F. Backhed, H. Ding, T. Wang, L. Hooper, and G. Koh, The gut microbiota as an environmental factor that regulates fat storage, Proceedings of the National Academy of Sciences, vol.101, issue.44, pp.15718-15723, 2004.
DOI : 10.1073/pnas.0407076101

F. Backhed, J. Manchester, C. Semenkovich, and J. Gordon, Mechanisms underlying the resistance to diet-induced obesity in germ-free mice, Proceedings of the National Academy of Sciences, vol.104, issue.3, pp.979-984, 2007.
DOI : 10.1073/pnas.0605374104

P. Turnbaugh, F. Backhed, L. Fulton, and J. Gordon, Diet-Induced Obesity Is Linked to Marked but Reversible Alterations in the Mouse Distal Gut Microbiome, Cell Host & Microbe, vol.3, issue.4, pp.213-223, 2008.
DOI : 10.1016/j.chom.2008.02.015

P. Turnbaugh, R. Ley, M. Mahowald, V. Magrini, and E. Mardis, An obesity-associated gut microbiome with increased capacity for energy harvest, Nature, vol.20, issue.7122, pp.1027-1031, 2006.
DOI : 10.1038/nature05414

C. Cherbuy, E. Honvo-houeto, A. Bruneau, C. Bridonneau, and C. Mayeur, Microbiota matures colonic epithelium through a coordinated induction of cell cycle-related proteins in gnotobiotic rat, AJP: Gastrointestinal and Liver Physiology, vol.299, issue.2, pp.348-357, 2010.
DOI : 10.1152/ajpgi.00384.2009

B. Samuel, A. Shaito, T. Motoike, F. Rey, and F. Backhed, Effects of the gut microbiota on host adiposity are modulated by the short-chain fatty-acid binding G protein-coupled receptor, Gpr41, Proceedings of the National Academy of Sciences, vol.105, issue.43, pp.16767-16772, 2008.
DOI : 10.1073/pnas.0808567105

S. Rabot, M. Membrez, A. Bruneau, P. Gerard, and T. Harach, Germ-free C57BL/6J mice are resistant to HF-diet-induced insulin resistance and have altered cholesterol metabolism, FASEB J, 2010.

C. Fleissner, N. Huebel, A. El-bary, M. Loh, G. Klaus et al., Absence of intestinal microbiota does not protect mice from diet-induced obesity, British Journal of Nutrition, vol.28, issue.06, pp.919-929, 2010.
DOI : 10.1016/j.atherosclerosissup.2006.04.008

B. Wostmann, C. Larkin, A. Moriarty, and E. Bruckner-kardoss, Dietary intake, energy metabolism, and excretory losses of adult male germfree Wistar rats, Lab Anim Sci, vol.33, pp.46-50, 1983.

F. Backhed, GOAT ? gastric O-acyl transferase GP ? glossopharyngeal nerve GPR ? g-protein coupled receptor HF ? high-fat IGLE ? intraganglionic laminar endings IMA ? intramuscular array KO ? knock-out 21 The gut microbiota as an environmental factor that regulates fat storage, Proc Natl Acad Sci, issue.44, pp.101-15718, 2004.

F. Backhed, Mechanisms underlying the resistance to diet-induced obesity in germ-free mice, Proceedings of the National Academy of Sciences, vol.104, issue.3, pp.979-84, 2007.
DOI : 10.1073/pnas.0605374104

J. R. Zuniga, N. Chen, I. J. Miller, and J. , Effects of chorda-lingual nerve injury and repair on human taste, Chemical Senses, vol.19, issue.6, pp.657-65, 1994.
DOI : 10.1093/chemse/19.6.657

E. H. Bailey and E. L. Nichols, On the Sense of Taste, Science, vol.11, issue.268, pp.145-151
DOI : 10.1126/science.ns-11.268.145-a

J. Chandrashekar, The receptors and cells for mammalian taste, Nature, vol.24, issue.7117, pp.444-288, 2006.
DOI : 10.1038/nature05401

J. Chandrashekar, The cells and peripheral representation of sodium taste in mice, Nature, vol.56, issue.7286, pp.297-301, 2010.
DOI : 10.1038/nature08783

Y. A. Huang, Presynaptic (Type III) cells in mouse taste buds sense sour (acid) taste Neural coding of gustatory information, J Physiol Curr Opin Neurobiol, issue.586 94, pp.427-462, 1999.

A. Sclafani and M. Abrams, Rats show only a weak preference for the artificial sweetener aspartame, Physiology & Behavior, vol.37, issue.2, pp.253-259, 1986.
DOI : 10.1016/0031-9384(86)90228-3

H. P. Weingarten and S. D. Watson, Sham feeding as a procedure for assessing the influence of diet palatability on food intake, Physiology & Behavior, vol.28, issue.3, pp.401-408, 1982.
DOI : 10.1016/0031-9384(82)90131-7

N. Geary and G. P. Smith, Pimozide decreases the positive reinforcing effect of sham fed sucrose in the rat, Pharmacology Biochemistry and Behavior, vol.22, issue.5, pp.787-90, 1985.
DOI : 10.1016/0091-3057(85)90528-3

J. D. Davis and G. P. Smith, The conditioned satiating effect of orosensory stimuli, Physiology & Behavior, vol.97, issue.3-4, pp.3-4, 2009.
DOI : 10.1016/j.physbeh.2009.03.028

A. Sclafani and J. I. Glendinning, Sugar and fat conditioned flavor preferences in C57BL/6J and 129 mice: oral and postoral interactions, AJP: Regulatory, Integrative and Comparative Physiology, vol.289, issue.3, pp.712-732, 2005.
DOI : 10.1152/ajpregu.00176.2005

A. Sclafani, Enhanced sucrose and Polycose preference in sweet ???sensitive??? (C57BL/6J) and ???subsensitive??? (129P3/J) mice after experience with these saccharides, Physiology & Behavior, vol.87, issue.4, pp.745-56, 2006.
DOI : 10.1016/j.physbeh.2006.01.016

G. Nelson, Mammalian Sweet Taste Receptors, Cell, vol.106, issue.3, pp.381-90, 2001.
DOI : 10.1016/S0092-8674(01)00451-2

URL : http://doi.org/10.1016/s0092-8674(01)00451-2

M. A. Hoon, Putative Mammalian Taste Receptors, Cell, vol.96, issue.4, pp.541-51, 1999.
DOI : 10.1016/S0092-8674(00)80658-3

M. Kitagawa, Molecular Genetic Identification of a Candidate Receptor Gene for Sweet Taste, Biochemical and Biophysical Research Communications, vol.283, issue.1, pp.236-278, 2001.
DOI : 10.1006/bbrc.2001.4760

X. Li, T1R receptors mediate mammalian sweet and umami taste, American Journal of Clinical Nutrition, vol.90, issue.3, pp.733-737, 2009.
DOI : 10.3945/ajcn.2009.27462G

X. Li, Human receptors for sweet and umami taste, Proceedings of the National Academy of Sciences, vol.99, issue.7, pp.4692-4698, 2002.
DOI : 10.1073/pnas.072090199

M. R. Kim, Regional expression patterns of taste receptors and gustducin in the mouse tongue, Biochemical and Biophysical Research Communications, vol.312, issue.2, pp.312-500, 2003.
DOI : 10.1016/j.bbrc.2003.10.137

M. Inoue, Allelic variation of the Tas1r3 taste receptor gene selectively affects taste responses to sweeteners: evidence from 129.B6-Tas1r3 congenic mice, Physiological Genomics, vol.32, issue.1, pp.82-94, 2007.
DOI : 10.1152/physiolgenomics.00161.2007

R. M. Pangborn and M. Simone, Body size and sweetness preference, J Am Diet Assoc, vol.34, issue.9, pp.924-932, 1958.

D. A. Thompson, H. R. Moskowitz, and R. G. Campbell, Effects of body weight and food intake on pleasantness ratings for a sweet stimulus, J Appl Physiol, vol.41, issue.1, pp.77-83, 1976.

