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Introduction

A key feature of all higher eukaryotes is the defined life span of the organism.

This is a property that extends to the individual somatic cells, whose growth and

division are highly regulated. A notable exception is provided by cancer cells,

which arise as variants have lost their usual growth control. Cancer cells acquire

the ability to grow in inappropriate locations and to propagate indefinitely via

the acquisition of many non-lethal genetic and epigenetic alterations in various

genes including those that control cellular proliferation and apoptosis. These

acquired cellular traits are often ultimately lethal to the individual organism

in which they occur. Many genes can be the target of genetic damage (or

mutation) and the loss or changed function of these mutated genes can contribute

in several different ways to the unregulated growth advantage of the cancer cells

[Pharoah and Caldas, 1999].

Although the vast majority of cancers are sporadic (not associated with a familial

cancer syndrome) and due to the acquisition of somatic mutations during the life

of a stem cell in a given organ, some are linked to a constitutional mutation that is

found in every cell of the body. This second type of mutation is usually inherited,

located within a tumor suppressor gene, transmissible by the gametes (leading to

the term germline mutation), and results in the individual carrying the mutation

being genetically predisposed to the development of certain types of cancer. In

many cases, a single copy of a mutated gene transmitted by the father or mother,

gives carriers a more than 50% greater likelihood of developing cancer during their

lifetime than the general population. These “hereditary” forms are thought to

represent 2% to 5% of all cancers. This type of predisposition is reflected clinically

in familial aggregations of cancers in a single branch of the family, bilateral cancers

in twin organs, and cancers diagnosed at a young age.

Recent, rapid advances in fundamental genetics have led to tremendous

developments in the understanding of the molecular biology of cancer: the genes

involved in the initiation and progression of tumorigenesis, and both the function

of their products and how disruptions in these molecules can contribute to cancer.

Indeed, from the late 1980s through the mid 1990s, linkage analysis and positional
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cloning provided a successful approach to the discovery of high-risk susceptibility

genes for many diseases. For example, screening of the coding region of BRCA1

and BRCA2 has identified some significant structural alterations that give rise to

protein truncation, protein shortening and protein deletion in some multiple-case

breast cancer families and in some young women diagnosed with breast cancer

without a family history of breast cancer. Similarly, screening of mismatch repair

genes (hMLH1, hMSH2, hMSH6, hPMS2 ) has identified similar structural changes

in some families with Hereditary Non-Polyposis Colorectal Cancer (HNPCC)

syndrome and in some young people diagnosed with colorectal cancer without

a family history of colorectal cancer. However, at least for the common cancers,

the success rate of these approaches to identify additional susceptibility genes

(and/or the deleterious sequence variants that they harbor) has decreased, despite

the proportion of unexplained multiple-case cancer families remaining significant.

While genotype information from well characterized susceptibility genes such as

APC, BRCA1, BRCA2, MLH1, MSH2 and PTEN have obvious clinical utility,

these cancer susceptibility genes only account for approximately 20% to 25% of

the heritable risk of these diseases.

Therefore, it has become necessary to consider the possibility of additional

mechanisms being involved in inherited genetic susceptibility and development

of disease. In this perspective, it can be hypothesized that genetic variation in

transcriptional regulatory elements could also influence risk of disease. Indeed,

several studies have shown that differences in gene expression levels account for

a major part of the variation within and among species [King and Wilson, 1975,

Johnson and Porter, 2000, Levine, 2002]. It might well be expected that variations

in disease phenotype would frequently be explained by changes in transcript

expression levels rather than by structural alteration of genes. Consequently,

gene expression regulation provides a potential mechanism for generating cellular

variation and may be the underlying explanation for a proportion of cancer

syndromes that have not been resolved by germline coding region mutation

screening in currently known cancer predisposition genes.

3
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I

The genetic bases of cancer

development

I.1 Initiation and control of tumorigenesis

Cancer is a multistage process in which initiation of a tumor requires several steps,

which may be followed by further changes that advance the tumorigenic state. Six

essential cellular functions governing cell proliferation and homeostasis have to be

acquired by cells to become malignant. They are often referred to as the "hallmarks

of cancer" [Hanahan and Weinberg, 2000]. These acquired capabilities are

insensitivity to growth-inhibitory signals, self-sufficiency in growth signals, evasion

of programmed cell-death (apoptosis), unlimited replicative potential, sustained

angiogenesis, and tissue invasion and metastasis (Figure I.1). The sequence of

acquisition of these capabilities varies widely among tumors of different types, but

also among tumors of the same type [Hanahan and Weinberg, 2000].

Transformation of normal cells may occur spontaneously, but a variety of agents,

or carcinogens, may also increase the frequency with which cells are converted

into neoplastic forms. Such carcinogens belong to diverse categories ranging from

lifestyle factors (ex: tobacco smoking), occupational exposures (ex: asbestos),

7
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Figure I.1: The hallmarks of cancer. To become malignant, a cell has to

acquire six essential capabilities that collectively interact to modify the normal

cellular pattern of growth and development. After [Hanahan and Weinberg, 2000].

dietary habits (ex: aflatoxins) to environmental exposures (ex: radiation).

Transformation may as well result from infection by DNA or RNA viruses,

bacteria or parasites, the most significant ones being hepatitis B and C viruses,

human papillomavirus and Helicobacter pylori. Tumorigenesis is characterized

by the accumulation of genetic changes in somatic cells through random

events and/or by the action of these carcinogens [Pharoah and Caldas, 1999,

Stewart and Kleihues, 2003].

Most genes targeted by somatic mutation are either proto-oncogenes or tumor

suppressor genes. Mutations in these genes give cells some kind of growth

or survival advantage over neighboring normal cells of the same type. Proto-

oncogenes are positive regulators of the cell cycle progression. They fall into

several groups ranging from transmembrane proteins, kinases and their receptors,

to transcription factors. Oncogenic mutations in these genes usually result in a

gain-of-function in which their activity is inappropriately activated. In contrast,

tumor suppressor genes normally impose some kind of constraint on the cell cycle

8
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or cell growth, and release of this constraint by a loss-of-function mutation is

tumorigenic.

Tumor suppressor genes have been subclassified into two groups. The first

subclass is gatekeeper genes, which are negative regulators of the cell cycle,

controlling the pathways of cell division and proliferation. The second subclass

is caretaker genes. Their primary function is to control the accuracy of cell

division [Stewart and Kleihues, 2003]. Caretaker genes are mainly involved in

DNA repair. After radiation, chemical or spontaneous damage, repair systems

can recognize mispaired, altered or missing bases in DNA or other structural

distortions of the double helix. Mutations in caretaker genes alter the mechanisms

that repair damaged DNA, thereby increasing the probability that mutations

will go unrepaired and be transmitted to daughter cells after replication and cell

division [Morgan et al., 1998]. Caretaker genes are also involved in the control of

genomic instability, by ensuring correct chromosomal segregation during mitosis

[Hanahan and Weinberg, 2000].

The development of a malignant tumor from a normal cell is a long and complex

accumulation of changes, which can take years to decades. Tumor progression

is driven by accumulation of mutations and/ or epigenetic changes to oncogenes

and tumor suppressors. However, since mutations are normally infrequent, the

normal rate of somatic mutation is unlikely to be sufficient to account for all

the accumulation of mutations required for a tumor to develop [Simpson, 1997,

Hanahan and Weinberg, 2000, Stewart and Kleihues, 2003]. Thus, one means

by which cancer cells increase the number of mutations in their genome

is by inactivating some of their repair systems, so that spontaneous

mutations accumulate instead of being removed [Hanahan and Weinberg, 2000,

Stewart and Kleihues, 2003, Auranen et al., 2005].

9
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I.2 The genetic determinants of cancer

susceptibility

"Cancer genetics" can refer both to somatic cell genetics and genetic susceptibility.

Somatic cell genetics focuses on mutations that are acquired by an individual’s

cells during their lifetime and the role that those mutations play during tumor

initiation and progression. In contrast, genetic susceptibility focuses on inherited

genetic variation in cancer susceptibility genes and the effects of that inherited

variation on an individual’s lifetime cancer risk. This section describes the latter

phenomenon.

Alterations leading to the six hallmarks of cancer previously mentioned have both

genetic and epigenetic origins.

I.2.1 Genetic changes

The population genetics definition of a polymorphism is a naturally occurring

sequence variant that has a frequency of greater than 1% in a population.

In the human gene pool, their estimated frequency is about one every 1000

base pairs. Approximately 90% of DNA polymorphisms are single nucleotide

polymorphisms (SNPs) [Collins et al., 1998, Lewin, 2004]. SNPs are distributed

throughout the human genome, in coding and non-coding regions and, as used

here "polymorphism" does not imply anything about function. Although the

majority of DNA polymorphisms are functionally neutral, a proportion of them

are likely to exert effects on the function of the encoded protein or the regulation

of gene expression. These "minor variations" among individuals can result in

inter-individual differences to environmental factors, disease susceptibility and

responsiveness to therapy [Webb, 2002]. In the past few years, many research

projects have investigated the possible association between disease risk and the

inheritance of specific genetic variants, including SNPs.

10
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Mutations are rarer events than polymorphisms: their population genetics

definition is a sequence variant with a frequency of less than 1%, and, as used

here, the word does not necessarily imply anything about effect on gene function

[Lewin, 2004]. A variety of genetic mutations can alter the function of individual

genes. These include point mutations, i.e. affecting a single base pair, small

insertions/deletions or larger genetic changes such as chromosomal rearrangements

and gene amplification. Mutations can be further categorized functionally. Within

the coding sequence, point mutations may take the form of missense variants that

affect protein function, or nonsense or frameshift mutations that lead to loss of

protein function. Mutations outside the coding sequence can affect transcription,

translation and mRNA splicing and processing. In contrast, mutations can also

be neutral, i.e. without any effect on protein function, and take the form of

silent substitutions or neutral intronic variants. To date, most mutation screening

projects have focused on coding sequences. Interesting sequence variants have been

found in genes whose products play roles in a variety of biochemical pathways,

including DNA replication, recombination and repair, hormone synthesis and

degradation, hormonal signal transduction, cell cycle progression and checkpoint

control, as well as transcriptional regulation.

Inherited mutations, when affecting caretaker genes, result in affected cells being

genetically unstable and extremely prone to acquire further genetic changes that

favor cancer development. Indeed, genetic instability is one major feature of

cancer cells [Pharoah and Caldas, 1999, Hanahan and Weinberg, 2000]. Genetic

instability can occur both at the chromosome and nucleotide levels. Chromosomal

instability (CIN) is caused by systems that act on partitioning at mitosis or

recombination during cell division. CIN may include excess or loss of one or more

chromosomes, as well as breakage of two chromosomes, with transfer and fusion

of parts of the broken fragments onto each other (translocation). For instance,

aneuploidy is considered a feature of many cancer cells and is thought to develop

as a result of CIN.

11
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Genetic instability at the level of the nucleotide leads to subtle sequence alterations

within minisatellites and microsatellites, which are repetitions of a short DNA

sequence motif occurring abundantly and randomly throughout the human genome

(e.g. CACACACACA) [Lewin, 2004]. Minisatellites are generally 0.1 to 20 kb

long whereas microsatellites are less than 0.1 kb. Microsatellite instability (MSI)

occurs due to faulty mismatch DNA repair pathways, which induces variation in

the number of tandem repeats of DNA sequence and happens preferentially at

di-nucleotide repeat sequences. This type of polymorphisms are multi-allelic when

generally SNPs are bi-allelic. The high variability of microsatellites make them

especially useful for genomic mapping, because there is a high probability that

individuals will present allelic variation at such a locus.

I.2.2 Epigenetic changes

Until recently, tumor initiation and progression has mostly been considered

a genetic process in which cells in the developing tumor acquire successive

genetic lesions that provide the cells with a growth or survival advantage.

The focus on genetic alterations in cancer research has perhaps initially led

to an underestimation (or at least under-investigation) of the contribution of

epigenetic mechanisms, which are alterations in gene function that are mediated

by factors other than changes in primary DNA sequence. Epigenetic phenomena

follow an inheritance process that is independent from the classical Mendelian

inheritance.

It has become increasingly apparent that multiple changes in cancer cells, i.e.

activation of oncogenes, silencing of tumor suppressor genes, inactivation of

DNA repair systems, and thus CIN and MSI, are also caused by epigenetic

abnormalities [Pharoah and Caldas, 1999, Jaenisch and Bird, 2003, Secko, 2005,

Perera and Bapat, 2007]. DNA methylation and histone acetylation are the most

common non-mutational mechanisms that disrupt gene function and expression

[Jaenisch and Bird, 2003]. DNA methylation is the covalent modification of the

C-5 position of cytosine (C) residues and occurs primarily at CpG dinucleotides.
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In contrast, Cs in the enhancers and promoters of active genes are not/less

methylated [Lewin, 2004]. Histones can be modified by acetylation, methylation,

phosphorylation, ubiquitination and Poly-ADP ribosylation, which ultimately

influence the protein-DNA interaction and can modulate the recruitment of cellular

machinery that alter the chromatin state.

Parental imprinting for instance is an epigenetic phenomenon. An imprint is a

reversible modification of DNA that causes differential expression of maternally

and paternally inherited homologous genes. A particular gene is expressed

only from one of the two alleles, depending on which parent it was inherited

from. The specific pattern of methyl groups in the parental chromosomes is

mainly responsible for achieving monoallelic gene expression without altering

the genetic sequence [Lewin, 2004]. New research suggests that variation in

the imprint left on a genome by a parent can influence tumor development

[Webb, 2002, Feinberg and Tycko, 2004]. Such variation may take the form of

loss of imprinting (LOI). LOI involves the activation of the normally silent copy

of growth-promoting genes, or silencing of the normally transcribed copy of

tumor suppressor genes. Thus mutations in parental imprinting can influence cell

differentiation and may as a consequence increase cancer risk [Secko, 2005].

I.3 Evidence for an effect of heredity in common

cancers

There is general agreement that environmental factors and somatic events are the

predominant contributors to the causation of cancer [Lichtenstein et al., 2000].

Natural selection acts to eliminate genetic mutations in the germline that

contribute to disease formation. However there are some instances where disease

is due to inherited genetic alterations in germ cells, which provide the carrier

with an increased lifetime disease risk. Germline variations themselves do not

necessarily cause cancer. They only affect an individual’s consequent cancer risk,

after exposure to carcinogens [Stewart and Kleihues, 2003].

13
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A familial component to various cancers has been recognized for many years.

Indeed, over 140 years ago, the French physician Paul Broca characterized the

pattern of breast and other cancers over four generations of his wife’s family.

Since then, collection and description of pedigrees from such "cancer-prone"

families have provided empirical evidence for an heritability component to cancer

susceptibility. Dissecting heritable genetic from non-genetic variation in disease

risk and identifying the proportion of susceptibility to cancer that can be accounted

for by inherited genetic factors has been a great challenge for epidemiologists and

geneticists studying familial clustering of cancer.

Usually, family aggregation is assessed by studying relatives of affected subjects

and comparing their rates of illness with those of controls (unaffected individuals)

and their relatives. However, familial aggregation of a trait is a necessary but not

sufficient condition to infer the importance of genetic susceptibility. This is due

to environmental and cultural influences also aggregating in families, leading to

family clustering and excessive familial risk. Incidentally, an under-utilized design

in the search for the effects of shared environmental risk factors is comparison of

cancer incidences among spouses, which has provided meaningful results in the

study of passive smoking and anogenital infections [Hemminki and Dong, 2000].

Studying spouses of cancer patients brings out the increased risk for unrelated but

cohabiting individuals.

Several approaches for discriminating genetic from environmental influences are

available in studies of human diseases, although practical difficulties often limit

their use [Risch, 2001]. The most powerful design examines risks in relatives of

affected versus control adoptees because adoption creates a separation between

individuals’ biological and environmental effects. Since it is difficult to access

information on biological relatives of adoptees, adoption studies usually focus on

common diseases or trait outcomes only.

Another study design involves twins [Ahlbom et al., 1997,

Lichtenstein et al., 2000]. Identical (monozygote) twins derive from the fission of

a single fertilized egg and thus, inherit identical genetic material. By contrast,

14
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dizygote twins are derived from two distinct fertilized eggs. Consequently, those

twins have the same biological links as full siblings, although they may be more

physiologically related on account of the sharing of the same prenatal intra-uterine

experience. Comparing the similarity of monozygote twins with same-sex dizygote

twins is a common approach for determining the magnitude of genetic influence

on a disease and this technique has been applied to a broad range of disorders,

including cancer. These studies rely on the assumption that monozygote and

dizygote twins display a comparable degree of similarity because of the sharing of

the same environmental factors, so the difference in concordance rates between

monozygote and dizygote twins is a reflection of genetic factors. The proportion

of twins who have both the illness and an affected twin is called probandwise

concordance.

In a Swedish population-based study, Ahlbom et al. linked the Twin Registry to the

Cancer Registry in order to identify cases of cancer in twins [Ahlbom et al., 1997].

Although the estimates were very low, they found increased probandwise

concordance in monozygote versus dizygote twins for colorectal, breast, cervical

and prostate cancers, suggesting the importance of genetic factors for these

sites. In their study, monozygote and dizygote concordances were comparable

for stomach and lung cancers, indicating a weaker genetic contribution in these

cancers. The authors suggest that smoking habits are most likely an important

source of familial effects for lung cancer. Overall, the authors found genetic effects

to influence cancer risk.

Similarly, in a large, population-based twin study of cancer in Sweden, Denmark

and Finland, Lichtenstein et al. observed that generally the twin of a person with

cancer had an increased risk of having the same cancer [Lichtenstein et al., 2000].

There were increased concordance rates in monozygote versus dizygote twins for

common cancers, in particular for cancers of the colorectum, breast and prostate.

In contrast to the previous study, the authors also found increased concordance

for stomach and lung cancers.
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Table I.1: The three components of phenotypic variance. Adapted from

[Lichtenstein et al., 2000].

Effect Definition Indication of effect* Examples

Hereditary The proportion of phenotypic

variance accounted for by

inherited genetic differences

among persons (heritability).

Similarity greater in

MZ twins than in DZ

twins.

Additive and dominant genetic

effects.

Shared

environmental

The proportion of phenotypic

variance accounted for

by environmental factors

shared by both twins, thus

contributing to similarity

between them.

Similarity among both

MZ and DZ twins

greater than would be

expected from genetic

effects alone.

Passive smoking during

childhood (lung cancer)

or similar dietary habits

(stomach cancer).

Nonshared

environmental

The proportion of phenotypic

variance accounted for by

environmental factors causing

differences between twins.

Lack of similarity in

both MZ and DZ twins.

Sporadic mutations,

occupational exposure, or

viral infections.

* MZ, monozygotic and DZ, dizygotic

In their analysis, Lichtenstein et al. divided phenotypic variation into three

components (Table I.1) and estimated the magnitude of the contributions of genetic

factors and both shared and nonshared environmental factors to the development

of cancer at various sites (Table I.2). The highest contribution to disease risk

was observed for non-shared environmental factors, which include any unique

environmental cause of cancer that is not inherited and not shared between twins,

e.g. occupational exposure. Using the particular multifactorial model chosen

by Lichtenstein et al, their contribution to risk of cancer was found to range

from 58% to 82% for cancers of the prostate and uterus respectively. Then, the

estimates for contribution of shared environmental factors such as smoking, diet

or human papillomavirus infection indicated an increased susceptibility but they

did not reach statistical significance. The authors suggested that twin studies may

have limited power to detect such effects. Lastly, the authors found statistically

significant effects of heritable factors, ranging from 27 to 42% for breast, colorectal

and prostate cancer. Their work also suggest evidence of limited heritability of

leukemia and of cancer of the stomach, lung, pancreas, ovary and bladder but the

estimates did not reach statistical significance.
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Table I.2: Effects of the phenotypic variance components in cancers at various sites.

Adapted from [Lichtenstein et al., 2000].

Proportion of variance [95% CI]

Site or type Heritable factors Shared environmental

factors

Nonshared

environmental factors

Fit of

model

p-value

Stomach 0.28 [0 – 0.51] 0.10 [0 – 0.34] 0.62 [0.49 – 0.76] 1.0

Colorectum 0.35 [0.10 – 0.48] 0.05 [0 – 0.23] 0.60 [0.52 – 0.70] 0.93

Pancreas 0.36 [0 – 0.53] 0.00 [0 – 0.35] 0.64 [0.47– 0.86] 0.92

Lung 0.26 [0 – 0.49] 0.12 [0 – 0.34] 0.62 [0.51 – 0.73] 0.88

Breast 0.27 [0.04 – 0.41] 0.06 [0 – 0.22] 0.67 [0.59 – 0.76] 0.93

Cervix uteri 0.00 [0 – 0.42] 0.20 [0 – 0.35] 0.80 [0.57 – 0.97] 0.96

Corpus uteri 0.00 [0 – 0.35] 0.17 [0 – 0.31] 0.82 [0.64 – 0.98] 0.99

Ovary 0.22 [0 – 0.41] 0.00 [0 – 0.24] 0.78 [0.59 – 0.99] 1.0

Prostate 0.42 [0.29 – 0.50] 0.00 [0 – 0.09] 0.58 [0.50 – 0.67] 0.09

Bladder 0.31 [0 – 0.45] 0.00 [0 – 0.28] 0.69 [0.53 – 0.86] 0.64

Leukemia 0.21 [0 – 0.54] 0.12 [0 – 0.41] 0.66 [0.45 – 0.88] 0.99

For colorectal, breast and prostate cancer, the estimated hereditary components

were slightly higher in the younger than in the older groups. These findings

were in accordance with observations that hereditary effects are stronger in early-

onset cancers [Stewart and Kleihues, 2003]. Nevertheless, although an hereditary

component was found, this study reinforced the hypothesis that, at the population

level, environmental exposures are responsible for the largest single component of

cancer incidence.

Family history and twin concordance are the only pieces of evidence informative

of a possible heritable etiology, with an important caveat that environmental

causes of cancer may also cause familial aggregation. However, assessment of the

contribution of inherited and environmental factors to the causation of cancer

in twin studies have had a relatively small impact on research and clinical

practice because twins are rare and only a few registries go back far enough

in time to provide enough cases of cancer for reliable conclusions to be drawn

[Lichtenstein et al., 2000].
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I.4 Inherited cancer syndromes

Numerous studies have addressed the degree to which site-specific cancers run in

families, in particular those of the breast, colon and prostate. Such studies are

useful to derive a global view of the familiality of cancer. In order to identify the

genetic explanations of these familial cancer disorders, various molecular genetic

approaches have been used successfully in the past decades.

The first major susceptibility genes for the common cancers were identified in

the early 1990’s and since then, a considerable amount of knowledge about

genetic cancer susceptibility and the underlying susceptibility genes have been

gathered. Table I.3 shows some susceptibility genes that have been associated

with common cancers such as breast and colon, as well as others linked to

rarer inherited cancers syndromes [Stewart and Kleihues, 2003, Nagy et al., 2004].

Many of these syndromes show almost complete penetrance, i.e. a very large

fraction of individuals affected by age 70.

Nevertheless, to date, known cancer syndromes with identified gene defects only

explain 5–10% of all cancers [Peto et al., 1999, Nagy et al., 2004]. Inherited

mutations in susceptibility genes are relatively rare, except in some populations,

which have arisen from a small numbers of founders and remained genetically

isolated. In that particular case, mutations can achieve higher frequencies and

therefore account for a larger fraction of cancer in the population. Molecular

genetic discoveries that have resulted from the study of families with heritable

cancer have changed the way these families are counseled, managed and provided

with appropriate medical care.

18



I.
T

h
e

gen
etic

b
ases

of
can

cer
d
evelop

m
en

t
B

ib
liograp

h
ical

rev
iew

Table I.3: Highly penetrant hereditary cancer syndromes. Adapted from [Nagy et al., 2004].

Syndrome Gene(s) Population incidence Penetrance∗

Ataxia-telangiectasia ATM 1/30,000 to 1/100,000 100%

Cowden syndrome PTEN 1/200,000 90–95%

Familial adenomatous polyposis APC 1/5000 to 1/10,000 ∼ 100%

Familial malignant melanoma CDKN2A, CDK4 Unknown ∼ 100%

Fanconi anaemia FANCA, FANCB, FANCC, FANCD,

FANCE, FANCF, FANCG, FANCL

1/360,000 100%

Hereditary breast–ovarian cancer syndrome BRCA1 and BRCA2 1/500 to 1/1000 Up to 85%

Hereditary diffuse gastric cancer CDH1 Unknown, rare 90%

Hereditary nonpolyposis colon cancer MLH1, MSH2, MSH6, PMS1, PMS2 1 in 400 90%

Hereditary papillary renal cell carcinoma MET Unknown Unknown, but reduced

Li–Fraumeni syndrome TP53 Rare 90–95%

Multiple endocrine neoplasia II (MEN2) RET 1/30,000 70–100%

Neurofibromatosis type I NF1 1/3000 100%

Neurofibromatosis type II NF2 1/40,000 100%

Peutz–Jeghers syndrome (PJS) LKB1 (STK11) 1/200,000 95–100%

Retinoblastoma, hereditary (RB) RB 1/13 500 to 1/25,000 90%

von Hippel–Lindau (VHL) VHL 1/36,000 90–95%

Xeroderma pigmentosum XPA, ERCC3, XPC, ERCC2, XPE,

ERCC4, ERCC5

1/1,000,000⋄ 100%

∗ Penetrance estimates are up until age 70 years, include both malignant and benign features and with the exception of MEN2, describe clinical penetrance.

For MEN2, biochemical testing is 95–100% by age 70.

⋄ Incidence of XP in Japan is 1/40,000
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II

Inherited breast cancer

susceptibility

II.1 Background

Today, breast cancer is the most commonly occurring cancer among women,

accounting for 22% of all female cancers and with an estimated annual worldwide

incidence of about one million cases [Oldenburg et al., 2007]. Well established

determinants known to increase breast cancer risk are summarized in Table II.1.

These can be from either endogenous or exogenous sources, such as early age at

menarche, late age at menopause, late pregnancy or nulliparity, as well as use

of hormone replacement therapy. Other behavioral or environmental risk factors

include diet, alcohol intake, overweight and obesity, tobacco use and radiation

exposure [Stewart and Kleihues, 2003, Narod, 2006, Oldenburg et al., 2007].

Family history is also a well established risk factor for breast cancer. The risk

increases with the number of relatives affected at young age or past history of

disease. In Western countries, the overall lifetime risks for women who have no

affected relative, one affected relative or two affected relatives are 7.8%, 13.3% and

21.1% respectively [Oldenburg et al., 2007].
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Table II.1: Breast cancer risk factors. Adapted from [Oldenburg et al., 2007].

Genetic factors Positive family history of breast cancer; any first or second degree family

member with breast cancer; carrier of a know breast cancer susceptibility

gene.

Demographic factors Geographical region (Western countries); female sex; increasing age; low

socio-economical status.

Endogenous hormonal factors Older age at menopause (> 54); early age of menarche (< 12); nulliparity

and late pregnancy; no breastfeeding; low physical activity.

Exogenous hormonal factors Usage of oral contraceptives; usage of hormone replacement therapy.

Physical characteristics Obesity in postmenopausal women; tall stature; high insulin-like growth

factor I (IGF-I) levels; history of atypical proliferative benign breast disease;

history of breast cancer; dense tissue at mammography; high bone density in

postmenopausal women.

Environmental factors Exposure to ionizing radiation, in particular at young age.

Behavioral factors Alcohol intake; tobacco smoking; low folate intake; high intake of unsaturated

fat and well-done meat.

II.2 The genetic epidemiology of hereditary breast

cancer

II.2.1 Strategies for identifying breast cancer susceptibility

genes and variants

Genetic epidemiology progresses through different study designs aiming at

answering different questions, in order to address the role of genetic factors in

determining susceptibility to disease:

• familial aggregation studies: is there a genetic component to the disease?

• segregation studies: what is the pattern of inheritance? (i.e. dominant or

recessive)
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• linkage studies: on which region of the chromosome is the disease-related

gene/allele located?

• association studies/ mutation-screening studies: which allele of which gene

is associated with the disease?

Thus, once a genetic component to the disease has been implicated, mapping

methods are used to identify genes and genetic variants influencing susceptibility to

disease, without prior knowledge of which or how abnormally functioning proteins

are involved in pathogenesis. Once the gene is mapped, then its product can be

characterized and its contribution to etiology defined.

There have been multiple large-scale searches for genes involved in susceptibility

to breast cancer using both linkage and association studies, with the ultimate aim

of discovering new genes or variants allowing for better risk prediction.

Linkage studies

Linkage studies have been the mainstay of geneticists and epidemiologists for

localizing susceptibility genes for breast cancer for a long time. Linkage analysis

examines the cosegregation of a marker and a trait in large pedigrees at high-

risk. Essentially, linkage analysis relies on the fact that if two or more genetic loci

are in very close physical proximity, they are likely to segregate together during

meiosis.

For gene mapping, linkage analysis uses known polymorphic markers, which are

scattered throughout the genome, and analyzes their segregation with disease

phenotypes in related individuals. Alternatively, one can examine marker allele

sharing between pairs of affected relatives, for example using the sib-pair method.

If relative pairs share marker alleles more often than would be expected by chance,

this suggests that a susceptibility locus may be linked to the marker.

The statistical measure of linkage is the "logarithm of the odds", or LOD score.

The LOD score is the log10 of the odds in favor of finding the observed combination
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of alleles at the loci studied if they are linked. Positive LOD scores favor the

presence of linkage, whereas negative LOD scores indicate that linkage is less

likely. A LOD score of +3 or greater is considered to be strong evidence of linkage

(1000:1 odds for linkage).

Linkage analysis helps identifying a candidate region, then positional cloning is

used to narrow the candidate region until the gene and its mutations are found.

This approach has been successful in identifying the high-risk genes BRCA1

and BRCA2 . However, these investigations to map the site of breast cancer

susceptibility genes require recruitment of large families with multiple affected

relatives, hence creating a limitation for the use of this methodology. For lower

risk variants, association studies provide a more powerful approach.

Association studies

Association studies compare the frequency of genetic variants in breast cancer cases

and controls, and are convenient because they do not require high-risk families, as

does linkage analysis. The power to detect alleles of modest effect is much larger

for association than linkage studies.

The candidate gene approach Until a few years ago, almost all association

studies focused on candidate genes selected by the investigators based on their

potential role in tumorigenesis. Such candidate genes encode proteins involved

in apoptosis, cell cycle control or DNA repair for instance. Association studies

aim to detect alleles in these candidate genes, which influence susceptibility to

disease themselves or which are in linkage disequilibrium with the disease causing

variant.

Some issues that have hampered association studies of candidate genes are small

study size, a limited number of markers used to characterize the gene, failure to

adjust for multiple testing and lack of replication of findings. Another issue to take

into consideration when looking at results from these studies is the potential bias
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towards publishing significant findings. The more extreme a finding is, the more

likely it is to be published (publication bias). Further, researchers may not even

submit negative findings for publication (selective reporting bias). These factors

largely affect the power of this kind of study.

Genome-wide association studies The human gene pool harbors an

estimated 10 million common SNPs. Groups of SNPs in close physical proximity

to each other are often in linkage disequilibrium; these tend to be transmitted

together across generations, resulting in so-called haplotype blocks. Because of

the disequilibrium, it only takes a few tag SNPs to capture the great majority of

SNP variation within each block [Gabriel et al., 2002]. The ability of SNPs to tag

DNA haplotypes underlies the rationale for genome wide association (GWA) study.

The SNPs contained in the human genome may either directly cause changes in

phenotype or tag nearby mutations containing the causal variant that influence

individual variation and susceptibility to disease.

Although GWA does not differ from candidate gene SNP association studies

technically, the scale of genotyping with hundreds of thousands of SNPs in large

series of patients has proven to be successful. Surprisingly, most of the SNP

variations associated with disease have not been found in the coding region of

DNA. Instead, they were usually located in the large non-coding DNA regions or

in intronic sequences.

The major difference between a GWA study and a candidate gene study is that

GWA studies do not make any prior assumptions about genes and their functions.

The associated genetic variations are considered as indicators of the region of

the human genome where the causal variant is likely to reside. Most genetic

variations are associated with the geographical and historical populations in which

the mutations first arose. Thus, studies must take account of the geographical and

racial background of the individual enrolled in such studies, controlling for what

is called population stratification.

24



II. Inherited breast cancer susceptibility Bibliographical review

Case-control mutation screening studies

Case-control mutation screening is an approach that is designed to address the

challenge of identifying genes that harbor uncommon or rare intermediate risk

variants. If there are strong a priori reasons to suspect that a particular gene may

influence a trait then this gene may be screened for functional variants even before

there is any mapping data to implicate it.

Mutation screening can be split into two fundamental processes. A primary screen

is used to detect the presence of a sequence variation in a particular DNA fragment.

A secondary screen (usually by Sanger sequencing) is used to confirm the results

of the primary screen.

Primary screen can be achieved through a variety of methods, from conformational

analyses (SSCP: single strand conformation polymorphism), heteroduplex analyses

(DGGE: denaturing gradient gel electrophoresis, DHPLC: denaturing high

performance liquid chromatography, HRM: high-resolution melting curve analysis)

or protein truncation tests (PTT) [Isaacs and Rebbeck, 2008]. High density micro-

arrays have also made it possible to perform mutation screening using chips, either

through sequencing by hybridization (SBH) or through arrayed primer extension

(APEX).

II.2.2 Genetic risk, a continuous variable.

What is the risk spectrum of breast cancer susceptibility genes and their

variants?

Susceptibility genes and their pathogenic sequence variants fall into a spectrum

from high-risk through intermediate-risk to modest-risk. High-risk refers to

sequence variants with odds ratios (OR) ≥ 5.0, intermediate-risk refers to odds

ratios in the range of 5.0> OR >2.0, and modest-risk refers to OR ≤ 2.0.
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Carrier frequency can also be divided into 3 strata. Common refers to sequence

variant with allele frequencies ≥10%, uncommon refers to variants with frequencies

in the range of 1% to 10% and rare refers to variants with frequencies of <1%.

Figure II.1: Risk spectrum of breast cancer susceptibility gene and their genetic variants

carrier frequency. After [Boyle and Levin, 2008]

Thus, in terms of relative risks and allele frequencies, nine categories of deleterious

sequence variants/ cancer susceptibility genes are defined by the 3x3 stratifications

(Figure II.1).

What fraction of the risk of common cancer is attributable to each of

these categories of genes/sequence variants?

High-risk genes and variants. For common cancers, no common high-risk

variants have been identified for common cancers. Given the constraints on

incidence and observed familial risk, it seems that this category of variants
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does not exist. Uncommon high-risk variants are sometimes found as founder

mutations in specific population but appear not to exist in the general population

[Boyle and Levin, 2008]. Lastly, linkage analysis followed by positional cloning led

to the discovery of susceptibility genes, such as BRCA1 and BRCA2 that harbor

rare, high-risk variants.

High-risk of breast cancer also involves rare syndromes caused by germline

mutations in TP53 and PTEN . These mutations are very rare and hence

account for a smaller proportion of the familial risk. These 4 genes and

associated syndromes will be detailed in the next section. LKB1/STK11 (Peutz-

Jeghers syndrome) or CDH1 (hereditary diffuse gastric cancer syndrome) are

also associated with elevated risks of breast cancer, although the risks and

prevalence of mutations in these genes are not well defined [Oldenburg et al., 2007,

Stratton and Rahman, 2008]. Studies of the role that these six genes together

play in the risk of breast cancer are not consistent with their accounting for

more than 20% of the familial risk of the disease [Thompson and Easton, 2004,

Antoniou and Easton, 2006].

Genome-wide analyses using large numbers of families without mutations in

BRCA1 or BRCA2 have not mapped additional high-risk susceptibility loci

[Smith et al., 2006]. Although this does not exclude the existence of as yet

unidentified mutations associated with high-risk of breast cancer, it strongly

suggests that, if they exist, they are not likely to account for a fraction of the

familial aggregation of breast cancer as large as that attributed to the established

high-risk genes.

This suggests that the remaining ∼ 80% of the familial risk of breast cancer must

be explained by the other categories of genes and variants.

Intermediate-risk genes and variants. The two best-understood

intermediate-risk genes for breast cancer susceptibility are CHEK2 and ATM

[Meijers-Heijboer et al., 2002, Ahmed and Rahman, 2006]. As described more

thoroughly in the next section, CHEK2 and ATM both encode checkpoint kinases
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involved in DNA repair. BRIP1 and PALB2 have been more recently described

as intermediate risk genes [Seal et al., 2006, Rahman et al., 2007]. BRIP1 was

discovered as a binding partner of BRCA1 and is implicated in BRCA1 activities

related to DNA repair. PALB2 was discovered as a protein associated with

BRCA2 and is also involved in DNA repair activities.

Although there is currently some imprecision in the risk estimates, it is clear

that mutations in ATM , CHEK2 , BRIP1 and PALB2 confer an approximately

two to threefold risk of breast cancer. In each of these four genes, there are

multiple different pathogenic mutations, each of which is generally uncommon

or rare (Figure II.1). Current estimates suggest that mutations in these

four genes together account for 2.3% of the familial risk of breast cancer

[Stratton and Rahman, 2008].

Modest-risk genes and variants. As shown on the graph of Figure II.1, breast

cancer familial aggregation is also explained by common variants that confer very

modest increases in risk. The currently known susceptibility alleles of this type

have been discovered through association studies, either through the candidate

gene approach or, more recently, through GWA studies. Progress in this area

has been enabled by pooling of the data and resources from very large numbers

of cases and controls from many different locations and ethnic group, in order to

reach substantial power to detect small effects [Stratton and Rahman, 2008].

