D. Pech, Elaboration of a microstructured inkjet-printed carbon electrochemical capacitor, Journal of Power Sources, vol.195, issue.4, pp.1266-1269, 2010.
DOI : 10.1016/j.jpowsour.2009.08.085

URL : https://hal.archives-ouvertes.fr/hal-01443055

I. Corni, M. P. Ryan, and A. R. Boccaccini, Electrophoretic deposition: From traditional ceramics to nanotechnology, Journal of the European Ceramic Society, vol.28, issue.7, pp.28-1353, 2008.
DOI : 10.1016/j.jeurceramsoc.2007.12.011

H. Ogihara, J. Okagaki, and T. Saji, A Facile Fabrication of Superhydrophobic Films by Electrophoretic Deposition of Hydrophobic Particles. C h e m i s t r y Letters, pp.132-133, 2009.

C. N. Xiomara, A carbon nanotube field emission cathode with high current density and long-term stability, p.325707

R. Y. Lin, Capacitive Energy Storage from -50 to 100 degrees C Using an Ionic Liquid Electrolyte, Journal of Physical Chemistry Letters, issue.2, pp.2396-2401, 2011.

L. I. Maissel and R. Glang, Handbook of Thin Film Technology, Journal of The Electrochemical Society, vol.118, issue.4, 1970.
DOI : 10.1149/1.2408101

P. Sarkar and P. S. Nicholson, Electrophoretic Deposition (EPD): Mechanisms, Kinetics, and Application to Ceramics, Journal of the American Ceramic Society, vol.139, issue.5, pp.79-1987, 1996.
DOI : 10.1016/0254-0584(95)01477-2

E. Benjamin, J. B. Russ, and . Talbot, A Study of the Adhesion of Electrophoretically Deposited Phosphors, J. Electrochem. Soc, vol.145, issue.4, pp.1245-1252, 1998.

A. K. Mahapatro, Gold surface with sub-nm roughness realized by evaporation on a molecular adhesion monolayer. A p p l i e d P h y s i c s L e t t e r s, pp.88-151917, 2006.

K. W. Bewig and W. A. Zisman, The Wetting of Gold and Platinum by Water, The Journal of Physical Chemistry, vol.69, issue.12
DOI : 10.1021/j100782a029

J. B. Pawley, P. L. Taberna, P. Simon, and J. F. Fauvarque, Handbook Of Biological Confocal Microscopy Electrochemical characteristics and impedance spectroscopy studies of carbon-carbon supercapacitors, Journal of the Electrochemical Society, vol.14, issue.3, pp.150-292, 2003.

H. J. In, Origami fabrication of nanostructured, three-dimensional devices: Electrochemical capacitors with carbon electrodes, Applied Physics Letters, vol.88, issue.8, pp.88-083104, 2006.
DOI : 10.1063/1.2177639

P. Simon and Y. Gogotsi, Materials for electrochemical capacitors, Nature Materials, issue.711, pp.845-854, 2008.

A. Kajdos, Tailoring the Pore Alignment for Rapid Ion Transport in Microporous Carbons, Journal of the American Chemical Society, vol.132, issue.10, pp.132-3252
DOI : 10.1021/ja910307x

C. S. Du and N. Pan, High power density supercapacitor electrodes of carbon nanotube films by electrophoretic deposition, Nanotechnology, vol.17, issue.21, pp.5314-5318, 2006.
DOI : 10.1088/0957-4484/17/21/005

J. Chmiola, Anomalous Increase in Carbon Capacitance at Pore Sizes Less Than 1 Nanometer, Science, vol.313, issue.5794, pp.313-1760, 2006.
DOI : 10.1126/science.1132195

C. Portet, G. Yushin, and Y. Gogotsi, Electrochemical performance of carbon onions, nanodiamonds, carbon black and multiwalled nanotubes in electrical double layer capacitors, Carbon, vol.45, issue.13, pp.45-2511, 2007.
DOI : 10.1016/j.carbon.2007.08.024

M. Beidaghi and C. Wang, Micro-Supercapacitors Based on Interdigital Electrodes of Reduced Graphene Oxide and Carbon Nanotube Composites with Ultra high Power Handling Performance, pp.22-4501, 2012.

C. Portet, Electrochemical characterizations of carbon nanomaterials by the cavity microelectrode technique, Electrochimica Acta, vol.53, issue.26, pp.7675-7680, 2008.
DOI : 10.1016/j.electacta.2008.05.019

R. Lin, Microelectrode Study of Pore Size, Ion Size, and Solvent Effects on the Charge/Discharge Behavior of Microporous Carbons for Electrical Double-Layer Capacitors, Journal of The Electrochemical Society, vol.156, issue.1, pp.7-12
DOI : 10.1149/1.3002376

M. Armand, Ionic-liquid materials for the electrochemical challenges of the future, Nature Materials, vol.16, issue.8, pp.621-629, 2009.
DOI : 10.1038/nmat2448

C. Arbizzani, Safe, high-energy supercapacitors based on solvent-free ionic liquid electrolytes, Journal of Power Sources, vol.185, issue.2, pp.1575-1579, 2008.
DOI : 10.1016/j.jpowsour.2008.09.016

M. Ue, K. Ida, and S. Mori, Electrochemical Properties of Organic Liquid Electrolytes Based on Quaternary Onium Salts for Electrical Double?ÄêLayer Capacitors, Journal of the Electrochemical Society, issue.11, pp.141-2989, 1994.

J. Vatamanu, O. Borodin, and G. D. Smith, Molecular Insights into the Potential and Temperature Dependences of the Differential Capacitance of a Room-Temperature Ionic Liquid at Graphite Electrodes, Journal of the American Chemical Society, vol.132, issue.42, pp.132-14825, 2010.
DOI : 10.1021/ja104273r

. Mhz, The CDC or carbide films to be etched were clamped on the chuck (bottom electrode) in the reactor. The chuck was powered by a separate RF source to control the ion bombardment energy (RF bias)