P. J. Underwood, E. Belton, and P. Hulme, Aversion to sucrose in obesity, Proc Nutr Soc, vol.32, issue.3, pp.93-94, 1973.

O. W. Wooley, S. C. Wooley, and R. B. Dunham, Calories and sweet taste: Effects on sucrose preference in the obese and nonobese, Physiology & Behavior, vol.9, issue.5, pp.765-773, 1972.
DOI : 10.1016/0031-9384(72)90048-0

A. Drewnowski, Sweet tooth reconsidered: Taste responsiveness in human obesity, Physiology & Behavior, vol.35, issue.4, pp.617-639, 1985.
DOI : 10.1016/0031-9384(85)90150-7

L. M. Bartoshuk, Valid across-group comparisons with labeled scales: the gLMS versus magnitude matching, Physiology & Behavior, vol.82, issue.1, pp.109-123, 2004.
DOI : 10.1016/j.physbeh.2004.02.033

L. M. Bartoshuk, Psychophysics of sweet and fat perception in obesity: problems, solutions and new perspectives, Philosophical Transactions of the Royal Society B: Biological Sciences, vol.12, issue.3, pp.361-1137, 1471.
DOI : 10.1016/S0031-9384(97)00423-X

H. R. Moskowitz, The Sweetness and Pleasantness of Sugars, The American Journal of Psychology, vol.84, issue.3, pp.387-405, 1971.
DOI : 10.2307/1420470

H. R. Moskowitz, Sugar Sweetness and Pleasantness: Evidence for Different Psychological Laws, Science, vol.184, issue.4136, pp.583-588, 1974.
DOI : 10.1126/science.184.4136.583

F. Reimann, Glucose Sensing in L Cells: A Primary Cell Study, Cell Metabolism, vol.8, issue.6, pp.532-541, 2008.
DOI : 10.1016/j.cmet.2008.11.002

H. J. Jang, Gut-expressed gustducin and taste receptors regulate secretion of glucagon-like peptide-1, Proceedings of the National Academy of Sciences, vol.104, issue.38, pp.15069-74, 2007.
DOI : 10.1073/pnas.0706890104

C. I. Cheeseman, Upregulation of SGLT-1 transport activity in rat jejunum induced by GLP-2 infusion in vivo, Am J Physiol, vol.273, issue.6 2, pp.1965-71, 1997.

J. J. Cottrell, Glucagon-like peptide-2 protects against TPN-induced intestinal hexose malabsorption in enterally refed piglets, AJP: Gastrointestinal and Liver Physiology, vol.290, issue.2, pp.293-300, 2006.
DOI : 10.1152/ajpgi.00275.2005

A. Ramsanahie, Effect of GLP-2 on mucosal morphology and SGLT1 expression in tissue-engineered neointestine, American Journal of Physiology - Gastrointestinal and Liver Physiology, vol.285, issue.6, pp.285-1345, 2003.
DOI : 10.1152/ajpgi.00374.2002

P. T. Sangild, Glucagon-like Peptide 2 Stimulates Intestinal Nutrient Absorption in Parenterally Fed Newborn Pigs, Journal of Pediatric Gastroenterology and Nutrition, vol.43, issue.2, pp.160-167, 2006.
DOI : 10.1097/01.mpg.0000228122.82723.1b

S. Baldassano, Glucagon-like peptide-2 modulates neurally evoked mucosal chloride secretion in guinea pig small intestine in vitro, AJP: Gastrointestinal and Liver Physiology, vol.297, issue.4, pp.800-805, 2009.
DOI : 10.1152/ajpgi.00170.2009

M. Bjerknes and H. Cheng, Modulation of specific intestinal epithelial progenitors by enteric neurons, Proceedings of the National Academy of Sciences, vol.98, issue.22, pp.98-12497, 2001.
DOI : 10.1073/pnas.211278098

E. S. Debnam, Adaptation of Hexose Uptake by the Rat Jejunum Induced by the Perfusion of Sugars into the Distal Ileum, Digestion, vol.31, issue.1, pp.31-56, 1985.
DOI : 10.1159/000199173

G. J. Schwartz, The Lipid Messenger OEA Links Dietary Fat Intake to Satiety, Cell Metabolism, vol.8, issue.4, pp.281-289, 2008.
DOI : 10.1016/j.cmet.2008.08.005

J. Fu, Targeted enhancement of oleoylethanolamide production in proximal small intestine induces across-meal satiety in rats, AJP: Regulatory, Integrative and Comparative Physiology, vol.295, issue.1, pp.45-50, 2008.
DOI : 10.1152/ajpregu.00126.2008

G. J. Schwartz, Gut fat sensing in the negative feedback control of energy balance ??? Recent advances, Physiology & Behavior, vol.104, issue.4, pp.621-624, 2011.
DOI : 10.1016/j.physbeh.2011.05.003

F. Rodriguez-de-fonseca, An anorexic lipid mediator regulated by feeding, Nature, vol.17, issue.6860, pp.414-209, 2001.
DOI : 10.1038/35102582

C. P. Briscoe, The Orphan G Protein-coupled Receptor GPR40 Is Activated by Medium and Long Chain Fatty Acids, Journal of Biological Chemistry, vol.278, issue.13, pp.278-11303, 2003.
DOI : 10.1074/jbc.M211495200

H. Lan, Lack of FFAR1/GPR40 Does Not Protect Mice From High-Fat Diet-Induced Metabolic Disease, Diabetes, vol.57, issue.11, pp.2999-3006, 2008.
DOI : 10.2337/db08-0596

A. J. Brown, The Orphan G Protein-coupled Receptors GPR41 and GPR43 Are Activated by Propionate and Other Short Chain Carboxylic Acids, Journal of Biological Chemistry, vol.278, issue.13, pp.278-11312, 2003.
DOI : 10.1074/jbc.M211609200

H. Tazoe, Expression of short-chain fatty acid receptor GPR41 in the human colon, Biomedical Research, vol.30, issue.3, pp.149-56, 2009.
DOI : 10.2220/biomedres.30.149

N. B. Dass, The relationship between the effects of short-chain fatty acids on intestinal motility in vitro and GPR43 receptor activation, Neurogastroenterology & Motility, vol.517, issue.2, pp.66-74, 2007.
DOI : 10.1111/j.1365-2982.2004.00545.x

B. S. Samuel, Effects of the gut microbiota on host adiposity are modulated by the short-chain fatty-acid binding G protein-coupled receptor, Gpr41, Proceedings of the National Academy of Sciences, vol.105, issue.43, pp.105-16767, 2008.
DOI : 10.1073/pnas.0808567105

S. Karaki, Short-chain fatty acid receptor, GPR43, is expressed by enteroendocrine cells and mucosal mast cells in rat intestine, Cell and Tissue Research, vol.411, issue.3, pp.353-60, 2006.
DOI : 10.1007/s00441-005-0140-x

A. Ichimura, Dysfunction of lipid sensor GPR120 leads to obesity in both mouse and human, Nature, vol.21, issue.7389, pp.483-350, 2012.
DOI : 10.1038/nature10798