GWA studies have successfully identified a number of loci associated with modest

increases of breast cancer risk [Easton et al., 2007, Stratton and Rahman, 2008,

Isaacs and Rebbeck, 2008]. These include CASP8, which encodes caspase 8, a

member of the cysteine-aspartic acid protease family involved in apoptosis, and

FGFR2, which encodes the fibroblast growth factor receptor. Susceptibility loci

have also been associated to regions with no known protein-coding genes (8q and

2q) [Easton et al., 2007].

The population prevalence of each risk allele is high, ranging from 28% to

87% [Stratton and Rahman, 2008]. However, the increased risks of breast cancer
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conferred by these susceptibility alleles are low. This set of variants confer risks of

1.3-fold or less, with the FGFR2 and 2q susceptibility alleles at the high end of this

spectrum [Stratton and Rahman, 2008, Boyle and Levin, 2008]. Thus, although

these predisposing alleles are common, their contribution to the familial risk of

breast cancer is relatively small and support a polygenic model for breast cancer

susceptibility.

II.2.3 A polygenic model for breast cancer

susceptibility

Germline mutations in well identified susceptibility genes account for a relatively

small proportion of the total breast cancer incidence (approximately 5-10%)

[Peto et al., 1999, Nagy et al., 2004]. However, lifestyle and environmental factors

that cluster in families are unlikely to explain all of the residual familial

clustering, so the obvious implication is that additional susceptibility genes

do exist [Struewing, 2004, Antoniou and Easton, 2006, Oldenburg et al., 2007].

Some argue that there must still be some unknown, rare, highly penetrant

mutations accounting for breast cancer cases in such high- risk families

[Walsh and King, 2007].

However, others have argued that the polygenic model is the best fitting

model to account for the residual familial aggregation of breast cancer

after excluding the known high-penetrance mutations [Houlston and Peto, 2004,

Antoniou and Easton, 2006]. Under this model, susceptibility to breast cancer

is conferred by a large number of genetic variants which combine additively or

multiplicatively, resulting in a range of susceptibilities in the population. The risk

associated with each one of these is small, but a woman with several susceptibility

alleles is at a higher risk.

As mentioned earlier, there have been multiple large-scale searches for genes

involved in the susceptibility to breast cancer using association studies. Technical

advances have established public health (in terms of attributable fraction)
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importance of modest-risk SNPs, but clinical relevance has yet to be established for

either modest-risk SNPs or mutations in the intermediate-risk genes such as ATM

and CHEK2 . The fraction of missing heritability that is going to be explained

by as yet unknown genetic contributions from modest-risk or intermediate-risk

susceptibility genes is not known. However, incorporation of these genes into

polygenic models should allow for better risk prediction. Then, whether this would

translate to cost-effective improvement in patient management remains an open

question.

II.3 Known breast cancer susceptibility genes and

their associated hereditary syndromes

To date, along with colon cancer, genetic susceptibility to breast cancer is better

understood than genetic susceptibility to any other common cancers. As mentioned

briefly in the previous section, a number of susceptibility genes have been identified

and associated with inherited breast cancer syndromes.

An estimated 20-25% of familial aggregation is explained by known inherited

breast cancer genes that are divided into "high-risk" and "modest to

intermediate risk" breast cancer susceptibility genes [Thompson and Easton, 2004,

Oldenburg et al., 2007]. The firsts confer a relative lifetime risk higher than 4 and

generally much higher at young ages. The seconds are associated with a doubling

of breast cancer risk [Walsh and King, 2007, Oldenburg et al., 2007].
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II.3.1 High-risk genes

BRCA1 and BRCA2 , the hereditary breast ovarian cancer

syndrome

The two most important breast cancer susceptibility genes, BRCA1 and

BRCA2 , were identified by linkage analysis and positional cloning in the mid

1990’s [Miki et al., 1994, Wooster et al., 1995]. The BRCA1 gene is located on

chromosome 17q21 and the BRCA2 gene is located on chromosome 13q12. BRCA1

has 24 exons and encodes a protein of 1863 amino-acid (AA), while BRCA2 has

27 exons and encodes a protein of 3418 AA. Both are ubiquitously expressed in

humans with the highest levels in testis, ovaries and thymus. These two genes

belong to the caretaker category of tumor suppressor genes.

Germline mutations in BRCA1 and BRCA2 are rare but confer high risks of

hereditary breast ovarian cancer (HBOC) syndrome. Indeed, the associated

relative risk is approximately 10- to 20-fold. An increased relative risk of male

breast cancer has been found in BRCA2 mutation carriers. It was initially

hypothesized that the vast majority of multiple-case breast cancer families and

families with HBOC would be caused by mutations in BRCA1 or BRCA2 genes

[Honrado et al., 2006].

The frequency of BRCA1 and BRCA2 mutations has been estimated to be 0.1% for

either genes, in most populations [Antoniou et al., 2002]. However, the occurrence

can be higher for founder mutations. For instance, the frequency of the 6174delT

mutation in BRCA2 in the Ashkenazi Jewish population is 1.5% (although this

mutation seems not to be restricted to this population) [Berman et al., 1996]. A

recent meta-analysis of twenty-two population-based and hospital-based studies

reported average risks by age 70 years of 65% and 45% in BRCA1 and BRCA2 -

mutation carriers respectively [Antoniou et al., 2003].

The most significant cancer, other than breast cancer, in BRCA1 and BRCA2

mutation carriers is ovarian cancer, as is suggested by the name of the syndrome.
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The average cumulative risk of ovarian cancer by age 70 years were 39% and

11% in BRCA1 and BRCA2 mutation carriers respectively [Antoniou et al., 2003].

The figures were higher in HBOC families with early-onset index cases (51%

and 32% respectively). BRCA1 and BRCA2 mutation carriers are also at

elevated risks of other cancers, such as malignant melanoma as well as colorectal,

gastric, pancreatic, uterine and prostate cancers [Stewart and Kleihues, 2003,

Isaacs and Rebbeck, 2008].

Genetic testing for mutations in these genes in high-risk families is now well

established. In addition to BRCA1 and BRCA2 , other genes can be considered

well established breast cancer susceptibility genes and account for the residual risk

of familial breast cancer [Walsh and King, 2007].

TP53 and Li-Fraumeni syndrome

The TP53 gene is located on chromosome 17p13.1, and encodes a protein

involved in many cellular pathways that control cell proliferation and homeostasis,

such as cell cycle, apoptosis and DNA-repair. The expression of the TP53

gene is activated in response to various stress signals, including DNA damage.

However, the proportion of early-onset breast cancer in the general population

explained by TP53 mutations is small as mutations are rarer than BRCA1

and BRCA2 mutations [Isaacs and Rebbeck, 2008]. Fewer than 400 families

with germline mutations have been reported worldwide. These germline

mutations have been implicated in most families with Li–Fraumeni (LF) syndrome

[Oldenburg et al., 2007, Isaacs and Rebbeck, 2008].

LF syndrome is characterized by childhood sarcoma, early-onset breast cancer,

brain tumors and a variety of other cancers. Mutations in the TP53 gene account

for about 70% of families fulfilling the classical criteria for LF syndrome (e.g. one

patient with a sarcoma diagnosed < 45 years, with a first-degree relative with

any cancer diagnosed < 45 years, and an additional first or second degree relative

diagnosed with cancer < 45 years or a sarcoma at any age), whereas they are
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less common in breast cancer/sarcoma families selected solely on the occurrence

of breast and/or ovarian cancer [Oldenburg et al., 2007].

Susceptibility to cancer in LF families follows an autosomal dominant pattern

of inheritance and among families with a known germline TP53 mutation, the

probability of developing an invasive cancer (excluding carcinomas of the skin)

approaches 50% by the age of 30, as compared to an age-adjusted population

incidence of cancer of 1%. It is estimated that more than 90% of TP53 mutation

carriers will develop cancer by the age of 70.

One of the most frequently occurring cancers in LF families is breast cancer with an

estimated penetrance in TP53 mutation carriers of 28–56% by the age of 45 years.

The peak incidence for breast cancer is between 20 and 40 years, in contrast to

the other frequent occurring neoplasms, which mainly develop in young children,

suggesting that hormonal stimulation of the mammary glands in puberty is an

important cofactor. Germline mutations in TP53 are found at very low prevalence

(<0.5%) among unselected, early-onset cases of breast cancer.

PTEN and Cowden’s syndrome

Cowden’s syndrome (CS) is an autosomal dominant disorder, characterized by

carcinomas of the breast, thyroid and endometrium, multiple hamartomas and

mucocutaneous lesions. Published estimates of CS incidence are 1/200,000 (see

Table I.3). This syndrome is caused by germline mutations in the PTEN tumor

suppressor gene [Liaw et al., 1997]. PTEN is located on chromosome 10q23.3 and

codes for a phosphatase with both phospholipid and protein phosphatase activities,

and plays a crucial role in controlling cell growth and migration, mediating

apoptosis and cell cycle arrest. Mutations in PTEN have been involved in sporadic

cancers but 80% of CS families present a germline mutation in this gene.

The most common malignancy seen in CS is adenocarcinoma of the breast, with

lifetime risks in female patients estimated to be 25 to 50%, compared to 12 to

13% in the general population [Isaacs and Rebbeck, 2008]. The average onset of
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breast cancer in such patients is lower (30-35 years) than in sporadic cases, as

commonly described in other inherited cancer syndromes. Fackenthal et al. have

also suggested an increased risk for male breast cancer in CS patients carrying a

germline mutation in PTEN [Fackenthal et al., 2001].

II.3.2 Intermediate-risk genes

ATM

The ATM gene is located on chromosome 11q22–23. It codes for a protein

kinase whose many substrates include the products of TP53 , BRCA1 and

CHEK2 . ATM plays a central role in sensing and signaling the presence of

DNA double-strand breaks. Mutations in the ATM gene cause the rare recessive

disorder Ataxia-Telangiectasia (AT) (Table I.3) [Savitsky et al., 1995]. AT is

characterized by cerebellar degeneration (ataxia), dilated blood vessels in the eyes

and skin (telangiectasia), immunodeficiency, chromosomal instability, increased

sensitivity to ionizing radiation and a highly increased susceptibility to cancer,

in particular leukaemia’s and lymphomas, as reviewed in [Chun and Gatti, 2004,

Taylor and Byrd, 2005].

The estimated incidence of AT is 1:30,000 to 1:100,000 with an ATM

mutation carrier frequency of approximately 0.5% [Nagy et al., 2004,

Ahmed and Rahman, 2006, Stratton and Rahman, 2008]. Studies based on

relatives of AT and breast cancer case-control studies have estimated that the

relative risk of breast cancer in heterozygous carriers of ATM mutations is in

the order of 2 [Thompson et al., 2005b], with some evidence of higher relative

risk under the age of 50 years. Specific mutations, notably 7271T>G, may confer

higher breast cancer risks. The results have not been replicated in subsequent

studies [Thompson et al., 2005a, Thompson et al., 2005b, Oldenburg et al., 2007].

However, Tavtigian and colleagues did show that missense substitutions in the

FAT and Kinase domains, including 7271T>G, confer greater risk than do

truncating variants [Tavtigian et al., 2009]. The role of missense substitutions
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uncovered in this paper also somewhat increases the best estimate for the

population carrier frequencies of variants in ATM that are pathogenic for breast

cancer.

CHEK2

The CHEK2 gene is located on chromosome 22q12.1 and there are several

CHEK2 pseudogenes scattered throughout the genome. CHEK2 is involved

in the maintenance of genomic stability and functions downstream of ATM to

phosphorylate several substrates, including p53, Cdc25C and BRCA1, leading to

cell cycle arrest, activation of DNA repair or apoptosis in response to DNA double-

stranded breaks. Since CHEK2 plays a key role in the DNA damage pathway, loss

of function of the protein may allow cells to evade normal cell cycle checkpoints,

ultimately leading to tumor initiation or progression.

The CHEK2*1100delC deletion, falling in the kinase domain of the protein,

has been widely studied for its contribution to inherited breast cancer

susceptibility [Oldenburg et al., 2003]. The frequency of CHEK2*1100delC

differs between ethnic populations, and is higher in the North of Europe and

low or absent in other countries [Honrado et al., 2006]. The CHEK2-Breast

Cancer Consortium reported a frequency of 5.1% for the CHEK2*1100delC

variant in familial breast cancer cases who tested negative for BRCA1 and

BRCA2 mutations, as opposed to 1.1% of carriers in the control population

[Meijers-Heijboer et al., 2002]. This intermediate-risk breast cancer susceptibility

allele almost triples the risk of developing the disease in unselected breast cancer

cases [CHEK2 Breast Cancer Case-Control Consortium, 2004].

Whereas no other pathogenic variants occur at a significant frequency, other

founder mutations in CHEK2 have been associated with an increased risk of

cancer. As reviewed in [Antoni et al., 2007], the I157T mutation in exon 3 also

shows some population specificity but it confers a more modest risk than the

CHEK2*1100delC allele. This missense mutation is reported to increase the
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risk of breast cancer by 1.5 fold. Further, the splicing mutation IVS2+1G>A,

which creates a premature termination codon, has a frequency of 0.3% in the

Polish population and is much rarer in other studied populations. This allele is

associated with a 2- to 4-fold increased risk of breast cancer. In addition, S428F,

a substitution specific to the Ashkenazi population has been identified in exon 11,

increasing breast cancer risk by approximately 2-fold [Shaag et al., 2005]. Lastly,

a 5 395 bp genomic deletion that leads to the loss of exons 9 and 10, resulting

in a truncated protein, has been identified in families of central Europe ancestry

[Cybulski et al., 2007]. The deletion was present in 1% of unselected breast cancer

cases and in 0.9% of the early-onset cases.

Though first discovered in breast cancer patients, CHEK2 mutations have

since been reported to predispose to a range of cancer types, including

ovarian, prostate, kidney and colorectal cancers [Nevanlinna and Bartek, 2006],

supporting the hypothesis that CHEK2 is a multiorgan cancer susceptibility gene

[Antoni et al., 2007].

II.4 Outlook on the search for the "missing

heritability" of breast cancer

Despite the remarkable progress made in the past decades, most of the familial

risk of breast cancer remains unexplained, highlighting the need for ongoing efforts

to identify the "missing heritability" of breast cancer. The remaining familial

aggregation of breast cancer will likely be explained by three different categories

of variants: rare high-risk variants, rare intermediate-risk variants and common

low-penetrance variants [Stratton and Rahman, 2008].

The identification of variants underlying each of these categories requires different

strategies and technologies. GWA studies have successfully identified a number of

common genetic variants associated with very modest increases of breast cancer

risk. There will certainly be additional common genetic variants identified through
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this approach [Stratton and Rahman, 2008]. However, such new variants will not

contribute significantly to the remaining unexplained familial aggregation of breast

cancer since they will be associated with very small effects.

The remaining familial clustering of breast cancer will likely be explained by rare

genetic mutations in genes that convey an intermediate to high-risk of breast

cancer. Massive parallel sequencing (MPS), or "next-generation sequencing", offers

a new strategy to discover such category of genes and variants. MPS enables whole-

exome mutation screening in pedigrees, with considerable throughput advantages

over older sequencing and mutation screening techniques. One can expect that

growth in the power of MPS techniques will help case-control mutation screening

to evolve from candidate gene through whole pathway to exome and then genome

as did single marker SNP association studies. The power of such an approach

relies on a careful selection of the pedigrees to be included in the study, in order

to maximize the likelihood to find a single, high-penetrance, autosomal dominant

mutation segregating in each pedigree, that would account for the breast cancer

cases in that family.
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III

Gene expression regulation

Understanding the genetic and molecular mechanisms that give rise to phenotypic

differences in humans and other complex genomes remains a major challenge.

Such differences can arise from a single DNA sequence variant affecting a protein

coding sequence. Historically, earlier studies have focused almost exclusively on

such variants, in coding sequences and regions immediately surrounding candidate

genes.

However, recent technological developments have enabled whole genome scans that

interrogated most of the human genome, including non-coding DNA regions that

had not been studied previously. These whole genome association (WGA) studies

found some of the strongest signals of association in non-coding regions, either

in large introns or far way from any annotated loci. The mechanisms connecting

the identified sequence variants to the etiology of diseases are still unclear but

regulation of gene expression remains a foremost candidate.
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III.1 The determinants of gene expression

regulation

Studies of gene regulation have classified regulatory interactions based on their

effect in cis or trans . The terms cis and trans were introduced by Haldane

to describe differences in the configuration of mutant alleles in heterozygotes,

in analogy to cis and trans isomers in chemistry. In the cis configuration, two

mutations were inherited together, whereas in trans , they would be on different

members of a pair of homologous chromosomes. Nowadays, these terms are used

to describe particular types of regulatory interactions.

However, in gene expression regulation literature, a certain confusion exists on

the usage of the terms cis and trans . Some use cis and trans in accordance

to the original definitions, with cis regulatory variation having an allele-specific

impact on gene expression and trans regulatory variation affecting both alleles.

The underlying molecular nature of the variation, i.e. whether the mutation acts

at the level of DNA or RNA, or alters a protein is not specified.

Sequence variants are also often said to be in cis or trans on the basis of their

physical distance from the regulated target gene. Regulatory variation mapped

near the gene is classified as cis . This distance-based classification may lead to

misclassification of long distance cis elements as trans (e.g. a regulatory element

located far upstream its target transcription start site), as well as trans regulatory

elements existing near their gene target (e.g. a transcription factor that regulates

an adjacent gene).

Thus, as pinpointed by Rockman et al, using the same terms cis and trans ,

some describe the pattern of co-inheritance of a trait and a locus (-linking),

whereas others describe the mechanism of action of a locus to a trait (-acting)

[Rockman and Kruglyak, 2006]. In their review, the authors suggest to employ

the terms "local" and "distant" to classify regulatory variations, underlining that

both local and distant regulations can comprise sequence variants in cis and in

39



III. Gene expression regulation Bibliographical review

trans-acting factors. In accordance with Rockman et al., we will use the term "cis "

to refer to the variation located on the same gene and the same chromosome as the

causal variant. Thus, an SNP falling in a regulatory region 500,000 bp upstream

the target gene will be considered to have a cis-effect.

III.1.1 Local regulatory variation

Sequence variants can affect the target gene itself by altering classic cis-regulatory

DNA sequences. These include promoter regions, enhancers, silencers and

insulators, which regulate transcription initiation. Enhancers and silencers act

over distance to potentiate or repress transcription. Insulator sequences prevent

enhancers and silencers from inappropriately regulating a neighboring gene.

Sequence variants in these cis-regulatory elements have an allele-specific effect on

gene regulation [Lewin, 2004, Maston et al., 2006].

Although gene expression regulation occurs mostly at the level of transcription

[Wray et al., 2003, Williams et al., 2007], mutations or polymorphism can also

contribute to variation in gene expression at the post-transcriptional level.

Genetic variation may occur outside the promoter regions and may involve

introns and 5’ or 3’ untranslated regions (UTRs). Gene expression variation can

then result from alterations of binding sites for molecular complexes involved

in transcription initiation, mRNA stability, processing efficiency, or splicing,

leading to differential recruitment of transcription factors and Small interfering

RNAs (SiRNAs), differential concentrations of nuclear and cytoplasmic mRNA or

differential mRNA isoform expression [Pastinen et al., 2004].

Sequence variants occurring in the coding region of a gene can also affect its

expression. For instance, in the case of transcripts bearing a mutation that creates

a premature stop codon, the nonsense-mediated mRNA decay (NMD) mechanism

is triggered and specifically degrades the transcripts bearing the mutation

[Conti and Izaurralde, 2005]. These are all potential important contributors to

variation in gene expression in an allele-specific manner (Figure III.1).
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Figure III.1: Cellular phenomena associated with cis-acting regulation.

Sequence variants in cis-regulatory elements have an allele-specific effect on gene

regulation. PII, RNA polymerase II. After [Pastinen and Hudson, 2004]

Besides these allele-specific effect variations, Rockman et al. describe three

other situations of local regulatory variation [Rockman and Kruglyak, 2006].

First, the case of autoregulatory genes, where sequence variants in the gene

itself act in trans (i.e. affect both alleles) to modify its expression. This

category of variation can as well refer to sequence variants in genes regulated by

feedback loops. Finally, local regulatory variation can be due to a sequence variant

located in a neighboring gene that regulates the expression of the gene of interest1.

1Regulatory variation affecting gene expression in an allele-specific manner is cis-variation

strictly speaking. However, in some instances, variation may affect both alleles although mapping

of the gene will disclose regulatory loci coinciding with the position of the source gene, leading

some reports in the literature to misuse the term "cis-acting regulation".
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III.1.2 Distant regulatory variation

Distant regulatory variation is typically associated with transcription factors,

which regulate transcription initiation. For instance, polymorphisms in their

DNA-binding domain or in a protein-protein interaction domain are likely to

account for differential recruitment of transcription factors, hence underlying

trans-effects, which can be highly pleiotropic because of the large number of

downstream genes that could be affected.

However variation in transcript abundance is not necessarily equivalent to

variation in transcription per se. Although the most common point of control

lies in transcription initiation, genetic variations influencing gene expression

may also reside within several other sites of action. These mechanisms include

polyadenylation and splicing, intracellular trafficking, mRNA decay, translational

controls, post-translational modification, and protein decay. Sequence variants

affecting any gene involved in one of these cellular machineries could act in trans

on the regulation of gene expression.

Distant regulatory variation can as well display cis-effects in the case of

cellular components involved in an allele-specific manner in post-transcriptional

processes accounting for mRNA stability, processing and degradation (Figure

III.1). Distant cis-acting regulatory elements also include enhancers, which

are a type of regulatory sequences involved in transcription initiation. As

mentioned above, enhancers elements can participate to local regulatory

variation but can also be located a considerable distance upstream or

downstream of their target gene, and modulate expression independently of their

orientation. Enhancers are often targets of tissue-specific or temporal regulation

[Lewin, 2004, Pennacchio et al., 2006, Visel et al., 2009]. This implicates that

SNPs affecting binding of transcription factors in those enhancers may be tissue

specific, and this further means that disease-specific studies may be limited by

access to normal tissues of the relevant cell type from appropriate subjects.
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III.1.3 Epigenetic factors

DNA methylation

Gene transcription can be affected by epigenetic mechanisms. Indeed,

transcriptional repression of a gene can occur without altering its DNA sequence

but rather through DNA methylation, a post-replication modification that

is predominantly found in cytosines of the dinucleotide sequence CpG. An

epigenetic inheritance is established as long as the maintenance methylase

DNMT1 acts constitutively to copy the methylation state from the parent DNA

strand to the daughter strand after each cycle of replication. Thus allele-

specific expression can be associated with differential methylation of genomic loci

[Jaenisch and Bird, 2003].

Histone modification

In addition, chromatin structure is an integral part of controlling gene expression.

DNA is not directly packaged in the final structure of chromatin. There

are several levels of organization. The nucleosome provides the fundamental

building block of chromatin. Its component and structure are well characterized:

it consists of about 200 bp of DNA spooled around an octamer of proteins

called histones. The histone octamer itself has a kernel that consists of two

copies each of H2A, H2B, H3 and H4 core histones, with the N-terminal tails

extending out of the nucleosome. These tails have sites for modifications that are

important for chromatin function and hence, for gene regulation. Modifications

of histone tails that are triggers for chromatin reorganization occur on specific

serine, lysine and arginine residues and include acetylation, which is usually

associated with gene activation, methylation, which is associated either with gene

activation or inactivation and lastly, phosphorylation and ubiquitination. Once

established, changes in chromatin may persist through cell divisions, creating an

epigenetic state in which the properties of the gene are determined by the self

perpetuating structure of the chromatin. Post-translational histone modification

43



III. Gene expression regulation Bibliographical review

is hence another epigenetic phenomenon that can be associated with allele-specific

expression [Jaenisch and Bird, 2003].

The microRNA pathway

The discovery of microRNAs (miRNAs) added a new layer to the complexity of

gene regulation. The miRNA pathway is an essential part of genetic regulation

of ancient origin. miRNA are short RNA sequences abundant in many genomes,

including worms, flies, plants and mammals [He and Hannon, 2004]. They interact

with the Argonaute proteins to join an effector complex that targets the 3’UTR

of a mRNA in order to induce silencing of the target gene. Lim et al. have shown

that a single miRNA can downregulate expression of hundreds of its target genes

when overexpressed in HeLa cell lines [Lim et al., 2005].

III.2 The study of gene expression phenotypes

Under the term "genetical genomics", Jansen and Nap were among the

first to suggest combining expression profiling and mapping methods with

the aim to further study the gene expression network as a whole.

[Jansen and Nap, 2001]. Others have followed, and numerous studies, meticulously

reviewed by Stamatoyannopoulos, have provided insight into our understanding

of the role of gene expression regulation in organizing complex genomes

[Stamatoyannopoulos, 2004].

III.2.1 What is the extent of natural variation in gene

expression?

One question of central importance is the biological variability of gene expression

in the context of naturally occurring populations. It was hypothesized more

than three decades ago that much of phenotypic variation among closely related
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organisms is due to variation in gene expression rather than to alterations in protein

sequences [King and Wilson, 1975].

Inter-species variation

Actually, it has been shown that the evolution of regulatory genetic

pathways has played an important role in speciation [Johnson and Porter, 2000,

Levine, 2002]. In a broad variety of organisms, changes in gene expression

have led to morphological evolution and other adaptative phenotypes,

such as beak morphology in Darwin’s finches [Abzhanov et al., 2004], wing

pigmentation patterns in flies [Gompel et al., 2005], branching structure in maize

[Clark et al., 2006] and even parental care in rodents [Hammock and Young, 2005].

Another interesting example is provided by a class of regulatory genes, the Hox

genes, which encode DNA-binding proteins and control early development in

arthropods. The genetics of this phylum have been extensively analyzed in the

last century, and the genes responsible for segmentation and limb development

have been identified. Levine described some of the mechanisms of limb evolution

identified to date [Levine, 2002]. Changes in Hox gene expression patterns are,

for instance, responsible for the conversion of swimming limbs in branchiopods

into feeding appendages in isopods, two species of crustaceans. Evolution also

acted through changes in Hox target genes in different insects via evolution of Hox

protein-binding sites. This second mechanism accounts for the dipterans (such as

Drosophila) having rudimentary wings, called halteres, in place of hindwings in

lepidopterans (such as moths).

Inter-population and inter-individual variations

Recently, several studies in humans, other mammals, yeast and plants have

reported differences in gene expression levels accounting for a major part of inter-

strain or inter-population variation. Based on the genetical genomics approach,

studies were conducted for instance in yeasts and showed extensive genetic
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variation for gene expression [Brem et al., 2002, Yvert et al., 2003]. Brem et al.

carried out investigation of inter-strain variation in expression levels of 6215 genes

in Saccharomyces cerevisiae. They found that 1528 (25%) of the genes in the yeast

genome were differentially expressed at p<0.005.

In humans, Spielman and colleagues first reported the analysis of HapMap

samples to study the difference in gene expression that could be accounted for

by genetic variants [Spielman et al., 2007]. They found a role for regulatory

polymorphisms in the prevalence of complex diseases. Stranger and colleagues

measured gene expression in 270 lymphoblastoid cell lines (LCLs) derived from

unrelated individuals from the four HapMap populations, i.e. Caucasian from

European ancestry (CEU), Chinese (CHB), Japanese (JPT), and Yoruba from

Nigeria (YRI) [Stranger et al., 2007]. The authors tested population differences

in gene expression and found that 17-29% of genes presented with significant

differences in mean expression levels between pairs of HapMap populations. Storey

et al. also used a subset of samples from the HapMap project to characterize

patterns of natural gene-expression variation [Storey et al., 2007]. They studied

16 CEU and YRI unrelated individuals and found that about 17% of genes are

differentially expressed among these two populations.

The same study by Storey and al. estimated that 83% of genes are differentially

expressed among individuals. Several other studies have looked into inter-

individual variability in gene expression [Oleksiak et al., 2002, Schadt et al., 2003,

Whitney et al., 2003]. Whitney et al. have identified inter-individual variation

while surveying variation in gene expression patterns in peripheral blood from 75

healthy donors.

Overall, these studies agree that most expression variation is due to variations

among individuals rather than among populations. Nevertheless, the experimental

design of these studies does not permit to distinguish the proportion of cis versus

trans-acting factors. In addition to advance our understanding of the general

mechanisms of gene regulation, determining the proportion of genes regulated by
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cis-acting factors will be of major importance for further fine-scale characterization

of functional genetic variation [Vasemägi and Primmer, 2005].

III.2.2 How heritable are patterns of gene expression?

Considerable effort has been made to address this other fundamental question in

the last decade and several studies describing the genetic basis of transcriptional

variation have convincingly provided evidence that it is a heritable trait.

In their study of the yeast, Brem et al. concluded that the established

expression phenotypes were highly heritable traits, with 84% of the median

proportion of expression difference between strains explained by genetic variation

[Brem et al., 2002].

More recent studies have shown that gene expression phenotypes are heritable in

family pedigrees. Schadt et al. analyzed 40 descendants of 16 pedigree founders

and observed that 29% of 2726 differentially expressed genes exhibited heritable

expression phenotypes [Schadt et al., 2003]. In another study, Cheung et al. found

clear evidence for familial aggregation of expression phenotypes by studying five

genes previously found to present high inter-individual variability in 49 unrelated

individuals, 41 siblings and 10 pairs of monozygotic twins. The greatest variability

was found between unrelated individuals, intermediate variability among siblings

and the least variability between twins [Cheung et al., 2003]. Monks et al. also

used LCLs from the CEPH to perform a large survey of the heritability of gene-

expression traits in segregating human populations [Monks et al., 2004]. They

measured expression for 23 499 genes in LCL of 15 CEPH families members. Of

the total set of genes, 2340 were found to be differentially expressed, of which 31%

had significant heritability.

The above-mentioned studies have provided evidence for a significant heritable

component of individual variation in gene expression.
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III.3 Strategies for determining the architecture of

gene expression regulation

Although accumulating evidence shows that regulatory variations contribute to

many important phenotypes, the genetic architecture of gene expression regulation

is still elusive. Since they can directly modify transcript abundance, sequence

variants in regulatory elements have been proposed to be the major determinant

of gene expression variation. Yet, unlike coding sequence variants where the

consequences of non-synonymous variation may be resolved at the level of

the protein phenotype, defining how variation at the DNA sequence level will

induce differences in transcript abundance has proven problematic. Indeed,

characterization of the effect of cis-acting sequence variants in regulatory regions

is a great challenge due to the difficulty to locate these regions. In addition,

regulatory variants are not robustly detected by sequence analysis since SNP

identification by screening regulatory regions does not consistently allow prediction

of the effect of observed SNPs on gene expression [Wang and Sadée, 2006,

Gilad et al., 2008]. Thus, knowledge of the effect of genetic variants affecting

mRNA transcription is very limited. Currently, two strategies are most commonly

used for assaying expression levels for the purpose of uncovering the nature of their

genetic bases.

III.3.1 Expression quantitative trait loci (eQTL)

mapping

What are eQTLs?

Recently, mRNA transcript abundance has been considered as a quantitative trait

(QT), i.e. a continuously variable phenotype, that can be used with considerable

power as a surrogate to study gene expression regulation [Cookson et al., 2009].

Using the well-established linkage and association mapping approaches, expression
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quantitative trait loci (eQTL) mapping has become a widespread tool for

identifying genetic variants that affect gene regulation. It is important to note

that the term eQTL refers to the mapped locus that regulates the mRNA level

and not the mRNA expression trait (the QT) itself.

The contribution of microarray analysis

Although the importance of gene regulation for controlling biological processes

has been recognized for over 30 years, it is only in the last decade that the

tools necessary to study changes in gene expression on a large-scale have become

available, especially with the advent of microarrays. RNA abundance is measured

by exploiting hybridization of RNA fragments to short sequences of complementary

oligonucleotides, or probes, fixed to the array substrate. The measurement of

the phenotype is correlated to the brightness of an array spot or probe. DNA

microarrays allow to measure the expression phenotypes of many genes in a genome

simultaneously. These phenotypes are then mapped to specific genomic regions

using genome-wide genetic markers [Morley et al., 2004, Gilad et al., 2006].

Several groups have taken advantage of the microarray technology to perform

global analyses of the variability of gene expression in order to further understand

the role of transcriptional regulation. Such studies have provided insight into

transcriptional regulation in yeast, mice, maize and humans [Schadt et al., 2003].

In particular, they have consistently helped to address two of the questions

mentioned in the previous section, regarding the extent of natural variation

of gene expression [Brem et al., 2002, Oleksiak et al., 2002, Whitney et al., 2003,

Stranger et al., 2007] and its heritability [Cheung et al., 2003, Monks et al., 2004,

Morley et al., 2004].

By allowing simultaneous capture of many regulatory interactions, DNA

microarrays have enabled genome-wide mapping studies of eQTLs, thus enhancing

our understanding of the genetic architecture of gene expression.
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Linkage and association mapping

The identification of eQTLs relies on the principle that expression levels can be

analyzed with the same study designs and statistical methods traditionally used

for mapping any other quantitative trait phenotype. Thus, mapping methods for

eQTL can be classified in linkage and association methods. As described in the

previous chapter, linkage mapping uses a study design that is based on tracking the

transmission of chromosomes in families. This approach aims to identify markers,

or chromosomal segments, whose transmission pattern is correlated with the

phenotype. By contrast, association mapping uses samples of unrelated individuals

with the aim to identify markers whose genotype is correlated with the phenotype

at the population level.

The limits to eQTL studies

Although they provide a global view, studies investigating inter-individual

variation in gene expression using microarrays are limited by the accuracy

of hybridization-based gene expression profiling. In addition, measurement of

gene expression variation levels by microarrays may be affected by many non-

genetic factors such as environmental effects, epigenetic modifications, as well as

experimental exposures such as differences in establishing and culturing cell lines,

or, for experiments from primary tissues, subtle differences in tissue acquisition

conditions between subjects.

III.3.2 Differential allelic expression (DAE) assays

Differential allelic expression (DAE) studies represent a different approach than

eQTL studies to discovering factors that might affect gene expression levels.
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Allelic variation in gene expression

Mendelian inheritance assumes that genes from maternal and paternal

chromosomes contribute equally to human development. However, DAE, i.e.

the preferential expression between alleles, appears to be a common feature of

the human genome. DAE has traditionally been associated with X-chromosome

inactivation, i.e. the silencing of one of the X-chromosomes, and imprinting, i.e.

the expression of certain genes in a parent-of-origin-specific manner.

Cowles et al. have examined DAE in 69 mouse genes [Cowles et al., 2002]. They

screened spleen, liver and brain tissues of two F1 hybrid mice from five strains’

combinations and thus five genetic backgrounds. With an average ratio of 1.5 as a

threshold for detection, they identified 4 genes clearly displaying cis-variation in

expression.

Apart from this one study conducted in mice, allelic variation in gene expression

has more frequently been analyzed in human populations. Recently, several

studies have investigated DAE in autosomal non-imprinted genes and found

that allelic differences in gene expression are relatively common across the

human genome. Indeed, allelic variation may affect up to 50% of human

genes [Yan et al., 2002b, Bray et al., 2003, Lo et al., 2003, Pastinen et al., 2004,

Pant et al., 2006, Serre et al., 2008]. Furthermore, Yan et al. used a pedigree

analysis of families of individuals showing DAE and demonstrated that allele

specific differences in expression were transmitted by Mendelian inheritance

[Yan et al., 2002b].

An alternate approach to microarray expression profiling

Allele-specific expression assays represent a fundamentally different approach to

investigating factors affecting gene expression levels. In such studies, disruption

or alteration of gene expression levels is examined through a careful survey of

whether the two alleles of a gene are equally expressed. This approach relies on
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relative quantification of allelic transcripts within heterozygous individuals, using

a transcribed SNP as marker. It has major advantages over more conventional

methods for investigating gene expression variation based on a comparison

between individuals, as discussed elsewhere [Bray et al., 2003, Buckland, 2004,

Pastinen and Hudson, 2004, Jordheim et al., 2008]. Since they come from the

same tissue sample and have therefore been subjected to the same environmental

influences (such as genetic trans-acting factors and experimental exposures,

including mRNA degradation) both alleles should be equally expressed in the

absence of cis-acting sequence variation or allele-specific epigenetic effects affecting

the expression of the target mRNA. Thus, the strength of this approach is that each

allele acts as an internal control for confounding factors, disclosing cis-variation

effects without being confounded by any trans-variation effects.

DAE analysis has the potential to enhance our ability to identify regulatory

genetic variation by revealing the existence of regulatory variations without

directly identifying or requiring prior knowledge of specific cis-regulatory SNPs.

In some cases, observation of DAE will be explained by genetic variants in

coding regions, such as truncating mutations resulting in NMD or splice junction

mutations resulting in an unstable transcript. DAE can also be the signature

of a heterozygous carriage of a regulatory variant. In addition, DAE assays can

highlight the existence of epigenetic factors controlling gene expression, which

would not have been detected by standard eQTL approaches.

