with the 
characterization of influential parameters affecting their efficiency in actual and realistic 
multiprocessor platforms. 

2.2.3.1 DVFS Video Power Strategy 

First, a DVFS based power strategy dedicated to video processing with an application to 
an H.264 decoder is used. The power strategy is based on the exploitation of frame rate 
variations of a video. Previous works [57] have shown variations in the frame decoding 
time of around 40%. These variations are exploited to adapt the processor speed to 
match the amount of processing for decoding frames. The DVFS based video strategy 
uses average frame rate on a time window to decide the best suitable speed for the 
processor. The adaptation strategy controls the decoder speed around a frame rate 
constraint slightly slower than the average performance. The operating frequency of the 
processor is decreased this way to fit the desired frame rate. By this way, processor 
power consumption is decreased which in turn also reduces the overall energy 
expenditure of video. In chapter 3, we present a detailed analysis on the effectiveness of 
this strategy using ARM1176JZF-S and QEMU_ARM1176 platforms. 

2.2.3.2 Low Power DSF Scheduler 

DSF is a scheduler targeting multiprocessor execution of applications that exploits 
DVFS techniques. Its principle is detailed in section 4.1.1 of chapter 4. This algorithm 
has been defined at LEAT in the work described in [45]. This scheduler is one of the low 
power strategies provided to the COMCAS project that has to be validated on the actual 
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target architectures (ARM1176 and CortexA9 based). This actual implementation is a 
Linux based implementation described in [53] which allows to execute and experiment 
this scheduler on any platform supporting Linux. The results of experimentations with 
the DSF strategy in different configurations of multiprocessor platforms are detailed in 
chapter 4. 

2.2.3.3 Low Power AsDPM Scheduler 

Assertive Dynamic Power Management (AsDPM) is also a low power scheduler for 
multiprocessor platforms. The AsDPM take advantage of DPS techniques and is based 
on a similar principle as DSF, using a Linux userspace scheduler. This scheduler is used 
to execute the strategy on any multiprocessor platform supporting Linux. The principle 
of this strategy is detailed in section 5.1.1 of chapter 5. This scheduler is developed at 
LEAT on work described in [58]. In this work, we validate the implementation of this 
scheduler on representative target platforms and analyze the obtained energy gains. The 
results of experimentations with the AsDPM strategy are provided in chapter 5. 

In the following, we thus experiment, analyze and discuss the results of above described 
power strategies, using the different platforms mentioned: ARM11 MPCore, 
ARM1176JZF-S, QEMU_ARM1176 and QEMU_CortexA9. 

We first start with the DVFS based video strategy on ARM11 MPCore and 
ARM1176JZF-S, then with the DFS strategy on QEMU_ARM1176 and 
QEMU_CortexA9 and next by the AsDPM strategy on QEMU_ARM1176 and 
QEMU_CortexA9. The numerous amounts of power measurement results will be 
extensively analyzed in order to extract relevant meaningful conclusions on the 
efficiency of power strategies in the real world. It should be noted that these 
experimentation have been the subject of two demonstrators developed in the scope of 
the COMCAS project that are fully part of this work and has been underlined by the 
CATRENE evaluation committee. 
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Chapter 3 : DVFS VIDEO POWER STRATEGY 

3.1 Introduction 

Dynamic Voltage and Frequency Scaling (DVFS) is widely used for power management 
in modern processors as stated in section 2.1.3. It is an effective method for achieving 
low power consumption of CPU while meeting the performance requirements. In this 
chapter, we present a DVFS based power strategy dedicated to video processing, with an 
application to H.264 decoder. We analyze the potential of this DVFS power strategy 
across different platforms with recent generations of ARM processors as discussed in 
section 2.2.1. 

Allowing OS and related software to gain control over power consumption is really 
gaining more and more interest these days since energy reduction is one of the prime 
concern in embedded systems. The management of power saving techniques through an 
operating system requires software that must be able first, to identify the various 
operating points of the processor(s) and second, to assess requirements derived from the 
application and its environmental context. As seen in section 2.1.4.4, Linux operating 
system lets the opportunity to define custom power management strategies resulting 
from the availability of power management APIs (CPUFreq). Concerning DVFS, Linux 
has different governors (i.e. Conservative, OnDemand, Userspace, Powersave and 
Performance) as detailed in section 2.1.4.4, to adjust power levels statically or 
dynamically according to the processor workload. In the strategy description and 
implementation, we therefore rely on Linux for the implementation of this custom DVFS 
based video power strategy. The use of application specific power management 
techniques provides extra room for power saving by utilizing the application parameters, 
as defined in section 2.1.7. The strategy discussed in this chapter is dedicated to video 
decoding and uses DVFS technique to control the frame rate by the CPU frequency, and 
thus to reduce power consumption. The new adaptive strategy can be used for future 
implementation of adaptive systems to achieve performance goals as discussed in [59], 
and for the reasons explained previously in section 2.1.6 and section 2.1.7. It is 
implemented under the latest available kernel at the time of implementation (i.e. Linux 
2.6.33) with CPUFreq support. 
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It should be noted that this work mainly focuses on experimenting with the strategy in 
actual implementation world as discussed in section 2.1.7. We see the effects of different 
application parameters, as well as platform parameters that impacts power consumption. 
Therefore rather than focusing on the description of a new power management strategy, 
the work is mainly focused on experimenting with the DVFS based video strategy in the 
real world, how efficiently it works for different platforms (real or virtual), which 
platform parameters effect the energy savings, how much energy can be saved, and if it 
is efficient for multiprocessor environments. 

The application specific strategy can provide significant power and energy gains in 
certain conditions. We analyze the effectiveness of this strategy using an ARM1176JZF-
S platform. We also analyze the effects of changing platform characteristics (power 
levels associated with corresponding frequencies, Number of processors etc.) by 
implementing the DVFS power strategy on the virtual QEMU platform. The results 
reveal that in certain conditions, reducing the frequency is effective but in others it 
actually increases energy consumption. So this study shows that due to different power 
consumption levels related to a frequency for different platforms, decreasing the CPU 
frequency may not always reduce the energy consumption. The results also provide 
percentage of energy gains up to 57% by choosing correct adaptation constraints. 
However, the experimentation shows that the efficiency of a DVFS strategy depends 
upon the characteristics of operating points (frequency/voltage couples). In particular, 
attention must be paid to the power level gap between consecutive frequencies, to 
compensate the increase in execution time resulting from frequency downscaling. 

The outcome of this chapter is the following. Section 3.1.1 discusses a previous case 
study on H.264 video decoding on MP Core emulation baseboard. Based on the case 
study, a description of the DVFS based video power strategy is presented in section 
3.1.2. We then provide the detailed implementation and experimentations for the video 
PM strategy in section 3.2. We provide DSF implementation in section 3.2.1, power and 
performance profiles of the H.264 based video sequence on the ARM1176JZF-S 
platform in section 3.2.2 and in section 3.2.3 we present an analysis of energy 
consumption. In section 3.3, we further examine the energy saving conditions by 
investigating the operating point effects on the efficiency of the DVFS strategy. For this 
purpose, operating point setup using QEMU platform is presented in section 3.3.1. The 
accuracy and behavior of virtual platform estimations is addressed in section 3.3.2 and 
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section 3.3.3 provides results and discussion of experimenting with the PM strategy in 
different operating point configurations. In section 3.4, we present our conclusions on 
the experimentations with the DVFS video strategy. 

3.1.1 Case study: H.264 Decoder  

A previous case study of application mapping of a H.264 decoder is detailed in [57]. 
Several H.264 videos (variable sizes) have been experimented and analyzed to observe 
their behavior in different situations using MPCore emulation baseboard. The videos 
have been divided into different slices versions, where each slice was taken as a thread. 
A slice represents an independent zone of a frame and can refer previous frame for 
decoding. Therefore decoding one slice of a frame is independent from another slice of 
same frame. The slice is handled by a POSIX thread and this way decoder can process 
different slices of a frame in parallel. The advantage of slice decomposition is its 
regularity and homogeneity which is suited for SMP implementations and makes 
balancing the workload between processors very easy. A detailed analysis of different 
slices versions of H.264 video decoder (1, 2, 4 and 8 slices) for four different videos is 
provided in this case study for different platform configurations (1, 2, 3 and 4 
processors). The study pointed out that the frame rate (frames per second fps) is very 
sensitive to motion properties in the video, with variations of about +/- 20%. This can be 
exploited to define the dynamic video power strategy based on a frame rate adaptation 
using frequency scaling, which is discussed in next section 3.1.2. Furthermore, the case 
study also presents the power and energy behavior by trying to implement the power 
strategy. However, the platform used (MPCore Emulation Baseboard) does not support 
DVFS, it only supports static frequency scaling or dynamic voltage scaling. Therefore 
the results do not provide real energy and power consumption results of the dynamic 
power strategy. To overcome this, we experiment the strategy on ARM1176JZF-S 
platform for real implementation results. In the next section, we present the DVFS based 
video power strategy in detail. 

3.1.2 DVFS Video Strategy Description 

The principle of the adaptation strategy is to control the decoder speed around a frame 
rate constraint slightly slower than the average performance in nominal conditions. By 
this way, we can set dynamically the minimum processor frequency needed to comply 
with the minimum frame rate constraint and save actual amounts of energy, instead of 
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operating at the worst case maximum frequency. The adaptation is based on changing 
the frequency when the frame rate is between two defined thresholds. The number and 
values of these thresholds depend on the operating points (frequency/voltage) and on the 
performance constraint to satisfy. In the following, we therefore define the thresholds 
and the PM strategy for the ARM1176JZF-S platform. 

In nominal conditions, the frequency of the ARM1176JZF-S core is 240 MHz. The 
supported frequencies are 160 MHz, 215 MHz, 240 MHz and 265 MHz as stated in 
section 2.2.2.2. To implement the DVFS video strategy on the ARM1176JZF-S, we 
calculate four thresholds derived from the above supported frequencies. Each threshold 
‘threshi’ is associated with a given frequency ‘fi’ which is computed as follows:  

 threshi = adaptation _ constraint * fnom / fi      Eq (4) 

In equation (7), fnom is the nominal frequency (240 MHz). The decoder speed is 
controlled by the adaptation_constraint. We set an adaptation_constraint lower than the 
average frame per second decoded at nominal frequency, the video quality is slightly 
decreased alternatively the frequency and power consumption also decreases. This 
affects the overall energy consumption of the application. We therefore experiment with 
the DVFS strategy for different values of adaptation constraints. 

Another important factor of the video PM strategy is to minimize the number of clock 
switching as it produces delay and extra energy overhead. We have defined two 
variables namely Teval and Tmonitor to control the frequency switching. The frequency for 
the strategy is switched every (Teval * Tmonitor) images. The value of these variables is 
statically set by the user before executing the video strategy. The frame rate samples are 
taken at regular time intervals (every Tmonitor images). Teval is the number of samples 
needed to decide about switching the frequency or not, based on the average frame rate 
on these samples. The record of Teval number of decoded frames is stored in a table 
namely PM_Table. The average fps avg_fps of the PM_Table value for the last (Teval * 
Tmonitor) frames is calculated. This avg_fps value is then compared with the pre-
calculated threshi levels. Based on this value, a decision whether to change the 
frequency or not is taken. When the average decoder speed for (Teval * Tmonitor) images 
remains in a zone delimited by two consecutive thresholds threshi, the processor 
frequency is switched to the value associated with this zone. 
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We used the Linux CPUFreq to control the frequency of the processor. We have thus 
developed a DVFS strategy on top of Linux CPUFreq with the following characteristics. 
It handles the switching of operating points (frequency/voltage) with respect to the 
decoding speed. It samples the frame rate at regular time intervals (every Tmonitor 
images), and makes the decision of switching or not the operating point every 
(Teval*Tmonitor) images. In the next section we detail the implementation of the video 
strategy on the ARM1176JZF-S platform followed by the experimentation of an H.264 
video sequence example. 

3.2 DVFS Strategy Implementation and 
Experimentation 

The ARM1176JZF-S platform support for embedded Linux and detailed knowledge 
about hardware and power monitoring registers is already given in section 2.2.2.2. 
However, we still have to connect the PB ARM1176JZF-S to the host computer and to 
load the developed programs on the platform. Section 3.2.1 details the implementation 
procedure of DVFS video strategy and section 3.2.2 provide the power and frame rate 
profiles of DVFS strategy on the multithreaded H.264 decoder. Subsequently, in section 
3.2.3 we analyze the first obtained results. 

3.2.1 DVFS Strategy Implementation 

We first connect the PB ARM1176JZF-S platform to a host computer through serial 
cable RS232. The commands are given to the platform through the standard Linux 
terminal using the Minicom utility [60]. The host computer also contains a shared folder 
(Arm) that contains the cross compiled executable files and sample videos for execution 
on the ARM1176JZF-S platform. The Arm folder also contains a script that automates 
all the measurement procedure and functions. 

At the start, the script adds the developed power monitoring driver consumption_ARM11 
to the ARM1176JZF-S platform. The consumption_ARM11 contains functions to read 
the current and voltage values from the Virtex-4 FPGA controlling the programmable 
power supply in the ARM1176JZF-S platform. The registers used for this purpose as 
well as the formula to calculate power is explained in section 2.2.2.2. The 
consumption_ARM11 reads and calculates the processor power consumption from these
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 registers. This value is transferred to the Linux terminal console on the host computer to 
be saved in a file for further analysis. The driver also calculates the mean power from the 
start to end of its execution. Secondly, we have written a PM frequency function 
(PM_driver) containing user functions to change the frequency dynamically with the 
help of Linux CPUFreq. The CPUFreq contains a governor (Userspace) that can be 
used to dynamically change CPU frequency. The PM_driver also contains functions to 
initialize the frequency to the nominal as well to a user given value. However, the values 
should correspond to the built-in available frequencies of the ARM1176JZF-S, otherwise 
it does not change the frequency and give an error message. Thirdly, we use 
PM_scheduler containing code for the power strategy described in section 3.1.2. The 
PM_scheduler uses the PM_driver to change frequency when required based on the 
PM_Table. The number of frequency switching is saved in a file for analysis along with 
the total energy consumption. 