L. M. Cornall, Diet-induced Obesity Up-regulates the Abundance of GPR43 and GPR120 in a Tissue Specific Manner, Cellular Physiology and Biochemistry, vol.28, issue.5, pp.949-58, 2011.
DOI : 10.1159/000335820

G. V. Rayasam, Fatty acid receptors as new therapeutic targets for diabetes, Expert Opinion on Therapeutic Targets, vol.101, issue.5, pp.661-71, 2007.
DOI : 10.1016/j.bbrc.2004.11.120

D. Y. Oh, GPR120 Is an Omega-3 Fatty Acid Receptor Mediating Potent Anti-inflammatory and Insulin-Sensitizing Effects, Cell, vol.142, issue.5, pp.687-98, 2010.
DOI : 10.1016/j.cell.2010.07.041

URL : http://doi.org/10.1016/j.cell.2010.07.041

T. Hara, Novel selective ligands for free fatty acid receptors GPR120 and GPR40, Naunyn-Schmiedeberg's Archives of Pharmacology, vol.12, issue.3, pp.247-55, 2009.
DOI : 10.1007/s00210-009-0425-9

S. Katsuma, Free Fatty Acids Inhibit Serum Deprivation-induced Apoptosis through GPR120 in a Murine Enteroendocrine Cell Line STC-1, Journal of Biological Chemistry, vol.280, issue.20, pp.280-19507, 2005.
DOI : 10.1074/jbc.M412385200

A. Sclafani, L. J. Fanizza, and A. V. Azzara, Conditioned Flavor Avoidance, Preference, and Indifference Produced by Intragastric Infusions of Galactose, Glucose, and Fructose in Rats, Physiology & Behavior, vol.67, issue.2, pp.227-261, 1999.
DOI : 10.1016/S0031-9384(99)00053-0

K. Ackroff and A. Sclafani, Oral and Postoral Determinants of Dietary Fat Appetite, 2010.
DOI : 10.1201/9781420067767-c12

F. Lucas and A. Sclafani, Flavor preferences conditioned by intragastric fat infusions in rats, Physiology & Behavior, vol.46, issue.3, pp.403-415, 1989.
DOI : 10.1016/0031-9384(89)90011-5

K. Ackroff, F. Lucas, and A. Sclafani, Flavor preference conditioning as a function of fat source, Physiology & Behavior, vol.85, issue.4, pp.448-60, 2005.
DOI : 10.1016/j.physbeh.2005.05.006

K. Ackroff and A. Sclafani, Effects of the lipase inhibitor orlistat on intake and preference for dietary fat in rats, Am J Physiol, vol.271, issue.1 2, pp.48-54, 1996.

F. Lucas, K. Ackroff, and A. Sclafani, High-fat diet preference and overeating mediated by postingestive factors in rats, Am J Physiol, vol.2755, issue.2, pp.1511-1533, 1998.

A. Suzuki, T. Yamane, and T. Fushiki, Inhibition of fatty acid ??-oxidation attenuates the reinforcing effects and palatability to fat, Nutrition, vol.22, issue.4, pp.401-408, 2006.
DOI : 10.1016/j.nut.2005.10.002

X. Ren, Nutrient Selection in the Absence of Taste Receptor Signaling, Journal of Neuroscience, vol.30, issue.23, pp.8012-8035, 2010.
DOI : 10.1523/JNEUROSCI.5749-09.2010

H. Otsubo, Induction of Fos expression in the rat forebrain after intragastric administration of monosodium l-glutamate, glucose and NaCl, Neuroscience, vol.196
DOI : 10.1016/j.neuroscience.2011.09.003

T. Tsurugizawa, Mechanisms of Neural Response to Gastrointestinal Nutritive Stimuli: The Gut-Brain Axis, Gastroenterology, vol.137, issue.1, pp.262-73, 2009.
DOI : 10.1053/j.gastro.2009.02.057

K. Touzani, R. Bodnar, and A. Sclafani, Activation of dopamine D1-like receptors in nucleus accumbens is critical for the acquisition, but not the expression, of nutrient-conditioned flavor preferences in rats, European Journal of Neuroscience, vol.20, issue.6, pp.27-1525, 2008.
DOI : 10.1016/j.physbeh.2004.11.008

A. Sclafani, Parabrachial nucleus lesions block taste and attenuate flavor preference and aversion conditioning in rats., Behavioral Neuroscience, vol.115, issue.4, pp.920-953, 2001.
DOI : 10.1037/0735-7044.115.4.920

T. Tsurugizawa, Blood oxygenation level-dependent response to intragastric load of corn oil emulsion in conscious rats, NeuroReport, vol.20, issue.18, pp.1625-1634, 2009.
DOI : 10.1097/WNR.0b013e32833312e5

D. Cruz and J. A. , Roles of dopamine D1 and D2 receptors in the acquisition and expression of fat-conditioned flavor preferences in rats, Neurobiology of Learning and Memory, vol.97, issue.3, pp.332-339, 2012.
DOI : 10.1016/j.nlm.2012.01.008

M. Imaizumi, M. Takeda, and T. Fushiki, Effects of oil intake in the conditioned place preference test in mice, Brain Research, vol.870, issue.1-2, pp.150-156, 2000.
DOI : 10.1016/S0006-8993(00)02416-1

J. G. Ferreira, Regulation of fat intake in the absence of flavour signalling, The Journal of Physiology, vol.6, issue.4
DOI : 10.1113/jphysiol.2011.218289

G. J. Schwartz, Decreased responsiveness to dietary fat in Otsuka Long- Evans Tokushima fatty rats lacking CCK-A receptors, Am J Physiol, vol.277, issue.4, 1999.

D. Greenberg, Differential Satiating Effects of Fats in the Small Intestine of Obesity-Resistant and Obesity-Prone Rats, Physiology & Behavior, vol.66, issue.4, pp.621-627, 1999.
DOI : 10.1016/S0031-9384(98)00336-9

A. Funakoshi, Little or No Expression of the Cholecystokinin-A Receptor Gene in the Pancreas of Diabetic Rats (Otsuka Long-Evans Tokushima Fatty=OLETF Rats), Biochemical and Biophysical Research Communications, vol.199, issue.2, pp.199-482, 1994.
DOI : 10.1006/bbrc.1994.1254

C. L. White, Effect of meta-chlorophenylpiperazine and cholecystokinin on food intake of Osborne-Mendel and S5B/P1 rats. Obesity (Silver Spring), pp.624-655, 2007.

C. A. Matson and R. C. Ritter, Long-term CCK-leptin synergy suggests a role for CCK in the regulation of body weight, Am J Physiol, vol.276, issue.4 2, pp.1038-1083, 1999.

R. L. Young, Expression of taste molecules in the upper gastrointestinal tract in humans with and without type 2 diabetes, Gut, vol.58, issue.3, pp.337-383, 2009.
DOI : 10.1136/gut.2008.148932

C. W. Le-roux, Gut Hormone Profiles Following Bariatric Surgery Favor an Anorectic State, Facilitate Weight Loss, and Improve Metabolic Parameters, Annals of Surgery, vol.243, issue.1, pp.108-122, 2006.
DOI : 10.1097/01.sla.0000183349.16877.84

C. W. Le-roux, Attenuated Peptide YY Release in Obese Subjects Is Associated with Reduced Satiety, Endocrinology, vol.147, issue.1, pp.3-8, 2006.
DOI : 10.1210/en.2005-0972

C. W. Le-roux, Gut Hormones as Mediators of Appetite and Weight Loss After Roux-en-Y Gastric Bypass, Annals of Surgery, vol.246, issue.5, pp.780-785, 2007.
DOI : 10.1097/SLA.0b013e3180caa3e3

J. M. Kaplan, R. J. Seeley, and H. J. , Daily caloric intake in intact and chronic decerebrate rats., Behavioral Neuroscience, vol.107, issue.5, pp.876-81, 1993.
DOI : 10.1037/0735-7044.107.5.876

F. W. Flynn, K. C. Berridge, and H. J. , Pre-and postabsorptive insulin secretion in chronic decerebrate rats, Am J Physiol, vol.250, issue.4 2, pp.539-587, 1986.