Experimental approaches to allele-specific expression studies

Thus far, several techniques have been reported for quantitative analysis of

DAE. Reporter gene assays are one approach to assess allele-specific transcript

abundance. The limit of these systems is that they produce results outside of the

normal chromosomal context and do not permit the elucidation of epigenetic effects

[Wang and Sadée, 2006]. In contrast, direct assessment of the relative abundance

of allelic-transcripts allows investigation of DAE in a normal chromosomal

environment. In such studies, measurements of allelic expression require prior
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amplification of the region surrounding an intragenic marker SNP in cDNA, as

well as in genomic DNA, where both copies of the gene are assumed to be

present in equal proportions [Pastinen and Hudson, 2004]. Detection of DAE is

then based on the detection of deviation of the allelic ratio in cDNA from the

expected equimolar allelic ratio, in samples from subjects who are heterozygous

for the marker SNP, and ideally with probe signals indicative of equimolarity

provided by reference to genomic DNA from the same subjects and departures

from equimolarity calibrated by reference to controlled mixing experiments.

For instance, single-base extension (SBE) assays starts with prior amplification

of the region surrounding the intragenic marker SNP, by PCR for genomic DNA

or RT-PCR for cDNA, then SBE of a primer adjacent to the polymorphic site

in the presence of fluorescently labeled dideoxynucleotides, and finally detection

on a DNA sequencer. Peak heights correlate with the relative transcripts levels

for the two alleles and the allelic ratio is inferred by comparison with known

mixtures used as a reference standard [Yan et al., 2002b, Cowles et al., 2002,

Pastinen et al., 2004].

Allele-specific quantitative real-time PCR (qRT-PCR) is another assay commonly

used for DAE assessment. qRT-PCR often serves to further confirm findings in

studies using other gene expression assessment methodology in the first place

[Lo et al., 2003, Storey et al., 2007]. This method has also been used by others

as a stand-alone method [Chen et al., 2008, Maia et al., 2009, Bellini et al., 2010],

usually using Taqman R© technology. With this approach, each allele is detected

by a complementary probe labeled with a different fluorochrome (usually VIC and

FAM) generating two distinct signals during the qRT-PCR. Relative transcript

levels are extrapolated from the linear relation between Log2[allelic ratio] and

∆CT.

High-throughput analysis was performed by Lo et al., who screened human fetal

liver and kidney tissues for DAE using a microarray platform (Lo et al. 2003). The

authors used a genotyping technology, the Affymetrix HuSNP chip system, where

the alleles are distinguished on the basis of their hybridization specificity to probes
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matching the two allelic forms of the marker SNP. These data suggest that their

high-throughput method is quantitative enough to confidently detect genes with

a greater than twofold differences in allelic expression. Other studies have used

the same method of allele-specific arrays [Ronald et al., 2005, Pant et al., 2006,

Milani et al., 2007, Serre et al., 2008]

DAE can also be determined by polymerase loading assay, which is based

on isolating transcriptionally active DNA fragments by immunoprecipitating

DNA bound to the RNA polymerase II enzyme. The isolated DNA fragments

can be assessed for SNPs in heterozygous samples to determine relative

allelic transcriptional activity as a surrogate for relative allelic expression

[Knight et al., 2003]. This technique abrogates the need for a transcribed

polymorphism in the gene of interest, which is one of the limitations of the other

approaches to DAE assessment. Any polymorphism in coding or non-coding DNA

within 1kb of the transcriptional start site or the 3’UTR can be used as marker

with this method.

III.4 The relevance of expression studies to disease

susceptibility

Altered gene expression of multiple genes could represent a common mechanism

for inherited susceptibility to complex diseases or variation in drug responsiveness.

Thus the study of variation affecting gene expression, mRNA processing

and translation may lead to the identifications of biomarkers and optimized

therapy.

III.4.1 eQTL studies

Genome-wide association (GWA) studies of complex human diseases have been

spectacularly successful in identifying new loci in the past few years. However,

54



III. Gene expression regulation Bibliographical review

there is a substantial gap between SNP association from a GWA study and

understanding the contribution of the locus to disease. Current evidence suggests

that only a small fraction of the causal loci consists of variants directly affecting

the protein amino-acid sequence. Thus, a large fraction of the identified loci are

expected to have a regulatory role on gene expression via effects on transcription,

mRNA stability and splicing. Combining eQTL and GWA studies allows to

characterize those loci that are identified outside coding regions and thus, likely

to be involved in gene regulation.

For instance, the utility of combining eQTL and disease mapping studies

is illustrated by a GWA study of asthma that identified a series of SNPs

strongly associated with the risk of disease [Moffatt et al., 2007]. The region

of association contained 19 genes, none of which were obvious candidates for

disease susceptibility. eQTL data on the same families provided evidence for a

consistent and strong association (p<10-22) of asthma-associated SNPs and cis-

effect on transcript levels for one of the gene: ORMDL3 (ORM1-like 3).

Simultaneous assessment of gene expression and genetic variation on a genome-

wide basis, in a large number of individuals, can provide substantial information

for dissecting the genetics of complex diseases. eQTL studies can allow to assign

a regulatory role to a polymorphism located in a genomic region identified in

GWA studies of disease, for which there might not be prior evidence of potential

effect on a particular phenotype or disease susceptibility [Meyer et al., 2008,

Fransen et al., 2010].

Hence combining eQTL mapping with results from traditional linkage or

association studies has been recognized as a very promising strategy for identifying

sequence variants underlying complex traits. eQTL studies may also allow to

link genes and genetic variants to cellular phenotypes, such as sensitivity and

response to chemotherapy. Lastly, eQTL studies may provide insight on whole

networks of genes associated with complex traits and diseases [Gilad et al., 2006,

Cookson et al., 2009].
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III.4.2 DAE studies

Several studies of genes involved in known disease-related pathways have addressed

the question of whether small genetic changes in these genes can give rise to

alterations in transcript abundance sufficient to predispose an individual to disease.

Excluding results due to nonsense mediated decay, the first example of DAE in

germline cells was described by Yan et al. in individuals with familial adenomatous

polyposis (FAP), for whom no mutation in the APC gene had been identified

[Yan et al., 2002a]. The authors found that decreased expression of one of the

APC alleles was associated with risk of FAP. They also report that subtle changes

in the expression of APC could contribute to attenuated forms of polyposis.

Interleukin-10 (IL10) plays a key role in the regulation of immune response

and thus is involved in the pathogenesis and outcomes of various diseases.

Kurreeman et al. conducted a study of genetic variations in the IL10 gene

aiming at analyzing the large inter-individual differences in the production of IL10

[Kurreeman et al., 2004]. They found that allele-specific regulation at the mRNA

level were responsible for the differential production of IL10 among individuals.

The DAPK1 gene, which has a pro-apoptotic role in the programmed cell

death pathway and is predominantly expressed in the brain and lung, has been

found to be strongly associated with an elevated risk of Alzheimer’s disease

(AD) [Li et al., 2006]. As DAPK1 transcripts are differentially expressed, the

authors suggested that DAPK1 genotype or activity may influence risk of AD by

influencing the cell number in the hippocampus and/ or by influencing the response

to environmental stimuli such as amyloid beta.

More recently, Chen et al. have shown that the BRCA1 and BRCA2 genes

displayed DAE and that these differences in expression contribute to risk of breast

cancer [Chen et al., 2008]. The authors found DAE to be more significant for

BRCA1 than BRCA2 for both familial and non-familial breast cancer patients, as

compared to cancer-free women.
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In conclusion, recent literature on the genetic predisposition to various diseases

reports growing evidence for the role of DAE, confirming that alternate

mechanisms than deleterious coding mutations are likely to contribute to disease

susceptibility.
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Considerable evidence supports the hypothesis that sequence variation in a large

number of genes contribute to the risk of common cancers such as breast, colon

and prostate cancer. In the mid 1990’s, linkage analysis provided a successful

approach to the discovery of high-risk susceptibility genes for these diseases. More

recently, large case-control genotyping studies have identified common modest-risk

SNPs and case-control mutation screening has emerged as a useful strategy for

identifying and characterizing intermediate-risk susceptibility genes. While some

breast cancer susceptibility alleles have been clearly defined in these three well-

established classes of genetic variants, they do not account for more than 30-35%

of the relative risk of breast cancer (high and intermediate-risk genes account for

about 25%, and common SNPs from GWAS may account for 10%).

The Genetic Cancer Susceptibility group at the International Agency for Research

on Cancer focuses on the evaluation of inherited genetic factors in the etiology

and outcome of cancer. In particular, the group is carrying out an international

breast cancer genetics study aiming to identify new potentially deleterious genetic

variants in candidate susceptibility genes conferring an intermediate-risk of breast

cancer. This is performed by mutation screening coding exons and proximal

intronic splice consensus sequences of the candidate genes, in large series of

cases and controls. Mutation screening of the ATM [Tavtigian et al., 2009] and

CHEK2 genes [Le Calvez-Kelm et al., submitted, see Annex II] have recently

been completed in our laboratory and work on additional genes including RAD51,

BARD1, and RAD50 is nearing completion.

Although mutation scanning projects have focused for many years on variations

in coding sequences, structural alterations caused by genetic variants are not the

only possible explanation for variations in disease phenotype. Gene expression

regulation provides an alternate mechanism for generating cellular variation and

may be the underlying explanation for a proportion of cancer syndromes that have

not been resolved by germline coding region variants in currently known cancer

predisposition genes.
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This Ph.D work is an integral component of the candidate gene sequence variant

discovery project of wide scope undertaken at our laboratory. In order to fully

assess the contribution of the CHEK2 , ATM and TP53 genes to breast cancer

susceptibility, we used the differential allelic expression (DAE) approach to screen

these genes for the signature of cis-regulation. A diagram of the workflow is

presented on the next page (Figure 1). The strength of our approach is to combine

mutation-screening, which provides a list of candidate genetic variants and/or

genotypes at polymorphic "probe" nucleotides, and assessment of DAE . This

combination can be a powerful tool for identifying cis-acting variation affecting

gene expression at the mRNA level. Assessing DAE whenever possible, in each of

the genes included in the mutation screening project, will allow to focus regulatory

sequence variant discovery efforts on the subset of genes that are most likely to

harbor regulatory variants altering gene expression.

Specific aims

Aim 1 Assemble a discovery panel of lymphoblastoid cell lines derived from

high-risk breast cancer patients.

Aim 2 Develop an appropriate assay for the detection of differential allelic

expression, from the experimental aspects to the development of

bioinformatics tools specifically dedicated to the analysis.

Aim 3 Test each gene for differential allelic expression.

Aim 4 Characterize the sequence variation that may contribute to the observed

differential allelic expression.
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Figure III.2: Diagram describing the aims of the Ph.D project.

DAE stands for differential allelic expression and NMD for non-sense mediated mRNA

decay. Puromycin treatment inhibits NMD.
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We chose to perform DAE assessment by high-resolution melting (HRM) curve

analysis. In the next chapter, as a preamble, an overview of the methods and

applications related to HRM technology will be provided. Then, the first section

of the Result chapter will describe our general experimental approach for DAE

assessment by HRM, and address Aim 1 and Aim 2. This will be followed by

results from the studies of the CHEK2 , ATM and TP53 genes, addressing Aim 3

and Aim 4 for each of these genes.

The components of the diagram will be further deciphered as we progress through

theses sections.
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The basic underlying principles to

HRM analysis

Melting temperature (Tm) is one of the characteristics of DNA and cDNA.

A double-stranded DNA (dsDNA) molecule melts into two molecules of single-

stranded DNA (ssDNA) under conditions that overcome the interacting forces

between bases. The Tm of a dsDNA fragment is defined as the temperature at

which 50% of the DNA melts, i.e becomes single stranded. Each dsDNA fragment

has its own distinct Tm.

Melting methods exist, that can be used to distinguish between alleles and detect

sequence variation within a given PCR amplicon. After PCR amplification,

PCR products are subject to a denaturation and renaturation phase, then

melting of dsDNA by continual increase of temperature is easily monitored

with the aid of instruments that allow for highly controlled temperature

transitions and appropriate, usually fluorescence based, data acquisition.

Fluorescence instrumentation has recently been introduced with the HR-1
TM

and

LightScanner R©, but high resolution methods have also been adopted by real-

time PCR instruments, such as Roche’s LightCycler480 [Herrmann et al., 2006,

Herrmann et al., 2007].
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II

Amplicon melting analysis

Amplicon melting analysis relies on the use of intercalating dsDNA-binding dyes in

the PCR reaction, which fluorescence intensity varies during the melting analysis

(Figure II.1) [Lipsky et al., 2001, Wittwer et al., 2003].

Figure II.1: High-resolution melting uses intercalating dyes that fluoresce only in the

presence of double stranded DNA. At the beginning of the HRM analysis, after PCR

amplification, there is a high level of fluorescence. As the temperature increases, the

two strands of DNA denaturate and the dye is released, thus leading to a decrease of

fluorescence .
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LC Green R© was the first saturating dye available. Other dyes have since

been commercialized, including LC Green R©Plus (Idaho Technology), Syto9 R©

(Invitrogen), EvaGreen R© (Biotum) and LightCycler R© 480 ResoLight Dye

(Roche).

During high-resolution melting (HRM) curve analysis, as the temperature

increases, the specific sequence of the amplicon (mainly, its GC content and

its length) determines the melting behavior. When the fluorescence signal

is plotted against the temperature, the fluorescence intensity decreases as the

dsDNA becomes single stranded and the dye is released (Figure II.2-A). Opposite

homozygous samples are distinguished by difference in Tm. Homozygotes are

in green and red on Figure II.2. Heterozygous samples are distinguished from

homozygotes by altered curve shape (blue on Figure II.2). Heterozygous samples

produce four different kinds of duplexes after denaturation and reannealing: two

completely matched duplexes (homoduplexes) and two duplexes mismatching

at the polymorphic position (heteroduplexes) [Montgomery et al., 2007]. Since

heteroduplexes melt at a lower temperature than homoduplexes, they each have

a characteristic melting pattern. The sum of all transitions are small but can

reliably be detected by melting curve analysis, resulting in a skewed composite

melting curve [Erali et al., 2008].

Melting curves are usually converted into negative first-derivative melting plots to

reveal melting transitions of the probe-target duplexes as peaks (Figure II.2-B).

The pattern of the difference plot may also be used for amplicon analysis (Figure

II.2-C).

69



II. Amplicon melting analysis Introducing HRM analysis

Figure II.2: Amplicon melting analysis for duplicate samples of factor V (Leiden) 1691

G>A homozygous common (green), homozygous rare (red) and heterozygous (blue)

samples. (A) Normalized melting curves, (B) derivative plots, and (C) difference plots.

From [Erali et al., 2008].
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Probe melting analysis

For known mutation or SNP detection, HRM analysis may also be applied to

labeled or unlabeled probes. These probes are specifically designed to anneal either

to the wild-type or the variant sequence. In this case, the fluorescence changes

as a result of the probe denaturing away from the amplicon [Zhou et al., 2004,

Liew et al., 2006].

A single nucleotide mismatch between the probe and its target amplicon can

significantly reduce the Tm of the probe-amplicon heteroduplex, offering a

straightforward means to genotyping target sequences [Liew et al., 2004]. Since

the Tm may be approximated by taking the derivative of the melting curve,

samples with single peaks indicate a homozygous genotype, and those with two

peaks indicate a heterozygous genotype. The higher temperature peak corresponds

to the allele perfectly matched to the probe whereas the lower temperature peak

corresponds to the mismatched allele.

In presence of a probe, an asymmetric PCR is required because it leads to

the production of more copies of the strand to which the probe will bind

to. This reduces competitive binding and favors the annealing of the probe.

The fluorescence then varies during the melting phase, increasing or decreasing

according to the type of probe that is used.
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III.1 Fluorescein labeled probes

A fluorescein probe is designed to bind to a sequence variant of interest, in the

vicinity of guanosines (Gs) on the opposite target strand. At the beginning of

the melting phase, the probe hybridizes to the excess strand produced by the

asymmetric PCR. As long as probe and target form a duplex, the fluorescence

is quenched by the Gs. These nucleotides are especially good quenchers

[Crockett and Wittwer, 2001].

Once the Tm is reached, the probe melts away and the fluorescence increases

sharply (Figure III.1-A). All three possible genotypes at the polymorphic position

targeted by the probe can be distinguished on the derivative curve (Figure III.1-B).

Figure III.1: Genotyping of the SNP R72P in the TP53 gene, by use of a fluorescein

probe melting analysis on the HR-1
TM

instrument. (A) Normalized melting curves, (B)

derivative plots. Genotypes are homozygous common (HH), homozygous rare (hh) and

heterozygous (Hh).
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III.2 SimpleProbes

A SimpleProbe is another type of olignonucleotide probe, labeled with a

proprietary linked green dye at either the 5’ or the 3’ end. In contrast to

a fluorescein probe, which fluoresces most when single-stranded, the physical

characteristics of the linker molecule of a SimpleProbe allow the dye to fluoresce

when hybridized to its target DNA strand. Once the Tm is reached, the probe

melts away, the linker then quenches the dye and the fluorescence decreases

[Gameau et al., 2005].

This phenomenon translates into a sharp drop on the melting curve (Figure III.2-

A) and upward peaks on the derivative curve (Figure III.2-B). The sequence

surrounding the labeled end of the SimpleProbe is important and should avoid

guanosines on the opposite strand, as it may affect the fluorescence signal.

Figure III.2: Genotyping of the SNP rs2236142 in the CHEK2 gene, by use of

a SimpleProbe on the HR-1
TM

instrument. (A) Normalized melting curves, (B)

derivative plots. Genotypes are homozygous common (HH), homozygous rare (hh) and

heterozygous (Hh).
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III.3 Unlabeled probes

Saturating dsDNA dyes such as LC Green R© also allow genotyping with

unlabeled probes that have no fluorescent labels [Liew et al., 2007]. Direct

amplicon genotyping does not require probes, as described above. However,

whereas heterozygotes are easily detected by a change in melting curve shape,

differentiating opposite homozygotes may be more challenging due to their small

Tm difference. The use of unlabeled probe thus increases genotyping accuracy in

amplicon melting assays (Figure III.3).

Figure III.3: Genotyping of the SNP G542X in the CFTR gene, by use of an unlabeled

probe on the HR-1
TM

instrument. Genotypes are homozygous wild type (thin black

line), heterozygous (thick gray line), and homozygous mutant (dashed line). From

[Zhou et al., 2004].

Using the TP53 gene, Garritano et al. have assessed the performance of a variety

of available HRM-based genotyping assays, including unlabeled probe analysis,

and described a series of solutions to handle the difficulties that may arise in

large-scale application of HRM to mutation screening and genotyping at the TP53

locus. In particular, the authors report specific HRM assays that render possible

genotyping of 2 or more, sometimes closely spaced, polymorphisms within the

same amplicon, using unlabeled probes, and showed that multiplex PCR reaction

is feasible [Garritano et al., 2009 - see Annex I].
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IV

Applications of HRM analysis

The major reported advantages of HRM are high sensitivity but also minimal

post-PCR sample manipulation, thus ease of use, throughput and cost-

effectiveness. Furthermore, HRM analysis is a non-destructive method, and

subsequent analysis by sequencing can still be performed after melting analysis

[Isaacs and Rebbeck, 2008, Wittwer, 2009, Vossen et al., 2009].

As recently reviewed by [Erali et al., 2008] and [Vossen et al., 2009],

HRM allows to perform a panoply of molecular genetic and epigenetic

analyses, such as genotyping [Wittwer et al., 2003, Liew et al., 2004,

Zhou et al., 2004, Graham et al., 2005, Palais et al., 2005], mutation

screening [Reed and Wittwer, 2004, Chou et al., 2005, Margraf et al., 2006,

Takano et al., 2008] and methylation profiling [Worm et al., 2001,

Wojdacz and Dobrovic, 2007].

HRM analysis is now recognized as a robust multi-purpose analytical tool for

research, as well as molecular diagnostic and clinical ends.
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IV.1 Clinical purposes

One of many examples of clinical application of HRM analysis was reported by

Margraf et al. [Margraf et al., 2006]. The authors developed a screen for RET

proto-oncogene mutations associated with multiple endocrine neoplasia type 2

(MEN2) syndromes. Genetic testing of RET mutations can identify patients

at risk of thyroid cancer before disease progression. The assay was designed to

amplify 6 RET exons and to include all known pathogenic mutations in a total of

20 codons. The assay can be used more specifically to detect a mutation that is

known to be present in a family. In the course of a blinded study, 100% concordance

was observed in comparison with sequencing, the gold standard approach, which

is a time-consuming and expensive open-tube method. HRM was validated as a

fast and accurate method for detecting or genotyping RET mutations.

Also in diagnostic settings, van der Stoep et al. designed a screening test to

cover the BRCA1 gene. Their validation study included a large panel of 170

BRCA1 variants and 197 controls [van der Stoep et al., 2009]. They described an

HRM assay that allowed mutation screening of all of the exons of the gene and

included unlabeled probes to identify nine commonly occurring polymorphisms of

the BRCA1 gene, thus avoiding unnecessary sequence analysis upon detection of

these non-pathogenic variants. The authors also aimed at performing a thorough

interlaboratory evaluation and validation of HRM analysis, to confirm its accuracy

and robustness, and provided a list of guidelines for setting up and implementing

HRM as a scanning technique for new genes in diagnostic.

IV.2 Research purposes

The special issue of Human Mutation: Focus on High-Resolution Melting

Technology [Volume 30, Issue 6, June 2009] contains several papers describing

methods application of HRM for sequence variant detection, demonstrating its

current state of the art. For instance, Rouleau et al. described a quantitative
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PCR and HRM analysis in one instrument to scan for both quantitative

(deletions/duplications) and qualitative nucleotide changes in the MLH1 gene

[Rouleau et al., 2009]. Dobrowolski et al. described the use of HRM to scan the

entire 16.6kb human mitochondrial genome (mtDNA) for sequence variants in less

than two hours [Dobrowolski et al., 2009].

This special issue of Human mutation, which also highlighted the limits of

HRM and challenges that may be encountered, included a paper of ours that

addressed the need for cost-effective solutions to some of these challenges with a

methodological improvement to the basic HRM mutation screening strategy.

HRM analysis is the technology chosen by our laboratory to perform large case-

control mutation screening studies, aiming at identifying candidate genes and

variants conferring an intermediate-risk of breast cancer [Tavtigian et al., 2009]. A

particularly demanding application of HRM is analysis of candidate intermediate-

risk susceptibility genes by case-control mutation screening, which requires

complete mutation screening of >1000 cases and controls to achieve reasonable

statistical power. We have actually screened the coding exons of ATM and

CHEK2 (published1), and RAD51, BARD1 and RAD50 (unpublished) in >1000

subjects, and did not meet any technical difficulties with the vast majority of

exons/amplicons when using standard HRM mutation scanning.

However, detection sensitivity for rare unknown variants may be problematic

during mutation scanning of fragments containing common SNPs using HRM. This

may happen in one of the following situations: the melting profile of rare unknown

variants can be masked by one from a common homozygote, by the extra noise

present in large scale melt curve studies, or buried within the melt curve data of

an amplicon whose data complexity overcomes the standard software’s ability to

form groups.

1[Tavtigian et al, 2009] and [Le Calvez-Kelm et al, 2011- see Annex II] respectively.
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In the following paper, we demonstrated that simultaneous scanning and

genotyping using unlabeled probes allows better differentiation of multiple

variants. An unlabeled probe was included in asymmetric PCR such that both

probe/product and full length product duplexes were produced. From a single

melting curve, both genotyping data (at low temperature) and scanning data (at

high temperature) were extracted. Two exons of ATM , each including a common

variant that interferes with standard scanning, were analyzed by high-resolution

melting on 384-well plates. Simultaneous scanning and genotyping of 1356 subjects

was performed. For analysis, the curves were grouped by probe/target melting

(by the genotype of the common variant) and amplicon scanning was performed

on each group. Up to 9 different genotype combinations were distinguished and

the curve clusters were completely concordant to sequencing. Furthermore, the

sequencing burden from common variants can be dramatically reduced.
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ABSTRACT: Mutation scanning using high-resolution melt-

ing curve analysis (HR-melt) is an effective and sensitive

method to detect sequence variations. However, the

presence of a common SNP within a mutation scanning

amplicon may considerably complicate the interpretation

of results and increase the number of samples flagged for

sequencing by interfering with the clustering of samples

according to melting profiles. A protocol describing

simultaneous high-resolution gene scanning and genotyp-

ing has been reported. Here, we show that it can improve

the sensitivity and the efficiency of large-scale case–control

mutation screening. Two exons of ATM, both containing

an SNP interfering with standard mutation scanning, were

selected for screening of 1,356 subjects from an interna-

tional breast cancer genetics study. Asymmetric PCR was

performed in the presence of an SNP-specific unlabeled

probe. Stratification of the samples according to their

probe-target melting was aided by customized HR-melt

software. This approach improved identification of rare

known and unknown variants, while dramatically reducing

the sequencing effort. It even allowed genotyping of

tandem SNPs using a single probe. Hence, HR-melt is a

rapid, efficient, and cost-effective tool that can be used for

high-throughput mutation screening for research, as well as

for molecular diagnostic and clinical purposes.

Hum Mutat 30, 884–890, 2009. & 2009 Wiley-Liss, Inc.

KEY WORDS: high-resolution melting curve analysis;

HR-melt; high throughput mutation scanning; genotyp-

ing; ATM

Introduction

A key step in the search for potentially pathogenic genetic

variants in disease susceptibility genes is mutation screening of

coding exons and proximal intronic splice consensus sequences of

the entire gene in large subject series. Mutation scanning using

high-resolution melting curve analysis (HR-melt) prior to

sequencing has been described as an effective, sensitive, and

economical method to detect genetic variations and to reduce

sequencing efforts [De Leeneer et al., 2008; Reed and Wittwer,

2004; Takano et al., 2008]. HR-melt analysis using unlabeled

probes can also be used for genotyping [Liew et al., 2004; Seipp

et al., 2007; Zhou et al., 2004]. HR-melt relies on the use of the

double-stranded DNA fluorescent dye LCGreens Plus (Idaho

Technology, Inc., Salt Lake City, Utah) and specifically designed

instruments for data collection, such as the LightScanners (Idaho

Technology), which can be used for high-throughput analyses.

HR-melt offers several obvious advantages as compared to

traditional mutation scanning methods. Not only efficient, this

method is secure due to its closed-tube nature, and is amenable to

automation for high-throughput mutation discovery. It provides

simultaneous acquisition of up to 384 fluorescent melting signals

in about 5min and also fits seamlessly into a resequencing

workflow because of its nondestructive nature. A particularly

demanding application of HR-melt is analysis of candidate

intermediate-risk susceptibility genes by case–control mutation

screening, which will often require complete mutation screening

of 41,000 cases and 41,000 controls to achieve reasonable

statistical power. However, the presence of a common SNP within

a mutation scanning amplicon may considerably complicate the

interpretation of results and increase the number of samples

flagged for sequencing by interfering with the clustering of melt

curve groups according to melting profiles.

Recently, a protocol for simultaneous mutation scanning and

genotyping using HR-melt analysis has been described [Mon-

tgomery et al., 2007; Zhou et al., 2005]. The method combines

both LCGreen Plus dye and unlabeled oligonucleotide probes in

an asymmetric PCR, leading to simultaneous production of

probe-target and whole amplicon double-stranded DNA duplexes

that can be analyzed from the same HR-melt run.

In this study, we aimed to apply the method to improve

sensitivity and efficiency of large-scale case–control mutation

scanning of the ATM gene (GenBank reference sequence

NM_000051; MIM 607585) in some specific situations (Fig. 1).

We have actually screened the 62 coding exons of ATM in 41,000

subjects, and did not meet any technical difficulties with the

vast majority of exons/amplicons when using standard

HR-melt mutation scanning (Tavtigian et al., unpublished results).
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However, screening of some ATM amplicons illustrates challenges

that may be encountered and cost-effective solutions to these

challenges. We chose the 36th and 59th coding exons of ATM, both

containing a common SNP that interferes with standard HR-melt

mutation scanning (Table 1). Mutation screening of the 36th coding

exon was challenging because the amplicon contains a common

missense SNP (c.5557G4A, allele frequency of 23% in the

Caucasian population) adjacent to a less common SNP

(c.5558A4T, 1% in the Caucasian population), as well as two other

rare SNPs (c.5497–15G4C and c.5497–8T4C, 0.5% and 1% in the

Caucasian population, respectively). The 59th coding exon amplicon

contains an A4C substitution (c.878618, 1.7% in the Caucasian

population), located downstream of the splice donor site, disturbing

standard HR-melt analysis.

For each amplicon, an unlabeled probe was designed to anneal

to the region surrounding the common SNP of interest.

Stratification of the samples according to their probe-target

melting profiles was facilitated by customized LightScanner

software (Idaho Technology). The conceptual idea is that common

SNP genotypes are called from the probe-target melting data.

Analysis of the whole amplicon melt curve data (e.g., mutation

scanning) is then performed separately on heterozygous and

homozygous sample subsets to distinguish curve shape differences

due to presence of other unknown variants. This approach is

particularly valuable for large-scale mutation screening studies,

where systematic resequencing of the whole gene in all samples is

too laborious and expensive.

Materials and Methods

Origin of Samples

Mutation screening was performed on 697 early onset and/or

familial breast cancer cases and 659 controls enrolled in an

international breast cancer genetics study. These include subjects

collected through the Northern California, Australian, and

Ontario sites of the Breast Cancer Family Registry (BCFR),

subjects collected through the Kathleen Cuningham Foundation

Consortium for research into Familial Breast cancer (kConFab,

Melbourne, Australia), and subjects enrolled in a Thai case–-

control study. The mutation screening included in this project had

approval by the IARC Institutional Review Board (IRB) and the

local IRBs of each of the centers from which we received samples.

All DNAs were extracted from lymphocyte samples or lympho-

Figure 1. Principle of simultaneous genotyping and mutation scanning using high-resolution melting analysis. For DNA amplicons containing
a common SNP, an unlabelled probe is designed to target the SNP. The probe is blocked at the 30 end to prevent extension during amplification.
In presence of a probe, an asymmetric PCR reaction is required so that more copies of the strand to which the probe anneals are produced. This
favors probe-target annealing and reduces probe competition with the complementary DNA strand. Both probe-amplicon duplexes and whole
amplicon duplexes melting regions can be observed from the same melting run, in two separate temperature windows, allowing genotyping and
mutation scanning analyses to be performed simultaneously.
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blastoid cell lines using standard procedures, then normalized at a

concentration of 15 ng/ml and arrayed in 384-well plates. Each

plate included negative controls (with no DNA), and a DNA

sample from Chimpanzee was added. This sample is used as

quality control to assess the efficiency of the HR-melt assay for

rare sequence variant detection, as the Chimpanzee genome is

evolutionarily close enough to the Human genome that almost all

amplicons work, but different enough from human that most

amplicons will harbor a few sequence variations.

PCR Amplification

Nested primer pairs were designed to amplify specifically the

36th and 59th coding exons of ATM (NM_000051), including

intron–exon junctions, and are available on request. Unlabeled

probes were designed to anneal to the SNP of interest, following

Idaho Technology’s recommendations. All probes were blocked at

their 30 end by C3-blocker to prevent extension during PCR.

For the 36th coding exon, the unlabeled probe (50-CCAAGA-

TACAAATGAATCAT-30) was designed to target the major allele of

the common SNP c.5557G4A. This probe also annealed to the

major allele of the adjacent SNP c.5558A4T (Fig. 2A). For the

59th codon exon, the unlabeled probe (50-CAGAAGGTAAGTGA-

TATGAAGTAAAGGAGG-30) was designed to target the major

allele of SNP c.878618A4C.

Primary PCR (PCR1) was performed in an 8-ml reaction volume

containing 30 ng of template DNA, 1.5mM MgCl2, 200 mM dNTP,

200 nM forward and reverse primers, 0.04U/ml of Platinums Taq

Polymerase (Invitrogen, Paisley, Scotland), and 1�PCR buffer

supplied by the manufacturer. The amplification protocol

consisted of 25 cycles with amplification steps at 941C, 601C,

and 721C for 30 s each.

Asymmetric nested PCR (PCR2) was then performed in a 6-ml

reaction volume containing 2 ml of 1:100 diluted PCR1 product,

1.5mM MgCl2, 132 mM dNTP, 100 nM limiting primer, 500 nM

excess primer (primer asymmetry ratio of 1:5), 500 nM unlabeled

Figure 2. High-resolution melting analysis of the 36th coding exon of ATM : results for a set of 384 samples. A: Relative positions of SNPs and
of the unlabeled probe. The probe was designed to anneal to the common SNP c.5557G4A and adjacent c.5558A4T. B: Standard mutation
scanning. The melting temperature (Tm) difference plot failed to stratify samples by genotype effectively. C: Simultaneous genotyping and
mutation scanning allowed classification of the samples into three subsets. D–F: Difference plots of the amplicon melting profiles of subset a
(D), b (E), and c (F) allowed identification of a total of nine combinations of genotypes. Genotypes are indicated on the figures.

Table 1. Nomenclature of All Sequence Variations Detected in
the 36th and 59th Coding Exons of ATM, in the Breast Cancer
Genetics Study

Amplicon HGVSa Protein rs Number

36th Coding exon c.5497–15G4C — rs3092828

c.5497–8T4C — rs3092829

c.5557G4A p.Asp1853Asn rs1801516

c.5558A4T p.Asp1853Val rs1801673

c.5633C4T p.Ser1878Leu —

59th Coding exon c.8672–43T4C — —

c.8672–22T4G — rs56172540

c.8741T4C p.Ile2914Thr —

c.878618A4C — rs4986839

c.8786111T4C — —

aNumber based on transcript sequence (NM_000051), 11 as A of ATG start codon.
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probe, 0.48� LCGreen Plus, 0.04U/ml of Platinum Taq Polymer-

ase, and 1�PCR buffer. The amplification protocol consisted of

55 cycles with amplification steps of 941C for 30 s, 601C for 30 s,

and 721C for 40 s each. For an optimal efficiency of HR-melt,

PCR2 primers were designed to amplify amplicons with a

maximum length of 350 bp.

HR-melt Analysis

Prior to LightScanner analysis, PCR2 products were heated to 941C,

then slowly cooled to 201C to promote heteroduplex formation and

detection. Melting was monitored from 351C to 941C on a

LightScanner instrument. PCR amplification led to simultaneous

production of probe-target and whole amplicon duplexes that were

analyzed from the same HR-melt run. Since probe-target duplexes are

shorter than whole amplicon double stranded DNA duplexes, they

melt at a lower temperature. Short probe-target duplexes and larger

whole amplicon double-stranded DNA duplexes can therefore be

analyzed in two distinct temperature windows (Fig. 1).

Genotyping and mutation scanning analyses were carried

out using the LightScanner software. The region of the probe

melting was analyzed using the ‘‘Genotyping’’ mode and

the region of DNA melting was analyzed using the ‘‘Scanning’’

mode [Montgomery et al., 2007]. Stratification of the

samples according to their probe-target melting profile was

facilitated by a customization of the commercial LightScanner

software. This new version provides the option to export probe-

target melting groups as subsets, which are subsequently used for

independent scanning of the amplicons according to probe-target

melting profile results.

Sequencing

PCR2 products showing different melting curves from the

reference group were sequenced using the BigDye Terminator,

version 1.1 (Applied Biosystems, Foster City, CA) and run on a

96-capillary Spectrumedix Sequencer (Transgenomics, Glasgow,

UK) according to the manufacturers’ recommendations.

Results

Many research groups have published studies on mutation

screening of the ATM gene and have reported many different rare

sequence variants detected with various methodologies. Some have

used SSCP with a relatively low sensitivity, others have used DHPLC

with a relatively higher sensitivity. Recently, we have completed a

large-scale mutation screening of ATM using a relatively new

procedure, HR-melt. Although the object of this report is to describe

a methodological improvement to the basic HR-melt protocol that

enhances the effectiveness of mutation screening, we would like to

emphasize that basic HR-melt mutation screening strategy provides

good sensitivity for detection of sequence variants. For instance, we

assessed the results of 13 studies where different mutation scanning

methodologies had been used for mutation detection in ATM

[Angèle et al., 2003; Atencio et al., 2001; Broeks et al., 2008; Brunet

et al., 2008; Buchholz et al., 2004; Dörk et al., 2001; Gonzalez-

Hormazabal et al., 2008; Izatt et al., 1999; Livingston et al., 2004;

Maillet et al., 2002; Renwick et al., 2006; Sommer et al., 2003;

Teraoka et al., 2001; Thorstenson et al., 2001]. When considering

only Caucasian subjects for this pooled analysis, 142 carriers of a

rare missense variant (i.e., with carrier frequency o1%) were

observed among 2,661 subjects (mutation detection rate: 142/

(2661�3056)5 0.000017 variants�subjects�1
�codons�1). We com-

pared those results to our data. We identified 101 carriers of a rare

missense variant when performing the analysis by HR-melt on

1,356 subjects of non-African origin (mutation detection rate: 101/

(1356�3056)5 0.000024 variants�subjects�1
�codons�1). Hence,

the rate ratio between our results and the pooled analysis is 1.4

(P value5 0.008) confirming the higher sensitivity of the HR-melt

approach. Nonetheless, we observed that for the two amplicons

containing the 36th and 59th coding exons, classic mutation

scanning by HR-melt analysis failed to provide clear variant

clustering due to the presence of a frequent SNP within the

amplicons studied (Figs. 2B and 3A).