3.2.2 Power and Frame rate profiles 

We start the experimentations by monitoring the performance of a 1 minute 20 seconds 
video sequence at nominal condition on ARM176JZF-S platform (at 240 MHz). The 
video sequence is decoded at an average speed of 11.6 fps as shown in figure 3.3 (blue 
dotted line). The video sequence consumes 52 Joules. Afterwards, we changed the 
adaptation_constraint as stated in section 3.2.1. The value of Teval is chosen as 5 and 
Tmonitor is initialized to 50. Therefore, a decision to either switch frequency or not is 
taken after 250 (5 x 50) frames. The power and frame rate profiles of the video 
sequences are given in figure 3.1 to figure 3.4, for adaptation_constraint of 8, 9, 11 and 
16 fps respectively. The figures show traces of the original (full red lines) and regulated 
(dotted blue lines) frame rate, as well as the trace of power consumption. On the power 
profiles (lower part of each figure), we can clearly observe different frequency domains, 
thus the DVFS switches that can be identified by distinct zones of stable values. 

 
 



 
Chapter 3. DVFS VIDEO POWER STRATEGY 48 
 

 
Figure 3.1: Power and frame rate profiles for adaptation_constraint of 8 fps. 

 

   
Figure 3.2: Power and frame rate profiles for adaptation_constraint of 9 fps. 
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Figure 3.3:  Power and frame rate profiles for adaptation_constraint of 11 fps. 

 
                  

 
Figure 3.4: Power and frame rate profiles for adaptation_constraint of 16 fps. 
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Figure 3.1 shows the power profile for adaptation_constraint of 8, where video is 
decoded in 228 seconds. For an adaptation constraint of 8 fps, we have the following 
thresholds: 12.00, 8.93, 8.00 and 7.25 fps defined respectively for 160, 215, 240 and  
265 MHz. When the decoder speed remains in a zone delimited by two consecutive 
thresholds during the last 250 (5 x 50) frames, the processor frequency is switched to the 
value associated with this zone. As an illustration, if the average frame rate is between 
7.25 and 8.00 fps during last 250 frames, the operating point is set to 160 MHz. When 
the decoder speed is between 8 to 8.93 fps, frequency is switched to 215 MHz. In figure 
3.1, we can see three frequency switches along with the corresponding switch in power 
consumption profiles. 

Figure 3.2, figure 3.3 and figure 3.4 show the respective frame rate and power profiles 
for adaptation_constraint of 9, 11 and 16 fps respectively. The values of threshi are 
calculated separately for each case and a frequency switch occurs based on these values. 
Figure 3.2 shows three frequency switches and three similar levels for corresponding 
power switch. In figure 3.3, we have an adaptation_constraint equal to average frame 
rate at nominal frequency, therefore, there is no switch. In case of figure 3.4, we have 
chosen larger adaptation_constraint to observe the behavior of the PM video strategy. In 
this case, there is one frequency switch and a corresponding single shift in power 
consumption level. In the next section, a detailed analysis of these results along with the 
energy consumption is given. 

3.2.3 Energy Consumption Analysis  

The performance profiles of figure 3.1 to figure 3.4 allow comparing the evolution of the 
decoder performances at 240 MHz (full red line) versus scaling frequency (dotted blue 
line) at different adaptation constraints of 8, 9, 11 and 16 respectively. In table 3.1, a 
summary of total energy consumption for different values of adaptation_constraint for 
the above video sequence is given. We also record the total decoding time, mean power 
and time per frames to better analyze the behavior of the PM strategy. 
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Table 3.1: Performance Analysis table for ARM1176JZF-S 

Adaptation 
constraint 

Mean 
Power 
(mW) 

Total 
Energy 
(Joules) 

Time / 
Frame 
(ms) 

Time  
(s) 

 
Fps 

Energy 
Gain (%) 

No 311 52 86.4 168 11.6 0 
4 262 64 126.1 244 7.9 - 23 
8 270 62 117.6 228 8.5 - 19 
9 290 56 101.4 196 9.9 -  8 
11 311 52 86.5 168 11.6    0 
16 325 50 81.2 157 12.3    4 

Surprisingly, these results show an increase in energy utilization when the adaptation 
constraint is 4, which is the lowest performance level. As an illustration, the decoder 
speed for an adaptation constraint of 4 limits the decoder to stay in a zone limited by 
thresholds of 3.62 to 4.0 fps, so that the decoder uses the lowest available frequency 
(thus power level). Hence a decrease in energy utilization is expected, but it is not the 
case because the execution time has also increased in great proportion and this is directly 
linked to the operating point's characteristics. 

In the next section, we investigate the above hypothesis by experimenting with the video 
power strategy on a QEMU platform, in order to analyze the effect of changing the 
operating points.  

3.3 Further Investigation of Energy Saving Conditions  

To complement previous results on the ARM1176JZF-S platform, we implement the 
video power strategy on the QEMU platform. The negative energy gains obtained are 
probably due to the different power level consumption associated with the respective 
frequencies. The differences of power level in consecutive operating points are small for 
the target platform we have used. The ARM1176JZF-S platform does not allow us to 
change the operating points, as they are provided by the vendor. Therefore, in order to 
evaluate the surprising energy consumption behavior, we analyze the video strategy by 
changing the power levels with the help of the virtual platform. In the following section, 
we start this investigation by setting the virtual platform in different operating point 
configurations. 
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3.3.1 Operating Point Set up on the Virtual Platform 

The purpose of using the virtual platform is to define more efficient operating points and 
to check the impact on energy. Figure 3.5 shows the power levels associated with each 
frequency for ARM1176JZF-S platform as well as different configurations of QEMU 
platform. We must emphasize here that the measures are made on a versatile platform 
baseboard, which is for the early prototyping purpose and has performance limitations 
(especially concerning operating frequencies). A production device will have different 
characteristics, so the conclusions concerning the efficiency of operating points on 
ARM1176JZF-S cannot be generalized. 

 
Figure 3.5: Frequency and load power consumption of QEMU platform. 

We set up the QEMU platform in several configurations with respect to different 
operating points. A configuration for the ARM1176JZF-S is a set of four operating 
points, one for each frequency and its corresponding power consumption levels. As an 
illustration, for each available frequency of 160, 215, 240 and 265 MHz, the 
corresponding power levels with and without load are defined in the QEMU 
configuration file. These will be the operating points for the video power strategy. We 
have thus set three other configurations that are reported in figure 3.5. The choice of 
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these points depends upon the power level associated with each frequency. The power 
strategy relies on nominal frequency (240 MHz in this case), so we fix this point as 
reference and increase the power level gap between the subsequent upper and lower 
frequencies. We have set three configurations derived from the original ARM1176JZF-S 
operating points, but with increased power levels.  

3.3.2 Accuracy and Behavior of Virtual Platform Estimations 

Several different videos are allowed to run on both platforms to check the performance 
and energy consumption behavior. We analyze the energy and performance behavior for 
every frequency individually. Similarly, the energy consumption for the video sequence 
(flavors_cut) is also considered for comparison of these platforms. The energy 
consumption for video sequence (flavors_cut) on ARM1176JZF-S is 52273 mJ and on 
the virtual QEMU platform is 52109 mJ at a nominal frequency (240 MHz). The time 
taken to decode on real and virtual platform are 167.4 and 168 ms respectively. These 
results and simulations for several test videos show that both the platforms perform, 
approximately, similar behavior in terms of energy consumption and performance. There 
is a negligible error of 0.035% in timing analysis. Similarly, the energy consumption is 
also approximately, similar on both platforms with an error of 0.31%. 

To better understand the effect of different operating point configurations, we also 
analyze the platforms behavior statically (fixed frequencies) and without using the 
DVFS power strategy. The total energy consumption by decoding a short video sequence 
of 300 frames (namely foreman) for each available frequencies (160, 215, 240 and 265 
MHz) is shown in table 3.2. The energy consumption  in case of Config1 is 14 J at       
265 MHz and 15.3 J at 160 MHz. This implies that when frequency is decreased, the 
energy consumed by the application is increased. Similarly, in case of ARM1176, we 
have an energy consumption of 13.4 J at 265 MHz and 16.6 J at 160 MHz (same 
behavior as previous Config1). In both cases lowering the frequency increases the energy 
consumption. 
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Table 3.2: Frequency vs. Energy for video Foreman (300 frames). 

Frequency 
(MHz) 

Energy (Joules) 

Config1 Arm1176 Config2 Config3 

160 15.3 16.6 12 6.2 

215 14.4 14.6 13.1 11.1 

240 14.2 14.2 14.2 14.2 

265 14 13.4 14.6 15.8 

However in case of Config2 , the energy consumption measured at 265 MHz is 14.6 J 
and at frequency of 160 MHz is 12 J. This implies a decrease in energy consumption for 
a decrease in frequency. Similarly, for Config3 we have energy consumption of 15.8 J 
and 6.2 J respectively, for the frequency of 265 MHz and 160 MHz. In both cases, 
lowering the frequency decreases energy consumption. From these observations we can 
conclude that for platform configurations Config1 and ARM1176, lowering the 
frequency does not result in energy gains. Conversely, Config2 and Config3 provide 
energy gains. In the following analysis, we have further investigated this behavior and its 
causes but using the dynamic video power strategy. 

3.3.3 Results and Discussion 

We start by evaluating the DVFS video power strategy with the different operating point 
configurations and observe the overall performance and energy consumption for 
different adaptation_constraint. Figure 3.6 shows energy consumption for the video 
sequence (flavors_cut) at different adaptation constraints under different platform 
configuration. In figure 3.6, we can clearly remark that the energy consumption is 
increasing for platform configurations Config1 and ARM1176, while decreasing for 
Config2 and Config3. This is contradictory because the level of video quality decreases 
the frequencies at which the processor operates and would logically succeed in saving 
energy. This is not the case and the negative energy gains obtained are due to the fact 
that differences of power consumption in consecutive operating points are too small for 
the case of ARM1176 and Config1 as shown in table 3.3. Because of this, power 
reduction does not compensate the increase of execution time resulting from frequency 
reduction. 
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Figure 3.6: Energy consumption vs. Adaptation constraint. 

As an illustration, the differences of power level between the consecutive frequencies of 
240 MHz and 215 MHz for Config1 and ARM1176 are 30 mW and 20 mW respectively. 
This power level gap is not enough to compensate the execution time increase implied 
from 35 MHz downscaling. On the contrary, the same differences of power level for 
Config2 and Config3 are 50 mW and 90 mW respectively as indicated in table 3.3. 
Therefore we can see the energy gain is more significant as this gap increases as shown 
in figure 3.6. 

Table 3.3: Frequency and load power consumption for different configuration of 
QEMU platform. 

Frequency 
(MHz) 

Load Power (mW) 
Config 1 ARM1176 Config 2 Config 3 

160 230 250 180 90 
215 280 290 260 220 
240 310 310 310 310 
265 345 330 360 390 
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Similarly, the power level gap between frequencies 160 MHz and 215 MHz for Config1 
and ARM1176 is 50 mW and 40 mW respectively, whereas the corresponding gap for 
Config2 and Config3 is 80 mW and 120 mW respectively. Again the energy is gained in 
case of Config2 and Config3 as shown in figure 3.6. This also means that not all 
platforms will provide energy gains when reducing dynamically the frequency and that 
the characteristics of operating points have a key impact on the efficiency of a DVFS 
strategy. This is the case on the Versatile Baseboard ARM1176JZF-S used for the 
experiments, for which decreasing the frequency increases the energy consumption. 
Thus the differences of power level between consecutive frequencies of the processor 
have important effects on energy consumption. 

Secondly, the energy gain depends on the request of video quality (in terms of decoding 
speed required); the more quality, the less energy gains. In this case the 
adaptation_constraint controls the decoder speed, at low speed the decoder consumes 
less energy. Figure 3.7 summarizes the corresponding energy consumption in joules for 
the H.264 decoder in different platform configurations as well as at different 
adaptation_constraint. Figure 3.7 shows that the power strategy provides gains that are:  

 1. -2.05%, -6.46% and -8.54 % for Config1,  
 2. -4.1%, -14% and -17.5% for ARM1176, 
 3. +3.82%, +13.28% and +15.39% for Config2, 
 4. +13.6%, +46.55% and +57.68% for Config3.  
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Figure 3.7: Energy vs. adaptation_constraint for different platform configurations. 

The gain depends upon different adaptation_constraint (4, 6 and 8 respectively) for each 
different platform configurations. The results are coherent with the previous works and 
the results of the same DVFS strategy on a multi-core platform (MPCore Emulation 
Baseboard) that have reported energy gains from real measures, between 9.7% and 
30.6% [57]. 

3.4 Conclusion 

We have presented and analyzed the effectiveness of a DVFS power strategy dedicated 
to video decoding on an ARM1176JZF-S platform. Putting aside the energy gains, these 
results show that DVFS can be effective under certain conditions. In some cases 
decreasing frequency can actually increase the energy consumption. The operating 
points play an important role in the efficiency of a DVFS based power strategy. The 
differences of power between consecutive frequencies of the processor have important 
effects on energy consumption. In case of the Versatile Baseboard ARM1176JZF-S used 
for the experiments, the differences of power level between consecutive frequencies are 
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too small and result in an increase of energy consumption when scaling down the 
frequency. However, we have shown that if this gap is larger for two consecutive 
frequencies, there is a point where the energy gain becomes effective. 

The research presented in this chapter is implemented on the real ARM1176JZF-S and 
on the virtual QEMU platform, to be able to consider different characteristics (matching 
those of ARM processors). The values provided on real and virtual platforms were equal 
in energy consumption (only 0.3% deviation). Using the virtual platform, we thus 
explored the effect of operating point characteristics on the efficiency of a DVFS 
strategy. It has been shown that the power level gaps should compensate the execution 
time increase resulting from a frequency decrease, in order to grant the energy gains. 
Under these conditions, the power strategy provides gain that ranges up to 57.68% 
depending upon the adaptation constraints. 

