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Abstract 

The increasing number of functions in portable electronic devices requires more and more 

energy and power within a limited space. Li-ion thin film or so-called micro-batteries are the 

current solution for power supply. Drawbacks of these storage elements are poor power 

performance with limited life-span and temperature range. Carbon-based micro-

supercapacitors, on the other hand, are able to deliver energy in short time, thus offering high 

power capability, to work at low temperature and they present an unlimited life-span. This 

thesis proposes several carbon-based micro-supercapacitors, to be integrated on a silicon 

substrate together with other electronics components or sensors. They are foreseen as a 

potential replacement or complement of Li-ion micro-batteries to enhance the total 

performance of the whole power source system. The thesis work is mainly focused on adapted 

materials and technologies for enabling micro-supercapacitors realization.  

 Two types of on-chip micro-supercapacitors with planar interdigitated electrodes 

configuration were developed: one prepared from Electrophoretic deposition (EPD) and its 

combination of different carbon materials and different types of electrolytes, the other from 

patterned titanium or silicon carbide derived carbon film (TiC-CDC or SiC-CDC) on Si chip 

with different microfabrication techniques. Onion like carbon-based micro-supercapacitor by 

EPD shows high power delivery (scan rate up to 100V/s) in organic electrolyte, and high 

temperature range (-50 °C – 80 °C) in a eutectic mixture of ionic liquids. Different techniques 

for patterning carbide films have been developed to fabricate a CDC based micro-

supercapacitor: reactive ion etching (RIE) or focused ion beam (FIB). TiC-CDC film based 

micro-supercapacitors show promising preliminary results. The developed technologies pave 

the way to a full and effective integration of micro-size energy storage devices on-chip. 



Keywords: MEMS, micro-supercapacitor, onion like carbon, electrophoretic deposition, 

carbide derived carbon, reactive ion etching. 
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General Introduction 

Portable electronic devices (PEDs), such as laptop computers, smart phones, tablet 

computers, referring to any non-stationary electronic apparatus with singular or multiple 

capabilities, have been widely developed in the last decades. Faster processing is always one 

of the most important objectives to achieve for PEDs; it requires more electronic components 

to process and transmit data, thus demanding higher power. On the other hand, multifunction 

in PEDs, for instance cameras, motion detection, lights, calls for additional MEMS 

(Microelectromechanical systems) such as sensors or actuators resulting in even higher power 

demands. However, high power – i.e. high rate discharge – reduces batteries run time (the 

time PED will run before it must be recharged), which is the major power source in PEDs. In 

contrast, from point of view of customers, longer battery run time is desired. To solve this 

contradiction, supercapacitors can offer a complementary solution for power sources, thanks 

to their high discharge rates. Placed in parallel of a battery, a supercapacitor helps increasing 

the run time of the power source and helps extending the battery’s lifetime [1]. Better 

portability, featuring smaller volume of PED, is also required by customers. While the size of 

active circuits diminishes quickly according to Moore’s Law [2], while at the same time 

numerous microsystems are introduced, the remaining issue is the size of power sources [3]. 

Thus batteries and supercapacitors, which could be integrated on-chip in millimeter or even 

micrometer size, are strongly required.  

In some particular cases such as wireless sensor networks, the sensing node which contains 

MEMS (accelerometer, temperature sensors…etc) coupled with RF emitter and transceiver 

and micro-controller are expected to function independently, i.e. to be autonomous in energy. 

These sensors network can be implemented in structures permanently (for structure health 

monitoring) or spread around in the environment [4]: batteries with their limited lifetime 
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should be thus avoided. A way to obtain energy autonomy is to power MEMS through energy 

harvesting and storage units on the same chip. Current energy harvesting systems collect 

energy from environment such as vibration (mechanical energy), thermal gradient, 

photovoltaics (solar thermal energy), etc [5]. However, energy from environment is not 

always available, posing the problem of intermittence. Energy storage is unavoidable in this 

context: a solution could be carbon-based supercapacitors, since they present longer lifespan 

thanks to electrochemically stable carbon electrode [6]. For implementing supercapacitors on 

these applications, miniaturization (small foot prints, low profiles) is required together with 

resistance to harsh environment. In this context, miniaturization of an energy storage element 

such as a supercapacitor is a real challenge, especially if it is intended to be on-chip.  

On-chip energy storage micro-devices allows size reduction but other advantages are 

foreseen: monolithic integration indeed with collective fabrication of the energy storage 

micro-device along with the MEMS and/or the power management active circuit could bring 

benefits such as: reduction of losses thanks to optimized and short connections, lower 

manufacturing costs and enhanced reliability.  

Following the major advances in harvesting micro-devices for wireless sensors networks, 

research on micro-scale energy storage and in particular supercapacitors, has increased 

significantly in the last ten years. The first published micro-supercapacitors in the early 2000s 

were based on pseudo-capacitive electrode material (RuO2) in a sandwich configuration [7]. 

Later-on (from 2006), carbon-based micro-supercapacitors started to appear [8]. This 

emerging interest can be explained by the fact that carbon is the most widely used electrode 

material for macroscopic supercapacitors, since it is more stable electrochemically than any 

other electrode materials for supercapacitors. Furthermore, combined with organic 

electrolytes, large voltage window and large temperature ranges could be obtained. Carbon-

based on-chip micro-supercapacitors have not been well developed, since there are still 
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several unsettled issues concerning technology. Most reported carbon-based micro-

supercapacitors were either fabricated by non-widely used microfabrication techniques or 

their performance could not match the performance with the same electrode material in 

macroscopic supercapacitors, or neither. 

Therefore, in this thesis, there are two principal objectives: first, establishing routine 

processes with widely used micro-fabrication techniques to process carbon materials into on-

chip micro-supercapacitors; second, improving performance including power and energy 

density to offer an enabling solution of energy storage on-chip. 

The first chapter is a bibliographic summary. Macroscopic supercapacitors are firstly 

discussed. Principles and mechanisms of carbon-based supercapacitors are introduced with 

discussion of carbon electrodes materials and electrolytes, which are the most important 

components for carbon-based supercapacitors. Principles of electrochemical characterization 

including Electrochemical Impedance Spectroscopy (EIS) and Cyclic Voltammetry (CV) are 

explained to link the test results with performance. Micro-supercapacitors are then introduced 

with a description of common microfabrication techniques that are used to prepare the micro-

devices. The state-of-the-art of micro-supercapacitors is discussed, especially carbon-based 

micro-supercapacitors, both in sandwich configuration and on-chip interdigitated 

configuration. 

The second chapter describes all the carbon-based on-chip micro-supercapacitors prepared 

by electrophoretic deposition (EPD) technique. This collective deposition technique consists 

in processing carbon powder onto patterned current collectors. Pretreatment and EPD 

parameters were adjusted to achieve a homogeneous and adhesive carbon layer. Activated 

carbon (AC) was used in a three-electrode configuration to study the influence of thickness of 

the active film. Then the carbon was deposited on interdigitated current collectors to set up a 

routine processes. With AC, an improved power performance was found compared with 
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macroscopic AC-based supercapacitors in the same organic electrolyte. Onion-like carbon 

(OLC) was then used to further improve power density, although capacitance was 

compromised. Later, OLC-based on-chip micro-supercapacitors were tested in an ionic 

liquids mixture (ILM). Compared to organic electrolytes, an enlarged temperature range (-50 

°C – 80 °C) was achieved with enlarged voltage window (3.7 V) and enhanced capacitance, 

hereby improved energy density.  

The third chapter presents all the micro-supercapacitors fabricated from carbide-derived 

carbon (CDC) films which are binder-free films and proved to show large volumetric 

capacitance. Different processing strategies were developed to produce micro-

supercapacitors: either by reactive ion etching (RIE) of CDC films, both SiC-CDC and TiC-

CDC films or by reactive ion etching of carbide films (SiC or TiC) transformed later on into 

carbon films. Other than this, focused ion beam (FIB) was also used to fabricate micro-

supercapacitors in micrometer range. Produced micro-supercapacitors with interdigitated 

current collectors were tested electrochemically and their performance compared with 

macroscopic supercapacitors and with stat-of-the-art micro-supercapacitors.  