Analysis of the 36th coding exon of ATM was hampered by the

presence of several SNPs reported in this amplicon: a common SNP

immediately adjacent to a rare SNP (c.5557G4A and c.5558A4T,

respectively) and two other rare SNPs (c.5497–8C4T and

c.5497–15G4C) (Fig. 2A). We assessed an unlabeled oligonucleo-

tide probe designed to anneal to the common G allele at the

polymorphic site c.5557G4A and to the common A allele at the

adjacent rarer SNP position c.5558A4T. The LightScanner software

identified three different groups in the ‘‘Genotyping’’ mode

(Fig. 2C), which were analyzed independently in the ‘‘Scanning’’

mode. Subset a was scanned for mutations and the automatic call

identified two melting profiles. Sequencing analysis revealed that all

samples from this subset carried the common G allele for c.5557 and

some were also c.5497–15 GC heterozygotes (Fig. 2D). Mutation

scanning analysis of subset b identified heterozygous samples that

were either c.5557GA or c.5558AT. A third group emerging

from subset b analysis corresponded to double heterozygotes

c.[5557GA(1)5497CT] (Fig. 2E). Subset c revealed four different

groups in mutation scanning: c.5557AA, c.[5557AA(1)5497–8CT],

c.[5557AA(1)5497–8CC], and last, c.[5557GA(1)5558AT] (Fig.

2F). Analysis of the whole sample set (1,356 subjects) identified one

additional rare missense variant (c.5633C4T).

Another example illustrating the difficulty of interpreting HR-

melt using the standard mutation scanning mode in the presence

of a common SNP is provided by the exon 59 amplicon (Fig. 3A).

Within the reference group, sequencing of a few samples with melt

curves near the edge of the ‘‘normal’’ melt curve distribution

revealed that some were AC heterozygous for the SNP c.878618.

Since their melting pattern was hardly distinguishable from the

one produced by the wild-type group, other samples carrying the

same SNP could have been missed, even though our standard

practice is to sequence a small fraction of samples from the edge of

the HR-melt normal grouping. Moreover, other variants in the

vicinity of this SNP might also produce a melting pattern similar

to that of the reference group. Thus, to improve the detection of

SNP c.878618A4C and the detection of new rare nearby

variants, an unlabeled probe was designed to hybridize to the

common A allele of the SNP. As expected, genotyping allowed

distinction of homozygous c.878618AA samples from hetero-

zygous c.878618AC samples. Analysis of the probe-target melting

region in the same 384 samples also identified two samples

presenting a third distinct profile. One of the samples was c.8786

18CC. The second sample, from the Chimpanzee DNA used

as quality control, was homozygous CC for a new variant

(c.8786111) located downstream SNP c.878618, and therefore in

the probe-target region (Fig. 3B). Both had been missed in the

standard mutation scanning analysis initially performed. Groups

corresponding to the three probe-target melting profiles were

further analyzed as individual subsets using the mutation scanning

mode. No novel variant was identified in the c.878618AA subset

(Fig. 3C) nor in the c.878618AC subset (Fig. 3D). However,

analysis of the whole sample set (1,356 subjects) using the
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simultaneous genotyping and mutation scanning approach

succeeded in identifying a total of four rare variants

(c.8672–43T4C, c.8672–22T4G, c.8741T4C, and the chimpan-

zee variant c.8786111T4C), which had not been detected or

were hardly distinguishable using the standard mutation scanning

mode (data not shown). Thus, simultaneous genotyping and

mutation scanning substantially improved the characterization of

the samples where standard mutation scanning provided ambig-

uous and not fully reliable results.

Discussion

Here, we discuss the usefulness of simultaneous genotyping

and mutation scanning in the context of large-scale mutation

screening projects. The search for new potentially deleterious

genetic variants in candidate susceptibility genes requires the

screening of coding sequences and splice junctions of entire genes

in large sets of cases and controls. HR-melt analysis has repeatedly

been reported as an efficient method for mutation scanning.

Although it has been reported that different heterozygotes within

the same amplicon could be distinguished from each other based

on their curve shape differences [Graham et al., 2005; Garritano

et al., 2009], mutation screening performed on a large number of

samples renders the analysis more complex. Moreover, screening

of entire genes often requires the screening of genomic regions

containing common SNPs that can interfere with the mutation

scan and complicate the interpretation of the results [De Leeneer

et al., 2008]. Systematic resequencing of all variant samples is the

most common approach to this issue. However, when applied on

large series, this latter approach is expensive, laborious, and time-

consuming [Sevilla et al., 2002].

Simultaneous genotyping and mutation scanning by HR-melt

analysis represents an attractive alternative for high-throughput

analysis. The genotyping method was chosen because it could be

easily integrated in our existing mutation scanning workflow.

Other genotyping methods could have been chosen, but they

would have added extra steps to our mutation screening protocol,

and would also have required the use of another laboratory

instrument. By performing genotyping and mutation scanning

simultaneously using HR-melt, we avoided multiple manipula-

tions, and waste of biological material and reagents. Laboratory

contamination issues were also reduced. For amplicons that

contain a common SNP, we postulated that stratification of

HR-melt data by common SNP genotype prior to mutation

scanning analysis would increase the detection sensitivity for those

rare variants, whose melting patterns may be either: 1) essentially

the same as, and consequently masked by, the melt curve of a

common SNP heterozygote; 2) masked by the extra noise present

in a large-scale melt curve analysis that contains two common

genotypes; or 3) buried within the melt curve data of an amplicon

whose data complexity overcomes the standard software’s ability

to group.

Here, we showed that simultaneous genotyping and mutation

scanning is suitable to easily distinguish up to nine different

genotype combinations, in the case of the 36th coding exon of

ATM. Automatic clustering by the analysis software showed

complete concordance with sequencing results. In addition,

this approach offers the advantage of directly queuing

asymmetric PCR products for sequencing. We validated on a

series of 90 samples that sequencing reactions from asymmetric

PCR products and standard sequencing reactions performed

equally.

Study of the 59th coding exon pointed out that the position of a

variant within the amplicon and/or the nature of the sequence

surrounding the variant are likely to play a critical role on the

accuracy of mutation detection by standard HR-melt analysis. Our

study provides evidence that in some sequence contexts, some

sequence variants may be missed by the classical HR-melt

approach, especially when mutation scanning is performed in a

384-well format. This issue has been discussed in a technical

assessment of the HR-melt protocol by the UK National Genetics

Reference Laboratory (www.ngrl.org.uk/Wessex/downloads.htm),

and the authors concluded that there were sequence variations

‘‘intrinsically difficult’’ to detect by HR-melt.

Figure 3. High-resolution melting analysis of the 59th coding exon of ATM : results for a set of 384 samples. A: Standard mutation scanning
did not reveal any variant. Random sequencing from the edge of the ‘‘normal’’ distribution revealed the presence of several c.878618AC
heterozygotes. B: An unlabeled probe was designed to anneal to this SNP. Simultaneous genotyping and mutation scanning allowed
classification of the samples into the two principal subsets (c.878618 major allele homozygotes and heterozygotes) plus two additional melt
curves corresponding to the genotypes indicated on the figure. C,D: Difference plots of the amplicon melting profiles of subset a (C) and b (D) did
not identify novel rare variants.
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Simultaneous genotyping and mutation scanning represents

therefore a valuable asset since it can easily be integrated in large-

scale, high-throughput, mutation scanning workflows. Although

the risk of missing a rare variant might still remain, this method

showed better sensitivity for the identification of novel rare

variants, and better accuracy for distinguishing different genotype

groups, than the standard HR-melt mutation scanning method.

Having validated this approach to screen the 36th and 59th coding

exons of ATM efficiently, eight additional probes were designed to

improve the mutation screening of the whole gene in our sample

sets. Our general experimental strategy was to design an unlabeled

probe for each variant reported to have a frequency 41% in the

dbSNP database or in our sample series, in the regions of interest.

Thus, 10 out of 66 ATM amplicons could have been predicted

beforehand to require simultaneous genotyping and mutation

scanning (15%). We also applied this approach to two additional

amplicons during the course of the study to facilitate their

mutation screening. The first one contained an SNP found to be

common in our sample series (rs3092910:T4C), and the second

one contained a novel SNP 54 bp upstream of the 43rd coding

exon of ATM, that we initially identified using the standard

mutation scanning approach (Table 2). For all studied amplicons,

cycling conditions (annealing temperature and number of cycles)

were optimized in presence of LCGreen for mutation screening.

Our experience showed that after PCR optimization, none of the

ATM amplicons failed to amplify in the presence of LCGreen. For

amplicons requiring simultaneous genotyping and mutation

scanning, we reoptimized the PCR conditions in presence

of the probe. We also verified that the 1:5 primer concentrations

ratios would not impair the HR-melt analysis. Initial protocols

had to be modified in some cases, especially by adjusting MgCl2
concentration.

Using our strategy, a higher level of confidence in mutation

scanning results can be reached when simultaneously proceeding

to genotyping using unlabeled probes. We have shown that this

approach can dramatically reduce the amount of sequencing

required, compared to sequencing all variants that have a melt

curve indicative of the presence of a sequence variant, and

recommend the method whenever one of three criteria is met: 1)

the cost of excess sequencing due to the presence of a known

common variant in an amplicon will exceed the �$50 to $75 setup

cost of the unlabeled probe assay; 2) there is great concern that the

presence of a known common SNP will mask the presence of an

unknown rare SNP; or 3) it is important, within the mutation

screening context, to detect all of the minor allele homozygotes of

a common SNP located within an amplicon of interest.

The potential of HR-melt for cost-effective and sensitive high-

throughput genotyping and mutation scanning has been reported

in numerous studies. For example, Takano et al. [2008] and De

Leeneer et al. [2008] described HR-melt as an economical

screening method to detect mutations in BRCA1 and BRCA2. In

their work, the authors emphasized the advantages, both in time

and cost, offered by the use of HR-melt. Cost-effective and rapid

methods for screening are indeed highly needed for mutation

screening and testing, particularly for molecular diagnostic

purposes in medium and low-resources countries. For mutation

discovery studies, this technique would also be beneficial since it

enables large-scale case–control or population studies at low cost,

but with a sensitivity and an accuracy higher than the current

mutation scanning gold-standard, DHPLC [Chou et al., 2005].

In conclusion, simultaneous genotyping and mutation scanning

is another methodology that confirms that HR-melt is a rapid,

efficient, and cost-effective tool that can be used for high-

throughput mutation screening for research, as well as for

molecular diagnostic and clinical purposes.
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I

Implementation of an HRM assay

for DAE analysis

I.1 DAE assessment by HRM: the general

experimental approach

Differential allelic expression (DAE) is observed when the two alleles of a given

gene produce different levels of transcript. Here, we aimed to demonstrate that

HRM technology has potential to detect alteration in allele-specific transcript

abundance.

I.1.1 General description of the approach

In order to make a differential measurement of the level of expression of the two

alleles of a gene from a patient sample, one must be able to distinguish between the

alleles. As in other DAE approaches described previously in the bibliographical

review, the HRM approach requires a polymorphism within the mRNA sequence

as a copy-specific tag.
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The HRM approach for DAE analysis relies on the use of a fluorescently

labeled oligonucleotide probe designed to anneal to the sequence surrounding

the selected marker SNP, with standard PCR reagents, in an nested asymmetric

PCR reaction1. To validate our approach, we tested both fluorescein probes and

SimpleProbes.

Similarly to genotyping analysis, data acquisition in HRM instruments for DAE

assessment consists in monitoring changes in the fluorescence properties of the

probe, as it dissociates from the two allelic templates, while the probe-target

duplexes are continuously heated. Data analysis displays melting curves which are

plots of the temperature versus fluorescence for each sample. Since the probe has

a complete complementarity to one variant while mismatching the other variant

at the polymorphic position‚ thus resulting in a melting temperature difference

between the two alleles, this technique allows the two alleles in heterozygous

individuals to be distinguished by distinct peaks on the derivative curve. Then,

the relative allelic abundance of the analyzed transcript is inferred from the ratio

of the peak heights (Figure I.1).

Figure I.1: Derivative melting profile of a SimpleProbe obtained from a heterozygous

individual for the SNP rs2236142. Peak heights are measured and Allele 1/ Allele 2 ratio

is calculated as h1/h2.

1Primers, probes and cycling conditions are detailed in the section of the memoir reporting the

results for each of the assessed genes. Here, we aimed to present an overview of the experimental

approach.

92



I. Implementation of an HRM assay for DAE analysis Results

I.1.2 The hardware

The premises of the application of melting curve analysis to DAE assessment have

been described by our collaborators in a study investigating mRNA degradation

due to the non-sense mediated mRNA decay (NMD) mechanism in the BRCA2

gene [Ware et al., 2006]. Ware et al. performed their analyses on the LightCycler

2.0 instrument, which is a carousel-based capillary system developed by Roche,

that can analyze up to 32 samples. The LightCycler was the instrument by

which melting analysis was first introduced [Wittwer et al., 1997]. Some years

later, several suppliers have launched different devices and systems that allowed

for high-resolution analysis [Wittwer et al., 2003, Herrmann et al., 2006].

Although they permit melting analysis, real-time PCR instruments such as the

LightCycler or the Rotor-Gene 3000 (Corbett) are not primarily intended for

melting analysis. Yet, the power of DNA melting analysis depends directly on

the resolution of the melting instrument [Herrmann et al., 2006].

In this study, we chose the two platforms that performed the best

in a comparative assessment of different HRM platforms, namely the

HR-1
TM

and LightScanner R© instruments (Idaho Technology) (Figure I.2)

[Herrmann et al., 2006, Herrmann et al., 2007]. Both are dedicated instruments

for HRM analysis. The HR-1
TM

is the most sensitive HRM system currently

available. It uses glass capillaries and can analyze only one sample at a time, when

the LightScanner R© is a 96 or 384 plate-based system, with 5 times the resolution

of other instruments of the same throughput.
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Figure I.2: Cross-platform comparison of melting instruments.

Melting curves of a 110-bp amplicon including the sickle cell SNP in the presence of

LC Green R©Plus. Each genotype was melted and displayed in triplicate on 8 different

instruments. Wild-type samples are shown in green, heterozygotes in blue, and the

homozygous mutants in red. (A) normalized melting curves for genotyping, (B)

temperature-shifted curves for heterozygote scanning. From [Herrmann et al., 2006].
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I.1.3 Assembling informative samples

Selection of LCLs

As described on the diagram of the Aims section, the case-control mutation

screening project on breast cancer susceptibility genes ongoing in our laboratory

provided genotyping information for common SNPs in the genes of interest. For

each gene assessed for DAE, we were therefore able to select a set of breast cancer

patients, heterozygous for a selection of marker SNPs and for which lymphoblastoid

cell lines (LCLs) were available for further DAE assessment2. The LCLs included

in our study were derived from subjects, who were considered to be at high risk

of carrying a genetic predisposition to breast cancer due to an early age at onset

and/or family history, and for whom no mutation in BRCA1 or BRCA2 genes

had been identified.

Samples preparation

In some of the genes that we aimed to analyze, DAE could result from NMD, a

cellular mechanism responsible for the specific degradation of an allele bearing

a premature stop codon. In order to address this issue, RNA was prepared

from each LCL under two culture conditions. One condition was a standard

LCL culture condition, which was also the source of the genomic DNAs. The

second condition involved cells that had been treated with puromycin, a translation

inhibitor frequently used to stabilize transcripts containing a premature stop codon

subject to NMD, without stabilizing either the wild-type transcript or transcripts

containing a premature stop codon that are nonetheless insensitive to NMD.

[Ware et al., 2006]. Complementary DNA (cDNA) was prepared from these two

sources of RNA and will be hereafter referred to as "cDNA" and "puro-cDNA",

respectively.

2Again, a more thorough description of the marker SNP selected and LCLs enrolled in each

DAE study has been included in the section of the memoir reporting the corresponding results.
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Before cDNA preparation, RNA integrity was controlled using the BioAnalyzer and

RNA NanoChip II kit. Good quality RNAs, producing an RNA integrity number

(RIN) ≥ 8, were selected for further analysis [Schroeder et al., 2006]. Whenever

the quality threshold was not reached for a sample, RNA extraction was repeated

so that all the RNAs used in this study had a minimum RIN of 8.

The NMD inhibitory treatment was really an anticipation to address Aim 4. As

shown in the Aims diagram, in some cases, DAE could be explained by sequence

variants identified during the mutation screening process, which investigated the

coding exons and proximal intronic splice consensus sequences of candidate genes.

These sequence variants include truncating mutations that induce NMD.

Observed DAE could also result from splice junction variants that lead to

an unstable transcript. After eliminating the possibility of DAE linked to

sequence variants found in the coding region, one can reorient the search towards

sequence variation in non-coding regions, using bioinformatics methods, which

allow for instance to identify SNPs in putative transcription factor binding

sites and to study the evolutionary conservation of the surrounding sequences

[Wasserman and Sandelin, 2004, Jordheim et al., 2008].

I.1.4 Statistical criteria for evidence of DAE

In the end, a test for DAE by HRM analysis is very much like biallelic marker

genotyping, with two differences. First, the sample is cDNA, not genomic DNA.

Second, the DAE test is done only on heterozygous samples and departure from the

expected 1:1 ratio of a perfect heterozygote is indicative of differential expression.

Although not the template of interest, genomic DNA must be assessed to provide

the expected peak heights ratio value for a 1:1 allelic ratio. Thus, genomic DNA

serves as internal control to control for any bias in the binding of the fluorescent

probe to the two alleles. The level of allelic imbalance of an individual is calculated

by dividing the signal ratio of the cDNA by its reference, the corresponding ratio

of genomic DNA.
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To allow for statistical calculations, each LCL is assessed in several PCR1

replicates of genomic DNA, cDNA and puro-cDNA. Statistical significance for

allelic imbalance is calculated using Student’s t-test. Criteria for DAE are the

following: i) the point estimate of the difference between genomic DNA and cDNA

ratios should be greater than 20%; ii) at p-value ≤ 0.05, and iii) with the 95%

confidence interval of the point estimate not including a null difference.

I.2 The early stages of the method: the HR-1
TM

instrument

I.2.1 Preliminary study: assessment of the TP53 gene

Assay design for the TP53 gene

Selection of a polymorphic cDNA marker and informative LCLs For

assay implementation, we chose to study the TP53 gene, which contains a number

of common polymorphisms and rare mutations [Szymańska and Hainaut, 2003].

Among the SNPs of the coding region, we selected SNP c.215C>G (p53R72P,

rs1042522). This SNP is responsible for a proline (CCG: P, ancestral allele) to an

arginine (CGG: R) substitution at codon 72 of exon 4 of TP53 . It will be hereafter

referred to as the R72P polymorphism.

TP53 was not included in the case-control mutation screening project. However,

previous work by Gemignani et al suggested the existence of a common mechanism

leading to the disruption of the allelic expression balance for that gene. The

authors reported that individuals homozygous for the C variant of R72P had

a reduced expression of TP53 compared to GG homozygotes. Heterozygous

individuals had an intermediate level of expression [Gemignani et al., 2004]. These

findings guided our choice to assay this gene during our preliminary work.
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For this preliminary study, a panel of 74 LCLs, derived from breast cancer patients,

were genotyped for the R72P polymorphism, by Taqman technology as described

later. Twenty-five heterozygotes, for which RNA was immediately available, were

used to test the assay. Two GG homozygotes and two CC homozygotes were also

selected for further tests.

The HRM assay In their study of the BRCA2 gene, Ware et al. used

a SimpleProbe approach. We attempted to use the same kind of probe but

were unsuccessful in obtaining a clear fluorescent signal. This was probably

due to the presence of many Gs in the area surrounding the marker SNP

[Gameau et al., 2005]. We thus turned to a fluorescein-labeled probe.

The fluorescein probe (5’-GGCTGCTCCCCGCGTGGC-3’) was incorporated in

the PCR2 reaction. PCR2 products were overlaid with clear oil before transfer

into a glass capillary and analysis with the HR-1
TM

instrument. Melting curves

were obtained by continuous measurement of the fluorescence during heating from

40 to 80̊ C. Although one sample is analyzed at a time, the turnaround was fast

enough (2 minutes) to allow reasonable throughput.

Relative abundance of each allele was obtained from the ratio of the peak heights

calculated on the first negative derivative plot of the fluorescence. Peak heights

were measured manually. Then measurements were included in an Excel sheet to

calculate peaks ratios and to determine the statistical significance of the observed

allelic imbalance, using Student’s t-test.

Mixing experiment A standard curve was generated by mixing genomic DNA

from individuals homozygous for the common (G) and rare (C) variant, in the

following G:C ratios: 9:1, 8:2, 7:3, 6:4, 5:5, 4:6, 3:7, 2:8 and 1:9 (data not shown).

Linearity of the method was validated by calculating the determination coefficient.

An R2 of 0.9918 was obtained, establishing that fluorescein probe melting analysis

could accurately allow detection of changes in the relative abundance of the

two alleles in a heterozygous sample, by assessment the heights of the peaks

corresponding to each allelic variant.
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Assessment of genomic DNA Next, we aimed to determine the average ratio

observed in genomic DNA, representing a perfect 1:1 ratio of the two alleles, in our

collection of 25 heterozygotes for R72P. Despite the fact that the copy number of

each allele is theoretically equal in LCLs, we found that the two peak heights ratio

differed from 1. Indeed, we actually observed an average ratio of 0.42 [95% CI =

0.385-0.448] across the 25 heterozygous samples. The assay was replicated and the

same average ratio, and similarly low standard deviation and CI values (95% CI

= 0.386- 0.448), were obtained from the second assay. These data generated from

known heterozygotes demonstrated the between samples reproducibility of the

assay and the normal variation in a situation where both alleles are theoretically

equally abundant.

First published application of the TP53 assay

Implementation of the assay was conducted in collaboration with Dr Lars P.

Jordheim, who was studying acute myeloid leukemia (AML). Our results for DAE

assessment of TP53 will be reported in Chapter III of this section.

Jordheim et al. previously reported that mRNA expression levels of certain

genes have shown predictive value for the outcome of AML-patients treated with

cytarabine [Jordheim and Dumontet, 2007]. In the following article, the DAE-

approach was used to i) to investigate whether interindividual variations in mRNA

expression levels of genes involved in the cellular response to cytarabine could, at

least in part, be due to genetic polymorphisms and ii) to identify the regulatory

SNPs responsible for these differences.

Using leucoblasts from AML patients treated with cytarabine, the HRM approach

was used to assess genes with a key role in the metabolism and mechanism of action

of cytarabine, and with strong evidence of clinical relevance. These were the genes

for the equilibrative nucleoside transporter 1, SLC29A1, deoxycytidine kinase,

DCK, cytidine deaminase, CDA, cytosolic 5’-nucleotidases II and III, NT5C2 and

NT5C3, and the tumor suppressor gene TP53 . Different extents of DAE were

observed but the causative variants could not be identified through a bioinformatics

approach.
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ABSTRACT:

mRNA expression levels of certain genes have shown predictive

value for the outcome of cytarabine-treated AML-patients. We

hypothesized that genetic variants play a role in the regulation of

the transcription of these genes. We studied leukoblasts from 82

patients with acute myeloid leukemia and observed various extent

and frequency of differential allelic expression in the CDA, DCK,

NT5C2, NT5C3, and TP53 genes. Our attempts to identify the caus-

ative regulatory single nucleotide polymorphisms by a bioinformat-

ics approach did not succeed. However, our results indicate that

genetic variations are at least in part responsible for the differ-

ences in overall expression levels of these genes.

The deoxynucleoside analog cytarabine (1-�-D-arabinofuranosylcy-
tosine) is a major component of the chemotherapeutic treatment of
patients with acute myeloid leukemia (AML). The most important
limitation for the use of deoxynucleoside analogs in the clinic is the
presence of primary or acquired resistance. Several studies have
identified clinically relevant mechanisms of resistance in patients with
leukemia or other malignant diseases (Jordheim and Dumontet, 2007).
In particular, the mRNA expression level of several genes has been
correlated to the outcome of the treatment with cytarabine or gemcit-
abine (2�-2�-difluorodeoxycytidine), another analog of deoxycytidine.
In all of these studies, large variations in the expression levels of
genes involved in cytarabine metabolism have been observed between
patients, suggesting the presence of important regulatory mechanisms.
In addition to differences in levels and activities of transcription
factors and stability of mRNA, variations in the genomic sequence of
the gene and its regulatory elements can influence the mRNA level. In
fact, at least 25 to 35% of interindividual differences in gene expres-
sion are supposed to be caused bycis-acting variations (Pastinen and
Hudson, 2004).

When a heterozygous genetic variation induces a difference in
mRNA expression level, the two corresponding alleles are expressed
at different levels. This is called differential allelic expression (DAE)
or allelic expression imbalance (Pastinen and Hudson, 2004). Cur-
rently, DAE is studied in samples heterozygous for an exonic varia-
tion (exonic single nucleotide polymorphisms; cSNP) used as a
marker to determine the relative amount of transcripts from the two
alleles. This method allows the distinction betweencis- and trans-
acting effects because the cellular environment and mRNA extraction
are exactly the same (Stamatoyannopoulos, 2004). The cSNP used for
the assessment of DAE is not necessarily responsible for the allelic
expression imbalance, and additional investigations are needed to
identify the functional regulatory variant (regulatory SNP; rSNP) or
the underlying epigenetic modification (Milani et al., 2007).

Specific mRNA expression levels can be used to predict the out-
come of cancer patients treated with chemotherapy. Because genetic
variants are partially responsible for variations in gene expression,
these could potentially be used as more precise markers for this
prediction (Stamatoyannopoulos, 2004; Abraham et al., 2006). For
AML, the use of reliable predictive markers would substantially
increase the treatment success rate and the overall management of the
cancer patients. Our main goal in this study was to investigate whether
interindividual variations in mRNA expression levels of genes in-
volved in the cellular response to cytarabine could, at least in part, be
due to genetic polymorphisms. As a secondary goal, we tried to
identify the rSNPs responsible for these differences. We focused on
genes with a key role in the metabolism and mechanism of action of
cytarabine and with strong evidence of clinical relevance. We chose
the genes for the equilibrative nucleoside transporter 1,SLC29A1,
deoxycytidine kinase,DCK, cytidine deaminase,CDA, cytosolic 5�-
nucleotidases II and III,NT5C2andNT5C3, and the tumor suppressor
geneTP53. We used a method based on high-resolution melting-curve
analysis to assess the DAE of these genes, determined their relative
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expression level, and tried to identify causative rSNPs in leukoblasts
from 82 patients with AML.

Materials and Methods

Biological samples were obtained from 82 patients with AML at diagnosis
before initiation of therapy, all followed in the Hematology Department of
Edouard Herriot Hospital in Lyon, France. Approval was obtained from Lyon
Protocol Review Board, and written informed consent was provided according
to the Declaration of Helsinki. Mononuclear cells including leukemic cells
were isolated by Ficoll-Hypaque sedimentation from peripheral blood (n � 33)
and bone marrow (n � 49). Median percentages of blast cells in peripheral
blood and in bone marrow were 61 (range, 13–99%) and 69% (range, 20–
95%), respectively.

Total RNA and genomic DNA were extracted with TRIzol Reagent (In-
vitrogen, Cergy Pontoise, France), and cDNA synthesis was performed with 1
�g of total RNA using SuperScript III Reverse Transcriptase (Invitrogen) and
oligo(dT) primers.

SNPs were genotyped by high-resolution melting-curve analysis of poly-
merase chain reaction (PCR) products in the presence of LCGreen Plus�

(Idaho Technologies, Salt Lake City, Utah) (Reed and Wittwer, 2004) or a
fluorescent probe (Crockett and Wittwer, 2001), using a LightScanner Instru-
ment (Idaho Technologies). All PCR primers and cycling conditions are
described in supplemental tables.

DAE was assessed with the same technique as the genotyping, using cDNA
and genomic DNA based on a previously described method (Ware et al., 2006).
All of the samples were amplified five times. Melting curves were analyzed
with the HR-1 Instrument Analysis Software (Idaho Technologies), peak
heights were measured manually, and the ratio of the two peaks corresponding
to the two alleles was calculated for cDNA and genomic DNA. Allelic
expression imbalance of each sample was calculated as the ratio (mean ratio
for cDNA)/(mean ratio for gDNA). A sample was considered to have DAE if
this ratio was�0.8 or�1.2 and if the difference between the mean ratios was
statistically significant atp � 0.01 as calculated with the Student’st test. The
linearity of the method for the assessment of DAE was validated using mix of
genomic DNA from common and rare homozygous samples containing 20 to
80% of each allele.R2 values were between 0.9918 and 0.9979 forCDA,
NT5C2, NT5C3, andTP53. ForNT5C3, PCR products of PCR1 were digested
with PvuII to avoid interference with mRNA from pseudogeneNT5C3P1as
described earlier (Marinaki et al., 2001).

SNPs situated in putative transcription factor binding sites, or rSNPs, were
identified in the region situated upstream of the start codon of genes of interest
using the public databases RAVEN (http://www.cisreg.ca/cgi-bin/RAVEN/a),
CONSITE (http://mordor.cgb.ki.se/cgi-bin/CONSITE/consite/), and TESS
(http://www.cbil.upenn.edu/cgi-bin/tess/tess). Their evolutionary conservation
was verified by comparative sequence analysis with mouse, dog, and cow
using seqcom comparisons in FamilyRelations II (http://family.caltech.edu/)
with a window size of 20 base pairs and a threshold of 0.8. Putative rSNPs for
DCK andSLC29A1were selected from the literature.

mRNA expression levels were determined by relative quantitative reverse
transcription (RT)-PCR on an ABI PRISM 7900 sequence detection system
(Applied Biosystems, Courtaboeuf, France) usingGAPDHas internal stan-
dard and the comparative threshold cycle method as described in the user’s
guide. TaqMan gene expression assays were Hs00156401_m1 (CDA),
Hs00176127_m1 (DCK), Hs00366992_m1 (NT5C2), Hs00826433_m1
(NT5C3), Hs00191940_m1 (SLC29A1), and Hs00153349_m1 (TP53).

The Student’st test was used for statistical analysis of DAE (differences in
mean of ratios between cDNA and gDNA) and of the association between
genotype and mRNA expression (differences in mean mRNA expression
between genotype groups).

Results and Discussion

The DAE protocol can only be applied to samples that are het-
erozygous for a marker cSNP in the target gene. GenotypingCDA,
DCK, NT5C2, NT5C3, andTP53in our series of 82 patients revealed
that 13 to 41 (15.9–51.3%) were heterozygous for selected cSNPs
with theoretically high frequency, and thereby suitable for the DAE

experiments (Table 1). ForNT5C2, two highly frequent cSNPs were
genotyped, but only rs3740387 in exon 18 was retained for DAE-
assessment.SLC29A1was excluded from the analysis because only
one heterozygote for the cSNP was found. This is consistent with the
reported low frequencies of cSNPs inSLC29A1in Europeans (Osato
et al., 2003). Statistically significant DAE was observed in 57.7, 50.0,
8.7, 38.5, and 16.7% of positive samples forCDA, DCK, NT5C2,
NT5C3, and TP53, respectively (Fig. 1; Table 1). The extent of
imbalanced allelic expression varied from 20% up to monoallelic
expression ofNT5C3 in four samples. The percentage of DAE-
positive samples for each gene was not different between samples
from peripheral blood and bone marrow. DAE has been reported to be
tissue-dependent (Wilkins et al., 2007), but here we studied the same
cells (leukoblasts) in two different environments (peripheral blood
and bone marrow). Detection of DAE provides strong evidence that
cis-genetic variation is involved in the determination of the expression
level of these genes. We observed DAE in leukoblasts that are the
target cells for the cytarabine-based treatment of AML. Therefore,
cis-regulation of these genes could have a direct impact on the
efficiency of the chemotherapeutic drug used for treatment of AML.
Because DAE was assessed in samples heterozygous for a marker
cSNP only and the linkage disequilibrium with the causative SNP is
unknown, it is difficult to estimate the rate of DAE in the whole
population of 82 AML patients. The observed DAE could be due to
genetic or epigenetic variants in transcription factor binding sites or
by nonsense-mediated mRNA decay. We did not have biological
material to study nonsense-mediated mRNA decay, but we continued
our research on putative rSNPs.

Eighteen putative rSNPs in the 5�-region of our genes of interest
were identified by bioinformatics tools or selected from the literature
(Shi et al., 2004; Fitzgerald et al., 2006; Gilbert et al., 2006; Joerger
et al., 2006; Myers et al., 2006; Sugiyama et al., 2007). Compared
with sequencing of large upstream regions of genes, this method
allows screening of thousands of kb in silico to make a selection of
potential rSNPs in either proximal promoters or more distant candi-
date enhancers (Wasserman and Sandelin, 2004). The different data-
bases identified various SNPs situated in potential transcription factor
binding sites within the regulatory elements and for which the two
alleles potentially did not have the same affinity for transcription
factors (data not shown). Sequence conservation through mouse, dog,
and cow was more or less constant. After genotyping of these SNPs,
their comparison with the DAE status did not show any correlation
(Table 1). This result might be explained by the limited power of the
study of some SNPs (few heterozygote samples) or reflect the fact that
the studied SNPs do not intervene in the regulation of the expression
of these genes. Functional rSNPs in our genes of interest can be as
follows: SNPs that we did not chose to genotype; situated in se-
quences not reported on the publicly available databases; or situated
elsewhere than upstream of the start codon. In addition, the analysis
might have been complicated by the presence of several rSNPs in the
same gene.

Median values (and ranges) for relative mRNA expression in leu-
koblasts from 67 patients were 8.1 (0–215.3) forCDA, 12.6 (2.5–
162.6) forDCK, 8.0 (0–88.7) forNT5C2, 0.8 (0.1–6.0) forNT5C3,
1.0 (0–18.2) forSLC29A1(n � 65), and 1.0 (0–6.6) forTP53. This
result confirmed our previous publications reporting large interindi-
vidual variations in gene expression between AML patients (reviewed
in Jordheim and Dumontet, 2007). If the role of the functional rSNP
is important compared with other regulating parameters, genotypes
should be correlated to the mRNA expression of the regulated gene,
with heterozygous samples between the two groups of homozygotes.
Comparison between the genotype groups of cSNPs and rSNPs did
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TABLE 1

Genotype, DAE, and quantitative RT-PCR data for all studied cSNPs and rSNPs

Two to six SNPs were genotyped in each gene and correlated to mRNA expression level as determined by quantitative RT-PCR and the DAE status.