The above work summarizes our discussion of the first DVFS based video power 
strategy. We would now switch to analyze the second DVFS based power strategies (i.e. 
DSF) on respective platform (i.e. ARM1176JZF-S, QEMU) in order to explore its 
effectiveness in the real development world. In addition, we further analyze the impact 
of operating points for the second DVFS strategy, and explore if generalization is 
possible and at which conditions. 
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Chapter 4 : DSF POWER STRATEGY 

4.1 Introduction 

In real-time systems, the use of variable frequency and voltage of a processor has a 
direct impact on processor’s speed and consequently, on the ordering and the execution 
of tasks. Hence, scheduling techniques and voltage/frequency selection mechanisms are 
tightly coupled and should be addressed together to ensure the feasibility of application 
tasks under timing constraints. Real-time applications potentially exhibit variations in 
their Actual Execution Time (AET) and as a result, often finish earlier than their 
estimated Worst-Case Execution Time (WCET). DVFS techniques can exploit these 
variations to adjust the frequency and voltage of processors to reduce power and energy 
consumption (section 2.1.5). However, one of the challenges of these techniques is to 
preserve the feasibility of scheduling and provide deadline guarantees. 

Experimentation with a second DVFS based strategy called Dynamic Stretch to Fit 
(DSF) is detailed in this chapter. DSF strategy is shown to be able to make significant 
energy savings while providing the required efficiency (real time scheduling). We detail 
the effects of this DVFS based power strategy on both single and multicore platforms. 
The experimentations are carried out with mainly three objectives in mind: (a) to check 
the effectiveness of the DSF power strategy on the ARM1176JZF-S platform and the 
two virtual platforms, (b) to characterize the range of energy gains from application 
parameters and (c) to analyze the effect of platform characteristics on the efficiency of 
the DSF strategy. The corresponding energy gains are presented in the results section. 

We present the analysis study of the DSF strategy in the following manner. Section 4.1.1 
describes the DSF strategy in detail. Section 4.1.2 provides information about the 
examples used for the experimentation.  Section 4.2 is divided into three parts: section 
4.2.1 explains the implementation of the DSF strategy, section 4.2.2 focuses on the 
experimentation of DSF using ARM1176JZF-S and in section 4.2.3 we put light on the 
effects of varying different application parameters on the energy savings. Afterwards, in 
section 4.3.1 we show the results of energy gains by experimenting with the DSF 
strategy in different multiprocessor configurations and in section 4.3.2 we give an 
analysis of these results. At the end, we present our conclusions in section 4.4. 
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4.1.1 DSF Strategy  

The DSF low power technique uses Dynamic Slack Reclamation algorithm (DSR) as the 
principal slack reclamation algorithm. The AET of tasks within an application is always 
less or equal to the WCET. These differences produce time slacks by the current tasks to 
be used by the following tasks. The DSR algorithm assigns dynamic slack produced by 
the current tasks to the next priority ready tasks. This allocation provides more time for 
the new ready tasks, therefore the processor speed can be changed. Using DSR 
algorithm, the slack is fully consumed on the same processor by the task to which it is 
once attributed. Such allocation allows the DSR algorithm to have a large slowdown 
factor for scaling frequency and voltage for a single task, which eventually results in 
improved energy savings. DSR works in conjunction with global scheduling algorithms 
on symmetrical multiprocessor real time systems. The algorithm exploits the fact that 
distinct scheduling events have a different impact on an application's schedule. For 
instance, a terminating job may produce dynamic slack, but it does not increase 
concurrent utilization of the platform’s resources and therefore, can only update the 
priority order of remaining ready tasks. A release event, on the other hand, increases the 
simultaneous platform utilization and may cause preemptions as well. This difference in 
the impact of scheduling events is exploited by DSR. At every scheduling event, the 
dynamic slack (difference between the AET and WCET) produced by the current tasks, 
is added to the WCET of the next ready tasks. By this way revised WCET for the new 
tasks (on the same processors) are calculated. Hence, novel frequency is calculated 
based on the updated WCET, and the tasks are allowed to run with the lowered 
frequency. This decreases power consumption and impacts the total energy 
consumption. 

The next section presents a description of various examples used in our work. 

4.1.2 Application Examples 

To experiment with the DSF strategy, we created five distinct application examples for 
four different platform configurations. Example 1 (see Table 4.1) is used to test the 
scheduling accuracy and energy savings of the DSF strategy for the ARM1176JZF-S and 
QEMU_ARM1176 platforms (single processor configuration). Example 1 is also used 
for the evaluation of energy savings on the QEMU_CortexA9 platform. Afterwards, we 
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use three other application examples (Example 2, Example 3 and Example 4) to 
experiment with the DSF strategy in a multiprocessor configuration. In the end, we also 
experiment the DSF strategy on an H.264Encoder which is the application use case of 
the COMCAS project. The main parameters used in these examples are listed in table 
4.1. 

Table 4.1: Examples used for experimentation of DSF strategy 

 Example 1 Example 2 Example 3 Example 4 H.264Encoder 
Task  2 4 6 8 4 

 WCET BCET WCET BCET WCET BCET WCET BCET WCET BCET 
T1 5.5 2 5 2 5 2 4 1 20.63 5.65 
T2 4.5 3 4 3 6 3 5 1.5 20.63 5.65 
T3   3.2 1.5 7 4 6 2 8.25 3.38 
T4   3.4 2.5 4 2 7 2.5 5.78 1.81 
T5     4.2 3 3 1   
T6     4.5 4 3.2 1.5   
T7       3.4 2   
T8       3.5 2.5   

Note:  Here time is in 10-1seconds. 

Example 1 is composed of two tasks with the parameters specified in table 4.1. It is 
defined specifically for a single processor configuration. The AET of task T1 is taken 
between BCET and WCET with different values (i.e. 2, 2.6, 3.3, 4, 5, 5.5 10-1s) to 
characterize the range of energy gains. The AET of task T2 is fixed at an average value 
between BCET and WCET. By this way, we have a variation of slack produced by the 
difference of AET and WCET of task T1 that allows to measure the range of energy 
consumption. For ease of implementation, we choose deadlines of tasks equal to their 
periods in most cases. 

Example 2 consists of four tasks for the execution on a configuration of two processors. 
We choose different AET for tasks T1 and T2 in a similar way as for the task T1 of 
Example 1. The difference between the values of AETs and WCETs for the 
corresponding tasks T1 and T2 produce different slacks. These slacks are added to the 
WCET of tasks T3 and T4 respectively by the DSF strategy. Example 3 contains six 
tasks for the execution on three processors and Example 4 contains eight tasks for the 
execution on four processors. In Example 3 we vary the AET for the tasks T1, T2 and T3 
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that produce slacks for the tasks T4, T5 and T6. Similarly in Example 4, we change AET 
of tasks T1, T2, T3 and T4 that produce different time slacks for the tasks T5, T6, T7 
and T8. 

The DSF strategy is then applied to the video H.264Encoder example. It should be noted 
that the H.264Encoder is not the real encoder application. It is a task model provided by 
Thales group for our experimentations. It consists of four tasks T1, T2, T3 and T4, 
where T1 and T2 are tasks used for motion estimation. T3 is used for intra prediction, 
texture encoding and syntax writing. T4 is a post processing filter. A graphical 
presentation of this task model is presented in figure 4.1. The first two tasks should be 
completed in parallel, however tasks T3 and T4 can be completed afterwards. This is 
controlled by the deadline of these tasks as shown in figure 4.1. Here T1 and T2 have 
deadline of 21 ms, T3 has a deadline of 31 ms and for T4 is 40 ms. The period is fixed to 
40 ms for all tasks.   

 
Figure 4.1: Thales Task model of H.264 Encoder. 

In normal cases, tasks within an application execute with random values of AET 
between their BCET and WCET. However, we use static values of the AET for the 
execution of these examples. This allows us to have a same sequence of scheduling 
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events with and without the DSF strategy. In addition, the total execution time of the 
application is also not affected and provides the required deadline guarantees as well. 
This is needed in order to compute the relative energy savings with and without using 
the strategy, in the most comparable conditions of execution. In the next section, we 
present the actual implementation and experimentation of the DSF power strategy. 

4.2 DSF Implementation and Experimentation 

This section describes the actual experimentation of the DSF strategy on ARM1176JZF-
S and QEMU platforms. We start by describing the DSF strategy implementation for 
these platforms in section 4.2.1. The accuracy of virtual platforms has already been 
presented in chapter 3 for several test applications. In section 4.2.2, we experiment with 
the DSF strategy to observe the energy gains for a single processor configuration. 
Afterwards in section 4.2.3, we analyze the effects of different application parameters 
(slack time, simulation duration, time granularity of tasks) on energy consumption and 
correctness of scheduling results. 

4.2.1 DSF Implementation 

We implement the strategy using the DSF_Scheduler code. It is based on a user space 
Linux scheduler developed at LEAT and described in [53]. It uses Linux and POSIX 
thread APIs to perform a schedule of tasks under deadline and priority constraints. With 
the association of Linux DVFS drivers (CPUFreq), this scheduler is able to apply a 
multitask, multiprocessor DSF strategy on any execution platform, provided it supports 
Linux and the required APIs (POSIX, CPUFreq, CPU affinity). 

The DSF_Scheduler uses the respective PM_Driver for each platform to change the 
frequency based on the DSR algorithm. We use the previously defined PM_Driver used 
for the video strategy implementation. In case of QEMU_CortexA9, we modify the 
QEMU PM_Driver to use the frequencies of the CortexA9 processor. The 
DSF_Scheduler also uses the previously defined power driver (consumption_ARM11) to 
monitor the power of the ARM1176JZF-S core. The scheduler loads the 
consumption_ARM11 driver at the start of the application and unloads it after its 
completion. The consumption_ARM11 returns the mean power and time taken by the 
application during this period. The energy consumed by the application is calculated by
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 the DSF_Scheduler and is sent to the console for analysis. In case of QEMU platforms, 
the DSF_Scheduler relies on QEMU built-in functions for power monitoring and energy 
calculation (section 2.2.2.3 and section 2.2.2.4). 

4.2.2 Experimentation on a Single Processor 

The experimentation results of the DSF strategy using Example 1 are shown in table 4.2 
and in figure 4.2. The QEMU platforms are configured for a single processor. We first 
focus on providing comparative gains for the ARM1176JZF-S and QEMU_ARM1176 
platforms. The percentage of energy gain is calculated by comparing the energy 
consumed by the application with and without the use of the DSF strategy. The energy 
consumption, mean power, execution time and the percentage of energy gain for 
different values of AET on both platforms are reported in table 4.2. These values are 
obtained by changing the AET of task T1 between BCET and WCET as stated in section 
4.1.2. This allows the processor to switch between different frequencies, providing 
different value of energy consumptions. 

Table 4.2: Energy consumption of Example 1 on ARM1176JZF-S and 
QEMU_ARM1176 platform. 

 ARM1176JZF-S QEMU_ARM1176 

 
AET Energy 

(mJ) 

Mean 
Power 
(mW) 

Time 
(sec) % Gain 

 

Energy 
(mJ) 

Mean 
Power 
(mW) 

Time 
(sec) 

% Gain 

Conf 1 2730.72 323 8.809 
17.73 

2722.29 309 8.81 
17.80 2246.48 256 8.81 2237.74 254 8.81 

Conf 2 2792.58 323 8.809 
11.04 

2783.96 316 8.81 
11.39 2484.3 281 8.81 2466.8 280 8.808 

Conf 3 2801.42 323 8.809 
11.10 

2792.77 317 8.81 
11.15 2490.47 287 8.81 2481.47 282 8.809 

Conf 4 2810.25 323 8.809 7.83 2801.58 318 8.81 7.86 2590.11 294 8.81 2581.33 293 8.81 

Conf 5 2819.09 323 8.809 4.06 2810.39 319 8.81 4.08 2704.64 307 8.81 2695.86 306 8.81 

Conf 6 2845.6 323 8.809 
0.00 

2836.82 322 8.809 
0.00 2845.6 323 8.809 2836.82 322 8.81 
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For each configuration Confn, the upper value represents the energy consumption of the 
application itself without power strategy, while the lower value is the energy using DSF. 
The results show that we can have a gain varying between 4.06% and 17.73% for the 
ARM1176JZF-S platform and 4.08% to 17.81% for the QEMU_ARM1176 platform. It 
should be noted that we use operating points of ARM1176JZF-S for the 
QEMU_ARM1176 platform throughout the experimentation. 

We then implement the DSF strategy on the QEMU_CortexA9 platform and start 
experimenting with Example 1. Figure 4.2 summarizes the percentage of energy gain for 
various values of AET and for all the three platforms. 

 
Figure 4.2: Percentage Energy gains for Example 1 on different platforms. 

The energy consumptions (as well as the percentage of gains) are not the same for the 
CortexA9 and ARM1176. This distinct energy behavior is probably related to different 
operating points of these different platforms and is further analyzed in section 4.3.2. The 
results also show that we can have a gain varying between 1.56% and 31.27% for the 
QEMU_CortexA9. It should be noted that the percentage of energy gains for the 
ARM1176JZF-S baseboard and QEMU_ARM1176 platform are almost equal, having a 
negligible error of 0.3% as seen previously (hence this further confirm the virtual 
platform accuracy). 
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4.2.3 Experimentation with Application Parameters 

Before analyzing the results of the DSF strategy on a multiprocessor example, we first 
explore the effects of varying application’s parameters on a single processor. There are 
many parameters that can vary from one application’s execution to another. These 
parameters may affect the scheduling behavior and/or the energy consumption by the 
applications. For instance, such a parameter in our examples is simulation time which is 
used for calculating the energy consumption by an application. Certain applications may 
require more time to complete their execution than others (like video sample of 100 
frames vs. sample of 1000 frames), therefore changing simulation time may affect their 
energy consumption. Moreover, this can also cause influence on energy savings as larger 
simulation time may introduce additional frequency switching and computational 
overhead by the power strategy. Therefore, we first explore the effect of changing the 
total simulation time for Example 1 that also helps us to evaluate the DSF strategy for 
other applications. Secondly, as the switching of frequency also imposes actual time 
penalties in real systems, therefore we define the application's parameters using different 
units of time (i.e. 10-3, 10-2, 10-1, 100 seconds) to see the influence of these solutions of 
task execution time (referred as time granularity of tasks in the following) on the 
efficiency of strategy. 