H. J. Grill and R. Norgren, Chronically decerebrate rats demonstrate satiation but not bait shyness, Science, vol.201, issue.4352, pp.267-276, 1978.
DOI : 10.1126/science.663655

D. N. Lorenz and S. A. Goldman, Vagal mediation of the cholecystokinin satiety effect in rats, Physiology & Behavior, vol.29, issue.4, pp.599-604, 1982.
DOI : 10.1016/0031-9384(82)90226-8

E. K. Walls, Selective vagal rhizotomies: a new dorsal surgical approach used for intestinal deafferentations, Am J Physiol, vol.2695, issue.2, pp.1279-88, 1995.

M. J. Dailey, Nutrient Specific Feeding and Endocrine Effects of Jejunal Infusions, Obesity, vol.276, issue.5, pp.904-914, 2010.
DOI : 10.1007/s11605-009-0912-9

C. S. Tamura and R. C. Ritter, Intestinal capsaicin transiently attenuates suppression of sham feeding by oleate, Am J Physiol, vol.267, issue.2, pp.561-569, 1994.

H. R. Berthoud, Vagal sensors in the rat duodenal mucosa: distribution and structure as revealed by in vivo DiI-tracing, Anatomy and Embryology, vol.191, issue.3, pp.203-215, 1995.
DOI : 10.1007/BF00187819

H. R. Berthoud and L. M. Patterson, Anatomical Relationship between Vagal Afferent Fibers and CCK-Immunoreactive Entero-Endocrine Cells in the Rat Small Intestinal Mucosa, Cells Tissues Organs, vol.156, issue.2, pp.123-154, 1996.
DOI : 10.1159/000147837

P. A. Lynn and L. A. Blackshaw, In vitro recordings of afferent fibres with receptive fields in the serosa, muscle and mucosa of rat colon, J Physiol, pp.518-271, 1999.

R. M. Williams, H. R. Berthoud, and R. H. Stead, Vagal afferent nerve fibres contact mast cells in rat small intestinal mucosa, Neuroimmunomodulation, issue.4, pp.5-6, 1997.

E. Jorpes and V. Mutt, [Secretin, pancreozymin, and cholecystokinin; their physiology and future clinical use, Nord Med, issue.42, pp.56-1511, 1956.

L. A. Brenner and R. C. Ritter, Type A CCK receptors mediate satiety effects of intestinal nutrients, Pharmacology Biochemistry and Behavior, vol.54, issue.3, pp.625-656, 1996.
DOI : 10.1016/0091-3057(95)02210-4

T. Woltman and R. Reidelberger, Role of cholecystokinin in the anorexia produced by duodenal delivery of peptone in rats, Am J Physiol, vol.276, issue.6, pp.1701-1710, 1999.

L. Brenner and R. C. Ritter, Peptide cholesystokinin receptor antagonist increases food intake in rats, Appetite, vol.24, issue.1, pp.1-9, 1995.
DOI : 10.1016/S0195-6663(95)80001-8

T. H. Moran, Blockade of type A, not type B, CCK receptors attenuates satiety actions of exogenous and endogenous CCK, Am J Physiol, vol.262, issue.1, 1992.

J. R. Reeve and . Jr, CCK-58 is the only detectable endocrine form of cholecystokinin in rat, American Journal of Physiology - Gastrointestinal and Liver Physiology, vol.285, issue.2, pp.255-65, 2003.
DOI : 10.1152/ajpgi.00523.2002

A. Canova and N. Geary, Intraperitoneal injections of nanogram CCK-8 doses inhibit feeding in rats, Appetite, vol.17, issue.3, pp.221-228, 1991.
DOI : 10.1016/0195-6663(91)90024-M

J. E. Cox, G. S. Perdue, and W. J. Tyler, Suppression of sucrose intake by continuous near-celiac and intravenous cholecystokinin infusions in rats, Am J Physiol, vol.268, issue.1 2, pp.150-155, 1995.

P. K. Pandya, Biochemical regulation of the three different states of the cholecystokinin (CCK) receptor in pancreatic acini, Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, vol.1224, issue.1, pp.1224-117, 1994.
DOI : 10.1016/0167-4889(94)90119-8

V. D. Talkad, Characterization of the three different states of the cholecystokinin (CCK) receptor in pancreatic acini, Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, vol.1224, issue.1, pp.1224-103, 1994.
DOI : 10.1016/0167-4889(94)90118-X

S. C. Weatherford, CCK satiety is differentially mediated by high-and lowaffinity CCK receptors in mice and rats, Am J Physiol, vol.264, issue.2 2, pp.244-253, 1993.

S. M. Simasko, Cholecystokinin increases cytosolic calcium in a subpopulation of cultured vagal afferent neurons, American Journal of Physiology - Regulatory, Integrative and Comparative Physiology, vol.283, issue.6, pp.283-1303, 2002.
DOI : 10.1152/ajpregu.00050.2002

J. N. Roberge and P. L. Brubaker, Secretion of Proglucagon-Derived Peptides in Response to Intestinal Luminal Nutrients*, Endocrinology, vol.128, issue.6, pp.3169-74, 1991.
DOI : 10.1210/endo-128-6-3169

P. E. Dube and P. L. Brubaker, Nutrient, Neural and Endocrine Control of Glucagon-like Peptide Secretion, Hormone and Metabolic Research, vol.36, issue.11/12, pp.11-12, 2004.
DOI : 10.1055/s-2004-826159

J. J. Holst, On the Physiology of GIP and GLP-1, Hormone and Metabolic Research, vol.36, issue.11/12, pp.11-12, 2004.
DOI : 10.1055/s-2004-826158

M. J. Theodorakis, Human duodenal enteroendocrine cells: source of both incretin peptides, GLP-1 and GIP, AJP: Endocrinology and Metabolism, vol.290, issue.3, pp.550-559, 2006.
DOI : 10.1152/ajpendo.00326.2004

E. Rozengurt and C. Sternini, Taste receptor signaling in the mammalian gut, Current Opinion in Pharmacology, vol.7, issue.6
DOI : 10.1016/j.coph.2007.10.002

P. Layer, Ileal release of glucagon-like peptide-1 (GLP-1) Association with inhibition of gastric acid secretion in humans, Dig Dis Sci, issue.5, pp.40-1074, 1995.