 



 5 

 

Reference 

1. Huggins, R.A., Supercapacitors and electrochemical pulse sources. Solid State Ionics, 

2000. 134(1‚ 2): p. 179-195. 

2. Moore, G.E., Lithography and the future of Moore's law. Proc. SPIE, 1995. 2437: p. 

2-17. 

3. Schmidt, M.A. Portable MEMS power sources. in Solid-State Circuits Conference, 

2003. Digest of Technical Papers. ISSCC. 2003 IEEE International. 2003. 

4. Srivastava, N., Challenges of Next-Generation Wireless Sensor Networks and its 

impact on Society. Journal of Telecommunications, 2010. 1(1): p. 128-133. 

5. Seah, W.K.G., E. Zhi Ang, and T. Hwee-Pink. Wireless sensor networks powered by 

ambient energy harvesting (WSN-HEAP) - Survey and challenges. in Wireless 

Communication, Vehicular Technology, Information Theory and Aerospace & 

Electronic Systems Technology, 2009. Wireless VITAE 2009. 1st International 

Conference on. 2009. 

6. Pandolfo, A.G. and A.F. Hollenkamp, Carbon properties and their role in 

supercapacitors. Journal of Power Sources, 2006. 157(1): p. 11-27. 

7. Yoon, Y.S., et al., Solid-state thin-film supercapacitor with ruthenium oxide and solid 

electrolyte thin films. Journal of Power Sources, 2001. 101(1): p. 126-129. 

8. Ho, C., et al. Dispenser Printed Electrochemical Capacitors for Power Management 

of Millimeter Scale Lithium Ion Polymer Microbatteries for Wireless Sensors. in 

Power MEMS Conference. 2006. 

 

 

 



 6 

 

 



 

 
7 

Chapter I Bibliographic Summary 

I Macroscopic Supercapacitors 

Although in different sizes, carbon-based micro-supercapacitors share the same charge 

storage mechanism, the same electrode materials and the same electrolytes with macroscopic 

supercapacitors.  

While the first EDLC was described in 1957 [1], carbon-based supercapacitors have only 

been widely studied and developed since the 1990s [2]. 

Referring to the Ragone plot in Figure I.1 [3] which shows the specific power versus the 

specific energy of different energy storage devices, Li batteries, including Li primary batteries 

and Li-ion secondary batteries, show the best energy performance. Because batteries store 

energy in the bulk of electrode material via electrochemical reactions, the lighter the redox 

couple is, the higher the energy density is (per e
-
 exchanged). However, concerning power 

density, because of the restriction from diffusion of electrolyte ions throughout the active 

materials (solid diffusion coefficient within the 10
-10

 to 10
-14

 cm
2
.s

-1
 range) as well as kinetics 

of electrochemical reactions, energy delivery can not be achieved in short times: power 

density is thus limited. Compared to batteries, electrochemical double layer capacitors have 

lower energy density but much higher power density, thanks to their mechanism of charge 

storage based on adsorption of ions on the surface of porous structured electrodes. 
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Figure I.1 Ragone Plot for various electrical energy storage devices [3]. 

 

I.1 Theory of Electric Double Layer Capacitors (EDLCs) 

I.1.1 Conventional Capacitors 

Conventional dielectric capacitors contain two parallel metallic plates with a dielectric 

material in between as shown in Figure I.2. 

 

Figure I.2 Schematically representative of a conventional capacitor. 
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When there is a potential difference across the conductive plates, a static electric field 

develops across the dielectric layer, leading to charge accumulation on each plate. Energy is 

thus stored in the electrostatic field. 

The quantity of charge stored is proportional to the potential applied according to Eq. 1. 

Eq. 1 

Q = CV  

where Q (A.s or Coulomb, C) is the charge stored in the capacitor. V (V) is the potential 

applied which is limited by the dielectric breakdown between the two plates and C (F) is the 

capacitance defined by Eq. 2. 

Eq. 2 

C

A
=
"
r
"
0

d
 

where A (m
2
) is the electrode surface area, d (m) is the distance between the layers of 

opposite charges, !0 is the dielectric constant of the vacuum (8.85!10
-12

 F.m
-1

) and !r is the 

relative dielectric constant of the materials introduced between the two plates. The dielectric 

materials adopted can neither be too thick or too thin. If it is too thick, the capacitance is 

largely reduced and more defects might be introduced. Then since a dielectric has a 

breakdown voltage MV/cm proportional to thickness, the minimum thickness is thus limited 

to ensure a certain operation voltage. 

I.1.2 Supercapacitors 

Electrochemical capacitors, also called Electrical Double Layer Capacitors (EDLCs) or 

Supercapacitors, are composed of two electrodes separated by an ionic conductive but 

electronic insulated separator soaked in an electrolyte (see Figure I.3).  
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Figure I.3 Representation of an EDLC with carbon as active materials (in the charged state) [4]. 

 

Charge storage is achieved through charge separation on a large surface area: the ions from 

the electrolyte are adsorbed onto a high specific surface area conducting active material. The 

extended high surface area is due to the porous structure of the active material, the carbon, 

which can reach up to 3000 m
2
/g, thus offering extremely high number of available sites to 

accommodate cations and anions in the electrolyte. The extremely thin layer (few nanometers 

or so in organic electrolytes) of charge separation corresponding to electrochemical double 

layer (EDL), compared with the “d” of Eq. 2, substantially enlarges the capacitance. 

The EDL theory was firstly proposed by Helmholtz to describe the charge distribution at 

the interface of colloidal particles [5]. The EDL was then simply described as two layers of 
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opposite charge accumulated at the electrolyte/electrode interface (Figure I.4a). The 

separation between the layers of opposite charge was within the solvated radius of electrolyte 

ions, limited to the electrode surface. This model was later modified by Gouy and Chapman 

by introducing a diffuse model of the EDL, in which the potential at a surface decreases 

exponentially due to distribution of counter-ions from the electrolyte solution in the vicinity 

of electrode driven by thermal motion (Figure I.4b) [6, 7]. After, Stern combined the former 

two theories by dividing the area in the vicinity of the electrode into two parts, the compact 

layer right next to the electrolyte/electrode interface, also called Stern layer, and Diffuse layer 

[8] (Figure I.4c).   

 

Figure I.4 Models of the electrochemical double layer at a positively charged surface: (a) the Helmholtz model, (b) 

the Gouy-Chapman model, and (c) the Stern model [9].  

 

The Gouy-Chapman-Stern model shows that the interface behaves like the combination of 

the two capacitors in series: 

Eq. 3 

1

Cdl

=
1

CHelmholtz

+
1

CGouyChapman

=
d

"r"0A
+

1

"r"0#DA
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where !D is the Debye length or 1/!D is diffusion length of Gouy-Chapman layer. 

For highly concentrated electrolyte like in our case, 1/!D tends to 0 and then the double 

layer capacitance can be defined as the Helmholtz capacitance: 

Eq. 4 

1

C
dl

=
1

C
Helmholtz

 

As defined by the modern EDL theory, an increase of the surface area (A) and a decrease of 

the ion and charged surface distance (d) in Eq. 2 respectively, both lead to the increase of 

capacitance. The energy stored in EDLCs is therefore several orders of magnitudes higher 

than conventional capacitors according to Ragone plot shown in Figure I.1 as the prefix 

“super-” indicates. 

Since there is one double layer on each electrode of a supercapacitor, the total capacitance 

(cell capacitance) is thus written as: 

Eq. 5 

 

Hereby, the stored energy W (J) and the maximum power Pmax (W) are calculated according 

to Eq. 6 and Eq. 7 respectively. 

Eq. 6 

 

Eq. 7 

 

where R (!) is equivalent series resistance (ESR), the resistance of internal components of 

the supercapacitor such as current collectors, electrodes materials, electrolytes in 

supercapacitors. The voltage window is an important parameter in terms of both energy 

density and power density. However, the Pmax calculated here in Eq. 7 is the theoretical power 
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density that the device could reach according only to the voltage window and ESR; it is thus 

different from the useable power. Pmax is the power density where energy density close to 0 in 

the Ragone Plot. For real supercapacitor applications, there are several other factors that could 

take effect on the useable power density, like the thickness and porosity of electrodes, the 

voltage window, the series resistance, etc. 