We explore the effect of changing the total simulation time by the following procedure. 
First, we calculate maximum percentage of energy gain for Example 1, by fixing the 
AET of task T1 to BCET and note down the energy consumption with and without the 
DSF strategy. Secondly, we use a variable loop to control the number of iterations of the  
tasks T1 and T2, so that the total simulation time of the application can be changed. 
Thirdly, we note the percentage of energy gains for different values of loop on both 
ARM1176JZF-S and QEMU_ARM1176 platform for Example 1. 
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Figure 4.3: Percentage of Energy Gain vs. Application parameters. 
Results in figure 4.3a show that although the total energy consumption with and without 
the DSF strategy changes, however, the percentage of energy gain is not affected by the 
different values of the loop variable. We then analyze the effect of decreasing the time 
granularity of tasks on the efficiency of DSF. Figure 4.3b shows that when the execution 
time of tasks is close to a certain limit (10-3s), the percentage of energy gains decreases 
significantly. In other words, the strategy becomes inefficient and this is clearly because 
the delays for changing processor frequency, which is typically in the order of 
magnitude of a few hundred of microseconds. Task's definitions below a certain time 
limit (i.e. 10-3s) provide abnormal scheduling behavior, as well as false energy 
consumption. However, the behavior of the DSF strategy can be considered as correct 
for values of time granularity higher or equal to 10-2s. 

In the following DSF experiments, we choose different values for simulation time 
(different values for the loop variable) and consider task granularities higher than   10-2s 
in order to neglect the delays of changing frequency. 
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4.3 Results and Analysis  

4.3.1 Multiprocessor Energy Savings 

We experiment with four other application examples to analyze the energy savings and 
to verify the correctness of DSF execution on the multicore platforms. The results of 
energy gains for the different applications (i.e. Example 2, Example 3, Example 4 and 
H.264Encoder) using DSF strategy are shown in figure 4.4. We use distinct 
configurations of the platforms for each application as stated in section 4.1.2. We 
implement the examples using only the QEMU based platforms as the ARM1176JZF-S 
is not a multiprocessor platform. 

 
Figure 4.4:  Energy gains on QEMU_ARM1176 (blue) and QEMU_CortexA9 

(green) platforms for different applications and platform configurations. 
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Figure 4.4a shows energy gains of Example 2 varying between 3.99% and 12.89% for 
QEMU_ARM1176 (blue) and between 1.96% and 22.93% for QEMU_CortexA9 
platform (green). Figure 4.4b shows the energy gains of Example 3 ranging from 3.08% 
to 12.69% for QEMU_ARM1176 and 0.65% to 24.92% for QEMU_CortexA9 platform. 
Energy gains for Example 4 is between 4.16% and 15.76% for QEMU_ARM176 and 
between 3.12% and 38.59% for QEMU_CortexA9 as shown in figure 4.4c. Figure 4.4d 
shows the results of the DSF strategy on the H.264 video encoder model with energy 
savings ranging between 5.93% and 16.70% on QEMU_ARM1176 and between 10.21% 
and 51.46% on QEMU_CortexA9 platform. 

The scheduling and performance of the applications, with and without the DSF strategy 
are correct on both platforms. However, it should be noted that we have bigger 
percentages of energy gains for QEMU_CortexA9 compared to QEMU_ARM1176. This 
behavior is present for all five examples. The next section explores this effect in detail 
for these platforms. 

4.3.2 Analysis of Results 

The different energy gains for QEMU_ARM1176 and QEMU_CortexA9 are strongly 
related to the operating points of these platforms. The power levels of each frequency 
with and without load are given in table 4.3 for each platform. The differences in power 
levels between frequencies are quite different on these platforms and this impacts the 
energy efficiency of the power strategy. DSF strategy allows dynamically changing 
between maximum and minimum frequency values depending upon the slack produced 
by a previous task and the WCET of the next task (see section 4.1.1). The different 
power consumptions of distinct platforms have power level gaps between consecutive 
operating points that are not the same. This gap plays an important role in energy 
consumption for these platforms. For instance, when the frequency is downscaled on 
QEMU_CortexA9 from 1000 MHz to 300 MHz (i.e. maximum to minimum), we can 
clearly see that the power gap is 125 mW (Load = 177, Idle = 52). However, the same 
power gap for downscaling the frequencies from 265 MHz to 160 MHz (maximum to 
minimum) on QEMU_ARM1176 is 51 mW (Load = 80, Idle = 29). Hence, a larger 
power gap provides more energy savings and that is why QEMU_CortexA9 to have 
significantly bigger gains as compared to QEMU_ARM1176 platform.  
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Table 4.3:  Power profile of QEMU_ARM1176 and QEMU_CortexA9 platform. 

Platforms Frequency 
MHz 

Power (Idle) 
mW 

Power (Load) 
mW 

QEMU_ARM1176 

160 223 250 
215 238 290 
240 245 310 
265 252 330 

QEMU_CortexA9 
300 38 143 
600 60 215 

1000 90 320 

Another effect seen in figure 4.4 is higher energy gains for H.264Encoder. The reason of 
different energy gains is due to the downscaled frequency by an application on these 
platforms. The required frequency is chosen from the available frequencies of the 
platform. If the calculated frequency is a value between the two available frequencies, 
the one with the higher value is chosen to provide deadline guarantees and this can cause 
different energy consumption for different applications. As an illustration, if we 
precisely analyze the scheduling and frequency switches of Example 2, we observe that 
the processor frequency downscales to a minimum value of 160 MHz in case of 
QEMU_ARM1176. However, the same Example 2 downscale the frequency to 600 MHz 
for QEMU_CortexA9. Therefore, we conclude that we can have a further margin of 
energy gains for some applications for QEMU_CortexA9 that can downscale the 
frequency to 300 MHz. This is the case of the H.264Encoder example, where we have 
larger gains in comparison to Example 2 (Figure 4.4) for the same number of processors. 

4.4 Conclusion  

We have presented and analyzed the effectiveness of a DVFS based low power 
scheduling strategy on various applications (including video encoding) on different 
platforms. The results of the DSF strategy on real ARM1176JZF-S and the virtual 
prototype of ARM11 (QEMU_ARM1176) provided correct scheduling and execution 
with a negligible deviation of 0.3% of energy consumption and provided energy gains 
around 18%. We have also validated the efficiency of DSF strategy on multicore 
platforms (i.e. QEMU_ARM1176 and QEMU_CortexA9) with significant energy gains 
ranging between 0.65% and 51.46% under different operating conditions. In addition, 
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the experimentations revealed the limits of the DSF scheduler that it is efficient for 
execution time granularity of greater than 10-2 seconds due to switching delays. 

Furthermore, we have lightened the important effect of operating points that influence 
greatly the amount of energy gains. The experimentation pointed out that the CortexA9 
model due to efficient power consumption (low Idle vs. load power) provided more 
energy savings in comparison to the ARM11 model. Therefore, we can conclude that 
efficiency of any DVFS based strategy is highly dependent upon the Idle vs. load power 
levels of a processor. Besides, our experimentations also indicated the dependence of 
energy gains on application parameters, as larger dynamic slack provided higher energy 
savings. In addition, we also pointed out that the energy gains of a particular application 
on two different platforms can be different due to distinct values of available 
frequencies.  

In the next chapter, we target a DPS based strategy in order to check the conditions of its 
applicability on real systems, and eventually compare the efficiency of DVFS vs. DPS 
based strategies.  
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Chapter 5 : ASDPM POWER STRATEGY 

5.1 Introduction 

This chapter focuses on the analysis of a dynamic low power strategy called Assertive 
Dynamic Power Management (AsDPM) on ARM platforms. The AsDPM strategy 
considers mainly the processors for power and energy consumption optimization during 
the execution of a certain application. It works on the principle of admission control for 
ready tasks, by delaying the execution of ready tasks as much as possible. This controls 
the maximum number of active/running processors in the system at any time instant. The 
availability of ready tasks during the execution of a program is random. The choice to 
when exactly a ready task is executed on certain processor and how many processors are 
required for the remaining tasks can save a significant amount of energy consumption. 
This chapter focuses on the energy efficiency of the AsDPM strategy for real-time tasks, 
which decides when exactly a ready task shall execute thereby reducing the number of 
active processors, which eventually reduces energy consumption.  

AsDPM technique is shown to be able to bring significant energy savings, while 
satisfying real time constraints for different applications in embedded systems. The 
strategy is particularly designed to be used in a multiprocessor environment, therefore 
we experiment it using the QEMU based multicore platforms. Several example 
applications are experimented on both QEMU_ARM1176 and QEMU_CortexA9 
platforms to analyze the energy savings and to explore the efficiency of the AsDPM 
strategy. Moreover, we analyze the results of energy gains from the experimentation of 
the AsDPM power strategy in different platform and application configurations. In 
addition, we compare the AsDPM and DSF strategies for the same set of examples to 
provide an effective evaluation. For this reason, we initially used same examples defined 
previously in chapter 4, unfortunately the examples do not provided enough results. 
Therefore, we define new set of examples so that we have a better evaluation and 
detailed energy analysis of these strategies for each distinct platform configurations. By 
this way, we are also able to provide several conditions for the applicability of the DVFS 
and DPS strategies.   
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We experiment and analyze the AsDPM multiprocessor strategy in the following 
manner. Section 5.1.1 describes the AsDPM strategy in detail. Section 5.1.2 provides 
information about the examples used for the experimentation.  Section 5.2 is divided into 
three parts: (a) section 5.2.1 explains the implementation of the AsDPM strategy, (b) 
section 5.2.2 focuses on the energy savings provided by the AsDPM strategy and (c) 
section 5.2.3 presents an analysis of results and energy saving conditions. In section 5.3, 
we compare the results of energy gains of the AsDPM strategy with the DSF strategy. 
Section 5.3.1 presents the results of energy gains by the DSF strategy for the new set of 
examples. In section 5.3.2, a comparison of results for DSF and AsDPM strategies for 
both QEMU_ARM1176 and QEMU_CortexA9 are given. At the end, we present our 
conclusions in section 5.4.  

5.1.1 AsDPM Strategy 

AsDPM strategy is a DPS based low power strategy in which the required number of 
processors depends upon the amount of remaining tasks and their deadlines. AsDPM 
technique exploits the idle time intervals within an application to shutdown or idle the 
processors. The strategy is based on the algorithm defined in [58]. At the start, all tasks 
within an application are sorted according to their priority. The strategy then performs a 
Laxity Bottom Test (LBT) at every scheduling event, starting with the assumption that at 
most one processor is running to accommodate most of the workload (tasks) and 
gradually increases the computational resources. Here, laxity within context of AsDPM 
is the anticipative laxity of a task’s job and is the measure of its urgency to execute 
relative to its deadline, in the presence of all higher-priority released job(s) running and 
deferred on a particular processor. The highest priority tasks are assigned to the required 
number of processors. For the rest of the ready tasks, LBT is performed considering the 
first target processor. If a task passes LBT, it is deferred from execution at current 
scheduling event. Otherwise, if a task does not pass LBT then it implies that currently 
available running processors are not sufficient to satisfy the concurrent resource 
requirement of ready tasks and some tasks may miss their deadline in future. In this case, 
all tasks which are deferred or running are put into ready task queues again and more 
processors are activated. This procedure is repeated until all tasks are moved to the 
running task queue. Upon the arrival of the next scheduled event, the same process 
repeats itself and as a result the number of active processors may change.  
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Finally, if an application requires only one processor, the second highest priority task is 
executed on the same processor after finishing the first one. If an application requires 
two processors, the first higher priority task is executed on the first processor, the second 
priority task on second and similarly the process goes on until the completion of the 
remaining tasks. By this way we execute the application on the least number of 
processors required, hence minimizing the total energy utilization. At the end of 
application's execution the higher priority tasks finish earlier; this means that an 
executing task on the first processor completes earlier than the remaining tasks. 
Therefore when a scheduling event occurs, the task on second processor is moved to the 
first processor for its completion. Hence we minimize the total number of processors 
needed for the execution of an application after each scheduling event as well as at the 
end.  

5.1.2 Application Examples 

Based on its definition, the multiprocessor AsDPM strategy needs a platform with at 
least two processors to be applicable. We therefore need at least three different examples 
for the detailed experimentation and analysis to use three possible distinct configurations 
for the QEMU platforms. Beside these examples, we also experiment the AsDPM 
strategy with an application to H.264 video encoder model to evaluate its energy 
consumption. The main parameters used in these examples are listed in table 5.1.  

Table 5.1: Examples used for the experimentation of AsDPM strategy. 

Note: Here time is in order of 10-1 seconds; D = Deadline. 

 Example 5 Example 6 Example 7 
Tasks / Period 4 / 20 6 / 22 8 / 34 

 WCET BCET D WCET BCET D WCET BCET D 
T1 6 3 8 7 2 9 5 2 9 
T2 7 4 8 6 3 9 6 3 9 
T3 4 2 14 5 4 9 7 4 9 
T4 5 3 20 2 2 18 8 5 9 
T5    3 3 20 3 2 13 
T6    4 4 22 4 3 20 
T7       5 3 26 
T8       6 4 34 
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Example 5 is used to experiment with the AsDPM strategy using a maximum of two 
processors. It consists of four tasks T1, T2, T3 and T4 with the parameters specified in 
table 5.1. These parameters are defined in a way that the first tasks T1 and T2 need two 
processors for their execution. This is controlled by defining deadlines that are different 
from their periods and where the total sum of their BCET is greater than their period. As 
an illustration, the tasks T1 and T2 are defined with a deadline for T1 = 8x10-1s and     
T2 = 8x10-1 s. This forces their completion time to be 8 x 10-1 seconds before completion 
of their period of 20x10-1s. Hence Example 5 requires at least two processors before the 
start of the next period for its execution. To have a wide range of energy savings, we use 
the same procedure as we used in the previous experimentation of the DSF strategy. The 
AET of tasks T1 and T2 are set to different values between their BCET and WCET, 
while fixing the AET of T3 and T4 to an average between their BCET and WCET. By 
this way, we obtain a wide range of the energy gain spectrum for distinct values of AET. 
It should be noted that, we can obtain maximum and minimum energy gains just by 
using the maximum and minimum values of AET. However, the different values of AET 
are later used to compare the energy gains obtained by DSF and AsDPM strategies for a 
common set of examples. 