P. J. Larsen, Systemic Administration of the Long-Acting GLP-1 Derivative NN2211 Induces Lasting and Reversible Weight Loss in Both Normal and Obese Rats, Diabetes, vol.50, issue.11, pp.50-2530, 2001.
DOI : 10.2337/diabetes.50.11.2530

D. L. Williams, D. G. Baskin, and M. W. Schwartz, Evidence that Intestinal Glucagon-Like Peptide-1 Plays a Physiological Role in Satiety, Endocrinology, vol.150, issue.4, pp.1680-1687, 2009.
DOI : 10.1210/en.2008-1045

L. A. Scrocchi, Glucose intolerance but normal satiety in mice with a null mutation in the glucagon???like peptide 1 receptor gene, Nature Medicine, vol.45, issue.11, pp.1254-1262, 1996.
DOI : 10.1016/0196-9781(92)90044-4

M. D. Medeiros and A. J. Turner, Processing and metabolism of peptide YY, Biochemical Society Transactions, vol.21, issue.3, pp.2088-94, 1994.
DOI : 10.1042/bst021248s

M. S. Medeiros and A. J. Turner, Post-secretory processing of regulatory peptides: The pancreatic polypeptide family as a model example, Biochimie, vol.76, issue.3-4, pp.3-4, 1994.
DOI : 10.1016/0300-9084(94)90159-7

J. M. Allen, Effects of Peptide YY and Neuropeptide Y on Gastric Emptying in Man, Digestion, vol.30, issue.4, pp.255-62, 1984.
DOI : 10.1159/000199117

J. M. Lundberg, Localization of peptide YY (PYY) in gastrointestinal endocrine cells and effects on intestinal blood flow and motility., Proceedings of the National Academy of Sciences, vol.79, issue.14, pp.79-4471, 1982.
DOI : 10.1073/pnas.79.14.4471

H. Baba, M. Fujimura, and N. Toda, Mechanism of inhibitory action of peptide YY on cholecystokinin-induced contractions of isolated dog ileum, Regulatory Peptides, vol.27, issue.2, pp.227-262, 1990.
DOI : 10.1016/0167-0115(90)90041-T

B. J. Kim, Peptide YY Is Secreted after Oral Glucose Administration in a Gender-Specific Manner, The Journal of Clinical Endocrinology & Metabolism, vol.90, issue.12, pp.90-6665, 2005.
DOI : 10.1210/jc.2005-0409

J. Zhou, Peptide YY and Proglucagon mRNA Expression Patterns and Regulation in the Gut*, Obesity, vol.146, issue.4, pp.683-692, 2006.
DOI : 10.1038/oby.2006.77

M. Russek, Participation of Hepatic Glucoreceptors in the Control of Intake of Food, Nature, vol.193, issue.4862, pp.79-80, 1963.
DOI : 10.1038/197079b0

M. G. Tordoff and M. I. Friedman, Hepatic portal glucose infusions decrease food intake and increase food preference, Am J Physiol, vol.251, issue.1 2, pp.192-198, 1986.

D. Novin, D. A. Vanderweele, and M. Rezek, Infusion of 2-Deoxy-D-Glucose into the Hepatic-Portal System Causes Eating: Evidence for Peripheral Glucoreceptors, Science, vol.181, issue.4102
DOI : 10.1126/science.181.4102.858

J. P. Baird, H. J. Grill, and J. M. Kaplan, Intake suppression after hepatic portal glucose infusion: all-or-none effect and its temporal threshold, Am J Physiol, issue.5 2, pp.272-1454, 1997.

M. G. Tordoff, J. P. Tluczek, and M. I. Friedman, Effect of hepatic portal glucose concentration on food intake and metabolism, Am J Physiol, vol.257, issue.6 2, pp.1474-80, 1989.

M. G. Tordoff and M. I. Friedman, Hepatic control of feeding: effect of glucose, fructose, and mannitol infusion, Am J Physiol, vol.254, issue.6 2, pp.969-76, 1988.

U. L. Jambor-de-sousa, Hepatic-portal oleic acid inhibits feeding more potently than hepatic-portal caprylic acid in rats, Physiology & Behavior, vol.89, issue.3, pp.329-363, 2006.
DOI : 10.1016/j.physbeh.2006.06.020

N. E. Rawson, Hepatic phosphate trapping, decreased ATP, and increased feeding after 2,5-anhydro-D-mannitol, Am J Physiol, vol.266, issue.1 2, pp.112-119, 1994.

J. E. Koch, Temporal relationships between eating behavior and liver adenine nucleotides in rats treated with 2,5-AM, Am J Physiol, vol.2743, issue.2, pp.610-617, 1998.

N. E. Rawson and M. I. Friedman, Phosphate loading prevents the decrease in ATP and increase in food intake produced by 2,5-anhydro-D-mannitol, Am J Physiol, vol.266, issue.6 2, pp.1792-1798, 1994.

N. E. Rawson, P. M. Ulrich, and M. I. Friedman, L-ethionine, an amino acid analogue, stimulates eating in rats, Am J Physiol, vol.267, issue.2 2, pp.612-617, 1994.

H. Ji and M. I. Friedman, Fasting plasma triglyceride levels and fat oxidation predict dietary obesity in rats, Physiology & Behavior, vol.78, issue.4-5, pp.4-5, 2003.
DOI : 10.1016/S0031-9384(03)00078-7

H. Ji, L. V. Outterbridge, and M. I. Friedman, Phenotype-based treatment of dietary obesity: differential effects of fenofibrate in obesity-prone and obesity-resistant rats, Metabolism, vol.54, issue.4, pp.421-430, 2005.
DOI : 10.1016/j.metabol.2004.10.007

M. Leonhardt and W. Langhans, Fatty acid oxidation and control of food intake, Physiology & Behavior, vol.83, issue.4, pp.645-51, 2004.
DOI : 10.1016/j.physbeh.2004.07.033

E. Scharrer and W. Langhans, Control of food intake by fatty acid oxidation and ketogenesis, Nutrition, vol.15, issue.9, pp.1003-1009, 1986.
DOI : 10.1016/S0899-9007(99)00125-2

H. Cortez-pinto, Alterations in Liver ATP Homeostasis in Human Nonalcoholic Steatohepatitis, JAMA, vol.282, issue.17, pp.1659-64, 1999.
DOI : 10.1001/jama.282.17.1659

S. Nair, Hepatic ATP reserve and efficiency of replenishing: comparison between obese and nonobese normal individuals, Am J Gastroenterol, vol.98, issue.2, pp.466-70, 2003.

T. Rosebury, Microorganisms indigenous to man, 1962.

D. C. Savage, Microbial Ecology of the Gastrointestinal Tract, Annual Review of Microbiology, vol.31, issue.1, pp.107-140, 1977.
DOI : 10.1146/annurev.mi.31.100177.000543

J. Xu, Evolution of Symbiotic Bacteria in the Distal Human Intestine, PLoS Biology, vol.19, issue.7, p.156, 2007.
DOI : 10.1371/journal.pbio.0050156.sd001

R. E. Ley, Obesity alters gut microbial ecology, Proceedings of the National Academy of Sciences, vol.102, issue.31, pp.11070-11075, 2005.
DOI : 10.1073/pnas.0504978102

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1176910

C. Palmer, Development of the Human Infant Intestinal Microbiota, PLoS Biology, vol.69, issue.7, p.177, 2007.
DOI : 10.1371/journal.pbio.0050177.sg002

A. Spor, O. Koren, and R. Ley, Unravelling the effects of the environment and host genotype on the gut microbiome, Nature Reviews Microbiology, vol.12, issue.4, pp.279-90, 2011.
DOI : 10.1038/nrmicro2540

C. B. De-la-serre, Propensity to high-fat diet-induced obesity in rats is associated with changes in the gut microbiota and gut inflammation, AJP: Gastrointestinal and Liver Physiology, vol.299, issue.2, pp.440-448, 2010.
DOI : 10.1152/ajpgi.00098.2010

J. L. Sonnenburg, Glycan Foraging in Vivo by an Intestine-Adapted Bacterial Symbiont, Science, vol.307, issue.5717, pp.1955-1964, 2005.
DOI : 10.1126/science.1109051

J. H. Cummings, Short chain fatty acids in human large intestine, portal, hepatic and venous blood., Gut, vol.28, issue.10, pp.28-1221, 1987.
DOI : 10.1136/gut.28.10.1221

G. T. Macfarlane, G. R. Gibson, and J. H. Cummings, Comparison of fermentation reactions in different regions of the human colon, J Appl Bacteriol, vol.72, issue.1, pp.57-64, 1992.