Since for supercapacitors the charge storage is achieved at the surface of the active 

materials, as opposed to batteries where electrochemical reactions occur in the bulk thus 

reducing the stability of electrodes, the cyclability of supercapacitors is much longer than 

batteries. In addition, this also leads to a better power performance for supercapacitors thanks 

to the absence of restriction of kinetics from electrochemical reactions. 

To assess the efficiency of charging and discharging for EDL, the minimum time needed to 

reach a stable capacitance, named time constant, !(s), is introduced and defined by Eq.8 as 

follow. 

Eq. 8 

" = RC  

Resistance of the capacitor, with its capacitance, defines time constant. High capacitance of 

supercapacitors, even with very low resistance, introduces several seconds of time constant. 

Other than EDL capacitors, some other electrochemical devices have a “pseudo”-capacitive 

behavior but are based on kinetically fast faradaic reactions [10]. Typical materials are oxides 

(RuO2, MnO2, etc.) and electronically conducting polymers (polypyrrole, polyaniline, etc.). 

Although the restriction from kinetics of reactions is alleviated, the limitations in power 

delivery and cyclability are still issues compared to EDL capacitors, whose electrode material 

is usually porous carbon. 
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I.2 Carbon Materials for Supercapacitors 

Among all the carbon materials, activated carbons (ACs) are the most widely used active 

materials for EDLCs because of its high conductivity, high electrochemical stability, high 

surface area and relatively low cost. They can be obtained from various carbon rich organic 

precursors such as wood, pitch, coal, coke or fruit shell such as coconut or even synthetic 

polymer precursors [4]. The activation is carried out through either physical activation by 

high temperature treatment in oxidizing atmosphere or/and chemical activation by hot acidic 

or alkaline oxidation. Activation could be controlled by adjusting the reaction parameters, i.e. 

activation time, activation temperature etc... to create a porous network within the carbon 

grains leading to high specific surface area. 

The activation treatments lead to the porous structure including all kinds of pores, as shown 

in Figure I.5, according to IUPAC [11], micropores with pore size smaller than 2 nm, 

mesopores with pore size between 2 nm and 50 nm, macropores with pore size larger than 

50nm. 

 

Figure I.5 Schematic diagram of the pore size network of an activated carbon grain. 

 

The ratio between different types of pore size, i.e. the pore size distribution (for example 

Figure I.6), could be controlled by parameters of the activation process such as activation 

temperature and activation time or with different precursor. The specific surface area is 
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generally from 500 to 2500 m
2
/g, corresponding to the high specific capacitance around 100 – 

150 F/g in organic electrolyte with operating voltage up to 3 V or in aqueous electrolyte 

around 200 F/g but only 1 V, since the electrolyte voltage window limits the cell voltage [3].  

 

Figure I.6 Pore size distribution of an activated carbon YP-17 [12]. 

 

In spite of the high specific surface area of ACs, not all of the materials give high 

capacitance as expected [13, 14]. It was attributed to the inaccessibility of the solvated ions to 

the micropores as shown in Figure I.7 [15]. 

 

Figure I.7 Schematics of the traditional view of mechanism of the solvated ion adsorption in activated carbons 

(ACs). 
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Micropores (< 2 nm) were considered too small for ions to enter, since they are smaller 

than the size of the solvated ion, especially in organic electrolyte [15]. Consequently, they 

were thought to have no contribution to the charge storage, i.e., the capacitance. Macropores 

(> 50 nm) were too large to be fully occupied, thus wasting the pore spaces inside the active 

materials (dead volume), i.e., not efficient for maximizing the capacitance. Mesopores, as the 

compromise of the former two situations, were considered as the most ideal one to produce 

capacitance. 

Therefore, plenty of efforts were made on adjusting most of the pores inside the carbon 

grain into the size around two times of the solvated ions sizes, i.e., (2 – 5 nm in organic 

electrolyte) which in the range of mesopores, to maximize the capacitance [16]. However, the 

improvement was not as distinct as expected. In contrary, several studies showed increased 

capacitance in mesoporous ACs with large amount of micropores [17-19]. The same 

phenomena were observed with microporous ACs [20]. A possible mechanism as the partial 

desolvation of the ions to enter into micropores was suggested [17-19, 21]. However, since 

the pore size cannot be finely controlled using activation treatments, ACs show a large pore 

size distribution, ranging between ~ 0.5 nm to ~ 5 nm. This large pore size distribution of 

ACs, involving still certain amount of mesopores and macropores even in microporous ACs, 

made the proposed mechanism quite suspicious. For example, a typical AC called YP17 

shows a range of pore size around 1 nm, around microporous range (Figure I.6). However, 

there are still mesopores and macropores existing in YP17.  

Finally, the effect of micropores was firstly observed using carbide derived carbons (CDCs) 

obtained through extraction of metals from carbides (TiC, SiC and other) by etching in 

halogens at high temperatures [22-24]. 
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Eq. 9 

TiC 2Cl
2

HT
" # " TiCl

4
C  

As shown in Eq. 9, the withdrawal of metals from crystalline structures of the carbides 

keeps the structures and leads to a controlled and narrow pore size distribution in CDCs. An 

anomalous increase in carbon capacitance was achieved with different temperature treated 

TiC-CDCs, i.e., with different sub-nanometer pore sizes ranging from 0.6 to 1.1 nm (Figure 

I.8) [24]. 

 

Figure I.8 (A) Plot of specific capacitance vs. average pore size and (B to D) schematic drawing of ions inside the 

pores with sizes (B) larger than 2 nm, (C) between 1 and 2 nm, (D) smaller than 1 nm [24]. 

 

The results were achieved in 1.5M NEt4BF4 acetonitrile (AN), in a 2-electrode 

configuration, and the solvated ions diameter in this solvent are 1.3 and 1.2 nm respectively 

for cation and anion. The normalized capacitance decreases with the decrease of pore size and 

unexpectedly increased at around the solvated ion size. The gravimetric and volumetric 

capacitances obtained by CDCs are around 50% and 100% respectively higher than that of 
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ACs. Thanks to the very narrow pore size distribution, the increase of the normalized 

capacitance could be attributed to diminishing pore sizes, hence making the partial 

desolvation mechanism [24] proposed earlier for the microporous ACs, more consistent. 

Carbide derived carbon structure was analyzed by Raman spectroscopy [25], which is a 

standard non-destructive analysis tool widely used for characterization of carbon materials. In 

Raman spectra recorded in the near-infrared and visible light regimes, carbon materials 

typically exhibit two broad bands, called D (disordered) and G (graphitic). The presence and 

position of D- and G-peaks, their intensity ratio (ID/IG) and full width at half maximum 

(FWHM) can be used to extract the structural information of the materials. Appearance of 

both peaks in visible Raman spectra depends fundamentally on the ordering of sp
2
 sites and 

only indirectly on the fraction of sp
3
 sites. The G-peak appears due to the in-plane bond-

stretching motion of pairs of C sp
2
 bonded atoms. This mode does not require the presence of 

six-fold benzene rings, it occurs at all sp
2
 sites. The D-peak is symmetry forbidden in perfect 

graphite and is activated only in the presence of disorder (sp
3
 structure). The spectra of CDC 

show two main features: the D- and G-peaks situated around 1350 cm
-1

 and 1600 cm
-1

, 

respectively (Figure I.9). The peak positions, their intensities (ID/IG) and full width at half 

maximum (FWHM), as well as their wavelength dependent dispersion, were used to obtain 

information about the degree of disorder in CDCs. 
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Figure I.9 Raman spectra of TiC-CDCs made at different temperatures recorded using wavelengths indicated in 

the figure [25]. 

 

Chlorination at different temperatures leads to different carbon structures. Corresponding to 

the sharper peaks at higher temperature in Raman spectra, TiC-CDC is better organized at 

higher temperature with more graphitic structures in TEM pictures (Figure I.10), thus more 

conductive. 