Example 6 contains six tasks and is used with a maximum of three processors, and 
Example 7 contains eight tasks and is used with a platform configuration of four 
processors. In Example 6 we allow the tasks T1, T2 and T3 to change their AET, while 
in Example 7 we allow tasks T1, T2, T3 and T4 to have variable AET. We use the same 
H.264Encoder model (see section 4.2.1) which consists of four tasks T1, T2, T3 and T4, 
where T1 and T2 are tasks used for motion estimation. T3 is used for intra prediction, 
texture encoding and syntax writing. T4 is a post processing filter. The first two tasks 
should be completed in parallel, however tasks T3 and T4 can be completed afterwards. 
The tasks T1 and T2 have deadline of 21 ms, T3 has a deadline of 31 ms and T4 has a 
deadline of 40 ms. The period is fixed to 40 ms for all tasks.   

In the next section, we present the implementation and experimentation of the AsDPM 
strategy using the above-mentioned examples.  
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5.2 AsDPM Implementation and Experimentation 

Here, we describe an actual implementation and experimentation of the AsDPM strategy 
using different multiprocessor platforms. Section 5.2.1 presents the implementation and 
execution correctness of the AsDPM strategy using Example 5. Energy savings (using all 
previously described application examples) for distinct platforms configurations are 
shown in section 5.2.2 and in section 5.2.3, we present a comparative analysis of energy 
savings for ARM1176 and CortexA9 platform.  

5.2.1 AsDPM Implementation 

The implementation of AsDPM is based on a similar principle as DSF, using a Linux 
userspace scheduler [53]. This scheduler is used to actually execute the strategy on any 
multiprocessor platform supporting Linux and C-States. For our experimentation, we use 
AsDPM_scheduler containing the code for the AsDPM strategy. The experimental 
procedure consists in running the scheduler on the previously described examples in 
different configurations, using the platform specific power monitoring drivers 
(PM_Driver) already developed in order to trace power consumption and derive energy 
values. The AsDPM strategy uses the C-states (instead of P-states), therefore we modify 
the PM_Driver function to allow the use of C-states. PM_Driver is therefore used here 
to change the required processor state to one of the following C-states: Idle, Sleep, 
Running. The AsDPM_Scheduler, PM_Driver and the test application are placed in the 
shared Arm folder of QEMU platforms.  

We start experimenting with the AsDPM strategy using Example 5 to verify its 
execution correctness on QEMU_ARM1176 platform. The AET of tasks T1 and T2 of 
Example 5 are set to different values as stated in section 5.1.2, to verify the scheduling 
behavior and obtain a wide range of the energy gain. The results of energy consumption 
with and without the AsDPM strategy and the resulting percentage of energy gains are 
shown in table 5.2. Similarly, we test the correctness of the AsDPM using Example 5 on 
QEMU_CortexA9 platform. Table 5.2 shows the results of this implementation for both 
platforms using maximum of two processors. 
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Table 5.2: Energy consumption of Example 5 on QEMU platforms. 

 QEMU_ARM1176 QEMU_CortexA9 

AET  (10-1 sec) E1 (mJ) E2 (mJ) % Gain E1 (mJ) E2 (mJ) % Gain 

3, 4, 3, 2 7482.23 4888.07 34.67 4236.11 3045.4 28.11 

4, 5, 3, 4 7596.38 5212.34 31.38 4692.85 3734.38 20.42 

4.5, 5.5, 3 4 7650.37 5332.44 30.30 4867.97 3990.64 18.02 

5, 6, 3, 4 7655.37 5440.56 28.93 4965.08 4146.9 16.48 

5.5, 6.5, 3, 4 7666.35 5560.63 27.47 5140.01 4327.21 15.81 

6, 7, 4, 5 7674.39 5764.80 24.88 5440.53 4755.96 12.58 

Note: E1 = Energy without AsDPM strategy, E2 = Energy with AsDPM strategy 

The correctness of scheduling and coherence of energy consumption results have been 
checked for both platforms. The scheduling behavior and the energy consumption with 
and without the AsDPM strategy proved to be correct. In addition, the experimentation 
allow the energy savings for Example 5 on both platforms. The percentage of energy 
gains lie between 24.88% and 34.67% on QEMU_ARM1176 platform, and between 
12.58% and 28.11% on QEMU_CortexA9 platform. In the next section, we provide 
detailed results of energy gains by applying AsDPM strategy on the other application 
examples.  

5.2.2 Energy Savings  

The results of energy savings for Example 6 using a maximum  of three processors and 
Example 7 using four processors are shown in figure 5.1 and figure 5.2 respectively. 
Figure 5.1 shows the percentage of energy gains for Example 6 ranging between 38.65% 
and 49.88% for QEMU_ARM1176 and between 20.51% and 40.55% for 
QEMU_CortexA9 platform. The energy savings are maximum where AET of tasks is 
taken equal to their BCET and minimum when AET of tasks is taken equals to their 
WCET. This point out that AsDPM strategy provides higher gains for a larger slack 
produced by the different of their AET and WCET. Moreover, the AsDPM strategy also 
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provides energy gains for AET of the tasks equal to WCET due to the least number of 
processors used for application execution.  

 
Figure 5.1: Energy gains of Example 6 on QEMU platforms. 

Figure 5.2 shows the results of Example 7 having energy gains ranging between 50.64% 
and 59.18% on QEMU_ARM1176 and between 30.95% and 47.69% for 
QEMU_CortexA9 platform. Again, we have maximum energy savings for larger slack. 
These examples show the ability of AsDPM strategy to actually save energy in 
configurations up to 4 processors for both platforms. In each case, we have also verified 
the correctness of application scheduling with and without the AsDPM strategy.  

 
Figure 5.2:  Energy gains of Example 7 on QEMU platforms. 
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The AsDPM strategy is then applied to the video H.264Encoder example on both 
platforms. We set six different values of AET for the Tasks T1 and T2 (presented as 
Confign in table 5.3) to obtain different energy consumptions for the H.264Encoder 
example. At start, the H.264Encoder requires two processors for the execution of tasks 
T1 and T2, while the remaining tasks T3 and T4 need one processor for their completion 
when scheduled by the AsDPM_scheduler. The second processor is idled depending 
upon the value of slack produced by the tasks T1 and T2. Figure 5.3 shows the result of 
energy gains obtained from this implementation where energy gain for H.264Encoder 
ranges between 24.05% and 46.73% on QEMU_ARM1176 and between 15.32% and 
42.72% on QEMU_CortexA9 platform.  

 
Figure 5.3: Energy gains of H.264Encoder on QEMU platforms. 

From the above results, we can assume that ARM1176 consumes less energy as it 
provides more energy savings, however, it is not the case. In fact what is expected is that 
the CortexA9 consumes less energy, and actually, it does consume less as pointed out by 
the results of Example 5 in table 5.2 and H.264Encoder in table 5.3. As an illustration, 
the energy consumption of H.264Encoder example (Config 1, Table 5.3) with and 
without AsDPM is 3915 mJ and 7350 mJ respectively on QEMU_ARM1176 and the 
same energy consumption is 2909 mJ and 5080 mJ on QEMU_CortexA9. As a matter of 
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fact, this is true in case of all examples used for experimentation that CortexA9 
consumes less energy than ARM1176 (which is what we expect from smaller scale 
technology integration). What we additionally remark on the other hand, is that the 
energy gains resulting from using AsDPM are more important on the ARM11 than on 
CortexA9. This is further analyzed in the next section.  

Table 5.3: Energy Consumption and Gain for H.264Encoder. 

 QEMU_ARM1176 QEMU_CortexA9 

AET  (10-1 sec) E1 (mJ) E2 (mJ) % Gain E1 (mJ) E2 (mJ) % Gain 

Config 1 7350.12 3915.76 46.73 5080.23 2909.96 42.71 

Config 2 7866.55 4660.13 40.76 5746.56 3936.97 31.49 

Config 3 7922.68 4851.23 38.77 5956.56 4202.35 29.45 

Config 4 7974.64 5458.08 31.56 6185.15 4754.58 23.13 

Config 5 7996.6 5816.76 27.26 6291.68 5291.3 15.9 

Config 6 8022.99 6092.99 24.05 6461.38 5471.49 15.32 

5.2.3 Further Analysis of Results 

The higher percentage of energy gains in case of QEMU_ARM1176 in comparison to 
QEMU_CortexA9 platform is related to the operating points of these platforms. We 
implement the AsDPM strategy using the maximum frequency of the platforms. Table 
5.4 shows the idle vs. load power levels for both platforms. As the Cortex based 
platform uses a smaller recent integration technology (45 nm), we should expect a higher 
proportion of idle power consumption (related to static power) for the CortexA9. But it 
can be noted here that surprisingly, the idle power of the ARM1176 is much more 
important (252 mW instead of 90 mW for the CortexA9). This is due to the same reasons 
explained in chapter 3 concerning the inefficiency of operating points. The 
ARM1176JZF-S Versatile Baseboard is a development platform used for early 
prototyping that has important performance limitations. This is why the maximum 
frequency is limited only to 265 MHz while a production device would be able to run at 
800 MHz. Given this, the results of table 5.3 show a higher share of energy gains for 
QEMU_ARM1176 which is not necessarily representative. 

 
 



 
5.3 ENERGY GAIN COMPARISON OF DSF AND ASDPM 83 
 
 
Table 5.4: Idle vs. load power levels for QEMU platforms at maximum frequency. 

Platforms Frequency Power (Idle) Power (Load) 
MHz mW mW 

QEMU_ARM1176 265 252 330 
QEMU_CortexA9 1000 90 320 

In fact, AsDPM, and DPS based techniques in general, should be more efficient for 
small factor integration technologies as they address static power by switching off some 
processors. This shows again the importance of platform characteristics on the efficiency 
of power strategies. In the following, we also check the efficiency of DPS to address 
static power consumption by comparing the energy savings to a DVFS strategy.  

5.3 Energy Gain Comparison of DSF and AsDPM  

5.3.1 Energy Gains for DSF 

We have set four application examples (Example 5, Example 6, Example 7 and 
H.264Encoder) to be common with AsDPM to compare the two strategies. The 
examples exhibit different workload (number of tasks) vs. processing power (number of 
processors) in order to span different use cases. We therefore start by implementing the 
DSF strategy on these set of examples with platform configuration having two, three and 
four processors. The AET of the tasks are varied between their BCET and WCET to 
observe energy savings for these examples.  

Figure 5.4 a), b), c), and d) show the results of energy savings using respectively 
application (Example 5, Example 6, Example 7 and H.264Encoder), where figure 5.4a 
reports energy gains ranging from 3.34% to 9.50% for QEMU_ARM1176 and from 
2.82% to 12.73% for QEMU_CortexA9 platform. Figure 5.4b shows percentage of 
energy gains for Example 6 ranging between 1.58% and 13.59% for QEMU_ARM1176 
and between 1.30% and 22.24% for QEMU_CortexA9. In figure 5.4c, the percentage of 
energy gains for Example 7 lie between 2.44% and 10.44% for QEMU_ARM1176 and 
between 0.89% and 14.24% for QEMU_CortexA9. Figure 5.4d shows the result of 
energy gains for H.264Encoder example which lie between 6.01% and 16.72% for 
QEMU_ARM1176 platform and between 1.34% and 40.14% for QEMU_CortexA9 
platform.  
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Figure 5.4: Energy Gains for DSF Strategy on QEMU platforms. 

The energy gains are present in all cases, and are more important in case of the 
H.264Encoder. This is obvious as the slack produced by the tasks of H.264Encoder are 
much larger than other examples and allows the processors to downscale frequency to 
the minimum allowed value (as already observed in chapter 4). In addition, the energy 
gains for DSF strategy are higher on CortexA9 platform for all examples due to efficient 
operating points (as discussed previously in chapter 4). Furthermore, the amount of 
energy savings depends upon the dynamic slack and we can see from these results that 
the DSF strategy does not provide any energy gain when AET is set equal to WCET 
(min gain is zero).  

In the next section we focus on the comparison and analysis of these examples using 
AsDPM results.  

 
 



 
5.3 ENERGY GAIN COMPARISON OF DSF AND ASDPM 85 
 
 
5.3.2 Comparison and Analysis of Results 

Here, we provide the comparative results of AsDPM and DSF using the same set of 
examples considered previously in section 5.3.1.  The respective results of Example 5 (4 
tasks, 2 CPUs), Example 6 (6 tasks, 3 CPUs), Example 7 (8 tasks, 4 CPUs) and 
H.264Encoder (4 tasks, 2 CPUs) are provided in figure 5.5 a), b), c), and d) for 
QEMU_ARM1176 platform and in figure 5.6 a), b), c), and d) for QEMU_CortexA9 
platform.  

 
Figure 5.5: AsDPM vs. DSF energy gains for different examples on 

QEMU_ARM1176. 
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Figure 5.6: AsDPM vs. DSF energy gains for different examples on 
QEMU_CortexA9. 

We can clearly remark that AsDPM provides higher energy gains than DSF strategy and 
this difference is significant for all applications. In addition, AsDPM also provides 
energy gains in cases where DSF does not provide any energy gain at all. Indeed, when 
AET of a task is set equal to its WCET, DSF strategy cannot save energy because there 
is no frequency switch in this case, however in same conditions, AsDPM provides 
significant energy gains because of fewer number of processors used for execution. 
Another reason of higher gains for AsDPM is due to the operating points of the 
platforms. QEMU_CortexA9 is representative of recent technologies (45 nm) as the 
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model is derived from load vs. idle power consumption measured on a real platform (ST-
Ericsson-based Snowball [55]). QEMU_ARM1176 is not representative of a smaller 
factor technology, but the actual power levels of this platform (obtained from actual 
measures on a Versatile Baseboard ARM1176JZF-S) exposes a very high share of idle 
power, in the same way as a recent technology. This is due to different limitations 
inherent to the use of an evaluation platform (operating points, performances, and power 
levels), which is not a final production device. Both platform results are thus coherent 
with the assumption that DPS should be more efficient than DVFS to address recent 
technologies with an important share of static power consumption.  