W. E. Roediger, Role of anaerobic bacteria in the metabolic welfare of the colonic mucosa in man., Gut, vol.21, issue.9, pp.793-801, 1980.
DOI : 10.1136/gut.21.9.793

J. H. Cummings and G. T. Macfarlane, The control and consequences of bacterial fermentation in the human colon, Journal of Applied Bacteriology, vol.78, issue.A6/864, pp.443-59, 1991.
DOI : 10.1111/j.1365-2672.1991.tb02739.x

E. N. Bergman, Energy contributions of volatile fatty acids from the gastrointestinal tract in various species, Physiol Rev, vol.70, issue.2, pp.567-90, 1990.

B. S. Wostmann, Dietary intake, energy metabolism, and excretory losses of adult male germfree Wistar rats, Lab Anim Sci, vol.33, issue.1, pp.46-50, 1983.

B. Wostmann and E. Bruckner-kardoss, Development of cecal distention in germ-free baby rats, Am J Physiol, vol.197, pp.1345-1351, 1959.

H. A. Gordon and E. Bruckner-kardoss, Effect of normal microbial flora on intestinal surface area, Am J Physiol, vol.201, pp.175-183, 1961.

G. D. Abrams, H. Bauer, and H. Sprinz, Influence of the normal flora on mucosal morphology and cellular renewal in the ileum. A comparison of germ-free and conventional mice, Lab Invest, vol.12, pp.355-64, 1963.

S. Lesher, H. E. Walburg, J. , G. A. Sacher, and J. , Generation Cycle in the Duodenal Crypt Cells of Germ-Free and Conventional Mice, Nature, vol.19, issue.4935, pp.884-890, 1964.
DOI : 10.1083/jcb.19.2.285

J. Pen and G. W. Welling, Influence of the microbial flora on the amount of CCK8- and secretin21???27-like immunoreactivity in the intestinal tract of mice, Comparative Biochemistry and Physiology Part B: Comparative Biochemistry, vol.76, issue.3
DOI : 10.1016/0305-0491(83)90298-5

J. Pen and G. W. Welling, The concentration of cholecystokinin in the intestinal tract of germ-free and control mice, Antonie van Leeuwenhoek, vol.235, issue.1, pp.84-89, 1981.
DOI : 10.1007/BF00399076

R. A. Goodlad, PLASMA ENTEROGLUCAGON, GASTRIN AND PEPTIDE YY IN CONVENTIONAL AND GERM-FREE RATS REFED WITH A FIBRE-FREE OR FIBRE-SUPPLEMENTED DIET, Quarterly Journal of Experimental Physiology, vol.74, issue.4
DOI : 10.1113/expphysiol.1989.sp003291

R. M. Arantes and A. M. Nogueira, Distribution of enteroglucagon- and peptide YY-immunoreactive cells in the intestinal mucosa of germ-free and conventional mice, Cell & Tissue Research, vol.290, issue.1, pp.61-70, 1997.
DOI : 10.1007/s004410050908

R. M. Arantes and A. M. Nogueira, Increased intracellular content of enteroglucagon in proximal colon is related to intestinal adaptation to germ-free status, Cell and Tissue Research, vol.303, issue.3, pp.447-50, 2001.
DOI : 10.1007/s004410000323

P. D. Cani, Oligofructose Promotes Satiety in Rats Fed a High-Fat Diet: Involvement of Glucagon-Like Peptide-1, Obesity Research, vol.76, issue.6, pp.1000-1007, 2005.
DOI : 10.1038/oby.2005.117

N. M. Delzenne, Impact of inulin and oligofructose on gastrointestinal peptides, British Journal of Nutrition, vol.128, issue.S1, pp.157-61, 2005.
DOI : 10.1016/S0899-9007(00)00464-0

J. Zhou, Dietary resistant starch upregulates total GLP-1 and PYY in a sustained day-long manner through fermentation in rodents, AJP: Endocrinology and Metabolism, vol.295, issue.5, pp.295-1160, 2008.
DOI : 10.1152/ajpendo.90637.2008

L. Shen, Dietary Resistant Starch Increases Hypothalamic POMC Expression in Rats, Obesity, vol.403, issue.Suppl 5, pp.40-45, 2009.
DOI : 10.1038/oby.2008.483

D. Cai, Local and systemic insulin resistance resulting from hepatic activation of IKK-?? and NF-??B, Nature Medicine, vol.100, issue.2, pp.183-90, 2005.
DOI : 10.1172/JCI200111559

G. S. Hotamisligil, Increased adipose tissue expression of tumor necrosis factor-alpha in human obesity and insulin resistance., Journal of Clinical Investigation, vol.95, issue.5, pp.95-2409, 1995.
DOI : 10.1172/JCI117936

S. P. Weisberg, Obesity is associated with macrophage accumulation in adipose tissue, Journal of Clinical Investigation, vol.112, issue.12, pp.1796-808, 2003.
DOI : 10.1172/JCI19246DS1

H. Xu, Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance, Journal of Clinical Investigation, vol.112, issue.12, pp.112-1821, 2003.
DOI : 10.1172/JCI19451DS1

L. G. Wood, M. L. Garg, and P. G. Gibson, A high-fat challenge increases airway inflammation and impairs bronchodilator recovery in asthma, Journal of Allergy and Clinical Immunology, vol.127, issue.5, pp.1133-1173, 2011.
DOI : 10.1016/j.jaci.2011.01.036

M. R. Ricci and B. E. Levin, Ontogeny of diet-induced obesity in selectively bred Sprague-Dawley rats, American Journal of Physiology - Regulatory, Integrative and Comparative Physiology, vol.285, issue.3, pp.610-618, 2003.
DOI : 10.1152/ajpregu.00235.2003

P. D. Cani, Role of gut microflora in the development of obesity and insulin resistance following high-fat diet feeding, Pathologie Biologie, vol.56, issue.5, pp.305-314, 2008.
DOI : 10.1016/j.patbio.2007.09.008

URL : https://hal.archives-ouvertes.fr/inserm-00408892

M. T. Abreu, Toll-like receptor signalling in the intestinal epithelium: how bacterial recognition shapes intestinal function, Nature Reviews Immunology, vol.165, issue.2, pp.131-175, 2010.
DOI : 10.1038/nri2707

P. D. Cani, Metabolic Endotoxemia Initiates Obesity and Insulin Resistance, Diabetes, vol.56, issue.7, pp.1761-72, 2007.
DOI : 10.2337/db06-1491

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.612.6162

J. E. Davis, Tlr-4 Deficiency Selectively Protects Against Obesity Induced by Diets High in Saturated Fat, Obesity, vol.135, issue.6, pp.16-1248, 2008.
DOI : 10.1038/oby.2008.210

J. M. Fernandez-real, CD14 Monocyte Receptor, Involved in the Inflammatory Cascade, and Insulin Sensitivity, The Journal of Clinical Endocrinology & Metabolism, vol.88, issue.4, pp.1780-1784, 2003.
DOI : 10.1210/jc.2002-020173

P. D. Cani, Changes in Gut Microbiota Control Metabolic Endotoxemia-Induced Inflammation in High-Fat Diet-Induced Obesity and Diabetes in Mice, Diabetes, vol.57, issue.6, pp.1470-81, 2008.
DOI : 10.2337/db07-1403

URL : https://hal.archives-ouvertes.fr/inserm-00410066

G. De-lartigue, Diet-induced obesity leads to the development of leptin resistance in vagal afferent neurons, AJP: Endocrinology and Metabolism, vol.301, issue.1, pp.187-95, 2011.
DOI : 10.1152/ajpendo.00056.2011

T. Hosoi, Novel pathway for LPS-induced afferent vagus nerve activation: Possible role of nodose ganglion, Autonomic Neuroscience, vol.120, issue.1-2, pp.104-111, 2005.
DOI : 10.1016/j.autneu.2004.11.012

D. M. Tsukumo, Translational research into gut microbiota: new horizons in obesity treatment, Arq Bras Endocrinol Metabol, vol.53, issue.2, pp.139-183, 2009.