 

Figure I.10 TEM pictures of TiC-CDCs produced by chlorination of TiC at a) 400 °C, b) 800 °C, c) 1000 °C and d) 

1200 °C with a scale bar at 5 nm [26]. 
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Other carbon materials, especially carbon nanomaterials such as carbon nanotubes (CNTs) 

[27, 28] and onion like carbon (OLC) [29-31] can be used as active materials in EDLC 

electrodes. Despite a specific surface area much lower than activated carbons (1300 m
2
.g

-1
 for 

CNTs and 500 m
2
.g

-1
 for OLC), these exohedral carbons have a non-porous fully accessible 

surface area helps fast charging and discharging of supercapacitors and show high 

conductivities that facilitate the polarization of the device. 

OLC is synthesized through annealing of nanodiamond powder at high temperatures [32] to 

graphitize the nanodiamond into OLC. A spherical particle of OLC is shown in Figure I.11. 

The bent graphitic layers in the onion were observed. Thanks to the highly graphitized 

structure, the conductivity of OLC is very high, similar to carbon black (around 4 S.cm
-1

) 

[33]. Specific surface area is around 500 m
2
.g

-1
, in a moderate range. 

 

Figure I.11 TEM picture of an OLC particle. 

 

Lack of porous structure obviously sacrifices the capacitance without enough surface area 

to accommodate electrolyte ions. However, these spherical particles allow ultrafast adsorption 
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and desorption of electrolyte ions, since there is no need to diffuse or even squeeze into pores. 

In spite of the high cost, high power supercapacitors have been prepared with OLC [29, 30]. 

I.3 Electrolytes  

According to Eq. 6 (W=CV
2
/2) and Eq. 7 (Pmax=V

2
/4R), the voltage is a key factor for 

increasing both the energy and power performance of supercapacitors. The voltage window is 

usually limited by electrolyte. Being able to apply into all kinds of electrochemical devices, 

four types of electrolytes widely used in carbon-based symmetric supercapacitors are 

introduced here: aqueous electrolytes, organic electrolytes, gel polymer electrolytes and ionic 

liquids. 

I.3.1 Aqueous Electrolytes 

Aqueous electrolytes, i.e. water-based electrolyte, are widely used in electrochemical 

devices because of their high ionic conductivity (1 S.cm
-1

) and high capacitance when used in 

supercapacitors, but the water electrolysis beyond 1 V limits the operating voltage, as well as 

both the energy and power densities, and thus their applications. However, using aqueous 

electrolytes is more convenient for assembly of supercapacitors with no particular caution, 

while electrolytes with voltage window > 1 V are usually assembled in dry room with H2O 

content lower than 1 ppm. Aqueous electrolytes are thus widely used in supercapacitors, since 

they are easier to handle. Acid and basic aqueous solutions such as H2SO4, H3PO4 or KOH are 

the most widely used aqueous electrolytes thanks to their high conductivity. 

I.3.2 Organic Electrolytes 

Organic electrolytes show larger voltage window stability (up to about 5 V) instead of 1 V 

in aqueous electrolytes. As a result, supercapacitors using organic electrolytes show higher 

cell voltage. Although the conductivity of organic electrolytes is at least one order of 
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magnitude lower than aqueous ones, they are still preferred as the energy density is largely 

improved. The most widely used organic solvents are acetonitrile (AN) and propylene 

carbonate (PC). AN has a lower boiling point (bp 82 °C) and a higher melting point (mp -45 

°C), compared to PC (bp 241 °C and mp -55 °C). Despite a low flash point (5 °C), AN still 

prevails over PC thanks to a lower viscosity that reduces the internal resistance of the devices.  

Table I.1 Comparison of organic solvents acetonitrile vs propylene carbonate. 

Solvent 
m.p.

/°C 
b.p./°C 

Flash 

point/°C 

Viscosity (25 

°C)/mPa.s 

Dielectric 

constant 

(20°C) 

Acetonitrile (AN) -48 81 - 82 5.5 0.369 36.64  

Propylene carbonate (PC) -55 241.7 132 2.8 64.9 

 

However, AN is starting to be substituted by PC, because it is flammable and harmful. 

Choice of salts for supercapacitor mainly depends on decomposing potentials of the solute 

ionic species. The preferred solutes are tetraalkylammonium salts of anions that are 

electrochemically stable, such as PF6
-
, BF4

-
 and AsF6

-
. The most widely applied salt for 

organic electrolyte is tetraethylammonium tetrafluoroborate (NEt4BF4). The concentration of 

electrolyte is usually determined by final conductivity of electrolytes and the operating 

temperature range. If the carbon pore size of the electrode material could be adapted to the 

electrolyte ion size, the capacitance and the energy density would increase significantly. 

I.3.3 Gel Polymer Electrolytes 

The gel polymer electrolytes started drawing attention since their introduction by M. 

Armand into the battery field [34]. Since then, gel polymer electrolytes have been widely 

developed as the conductivity of electrolyte was ensured to be used in electrochemical 

systems. For instance, KOH-PEO (potassium hydroxide – polyethylene oxide) gel polymer 

electrolyte was used in carbon aerogel based supercapacitor [35]. Compared with KOH 

aqueous electrolyte, resistance was comparable, but capacitance was decreased in half. 
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There are several advantages with gel polymer electrolytes: no volatile organic solvent and 

lightweight of electrolyte films. Nowadays, besides supercapacitors [36, 37], it could be also 

applied in other electrochemical systems such as electrochromic windows [38, 39] and 

sensors [40, 41]. This is the first type of solid-state electrolyte that could be applied to build 

an all-solid-state power source. 

The gel polymer electrolyte is a two-phase system composed of ionically conducting 

medium (liquid electrolyte) entrapped in host polymer matrix. 

The polymer matrix, based on poly(propylene), poly(vinylidene difluoride), 

poly(tetrafluoroethylene), poly(ethylene oxide) (PEO), polyaniline (PANI), poly(methyl 

methacrylate) (PMMA), is regarded as the supporting structure of the solid-state electrolyte to 

offer mechanical strength, but it has no influence on electrochemical processes in the device. 

However, gel polymer electrolyte suffers from poor mechanical strength. On-going 

researches has already suggested several solutions, such as composite gel polymer electrolytes 

and porous polymer electrolytes. 

I.3.4 Ionic Liquid 

The advantage of organic electrolytes over inorganic electrolytes is the high voltage 

window, leading to high energy density. To further enlarge the voltage window, ionic liquids 

(ILs), with voltage window up to 6 V, were studied as electrolyte for supercapacitors 

applications [42].  

ILs are solvent-free electrolytes (molten salt like sodium chloride at 800 °C), that are liquid 

at low temperature. Such ILs are called Room Temperature Ionic Liquids (RTILs). Basically, 

in ILs, there are organic anions and cations with asymmetric size and aspect ratio, which 

greatly reduces lattice energy and thus lower the melting point. A second key feature is the 

low vapor pressure even at an elevated temperature, which reduces the risk of flammability.  
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Although higher voltage window unquestionably increases the energy of the devices, the 

high viscosity and low conductivity of ILs drastically reduce the power performance at 

temperature lower than room temperature. To settle this issue, operation temperature of 

supercapacitors using ILs is usually at temperature higher than room temperature.  

Supercapacitors rarely operate at high temperature except when used near electronic 

components generating heat, but this is not controllable source of heat. There is thus the need 

to extend the temperature window of such devices so they can operate at lower temperatures, 

while at the same time keeping the high temperature range. 

In the case of aerospace or aircraft industry, the temperatures requirements are even more 

drastic with operation below 0 °C down to -50 °C. Work has been done by Brandon et al to 

design electrolytes for operation down to -60 °C based on AN/NEt4BF4 mixture. However, 

these mixtures were limited at 50 °C at high temperature [43]. In order to use supercapacitors 

at low temperature as well as high temperature, temperature tolerance should also be 

developed. Recently, a eutectic mixture of ionic liquids (ILM) N-methyl-N-

propylpiperidinium bis(fluorosulfonyl)imide (PIP13FSI) and N-butyl-N-methylpyrrolidinium 

bis(fluorosulfonyl)imide (PYR14FSI) with a temperature range from -50 to 100°C during 

electrochemical characterization of supercapacitors based on carbon nanotubes (CNTs) and 

onion like carbon (OLC) [31] was reported. This electrolyte could be of great interest as well 

for micro-supercapacitors, enlarging the temperature operation range. 