Nevertheless, DPS applicability is subject to conditions related to the application, in 
particular concerning tasks execution times that should permit to neglect delays for 
switching to processor sleeping states. This is why beside the above observations, we 
can notice from figure 5.6 that the difference of energy savings of H.264Encoder on 
CortexA9 platform is not too much for the DSF and AsDPM strategies. 

5.4 Conclusion 

We have presented and analyzed the effectiveness of AsDPM, a DPS based power 
strategy, on various applications (including video encoding) for different ARM based 
platforms. To provide a relevant characterization of energy gains, we have considered 
the execution of the different test applications on different multiprocessor configurations 
(up to 4 processors). The AsDPM strategy provides significant energy gains in all cases 
ranging between 12.58% and 60%. The comparisons of results on QEMU_ARM1176 
and QEMU_CoretxA9 have also highlighted the effect of idle vs. active power on the 
level of AsDPM energy savings. These results further show the importance of platform 
characteristics (here, idle vs. load power levels) on the efficiency of a DPS strategy.  

Finally, we have also compared the energy gains of DSF vs. AsPDM considering a 
common set of applications. The results have shown AsDPM outperforms DSF in terms 
of energy gains for all applications on both QEMU_ARM1176 and QEMU_CortexA9. 
As discussed in the analysis of results, this leads to expect AsDPM to be more efficient 
for systems based on recent integration technologies where static power is a significant 
part of total power. Nevertheless, as will be discussed in next chapter, DPS based 
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strategies are not always applicable in practice because of the latencies related to 
switching of idle states, especially when an application cannot afford large waiting time. 
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Chapter 6 : GLOBAL ANALYSIS AND CONCLUSION 

This work explored power management issues and opportunities to manage efficiently 
the overall energy consumption of battery powered embedded systems. We addressed 
actual multicore platforms and analyzed in depth their energy consumption by providing 
a detailed experimentation and analysis of different domain or application specific power 
strategies. We have chosen an experimental approach based on representative 
multiprocessor platforms (real or virtual) to consider the real impact of different 
parameters such as the effect of supported frequencies, voltages, scheduling and 
transition delays, idle and load power, application execution time and workload. The 
following section presents global analysis and conclusion based on the rich results from 
this work. We can categorize these conclusions into two main areas. First, the actual 
implementation and experimentation approach enabled us to identify the important 
conditions from the hardware and application viewpoints that highly determine the 
efficiency of power management strategies. Second, we propose some high level models 
of the different strategies that have been used, in order to help designers as well as 
application developers to evaluate the benefits of power management at early stages of a 
system development, in the particular context of multiprocessor platforms. 

6.1 Power Management Effectiveness 

The following section describes platform and application conditions that have been 
identified to influence greatly the effectiveness of power strategies. Actually, three 
important conditions have been identified in our experiments: (a) the characteristics of 
operating points, (b) latencies of changing states, and (c) application level conditions. 
Then we present two additional considerations of power management effectiveness 
related to the use of domain specific strategies and the effectiveness of DVFS and DPS 
in saving energy. We discuss each of these points separately in the following sections.  
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6.1.1 Characteristics of Operating Points 

The characteristics of operating points play an important role on energy consumption. 
The amount of energy savings of a given platform is highly dependent upon its 
supported frequencies and their corresponding voltage levels. In our experimentation, we 
observed two distinct effects of platform characteristics that are discussed below. 

6.1.1.1 Operating Points Inefficiency 

The majority of power strategies are based on the hypothesis that decreasing the 
frequency of processors actually results in saving energy. Although this fundamental 
assumption is verified on most platforms, in fact there are some cases where it is not. 
Decreasing frequency decreases power at which a processor operates but at the same 
time results in an increase of execution time. As energy is the product of power by time, 
energy savings are dependent on the condition that the proportion of power decrease is 
greater than the proportion of time reduction, which depends on the characteristics of 
operating points in terms of frequency values and associated power levels.  

The experimentations of the DVFS based video strategy in chapter 3 have shown that 
using this strategy on the ARM1176JZF-S platform actually results in an increase of 
energy consumption, despite decreasing the frequency. Indeed the operating points of the 
ARM1176JZF-S platform do not allow to compensate the increase of execution time due 
to frequency downscaling, and therefore results in an increase of energy consumption. 
With the help of a virtual prototype, we have been able to modify the original power 
levels associated with each operating point, and we have verified that increasing the 
power level gaps results in effective positive energy gains. The experimentation has been 
conducted on a set of four configuration of operating points (Figure 3.5), where energy 
savings (Figure 3.7) are negative in case Config1 and ARM1176 whereas the energy 
savings are positive in case of Config2 and Config3. This shows that some platforms are 
not relevant for actual efficient DVFS. The decrease of power levels between two 
consecutive decreased frequencies must be sufficient to compensate the increase of 
execution time and energy. In case of the ARM1176JZF-S platform, such inefficiency 
can be explained by the fact it is an early evaluation platform that does not operate at full 
performance potential. Typically, this platform is limited to 265 MHz while a production 
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platform runs at 800 MHz. At this frequency, operating points are more suited and can 
provide effective energy savings.  

Although it is rather uncommon, the example of the ARM1176JZF-S platform is not an 
isolated example of suboptimal operating point characteristics. Actual platforms might 
present non-performing DVFS implementation that can be due to different reasons like 
poor voltage regulators efficiency, too important switching delay latencies, same level of 
voltage for different frequencies or, like previously, performance limitations due an early 
evaluation platform. Because of this, the actual efficiency of operating points in terms of 
power / frequency characteristics must be addressed before any power strategy is 
envisaged. 

6.1.1.2 Operating Points Impact on Energy Savings 

As discussed in previous section, operating points and more generally platform 
characteristics impose essential prerequisites that can prevent the actual effectiveness of 
any well-defined power strategy. These characteristics also naturally affect to a different 
degree the level of achievable energy savings. Power management policies usually 
account for supported frequencies but do not consider the related differences in power 
consumption. The power levels associated to the frequencies of a processor also play an 
important role in energy consumption. The power consumptions with and without load 
for a frequency vary from one platform to another due to different voltages and leakage 
power. We have shown two examples of this which result in different energy 
consumption for a same application.  

The experimentations of the first power strategy for video have shown that the load 
power levels between two frequencies contribute directly to the amount of energy 
savings. Large differences in load power between two frequencies provide more energy 
savings, while smaller differences result in complete inefficiency of the strategy. This is 
shown by the results of  table 3.2 where Config2 and Config3 have large load power 
gaps between different frequencies permitting energy reductions that exceed noticeably 
the increment due to execution time.  However Config1 and ARM1176 having smaller 
power differences both result in an actual increase of energy consumption while the 
power strategy operates correctly by decreasing the frequency.  
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This impact of idle vs. load power levels of operating points on energy savings is also 
present in the experimentation of the DSF strategy in chapter 4. For the two platforms 
used, the differences of power level (load vs. load, idle vs. idle) for different frequencies 
are not the same. Hence, these differences affect the overall energy savings and 
experimentations show that the platform with the largest power gaps provides the 
highest energy gains. Table 4.3 shows for example that when the frequency (fi) is 
downscaled from 1000 MHz to 300 MHz (maximum to minimum) on 
QEMU_CortexA9, the Load Power (LP) gap is 177 mW (LPf1 = 320, LPf2 = 143), and 
Idle Power gap (IP) is 52 mW (IPf1 = 90, IPf2 = 38). However, the same power gaps for 
the frequencies downscaled from 265 MHz to 160 MHz (maximum to minimum) on 
QEMU_ARM1176 are 80 mW (PLf1 = 330, PLf2 = 250) and 29 mW (NPLf1 = 252, 
NPLf2 = 223). Hence, larger power gaps on QEMU_CortexA9 provide more energy 
gains than QEMU_ARM1176 (i.e. maximum gain of 51.46% on CortexA9 and 16.70% 
on ARM1176). 

The influence of operating points is also visible in the energy saving results of the 
AsDPM strategy. The determining factor here is the load power consumption associated 
to an operating frequency when processors are not idle. On both experimented platforms, 
these powers are not the same, therefore the resulting energy consumption differs and 
the amount of energy savings obtained by idling a processor also varies. For example in 
case of QEMU_CortexA9 platform, we have less overall energy consumption due to 
lower load power levels associated to the maximum frequency (320 mW at 1000 MHz) 
in comparison to QEMU_ARM1176 platform which consumes much more energy due 
to higher power levels (330 mW at 265 MHz). However, the resulting energy gains are 
higher for QEMU_ARM1176 than for QEMU_CortexA9 due to a wider margin of 
power saving when a processor is idle (see Table 5.4).  

6.1.2 Latencies of Changing States 

Ideal DVFS based policies are often based on the assumption that voltage/frequency 
values can be changed instantaneously. However in reality, it takes time to change the 
CPU frequency/voltage due to factors such as the internal PLL (phase lock loop) locking 
time and capacitances that exist in the voltage path. A frequency transition results in the 
processor core and shared cache being unavailable for a small period during the 
transition. A real time application may be sensitive to this period of unavailability, 
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especially if the processor is switching between frequency transitions at a high rate. The 
experimentation with DSF strategy have shown that decreasing the execution time of 
tasks below the order of a millisecond alters the effectiveness of the strategy very 
quickly. In other words, the strategy becomes inefficient when the execution time of 
tasks becomes close to the delays for changing a processor frequency, which is typically 
in the order of magnitude of a few hundred of microseconds. Therefore the latency of 
frequency switching of a platform should also be considered before implementing any 
DVFS based strategy. Frequency switching of more than several milliseconds may not 
always be used in case of demanding applications like real time systems and video 
decoding (typically 40 ms frame processing), for example. In addition, the 
experimentation with the DVFS video strategy has pointed out that increasing the 
number of frequency switching degrades the performance of the video strategy. 
Therefore, we must keep in view these latency constraints that might prevent the actual 
effectiveness of a strategy, and which effect is amplified with the number of frequency 
switching. 

In case of DPS based strategies, the delays of CPU mode transitions are typically higher 
than those of changing frequency. This may prevent any DPS based strategy to be 
efficient in advanced and high performance applications, which is typical in real time 
processing.  

6.1.3 Application Level Conditions 

An important condition for the efficiency of a power strategy is its ability to exploit 
application variability. All the strategies we have considered depend on different 
application knowledge for energy savings. The amount of energy saved depends strongly 
on the value of different application parameters at run time, frame rate for the video 
strategy and slack time for DSF and AsDPM. The maximum energy gains will thus often 
rely upon the ability of a strategy to use the lowest processor frequencies. For the DVFS 
based video strategy, this will highly depend on the performance of the application 
implementation, as high video decoding frame rate permit lowest CPU frequency 
processing. Similarly in case of AsDPM and DSF strategies, the amount of energy 
savings depend upon the value of slack produced by the application actual execution 
time. Both strategies provide more energy saving when the application’s tasks generate 
large dynamic slacks (i.e. when AET values are close or equal to BCETs).  
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Another condition affecting the energy and scheduling behavior of an application is the 
time definition of its tasks. Application time parameters are defined using different units 
of time according to the application domain or system requirements and two different 
applications can have different timing definition for their tasks. As stated in previous 
section, the effect of switching delays, either from changing a CPU frequency or idle 
state, can lead to ineffective results of power strategies. For example, if we consider the 
example of a real time sensor providing temperature readings of a chemical every         
100 ms. Accordingly, a decision is taken by a boiler unit to control the input heat of the 
system to avoid overheating and damages. The system can allow a delay of few 
milliseconds, however a larger delay in decision may cause immediate damages. As 
deeper sleep state provides more delay in waking up from its state, therefore DPS based 
policies will be inefficient and do not provide the needed power management solutions. 
Hence, a DPS solution could better suit scenarios when, either there is a low delay for 
entering and exiting deeper sleep states, or an application can afford large waiting time 
with respect to wakeup time latencies. In general, if there is lower power consumption 
for an idle mode then there is less benefit in using DVFS, however spending longer time 
to idle may increase power consumption due to wakeup overhead. To operate properly, 
WCET of application's tasks must be large enough to be able to consider switching 
delays as negligible. Regarding our results, WCET higher than 10% of frequency 
switching delays are satisfying for an efficient implementation of DVFS and DPS based 
strategies. 

6.1.4 Domain Specific Strategies 

General purpose policies cannot always bring the maximum potential savings compared 
to domain or application specific strategies. A typical example is the one of video. In 
chapters 3, 4 and 5, the three power strategies used provide each significant energy 
gains: up to 52% for the DVFS video strategy, and up to 60% for DSF and AsDPM on a 
H.264 encoder model (CortexA9 based platforms). Using a typical workload based 
policy (such as Linux OnDemand for example), the power consumption would have 
been set to the maximum since video processing always represent a high workload 
demanding maximum processor frequency, for all the video processing duration. 

This illustrates the usefulness of using domain specific low power strategies. General 
purpose strategies have the advantage of being applicable in all cases, but the 
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counterpart is that they do not always exploit all the energy saving potential. Sometimes 
they are even completely inefficient at saving power like in the example of video 
processing. We have shown on concrete examples that we can actually save energy  up 
to 17% on the ARM1176 platform and 52% on the CortexA9 platform using DSF, up to 
60% on ARM1176 and 48% on CortexA9 platform using AsDPM, which are two 
domain specific (real time scheduling) power strategies.   

6.1.5 Efficiency of DVFS vs. DPS 

Many works investigate the field of low power scheduling techniques but very few (none 
to our knowledge) have been faced with real implementation results, probably because 
of the very high complexity inherent to multiprocessor scheduler development. In this 
work, we have shown very realistic results based on a real scheduler prototyping under 
Linux based on the work described in [53], also developed by LEAT in the scope of the 
COMCAS project. 

Under these conditions, the implementation and effectiveness of deadline scheduling has 
been shown in the real world to be possible and to provide actual energy savings. In 
addition, we have used the same set of application examples for DSF and AsDPM as 
much as possible which let us make an efficiency comparison of DSF vs. AsDPM. In the 
following, we present an analysis of both techniques in order to derive which of two 
techniques, and by extension which of DVFS and DPS, has the best ability to save 
energy. 