S. Kersten, Characterization of the Fasting-induced Adipose Factor FIAF, a Novel Peroxisome Proliferator-activated Receptor Target Gene, Journal of Biological Chemistry, vol.275, issue.37, pp.275-28488, 2000.
DOI : 10.1074/jbc.M004029200

L. Lichtenstein, Angptl4 Upregulates Cholesterol Synthesis in Liver via Inhibition of LPL- and HL-Dependent Hepatic Cholesterol Uptake, Arteriosclerosis, Thrombosis, and Vascular Biology, vol.27, issue.11, pp.27-2420, 2007.
DOI : 10.1161/ATVBAHA.107.151894

C. K. Fleissner, Absence of intestinal microbiota does not protect mice from diet-induced obesity, British Journal of Nutrition, vol.28, issue.06, pp.919-948, 2010.
DOI : 10.1016/j.atherosclerosissup.2006.04.008

S. Rabot, Germ-free C57BL/6J mice are resistant to high-fat-diet-induced insulin resistance and have altered cholesterol metabolism, The FASEB Journal, vol.24, issue.12, 2010.
DOI : 10.1096/fj.10-164921

URL : https://hal.archives-ouvertes.fr/hal-01204268

P. J. Turnbaugh, An obesity-associated gut microbiome with increased capacity for energy harvest, Nature, vol.20, issue.7122, pp.1027-1058, 2006.
DOI : 10.1038/nature05414

A. Barcenilla, Phylogenetic Relationships of Butyrate-Producing Bacteria from the Human Gut, Applied and Environmental Microbiology, vol.66, issue.4, pp.1654-61, 2000.
DOI : 10.1128/AEM.66.4.1654-1661.2000

P. J. Turnbaugh, Diet-Induced Obesity Is Linked to Marked but Reversible Alterations in the Mouse Distal Gut Microbiome, Cell Host & Microbe, vol.3, issue.4, pp.213-236, 2008.
DOI : 10.1016/j.chom.2008.02.015

P. J. Turnbaugh, A core gut microbiome in obese and lean twins, Nature, vol.8, issue.7228, pp.480-484, 2009.
DOI : 10.1038/nature07540

R. E. Ley, Microbial ecology: Human gut microbes associated with obesity, Nature, vol.308, issue.7122, pp.1022-1025, 2006.
DOI : 10.1038/4441022a

M. A. Hildebrandt, High-Fat Diet Determines the Composition of the Murine Gut Microbiome Independently of Obesity, Gastroenterology, vol.137, issue.5, pp.1716-1740, 2009.
DOI : 10.1053/j.gastro.2009.08.042

B. E. Levin, Selective breeding for diet-induced obesity and resistance in Sprague-Dawley rats, Am J Physiol, vol.273, issue.2 2, pp.725-755, 1997.

T. D. Swartz, Up-regulation of intestinal type 1 taste receptor 3 and sodium glucose luminal transporter-1 expression and increased sucrose intake in mice lacking gut microbiota, British Journal of Nutrition, vol.33, issue.05, pp.621-651, 2012.
DOI : 10.1126/science.1056670

URL : https://hal.archives-ouvertes.fr/hal-01004277

Y. C. Wang, Health and economic burden of the projected obesity trends in the USA and the UK. Lancet, pp.378-815, 2011.

F. Lucas and A. Sclafani, The composition of the maintenance diet alters flavor-preference conditioning by intragastric fat infusions in rats, Physiology & Behavior, vol.60, issue.4, pp.1151-1158, 1996.
DOI : 10.1016/0031-9384(96)00136-9

T. D. Swartz, Up-regulation of intestinal type 1 taste receptor 3 and sodium glucose luminal transporter-1 expression and increased sucrose intake in mice lacking gut microbiota, British Journal of Nutrition, vol.33, issue.05, pp.1-10, 2011.
DOI : 10.1126/science.1056670

URL : https://hal.archives-ouvertes.fr/hal-01004277

C. Martin, The Lipid-Sensor Candidates CD36 and GPR120 Are Differentially Regulated by Dietary Lipids in Mouse Taste Buds: Impact on Spontaneous Fat Preference, PLoS ONE, vol.104, issue.8, p.24014
DOI : 10.1371/journal.pone.0024014.t002

X. J. Zhang, Decreased expression of CD36 in circumvallate taste buds of high-fat diet induced obese rats, Acta Histochemica, vol.113, issue.6, pp.663-670, 2011.
DOI : 10.1016/j.acthis.2010.09.007

K. Ackroff and A. Sclafani, Flavor preferences conditioned by sugars: Rats learn to prefer glucose over fructose, Physiology & Behavior, vol.50, issue.4, pp.815-839, 1991.
DOI : 10.1016/0031-9384(91)90023-H

Y. Demarne, Fat absorption in germ-free and conventional rats artificially deprived of bile secretion., Gut, vol.23, issue.1, pp.49-57, 1982.
DOI : 10.1136/gut.23.1.49

Y. Demarne, E. Sacquet, and H. Garnier, LA FLORE GASTRO-INTESTINALE ET LA DIGESTION DES MATI??RES GRASSES CHEZ LE MONOGASTRIQUE, Annales de Biologie Animale Biochimie Biophysique, vol.12, issue.3, pp.509-533, 1972.
DOI : 10.1051/rnd:19720313

J. R. Goudriaan, Intestinal lipid absorption is not affected in CD36 deficient mice, Mol Cell Biochem, vol.239, issue.12, pp.199-202, 2002.
DOI : 10.1007/978-1-4419-9270-3_25

M. S. Engelstoft, A Gut Feeling for Obesity: 7TM Sensors on Enteroendocrine Cells, Cell Metabolism, vol.8, issue.6, pp.447-456, 2008.
DOI : 10.1016/j.cmet.2008.11.004

C. Cherbut, Short-chain fatty acids modify colonic motility through nerves and polypeptide YY release in the rat, Am J Physiol, vol.275, issue.6, pp.1415-1437, 1998.

S. Mandard, The Fasting-induced Adipose Factor/Angiopoietin-like Protein 4 Is Physically Associated with Lipoproteins and Governs Plasma Lipid Levels and Adiposity, Journal of Biological Chemistry, vol.281, issue.2, pp.934-978, 2006.
DOI : 10.1074/jbc.M506519200

V. R. Velagapudi, The gut microbiota modulates host energy and lipid metabolism in mice, The Journal of Lipid Research, vol.51, issue.5, pp.1101-1113, 2011.
DOI : 10.1194/jlr.M002774

L. Jan and S. , Angiopoietin-Like 4 Is a Proangiogenic Factor Produced during Ischemia and in Conventional Renal Cell Carcinoma, The American Journal of Pathology, vol.162, issue.5, pp.1521-1529, 2003.
DOI : 10.1016/S0002-9440(10)64285-X

T. S. Stappenbeck, L. V. Hooper, and J. I. Gordon, Developmental regulation of intestinal angiogenesis by indigenous microbes via Paneth cells, Proc Natl Acad Sci, issue.24, pp.99-15451, 2002.