Gene

SNP Information Genotyping Results Quantitative RT-PCR Results DAE Results

SNP ID cSNP/rSNP Nucleotide
Positiona

Nucleotide
Change HHb (%) Hhb (%) Hhb (%) Negative mRNA HHc (n) mRNA Hhc (n) mRNA hhc (n) Hh

DAE�
d

Hh
DAE�

d
HH/hh

DAE�
d

HH/hh
DAE�

d
Negative Genotype
DAE� or DAE�

d

CDA rs2072671 cSNP �79 A�C 28 (35.00) 41 (51.25) 11 (13.75) 2 19.33� 21.68 (19) 19.16� 7.67 (36) 5.75� 3.14 (11) 15 11
CDA rs6690069 rSNP �1172 G�A 62 (86.11) 7 (9.72) 3 (4.71) 10 17.54� 9.11 (51) 35.46� 40.15 (4) 6.95� 8.08 (3) 1 2 12 8 3
CDA rs10916823 rSNP �897 C�A 71 (100.00) 0 (0.00) 0 (0.00) 11 18.23� 8.47 (58) 0 0 13 10 3
CDA rs532545 rSNP �451 C�T 23 (32.86) 35 (50.00) 12 (17.14) 12 21.25� 25.61 (16) 20.28� 9.42 (29) 8.38� 3.92(12) 12 8 1 2 3
CDA rs12095662 rSNP �378 T�C 71 (100.00) 0 (0.00) 0 (0.00) 11 18.23� 8.47 (58) 0 0 13 10 3
CDA rs602950 rSNP �92 A�G 25 (35.21) 33 (46.48) 13 (18.31) 11 21.67� 24.07 (17) 19.64� 9.86 (28) 8.32� 3.96(12) 12 7 1 2 4
DCK rs11544786 cSNP �28624 C�T 69 (85.15) 13 (15.85) 0 (0.00) 0 19.18� 6.02 (56) 21.58� 8.14 (11) 5 5
DCK SNP-360 rSNP �360 C�G 79 (97.53) 2 (2.47) 0 (0.00) 1 19.15� 5.35 (64) 30.54� 34.90(2) 0 0 5 5 0
DCK SNP-243 rSNP �243 G�T 81 (100.00) 0 (0.00) 0 (0.00) 1 19.49� 5.27 (66) 0 0 5 5 0
DCK rs2306744 rSNP �201 C�T 80 (100.00) 0 (0.00) 0 (0.00) 2 19.74� 5.32 (65) 0 0 5 5 0
NT5C2 rs10883841 cSNP �7 T�C 61 (79.22) 16 (20.78) 0 (0.00) 5 15.71� 4.56 (49) 9.40� 4.27 (15) 0 7 2 13 1
NT5C2 rs3740387 cSNP �85248 C�T 30 (38.46) 27 (34.62) 21 (26.92) 4 12.16� 4.56 (26) 15.34� 7.53 (22) 14.32� 6.66 (19) 2 21
NT5C2 rs12781668 rSNP �19360 T�A 81 (100.00) 0 (0.00) 0 (0.00) 1 13.82� 3.54 (67) 0 0 2 21 0
NT5C2 rs7917650 rSNP �2486 C�G 51 (66.23) 21 (27.27) 5 (6.49) 5 12.09� 3.38 (39) 18.15� 9.80 (19) 5.02� 1.64 (4) 1 9 1 10 2
NT5C2 rs12261294 rSNP �238 G�A 35 (45.45) 34 (44.16) 8 (10.39) 5 13.04� 4.49 (26) 13.39� 4.50 (30) 5.00� 2.06 (6) 1 15 1 3 3
NT5C3 rs3750117 cSNP �14,603 C�T 38 (46.34) 32 (39.02) 12 (14.63) 0 1.31� 0.44 (33) 1.12� 0.37 (25) 1.10� 0.96 (9) 10 16
NT5C3 rs13228639 rSNP �26881 A�G 36 (45.57) 36 (45.57) 7 (8.86) 9 1.27� 0.42 (33) 1.14� 0.47 (21) 0.88� 0.40 (4) 10 13 0 0 3
NT5C3 rs7778958 rSNP �6937 G�A 37 (45.68) 34 (41.98) 10 (12.35) 1 1.27� 0.43 (33) 1.16� 0.40 (25) 1.15� 1.08 (8) 9 14 0 2 1
NT5C3 rs4723239 rSNP �6441 A�G 76 (95.00) 4 (5.00) 0 (0.00) 2 1.26� 0.31 (61) 0.65� 0.62 (4) 0 4 9 12 1
NT5C3 rs4316067 rSNP �5933 T�C 35 (43.75) 32 (40.00) 13 (16.25) 2 1.10� 0.42 (25) 1.25� 0.47 (29) 1.51� 0.74(11) 5 9 5 6 1
SLC29A1 rs8187641 cSNP �3312 T�C 78 (98.73) 1 (1.27) 0 (0.00) 3 1.56� 0.62 (66) 1.12� 0.00 (1)
SLC29A1 rs747199 rSNP �706 G�C 54 (67.50) 24 (30.00) 2 (2.50) 2 1.71� 0.92 (43) 1.24� 0.54 (20) 1.64� 1.44 (2)
TP53 rs1042522 cSNP �441 G�C 49 (60.49) 23 (28.40) 9 (11.11) 1 1.29� 0.35 (40) 1.57� 0.58 (21) 1.17� 0.61 (6) 3 15
TP53 rs17885803 rSNP �12565 G�A 64 (84.21) 11 (14.47) 1 (1.32) 6 1.29� 0.27 (53) 1.77� 1.24 (9) 0.81� 0.00 (1) 2 3 1 11 1
TP53 rs17883670 rSNP �11805 C�G 75 (100.00) 0 (0.00) 0 (0.00) 7 1.36� 0.29 (62) 0 0 3 13 2

HH, frequent homozygote; Hh, heterozygote; hh, rare homozygote.
a Position with respect to ATG as�1.
b Genotyping results.
c Mean values for mRNA expression level�95% confidence interval.
d Data only concerning samples with determined DAE status.
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not show statistically significant differences (Table 1). However,
trends were seen for rs2072671 inCDA [p � 0.07 for comparison
between heterozygote (19.16,n � 36) and rare homozygous (5.75,
n � 11) samples] and for rs12261294 inNT5C2 [p � 0.10 for
comparison between the pool of common homozygous and heterozy-
gote (13.23,n � 56) samples and the rare homozygous (4.96,n � 6)
samples]. We did not observe higher expression forSLC29A1in
samples with C alleles for rs747199 as previously reported (Myers et
al., 2006). Lower promoter activity has been shown for T alleles of
rs532545 inCDA, which is consistent with our mRNA data in TT-
samples for this variant (Fitzgerald et al., 2006; Gilbert et al., 2006).
When subgroups of samples were compared for their correlation
between genotypes and mRNA expression, statistically significant

differences were observed in some cases. This was the case, for
example, for rs4316067 inNT5C3[p � 0.005 for comparison between
heterozygote (n � 11) and rare homozygous (n � 4) samples from
peripheral blood only] and rs1042522 inTP53 [p � 0.001 for com-
parison between common homozygous (n � 22) and heterozygotes
(n � 14) samples from blood marrow only]. Comparison of gene
expression levels between samples with or without DAE showed no
differences (data not shown), thus eliminating low expression of the
target gene as a bias of DAE assessment (Pastinen and Hudson, 2004).

This work provides proof that genes involved in the cellular re-
sponse to cytarabine are subject to genetic or epigenetic regulation in
leukemic blasts. The fact that a patient shows differential allelic
expression in a cytarabine-related gene would not have an affect on

FIG. 1. Allelic-specific expression of CDA (A), DCK (B), NT5C2 (C), NT5C3 (D), and TP53 (E) in leukoblasts from AML patients. All samples heterozygous for cSNPs
in CDA (rs2072671),DCK (rs11544786),NT5C2 (rs10883841),NT5C3 (rs3750117), andTP53 (rs1042522) were assessed for DAE (5 replicates), and statistical
significance was calculated using the Student’st test for comparison of the mean of the ratios of cDNA versus genomic DNA as explained underMaterials and Methods.
The y-axis shows the value of the ratio of mean cDNA ratios over mean gDNA ratios. Samples without DAE have a ratio of 1. Horizontal bars indicate the lower (0.8)
and upper (1.2) limits of the�20% zone. Thex-axis shows sample IDs.�, samples with a ratio lower than 0.8 or higher than 1.2 and withp � 0.01 using the Student’s
t test;��, samples with monoallelic expression of NT5C3. BM, samples from blood marrow; PB, samples from peripheral blood.
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the response to the treatment. However, this clearly indicates that
interindividual differences in gene expression with predictive power
in cohorts of AML patients treated with cytarabine can at least
partially be explained by genetic variations. In addition to providing
an explanation to previous data available in this field, our results
strongly encourage the search of causative variants for the differences
in expression levels.
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I. Implementation of an HRM assay for DAE analysis Results

I.2.2 Preliminary assessment of the CHEK2 gene

Assay design for the CHEK2 gene

Selection of polymorphic cDNA markers and informative samples

Based on the genotyping data provided by the mutation screening project, we

selected as markers the SNPs with the highest frequencies so it would allow us

to maximize the number of available informative LCLs. These were the SNPs

g.4879C>G (rs2236142) and g.4953G>A (rs2236141) located in the 5’UTR region

of the gene.

Thirty-two were heterozygotes for rs2236142 and seventeen were heterozygotes for

rs2236141. Eight individuals were double heterozygotes. RNA was prepared from

the selected LCLs, under the two cell culture conditions mentioned previously, in

order to be able to evaluate the effect of NMD inhibition on allelic expression.

Specificities to CHEK2 assay We employed specific primer pairs in the PCR1

to amplify genomic DNA and cDNA. Both markers were assayed by SimpleProbe

melting analysis.

PCR product melting curves were obtained from the HR-1
TM

by melting from 35 to

75̊ C. Given the large umber of samples to assess, we sought to reduce the work load

by automatizing peak height measurements and ratio calculations. Therefore, each

analysis file generated by the HR-1
TM

software was exported and processed with

Excel macro that I wrote. For each sample, the HR-1
TM

provided the fluorescence

estimate at each temperature point. Based on this information, the macro was

written to draw the derivative curve, to measure the peak heights, to calculate the

peaks ratios and to perform the Student’s t-test.

Mixing experiment

We created a range of melting curves associated with known allelic imbalance.

Using SNP rs2236142 as marker, we produced bi-allelic templates with the
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I. Implementation of an HRM assay for DAE analysis Results

following G:C proportions: 1:9, 2:8, 3:7, 4:6; 5:5, 6:4, 7:3; 8:2, 9:1. As shown

in Figure I.3, the melting profile of the mixtures of opposite homozygotes reflected

the relative contribution of each amplicon to the total mixture. Peak height ratios

were calculated with the Excel macro. Following regression analysis, the coefficient

of determination used to assess the relationship between allelic imbalance and peak

height ratios measurement using our method was R2 = 0.974.

For the second marker SNP rs2236141, regression analysis provided an R2 = 0.973

(data not shown).

Figure I.3: Mixing experiment to assess the efficiency of HRM analysis for detection

of DEA with a SimpleProbe using the HR-1
TM

instrument. Bi-allelic templates were

artificially created with genomic DNA of opposite homozygous for SNP rs2236142. The

determination coefficient (R2) between the expected and the observed allelic ratios was

0.974 in this experiment.

Preliminary DAE results

The preliminary study of CHEK2 was performed on the largest set of available

samples, i.e. the heterozygotes for SNP rs2236142.

Out of the 32 available LCLs, four met our statistical criteria for presence of DAE.

Figure I.4- A and B show respectively the genomic DNA and the cDNA melting

profiles of one of these samples. Following NMD inhibitory treatment, we observed

that the cDNA profile changed towards a genomic DNA profile, suggesting that
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the NMD pathway plays a role in the DAE observed in that sample (Figure I.4-

C). We found the same pattern in all four samples with statistically significant

DAE.

Figure I.4: Evidence for DAE of the CHEK2 gene in an heterozygous sample for SNP

rs2236142. Melting curves of four replicates of genomic DNA (A) and four replicates of

cDNA (B) suggest the existence of DAE in the assessed individual. Insert (C) shows

the melting profile of one replicate of cDNA (in red) and one replicate of puro-cDNA

(orange). The differences in peak height ratios between the two support a role for NMD

in the observed DAE. Melting curves were obtained from the HR-1
TM

instrument.

From the mutation screening project data, we were able to determine that the

four LCLs evincing statistically significant DAE were heterozygous carriers of the

truncating mutation CHEK2*1100delC. The CHEK2*1100delC deletion, falling

in the kinase domain of the protein, has been widely studied for its contribution

to inherited breast cancer susceptibility [Oldenburg et al., 2003]. This mutation

induces a premature stop codon in exon 10, and causes the truncation of the protein

at codon 381 thus abrogating its kinase activity. Our results support previous

findings that the NMD pathway specifically targets mRNA bearing the 1100delC

mutation, thus inducing alterations in the expression of these transcripts.
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I.3 Upscaling the method

I.3.1 A higher throughput with the LightScannerR©

instrument

Our preliminary work showed that HRM analysis with the HR-1
TM

instrument

was an accurate approach to assess DAE. However, our protocol requires that

DNA and cDNA analyses be performed in four PCR1 replicates, for each assessed

LCL. To complete the study CHEK2 and TP53 , as well as for ATM , for which we

were expecting to gather at least 50 LCLs, throughput was becoming an important

issue. Consequently, despite its very high accuracy, the single capillary throughput

format of the HR-1
TM

instrument was an important limitation for our analysis. It

was time-consuming to read and to process the data.

Some months after initiation of the DAE project, our laboratory acquired a 384-

LightScanner R©. Since the LightScanner R© was reported to produce almost as good

scanning specificity as the HR-1
TM

[Herrmann et al., 2006, Herrmann et al., 2007],

we aimed to adapt our protocol to this instrument. The different sources of

template DNA (genomic DNA, cDNA and puro-cDNA) and their replicates would

thus be assayed in parallel, which would allow for a more consistent comparison

of their melting profiles.

To verify the ability of the LightScanner R© to detect small allelic variations, we

performed a mixing experiment as we did with the HR-1
TM

. We confirmed that

the LightScanner R© had high enough resolution to detect small variation in allelic

balance, using both SimpleProbes and fluorescein probes (Figure I.5).

In our experiment, each HRM run was performed in a 96-well format. Each plate

analyzed a batch of 8 LCLs. Four primary PCR replicates were performed for each

of theses LCLs, with genomic DNA, puro-cDNA and cDNA. Thus, each row of the

plate corresponded to one assayed LCL and proper organization of the samples on

the plate was very important to respect, in order to be able to use the analysis

tool described hereafter.
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Figure I.5: Mixing experiment to assess the efficiency of HRM analysis for detection of

DEA with a SimpleProbe and a fluorescein probe using the LightScanner R© instrument.

Bi-allelic templates were artificially created with genomic DNA of opposite homozygous

for SNP rs2236142. The determination coefficient (R2) between the expected and the

observed allelic ratios were 0.963 in this experiment.

I.3.2 Automation of the measurements with an R-script

To improve the analysis of allelic expression, an analysis tool was developed using

R statistical computing software in order to process data acquired with HRM

commercialized software. The script provides allelic imbalance estimates and

subsequent statistical calculations that are required to assess DAE.

We observed that the LightScanner R© software was not able to detect peak heights

when these were too small. We decided to write our own software package to

perform DAE analysis. We aimed to create a tool able to use the output format

of the LightScanner R© instrument, plot the melt curves and their derivatives, then

calculate the peak heights, deduce the allelic ratios, and lastly, perform statistical

analyses on the observed allelic imbalance.
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R provides a wide variety of mathematical, statistical and graphical tools, which

were flexible enough to address theses specific needs. The script is available

from http://sourceforge.net/projects/hrmdae. Installation instructions for R are

available from http://www.R-project.org.

Following the HRM run, a variety of data files are generated by the LightScanner R©

software, including a .flo file that provides the estimates of the fluorescence for

each temperature point, for the whole set of samples. Prior to executing the R-

script, the user must export this .flo file. The user must specify a number of

parameters, such as the sample ID, the approximate Tms observed during the

HRM run and the cut-offs to be used in the statistical calculations. Once the

appropriate information has been entered, the user can execute the script to launch

the DAE analysis.

Figure I.6: R-script: plot of the melting curve.

For each of the 96 samples, the R-script can plot the melting curve (Figure I.6) and

calculate the derivative curve (Figure I.7) . The resolution of the LightScanner R©

is so high that the raw signal seems messy. We used the Savitsky-Golay algorithm

to smooth the signal and to obtain a neat smoothed curve(Figure I.8). In order to

subtract noise due to the amplification, the curve is then normalized to a baseline

provided by a no-template control (Figures I.9 and I.10). The R-script measures the

peak heights for the 96 samples (Figure I.11), calculates the peak height ratios,
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Figure I.7: R-script: plot of the derivative melting curve.

Figure I.8: R-script: smoothing of the derivative melting curve using Savitsky-Golay

algorithm.
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Figure I.9: R-script: calculation of the baseline.

Figure I.10: R-script: normalization to the baseline.
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Figure I.11: R-script: measurement of the peak heights.

Figure I.12: R-script: calculation of the peak height ratios. Example of the 7th sample

from the samples series.
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Figure I.13: R-script: statistical test and result plot of 8 individuals from the samples

series. The script adds the ID of the samples showing interesting results in red.

groups the genomic DNA, cDNA and puromycin-cDNA replicates and averages

them for each of the 8 individuals on the plate (Figure I.12). A statistical analysis

is performed using a Student’s t-test to compare the genomic DNA to the cDNAs.

Eventually, R returns a summary of the measurements and a plot, where the x-axis

represents the level of allelic imbalance, and the y-axis represents the p-value for

the Student’s t-test. The hatched area and the red line represent a level of DAE ≤

20% and the threshold for a p-value = 0.05, respectively (Figure I.13). Results of

DAE analyses can be saved as image files or excel files for further reporting.

Optional plots and tables are also available for further checks. For instance, the

user can plot the melting curve of each replicate sample or the averaged curve for

the replicates for each individual. As can be seen on Figure I.13, in this series

of 8 individuals, two are clear outliers, suggesting they both carry statistically

significant DAE. Thus we aimed to look at the individual plots of each outlier. We

were able to verify visually that the melting profile of the genomic DNA of the

individual was normal. We were also able to observe that the DAE is visible only

in the cDNA melting curve and not in the puromycin-treated cDNA.
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Our package allows users to set options to perform both DAE assessment with

a fluorescein-labeled probe or with a SimpleProbe. Preliminary results obtained

with the HR-1
TM

instrument and the Excel macro have been counterchecked and

confirmed by writing another script specific to the data generated by HR-1
TM

.

Table I.1 shows a comparison of the duration of the DAE analysis between the

HR-1
TM

and the LightScanner R© instruments, for 96 samples, using their respective

R scripts.

DAE step HR-1TM instrument LightScanner R© instrument

PCRs Same duration Same duration

Data acquisition 2 days 12 minutes

Data analysis 1 full day 15 minutes

Table I.1: Comparison of the duration of the DAE analysis between the HR-1
TM

and the LightScanner R© instruments, for 96 samples.

In conclusion, we found that analysis on the LightScanner R© instrument combined

with the R script is of greater practical efficiency, and yields accuracy comparable

to the HR-1
TM

. Following successful accomplishment of Aim 2, i.e. the

implementation of an appropriate assay for DAE assessment, the chapters below

will present the results from the study of the CHEK2 , ATM and TP53 genes.
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II

DAE assessment of the CHEK2

gene

The purpose of the following paper was to present our novel approach based

on high-throughput HRM analysis and the R-script we have developed. We

describe the assessment of the breast cancer susceptibility gene CHEK2 , using

HRM analysis of two SimpleProbes, designed for marker SNPs rs2236141 and

rs2236142. We were able to test a total of 41 LCLs. We observed statistically

significant DAE in 4 LCLs. The fact that our sample set included LCLs from

patients carrying the 1100delC mutation, known to induce NMD, provided us a

positive control to validate our assay.
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Abstract

Background: The gene CHEK2 encodes a checkpoint kinase playing a key role in the DNA damage pathway.

Though CHEK2 has been identified as an intermediate breast cancer susceptibility gene, only a small proportion

of high-risk families have been explained by genetic variants located in its coding region. Alteration in gene

expression regulation provides a potential mechanism for generating disease susceptibility. The detection of

differential allelic expression (DAE) represents a sensitive assay to direct the search for a functional sequence

variant within the transcriptional regulatory elements of a candidate gene. We aimed to assess whether CHEK2

was subject to DAE in lymphoblastoid cell lines (LCLs) from high-risk breast cancer patients for whom no

mutation in BRCA1 or BRCA2 had been identified.

Methods: We implemented an assay based on high-resolution melting (HRM) curve analysis and developed an

analysis tool for DAE assessment.
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Results: We observed allelic expression imbalance in 4 of the 41 LCLs examined. All four were carriers of the

truncating mutation 1100delC. We confirmed previous findings that this mutation induces non-sense mediated

mRNA decay. In our series, we ruled out the possibility of a functional sequence variant located in the promoter

region or in a regulatory element of CHEK2 that would lead to DAE in the transcriptional regulatory milieu of

freely proliferating LCLs.

Conclusions: Our results support that HRM is a sensitive and accurate method for DAE assessment. This

approach would be of great interest for high-throughput mutation screening projects aiming to identify genes

carrying functional regulatory polymorphisms.

Background

The CHEK2 gene (cell cycle checkpoint kinase 2) is a multiorgan tumour susceptibility gene involved in

the maintenance of genomic stability. CHEK2 functions downstream of ATM to phosphorylate several

substrates, including p53, Cdc25C and BRCA1, leading to cell cycle arrest, activation of DNA repair or

apoptosis in response to DNA double-stranded breaks. Since CHEK2 plays a key role in the DNA damage

pathway, loss of function of the protein may allow cells to evade normal cell cycle checkpoints, ultimately

leading to tumour initiation or progression. The CHEK2*1100delC deletion, falling in the kinase domain of

the protein, has been widely studied for its contribution to inherited breast cancer susceptibility [1]. This

mutation induces a premature stop codon in exon 10, and causes the truncation of the protein at codon

381 thus abrogating its kinase activity. The frequency of CHEK2*1100delC differs between ethnic

populations, and is higher in the North of Europe and low or absent in other countries [2]. The

CHEK2-Breast Cancer Consortium reported a frequency of 5.1% for the CHEK2*1100delC variant in

familial breast cancer cases who tested negative for BRCA1 and BRCA2 mutations, as opposed to 1.1% of

carriers in the control population [3]. This intermediate-risk breast cancer susceptibility allele almost

triples the risk of developing the disease in unselected breast cancer cases (OR= 2.34; 95% CI[1.72 -

3.20]) [4]. Other founder mutations in CHEK2 have been associated with an increased risk of cancer [5].

Though first discovered in breast cancer patients, CHEK2 mutations have since been reported to

predispose to a range of cancer types, including ovarian, prostate, kidney and colorectal cancers [6],
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supporting the hypothesis that CHEK2 is a multiorgan cancer susceptibility gene [5].

As part of an international breast cancer genetics study aiming to investigate candidate genes conferring an

intermediate-risk of breast cancer, we mutation screened the coding exons and the adjacent proximal

introns of CHEK2 in 1415 cases and 1204 controls. The main goal of this study was to evaluate and to

compare the role of truncating mutations, splice junction mutations and rare missense substitutions in

breast cancer susceptibility (Le Calvez-Kelm et al., manuscript submitted). In order to fully assess the

contribution of CHEK2 in breast cancer susceptibility, we aimed to test whether the gene was subject to

differential allelic expression (DAE). In such a case, it would be worth extending variant discovery efforts

from the coding sequence of the gene to known or predicted regulatory regions to search for causal

variants. Indeed, phenotypic variation may be influenced by sequence variations in genes by alterations in

the quality or in the quantity of the encoded proteins [7]. These changes are transmitted from the gene to

the protein in the guise of modifications of the sequence or the abundance of mRNA. From this

perspective, it can be hypothesized that gene expression regulation may be the underlying explanation for

a proportion of cancer that have not been resolved yet by mutation screening of coding region in currently

known cancer predisposition genes.

Allelic imbalance was first described in parental imprinting and X-chromosome inactivation but it is

becoming clear that cis-acting variations in gene expression occur commonly in the human genome,

playing a key-role in human phenotypic variability [8–10]. Characterization of the effect of cis-acting

polymorphisms in regulatory regions is a great challenge due to the difficulty to locate these regions. In

addition, regulatory variants are not robustly detected by sequence analysis since SNP identification by

screening regulatory regions does not consistently allow prediction of the effect of observed SNPs on gene

expression. Thus, knowledge of the effect of genetic variants affecting mRNA transcription is very limited.

One possible approach to address this issue is the examination of disruption/alteration of gene expression

level. The most sensitive test for this phenomenon is to carry a careful survey of whether two alleles of a

gene are equally expressed. This approach has been used in studies aiming at identifying functional

cis-variants that can have a role in susceptibility to breast [11,12] and colorectal cancer [13,14] . In some

cases, observation of DAE will be explained by a truncating mutation resulting in non-sense mediated

mRNA decay (NMD) or by a splice junction mutation resulting in an unstable transcript. However, DAE

can also be the signature of a heterozygous carriage of a regulatory variant [15] or of an epigenetic event

(methylation) [16].

In this study, we used a high-resolution melting (HRM) analysis approach to perform allele-specific
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expression measurement in CHEK2. As in currently used methods for investigating DAE, this approach is

applied to individual subjects who are heterozygous for an exonic marker SNP, specifically targeted by a

labelled probe, called SimpleProbe [17,18]. Data acquisition on HRM instruments consists of monitoring

changes in the fluorescence intensity of the probe, as it dissociates from the two allelic templates, while the

probe-target duplexes are continuously heated. We have already reported the use of this methodology to

compare the relative abundance of allelic transcripts in a study investigating mRNA degradation due to

NMD in BRCA2 [18], and in a group of selected genes involved in the cellular response to the cytotoxic

agent cytarabine [19]. In these studies, DAE analysis was limited by the single-capillary throughput of the

HRM device used, the HR-1TM instrument, and allelic imbalance was quantified manually. Here, we report

additional experiments and testing, as well as up-scaling possibilities with a high-throughput HRM device,

the LightScanner R© instrument that uses a 384-well plate format. To improve the analysis of allelic

expression, an analysis tool was developed using R in order to process data acquired with HRM

commercialized software. Our script provides allelic imbalance estimates and subsequent statistical

calculations that are required to assess DAE.

Methods
Lymphoblastoid cell lines

We used a total of 89 lymphoblastoid cell lines (LCLs) derived from breast cancer patients, who were

considered to be at high risk of carrying a genetic predisposition to cancer due to an early age at onset

and/or family history, and for whom no mutation in BRCA1 or BRCA2 genes had been identified.

Biological samples were obtained from Creighton University School of Medicine (Omaha, NE, USA, 33

familial cases), Centre Léon Bérard (CLB, Lyon, France, 21 patients diagnosed below age 50) and the

Kathleen Cuningham Consortium for Research into Familial Breast Cancer (kConFab, Melbourne,

Australia, 35 familial cases). LCLs were established by Epstein-Barr virus immortalization of patients’

blood lymphocytes. Cells were maintained in RPMI 1640 medium (Invitrogen, Cergy-Pontoise, France)

supplemented with 20% fetal calf serum (VWR, Fontenay-sous-bois, France), 0.4% fungizon (Qiagen,

Courtaboeuf, France) and 1% penicilin-streptomycin (Invitrogen), in 5% CO2 incubator at 37◦C with 95%

humidity. For NMD inhibition, LCLs were treated for 6 hours with 100 µM puromycin (Sigma Aldrich, St

Quentin Fallavier, France).
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DNA samples

Genomic DNAs and total RNAs were extracted from LCLs using Puregene DNA isolation kit (Qiagen) and

NucleoSpin RNA II kit (Machery Nagel, Hoerdt, France), respectively. Integrity of RNA was controlled

using the BioAnalyzer and RNA NanoChip II kit (Agilent, Massy, France) according to the manufacturer’s

instructions. RNAs harbouring an RNA integrity number (RIN) ≥ 8 were selected for further analysis [20].

Whenever the quality threshold was not reached, a new RNA extraction was performed so that all the

RNAs used in this study had a minimum RIN of 8. Complementary DNA (cDNA) synthesis was performed

from 1 µg total RNA using SuperScriptTM III First Strand Synthesis System for RT-PCR (Invitrogen)

with oligo(dT) primers, according to the manufacturer’s instructions.

Mutation screening

The 89 subjects included in this study were drawn from a large-scale case-control mutation screening study

involving 1415 cases and 1204 controls, that has been described elsewhere [21,22]. CHEK2*1100delC

carriers were all confirmed by direct sequencing on genomic DNA (For mutation screening results, see

Additional file 1).

PCR amplification for DAE assessment

DAE was assessed in four replicates of primary PCR (PCR1), both with cDNA, cDNA from

puromycin-treated LCL, and genomic DNA ( For primers and probes, see Additional file 2). PCR1

contained 2 µl template DNA in 1X PCR Buffer, 1.5 mM MgCl2, 0.13 mM dNTP, 0.2 µM forward and

reverse primers specific to genomic DNA or cDNA, and 0.05 Units Platinum Taq Polymerase (Invitrogen),

in a final volume of 8 µl. The temperature cycling protocol was: 94◦C for 3 minutes; 30 cycles at 94◦C for

30 seconds, 62◦C for 45 seconds and 72◦C for 30 seconds; and finally 72◦C for 5 minutes. To reduce

competitive binding of the probe and the complementary strand during the melting curve analysis, the

secondary PCR (PCR2) was carried out asymmetrically, with the primer generating the target strand at a

5-fold higher concentration (0.5 µM) than the primer for the other strand (0.1 µM). In addition, PCR2

contained 2 µl of 1:15 diluted in TE−4 PCR1 products combined with 0.9X Buffer, 1.38 mM MgCl2, 0.12

mM each dNTP, 0.5 µM SimpleProbe (Tib Molbiol, Berlin, Germany) and 0.4 Units of Taq Platinum

Polymerase in a final volume of 6 µl. Clear oil (Avatech) saturated with Tween 80 (Sigma Aldrich) was

used to overlay PCR reactions. The temperature cycling protocol was the same as above, except that 45

cycles were performed. DAE analyses were performed in batches of 96 samples, corresponding to 4
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replicates of genomic DNA, 4 replicates of cDNA and 4 replicates of puromycin-treated cDNA derived from

8 different LCLs.

High-resolution melting analysis

PCR product melting curves were obtained from the HR-1TM and the LightScanner R© instruments by

melting from 35 ◦C to 75 ◦C. Data were obtained with the supplied software (HR-1TM v1.5 and

LightScanner R© Software v2.0, respectively), and then exported to an analysis tool that we developed in R,

a programming language and software environment for statistical computing and graphics

(http://cran.r-project.org). R scripts were developed in order to retrieve the data, to apply the

Savitsky-Golay filter to smooth the derivative melting curves and to calculate the peak heights. For each

sample, ratios were measured from 4 PCR-replicates and the mean ratio was calculated across all replicate

samples. The R scripts are available on http://sourceforge.net/projects/hrmdae. The level of allelic

imbalance for each individual was determined from the difference between the log of the signal ratio in

cDNA and the corresponding log ratio in genomic DNA. Statistical significance for the allelic imbalance

was calculated using Student’s t-test. Criteria for DAE were the following: i) the point estimate of the

difference between genomic DNA and cDNA ratios should be greater than 20%; ii) the Student’s t-test

p-value should be ≤ 0.05, and iii) the 95% confidence interval of the point estimate should not include

0 [13,18,19,23].

Results
Genotyping of CHEK2 exonic SNPs

The main goal of the initial case-control mutation-screening project was to identify rare, potentially

pathogenic genetic variants within the coding sequence and the proximal intronic splice consensus

sequences of CHEK2. This mutation screening simultaneously provided the genotype of all common coding

SNPs for every subject enrolled in the molecular epidemiology study. For 89 of the breast cancer patients

investigated, LCLs were available to conduct DAE analysis.

In order to make a differential measurement of the level of expression of the two alleles of a gene for a given

patient, one must be able to distinguish between the alleles. We used the two most common exonic SNPs

that were identified during the mutation screening process, namely rs2236142 and rs2236141, and only the

cell lines that are heterozygote for at least one of the two SNPs were selected for further analysis. These

two markers are reported to be common in the dbSNP database (Minor allele frequency of 49.2% and
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25.4% in European populations, respectively). Thirty-two out of 89 cell lines were heterozygotes for

rs2236142 and 17 out of 89 were heterozygotes for rs2236141 (AdditionalTable 1). Eight individuals were

double heterozygotes.

Evaluation of the HRM method to detect DAE

This technique relies on the distinction between the two alleles in heterozygous individuals using

differences in melting temperature (Tm) with a derivative fluorescent signal correlated to the relative

abundance of each transcript. We first verified that HRM could distinguish between the two alleles of each

SNP in our experimental conditions, by assaying genomic DNA and cDNA from all three genotypes.

Analysis of the melting curves of the homozygous samples showed a transition at a Tm specific to each

allele (Figure 1). Melting transitions were converted into peaks on the derivative plot. Heterozygous

samples presented transitions and peaks corresponding to each allele at both Tm. A no-template control

was taken as baseline to subtract local background value to the fluorescence intensity of the samples.

To examine the feasibility of detecting DAE by melting curve analysis, we created a range of melting

curves associated with known allelic imbalance. Using homozygous genomic DNAs, we produced bi-allelic

templates with increasing minor allele:major allele proportions (9:1, 8:2, 7:3, 6:4, 5:5, 4:6, 3:7, 2:8, 1:9).

Allelic (im)balance was observed as the ratio of the peak heights of the fluorescence signal. As expected, the

melting profiles of the mixtures of opposite homozygotes reflected the relative contribution of each allele to

the total mixture (Figure 2A). For both SNPs we observed good correlations between allelic imbalance and

peak height ratio measurements. For rs2236142, R2=0.974 on HR-1TM and R2=0.963 on LightScanner R©

(Figure 2B); for rs2236141, R2=0.973 on HR-1TM and R2=0.963 on LightScanner R© (data not shown). The

mixing experiments showed that the measured allelic ratios varied in a linear relationship with the dilution

ratios. Altogether, these results show that HRM is able to accurately detect different extents of DAE.

Assessment of DAE for CHEK2 in LCLs from breast cancer patients

Mutation screening of the 89 LCLs identified four carriers of the CHEK2*1100delC mutation (see

Additional file 1). This mutation induces a premature termination codon and has been reported to trigger

the NMD pathway, which leads to the specific degradation of mRNAs bearing such deleterious

mutation [24]. In order to distinguish DAE that would be caused by NMD from DAE that would be caused

by a regulatory variant altering the level of expression of the transcript, cDNA was derived from LCLs

treated and untreated with puromycin, from each individual.
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We performed quantitative measurements on genomic DNA and on both types of cDNA. Genomic DNA

served as an internal control and provided the expected peak heights ratio value for a 1:1 allelic ratio,

thereby controlling for any bias in the binding of the fluorescent probe to the two alleles. Because of

differences in fluorescence yield, measured peak heights ratios differed from unity when genomic DNAs

were assessed. However, the melting profiles of genomic DNA were in accordance with what was expected

from the mixing experiment.

The first series of analysis using the SNP rs2236142 as marker included 32 heterozygous individuals for this

coding SNP. The statistical threshold for DAE was reached in four individuals (Figure 3). Mutation

screening results indicated that these four patients carried the CHEK2*1100delC mutation (see Additional

file 1). Observed levels of DAE varied from 37% to 60%, revealing a substantial expression imbalance of an

order likely to have biological importance. NMD inhibitory treatment on these four LCLs showed melting

curves profiles tending towards the genomic curve profile, which is the reference for a 1:1 allelic ratio

(Figure 4A). This confirms previous findings that the CHEK2*1100delC mutation leads to allele-specific

degradation by triggering the NMD pathway [3]. None of the 28 other individuals of this first series showed

allelic imbalance, according to our statistical criteria (Figure 4-B). The second series of analysis used SNP

rs2236141 as marker and included 17 heterozygous individuals for this coding SNP. Eight of them were also

heterozygous for SNP rs2236142 and had already tested negative for DAE with the first marker. The

statistical threshold for DAE was not reached in any of the remaining 9 samples (Figure 3).

Discussion

Our work supports the high sensitivity of HRM for the detection and quantification of DAE. We have

shown that HRM is able to detect DAE associated with NMD in LCLs carrying a non-sense mutation in

CHEK2. Although no DAE was observed in the patients who do not carry the 1100delC mutation, the

series investigated here was limited, and we cannot rule out that cis-regulatory variants in CHEK2 may

lead to DAE in a tissue specific manner [23]. However, this later hypothesis could not be tested since no

breast tissue was available from these patients.

The approach used in our study relies on subjects who are heterozygous for a coding SNP and allows

relative quantification of allelic transcripts. This methodology has major advantages over more

conventional methods for investigating DAE based on the comparison of gene expression between

individuals as discussed elsewhere [7, 9, 19] . Since they come from the same tissue sample and have

therefore been subjected to the same environmental influences (such as genetic trans-acting factors and
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experimental exposures, including mRNA degradation) both alleles should be equally expressed in the

absence of cis-acting sequence variation or epigenetic effects affecting the expression of the target mRNA.

Thus, the strength of this approach is that each allele acts as an internal control for confounding factors,

disclosing cis-variation effects without being confounded by any trans-variation effects.

Here, we report a complete solution for HRM analysis that can be used on both the HR-1TM (1 single

capillary) and LightScanner R© (384-well plate format) instruments, with the format depending on the

required throughput. Access to DAE assessment technology can be cost prohibitive for many laboratories.

HRM provides a good alternative when compared to methodologies based for instance, on the use of

capillary electrophoresis for single-base extension assays, such as SnapShot assays [10], allele-specific

quantitative real-time PCR [11] and microarray platform [8]. Advantages offered by HRM analysis include

its rapidity, cost-effectiveness and security due to its closed-tube nature. Though the HR-1TM is reported

to provide a better accuracy [25], both instruments performed well to identify the 4 carriers of the

CHEK2*1100delC variant showing DAE in the absence of puromycin treatment in our study. However,

given the number of samples to test, analysis with the HR-1TM instrument ended up being much more

time consuming (Table 1). The results obtained with the LightScanner R© instrument showed that this

methodology can be applied in larger-scale studies, provided that LCL material is available, while

maintaining high accuracy and remaining cost-effective. Indeed, the protocol is relatively inexpensive since

it only requires standard PCR reagents and a small amount of fluorescent probe.

The script we developed using R computing software was made compatible with both instruments and

greatly reduces the time of analysis. Once HRM data are acquired, the normalization of the curves, peak

heights measurements, ratios calculations and statistical analysis are performed automatically within less

than 15 minutes for a set of 96 samples when using the LightScanner R© instrument. The output consists in

a summary table of the peak heights, relative allelic ratios, and the Student’s t-test values, as well as a plot

on which DAE carriers are highlighted. The script can also display other information on demand, such as

melting curve profiles which can be displayed for each replicate or by average of 4 replicates for each

individual (see examples in Figure 3 and 4).

In DAE analysis by HRM, the peak heights obtained from the melting curve reflect the relative abundance

of each allele’s transcript. The reproducibility and precision of the assay are reasonable as seen in the small

standard deviations associated with the calculations. The accuracy of the method was illustrated by the

consistency of the allelic expression estimates across multiple replicates assay within the same individual

sample. Genomic DNA ratios varied within a very narrow range, showing the excellent reproducibility and
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precision of the assay on DNA derived from LCL. The intra-sample variation in replicate analysis was

higher for mRNA ratios than for DNA ratios, possibly owing to RNA stability. In addition, at low copy

numbers of mRNA, the stochastic distribution of the RNA templates may be a major source of variation

and hence affect the accuracy of DAE analysis, by generating disagreeing replicate results for instance [26].

In a DAE study, the main optimization issue is the ability to select a subset of 2-3 marker SNPs so that as

many individuals as possible are heterozygous for at least one of the markers. Subsets of individuals giving

the most heterozygotes at 2 loci should be chosen in order to maximize redundancy, and to self-check for

error reduction. Unfortunately, in the present study, no individual heterozygous for both SNPs showed

evidence of DAE. Detection of DAE in a candidate gene may be indicative of the presence of a coding or

regulatory variant altering expression of the gene product. However, DAE-based approaches can point out

the presence of a regulatory causative variant only if the subjects are heterozygous for the causative variant

(and of course for the coding SNP serving as marker). In some situations, the coding SNP used to

distinguish both alleles may be itself responsible for the observed DAE, or it can be on linkage

disequilibrium (LD) with it, i.e. on the same haplotype. In the case of no LD between the marker and the

dysfunctional variant, it is still possible to map the variant, as previously reported by others [27,28].