I.4 Electrochemical Characterization 

In this thesis, two electrochemical characterization techniques were mainly used to measure 

the electrochemical performance of the micro-supercapacitors fabricated: Electrochemical 

Impedance Spectroscopy (EIS) and Cyclic voltammetry (CV). 
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I.4.1 Eletrochemical Impedance Spectroscopy (EIS) 

Electrochemical impedance spectroscopy is a steady state technique used to distinguish 

individual contributions of various phenomena. A sinusoidal voltage punctuation of small 

amplitude (typically ± 5 mV) and frequency f (!=2"f) is superimposed to a bias voltage 

(stationary-state). Electrochemical impedance spectroscopy is obtained by scanning different 

frequencies, typically from 50 kHz to 10 mHz. The applied voltage is varied according to Eq. 

10. 

Eq. 10 

V =V
0
+ "V sin #t( )  

where V0 is initial steady state potential of supercapacitor (V), in all study in this thesis, V0 

is the open circuit potential of the cell, 0 V; #V is amplitude of the signal (V); ! the pulsation; 

! = 2"f, where f is the signal frequency. 

The response of this applied potential is a sinusoidal current, with amplitude of !I and a 

shifted angle " of phase indicated in Eq. 11. 

Eq. 11 

I t( ) = I
0
+ "I sin #t $%( ) 

where I0 is the initial steady state current of the supercapacitor (A), in all study in this 

thesis, I0 is 0;  

The potential applied and the current response could also be transformed to facilitate the 

mathematical treatment (Eq. 12 and Eq. 13): 

Eq. 12 

V "( ) =Vm exp j"t( )  
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Eq. 13 

I( ) = Im exp j t #$( )[ ] 

The complex impedance is defined by the ratio between the applied voltage and current 

response (Eq. 14) 

Eq. 14 

Z" =
V "

I "
=
Vm

Im
exp # j$  

The complex impedance is composed of a real part, corresponding to the resistance, and an 

imaginary part, corresponding to the capacitance. 

The variation of impedance is usually represented in terms of Nyquist plot: the imaginary 

part of the impedance -Im(Z) is plotted versus the real part Re(Z) at different frequencies 

(Figure I.12c). The RC circuit models proposed in Figure I.14 fails to simulate Nyquist plot of 

real supercapacitors with three-dimensional porous electrodes. This porous electrode could be 

described as a succession of series/parallel RC components, according to De Levie model 

[44], with electrolyte ions reaching the outer surface area, which is in contact with the bulk 

electrolyte solution, then entering into the inner surface of the pore channels. This model 

(Figure I.12a) was proposed by De Levie in 1963 [45] with its equivalent circuit (Figure 

I.12b), called the Transmission Line Model.  
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Figure I.12 a) A schematic plot of Transmission Line Model proposed by De Levie and b) its equivalent circuit; c) 

an example of Nyquist plot of supercapacitors with activated carbon as electrodes in organic electrolyte [46]. 

 

The electrode shown in Figure I.12a has pores with cylindrical shape in uniform size. Upon 

potential polarization, electrolyte ions adsorption takes place at the outer surface of the 

electrodes. The transportation of electrolyte ions from bulk electrolyte onto the surface of the 

electrode causes a resistance corresponding to equivalent series resistance (ESR). Ions go 

deeper into the pore depth to charge C1, C2, C3,…Ci (as double layer capacitance along the 

pore) with resistance R1, R2, R3,…Ri (as electrolyte resistance inside the pore). At high 

frequency, the ions can only reach the outer surface of the electrolyte, with the real resistance 

as ESR. When frequency decreases, at mid-frequency, the ions can move deeper into the 

pores, thus showing higher resistance at lower frequency. At low frequency, both capacitance 

and resistance reach the maximum with no change theoretically, showing an almost vertical 

line. The cross point of the low frequency vertical line and the mid-frequency line is “the knee 

frequency”.  

With Nyquist plot, the complex impedance could be written as Z = Re(Z) – jIm(Z). A 

supercapacitor could also be described as a combination of a resistor and a capacitor as 
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function of frequency f in series: the real part of impedance is the impedance of the resistor R 

and the imaginary part is the impedance of the ideal supercapacitor 1/(jC!). Hereby the 

complex impedance of this combined circuit could be also written in Eq. 15. 

Eq. 15 

Z = R(") +
1

jC(")"
=

1

jCcomplex"
= Re(Z) # j Im(Z)

 

Complex capacitance Ccomplex could be represented as follow in Eq. 16 [46]. 

Eq. 16 

Ccomplex =
1

"( jRe(Z) # Im(Z))
=

jRe(Z) # Im(Z)

" (Re2(Z) + Im2
(Z))

=
jRe(Z) # Im(Z)

2$f (Re2(Z) + Im2
(Z))

 

Thus, real part and imaginary part of the complex capacitance noted as C’ and C” 

respectively could be drawn out in Eq. 17. 

Eq. 17 

C'=
Im(Z)

2#f [Re(Z)2 Im(Z)
2
]

C"=
Re(Z)

2#f [Re(Z)2 Im(Z)
2
]

 

where C’ is the capacitance of the supercapacitor; f is the frequency, Im(Z) is the imaginary 

part of the impedance and C” the loss.  

An example of real part and imaginary part of capacitance versus frequency is shown in 

Figure I.13. 



 

 
29 

 

Figure I.13 a) Real part and b) imaginary part of the complex capacitance versus frequency. 

 

The capacitance of supercapacitors is defined by the plateau at low frequency (Figure 

I.13s). Specific capacitances of the devices have been normalized in this thesis by the 

footprint area of the device and the volume of a single electrode, respectively. With C” vs f 

(Figure I.13b), time constant ! could be extracted as the frequency fmax where C” reaches the 

maximum and ! =1/fmax. The smaller the time constant ! is, the faster the supercapacitor could 

be fully discharged with an energy efficiency ! 50 %, and the higher the real power delivery 

is. 

I.4.2 Cyclic Voltammetry (CV) 

Cyclic voltammetry has been used to investigate the capacitive behavior and the stability of 

supercapacitors with different active materials and different electrolytes within different 

voltage range. 

A scan with potential changing linearly with the time at a constant rate is applied on the 

cell:  

Eq. 18 

E = E
0
+ vt  
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where E0 is the initial potential of the scan, generally the rest potential of the cell (V), v is 

the scan rate (V/s), t is time (s). 

To perform Cyclic Voltammetry experiment, the linear potential sweep is reversed when it 

reaches a set potential. The current response as a function of potential is recorded during the 

charge/discharge cycle.  

Using the RC model proposed by De Levie [44], with an ideal supercapacitor of an 

identical capacitance at all voltage, when the scan rate dV/dt is constant, current 

I=dQ/dt=CdV/dt is thus also constant. The cyclic voltammogram, as a perfect rectangular, is 

shown in Figure I.14a. However, in reality, there are several factors can cause deviation from 

ideal CV plot. Equivalent Series Resistance (ESR) is introduced to be in series with the ideal 

capacitance and mainly defined by resistance of the electrolyte and electrode, leading to a 

period of time to reach a stable capacitive current, called time constant ! = RC. Before 

reaching the stable capacitive current, current slowly increases at the beginning of the positive 

scan and reverse scan, as shown in Figure I.14b. Another type of resistance is called leakage 

resistance, concerning undesired redox reaction or self-discharge inside the supercapacitor, 

thus in parallel to the capacitance. If the leakage resistance tends to ", it remains as an ideal 

supercapacitor. The smaller the leakage resistance is, the higher the leakage current is, as 

shown in Figure I.14c. The leakage resistance could be calculated from reciprocal of slope of 

the positive scan or negative scan. The combination of these two factors is shown in Figure 

I.14d, close to the real supercapacitor electrochemical signature. Despite this model, there are 

still several other factors affecting the shape of CV plots such as pore size distribution, 

especially for electrodes made of porous materials. 
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Figure I.14 Cyclic Voltammogram of a) an ideal supercapacitor, b) combination of a supercapacitor and a resistor 

in series or c) in parallel, d) a supercapacitor with resistors in series and in parallel at the same time. 