B. S. Wostmann and D. F. Kan, The Cholesterol-Lowering Effect of Commercial Diet Fed to Germfree and Conventional Rats, J Nutr, vol.84, pp.277-82, 1964.

S. Klein, Adipose tissue leptin production and plasma leptin kinetics in humans, Diabetes, vol.45, issue.7, pp.984-991, 1996.
DOI : 10.2337/diabetes.45.7.984

V. A. Drover, CD36 deficiency impairs intestinal lipid secretion and clearance of chylomicrons from the blood, Journal of Clinical Investigation, vol.115, issue.5, pp.1290-1297, 2005.
DOI : 10.1172/JCI21514

Z. J. Lin, Abdominal Fat Accumulation with Hyperuricemia and Hypercholesterolemia Quail Model Induced by High Fat Diet, Chinese Medical Sciences Journal, vol.24, issue.3, pp.191-195, 2009.
DOI : 10.1016/S1001-9294(09)60088-2

B. B. Kahn, AMP-activated protein kinase: Ancient energy gauge provides clues to modern understanding of metabolism, Cell Metabolism, vol.1, issue.1, pp.15-25, 2005.
DOI : 10.1016/j.cmet.2004.12.003

C. Bastie, Alterations of Peroxisome Proliferator-activated Receptor delta Activity Affect Fatty Acid-controlled Adipose Differentiation, Journal of Biological Chemistry, vol.275, issue.49, pp.275-38768, 2000.
DOI : 10.1074/jbc.M006450200

M. Jernas, Separation of human adipocytes by size: hypertrophic fat cells display distinct gene expression, The FASEB Journal, vol.20, issue.9, pp.1540-1542, 2006.
DOI : 10.1096/fj.05-5678fje

C. Weyer, Enlarged subcutaneous abdominal adipocyte size, but not obesity itself, predicts Type II diabetes independent of insulin resistance, Diabetologia, vol.43, issue.12, pp.43-1498, 2000.
DOI : 10.1007/s001250051560

F. A. Duca and M. Covasa, Current and emerging concepts on the role of peripheral signals in the control of food intake and development of obesity, British Journal of Nutrition, vol.278, issue.05, pp.1-16, 2012.
DOI : 10.1016/j.acthis.2010.09.007

URL : https://hal.archives-ouvertes.fr/hal-01190725

A. Hajnal and R. Norgren, Taste pathways that mediate accumbens dopamine release by sapid sucrose, Physiology & Behavior, vol.84, issue.3, pp.363-372, 2005.
DOI : 10.1016/j.physbeh.2004.12.014

R. E. Steinert and C. Beglinger, Nutrient sensing in the gut: interactions between chemosensory cells, visceral afferents and the secretion of satiation peptides, Physiology & Behavior, vol.105, issue.1
DOI : 10.1016/j.physbeh.2011.02.039

M. I. Friedman, Obesity and the hepatic control of feeding behavior, Drug News & Perspectives, vol.20, issue.9, pp.573-581, 2007.
DOI : 10.1358/dnp.2007.20.9.1162243

M. S. Szczypka, Viral Gene Delivery Selectively Restores Feeding and Prevents Lethality of Dopamine-Deficient Mice, Neuron, vol.22, issue.1, pp.167-78, 1999.
DOI : 10.1016/S0896-6273(00)80688-1

J. M. Friedman, The Function of Leptin in Nutrition, Weight, and Physiology, Nutrition Reviews, vol.60, issue.suppl 10, pp.60-61, 2002.
DOI : 10.1301/002966402320634878

M. Arnold, Meal-Contingent Intestinal Lymph Collection from Awake, Unrestrained Rats, Am J Physiol Regul Integr Comp Physiol, 2012.

D. J. Byrnes, Radioimmunoassay of cholecystokinin in human plasma, Clinica Chimica Acta, vol.111, issue.1, pp.81-90, 1981.
DOI : 10.1016/0009-8981(81)90424-1

C. F. Elias, Chemical characterization of leptin-activated neurons in the rat brain, The Journal of Comparative Neurology, vol.372, issue.2, pp.261-81, 2000.
DOI : 10.1002/1096-9861(20000724)423:2<261::AID-CNE6>3.0.CO;2-6

C. R. Abbott, The inhibitory effects of peripheral administration of peptide YY(3-36) and glucagon-like peptide-1 on food intake are attenuated by ablation of the vagal-brainstem-hypothalamic pathway, Brain Res, issue.1, pp.1044-127, 2005.

R. V. Seimon, Effects of varying combinations of intraduodenal lipid and carbohydrate on antropyloroduodenal motility, hormone release, and appetite in healthy males, AJP: Regulatory, Integrative and Comparative Physiology, vol.296, issue.4, pp.912-932, 2009.
DOI : 10.1152/ajpregu.90934.2008

A. C. Shin, Meal-Induced Hormone Responses in a Rat Model of Roux-en-Y Gastric Bypass Surgery, Endocrinology, vol.151, issue.4, pp.1588-97, 2010.
DOI : 10.1210/en.2009-1332

A. Sclafani and K. Ackroff, Invited Review: The role of gut nutrient sensing in stimulating appetite and conditioning food preferences, Am J Physiol Regul Integr Comp Physiol, 2012.

G. Elizalde and A. Sclafani, Sterch-based conditioned flavor preferences in rats: Influence of taste, calories and CS-US delay, Appetite, vol.11, issue.3, pp.179-200, 1988.
DOI : 10.1016/S0195-6663(88)80002-3

K. Touzani, R. J. Bodnar, and A. Sclafani, Dopamine D1-like receptor antagonism in amygdala impairs the acquisition of glucose-conditioned flavor preference in rats, European Journal of Neuroscience, vol.24, issue.2, 2009.
DOI : 10.1111/j.1460-9568.2009.06829.x

K. Touzani and A. Sclafani, Critical role of amygdala in flavor but not taste preference learning in rats, European Journal of Neuroscience, vol.64, issue.7, pp.1767-74, 2005.
DOI : 10.1111/j.1460-9568.2005.04360.x

G. Elizalde and A. Sclafani, Fat appetite in rats: Flavor preferences conditioned by nutritive and non-nutritive oil emulsions, Appetite, vol.15, issue.3, pp.189-97, 1990.
DOI : 10.1016/0195-6663(90)90019-5

F. Diraison, Increased hepatic lipogenesis but decreased expression of lipogenic gene in adipose tissue in human obesity, Am J Physiol Endocrinol Metab, vol.282, issue.1, pp.46-51, 2002.

V. Godbole and D. A. York, Lipogenesis in situ in the genetically obese Zucker fatty rat (fa/fa): Role of hyperphagia and hyperinsulinaemia, Diabetologia, vol.26, issue.3, pp.191-198, 1978.
DOI : 10.1007/BF00429780

A. S. Avram, M. M. Avram, and W. D. James, Subcutaneous fat in normal and diseased states, Journal of the American Academy of Dermatology, vol.53, issue.4, pp.671-83, 2005.
DOI : 10.1016/j.jaad.2005.05.015