Conclusions

Allele-specific expression assays can be applied to identify genetic variants located in regions essential for

gene expression regulation or splicing. Thus, identification of a list of genes for which DAE has been

detected would yield a considerable reduction of the amount of work, by focusing discovery effort on the

subset of genes that are most likely to harbour coding or regulatory variants that may alter gene

expression. The approach reported here allows revealing the existence of regulatory variations without

directly identifying or requiring prior knowledge of specific cis-regulatory SNPs. DAE assays can also

highlight the existence of epigenetic factors controlling gene expression [29].

Analysis of the relative allelic ratios of marker SNPs circumvents the issue of confounding trans-acting

factors. Any significant differences in these ratios support the existence of DAE and hence, cis-acting

polymorphisms determining gene expression. The primary goal of this type of study is to identify sequence

variants that are likely to alter gene expression and gene product function, and thereby influence

susceptibility to breast cancer. However, to demonstrate that some of these variants actually show disease

association, large-scale epidemiological studies are required and may ultimately lead towards the

identification of causal genetic factors responsible for susceptibility to disease. In the context of such
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high-throughput studies, instead of LCLs, one can use blood samples, a tissue that is easier to collect than

breast tissues. Identification and elucidation of rare intermediate-risk genetic variants associated with

susceptibility to cancer will contribute to a better understanding of the aetiology of the disease.

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

TN-D carried out the DAE experiments and drafted the manuscript; LPJ participated in the study design

and helped to draft the manuscript; JM carried out the cell culture; NF and SM-C carried out the

mutation screening; kConFab and OS provided the cell lines; FL-K participated in the development of the

laboratory workflow and helped to draft the manuscript; MCS participated in the experiment design; SVT

conceived the study, participated in its design and coordination and helped to draft the manuscript. FL

participated in the study coordination and helped to draft the manuscript. All authors read and approved

the final manuscript.

Acknowledgements

We wish to thank Heather Thorne, Eveline Niedermayr, all the kConFab research nurses and staff, the

heads and staff of the Family Cancer Clinics, and the Clinical Follow Up Study (funded by NHMRC grants

145684, 288704 and 454508) for their contributions to this resource, and the many families who contribute

to kConFab. kConFab is supported by grants from the National Breast Cancer Foundation, the National

Health and Medical Research Council (NHMRC) and by the Queensland Cancer Fund, the Cancer

Councils of New South Wales, Victoria, Tasmania and South Australia, and the Cancer Foundation of

Western Australia. We gratefully acknowledge Arnaud Dumont for his help on developing the R script.

TN-D was the recipient of a fellowship from Fondation de France and a Special Trainee Award from the

International Agency for Research on Cancer. LPJ was the recipient of a fellowship from Ligue Contre le
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Figures
Figure 1 - Principle of high-resolution melting curve analysis (HRM) for detection of allelic expression
imbalance

A single labelled fluorescent probe is designed with complete complementarity to one allele of the exonic

SNP chosen as marker, while mismatching the other allele. Following an asymmetric PCR reaction in

presence of the probe, HRM analysis allows the alleles in heterozygous individuals to be distinguished by

differences in their melting temperatures (Tm), with a fluorescent signal correlated to the relative

abundance of each transcript. The Allele 2/Allele 1 ratio is calculated as h2/h1.
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Figure 2 - Mixing experiment to assess efficiency of HRM for detection of differential allelic expression

(A) SimpleProbe R© melting curves generated on the LightScanner R© instrument from mixing series of

opposite homozygous genomic DNAs for the marker SNP rs2236142 in CHEK2. Mixing ratios are

indicated on the figure (G allele: C allele ratio). (B) The determination coefficient (R2) between the

expected and the observed allelic ratios was 0.963. Each value corresponds to the mean value of 4 replicate

measurements.

Figure 3 - R plot showing the DAE assay results for the 41 heterozygous individuals enrolled in the
study

The level of DAE is calculated by dividing the allelic ratio in cDNA by the corresponding ratio in genomic

DNA (log cDNA-log gDNA). Statistical significance for DAE is evaluated using Student’s t-test. Evidence

for DAE is reached when i) the point estimate of the level of DAE (plotted on the horizontal axis) is

greater than 20%, ii) the Student’s t-test p-value (plotted on the vertical axis) is ≤ 0.05, and iii) the 95%

confidence interval of the point estimate (based on 4 replicate assays) does not include 0. Samples above

the horizontal line and outside the hatched area reached the statistical threshold for DAE. In our

experiment, four samples met all criteria (Samples 2181, 2498, 2500 and 2666).

Figure 4 - Non-sense mediated mRNA decay causes differential allelic expression in CHEK2*1100delC
carriers

Allelic ratio measurements were performed on genomic DNA (gDNA), cDNA derived from LCLs in

standard cell culture condition, and cDNA from LCLs treated with puromycin, an NMD inhibiting agent.

(A) For a carrier of the mutation, comparison of gDNA and cDNA melting profiles supports the existence

of DAE. Puromycin-cDNA profile resembles gDNA, supporting the role of NMD in the DAE observed in

this individual. (B) The wild-type sample shows similar profiles in all three situations. HRM profiles were

generated with the R script.

Tables
Table 1 - Comparison of the duration of the DAE analysis between the HR-1TM and the
LightScanner R© instruments, for 96 samples

The HR-1TM instrument can only analyze a single sample per run making data analysis time consuming.

The LightScanner R© instrument, with its 384-well plate format, is of greater practical efficiency. Data

analysis was performed using an analysis tool that we developed.
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DAE step HR-1TM instrument LightScanner R© instrument
PCRs Same duration Same duration

Data acquisition 2 days 12 minutes
Data analysis 1 full day 15 minutes

Additional Files
Additional file 1 — Mutation screening results

File name: additional file1.pdf

File format: pdf

Title of dataset: Mutation screening results for the 41 breast cancer samples enrolled in the DAE study.

Description: Additional table showing the mutation screening results for the 41 breast cancer samples

enrolled in the DAE study.

Additional file 2 — Primers and probes

File name: additional file2.doc

File format: word document

Title of dataset: Primers and probes used in the DAE study on the CHEK2 gene.

Description: Additional table showing the primers and probes sequences used to perform the DAE study.

Software availability

A copy of our R script code has been made available on Sourceforge.net.

Project name: HRMdae project;

Project home page: http://sourceforge.net/projects/hrmdae;

Operating system(s): Platform independent, R environment;

Programming language: R v2, or above;

Licence: GPL v3;

Any restrictions to use by non-academics: None.
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II. DAE assessment of the CHEK2 gene Results

Figure 1
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Figure 2
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Figure 4
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Additional file 1 - Mutation screening results for the 41 breast cancer samples enrolled in the DAE study
Sample Genotype Genotype 1100delC Other variants DAE resultsd

ID at rs2236142a at rs2236141b carrier (HGVS nomenclature)c DAE value [95%CI] p-value

1507 Het CC c.319+38 319+39insA -0.16 [-0.22; -0.10] 0.0027

1526 Het Het -0.10 [-0.26; 0.07] 0.16

1802 CC Het -0.01 [-0.06; 0.04] 0.59

1928 Het CC -0.02 [-0.27; 0.23] 0.80

1967 Het CC c.319+38 319+39insA 0.01 [-0,06; 0.08] 0.47

2026 Het Het -0.14 [-0.29; 0.00] 0.049

2166 Het CC c.319+38 319+39insA 0.02 [-0.09; 0.14] 0.60

2181 Het CC Yes c.319+38 319+39insA -0.55 [-0.58; -0.48] 1.10-4

2193 Het Het c.252A>G -0.07 [-0.25; 0.11] 0.30

2212 Het CC c.252A>G+c.319+38 319+39insA -0.01 [-0.51; 0.49] 0.94

2234 GG Het -0.11 [-0.14; -0.09] 4.10-5

2247 Het CC c.319+38 319+39insA 0.01 [-0.33; 0.36] 0.90

2443 Het CC -0.03 [-0.07; 0.01] 0.095

2472 Het CC c.319+38 319+39insA -0.01 [-0.08; 0.05] 0.62

2497 GG Het -0.02 [-0.05; 0.01] 0.16

2498 Het CC Yes c.319+38 319+39insA -0.37 [-0.53; -0.20] 0.0054

2499 GG Het -0.01 [-0.09; 0.07] 0.77

2500 Het CC Yes -0.54 [-0.66; -0.25] 0.039

2526 Het CC 0.04 [-0.16; 0.24] 0.61

2529 Het CC -0.14 [-0.25; -0.04] 0.020

2534 CC Het 0.01 [-0.06; 0.07] 0.058

2536 Het CC 0.06 [-0.03; 0.15] 0.12

2539 Het CC -0.05 [-0.23; 0.13] 0.43

2541 Het CC -0.07 [-0.31; 0.17] 0.43

2542 Het CC 0.08 [-0.36; 0.52] 0.60

2557 GG Het -0.13 [-0.16; -0.10] 5.10-4

2570 GG Het -0.01 [0.07; 0.06] 0.82

2574 GG Het 0.01 [-0.03; 0.04] 0.70

2665 Het CC -0.23 [-1.14; 0.68] 0.48

2666 Het CC Yes c.319+38 319+39insA -0.60 [-0.89; -0.47] 0.037

2667 Het CC -0.15 [-1.33; 1.03] 0.71

2668 Het Het c.444+24C>T -0.08 [-0.55; 0.39] 0.64

2669 Het Het -0.11 [-0.21; -0.01] 0.035

2670 Het Het -0.19 [-0.33; -0.09] 0.0092

2671 Het Het -0.17 [-0.41; 0.30] 0.16

2674 Het CC 0.05 [-0.02; 0.12] 0.12

2677 Het Het -0.06 [-0.41; 0.30] 0.63

2678 Het CC -0.01 [-0.15; 0.13] 0.85

2679 Het CC c.319+38 319+39insA 0.00 [-0.04; 0.03] 0.84

2680 Het Het 0.05 [-0.14; 0.03] 0.84

2691 GG Het 0.01 [-0.05; 0.07] 0.58
a GG, frequent homozygote; Het, heterozygote; CC, rare homozygote.
b CC, frequent homozygote; Het, heterozygote.
c Number based on transcript sequence (NM 007194), +1 as A of ATG start codon.
d DAE is expressed as the difference between the log of the signal ratio of the cDNA from the patient’s LCL and the
corresponding log ratio of genomic DNA.



Additional file 2: Primers and probes used in the DAE study of CHEK2. 

Specific Primer´  or Probe  Oligonucleotide sequence 
Forward primer 5Õ-GCAAAGAGAGCGTCTAACCAG-3Õ Primary PCR on genomic DNA 
Reverse primer 5Õ-GCAGAGTGGCGCTAAACCT-3Õ 
Forward primer 5Õ-ATCTAGCCGTGGTCACTCGT-3Õ Primary PCR on cDNA 
Reverse primer 5Õ-TAGGACCCACTTCCCTGAAA-3Õ 
Forward primer 5Õ-CAAAGAGAGCGTCTAACCAGACTAAT-3Õ Secondary PCR 

Reverse primer 5Õ-CAGATACAAACTCCACCCTCAGC-3Õ 
Simpleprobe for rs2236142* 5Õ-TAAGTTCCGCTCTCCCTTCTAAA-3Õ 

Simpleprobe for rs2236141* 
5Õ-TCCTCATTGGTCCGGCGG-3Õ 

*Polymorphic position is indicated in bold. 

´ Marker SNPs rs2236141 and rs2236142 were located in the same amplicons. 



III

DAE assessment of the TP53 and

ATM genes

Following successful application of the HRM assay to the CHEK2 gene, we

aimed to assess DAE of the TP53 and ATM genes. Our preliminary study of

TP53 included 25 informative LCLs. The case-control mutation screening project

ongoing in the laboratory identified 14 heterozygotes for the marker SNP in ATM

from samples for which we already had LCLs on hand. However, the lab’s mutation

screening studies identified many other subjects that were heterozygous at the

probe SNPs. Accordingly, to increase the sample size and reach at least 50

heterozygotes for each gene, we requested LCLs from collaborators involved in

the breast cancer genetics study, based on their genotype data obtained through

the mutation screening project. After receipt, these LCLs were grown under both

standard and NMD inhibitory conditions, and then used to prepare RNA, cDNA,

and genomic DNA.

TP53 presents a complex pattern of alternative splicing. Recent studies

report 10 different p53 isoforms, which differential production involves regulatory

mechanisms at the level of transcription, RNA processing and translation

[Marcel and Hainaut, 2009]. The proximal promoter p53P1 initiates the synthesis

of the fully spliced variant FSp53 and the p53I2 variant, which retains the entire
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III. DAE assessment of the TP53 and ATM genes Results

intron 2. A second promoter, p53P2, has been described in intron 1 and generates

a 1 125 bp transcript. A third internal promoter p53P3 has been described, which

generates the p53I4 mRNA. A part of intron 4 is retained, followed by all of the

gene’s downstream exons correctly spliced. In the present study, we chose to focus

on the canonical form FSp53, as well as the p53I2 transcript since it is generated

from the same proximal promoter as FSp53.

ATM is less complicated, however one must be careful when selecting heterozygotes

for c.5557 so that the individuals are not double heterozygotes at the c5558 position

because it will interfere with probe binding and decrease the accuracy of the

fluorescent signal.

Figure III.1: The TP53 gene is subject to alternative splicing. From

[Marcel and Hainaut, 2009].
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Article IV

Differential allelic expression assessment of the

breast cancer susceptibility genes TP53 and

ATM

(in preparation)
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III. DAE assessment of the TP53 and ATM genes Results

Introduction

The first major susceptibility genes for breast cancer were identified in the early

1990’s by linkage analysis and since then, a considerable amount of knowledge

about genetic cancer susceptibility and the underlying susceptibility genes have

been gathered. More recently, large case-control genotyping studies have identified

common modest-risk SNPs and case-control mutation screening has emerged as a

useful strategy for identifying and characterizing intermediate-risk susceptibility

genes. While some breast cancer susceptibility alleles have been clearly defined

in these three well-established classes of genetic variants, they are estimated to

account for 30-35% of the relative risk of breast cancer (high and intermediate-risk

genes account for about 25%, and common SNPs from GWAS may account for

10%).

The TP53 gene (NM_000546) belongs to the high-risk susceptibility genes

category. TP53 is located on chromosome 17p13.1, and encodes a protein

involved in many cellular pathways that control cell proliferation and homeostasis,

such as cell cycle, apoptosis and DNA-repair. The expression of the TP53

gene is activated in response to various stress signals, including DNA damage

[Oldenburg et al., 2007]. Indeed, germline mutations in TP53 are associated with

increased risk of developing breast cancer, in particular in Li-Fraumeni patients

[Olivier et al., 2003].

TP53 presents a complex pattern of alternative splicing. Recent studies

report 10 different p53 isoforms, which differential production involves regulatory

mechanisms at the level of transcription, RNA processing and translation

[Marcel and Hainaut, 2009]. The proximal promoter p53P1 initiates the synthesis

of the fully spliced variant FSp53 and the p53I2 variant, which retains the entire

intron 2. A second promoter, p53P2, has been described in intron 1 and generates

a 1 125 bp transcript. A third internal promoter p53P3 has been described, which

generates the p53I4 mRNA. A part of intron 4 is retained, followed by all exons

correctly spliced. In the present study, we chose to focus on the canonical form
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III. DAE assessment of the TP53 and ATM genes Results

FSp53, as well as the p53I2 transcript since it is generated from the same proximal

promoter as FSp53.

The ATM gene (NM_000051) is one of the best-understood intermediate-risk

genes for breast cancer susceptibility. ATM is located on chromosome 11q22-

23 and codes for a protein kinase whose many substrates include the products of

TP53 , BRCA1 and CHEK2 . ATM plays a central role in sensing and signaling the

presence of DNA double-strand breaks. Mutations in the ATM gene cause the rare

recessive disorder Ataxia-Telangiectasia (AT) in biallelic carriers. In monoallelic

carriers, ATM mutations have been reported to induce breast cancer susceptibility

[Ahmed and Rahman, 2006, Renwick et al., 2006].

Although mutation scanning projects have focused for many years on variations in

the coding sequences of such susceptibility genes, structural alterations caused

by genetic variants are not the only possible explanation for variations in

disease phenotype. Gene expression regulation provides an alternate mechanism

for generating cellular variation and may be the underlying explanation for a

proportion of cancer syndromes that have not been resolved by germline coding

region variants in currently known cancer predisposition genes. Accumulating

evidence shows that regulatory variations contribute to many important

phenotypes.

Yet, unlike coding sequence variants where the consequences of non-synonymous

variation may be resolved at the level of the protein phenotype, defining how

variation at the DNA sequence level will induce differences in transcript abundance

has proven problematic. Indeed, characterization of the effect of cis-acting

sequence variants in regulatory regions is a great challenge due to the difficulty to

locate these regions. In addition, regulatory variants are not robustly detected

by sequence analysis since SNP identification by screening regulatory regions

does not consistently allow prediction of the effect of observed SNPs on gene

expression [Wang and Sadée, 2006, Gilad et al., 2008]. Thus, knowledge of the

effect of genetic variants affecting mRNA transcription is very limited.

147



III. DAE assessment of the TP53 and ATM genes Results

Currently, two strategies are most commonly used for assaying gene expression

levels. In combination to the well-established linkage and association mapping

approaches, expression quantitative trait loci (eQTL) mapping has become

a widespread tool for identifying genetic variants that affect gene regulation

[Gilad et al., 2006, Cookson et al., 2009]. Differential allelic expression

(DAE) assays represent a fundamentally different approach to investigating

factors affecting gene expression levels [Yan et al., 2002b, Bray et al., 2003,

Lo et al., 2003, Pastinen et al., 2004, Pant et al., 2006, Serre et al., 2008,

Jordheim et al., 2008, Maia et al., 2009, Azzato et al., 2010].

In such studies, disruption or alteration of gene expression levels is examined

through a careful survey of whether the two alleles of a gene are equally

expressed. This approach relies on relative quantification of allelic transcripts

within heterozygous individuals, using a transcribed SNP as marker. Since they

come from the same tissue sample and have therefore been subjected to the same

environmental influences (such as genetic trans-acting factors and experimental

exposures, including mRNA degradation) both alleles should be equally expressed

in the absence of cis-acting sequence variation or allele-specific epigenetic effects

affecting the expression of the target mRNA. Thus, the strength of this approach

is that each allele acts as an internal control for confounding factors, displaying

cis-variation effects without being confounded by any trans-variation effects.

We recently described a novel approach based on high-throughput HRM analysis

for DAE assessment [Nguyen-Dumont et al. submitted ]. A test for DAE

by HRM analysis consists in a quantitative genotyping experiment, using

fluorescent probes. We report here DAE assessment of the breast cancer

susceptibility genes ATM and TP53 , using HRM analysis of fluorescein probes

[Crockett and Wittwer, 2001].
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Materials and methods

Origin of samples

The LCLs included in our study were derived from subjects, who were considered

to be at high risk of carrying a genetic predisposition to breast cancer due to an

early age at onset and/or family history, and for whom no mutation in BRCA1

or BRCA2 genes had been identified. Biological samples were obtained from

different sources: Creighton University School of Medicine (Omaha, NE, USA),

Centre Léon Bérard (CLB, Lyon, France), the Kathleen Cuningham Consortium

for Research into Familial Breast Cancer (kConFab, Melbourne, Australia) and

Samuel Lunenfeld Research Institute (Toronto, Ontario, Canada).

Cell culture

In the genes that we wish to analyze, DAE could result from non-sense mediated

mRNA decay (NMD) induced by the specific degradation of the transcript from

an allele bearing a premature stop codon [Conti and Izaurralde, 2005]. In order

to address this issue, RNA was prepared from each LCL under two culture

conditions. One was standard LCL culture conditions (this was also the source

of the DNAs). The second condition was cells that have been treated with

puromycin, a translation inhibitor frequently used to prevent the effect of NMD

[Ware et al., 2006].

Cells were maintained in RPMI 1640 medium (Invitrogen, Cergy-Pontoise, France)

supplemented with 20% fetal calf serum (VWR, Fontenay-sous-bois, France),

0.4% fungizon (Qiagen, Courtaboeuf, France) and 1% penicilin-streptomycin

(Invitrogen), in 5% CO2 incubator at 37̊ with 95% humidity. When sufficient

growth had occurred, viable cells were counted using Burker cell counting chamber

and Trypan blue. Cell suspension was then dispensed to yield approximately

four million cells per flask, and volume was adjusted to 10 ml. Cells were

incubated overnight in an upright position. The following day, one flask was
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maintained under standard culture conditions while the other was treated with

100 µM puromycin (Sigma Aldrich, St Quentin Fallavier, France) for 6 hours, in

an horizontal position.

Genomic DNA and RNA extraction, cDNA preparation.

Genomic DNA and total RNA were respectively extracted from LCL using

Puregene DNA isolation kit (Qiagen) and NucleoSpin RNA II kit (Machery Nagel).

Before cDNA preparation, RNA integrity was controlled using the BioAnalyzer and

RNA NanoChip II kit. Good quality RNAs, harboring an RNA integrity number

(RIN) ≥ 8, were selected for further analysis [Schroeder et al., 2006].

Complementary DNA (cDNA) synthesis was performed from 1 µg total RNA

using SuperScriptTM III First Strand Synthesis System for RT- (Invitrogen) with

oligo(dT) primers, according to manufacturer’s instructions.

Selection of polymorphic markers, primers and probes

Differential measurement of the level of expression of the two alleles of a gene are

performed in subjects heterozygous at a coding polymorphism specifically targeted

by a fluorescein probe. Primers and probe sequences are listed in Table III.1 and

Table III.2 for TP53 and ATM respectively.

The TP53 gene contains a number of common polymorphisms and rare mutations.

Among the common polymorphisms of the coding region, we selected the SNP

c.215C>G (p53R72P, rs1042522). This SNP is responsible for a proline (CCG: P,

ancestral allele) to an arginine (CGG: R) substitution at codon 72 of exon 4 of

TP53 . Of the currently know TP53 transcripts variants, we chose to assess DAE

of FSp53, the canonical form, and of p53I2, which differ by alternative splicing of

intron 2. Primer pairs for PCR1 were designed to ensure specific amplification of

the genomic DNA and cDNAs variants. The forward primer for FSp53 overlapped
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exons 2 and 3; the forward primer for p53I2 hybridized in intron 2; for both

transcript variants, the reverse primer overlapped exons 3 and 4.

For the study of the ATM gene, we selected the SNP c.5557G>A (D1853N,

rs1801516). This SNP is responsible for an aspartic acid (GAT: D, ancestral allele)

to an asparagine (AAT: N) substitution at codon 1853 of the 36th coding exon of

ATM . Primer pairs for primary PCR (PCR1) were designed to specifically amplify

genomic DNA and cDNA.

Genotyping for these markers SNPs was performed by HRM analysis as described

elsewhere [Nguyen-Dumont et al., 2009, Garritano et al., 2009]. For the ATM

gene, careful selection of subjects was conducted in order to avoid samples also

heterozygous at the variable adjacent position (rs1801673), as double heterozygotes

may interfere with efficiency of probe binding.

DAE assessment

DAE assays were performed as described elsewhere [Nguyen-Dumont et al.,

submitted ]. Briefly, HRM for DAE assessment requires a fluorescent oligonucleotide

probe designed to anneal to the sequence surrounding the marker SNP, with

standard PCR reagents, in a nested asymmetric PCR reaction. For secondary

PCR (PCR2), both genomic DNA and cDNA were amplified using the same set

of primers. PCR product melting curves were obtained from the LightScanner R©

instrument, by melting from 40 to 85̊ . Data were acquired with LightScanner R©

Software v2.0, and then analyzed using R (http://cran.r-project.org).

The relative abundance of each allele was obtained from the ratio of the peak

heights calculated from the derivative of the melting curve. For each sample, ratios

were measured from 4 PCR1-replicates and averaged. The level of allelic imbalance

for each individual was determined as [log (ratio cDNA) - log (ratio gDNA)].

Statistical significance for the allelic imbalance was calculated using a Student’s

t-test. Criteria for statistically significant DAE were: i) the point estimate of the

difference between cDNA and genomic DNA ratios should be greater than 20%; ii)

151



III. DAE assessment of the TP53 and ATM genes Results

the Student’s t-test p-value should be ≤ 0.05, and iii) the 95% confidence interval

of the point estimate should not include 0.

Results

We first verified that the fluorescein probes designed for both marker SNPs in

ATM and TP53 could detect small variations in allelic imbalance. For both

genes, artificial bi-allelic ratios were generated by mixing genomic DNA from

individuals homozygous for the common and rare variant, in the following ratios:

9:1, 8:2, 7:3, 6:4, 5:5, 4:6, 3:7, 2:8 and 1:9. Figure III.1 shows the melting

curves obtained for ATM . Linearity of the method was validated by calculating

the determination coefficient. An R2 of 0.891 was obtained, establishing that

fluorescein probe melting analysis could accurately allow detection of changes in

the relative abundance of the two alleles in a heterozygous sample, by assessment

the heights of the peaks corresponding to each allelic variant (Figure III.2).

We were able to gather a total of 50 and 52 LCLs derived from heterozygous

individuals for the marker SNP D1853N in ATM and R72P in TP53 , respectively.

The statistical threshold for DAE was not reached in any of the two studies

(Figure III.3 and III.4). Data from LCLs pre-treated with puromycin, a translation

inhibitor used to block the NMD mechanism, suggest the absence of a genetic

variant creating a premature stop codon targeted by NMD, in the tested samples.

In our study set, difference between cDNA and genomic DNA was too weak to call

DAE.

Discussion

The subjects enrolled in this study were expected to be at high-risk of carrying

a genetic predisposition to breast cancer. However, our results suggest null or

weak cis-variation effects in our set of LCLs. No statistically significant DAE was
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observed during our assessment of the TP53 and ATM genes by HRM analysis.

Application of other criteria or use of another statistical test may have identified

samples with DAE. However, results from our previous study of the CHEK2 gene

using the HRM approach showed that the +/-20% cut-off allows detection of DAE

due to a biological mechanism such as NMD. Borderline sample are hypothesized

to carry an imbalanced allelic expression too weak to justify further investigation

at this stage. Thus, although it might not be the most appropriate strategy, our

approach to identify possible outliers was very conservative.

In particular, our data did not confirm previous observations of allelic imbalance

for the TP53 gene, in LCLs. Gemignani et al. have suggested the existence

of a common mechanism leading to the disruption of the allelic expression

balance for that gene. The authors reported that homozygous individuals for

the C variant of R72P had a reduced expression of TP53 compared to G

homozygotes, and heterozygous individuals had an intermediate level of expression

[Gemignani et al., 2004]. Bellini et al. also recently reported DAE of TP53

[Bellini et al., 2010]. However, in the latter study, the authors investigated the

∆133 form generated from p53I4 mRNA, which is never amplified under our PCR

conditions. The transcription initiation site of the p53I4 transcript is located in

intron 4 and involves a different promoter than the one involved in transcription of

FSp53 and p53I2 transcripts. In addition, ∆133p53 cannot be produced by internal

initiation of translation from FSp53 transcript [Marcel and Hainaut, 2009]. Thus,

since our marker SNP is located in exon 4, we were not able to test our samples set

for DAE of the p53I4 transcript variant, using our experimental conditions.

In the present study, we did not identify statistically significant DAE that

would have led to investigation of the transcriptional regulatory regions of the

studied genes. However, the experimental approach for DAE screening that

we have described elsewhere and applied here on the TP53 and ATM genes

can be used to assess other breast cancer susceptibility genes, such as RAD50,

BRIP1, or RAD51. Genes for which DAE is observed can be further screened

for sequence variants in putative transcriptional regulatory regions identified by
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computational or comparative genomics methods. Various web-based resources

exist for investigation of gene regulation. These include resources for promoter and

transcription factor binding site predictions, transcription factor binding profile

databases, and alignment of non-coding genome sequences or orthology resources

[Wasserman and Sandelin, 2004, Maston et al., 2006].

Identifying functional elements in the human genome, including those that

regulate gene expression, is a major challenge that presents great interest

especially since numerous diseases have been associated with mutations in both

transcriptional regulatory elements and various components of the transcriptional

machinery. Although computational approaches have been developed to identify

transcriptional regulatory elements on a genome-wide scale, it is likely that

bioinformatics methods will not replace the need for experimental verification

of regulatory elements. A predicted transcription factor binding site is not

necessarily a genuine binding site, and binding does not demonstrate a functional

role for that site or necessarily indicate which gene is regulated by the site

[Maston et al., 2006].

Conclusion

Allele-specific expression assays allow detection of the existence of regulatory

variations without directly identifying or requiring prior knowledge of specific cis-

regulatory SNPs. DAE testing of genes may yield a considerable reduction of the

amount of work in gene expression studies, by focusing discovery effort on a subset

of genes that are most likely to harbor coding or regulatory variants that may alter

gene expression. HRM analysis is an appropriate approach for this type of study,

as it is accurate, rapid and inexpensive. The assays are easy to set up for a large

number of genes, once a large samples set of LCLs has been gathered.

154



III. DAE assessment of the TP53 and ATM genes Results

Figures and Tables

Figure III.1: Fluorescein probe melting curves generated on the LightScanner R©

instrument from mixing series of opposite homozygous genomic DNAs , using the

marker SNP D1853N in ATM . Artificial bi-allelic templates with decreasing major

allele:minor allele proportions were produced (9:1, 8:2, 7:3, 6:4, 5:5, 4:6, 3:7, 2:8,

1:9). Each bi-allelic mixture was assessed in 4 replicate measurements.
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Figure III.2: Standard curve from the mixing experiment to assess efficiency of

HRM for detection of differential allelic expression in the ATM gene. Levels of

DAE were measured and the determination coefficient R2 between the expected

and the observed allelic ratios was 0.891. Each estimate corresponds to the mean

value of 4 replicate measurements.
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Figure III.3: R plots showing the DAE assay results for the 52 heterozygous

individuals enrolled in the study of TP53 . Results from the assessment of the

FSp53 and p53I2 transcripts are in blue and red respectively. The level of DAE

is calculated by dividing the allelic ratio in cDNA by the corresponding ratio in

genomic DNA (log cDNA-log gDNA). Statistical significance for DAE is evaluated

using Student’s t-test. Evidence for DAE is reached when i) the point estimate

of the level of DAE (plotted on the horizontal axis) is greater than 20%, ii)

the Student’s t-test p-value (plotted on the vertical axis) is ≤ 0.05, and iii) the

95% confidence interval of the point estimate (based on 4 replicate assays) does

not include 0 (given the high number of samples, the plot does not show the

CIs). Samples above the horizontal line and outside the hatched area reached

the statistical threshold for DAE. In our experiment, we did not find any samples

satisfying the 3 criteria. 157
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Figure III.4: R plot showing the DAE assay results for the 50 heterozygous

individuals enrolled in the study of ATM . Statistical criteria were the same as

above. We did not find any samples satisfying the 3 criteria for statistically

significant DAE.
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Primer or probe Oligonucleotide sequence

PCR1 Forward primer CCTATGGAAACTACTTCCTG

FSp53 variant Reverse primer AGGGGAGTACGTGCAAGT

Forward primer ATGGGACTGACTTTCTGCTC

p53I2 variant Reverse primer AGGGGAGTACGTGCAAGT

Forward primer GTCAGATCCTAGCGTCG

genomic DNA Reverse primer AGAATGCAAGAAGCCCA

PCR2 Forward primer AGATGAAGCTCCCAGAA

Reverse primer CTGGTAGGTTTTCTGGGAAG

Probe GGCTGCTCCCCGCGTGGC

Table III.1: Primers and fluorescein probe used for DAE assessment of the TP53

gene.

Primer or probe Oligonucleotide sequence

PCR1 Forward primer CCAATGTGTGAAGTGAAAACT

cDNA Reverse primer TTTGCGAGAAGTGTCGAA

Forward primer CTTTTGTCAGACTGTACTTCCATA

genomic DNA Reverse primer GGTGAAAAATCCCTGAACA

PCR2 Forward primer CTTTTGTCAGACTGTACTTCCATA

Reverse primer GGTGAAAAATCCCTGAACA

Probe CCATGATTCATTTGTATCTTGGAG

Table III.2: Primers and fluorescein probe used for DAE assessment of the ATM

gene.
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Technical hurdles to Aim 1: gathering informative LCLs

To test a candidate gene for DAE, the following criteria for the choice of the

polymorphic markers should be observed. The SNP has to 1) be located in the

transcribed region of the gene of interest and 2) have a sufficiently high minor allele

frequency to gather a reasonable number of informative samples. This latter point

will therefore depend on the number of samples available for assessment. Whenever

possible, the position of the SNP should be far enough from exon boundaries to

allow use of the same set of primers for PCR2 amplification from both cDNA and

genomic DNA. However, our personal experience has shown that it is possible to

use different primer sets for cDNA and genomic DNA (results not shown).

In a DAE study, the main setup issue is the ability to select a subset of LCLs that

will support informative assessment. For the study of the ATM and TP53 genes,

we were able to gather at least 50 informative LCLs for DAE analysis. In the

case of CHEK2 , it was not possible to find a samples set that was as large. Thus,

for this gene, we sought to reach our target number of heterozygous individuals

by using two different marker SNPs. In fact, selecting 2 or 3 marker SNPs (that

are not in strong disequilibrium with each other) provides a reasonable strategy

because it increases the number of informative samples and, if some of the samples

are double heterozygotes, allows cross-checking and error reduction.
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Addressing Aim 2: Implementing an appropriate assay

In DAE analysis by HRM, the peak heights ratio obtained from the melting curve

of a given sample reflects the relative abundance of each allele’s transcript. The

reproducibility and precision of the assay are supported by the small standard

deviations associated with the DAE calculations. The accuracy of the method was

illustrated by the consistency of the allelic expression estimates across multiple

replicate assays within the same individual sample. In all three assessed genes,

genomic DNA ratios varied within a very narrow range, showing the excellent

reproducibility and precision of the assay on DNA derived from LCL. The intra-

sample variation in replicate analysis was higher for mRNA ratios than for DNA

ratios, possibly owing to RNA stability. At low copy numbers of mRNA, the

stochastic distribution of the RNA templates may be a major source of variation

and hence affect the accuracy of DAE analysis, by for instance, generating

discordant replicate results [Pastinen et al., 2004].

Assay optimization from the LightCycler 2.0 to the HR-1
TM

, then to the

LightScanner R© instrument allowed us to increase i) the resolution of the assay

initially used by Ware et al., and ii) its throughput. In parallel to technical up-

scaling of the method, development of an analysis tool was essential for efficient

determination of which specific samples showed evidence of DAE. Once HRM

data were acquired, the normalization of the curves, peak height measurements,

ratio calculations and statistical analysis were performed automatically within

less than 15 minutes for a set of 96 samples when using the LightScanner R©

instrument. The script developed using R dramatically reduced the length of the

analysis, as compared for instance to our initial study using the HRM approach

[Jordheim et al., 2008].

Access to DAE assessment technology can be cost prohibitive for many

laboratories. HRM analysis is a simple approach that can sensitively visualize

expressed allelic variants and the transcript abundance dynamics in high-

throughput, using a small amount of RNA. The protocol is relatively inexpensive

since it only requires standard PCR reagents and a small amount of fluorescent
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probe. In our study, enhancing throughput was not detrimental to the accuracy of

the assay. The results obtained with the LightScanner R© instrument showed that

this methodology can successfully be applied to larger-scale studies. Blood tissue

can be used in such high-throughput contexts. DAE in breast tissue would also

be interesting to assess but these are difficult to collect.

The main challenge of Aim 3: The determination of the statistical

criteria for presence of DAE

As DAE assays are an emerging field, no routine or standardized statistical

analytical approaches have been developed to address the specific attributes of

this assay.

• One approach that could be envisaged is to estimate the natural variation

of the peak height ratios in a situation where both alleles are theoretically

equally abundant to determine a cut-off for calling DAE. To do so, one

would calculate the average of the peak heights ratios from all genomic DNAs

enrolled in a given DAE study and call outlier any sample falling outside the

95% confidence interval [Pastinen and Hudson, 2004].

• We sought advices from statisticians who suggested the following test where

the null hypothesis is that both alleles are equally expressed in a series of

LCLs, where:

1. N is the number of heterozygous LCLs used in the statistical test

2. n is the number of replicates per cDNA sample

3. X is the level of DAE for a cDNA sample calculated through n replicates

(i.e the average of n ratios observed in cDNA, normalized to the average

of all N genomic DNAs)

4. X is the global average level of DAE observed through n replicates of

N heterozygous cDNA samples.
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A global standard deviation D is calculated as the average of the standard

deviations from each normalized measurement taken into account in X

calculation. The standard deviation of each series of n replicates is calculated

as: SDevn =
√

1

n−1
(n ∗ D).

For each individual LCL, the point estimate of X must to be located within

the 95% confidence interval of X. Any point estimate lying outside this

range leads to the rejection of the null hypothesis so this sample needs to be

subtracted from X and the 95% CI calculations. The remaining samples are

to be re-assessed. This procedure is to be repeated until the null hypothesis is

verified in the population of remaining samples. Any rejected sample would

be candidate examples of DAE.