 

From cyclic voltammetry technique, the capacitance of supercapacitor can be calculated 

from the integration of the current (by plotting current vs time using the potential scan rate) 

and dividing by voltage window, according to Eq. 1 Q=CV. The specific capacitance of the 

device will be then recalculated in terms of the footprint area of the micro-supercapacitors in 

this thesis.  
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II Micro-supercapacitors 

Micro-supercapacitors, in this thesis, are defined as supercapacitors able to be integrated 

onto chip, where electrodes are not assembled with the help of clips or Swagelok cell but 

realized layer by layer. Micro-scale dimension is another characteristic of these devices. To 

operate at this scale, microfabrication is necessary to produce micro-supercapacitors. 

Microfabrication includes the processes for fabrication of miniature structures, usually in 

micrometer size or even smaller in a collective way on or within a single substrate such as 

silicon. In the microelectronics industry, miniaturization of integrated circuits (IC), which are 

composed of silicon-based electronic components, is possible thanks to the permanent 

improvement of microfabrication technologies. The integration of new functions, i.e. sensors, 

actuators or other MEMS (Micro Electro Mechanical Systems), forced the industry to develop 

technologies allowing surface and bulk micromachining of silicon substrate.  

Hereafter, we introduce microfabrication techniques for depositing materials in thin film 

form and patterning them. Then, state-of-the-art micro-supercapacitors will be overviewed 

with a particular focus on the different strategies adopted to integrate non-conventional active 

materials (such as carbon) in a planar configuration and achieve at the same time high 

performance.  

II.1 Microfabrication Techniques 

Devices prepared by microfabrication are generally not self-supported but formed on a 

support substrate with thickness in micro-scale. Silicon, largely used in microelectronics and 

MEMS is the most logical solution (available, well-known). The substrate offers an easy 

handling platform for the device during several steps of different fabrication processes. 

Except for semi-conductors components, the substrate is usually only for supporting purpose. 

Materials in thin-film form [47], i.e. conductors, insulators, or semiconductors (for 
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microelectronics) are then deposited on the substrate to create the microdevices. For optical 

applications, deposited thin films could be reflective, transparent, light guiding or scattering. 

Films could also have chemical or mechanical properties according to the application. 

Deposition techniques could be divided into two categories: growth and deposition. Growth 

includes thermal oxidation for very thin oxide layers and epitaxy [48]. Deposition includes 

chemical vapor deposition and physical vapor deposition which comprises sputtering and 

evaporation, electrodeposition and printing techniques [49]. It will be shown later in this 

chapter that the most commonly used deposition techniques in micro-supercapacitors are 

sputtering and electrodeposition for pseudo-capacitive materials (RuO2) [50] and printing 

techniques for carbon powders [51, 52].   

The deposited layers in most cases should be patterned in order to realize different 

functions. The patterning is generally from millimeter scale to nanometer scale, which is the 

feature of micro-fabrication. The most widely applied patterning technique is 

photolithography: the use of a chromic mask to transfer the desired pattern onto the thin-film 

followed by etching [53]. Etching is the process of removing unwanted part from a thin film 

in order to form the pattern in micrometer scale. The part of unprotected film is exposed to 

etchant that can physically or chemically attack the target materials until they are totally 

removed. Etching techniques include dry etching and wet etching. Dry etching, or plasma 

etching, includes ion beam etching and Reactive Ion Etching (RIE) [54]. In RIE, the thin film 

is attacked by ionized chemically active plasma where high speed is generated by an electric 

field. Thus, both chemical etching and physical etching are involved in RIE. The etch rate and 

selectivity of chemical etching and physical could be adjusted by source power and bias 

power, respectively, according to the properties of thin film etched and the protecting layer. 

Wet etching involves usually chemical agent to dissolve part of the unprotected thin film. 
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Another possible technique, to pattern a thin film, is to grow it through a mask: for instance 

electrodeposition through a photoresist mask. Alternatively, a physical mask (called shadow 

mask or stencil) can be placed directly on the substrate during deposition. The deposition 

technique can be sputtering or evaporation or even screen-printing.  

Direct writing [55] such as inkjet printing [52] could be applied automatically to the 

substrate to transfer the material by contact, offering other possibilities for patterning. The 

material is deposited only on the necessary areas, thanks to a head. Alternatively nanoimprint 

where a stamp (made of nano or micro features) inked with the desired material, can be used.  

Focus ion beam (FIB) can also be used to physically etch away undesired part to pattern 

with heavy ions without any protection as the ion beam is focused. 

To fabricate on-chip micro-supercapacitors that are able not only to be integrated into 

Microsystems, but also be of good performance, fabrication techniques should be chosen 

carefully. 

II.2 State-of-the-art of micro-supercapacitors 

Micro-supercapacitors were firstly reported in 2001 [50]. Since then, there have been 

several models developed. However, it is early stage of technology and many 

microfabrication techniques combined with the synthesis of active materials are under test.  

Electrode materials of micro-supercapacitors evolve from easy fabricated but expensive 

ruthenium oxide [50, 56-58] to widely used carbon materials with advanced microfabrication 

techniques [52, 59-62].  

There have been already several trials on fabricating thin-film electrodes with different 

materials deposited with different techniques such as RuO2-SnO2 electrode via reactive 

sputtering [58], carbon nanotubes/graphenes via layer by layer (LBL) [63], cone-shaped 

polypyrrole/RuO2 via anodic deposition [64] and carbide derived carbon film via chlorination 
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[59, 65], etc. Thin films of carbon nanotubes and chemically reduced graphenes were 

synthesized by layer-by-layer assembling [63]. A volumetric capacitance of 160 F.cm
-3

 for 

the 350 nm thick hybrid carbon layer was achieved in 0.5 M H2SO4 aqueous electrolytes, 

higher than its macroscopic supercapacitors in the same electrolyte (130 F.cm
3
), thanks to the 

thin layer of electrode.  

Although not ready for integrating on-chip, these electrodes could be potentially used to 

fabricate on-chip micro-supercapacitors in the future. 

In ready-to-integrate micro-supercapacitors, there are two configurations reported: stack 

configuration and interdigitated configuration shown in Figure I.15.  

 

Figure I.15 Schematic pictures of a) a stack micro-supercapacitor and b) an interdigitated micro-supercapacitor. 

 

Stack configuration forms a sandwich-like stacking with electrodes face to face and 

electrolyte in between. A separation between the electrodes is necessary: it can either be an 

insulating layer soaked with the electrolyte or the solid electrolyte itself. It is similar to 

macroscopic supercapacitors, but the different layers (electrodes and electrolyte) are 
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deposited by microfabrication techniques one after another to form the stack. The layers are 

then patterned and contacts are created to achieve the final integrated micro-device. 

Interdigitated configuration generally involves microfabrication on a substrate (in most cases 

silicon, but it can also be a polymer) with electrodes patterned in interdigitated form. The 

separation in this case is the lateral spacing between the interdigitated fingers. 

For the purpose of making a summary, in this section, we divide reported micro-

supercapacitors into two categories: stack micro-supercapacitors and interdigitated micro-

supercapacitors. They have small footprint area (~ or < 1 cm
2
) and small thickness (< 100 

µm) and easy to be integrated into Microsystems. In addition, as microfabrication is involved 

during the process of realizing micro-supercapacitors, at the early stage of development, 

groups specialized in microfabrication took lead showing proofs of concepts with 

electrochemical data sometimes incomplete. Moreover, as different groups have different way 

of calculating the capacitance and/or energy density, it is difficult to compare directly by 

reported figures. Thus, in order to compare performance, capacitance, energy density and 

power density were recalculated according to the footprint area of the micro-scale device in 

this section.  

II.2.1 Stack micro-supercapacitors 

II.2.1.1 On a substrate 

Most of the early works done as micro-supercapacitors were using metal oxides as active 

materials thanks to the large variety of deposition techniques (sputtering, atomic layer 

deposition – ALD, electrodeposition) available, despite poor conductivities (~ 10
-6

 S.cm
-1

). A 

stack RuO2-based micro-supercapacitor with Li2.94PO2.37N0.75 (LiPON) as electrolyte was 

firstly reported in 2001 by simple sputtering deposition [50]. This system was selected 

because thin film of LiPON electrolyte had been successfully applied for thin film batteries 
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[66]. Despite LiPON was used instead of conventionally used proton H
+
 for RuO2 electrode, a 

capacitance of 47.5 mF.cm
-2

 was obtained within 2.5 V.  