6.1.5.1 DSF vs. AsDPM 

In our experimentation context of application and multiprocessor platforms, AsDPM 
outperforms DSF in all configurations of measures. DSF provides maximum energy 
gains up to 17% for QEMU_ARM1176 and 40% on QEMU_CortexA9. On the other 
hand, AsDPM provides maximum energy gains of 60% on QEMU_ARM1176 and 48% 
on QEMU_CortexA9. This is a notable result, but the difference of energy gains 
between both techniques is not always very large. For instance, the DSF strategy 
provides energy savings of 40% for the H.264Encoder model on QEMU_CortexA9 
platform, while AsDPM strategy provides energy savings of 42% for the H.264Encoder 
model on same platform. This shows that the difference of energy gains is not always 
significant and depends upon a lot of parameters such as platform, application and 
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strategy characteristics. Because of the variety of influential factors, it is difficult to 
generalize on the efficiency of DPS vs. DVFS techniques. Nevertheless, these results 
indicate that DPS based strategies are likely to save more energy than DVFS based 
strategies. We further develop this effectiveness analysis in the next section. 

6.1.5.2 DVFS vs. DPS 

Despite above conclusions, an important applicability criterion to consider relates to the 
latencies of switching states and operating points. The latencies of entering and leaving 
DPS states are usually higher than those of changing processor frequency with DVFS. 
This implies that DVFS strategies are usable in a larger number of applications than DPS 
based strategies. DPS usage is more constrained by the latencies of switching states as 
explained in section 6.1.3, and will not always be applicable depending on the time 
granularity of application’s tasks. In addition, DVFS strategies are also limited by the 
latencies of switching frequencies, so there are some cases where both DPS and DVFS 
are likely to be inefficient. As stated in section 6.1.3, it is thus much recommended to 
investigate switching states latencies before any DVFS or DPS implementation decision. 

A second consideration about DVFS vs. DPS effectiveness is related to the share of 
static power in recent integration technologies. DVFS addresses only dynamic power of 
a CPU, while DPS impacts also the static power with more or less deep sleeping states. 
DPS is thus a privileged solution for recent integration technologies where transistor 
leakage is significant. This is however confirmed by our results on two platforms that 
have power levels characteristics of a high share of static power, and where AsDPM has 
been more effective in all application cases.  

6.2 Power Models 

From the results of chapters 3, 4 and 5, we can derive some simple models that can help 
in estimating the benefits of these strategies on application energy consumption. The 
principle is to derive from the various measurement results energy saving curves 
depending on the strategy’s respective leading application parameter ( i.e. frame rate, 
slack time). In each case, the model is standardized in a common representation of 
percentage of energy gains versus the driving application parameter (varying from 
maximum to minimum).  
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6.2.1 DVFS Video Strategy 

The power model of the DVFS video strategy is derived from the achieved energy gains 
reported in chapter 3 which depend on the frame rate constraint that is set by the user.  

 
Figure 6.1: Energy Model for DVFS based Video Power strategy. 

Figure 6.1, obtained from the measures of chapter 3, represents the range of energy gains 
from maximum (processor always operating at minimum frequency) to minimum (frame 
rate set to the average decoder speed). Since different configurations of operating points 
were evaluated, this representation can be used to quickly derive an estimation of energy 
savings for different characteristics of operating points, using a simple interpolation. It is 
thus also easy to know the benefits of using the DVFS video strategy and the amount of 
energy gain to expect given a level of performance of the application, here a H.264 
decoder.  
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It should be noted that the energy savings reaches a certain threshold (i.e. 4 fps in this 
case), as the DVFS strategy can only downscale the frequency to a certain allowed limit. 
In addition, if user needs maximum performance then the adaptation constraint is set 
equal to the average video decoding speed at nominal conditions (i.e. 11 fps in this case) 
but there will be no energy saving in such case. 

6.2.2 DSF 

The energy model for the DSF strategy is derived from the results of chapter 4. It is 
based on averaging the different results of energy savings on all application examples 
and for both experimentation platforms. The two corresponding energy models are thus 
shown in figure 6.2 reflecting the level of energy saving according to the main driving 
application parameter, here the slack time. 

 
Figure 6.2: Energy Model for DSF power strategy. 

The maximum energy gains correspond to a situation where 100% of the application 
slack time can be exploited to run processors at their minimum frequency, while the 
minimum correspond to the application running at its WCET (implying maximum 
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processors frequency in a DSF strategy) corresponding to no energy saving. This simple 
characterization is both realistic (as based on actual measurements) and useful to provide 
early estimation of the benefits for power strategies developing efforts.  

6.2.3 AsDPM 

Similarly, an energy model for the AsDPM strategy is derived from the average values 
of energy savings in the measures of chapter 5. The corresponding  model of expected 
energy gains is shown in figure 6.3 for the entire possible range of dynamic slack, for 
both platforms experimented. 

 
Figure 6.3: Energy Model for AsDPM strategy. 

Like DSF, maximum energy gains correspond to the case where all application slack can 
be exploited to decrease processors execution at their minimum frequency. Conversely, 
the minimum energy gain is reached when no slack is produced by the application tasks, 
which means that their executions are close to their WCET. Here the minimum energy 
gain does not correspond to zero because even when there is no slack, processors are put 
to sleep (instead of idle) when they are unused. The energy gains at these boundaries 
correspond respectively to the maximum and minimum energy gains of the strategy and 
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for the target platform. From these curves, we can thus more easily apprehend the 
cost/benefit tradeoff resulting from using an AsDPM strategy for a given 
application/platform mapping.  

6.3 Conclusion and Perspectives 

A great part of our everyday life is somehow linked with electronic devices today. 
Efficient embedded systems, especially low power wireless systems, have become an 
important challenge for engineering design processes. The designs of these systems are 
under increasing pressure to extend battery time and at the same time offer more features 
and performance. The upcoming generation of embedded systems is going to need lower 
active and sleep power consumption while simultaneously increasing the ease of power 
management development needed to meet time-to-market requirements. In the near 
future, most sophisticated high performance applications will be deployed on complex 
platforms based on heterogeneous, multicore and many core architectures, and this 
perspective will pose new challenges at the power management level. This work already 
addressed realistic constraints of multicore systems at near-term perspective, based on 
Dual Cortex A9 in the context of the COMCAS project. Inevitably, the evolutions in 
platform architectures and application complexity especially given the very fast trends of 
mobile technology will stress the need for effective and fast development approaches.  

This thesis has brought a contribution to the characterization of real constraints 
encountered in advance power management solutions on actual platforms. The realistic 
energy measurement approach adopted has led to define helpful guidelines for the 
effective use of power management. Mainly, existing power management solutions can 
be categorized on the basis of two broad techniques which are DPS and DVFS, and our 
state of the art also pointed out that the majority of available operational solutions were 
general purpose and workload based. Therefore, we have further investigated domain or 
application specific power management solutions in search of the greatest net energy 
gains possible. The results obtained indicate consistent energy savings accompanied by 
certain platform and application conditions, which can greatly affect the efficiency of 
any power strategy. The most relevant achievements in addressing the effectiveness of 
power management are summarized below. 
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• Reducing power consumption using DVFS based policies does not always 
provide satisfying energy savings. In practice, the efficiency of DVFS is highly 
dependent upon the characteristics of operating points of the target platform. 
These characteristics must be analyzed before deciding to use a DVFS based 
strategy.  

• To further help the evaluation of power policy relevance for an application and 
target platform, early estimations can serve a very useful purpose. This study has 
also proposed some high level energy models to let the estimation of power 
management benefits that can be applied at very early stages of a system 
development.  

• Energy savings for different DPS and DVFS power strategies pointed out the 
effectiveness of using application and domain specific power management 
solutions, which provide further room for energy improvements in contrast to 
general purpose power strategies that are sometimes in efficient in case of 
specific, advanced or demanding applications. 

• Different results highlighted the important effects of state transition latencies 
inherent to the platforms, which could at some point limit (and sometimes 
prevent) the applicability of a power management strategy.  

• Findings in respect of actual energy savings for DPS and DVFS based strategies 
helped in finding out the effects of platform/application parameters on the 
achievable gains. By this way, we also categorized the conditions for the 
effectiveness of a specific strategy and better instruct which solution is suited for 
a particular platform and technology. 

• Another contribution relates to the relative lack of real world experimentation 
based research in the field of power management, especially concerning 
multiprocessor systems. This work also demonstrates the feasibility of advanced 
power management approaches such as those based on real multiprocessor 
scheduling, thanks to a prototyping method developed at LEAT.  

• Finally, this work has brought a successful contribution within the COMCAS 
project in a close cooperation with some project partners (Thales 
Communications, TIMA, CEA LETI), which results have been presented for 
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demonstrations at the project reviews for the CATRENE office held at Nijmegen 
and Grenoble, with very positive feedback from the project reviewers. 

6.3.1 Perspectives 

The work was carried out in the context of the COMCAS project, to address the 
challenge of finding a breakthrough in ultra-low-power design for data communication-
centered, heterogeneous, multicore architectures, targeting 45 nm and 32 nm CMOS 
technologies. In future works, this contribution can serve a basis for further 
investigations of power management strategies in the scope of the next project proposal 
which is under submission.  

This will focus however on heterogeneous system for upcoming technologies beyond 32 
nm. Therefore, an axis of research will be to address for instance many core 
architectures and low power scheduling techniques based on the use of dynamically 
reconfigurable accelerators.  

Another interesting and necessary area to explore would be to consider application 
development standards for power management, which could be a subpart or super part of 
ACPI. Such a standard would add information regarding various factors (platform 
parameters, application limitations, operating points, switching latencies etc.) that should 
be accounted before developing new applications. By this way, the developer would be 
able to consider minimizing the energy consumption at development stages by 
integrating the power management solutions within an application. 

Finally, as emerging solutions such as Energy Harvesting or Wireless Sensor Networks 
tend to suggest, future systems will certainly have to reach higher orders of magnitude in 
energy efficiency. A promising solution lies in the investigation of hybrid power 
management that combines and adapts different techniques to fit dynamically the 
environment of context of execution with the most suited power strategies. 

 
 



 
104 

 

VITA 

 
 
Name: Jabran Khan Jadoon  

Address: Laboratory of Electronics, Antennas and Telecommunications 
 University of Nice Sophia Antipolis 
 Campus Sophi@tech-Batiment forum 
 BP 145 - 930 Route des Colles 
 06903 sophia antipolis cedex 
  
Email Address:      jkhan@unice.fr 
 
Education:             B.Sc Computer Engineering  
 COMSATs University of Information Technology, PAKISTAN 
  
 M.Sc Telecommunications and System Microelectronics 
 University of Nice Sophia Antipolis,  France 
 
 
 
 
 
 
 
 
 
 
 
  

 
 



 
 105 

 
 

BIBLIOGRAPHY 

 

[1] G. E. Moore, “Cramming more components onto integrated circuits, Reprinted 
from Electronics, volume 38, number 8, April 19, 1965, pp.114,” Solid-State 
Circuits Newsletter, IEEE, vol. 11, no. 5, pp. 33-35, 2006. 

[2] I. Microsoft, Advanced Power Management (APM) : BIOS Interface Specification, 
Revision 1.2 ed., February 1996. 

[3] D. M. Brooks, P. Bose, S. E. Schuster et al., “Power-aware microarchitecture: 
design and modeling challenges for next-generation microprocessors,” Micro, 
IEEE, vol. 20, no. 6, pp. 26-44, 2000. 

[4] D. Brooks, V. Tiwari, and M. Martonosi, "Wattch: a framework for architectural-
level power analysis and optimizations," In proceedings of 27th international 
symposium on Computer Architecture, pp. 83-94, 2000. 

[5] A. Sinha, and A. P. Chandrakasan, "JouleTrack-a Web based tool for software 
energy profiling," In proceedings of Design Automation Conference pp. 220-225, 
2001. 

[6] T. Simunic, L. Benini, and G. De Micheli, “Energy-efficient design of battery-
powered embedded systems,” Very Large Scale Integration (VLSI) Systems, IEEE 
Transactions on, vol. 9, no. 1, pp. 15-28, 2001. 

[7] W. Ye, N. Vijaykrishnan, M. Kandemir et al., “The design and use of 
simplepower: a cycle-accurate energy estimation tool,” in Proceedings of the 37th 
Annual Design Automation Conference, Los Angeles, California, USA, 2000, pp. 
340-345. 

[8] TIMA. "Techniques de l'informatique et de la Microélectronique pour 
l'Architecture des systems intégrés," 

      http://tima.imag.fr/tima/fr/timalaboratory/overview.html. 

 
 



 
106 

 
[9] Intel, ACPI Component architecture User Guide and Programmer Reference 5.10  

16, Oct 2012.  

[10] G. Bruno, and N. Nicolas, “Dynamic voltage scaling under EDF revisited,” Real-
Time Syst., vol. 37, no. 1, pp. 77-97, 2007. 

[11] ARM, ARM1176JZF Development Chip - Technical Reference Manual, 2007-
2012.  http://www.arm.com/product/processor/classic/arm11/arm1176.php 

[12] ARM, Cortex™- A9 MPCore® Technical Reference Manual, 2008-2012. 
http://www.arm.com/product/processor/classic/arm11/arm11-mpcore.php 

[13] AMD, Revision Guide for AMD Family 10h Processors, 3.92 ed., March 2012. 

[14] Intel, Enhanced Intel® SpeedStep® Technology for the Intel® Pentium® M 
Processor, March 2004. 

[15] Transmeta, "Transmeta™  Crusoe™  TM5800 Processor for Embedded 
Applications," 
http://datasheets.chipdb.org/Transmeta/pdfs/brochures/crusoe_for_embedded_appl
ications.pdf. 

[16] S. Saowanee, and R. Rajkumar, "Practical voltage-scaling for fixed-priority RT-
systems," In proceedings of the 9th IEEE symposium on Real time embedded 
Technology and applications, pp. 106-114, 2003. 

[17] L. Benini, A. Bogliolo, and G. De Micheli, “A survey of design techniques for 
system-level dynamic power management,” Very Large Scale Integration (VLSI) 
Systems, IEEE Transactions on, vol. 8, no. 3, pp. 299-316, 2000. 