• In the approach we chose, the statistical significance for DAE was calculated

using Student’s t-test to compare cDNA measurements of a given LCL to

genomic DNA measurements from the same LCL. In this case, genomic DNA

is again used to normalize cDNA measurements. Criteria for statistically

significant DAE were: i) the point estimate of the difference between cDNA

and genomic DNA ratios should be greater than 20%; ii) the Student’s t-

test p-value should be ≤ 0.05, and iii) the 95% confidence interval of the

point estimate should not include 0. Application of another statistical test

may have identified more samples with DAE. However, results from the

assessment of CHEK2 showed that the +/-20% limit allows to observe DAE

due to a biological mechanism such as NMD. For borderline samples, we

suppose that their imbalanced allelic expression would be too weak to justify

further investigation at this stage. Thus, although it might not be the most

appropriate strategy, our approach to identify the possible outliers was very

conservative.
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Aim 4: Elucidating the mechanism of DAE

DAE that is observed in all the heterozygous samples and in one direction

suggests that i) the marker SNP itself is causal or that ii) the causal variant

is in complete LD with the marker, i.e. on a shared haplotype. If DAE

is observed in both directions, several mechanisms or causal variants (showing

incomplete LD with the marker SNP) might be involved [Wang and Sadée, 2006,

Wilkins et al., 2007].

Genes for which DAE is evidenced are to be further screened for sequence

variants in putative transcriptional regulatory regions identified by comparative

genomics methods. Various web-based resources exist for investigation of gene

regulation. These include resources for promoter and transcription factor binding

sites predictions, transcription factor binding profile databases, alignment of non-

coding genome sequences or orthology resources [Wasserman and Sandelin, 2004].

Additional sequence variants identified at this stage would be incorporated into

the haplotypes defined following mutation screening analysis of the genes of

interest.

Heritability of cis-acting effects can also be studied by investigating pedigrees

of DAE carriers [Yan et al., 2002b]. If no evidence of Mendelian inheritance can

be found, allele-specific epigenetic mechanisms might be involved in the observed

DAE phenotype. One can then search for differential methylation of regulatory

sequences, post-translational histone modification or replication asynchrony.

Unfortunately, in the present study, we did not identify statistically significant

DAE that pointed towards useful investigations of the transcription regulatory

regions of the studied genes. However, the assay we have implemented for screening

for DAE can be applied to test other breast cancer susceptibility genes from the

case-control mutation screening project, such as RAD50, BRIP1, or RAD51, using

the large set of available LCLs, with "ready to use" genomic DNA, cDNA and

puro-cDNA.
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Although a number of cancer susceptibility genes have been successfully identified,

study design and analytic approaches issues remain a challenge for future disease-

related gene/mechanism discovery.

The strength of our approach is really to combine mutation screening and

haplotype information with screening for DAE and expression data, in order to

identify specific alleles/haplotypes that are differentially regulated. Analysis of the

relative allelic ratios of marker SNPs circumvents the issue of confounding trans-

acting factors. Any significant differences in these ratios support the existence of

DAE and hence, cis-acting genetic variants determining gene expression.

Allele-specific expression assays allow detection of the existence of regulatory

variations without directly identifying or requiring prior knowledge of specific

cis-regulatory SNPs. DAE testing of genes examined in large-scale case-control

mutation screening takes advantage of the fact that the mutation screening will

identify reasonable numbers of subjects who are heterozygous for useful marker

alleles, even if those alleles are not particularly common. In principle, many

genes could then be studied for DAE with good sensitivity, allowing the search

for regulatory variants that may alter gene expression to focus on the subset of

genes that actually display DAE.

If one aims at establishing DAE as a high-throughput analysis of dysfunctional

variants in large cohorts, LCLs and blood are accessible tissues that are suitable

resources for DAE analysis [Maia et al., 2009]. Although one advantage from the
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use of LCLs is to permit performing NMD analyses, there are also limitations to

the use of such material. Absence of DAE in LCLs does not exclude the possibility

that there is relevant differential expression in tissues of higher relevance to the

disease in question (i.e breast epithelial lineage), but variation is not recapitulated

in LCLs. On the other hand, it is also controversial whether culture conditions

could artefactually create DAE. It has been nevertheless reported that DAE is

little influenced by variation in culture environment of LCLs and LCLs harvested

from different passages yielded similar results [Serre et al., 2008].

The primary goal of DAE study is to identify sequence variants that are

likely to alter gene expression and gene product function, and thereby influence

susceptibility to breast cancer. However, to demonstrate that some of these

variants actually show disease association, large-scale epidemiological studies

would be required and might ultimately lead towards the identification of

causal genetic factors responsible for susceptibility to disease. Identification and

elucidation of rare intermediate-risk genetic variants associated with susceptibility

to cancer could contribute to a better understanding of the etiology of the

disease.

One important challenge today is to find the locations of the genes or to identify

additional mechanisms involved in predisposition to cancer, with little or no

knowledge at all of how many genes are involved, how they interact with each

other or with environmental factors, and what, if any, the genotype-phenotype

relationship is. Variation in expression adds another level of complexity. A few

genes have already been shown to exhibit DAE patterns apparently predisposing

to cancer. Determining the genetic causes of cancers has immense public health

benefits including prevention, early detection and improved treatment. Current

genetic tools offer much promise to this research but the complexities of common

cancers remain challenging.
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Abstract

Background: Together single nucleotide substitutions and small insertion/deletion variants are the most

common form of sequence variation in the human gene pool.

High-resolution SNP profile and/or haplotype analyses enable the identification of modest-risk susceptibility genes

to common diseases, genes that may modulate responses to pharmaceutical agents, and SNPs that can affect

either their expression or function. In addition, sensitive techniques for germline or somatic mutation detection

are important tools for characterizing sequence variations in genes responsible for tumor predisposition. Cost-

effective methods are highly desirable. Many of the recently developed high-throughput technologies are geared

toward industrial scale genetic studies and arguably do not provide useful solutions for small laboratory

investigator-initiated projects. Recently, the use of new fluorescent dyes allowed the high-resolution analysis of

DNA melting curves (HRM).

Results: Here, we compared the capacity of HRM, applicable to both genotyping and mutation scanning, to detect

genetic variations in the tumor suppressor gene TP53 with that of mutation screening by full resequencing. We

also assessed the performance of a variety of available HRM-based genotyping assays by genotyping 30 TP53 SNPs.

We describe a series of solutions to handle the difficulties that may arise in large-scale application of HRM to

mutation screening and genotyping at the TP53 locus. In particular, we developed specific HRM assays that render

possible genotyping of 2 or more, sometimes closely spaced, polymorphisms within the same amplicon. We also

show that simultaneous genotyping of 2 SNPs from 2 different amplicons using a multiplex PCR reaction is feasible;

the data can be analyzed in a single HRM run, potentially improving the efficiency of HRM genotyping workflows.

Conclusion: The HRM technique showed high sensitivity and specificity (1.0, and 0.8, respectively, for amplicons

of <400 bp) for mutation screening and provided useful genotyping assays as assessed by comparing the results

with those obtained with Sanger sequencing. Thus, HRM is particularly suitable for either performing mutation

scanning of a large number of samples, even in the situation where the amplicon(s) of interest harbor a common

variant that may disturb the analysis, or in a context where gathering common SNP genotypes is of interest.
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Background
Together Single Nucleotide Polymorphisms (SNPs), rare
single nucleotide substitutions, and small insertion/dele-
tion mutations constitute the most common forms of
sequence variation in the human genome. For example,
Nickerson et al. [1] have estimated that the density of
common SNPs (with a frequency greater than 1%) is
about 1 per 300 bp in the overall human gene pool. Fur-
thermore, deep resequencing studies have demonstrated
that the number of rare single nucleotide substitutions
and small insertion/deletion variants vastly outnumber
common SNPs [2,3].

During the last decade, SNPs have essentially replaced
microsatellites for linkage and/or association studies [4,5]
and genome-wide association studies with phase 2 and
phase 3 confirmations have now provided overwhelming
evidence of association on common SNPs with a number
of diseases [6,7]. SNPs are also becoming of interest in
pharmacogenetics, because some of them are associated
with significant differences in biological response to phar-
maceutical agents [8,9].

Heavy interest in SNPs has led to the development of dif-
ferent genotyping methods: some of them are targeted to
the analysis of one or few SNPs [10,11], and others are
designed to scan the whole genome [12,13]. Modern gen-
otyping equipment has driven the per genotype cost for
very large-scale SNP genotyping studies quite low. In addi-
tion, clonal sequencing technologies may drive the cost of
moderate sensitivity resequencing studies very low
[14,15]. However, these technologies are actually geared
to what are essentially industrial scale genetic studies and
arguably to not provide useful solutions for small labora-
tory investigator-initiated projects.

Interest in fast and reliable methods of mutation screen-
ing is increasing as well. Such methods are desirable for
case-control mutation screening studies and high-
throughput somatic (tumor) mutation screening studies
[16,17], aiding the identification of new genes involved in
carcinogenesis. They are also desirable for detecting genes
responsible for drug-resistance in micro-organisms [18],
and for detecting genes that modify growth, resistance to
parasites, or yield in plants [19].

Many techniques have been developed to discover
genomic variation, including those based on HPLC (High
Performance Liquid Chromatography), electrophoretic
conformational changes, and enzymatic or chemical
cleavage reactions [20]. The goal of these screening tech-
niques is to reduce the use of DNA sequencing and con-
trol costs while maintaining sensitivity and specificity.
The HRM technique has been used to mutation scan the
coding sequences of several clinically important genes

[21-26]. For instance, 3 studies have reported mutation
screening of TP53 exonic regions [21,22,27]. In this man-
uscript, we describe lessons learned from a larger scale
application of HRM to mutation screening and genotyp-
ing at the entire TP53 locus. First, we assayed (in terms of
sensitivity and specificity) the HRM technique, by com-
paring the results with the classic Sanger sequencing
method, used here as the gold standard reference. Second,
we propose solutions for genotyping challenges (discrim-
ination of the 3 genotypes, simultaneous genotyping of 2
or more SNPs) that are sometimes encountered when
using a classical HRM approach.

Methods
Origin of DNA samples

Mutation screening of the entire TP53 locus was per-
formed on 47 DNA samples including lymphocyte DNA
from 25 Li-Fraumeni patients, DNA from lymphoblastoid
cell lines derived from 15 familial breast cancer patients,
and DNA from 7 hemizygous (at the TP53 locus) breast
tumor cell lines (Garritano et al, in preparation).

Genotyping of 30 SNPs located within the TP53 locus was
performed on 270 DNA samples from the Coriell Reposi-
tory, corresponding to 90 Caucasians, 90 East Asians, and
90 Africans.

This mutation screening and genotyping project received
approval from the IARC Institutional Review Board and
from the Brazilian center from which we received the Li-
Fraumeni patient samples. It was conducted according to
the Declaration of Helsinki Principles.

Mutation screening/SNP discovery using HRM

PCR was performed in 8 μl reactions containing 20 ng of
template DNA, 1.5 mM MgCl2, 265 μM dNTP, 400 nM
forward and reverse primers, 0.8X LCGreen® Plus (Idaho
Technology, Salt Lake City, Utah, USA), 0.04 U/μl of Plat-
inum® Taq Polymerase, and 1× PCR buffer supplied by the
manufacturer (Invitrogen, Paisley, Scotland).

The HRM process consists in performing the PCR in the
presence of the DNA binding dye LC Green®, monitoring
the progressive change in fluorescence caused by release
of the dye from a DNA duplex as it is denatured by
increasing the temperature, collecting a high resolution
melting curve, and identifying the samples with melting
curve aberrations indicative of the presence of a sequence
variant. Fluorescence intensity as a function of tempera-
ture, monitored by the LightScanner® instrument (Idaho
Technology, Salt Lake City, Utah, USA), can reveal very
small changes in the melting curve shape, when analyzed
with the LightScanner® software using the "Scanning"
mode (Idaho Technology, Salt Lake City, Utah, USA).
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Genotyping using HRM

We designed pairs of primers flanking each SNP [See
Additional file 1] to amplify DNA fragments shorter than
400 bp. In some instances, HRM can directly discriminate
all 3 genotypes (common homozygotes, heterozygotes
and rare homozygotes) of a polymorphism. However, for
the majority of TP53 amplicons, genotyping using spike-
in control DNA was performed to allow distinction of rare
homozygotes from common homozygotes. In brief,
genomic DNAs were mixed with an equal amount of DNA
from a known major allele homozygous subject to allow
formation of heteroduplexes. This strategy converts the
minor allele homozygotes into heterozygotes, rendering
them distinguishable from the major allele homozygous
samples. The scoring of genotypes obtained with spike-in
experiments was managed via automated procedures. For
instance, we have developed a Laboratory Information
Management Systems (LIMS) where results generated
from a standard HRM genotyping plate and a correspond-
ing spike-in genotyping plate are automatically converted
into a final genotype call [28]. The program is also capable
of rejecting samples that show unacceptable calls.

For amplicons containing two or more SNPs, sensitivity of
mutation scanning may be decreased by producing com-
plex melting curve data, and a different genotyping strat-
egy had to be applied. This second strategy relies on an
unlabelled probe-based genotyping analysis followed by
mutation scanning, where the probe is designed to target
the SNP(s) of interest. Both probe-amplicon duplex and
whole amplicon duplex melting regions can be observed
from the same melting run, in two distinct temperature
windows, allowing genotyping and mutation scanning
analyses to be performed simultaneously. Stratification of
the samples according to their genotypes at the common
variant positions prior to mutation scanning analysis
reduces the noise and enhances the sensitivity for the
detection of rare or unknown variants.

In practice, unlabeled 3' blocked probes targeting each
common SNP were designed. PCR were performed in
presence of a DNA dye (Here LC Green®) and oligonucle-
otides serving as probes were blocked at the 3' end to pre-
vent extension during amplification. All genotyping
assays were performed as a nested PCR, to ensure a good
amplification of the region of interest. The primary PCR
used standard conditions, whereas the secondary PCR
included the unlabelled probe (500 nM) and was asym-
metric so that more copies of the strand to which the
probe anneals were produced. The ratio between the
nested PCR primers was 1:5 (100 nM:500 nM) with an
excess of the primer for the strand that is complementary
to the probe. This favours probe-target annealing and
reduces competition with the complementary strand [29].
Thus, this protocol produced sufficient double-stranded

product for amplicon melting and enough single stranded
product for probe annealing [30]. The analysis proceeds
in two steps. The first step consists in analyzing the melt-
ing curve in the region corresponding to the probe Tm.
This step stratifies the samples into three groups based on
the genotypes of the common SNP. The second analysis
step consists in performing mutation scanning of the gen-
otype-defined subgroups in the region corresponding to
the amplicon Tm, to identify the samples that are hetero-
zygous for any rare sequence variants. For the amplicon
containing SNPs rs9894946 (common) and rs17883532
(rare) the probe was designed to perfectly complement
the rs9894946 T allele (GGAGCTCAGTACTGCCTGCCC,
the variable nucleotide is indicated in bold). For the
amplicon containing SNPs rs858528, rs1641548, and
rs1641549, two probes were designed. The first probe was
designed to perfectly complement the rs858528 G allele
(GCAGAGCGAGACTCAAAA). The second probe was
designed to complement the rs1641548 G allele and
rs1641549 A allele (TTAACCGGGCATGATGGCAG, the
variable nucleotides corresponding to SNPs rs1641548
and rs1641549 are indicated in bold). Probes were
designed to have different Tm (63°C and 54°C, respec-
tively), in order not to interfere with each other in the
melting data analysis.

Results
Mutation Scanning

During the course of a project to mutation screen the
entire TP53 locus by direct resequencing from a set of 47
samples, we took delivery of a High Resolution Melt
instrument. To assess the sensitivity and specificity of
HRM for mutation scanning, we undertook mutation
screening of the last 21 TP53 amplicons and of 1 ampli-
con corresponding to the proximal promoter region of the
gene (from a total of 67 amplicons) by both full-sequence
resequencing and HRM in a single pass experiment (Table
1).

Nine of the amplicons were <400 bp in length, with an
average length of 286 bp. For these, the sensitivity and
specificity of HRM for sequence variant detection were 1.0
(38 true positive/(38 true positive + 0 false negative)), and
0.83, (295 true negative/(60 false positive + 295 true neg-
ative)), respectively.

Thirteen of the amplicons were >400 bp in length, with an
average length of 544 bp. For these, the sensitivity and
specificity of HRM for sequence variant detection were
0.81 (105 true positive/(105 true positive + 23 false nega-
tive)), and 0.84, (339 true negative/(69 false positive +
339 true negative)), respectively. Of note, the variant
rs17551157, insertion of a cytosine following a 7 cytosine
mononucleotide run in the TP53 promoter region, was
undetectable in an amplicon of 653 bp.
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The joint dropout rate from PCR, sequencing, and or
HRM was 6.8%. Neither PCR-sequencing nor PCR-HRM
had a single pass dropout rate exceeding 5%, thus staying
above our general research mutation screening success
rate target of 95%.

Genotyping

We performed genotyping of 30 SNPs located within the
TP53 locus on 270 DNA samples from the Coriell Repos-
itory.

In some cases, it was possible to distinguish directly the
three different genotypes of a SNP using standard HRM
analysis of the amplicon of interest. Figure 1 displays the
melting curve analysis of the SNP rs9903378, a T>G sub-
stitution. In this experiment, it was possible to discrimi-
nate the three groups corresponding to each genotype
directly (common homozygotes TT, heterozygotes TG,
and rare homozygotes GG) (Figure 1). This SNP resides in
a T-rich sequence that has a low melting temperature. The
GG samples have a melting curve different from the com-
mon homozygotes TT; evidently, the G interrupts the long
poli-Ts and markedly increases the melting point of the
amplicon.

However, we found direct detection of minor allele
homozygotes to be the exception rather than the rule, at
least when using the mutation scanning approach for
amplicons in the 200 bp to 400 bp length range. In this

context, spike-in experiments provided an approach to
detection of minor allele homozygotes. As an example,
melting analyses for the SNP rs17881035 are displayed in
Figure 2 (panels A, B). Applying standard melting curve
analysis (Figure 2A), we observed that the heterozygous
AG samples have a distinct melting curve profile com-
pared to the common homozygote AA samples. However,
the minor allele homozygote GG samples were not distin-
guished from the common homozygous AA samples
because the difference between their Tm was insufficient.
In a second experiment (Figure 2B), each sample was
mixed with an equal quantity of DNA from an AA
homozygote (a pre-PCR spike-in experiment). This strat-
egy in effect converts the minor allele GG homozygotes
into GT heterozygotes, rendering them distinguishable
from AA samples. In some instances, HRM can directly
discriminate all of the genotypes of an amplicon that con-
tains two SNPs. As an example, a 130 bp amplicon carry-
ing SNPs rs17880560 and rs1614984 is displayed on
Figure 3.

Nevertheless, we have encountered examples where HRM
cannot discriminate heterozygous samples for SNP1 from
heterozygous samples for SNP2. In Figure 4 (panels A, B,
C), we present an example and solution for an amplicon
that contains two SNPs (rs9894946 and rs17883532) not
directly distinguishable from each other. Heterozygous
samples for either the first or the second SNP show almost
indistinguishable melting curves (Figure 4A). We then

Table 1: Oligonucleotide primer sequences used for comparison of HRM and sequencing sensitivity and specificity.

Amplicon Forward sequence 5'>3' Reverse sequence 5'>3' Location size

3 CGGGACGTGAAAGGTTAGAA TTTTGGGGTGGAAAATTCTG promoter 653

39 TGGCCATCTACAAGCAGTCA ACACGCAAATTTCCTTCCAC exon5-intron5 211

40 CATGAGCGCTGCTCAGATAG CAGTTGCAAACCAGACCTCA exon6 234

41 GTGGAAGGAAATTTGCGTGT TTGCACATCTCATGGGGTTA intron6 212

43 TGGCTCTGACTGTACCACCA TCTACTCCCAACCACCCTTG intron 7 371

44 CTGGAAGACTCCAGGTCAGG AGCTGTTCCGTCCCAGTAGA intron7 383

46 GCGCACAGAGGAAGAGAATC TGAAAGCTGGTCTGGTCCTT intron9 452

47 GCAGTGATGCCTCAAAGACA GCAGGCTAGGCTAAGCTATGA intron9 280

48 TGACTTTGCCTGATACAGATGC TAGCTACTGGGGAGGCAGAG intron9 596

49 GGCCTGCCTAGCCTACTTTT GTAGCAGGCGCTTGTAGTCC intron9 578

50B GACTACAAGCGCCTGCTACC TTTCATGCAACCATGCTGTT intron9 614

51 CCCTACAGTTGGGCAAAGTC CGACTGTGCCTCGTTTCTTT intron9 491

52A CCTGGGCGATAGAGTGAGAC GGCTGGACTCAAACTCTTGG intron9 134

52B GTCGCATGCACATGTAGTCC CTTGAGTTCCAAGGCCTCAT intron9 635

53 ACTTCTCCCCCTCCTCTGTT CCTGGGTTTGGATGTTCTGT exon10-intron10 348

55 TATACTCAGCCCTGCCATGC GGACTTCAGGTGGCTGTAGG intron10 603

57 TTTGGGTCTTTGAACCCTTG GTGGTTTCAAGGCCAGATGT exon11 (3'UTR) 400

58 GGCCCACTTCACCGTACTAA AAGCGAGACCCAGTCTCAAA exon11 (3'UTR) 485

59 AAGGAAATCTCACCCCATCC AAATGCAGATGTGCTTGCAG exon11 (3'UTR) 456

60 TTGAGACTGGGTCTCGCTTT CAGTCTCCAGCCTTTGTTCC 566

61 AAAACTTTGCTGCCACCTGT ATCCTGCCACTTTCTGATGG 415

62 GCCTCTCACCAAGGATTACG CCTGGACAGTAGCACCCACT 535
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designed an unlabeled 3' blocked probe that hybridizes to
the region of sequence specific for the more common SNP
rs9894946 [31]. Results are displayed in Figure 4 panels B,
C. The first analysis step stratifies the samples into three
groups based on the genotypes of rs9894946 (Figure 4B).
In a second analysis step, mutation scanning of the geno-
type-defined subgroups in the region corresponding to
the amplicon Tm is performed, in order to identify the
samples that are heterozygous for any other rare sequence

variants. In this example, we found three heterozygous
subjects for the SNP rs17883532 in 270 samples (Figure
4C). All these heterozygous subjects were homozygous for
the major allele of SNP rs9894946. This solution is accept-
able only if the second SNP is rare because the mutation
scanning applied after the stratification of samples accord-
ing the melting profile of the common SNP targeted by
the unlabeled probe may not distinguish rare from com-
mon homozygous samples.

Genotyping of SNP rs9903378Figure 1
Genotyping of SNP rs9903378. The three groups are well distinguished: TT in grey, GG in red and TG in blue.
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During the course of our TP53 study, we faced another
particular situation, where two or more common SNPs lie
in the same amplicon. In such a case, it may be necessary
to use more than one unlabelled probe. For instance, one
of our TP53 amplicons contains two SNPs: rs1641548 and
rs1641549. These are only 4 bp apart, and both are A-to-
G variants. Samples that are heterozygous for either the
first or the second SNP have essentially indistinguishable
melting curves (Figure 5A). Moreover, this amplicon also
contains the SNP rs858528. In this case, two probes were
designed. The first probe was designed to perfectly com-
plement the rs858528 G allele. The second probe was
designed to complement the rs1641548 G allele and
rs1641549 A allele. Thus, homozygotes for the rs858528/
rs1641548/rs1641549 haplotype G-G-A match both
probes exactly and therefore have the highest Tm across the
compound-melting interval. Figure 5B and 5C show vari-
ous genotypes combinations of the three SNPs found in
our sample series.

Finally, we evaluated whether the different genotypes
from 2 independent PCR products could be discriminated
from one single melting curve analysis. Since the ampli-
con containing SNP rs9903378 (which can be directly
genotyped, see Figure 1) and the amplicon containing
SNP rs9894946 (for which a specific probe had to be
designed, see Figure 4) showed different Tm (range 75–
80°C and 90–95°C, respectively), they were selected to
conduct the experiment. Both SNP containing fragments
were amplified in a single PCR, and HRM analysis was
conducted on the multiplex PCR product. In this last
experiment, conditions of the multiplex PCR slightly dif-
fered from conditions of the simplex PCR, in order to
achieve simultaneous amplification of both amplicons in
a single reaction. In particular, the primer concentration
for the amplicon containing the rs9903378 was decreased
from 400 nM to 300 nM because at higher concentration
only this amplicon was amplified (data not shown). Melt-
ing curves of the multiplex PCR products showed different
patterns depending on the genotype combinations for the

Genotyping using spike-in control DNA to distinguish common homozygotes from rare homozygotesFigure 2
Genotyping using spike-in control DNA to distinguish common homozygotes from rare homozygotes. A. The 
melting curves of AG heterozygotes (in red) are distinguished from homozygous AA (in grey). Homozygous GG samples (in 
blue) are not distinguished from the common AA homozygous samples.B After spike-in of a homozygous AA sample, the GG 
samples are converted into AG heterozygotes (in blue), and they are now distinguished from AA samples.
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Simultaneous genotyping of two or more SNPs within the same amplicon using the classic HRM approachFigure 3
Simultaneous genotyping of two or more SNPs within the same amplicon using the classic HRM approach. 
There are two SNPs in this amplicon: rs17880560 and rs1614984. In grey, samples homozygous for both SNPs; in red, samples 
homozygous for rs17880560 (delCACGGC/delCACGGC) and heterozygous for rs1614984 (C/T). In blue, samples 
homozygous for rs1614984 (C/C) and heterozygous for rs17880560 (insCACGGC/delCACGGC). In green, samples hetero-
zygous for both SNPs.
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2 SNPs (Figure 6). Using the "genotyping" mode of Light-
Scanner® software, it was possible to distinguish them
from each other in a single melting curve analysis (Figure
6A). However, especially when analyzing a large number
of samples (>80), resolution can be improved by perform-
ing the HRM analysis of the multiplex PCR products in
two steps, that is by analyzing the 2 melting regions corre-
sponding to the 2 DNA fragments separately (Figure 6B
and 6C). Thus, our results demonstrate that HRM geno-
typing of multiplex PCR products is feasible and cost and
time effective.

Discussion
In this manuscript, we assessed the sensitivity and specifi-
city of HRM for mutation screening by comparing it head
to head with the direct resequencing of 21 TP53 locus

amplicons on 47 DNA samples. A second application of
the HRM analysis was the genotyping of 30 known SNPs
within this gene on 270 DNA samples.

In mutation scanning mode, the sensitivity and specificity
of HRM were 1.0 and 0.80, respectively, for amplicons of
<400 bp, and 0.81 and 0.84, respectively, for amplicons of
>400 bp.

Recent studies have validated HRM for screening of
number genes of clinical significance [21-26]. These stud-
ies also reported a sensitivity of HRM close to 100%,
except in the situation were amplicons have a high GC
content [26]. We also encountered a similar situation with
one TP53 GC-rich amplicon (see below). However, in the
previous studies, the HRM technique was evaluated only

Simultaneous genotyping of common SNP rs9894946 and rare SNP rs17883532Figure 4
Simultaneous genotyping of common SNP rs9894946 and rare SNP rs17883532. A. In mutation scanning mode, 
heterozygous samples for either the first (in red) or the second SNP (in green) have virtually indistinguishable melting curves. 
B. In genotyping mode using an unlabeled probe for rs9894946, the 3 genotypes are distinguisable (CC in gray, CT in red, TT 
in blue). C. Mutation scanning of homozygous rs9894946 CC subset reveals heterozygous rs17883532 CT (In green).
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on partial or full coding sequence(s) of the genes of inter-
est. For instance, more than 80% of TP53 mutation stud-
ies focus on exons 5–8 (residues 126–306) because most
mutations are localized in the DNA binding domain of
the protein (residues 100–300) [21,22]. However, in one
study where the HRM analysis was extended to the entire
coding exon of TP53, 41% of the alterations fall outside
exons 5–8 [22]. Thus partial scanning of TP53 sequence
may lead to a bias in the mutation analysis. Following this
idea, we aimed to evaluate a set of HRM assays that sam-
ple the entire TP53 locus, including one or more ampli-
cons from the proximal promoter, coding exons, introns,
and 3' UTR. Our study thereby provides a broader view of
the strengths and limitations of HRM-based techniques.
However, the TP53 amplicons used in the present study

were not designed specifically for HRM but rather for
mutation screening of the entire TP53 locus by direct rese-
quencing in the context of a Li-Fraumeni syndrome-
related study (Garritano et al, in preparation). Conse-
quently, some of the amplicons were longer than the opti-
mum for HRM mutation scanning. Nonetheless, we have
shown that the sensitivity of HRM for mutation screening
is very high, especially for amplicons <400 bp.

For genotyping applications, especially for intronic SNPs,
primers were sometimes designed quite far from the SNP
of interest to avoid unspecific amplification. Despite the
length of the amplicons used, we obtained full concord-
ances between HRM genotyping calls and results of direct
sequencing. Moreover, using an amplicon of >400 bp, we

Simultaneous genotyping of rs858528, rs1641548, and rs1641549 using two unlabeled probesFigure 5
Simultaneous genotyping of rs858528, rs1641548, and rs1641549 using two unlabeled probes. A Samples that are 
heterozygous for rs858528, rs1641548, and rs1641549 have essentially indistinguishable melting curves (in red). B Genotyping 
using two unlabeled probes. Probe 1 targets the G allele of rs858528 and probe 2 targets the G allele of rs1641548 and the A 
allele of rs1641549. C Each distinct melting profile from panel B corresponds to a combination of genotypes of the three SNPs 
found in our population.
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succeeded to simultaneously genotype two SNPs located
approximately 200 bp apart from each other (SNP
rs858528 and rs1641549), thus reducing the number of
PCR reactions and improving time and cost effectiveness.

In mutation scanning mode, HRM tended to call as "vari-
ant" some DNA samples that actually were wild type. To
minimize the frequency of false positive "variant" calls, it
is recommended to standardize DNA preparation, storage
methods, and storage conditions. Because the sensitivity
and specificity of HRM are exquisitely dependent on the
melting temperature of each individual sample, variation
in salt or buffer concentration carried into PCR reactions
along with substrate DNA can generate heterogeneous
melting profiles. If needed, to reduce sample-to-sample

heterogeneity, it can also be useful to perform a nested
PCR and the HRM assay on the secondary PCR.

In the course of our work, we have observed one potential
weakness in HRM: the technique may have limited sensi-
tivity for single nucleotide insertion-deletion variants
located immediately adjacent to mononucleotide runs of
sufficient length that they stutter during PCR. In this work,
SNP rs17551157, an insertion of a cytosine adjacent to a
7 cytosine repeat within TP53 proximal promoter, was
undetectable in a 653 bp HRM amplicon. A similar situa-
tion was also encountered during a large-scale case/con-
trol mutation scanning of ATM performed in our
laboratory, where insertion of an adenosine adjacent to an
intronic run of 10 thymines (rs3218681) was also unde-

An amplicon containing rs9903378 and an amplicon containing rs9894946 were amplified in a multiplex PCRFigure 6
An amplicon containing rs9903378 and an amplicon containing rs9894946 were amplified in a multiplex PCR. 
A The melting curves of the different genotype combinations of the two SNPs show different profiles. In gray TT-CC, in blue 
TT-CT, in red GG-CC, in orange TG-CC and in purple TT-TT, respectively for rs9903378 and rs9894946. B The analysis was 
performed in the region of melting temperature of rs9903378 (75–80°C). in gray TT, in orange TG in red GG. C The analysis 
was performed in the region of melting temperature of rs9894946 (90–95°C). in gray CC, in blue CT in purple TT.
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tectable by HRM mutation scanning. In both cases, the
sequencing chromatograms revealed PCR stuttering at the
mononucleotide run (data not shown). Such mononucle-
otide runs are relatively uncommon within the ORF of
protein coding genes. Nonetheless, we suggest that at the
outset of an HRM based mutation-screening project,
investigators check the ORF of the gene of interest for
mononucleotide runs that could create such a problem. If
any are present, apply a different mutation screening tech-
nique to the relevant amplicon.

From our extensive mutation screening of the TP53 locus,
we found that HRM provides sensitive assays both for
detection of new sequence variants and genotyping of
known polymorphisms. Table 2 summarizes the various
HRM approaches for the different genetic contexts that we
have considered, according to the number of SNPs present
in each amplicon and to their frequencies in the studied
population. In our experience, selecting an appropriate
HRM analysis strategy depends both on study size and the
number of known common polymorphisms in a given
amplicon. For relatively small mutation screening studies,
it may be reasonable to sequence all samples that appear
to contain a sequence variant. In this case, amplicons
known (or found) to contain a common variant can be
PCR amplified in duplicate, once as a standard analysis
and once as a spike-in analysis. The former will detect the
presence of heterozygous variants and the latter will detect
the presence of minor allele homozygotes. All samples
with HRM curves that differ from the major allele
homozygotes curves would then be queued for sequenc-
ing.

In large-scale mutation screening studies, there may be
cost benefit to enabling HRM determination of common
SNP genotypes prior to mutation scanning, so that only
samples showing a variant HRM curve not attributable to
the presence of a common SNP are queued for sequenc-
ing.

If an amplicon contains a common variant, this variant
can mask the presence of a rare variant that might have the
same melting profile. Without a discrimination step, one
has to either 1) sequence all the heterozygous samples,
even though most will be due to a common SNP or 2)
accept failure to detect rare variants that have the same
melting profile as the common SNP. Inclusion of a dis-
crimination step, which can be achieved with little added
cost and with no extra PCR reactions, allows assigning the
common SNP by genotyping and simultaneously queuing
the rare variant heterozygotes for identification by
sequencing.

Conclusion
HRM is a simple and cost effective post-PCR technique
that can be used for high-throughput mutation scanning
and genotyping in a small laboratory environment. It is
inexpensive, flexible, and only mildly constrained by
primer design. HRM reactions are closed-tube, which
reduces risk of contamination. In addition, HRM assays
are non-destructive so that the actual sample used in
mutation scanning can serve as a sequencing template.
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Rare, evolutionarily unlikely missense substitutions
in CHEK2 contribute to breast cancer
susceptibility: results from a breast cancer family
registry case-control mutation-screening study
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Abstract

Introduction: Both protein-truncating variants and some missense substitutions in CHEK2 confer increased risk of

breast cancer. However, no large-scale study has used full open reading frame mutation screening to assess the

contribution of rare missense substitutions in CHEK2 to breast cancer risk. This absence has been due in part to a

lack of validated statistical methods for summarizing risk attributable to large numbers of individually rare missense

substitutions.

Methods: Previously, we adapted an in silico assessment of missense substitutions used for analysis of unclassified

missense substitutions in BRCA1 and BRCA2 to the problem of assessing candidate genes using rare missense

substitution data observed in case-control mutation-screening studies. The method involves stratifying rare

missense substitutions observed in cases and/or controls into a series of grades ordered a priori from least to most

likely to be evolutionarily deleterious, followed by a logistic regression test for trends to compare the frequency

distributions of the graded missense substitutions in cases versus controls. Here we used this approach to analyze

CHEK2 mutation-screening data from a population-based series of 1,303 female breast cancer patients and 1,109

unaffected female controls.

Results: We found evidence of risk associated with rare, evolutionarily unlikely CHEK2 missense substitutions.

Additional findings were that (1) the risk estimate for the most severe grade of CHEK2 missense substitutions

(denoted C65) is approximately equivalent to that of CHEK2 protein-truncating variants; (2) the population

attributable fraction and the familial relative risk explained by the pool of rare missense substitutions were similar

to those explained by the pool of protein-truncating variants; and (3) post hoc power calculations implied that

scaling up case-control mutation screening to examine entire biochemical pathways would require roughly 2,000

cases and controls to achieve acceptable statistical power.

Conclusions: This study shows that CHEK2 harbors many rare sequence variants that confer increased risk of breast

cancer and that a substantial proportion of these are missense substitutions. The study validates our analytic

approach to rare missense substitutions and provides a method to combine data from protein-truncating variants

and rare missense substitutions into a one degree of freedom per gene test.
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Introduction
Familial clustering of breast cancer is well recognized,

having been described over 140 years ago [1]; the famil-

ial relative risk of breast cancer is on average about two-

fold and is higher among relatives of patients with early-

onset cases [2,3]. Three classes of breast cancer suscept-

ibility sequence variants with different levels of risk and

prevalence in the population are now well established

[4,5]: rare high-risk variants, such as protein-truncating

mutations in BRCA1, BRCA2, PTEN and TP53 (Mende-

lian Inheritance in Man numbers (MIMs) 113705,

600185, 601728 and 191170, respectively); rare inter-

mediate-risk variants, such as protein-truncating muta-

tions in ATM [6,7], BRIP1 [8], CHEK2 [9] and PALB2

[10,11] (MIMs 208900, 605882, 604373 and 610355

respectively); and, more recently, common modest pene-

trance variants such as the risk single-nucleotide poly-

morphisms (SNPs) detected by genome-wide association

studies (GWASs) in FGFR2, TOX3 (TNRC9), MAP3K1

and LSP1 [12-14] (MIMs 176943, 611416, 600982 and

153432, respectively). High-risk variants in the known

major breast cancer susceptibility genes BRCA1, BRCA2,

TP53 and PTEN account for approximately 20% to 25% of

the familial risk of breast cancer, and adding the known

intermediate-risk genes increases the proportion by per-

haps 1% for each gene [15]. Moreover, the panoply of

known modest-risk SNPs account for about 8% of the

familial relative risk [16]. Thus known genetic effects

account for about one-third of the familial relative risk of

breast cancer, leaving two-thirds unaccounted for, a phe-

nomenon referred to as the “problem of missing heritabil-

ity.” Some of this so-called missing “heritability” is of

course due to the familial component of environmental

risk factors; the measured surrogates for these factors

probably explain about 5% of the familial relative risk, but

if measured more specifically and more precisely, they

may explain considerably more familial aggregation [17].