Later on, the same research group published on LiPON-based stack micro-supercapacitor 

modified by co-sputtering of RuO2 with tungsten (W) to enlarge the interspace of atoms in 

RuO2 to facilitate the mobility of Li
+
 [57]. The modified stack micro-supercapacitor achieved 

200 mF.cm
-2

 per footprint area capacitance under 2.5 V.  

Electronically Conducting Polymers (ECPs), another electrode material for pseudo 

supercapacitors, have also been studied for stack micro-supercapacitors.  Example of a 

polymer-based stack micro-supercapacitor was composed of polypyrrole (PPy)-decorated 

nanoporous gold (NPG) as electrode material and an aqueous HClO4-poly(vinyl alcohol) 

(PVA) gel as electrolyte. 1.8 mF.cm
-2

 and 0.65 mJ.cm
-2

 were achieved as specific capacitance 

and specific energy, respectively, within 0.85 V [67]. 

One of the first carbon-based stack micro-supercapacitor was reported in 2006 [68] with 99 

wt% Super P carbon black (with specific surface area of 62 m
2
.g

-1
) and 1 wt% polyvinylidene 

fluoride binder in N-Methyl-2-pyrrolidone as electrode material using not widely used 

microfabrication technique: Origami fabrication as shown in Figure I.16. 

 

Figure I.16 A schematic illustration of carbon-based stack micro-supercapacitor fabricated via origami (left) and 

its electrochemical performance (right) in 1.5 M H2SO4 [68]. 
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The device was electrochemically characterized in 1.5 M H2SO4 aqueous solution. Only 0.6 

V was reached and poor capacitive behavior was presented by cyclic voltammogram at a scan 

rate of 50 mV/s. Specific capacitance of 0.8 mF.cm
-2

 per footprint area and specific energy of 

0.2 mJ.cm
-2

 was achieved in this micro-supercapacitor. 

During the same year, another stack micro-supercapacitor fabricated by dispenser printing 

of electrodes of mesocarbon microbead (with specific surface area of 10 m
2
.g

-1
) in a PVDF 

polymer binder and BMIM
+
BF4

-
 ionic liquid in PVDF gel electrolyte was realized [51]. Poor 

capacitive behavior with a severely distorted CV plot was presented within 2 V voltage 

window. Electrochemical performance of this micro-supercapacitor was measured with 

specific capacitance of 0.3 mF.cm
-2

 per footprint area and specific energy density of 0.5 

mJ.cm
-2

. 

These two examples were only proof of concept of carbon-based stack micro-

supercapacitors. The low specific surface area materials (62 m
2
.g

-1
 for the Origami fabricated 

device and 10 m
2
.g

-1
 for dispenser printed device) also explain the low capacitance.  

Moving from low specific surface area carbon to carbon nanotubes (CNTs) as active 

material, higher energy and power densities could be obtained for flexible printable stack 

micro-supercapacitors [69]. An ideal capacitive behavior marked by quasi-rectangular shape 

of CV plot (at 10 mV/s within 3 V) was presented in organic electrolyte (1 M LiPF6 in 1:1 

ethylene carbonate/diethylcarbonate by weight). A specific capacitance of 1.2 mF.cm
-2

 per 

footprint area could be achieved in aqueous-based gel eletrolyte PVA/H3PO4. The capacitance 

was not high, because single-walled carbon nanotubes (SWCNTs) thin-films (0.6 µm) were 

sprayed onto the current collector surface. Despite the low capacitance, at least better 

capacitive behavior was achieved (Figure I.17). 
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Figure I.17 Cyclic voltammetry of SWCNT supercapacitor in (a) PVA/H3PO4 polymer electrolyte and (b) 

LiPF6/EC:DEC. Galvanostatic charge/discharge curves measured with a 1 mA/cm2 (30 mA/mg) current density for a 

thin film SWCNT supercapacitor using (c) PVA/ H3PO4 polymer electrolyte and (d) LiPF6/EC:DEC. [69] 

 

II.2.1.2 Flexible stack micro-supercapacitors 

As opposed to thin films deposited on a hard substrate (silicon), there are cases of micro-

supercapacitors with stack configuration where the substrate is flexible (paper, polymer) or 

where one of the electrodes itself is flexible. A possible application field is the emerging 

printable electronics. For those flexible devices, several techniques can be applied to build the 

stack. Examples found in literature are mainly based on carbon nanotubes, such as Meyer rod 

coating method of CNT ink [70], layer-by-layer (LBL) assembling [63, 71], laser writing of 

graphenes [72] and CVD of CNTs [73]. Flexible micro-supercapacitors were fabricated from 

CVD of CNTs. The CNTs were vertically aligned on the current collectors as shown in Figure 

I.18 along with nanoporous cellulose paper soaked with various electrolytes. High specific 
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capacitance of 330 mF.cm
-2

 was achieved with 50 µm thick CNTs layer in ionic liquid 

electrolyte [73].  

 

Figure I.18 Schematic pictures of the flexible micro-supercapacitors with electrochemical characterization results. 

[73] 

 

Stack micro-supercapacitors, despite the large footprint areas, present still one dimension in 

micrometer scale. Theoretically, micro-scale device should be able to offer better 

performance than macroscopic supercapacitors regarding the size effect. The thinner the 

electrode layer is, the better the electrolyte ions could reach the full carbon layer. With this 

idea, several ultra-thin carbon-based supercapacitors were realized with the thickness less 

than 10 nm. In this scale, there should be no problem of adhesion between electrode materials, 

as there is little amount of powder to load on the electrodes. 

A stack micro-supercapacitor was fabricated with only 10 nm of pristine graphene and 

multilayer reduced graphene oxide by “in-plane” fabrication approach as shown in Figure I.19 

[74]. 

 

Figure I.19 Mechanism of "in-plane" carbon-based stack micro-supercapacitors [74]. 
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By this difference in the orientation of graphene layers, 5 times higher specific capacitance 

per footprint area was achieved in a polymer-gel (PVA-H3PO4) electrolyte within 1 V. 

However, as a stack micro-supercapacitor itself, 0.4 mF.cm
-2

 per footprint area was not 

competitive enough among these already reported stack micro-supercapacitors.  

Even though volumetric capacitance of the carbon materials does improve at this 

nanometer scale thickness, the performance of the whole device had no advantage in term of 

specific energy (J.cm
-2

), despite high power capability. Similar comments could be made on 

stack micro-supercapacitors with 2-3 nm MnO2 nanoflakes [75], 5 nm porous metal-oxide 

sheets [76], 7.4 nm nickel hydroxide nanoflakes [77] and <10 nm nickel hydroxidenitrate 

nanoflake–ZnO nanowire hybrid array [78]. In all these reported ultrathin stack micro-

supercapacitors, thicknesses of electrodes are less than 10 nm; however, none of footprint 

capacitance was reported. As a conclusion, the advantage of ultrathin micro-supercapacitors is 

not really promising for matching the needs of the energy demand. 

Besides stack micro-supercapacitors, interdigitated on-chip micro-supercapacitors, where 

the deposition of a separator is no longer necessary, were also developed. 

II.2.2 Interdigitated on-chip micro-supercapacitors 

Interdigitated on-chip micro-supercapacitors were firstly reported with Electronically 

Conducting Polymers (ECPs) as electrode materials [79]. Because ECPs can be synthesized 

accurately to a micron scale by polymerization of monomers onto current collectors in 

solution under an applied potential, conducting polymer based on-chip micro-supercapacitors 

could be easily fabricated.  

Polypyrrole (PPy) being easy to synthesize, as well as exhibiting a high capacitance (200 

F/g) in PC-based electrolyte [80], has been used as electrode materials for micro-
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supercapacitors. Two-dimensional interdigitated patterns [79] were first designed in order to 

effectively use the electrode materials for micro-supercapacitors. However, the same issue for 

ECP-based supercapacitors – poor cyclability – limits their applications. Apart from pure 

electronically conducting polymers, combination with carbon materials [81] for electrodes 

was also tried out.  