[18] K. Roy, S. Mukhopadhyay, and H. Mahmoodi-Meimand, “Leakage current 
mechanisms and leakage reduction techniques in deep-submicrometer CMOS 
circuits,” Proceedings of the IEEE, vol. 91, no. 2, pp. 305-327, 2003. 

[19] AMD, "AMD Cool'n'Quiet™ Technology," 
 http://www.amd.com/us/products/technologies/cool-n-quiet/Pages/cool-n-quiet.aspx. 

[20] AMD, AMD PowerNow! Technology, November 2000. 

 
 



 
 107 

 
 
[21] M. Broyles, C. Francois, A. Geissler et al., "IBM EnergyScale for POWER7 

Processor-Based Systems," In IBM journal of Research and development, Vol 55 
Issue 3 May 2001.  

[22] ARM, Intelligent Energy Manager (IEM) Hardware Control System in the 
ARM1176JZF-S Development Chip, Nov 2006. 

[23] ARM, Intelligent Energy Controller - Technical Overview, 2003-2005. 

[24] Pushkar singh, and V. Chinta, "Survey Report on dynamic Power Management," 
In survey report of University of illnois,Chicago (ECE Department), Chicago, 
USA 2008 .  

[25] J. Haris, S. Muhammad, H. rg et al., “System-level application-aware dynamic 
power management in adaptive pipelined MPSoCs for multimedia,” in 
Proceedings of the International Conference on Computer-Aided Design, San 
Jose, California. 

[26] C. Kihwan, D. Karthik, C. Wei-Chung et al., “Frame-based dynamic voltage and 
frequency scaling for a MPEG decoder,” in Proceedings of the 2002 IEEE/ACM 
international conference on Computer-aided design, San Jose, California, 2002. 

[27] Inki Hongy, Gang Quy, Miodrag Potkonjaky et al., “Synthesis Techniques for 
Low-Power Hard Real-Time Systems on Variable Voltage Processors,” In 
proceedings of the 9th IEEE synmposium on REAL Time Systems, pp. 178-187, 
1998. 

[28] I. Tohru, and Y. Hiroto, “Voltage scheduling problem for dynamically variable 
voltage processors,” in Proceedings of the 1998 international symposium on Low 
Power Electronics and Design, Monterey, California, United States, 1998. 

[29] W. Mark, W. Brent, D. Alan et al., “Scheduling for reduced CPU energy,” in 
Proceedings of the 1st USENIX conference on Operating Systems Design and 
Implementation, Monterey, California, 1994. 

 
 



 
108 

 
[30] G. Quan, and X. Hu, “Minimum Energy Fixed-Priority Scheduling for Variable 

Voltage Processor,” in Proceedings of the conference on Design, automation and 
test in Europe, 2002. 

[31] N. Navet, and B. Gaujal, "Ordonnancement temps réel et minimisation de la 
consommation d'énergie," Systèmes temps réel 2 - Ordonnancement, réseaux et 
qualité de service. 

[32] F. Gruian, “Energy-Centric Scheduling for Real-Time Systems”, Doctoral 
dissertation 15, Department of Computer Science - Lund Institute of Technology, 
2002. 

[33] W. Weixun, and P. Mishra, "PreDVS: Preemptive dynamic voltage scaling for 
real-time systems using approximation scheme," in proceedings of 47 ACM/IEEE 
Design Automation Conference, pp. 705-710, 2010. 

[34] S. Youngsoo, C. Kiyoung, and S. Takayasu, “Power optimization of real-time 
embedded systems on variable speed processors,” in Proceedings of the 2000 
IEEE/ACM international conference on Computer-aided design, San Jose, 
California, 2000. 

[35] H. Aydin, R. Melhem, D. Mosse et al., “Power-aware scheduling for periodic real-
time tasks,” Computers, IEEE Transactions on, vol. 53, no. 5, pp. 584-600, 2004. 

[36] P. Minkyu, H. Sangchul, K. Heeheon et al., “Comparison of Deadline-Based 
Scheduling Algorithms for Periodic Real-Time Tasks on Multiprocessor*This 
work is supported in part by Brain Korea 21 project and in part by ICT,” IEICE - 
Trans. Inf. Syst., vol. E88-D, no. 3, pp. 658-661, 2005. 

[37] M.-A. Pedro, L. Eugene, and M. Daniel, “Adaptive scheduling server for power-
aware real-time tasks,” ACM Trans. Embed. Comput. Syst., vol. 3, no. 2, pp. 284-
306, 2004. 

[38] S. Lui, R. Rajkumar, and S. S. Sathaye, “Generalized rate-monotonic scheduling 
theory: a framework for developing real-time systems,” Proceedings of the IEEE, 
vol. 82, no. 1, pp. 68-82, 1994. 

 
 



 
 109 

 
 
[39] C. L. Liu, and W. L. James, “Scheduling Algorithms for Multiprogramming in a 

Hard-Real-Time Environment,” J. ACM, vol. 20, no. 1, pp. 46-61, 1973. 

[40] J. W. S. Liu, "Real-Time Systems," pp. -  2000. 

[41] K. Jeffay, D. F. Stanat, and C. U. Martel, "On non-preemptive scheduling of 
period and sporadic tasks," In proceedings of 12th Real Time Systems Symposium, 
pp. 129-139, Dec - 1991. 

[42] S. Lui, A. Tarek, E. Karl et al., “Real Time Scheduling Theory: A Historical 
Perspective,” Real-Time Syst., vol. 28, no. 2-3, pp. 101-155, 2004. 

[43] M. Ali, and C. Chaitali, “Variable voltage task scheduling algorithms for 
minimizing energy,” in Proceedings of the 2001 international symposium on Low 
power electronics and design, Huntington Beach, California, United States, 2001. 

[44] S. Dongkun, K. Jihong, and L. Seongsoo, “Low-energy intra-task voltage 
scheduling using static timing analysis,” in Proceedings of the 38th annual Design 
Automation Conference, Las Vegas, Nevada, United States, 2001. 

[45] M. K. Bhatti, C. Belleudy, and M. Auguin, "An inter-task real time DVFS scheme 
for multiprocessor embedded systems," in conference on  Design and 
Architectures for Signal and Image Processing (DASIP), pp. 136-143, Oct 2010. 

[46] M. L. Dertouzos, and A. K. Mok, “Multiprocessor online scheduling of hard-real-
time tasks,” Software Engineering, IEEE Transactions on, vol. 15, no. 12, pp. 
1497-1506, 1989. 

[47] Sudarshan K. Dhall, and C. L. Liu, “On a Real-Time Scheduling Problem,” in 
Journal of Operation Research, pp. 26:127-140, 1978. 

[48] B. Sanjoy, and F. Nathan, “Component-Based Design in Multiprocessor Real-
Time Systems,” in Proceedings of the 2009 International Conference on 
Embedded Software and Systems, 2009. 

[49] Shelby Funk, Vincent Nelis, Joel Goossens et al., “On the Design of an Optimal 
Multiprocessor Real-Time Scheduling Algorithm under Practical Considerations, ” 
in archiveslibrary of Cornell University library ArXiv e-prints, January 2010. 

 
 



 
110 

 
[50] Tse Lee, Albert Mo, and K. Cheng, “Multiprocessor Scheduling of Hard-Real-

Time Periodic Tasks with Task Migration Constraints, ” International workshop 
on RTCS and Application, 2007. 

[51] K. Shinpei, and Y. Nobuyuki, “Real-Time Scheduling with Task Splitting on 
Multiprocessors,” in Proceedings of the 13th IEEE International Conference on 
Embedded and Real-Time Computing Systems and Applications, 2007. 

[52] K. Bhatti, “Energy-aware Scheduling for Multiprocessor Real-time Systems,” PhD 
dessertion - LEAT, University of Nice Sophia Antipolis, June 2011. 

[53] Sébastien Bilavarn, KhurramBhatti, and C. Belleudy, "Procédé d'ordonancement 
avec contraintes d'échéances, en particulier sous Linux, réalisé en espace 
utilisateur", Patent pending CNRS - France, France 

[54] Thomas Ritzau, and R. Warnke," QEMU - qemu-kvm & libvirt", 2010. 

[55] M. Graphics. "Code Sourcery Tool Chain," http://www.mentor.com/embedded-
software/codesourcery. 

[56] F. Bellard. "QEMU Open Source Processor Emulator," 
http://wiki.qemu.org/Main_Page. 

[57] S. Bilavarn, C. Belleudy, M. Auguin et al., "Embedded Multicore Implementation 
of a H.264 Decoder with Power Management Considerations," in 11th 
EUROMICRO conference on Digital System Design Architectures, Method and 
Tools, DSD'08, pp. 124-130, 2008. 

[58] M. K. Bhatti, M. Farooq, et al., “Assertive dynamic power management (AsDPM) 
strategy for globally scheduled RT multiprocessor systems,” in Proceedings of the 
19th international conference on Integrated Circuit and System Design: power 
and Timing Modeling, Optimization and Simulation, Delft, The Netherlands, 2010, 
pp. 116-126. 

[59] M. D. Santambrogio, H. Hoffmann, J. Eastep et al., "Enabling technologies for 
self-aware adaptive systems," in conference on Adaptive Hardware and Systems 
(AHS), NASA / ESA, pp. 149-156, 2010. 

 
 



 
 111 

 
 
[60] M. A., and G. Fri, "Linux / Unix Command: minicom," 

 http://linux.about.com/od/commands/l/blcmdl1_minicom.htm, Feb 2011]. 

  

 
 



 
112 

 

APPENDIX A – ACRONYM INDEX 

 
ACPI  Advance Configuration Power Interface 
AET  Actual Execution Time 
AsDPM Assertive Dynamic Power Management 
APM  Advance Power Manager 
API   Application Programming Interface  
BCET  Best Case Execution Time 
BIOS  Basic Input Output System 
CMOS  Complementary Metal-Oxide Semiconductor 
D  Deadline 
DDR  Double Data Rate  
DSR  Dynamic Slack Reclamation 
DSF  Dynamic Stretch to Fit 
DVFS  Dynamic Voltage and Frequency Scaling  
DVI  Digital Visual Interface 
DPS  Dynamic Power Switching 
EDF  Earliest Deadline First 
EIST  Enhanced Intel Speedstep Technology 
EPM  Enhanced Power Management 
FPGA  Field Programmable Gate Array 
GPIO  General Purpose Input Output 
IEC  Intelligent Energy Controller 
IEM  Intelligent Energy Manager 
IT  Information Technology 
LAN  Local Area Network 
LCD  Liquid Crystal Display  
MMC  Multi Media Card 
OPM  Optimized Power Management 
OS   Operating System 
P  Period 
PCI  Peripheral Component Interconnect 
PMC  Power Management Controller 
PM  Power Management 
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POSIX  Portable Operating System Interface 
PSRAM Pseudo Random Access Memory 
RM  Rate Monotonic 
RAM   Random Access Memory  
SDCARD Secure Digital Card 
SDRAM Synchronous Dynamic Random Access Memory 
SMP   Symmetric Multiprocessing 
T  Time 
UARTS Universal Asynchronous Receiver / Transmitter 
USB  Universal Serial Bus 
VGA  Video Graphic Array 
WCET  Worst Case Execution time 
WFI  Wait For Interrupt 
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ABSTRACT 

The purpose of this study is to investigate how power management strategies can be 
efficiently exploited in actual platforms. Primarily, the challenges in multicore based 
embedded systems lies in managing the energy expenditure, determining the scheduling 
behavior and establishing methods to monitor power and energy, so as to meet the 
demands of the battery life and load requirements. The work presented in this 
dissertation is a study of low power-aware strategies in the practical world for single and 
multiprocessor platforms. The approach used for this study is based on representative 
multiprocessor platforms (real or virtual) to identify the most influential parameters, at 
hardware as well as application level, unlike many existing works in which these 
parameters are often underestimated or sometimes even ignored. The work analyzes and 
compares in detail various experimentations with different power policies based on 
Dynamic Voltage and Frequency Scaling (DVFS) and Dynamic Power Switching (DPS) 
techniques, and investigates the conditions at which these policies are effective in terms 
of energy savings.  

The results of these investigations reveal many interesting and notable conclusions that 
can serve as prerequisites for the efficient use of power management strategies. This 
work also shows the potential of advanced domain specific power strategies compared to 
real world available strategies that are general purpose based in their majority. Finally, 
some high level consumption models are derived from the different energy measurement 
results to let the estimation of power management benefits at early stages of a system 
development.  
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Résumé 

L’objectif de cette thèse est d’étudier l’efficacité énergétique des stratégies basse 
consommation pour des plateformes représentatives. Principalement, nous nous 
intéresserons aux stratégies énergétiques pour des systèmes embarqués multicœur en 
étudiant  le comportement de politiques logicielles qui permettent la réduction effective 
de l’énergie tout en répondant aux exigences applicatives.  
Le travail présenté dans ce mémoire vise à étudier des stratégies de gestion de la 
consommation pour des plateformes monoprocesseur puis multiprocesseur concrètes. 
L’approche utilisée pour cette étude fut basée sur des plateformes représentatives afin 
d’identifier les paramètres significatifs, aussi bien au niveau matériel qu’au niveau 
applicatif, à l’inverse de nombreux travaux dans lesquels ces paramètres sont assez peu 
pris en compte voir ignorés. Ce travail analyse et compare diverses expérimentations 
menées sur des politiques énergétiques basées sur des techniques DVFS (Dynamic 
Voltage and Frequency Scaling) et DPS (Dynamic Power Switching) et définit les 
conditions sous lesquelles ces stratégies sont efficaces. 

Ces expérimentations ont permis d’établir des conclusions remarquables qui peuvent 
servir de pré-requis lors de la définition de stratégies efficaces de gestion de la 
consommation. Ces résultats montrent également que pour obtenir des stratégies 
efficientes il est nécessaire de tenir compte du domaine applicatif. Enfin, il faut noter 
que les modèles de haut de niveau de consommation ont été définis sur la base des 
mesures effectuées et afin d’estimer les gains énergétiques dès les premières étapes d’un 
flot de conception. 
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