The gene CHEK2 encodes a serine/threonine kinase,

CHK2, that functions in the signaling pathways activated

by DNA damage, particularly DNA double-stranded

breaks [18]. Inheritance of a CHEK2 protein-truncating

mutation such as the relatively well investigated North-

ern European founder mutation c.1100delC confers a

two- to threefold increased risk of breast cancer, an

increased risk of a number of other cancer types and

perhaps a decreased risk of some smoking-related can-

cers [9,19-21]. Some missense substitutions in CHEK2

also alter cancer risk, as exemplified by the Ashkenazi

CHEK2 missense substitution p.S428F and the Slavic

substitution p.I157T [22-26]. Most large-scale genetic

studies of CHEK2 conducted to date have focused on

genotyping known variants, such as founder mutations.

Consequently, there has been little opportunity to assess

the role of the potentially more numerous, rarer variants

of this gene.

During the 1990s, linkage analysis proved to be an

effective genome-wide approach for finding high-risk

susceptibility genes for breast and colon cancer. Over

the past few years, GWASs have proved to be an effec-

tive genome-wide approach to finding common, not

necessarily causal, SNPs associated with modest risk.

Case-control mutation screening, or its quantitative trait

homolog of comparative mutation screening of indivi-

duals from the opposite ends of a trait spectrum, is

emerging as a useful strategy for identifying and charac-

terizing intermediate-risk susceptibility genes

[6-8,10,27-29]. While case-control mutation screening

has been, to date, too technically demanding to examine

a whole biochemical pathway, let alone the entire

exome, one can imagine combining exon hybridization

capture and massively parallel sequencing to accomplish

such a study design. Beyond the laboratory challenge

imposed by the implied scale of resequencing, a second

challenge is to conduct a statistically powerful analysis

of the large number of rare sequence variants that

would be revealed if such a study design were applied to

a common disease such as breast or colon cancer. Pre-

viously, we used data from mutation screening of ATM

in breast cancer patients and controls to demonstrate

the ability to detect evidence of pathogenicity from both

truncating and splice junction variants (T+SJV) and rare

missense substitutions (rMS) [7]. Here we apply the

same analytic strategy to CHEK2 and then extrapolate

the results to determine the requirements for much lar-

ger-scale studies.

Materials and methods
Ethics statement

The CHEK2 mutation-screening studies and analyses

described here were approved by the institutional review

board (IRB) of the International Agency for Research on

Cancer, the University of Utah IRB and the local IRBs

of the Breast Cancer Family Registry (Breast CFR) cen-

ters from which we received samples. All participants

gave written, informed consent.

Subjects

Patients were selected from among women gathered by

population-based sampling by the Breast CFRs at three

centers (Cancer Care Ontario, the Cancer Prevention

Institute of California (formerly the Northern California

Cancer Center) and the University of Melbourne) [30].

Patients were recruited between 1995 and 2005.

Selection criteria for cases (N = 1,313) were diagnosis

at or before age 45 years and self-reported race or ethni-

city plus grandparents’ country of origin consistent with
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Caucasian, East Asian, Hispanic/Latino or African

American racial or ethnic heritage.

The controls (N = 1,123) were frequency matched to

cases within each center on racial or ethnic group, with

age at selection not more than ± 10 years difference the

age range at diagnosis of the patients gathered from the

same center. Because of the shortage of available con-

trols in some ethnic and age groups, the frequency

matching was not one-to-one in all subgroups.

Mutation screening

Mutation screening started from whole-genome ampli-

fied (WGA) DNA for coding exons 1-9 and from geno-

mic DNA for exons 10-14. A nested polymerase chain

reaction (PCR) strategy was used, followed by high-reso-

lution melting (HRM) curve analysis [31,32] and then

dye terminator resequencing of samples that contained

a melt curve aberration indicative of the presence of a

sequence variant. For CHEK2 amplicons harboring

SNPs with a frequency ≥1% in either the Single Nucleo-

tide Polymorphism Database (dbSNP) [33] or initial

amplicon testing, we applied a simultaneous mutation

scanning and genotyping approach using HRM curve

analysis to improve the sensitivity and efficiency of the

mutation screening [34]. The laboratory process used

was the same as that described in detail for our recent

case-control mutation screening for ATM [7], except

that primary PCR assays for CHEK2 exons 10-14 (which

are involved in a subtelomeric repeat) relied on a long-

range PCR assay as described by Sodha et al. [35].

All exonic sequence variants, plus splice junction con-

sensus sequence variants that reduced splice junction

sequence similarity to the standard consensus sequences

AG^GTRRGT (donor) or Y16NYAG^ (acceptor) (where

^ indicates the position of the splice junction), were

reamplified from genomic DNA for confirmation of the

presence of the variant. Because of the presence of pseu-

dogenes that partially matched the sequence of the

CHEK2 long-range PCR exons (exons 10-14), sequence

variants identified within these exons were subsequently

tested using allele-specific PCR assays for the primary

PCR to confirm that the sequence variants initially iden-

tified were true CHEK2 variants. To ensure amplifica-

tion of the CHEK2 DNA sequence and not amplification

of the potentially interfering CHEK2 pseudogenes, the

positions of the specific primers were chosen so that the

3’ extremity bases perfectly matched the CHEK2 wild-

type sequence, while they mismatched the correspond-

ing position of the pseudogenes.

All samples that failed at the primary PCR, secondary

PCR or sequencing reaction stage were reamplified from

WGA DNAs or genomic DNA. Samples that still did

not provide satisfactory mutation-screening results for

at least 80% of the CHEK2 coding sequence were

excluded from further analyses (n = 24). Process and

data management of the mutation screening were car-

ried out as described by Voegele et al. [36]. Primer and

probe sequences are available from FLCK upon request.

Alignments and scoring of missense substitutions

Previously, we used the T-Coffee (Tree-based Consis-

tency Objective Function for alignment Evaluation) soft-

ware suite of alignment tools [37,38] to prepare a CHK2

protein multiple sequence alignment in which the most

diverged sequence was from sea urchin (Strongylocentro-

tus purpuratus) to analyze a small number of CHEK2

missense substitutions and in-frame deletions [39]. We

updated this alignment by replacing the partial puffer-

fish (Tetraodon nigroviridis) sequence with a full-length

zebrafish (Danio rerio) sequence and including predicted

CHK2 sequences from elephant (Loxodonta africana),

platypus (Ornithorhynchus anatinus), tunicate (Ciona

intestinalis) and fruit fly (Drosophila melanogaster). The

alignment was characterized by (1) determining percen-

tage sequence identity between each pair of sequences

in the alignment, (2) using the Protpars routine of Phy-

logeny Inference Package version 3.2 software (PHYLIP;

free software developed by Felsenstein [40]) to make a

maximum parsimony estimate of the number of substi-

tutions that occurred along each clade of the underlying

phylogeny and (3) recording the “median sequence con-

servation score” reported by the missense substitution

analysis program Sorting Intolerant from Tolerant

(SIFT) [41,42]. The sequence alignment, or updated ver-

sions thereof, is available at the Align-GVGD website

[43]. Missense substitutions observed during our muta-

tion screening of CHEK2 were scored using the Align-

GVGD [43-45] and SIFT [41,42] software programs with

our curated alignments and with Polymorphism Pheno-

typing version 2 software, or PolyPhen-2, using its pre-

compiled alignment [46,47].

Statistical analysis and power calculations

To assess risk associations using the case-control fre-

quency distribution of T+SJVs and rMSs, we con-

structed a single table with one entry per participant;

zero or one rare sequence variant per participant; and

annotations for type of sequence variants, study center,

case-control status, race or ethnicity, and age. For the

two participants who carried more than one rare variant

of interest (one participant carried p.I448S (C15) plus p.

E394D (C35), and one participant carried p.E239K (C15)

plus p.R346H (C25)), only the variant belonging to the

more likely evolutionarily deleterious grade (that is,

higher C-number as scored by Align-GVGD) was

considered.

Most analyses were performed using multivariable

unconditional logistic regression using Stata version 11
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software (StataCorp, College Station, TX, USA). Differ-

ences in the case-control ratio between ethnic groups

and age categories were accounted for by including cate-

gorical variables for each age category and ethnic group.

Adjustment was also made for study center. We

explored the possibility of interactions between ethnic

group and study center, checking both improvement of

model fit by the likelihood ratio statistic and comparing

the estimates of the parameter of interest (log odds ratio

(OR) per Align-GVGD grade) in different models.

Adjustment for ethnic group should also capture con-

founding of genetic and social factors with interaction

terms, allowing that this confounding effect may be dif-

ferent for the broadly labeled ethnic groups in different

centers. Because the Breast CFR matched cases and con-

trols for age in 5-year categories, and because the maxi-

mum age of Breast CFR patients included in this study

was 45 years, all participants ages 41 years and older (at

diagnosis for patients and at ascertainment for controls)

were combined into a single age category.

Logistic regression trend tests were formatted such

that participants who did not carry any T+SJV or any

rMS, as well as carriers of the seven grades of rMSs

(C0, C15, C25, C35, C45, C55 and C65) defined by

Align-GVGD [45], were assigned the default row labels

0, 1, 2, 3, 4, 5, 6 and 7, respectively. These row labels

were then used as a continuous variable in the logistic

regression analyses. Regression coefficients and trend

test P values (Ptrend) were estimated from the resulting

lognormal ORs using the logit function of Stata soft-

ware. Carriers of T+SJVs were analyzed against the

same noncarrier group defined above. Two strategies

were used to combine evidence of association with

T+SJV and rMS variants: (1) carriers of T+SJVs were

combined with carriers of C65 rMSs in category 7, and

(2) T+SJV carriers were assigned row label 8. We used

the Fisher’s exact test to obtain the lower bound of the

95% confidence interval (95% CI) for associations with

categories that contained one or more patients but zero

controls.

Post hoc power calculations were performed by spe-

cifying a hypothetical OR and population prevalence

for each class of variant, together with the cumulative

probability of breast cancer prior to age 70 years. The

ORs and control carrier frequencies that we specified

for the individual grades of sequence variants, relative

to the noncarriers, were based on data from the popu-

lation-based Breast CFR sample series. For the grades

for which there were a reasonable number of observa-

tions, that is, C0, C15, C25, C65 and T+SJV, we used

the adjusted ORs and observed carrier frequencies.

Because of the very low numbers of observations in

grades C35-C55, ORs for these categories were esti-

mated from the logistic regression OR coefficient and

population carrier frequencies defined to obtain the

specified OR, given the number of observations in

patients. On the basis of these OR and frequency esti-

mates, we calculated expected values and variances of

the test statistics for the types of test considered: Pear-

son’s c
2 test for the two-category tests and the Wald

statistic from a logistic regression for the trend test.

We then calculated the probability of these statistics

exceeding a series of desired P value thresholds using a

normal approximation.

Attributable fractions were estimated according to the

method described by Greenland [48], and familial rela-

tive risks were estimated according to the methods

described by Goldgar [49]. Both calculations used the

same frequency and risk association estimates as those

used for the post hoc power calculations.

Results
Number of subjects included in the analysis

Of the 2,436 Breast CFR participants, 24 (10 patients

and 14 controls) were excluded because their PCR fail-

ure rate for CHEK2 mutation-screening amplicons was

greater than 20% (Table 1). The distributions of the

remaining cases and controls by age, race or ethnicity,

and study center are detailed in Table 2.

Analysis of protein-truncating variants

Full open reading frame mutation screening of CHEK2

revealed three distinct nonsense substitutions and four

distinct small insertion deletion variants that should

result in a truncated protein. One of these, c.1100delC,

a well-known Northern European founder mutation that

has been shown beyond any reasonable doubt to confer

a moderately increased risk of breast cancer [50], was

observed in 11 patients compared with three controls.

The other six protein-truncating variants were observed

once each, always in a patient (Supplementary Table S1

in Additional file 1). The overall OR associated with T

+SJVs was 6.18 (P = 0.005) (Table 3). However, as

1100delC genotyping has already been reported for most

of the Breast CFR participants included in this study

[50,51], we note that the combination of the other six

Table 1 Participants excluded because of poor mutation-

screening performance by study centera

Center Patients, n (%) Controls, n (%)

Breast CFR Australia 5 (0.8%) 11 (2.1%)

Breast CFR Canada 1 (0.3%) 2 (0.4%)

Breast CFR Northern California 4 (1.0%) 1 (0.7%)

Total 10 (0.8%) 14 (1.2%)

a All 10 excluded patients were <42 years old, and all 14 excluded controls

were <45 years old; percentage data are the percentages of the total number

of patient or control DNA provided by the indicated Breast CFR center; Breast

CFR, Breast Cancer Family Registry.
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protein-truncating variants was marginally significant by

itself (P = 0.033), but since none of this set of controls

were found to carry such a variant, we could not esti-

mate the OR.

Analysis of rare missense substitutions

In the course of this mutation screening, we observed 34

distinct CHEK2 missense substitutions (Supplementary

Table S1 in Additional file 1). The majority (24 of 34) of

these were observed once each. The most common one,

p.I448S, was observed 10 times, and none had an overall

frequency greater than 1% in this sample series. Overall,

42 of the patients carried one rMS, 2 of the patients car-

ried two rMSs, and 17 controls carried one rMS. Thus,

there was a significant excess of rMS carriers among the

patients (OR = 2.20, P = 0.010).

To analyze the rMSs in more detail, we prepared and

characterized a protein multiple sequence alignment

containing CHK2 sequences from seven mammals, three

additional vertebrates, two additional deuterostomates

and one protostomate. Ordering the nonmammalian

sequences by decreasing identity to human CHK2 and

sequentially assessing overall sequence diversity, the

alignment exceeded a maximum parsimony estimate of

an average of three substitutions per position upon

inclusion of the sea urchin (Strongylocentrotus purpura-

tus) sequence (Supplementary Table S2 in Additional

file 1). Three substitutions per position was suggested as

a criterion of sequence diversity for analysis of missense

substitutions, and we have adopted it as our criterion

for use with Align-GVGD in case-control mutation-

screening applications [7,52,53].

Using this alignment, we scored the 34 missense sub-

stitutions with Align-GVGD [43-45] and SIFT [41,42]

(Supplementary Table S1 in Additional file 1). Rather

than generating a binary classification, Align-GVGD

categorizes missense substitutions into seven grades

ordered from evolutionarily most likely (C0) to least

likely (C65) [45]. Align-GVGD scored 14 of the rMSs as

C0, with 12 patients versus 9 controls carrying a C0

rMS as their highest-grade CHEK2 variant. The OR for

this grade of rMS was near 1.0 (OR, 1.39; 95% CI, 0.55

to 3.56) (Table 3). In contrast, five different rMSs scored

as C65, with nine patients versus one control carrying a

C65 rMS (again, as their highest-grade CHEK2 variant).

The OR for C65 rMSs was 8.75 (P = 0.044) (Table 3).

Exploiting the intrinsic ordering of the Align-GVGD

grades, we performed a logistic regression test for log-

linear OR trends across noncarriers and carriers of the

seven grades of rMSs. This test yielded a lognormal OR

increase of 0.33/grade (Ptrend = 0.0055) (Table 4). Thus

the statistical evidence in favor of pathogenicity from

the trend test was stronger than that generated by either

the binary test over all the missense substitutions or the

test for any individual grade of missense substitution.

These results include adjustments for age category,

study center and ethnic group. Neither the removal of

the study center nor the inclusion of interactions

between center and ethnic group changed the first two

digits of these estimates. The interaction terms did not

significantly improve the model fit (P = 0.18) and were

omitted. While removing the study center did not signif-

icantly reduce the goodness of fit (P = 0.12), this adjust-

ment was retained on the grounds of prior plausibility.

We emphasize that our preplanned rMS analysis was

based on rMS grading using Align-GVGD with a

CHEK2 protein multiple sequence alignment having an

average of at least three substitutions per position and

in which the farthest diverged sequence was from the

(deuterostomate) sea urchin (Strongylocentrotus purpur-

atus). Our analysis thus conformed to the conditions

under which Align-GVGD was calibrated and was used

to grade missense substitutions in ATM [7,45]. In addi-

tion to the pre-planned Align-GVGD analysis, we car-

ried out corresponding analyses on the basis of rMS

grading with SIFT [41,42] and PolyPhen-2 [46,47]. With

SIFT, we set up three rMS grades: (1) the program’s

standard likely neutral grade of SIFT score >0.05, (2) a

Table 2 Distribution of patients and controls by age, race

or ethnicity, and study centera

Distributions Patients, n (%) Controls, n (%)

Age range, yr

≤30 106 (8.1%) 66 (6.0%)

31-35 322 (24.7%) 171 (15.4%)

36-40 434 (33.3%) 231 (20.8%)

41-45 441 (33.8%) 199 (17.9%)

46-50 0 (0.0%) 230 (20.7%)

51-55 0 (0.0%) 212 (19.1%)

Total 1,303 (100.0%) 1,109 (100.0%)

Race or ethnicity

Caucasian 843 (64.7%) 956 (86.2%)

East Asian 204 (15.7%) 70 (6.3%)

Latina 158 (12.1%) 47 (4.2%)

Recent African ancestry 98 (7.5%) 36 (3.2%)

Total 1,303 (100.0%) 1,109 (100.0%)

Study center

Breast CFR Australia 588 (45.1%) 513 (46.3%)

Breast CFR Canada 302 (23.2%) 461 (41.6%)

Breast CFR Northern California 413 (31.7%) 135 (12.2%)

Total 1,303 (100.0%) 1,109 (100.0%)

a Patients and controls excluded because of poor mutation-screening

performance are not included; percentage data are the percentages of the

total number of patient or control DNA in the category indicated that met the

mutation-screening quality control criterion; Breast CFR, Breast Cancer Family

Registry.
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likely deleterious grade of 0.05 ≥ SIFT score ≥ 0.01, and

(3) a more likely deleterious grade of SIFT score 0.00.

Using a CHEK2 alignment in which the farthest

diverged sequence was from the (protostomate) fruit fly

(Drosophila melanogaster), which reached SIFT’s median

sequence conservation score threshold of 3.25, the OR

for the SIFT score 0.00 grade was 3.03 and the logistic

regression trend test gave Ptrend = 0.012 (Table 3). Using

the slightly less informative alignment in which the

most diverged sequence was from the sea urchin, the

logistic regression trend test gave Ptrend = 0.014 (data

not shown). PolyPhen-2 uses a combination of its own

precompiled protein multiple sequence alignments and

crystal structure information to score missense substitu-

tions. Using PolyPhen-2, we also set up three rMS

grades: (1) the program’s standard “Benign” grade, (2)

its standard “Possibly Damaging” grade, and (3) its stan-

dard “Probably Damaging” grade. The OR for the Prob-

ably Damaging grade was 3.87, and the logistic

regression trend test gave Ptrend = 0.0070. The rMS

grades obtained with SIFT and PolyPhen-2 are also

included in Supplementary Table S1 in Additional file 1.

One question that arises from this approach to mis-

sense substitution analysis is whether the rMSs that

drive the difference between patients and controls are

truly evolutionarily unlikely, which is shorthand for

“subject to purifying selection such that they are dispro-

portionately unlikely ever to become fixed as major

Table 3 Analyses of rare variants with missense substitutions stratified by Align-GVGD gradea

Class Patients, n Controls, n Crude OR (95% CI) Adjusted OR (95% CI)

Noncarriers 1,242 1,089

T+SJV 17 3 4.97 (1.45 to 17.0) 6.18 (1.76 to 21.8)

Any rMS 44 17 2.27 (1.29 to 4.00) 2.20 (1.20 to 4.01)

rMS stratified by Align-GVGD gradeb

C0 12 9 1.17 (0.49 to 2.79) 1.39 (0.55 to 3.56)

C15 14 5 2.46 (0.88 to 6.84) 1.82 (0.62 to 5.34)

C25 7 2 3.07 (0.64 to 14.8) 2.47 (0.45 to 13.49)

C35 1 0 -

C45 0 0 -

C55 1 0 -

C65 9 1 7.89 (1.00 to 62.4) 8.75 (1.06 to 72.2)

rMS stratified by SIFT gradec

S > 0.05 21 8 2.30 (1.02 to 5.22) 1.99 (0.83 to 4.77)

0.05 ≥ S > 0.00 12 5 2.10 (0.74 to 5.99) 1.91 (0.63 to 5.86)

S = 0.00 11 4 2.41 (0.77 to 7.59) 3.03 (0.91 to 10.0)

rMS stratified by PolyPhen-2 grade

Benign 16 7 2.00 (0.82 to 4.89) 1.69 (0.64 to 4.41)

Possibly Dd 10 6 1.46 (0.53 to 4.03) 1.65 (0.55 to 4.89)

Probably De 18 4 3.95 (1.33 to 11.7) 3.87 (1.25 to 12.0)

a Odds ratios are adjusted for race or ethnicity (Caucasian, East Asian, African American or Latina), study center, and age as categorical variables; OR, odds ratio;

95% CI, 95% confidence interval; T+SJV, protein-truncating variants plus splice junction variant; rMS, rare missense substitution; S, SIFT score; bUsing the CHEK2

sequence alignment through S. purpuratus (sea urchin); cUsing the CHEK2 sequence alignment through D. melanogaster (fruit fly); dPolyPhen-2 grade “Possibly

Damaging"; ePolyPhen-2 grade “Probably Damaging.”

Table 4 Results from logistic regression tests for

loglinear odds ratio trendsa

Loglinear OR regression
coefficient (95% CI) and P value

Grouping of rMS and/or T+SJV Crude Adjustedb

rMS only (that is, excluding
T+SJV)

0.35 (0.12 to 0.58) 0.33 (0.09 to 0.55)

(note that C65 is grade 7) P = 0.0029 P = 0.0055

C65 rMS and T+SJV 0.28 (0.14 to 0.43) 0.29 (0.14 to 0.43)

pooled in grade 7 P = 0.00013 P = 0.000088

C65 rMS in grade 7 and 0.26 (0.12 to 0.39) 0.26 (0.13 to 0.40)

T+SJV in grade 8 P = 0.00017 P = 0.00011

a OR, odds ratio; 95% CI, 95% confidence interval; rMS, rare missense

substitution; T+SJV, protein-truncating variants plus splice junction variant;
bAdjusted for race or ethnicity (Caucasian, East Asian, African American or

Latina), study center and age as categorical variables.
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alleles.” To address this question, we waited until after

our primary protein multiple sequence alignment had

been created and the rare human missense substitutions

had been scored, then we assembled an additional mam-

malian CHEK2 gene model (from Guinea pig, Cavia por-

cellus). Insertion of the C. porcellus CHK2 sequence into

our alignment and comparison with the other placental

mammalian CHK2 sequences revealed 34 C. porcellus-

specific amino acid substitutions (that is, apparently

wild-type C. porcellus CHK2 amino acid residues that dif-

fer from the residues present at that position in the other

placental mammalian CHK2 sequences). We then scored

these residues with Align-GVGD as if they were amino

acid substitutions in the human CHEK2 sequence. All 34

scored C0, the most evolutionarily likely grade and the

grade that contributes least to the difference that we

observe between breast cancer patients and controls.

Simulating and scoring all possible single-nucleotide sub-

stitutions to the canonical human CHEK2 cDNA

sequence, we found that 57.2% of possible missense sub-

stitutions are C0. Taking into account differing probabil-

ities of these substitutions due to their underlying

sequence contexts as estimated by dinucleotide substitu-

tion rate constants [54], 58.6% of a random draw of mis-

sense substitutions would be C0. Therefore, ignoring the

effects of purifying selection, the probability that 34 of 34

C. porcellus-specific substitutions would be C0 is

~0.58634 = 1.3 × 10-8. Thus selection acts against the

rMSs of grade >C0. As these grades have sequentially

increasing leverage (toward C65) on the test for trends,

evolutionarily unlikely rMSs indeed drive the observed

difference between patients and controls.

Combined evidence

Looking forward to candidate gene studies, it could be

useful to combine evidence from both T+SJVs and

rMSs. The loglinear OR trend test provides a simple

mechanism by which to achieve this end: observations

of T+SJVs can either be combined with observations of

the highest grade of missense substitutions (C65s) or we

can add an eighth (even higher) carrier grade for the

T+SJVs. For this data set, combining T+SJVs and C65

rMSs in grade 7 appeared to be slightly more effective:

lognormal OR increased by 0.29/grade (Ptrend = 8.8 ×

10-5) as opposed to 0.26/grade (Ptrend = 1.1 × 10-4) with

the alternative approach. The important point is that

the data were less compatible with chance when com-

bined than when they were considered as either T+SJVs

or rMSs alone.

Extrapolation to pathway and whole-exome case-control

mutation-screening projects

Massively parallel sequencing has evolved to the point

where it is being used to identify susceptibility genes for

rare diseases, and one can imagine study designs where

it could be used to identify or characterize intermediate-

risk susceptibility genes for common diseases. Using

rare variant carrier frequencies of 0.0045, 0.0018,

0.00021*, 0.00011*, 0.00090 and 0.0027 for the rMS

grades C15, C25, C35*, C55*, C65 and T+SJV, respec-

tively, as well as ORs of 1.82, 2.47, 3.74*, 7.24*, 8.75 and

6.18 for the same series of grades, we estimated the

number of participants required for a reasonably pow-

ered many-gene case-control mutation-screening study.

(Note that these frequency and OR values were taken or

calculated directly from Tables 3 and 4 unless marked

with an asterisk; marked values were estimated from the

lognormal OR regression coefficient given in Table 4

and the number of observations in patients.) Setting a

Bonferroni-adjusted P value threshold of 0.0005 for a

study of the ~100 genes in the DNA double-stranded

break repair and allied cell cycle checkpoint pathways,

we estimate that ~2,000 cases and a similar number of

controls would be required for 80% power in a com-

bined analysis of T+SJVs and rMSs (Table 5). An analy-

sis based on T+SJVs alone would require 3,400 each of

patients and controls, and an analysis based on rMSs

alone would require 4,700 each of patients and controls.

Setting a P value threshold of 2.5 × 10-6, which might

be considered appropriate for a whole-exome study,

3,350 each of patients and controls would be required

for 80% power.

Discussion
That protein-truncating variants in CHEK2 confer a

moderately increased risk of breast cancer is well estab-

lished. The OR that we observed for T+SJVs is numeri-

cally somewhat higher than that reported in the 2004

CHEK2 Breast Cancer Case-Control Consortium study

of c.1100delC [50], but not significantly, as our 95% CIs

do include the point estimate from that study. More-

over, as previous studies have observed higher ORs for

c.1100delC in familial versus sporadic cases and in

Table 5 Number of patients and frequency-matched

controls required for various scales of future

intermediate-risk gene case-control mutation-screening

studiesa

Study scale Single genes Whole pathwaysb Whole exomec

Type I error 0.05 0.0005 2.5 × 10-6

Power 0.80 0.80 0.80

rMS alone, n 1,975 4,700 7,725

T+SJV alone, n 1,425 3,400 5,600

rMS plus T+SJV, n 850 2,025 3,350

a rMS, rare missense substitution; T+SJV, protein-truncating variants plus splice

junction variant; b Calculated for 100 genes, approximately the gene count of

DNA double-stranded break repair and associated cell cycle checkpoints;
cCalculated for 20,000 genes.
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early-onset versus later-onset cases [9,50], we should

expect that this study’s focus on early-onset breast can-

cer cases with oversampling of familial cases would

result in relatively high OR estimates.

Previous studies have shown that some CHEK2 mis-

sense substitutions are pathogenic, but the scale of their

contribution to breast cancer susceptibility relative to

that of T+SJVs is not known. Although we hesitate to

extrapolate our current data to true population-attribu-

table risks (within the age groups that we sampled) or

familial relative risks, the data do provide a basis on

which to compare the relative contributions of these

two classes of variants. Working from the control carrier

frequencies and the OR point estimates (adjusted for

race or ethnicity, study center, and age) observed from

the population-based Breast CFR sample series, we cal-

culate attributable fractions of 0.014 for T+SJVs as com-

pared with 0.015 for the sum of C15-C65 rMSs. In

addition, we calculate a familial relative risk among

first-degree relatives of 1.036 for T+SJVs as compared

with 1.033 for a product across the C15-C65 rMSs.

Thus, as a first approximation, the attributable fractions

and familial relative risks of truncating variants and rare

missense substitutions are virtually identical. It is impor-

tant to remember that these attributable fraction and

familial relative risk point estimates are inflated com-

pared with those that would be obtained from a popula-

tion-based study that included patients diagnosed in

their 70s or older. In addition, as more than 25% of the

T+SJVs observed in this study were nonsense and frame

shift mutations other than c.1100delC, these data also

speak to the importance of full open reading frame

mutation screening to observe the majority of geneti-

cally relevant sequence variants in this cancer suscept-

ibility gene.

Several of the missense substitutions observed in this

study have been subjected to functional assays in one or

more published works. For the 14 missense substitutions

that Align-GVGD scored C0 and which we would con-

sequently predict to be neutral or nearly so, assay results

have been reported for 4 (p.P85L, p.R137Q, p.R180H

and p.T323P). Using a Saccharomyces cerevisiae Rad53

complementation assay, Shaag et al. [22] found that p.

P85L is equivalent to wild-type CHEK2. While Bell et al.

[55] found this allele to have modestly reduced activity

in an in vitro kinase function assay, both Bell et al. and

Shaag et al. concluded that the allele is effectively neu-

tral. Sodha et al. [39] assayed the p.R137Q allele and

found that it encodes a protein with normal stability

and normal response to DNA damage. Bell et al. [55]

also assayed the p.R137Q allele and found that it has

normal kinase activity. In addition, Sodha et al. [39]

assayed the p.R180H allele and found that it encodes a

protein with slightly reduced stability but normal

response to DNA damage. Thus existing functional

assay results for these three variants are consistent with

their being either neutral or at most weakly pathogenic.

Wu et al. [56] found the fourth C0 substitution, p.

T323P, to have moderately reduced autophosphorylation

and Cdc25C kinase activity. Classification of this substa-

tion as C0 is probably a true Align-GVGD error,

because the crystal structure of the protein reveals that

T323 is located in an a-helix, which would not typically

be permissive of substitution to proline. The algorithmic

problem is that the atomic composition and polarity of

proline (the amino acid side chain characteristics con-

sidered by the original Grantham difference [57] and

Align-GVGD are atomic composition, polarity and

volume) are intermediate between those of threonine

and isoleucine, which are the two amino acids observed

at position 323 in our alignment. The consequence is

that proline is only slightly outside the range of varia-

tion represented by these two wild-type residues and is

consequently predicted to be neutral or nearly so.

Although unpublished, misclassification of substitutions

to proline that map within an a-helix is a problem that

we have observed before and is an obvious issue to bear

in mind when considering missense substitution ana-

lyses made using Align-GVGD. p.I157T is perhaps the

most interesting of the substitutions observed in our

study that have been subjected to functional assays.

Align-GVGD scores the variant as C15, indicative of

modest evidence in favor of pathogenicity. Initially, Lee

et al. [58] found that kinase activity of the p.I157T allele

was comparable to the wild type. More recent studies

have reported that the allele is at least partially defective

in dimerization and autophosphorylation, binding and

phosphorylating Cdc25, and binding BRCA1 [59-62]. In

populations in which p.I157T and c.1100delC are both

present at appreciable frequencies and have been subject

to independent risk estimates, p.I157T does appear to

confer increased risk of breast cancer, but the OR or

penetrance associated with the missense substitution

appears to be more modest than that associated with

the frame shift c.1100delC [63]. At the other end of the

spectrum, of the five C65 substitutions that we

observed, only one, p.R117G, has been subjected to

functional assays. Summing across several studies, the

protein encoded by this allele is phosphorylated by

ATM in response to DNA damage, shows slightly to

markedly reduced autophosphorylation, probably fails to

oligomerize and has severely compromised kinase activ-

ity toward Cdc25C [39,56,62]. Therefore, the p.R117G

allele encodes a functionally defective protein and is in

all likelihood pathogenic. Thus, for the missense substi-

tutions that were observed in our mutation-screening

study and subjected to functional assays, there is a qua-

litative trend toward agreement between the Align-
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GVGD classification and the functional assay result,

consistent with the trend in ORs that we observed

across the Align-GVGD-defined ordered series of mis-

sense substitution grades. However, since concordant

results between in silico assessments and functional

assays are not yet considered sufficient for formal clini-

cal classification of missense substitutions observed in

BRCA1 and BRCA2 [64-66], it does not appear that the

state-of-the-art of CHK2 functional assays has reached

the point at which concordant results from an in silico

assessment and a functional assay would be sufficient

for clinically relevant classification of a CHEK2 missense

substitution.

The genetic results described in this work, combined

with the above functional assay summary, have implica-

tions for potential clinical genetic susceptibility tests

that might include CHEK2 and other genes with similar

mutation profiles. In the 2003 American Society of Clin-

ical Oncology Policy Statement Update on Genetic Test-

ing for Cancer Susceptibility, the second and third

“indications for genetic testing for cancer susceptibility”

were that “2) the genetic test can be adequately inter-

preted, and 3) the test results will aid in diagnosis or

influence the medical or surgical management of the

patient or family members at hereditary risk of cancer”

(pp. 2398) [67]. With regard to the third criterion, some

investigators have argued that in the context of a high-

risk family, the difference in risk between carriers and

noncarriers of clearly pathogenic CHEK2 sequence var-

iants is sufficient to justify a difference in cancer surveil-

lance strategies [68-70]. However, our results in addition

to similar work regarding ATM [7,71] point toward an

issue under the second criterion. If roughly one-half of

the genetically relevant risk that the test can pick up

actually resides in rare missense substitutions that will

be considered unclassified variants at their initial detec-

tion, it may not currently be possible to adequately

interpret the test results. Therefore, while it is now

technically feasible to design a massively parallel sequen-

cing-based test that can accurately and relatively inex-

pensively identify mutations in a panel of breast cancer

susceptibility genes that includes ATM and CHEK2 [72],

it may be inappropriate to introduce such a test into

widespread use before a clinically validated method of

assessing unclassified missense substitutions in these

genes has been developed.

The rare missense substitution analysis model com-

bining Align-GVGD with the logistic regression test for

trends grew out of the in silico analysis of missense sub-

stitutions that has now become a standard component

in the integrated evaluation of unclassified variants in

BRCA1 and BRCA2 [65,73]. We proposed the model on

the basis of clinical BRCA1 and BRCA2 mutation-

screening data and then demonstrated its effectiveness

by an analysis of ATM case-control mutation-screening

data [7,45]. Thus the CHEK2 analysis presented here

stands as a methodological confirmation of our

approach to the inclusion of rare missense substitution

data in case-control mutation-screening studies. The

logistic regression test for trends that we used also pro-

vides a simple approach to combining evidence from

rare missense substitutions with evidence from protein-

truncating sequence variants to build a more complete

and statistically powerful approach to assessing case-

control mutation-screening data than would be afforded

by either method alone. From a technological perspec-

tive, we can envision combining exon capture and mas-

sively parallel sequencing to extend case-control

mutation screening to entire biochemical pathways and

beyond. On the basis of our post hoc power calculations,

at least 2,000 patients and 2,000 controls would be

required for a whole pathway (such as DNA double-

stranded break repair and allied cell cycle checkpoints)

study, and 3,300 patients and 3,300 controls would be

required to undertake a whole-exome study. On the one

hand, these numbers could be an underestimate because

CHEK2 might be among the most important (in terms

of familial relative risk) of the intermediate-risk class of

breast cancer susceptibility genes. On the other hand, it

could turn out that a test based on observations of evo-

lutionarily unlikely sequence variants has an intrinsically

lower false-positive rate than anonymous marker

GWASs and consequently would not require a full Bon-

ferroni multiple testing correction to reasonably con-

strain the rate of false-positive results.

Conclusions
This case-control mutation-screening study of CHEK2

shows that the gene harbors many different rare patho-

genic sequence variants, a substantial proportion of which

are missense substitutions. From a clinical perspective, the

risk of breast cancer conferred by some pathogenic

sequence variants in CHEK2 may be great enough to be of

use in a clinical cancer genetics setting, and we note that

the technical capability of offering a multigene breast can-

cer susceptibility testing panel at relatively low per gene

laboratory cost is in place. Yet, our results with both

CHEK2 and ATM suggest that such a test would create a

severe burden of unclassified missense substitutions and

that a large fraction of the genetically relevant risk would

reside in those unclassified missense substitutions. Para-

doxically, on the basis of the research perspective of sus-

ceptibility gene identification and characterization, this

study validates our approach to the analysis of rare mis-

sense substitutions observed during case-control mutation

screening and provides a method to combine data from

protein-truncating variants and rare missense substitutions

into a one degree of freedom per gene test.
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Additional material

Additional file 1: Supplementary Tables S1 and S2. Supplementary

Table S1: Missense, nonsense, frame shift, and splice junction variants.

Supplementary Table S2: CHEK2 protein multiple sequence alignment

characterization.
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