Although several devices based on ECPs have been reported, their poor cyclability due to 

the irreversible charge trapping and electrochemical degradation on cycling makes them 

difficult to be widely used. On contrary, carbon is an electrochemically stable material able to 

offer better cyclability. 

The first on-chip carbon-based micro-supercapacitor with interdigited electrodes was 

fabricated by CVD growth of carbon nanotubes (Figure I.20) [82]. 

 

Figure I.20 Schematic illustration of on-chip micro-supercapacitors based on CNTs and its electrochemical 

performance in BMIM
+
BF4

-
 ionic liquid [82]. 

 

In BMIM
+
BF4

-
 ionic liquid, an ideal capacitive behavior was observed with a rectangular 

CV plot. 0.4 mF.cm
-2

 per footprint area capacitance and 0.05 mJ.cm
-2

 of specific energy was 

obtained, respectively. The low specific energy is due to the low specific capacitance of CNTs 

and the low voltage window of 0.5 V, as the device was assembled and electrochemically 

characterized in open air rather than in a low H2O content glove box. Although this specific 
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capacitance and energy remained modest, ideal capacitive behavior was firstly achieved in 

carbon-based micro-supercapacitors. Direct growth of CNTs on pre-patterned interdigitated 

current collectors thus offers a first solution for processing carbon materials into a micro-scale 

device by using microfabrication techniques.  

Another carbon-based micro-supercapacitor was fabricated by our group based on the same 

concept. On pre-patterned current collectors – fabricated by photolithography and etching – a 

carbon ink was deposited using inkjet-printing [52] as shown in Figure III.20.  

 

Figure I.21 Schematic picture of on-chip micro-supercapacitor prepared by ink-jet printing and the optical image 

of the micro-device with CV results [52]. 

 

The ink is composed of 3wt.% activated carbon of high surface area with 5wt.% 

polytetrafluoroethylene (PTFE) polymer binder in an ethylene glycol solvent. A Triton X100 

(p-(1,3,3,-tetramethylbutyl) phenoxy-poly(ethylene glycol)) surfactant was added in order to 

stabilize the emulsion. The ink was then selectively ejected onto pre-patterned Au current 

collectors. Although the composition contained high portion of organic binder (5:3 by weight 

to carbon material), quasi-capacitive behavior was achieved by the rectangular shape of CV 

plot in 1M NEt4BF4/PC electrolyte within 2.5 V of voltage window. Decent performance (1.3 

mF.cm
-2

 footprint area specific capacitance and 4.2 mJ.cm
-2

 specific energy density) was 

obtained for this micro-supercapacitor.  
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II.2.3 Patterned binder-free carbon films: an alternative strategy 

processing carbon powders with organic powders to form a film, direct 

transformation of a bulk film containing carbon precursor into a bulk porous carbon film is 

another strategy. In that case, self-supported, binder-free, bulk carbon films, having higher 

carbon density in the electrode and thus higher capacitance, can be obtained, increasing the 

energy density. 

Carbon derived carbon (CDC) bulk films are interesting possible active material in micro-

supercapacitors. A comparison between carbon films prepared from the chlorination of a 500 

nm layer of sputtered TiC-film and TiC-CDC powder was published recently . 

spectroscopy  shown in Figure I.22. 

 

Figure I.22 The Raman spectroscopy of CDC films and comparison with that of CDC powders [83]. 

 

Like for CDC powders prepared from chlorination of carbide powders, carbide bulky 

ceramic pellet were tried for chlorination of surface layer of TiC . A thin-film 
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supercapacitor was prepared with the surface chlorinated carbide ceramic. Later, TiC-CDC 

thin films were produced from the chlorination of TiC film sputtered on glassy carbon [65]. 

For both thin-film supercapacitors based on TiC-CDC films, high volumetric capacitance of 

180 F.cm
-3

 was found for TiC-CDC film, in 1.5M NEt4BF4/AN electrolyte, thus evidencing 

the potential interest for applications of these TiC-CDC films in carbon-based on-chip micro-

supercapacitors. Specific capacitance of 9 mF.cm
-2

 and specific energy of 18 mJ.cm
-2

 per 

footprint area were found in this thin-film supercapacitor, much higher than most of the 

reported thin-film devices. These results indicate that CDC film could be potential electrode 

material for fabricating on-chip micro-supercapacitors. 

In 2011, an on-chip micro-supercapacitor was realized by widely used microfabrication 

process via graphitization of patterned silicon carbide (Figure I.23) by Liu et al [60]. A 

specific capacitance of 0.7 mF.cm
-2

 was achieved in 1M H2SO4 aqueous electrolyte within 0.5 

V voltage window. Thus the specific energy was only 0.09 mJ.cm
-2

, which is too small 

because of the limited voltage window. This micro-supercapacitor still remains as a proof of 

concept to show that it is possible to realize carbon-based micro-supercapacitors by widely 

used microfabrication techniques. 

 

Figure I.23 Schematic picture of on-chip micro-supercapacitors and its fabrication processes [60]. 

 



 

 
46 

At the same time, another micro-supercapacitor was fabricated by pyrolysis of patterned 

SU-8 post via widely used micro-fabrication process (Figure I.24) [62]. Specific capacitance 

of 18.8 mF.cm
-2

 and specific energy of 9.4 mJ.cm
-2

 was achieved in this micro-supercapacitor 

within 1 V in 0.5M H2SO4. Here the performance is good thanks to the height of the 

carbonized SU-8 (2 ± 0.08 !m). 

  

Figure I.24 Schematic illustration of the micro-supercapacitor prepared by pyrolysis [62]. 

 

Both micro-supercapacitors, either by graphitization or by pyrolysis, were fabricated via 

widely used micro-fabrication techniques. Carbon materials were produced by transformation 

of C-contained precursors.  

These demonstrations of carbon layers with enhanced properties such as TiC-CDC and the 

already reported patterned micro-supercapacitors with in-situ transformation of a layer into 

carbon, show promises for the field. 

Table I.2 shows a summary of some carbon-based on-chip micro-supercapacitors described 

in this section. Various carbon materials were processed to fabricate micro-supercapacitors 

with capacitance generally around 1 mF.cm
-2

, except the one fabricated from C-MEMS 

arrays. Aqueous electrolytes were still widely used in micro-supercapacitors thank to its easy 

handling. Energy and power performances were thus not satisfying, although maximum 

power instead of real power was calculated. 
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Table I.2 A summary of information of several carbon-based micro-supercapacitors described in bibliography 

section. 

Reference Technique Electrode Material Electrolyte 
Footprint 

area/mm
2
 

[67] Origami TIMCAL carbon 1.5M H2SO4 0.12 

[50] Dispenser printing mesocarbon microbead 
BMIM

+
BF4

—

PVDF 
25 

[81] CVD CNTs BMIM
+
BF4

-
 35 

[51] Inkjet AC NEt4BF4/PC 3.6 

[59] Micro-fabrication graphitized SiC 1M H2SO4 no info 

[61] Micro-fabrication carbonated 3D SU8 0.5M H2SO4 81 

Reference 
Thick-

ness/µm 
Voltage window/V C/mF.cm

-2
 

Energy/mJ.cm
-

2
 

Pmax/mW.cm
-

2
 

[67] no info 0.6 0.8 0.2 1363 

[50] 30 2 0.3 0.5 no info 

[81] 80 0.5 0.4 0.05 0.3 

[51] 1~2 2.5 1.3 4.2 28.8 

[59] ~0.4 0.7 0.8 0.1 1.5 

[61] 2 1 18.8 9.4 0.09 

 

II.2.4 Other challenges 

In most reported cases, except microsupercapacitors using gel electrolytes [51, 69, 74] or 

solid electrolytes [2, 50, 57, 67], the others are using liquid electrolytes. In order to integrate 

onto the same chip with other Microsystems, encapsulation of micro-supercapacitor is 

necessary i) to restrict liquid electrolyte in the region of micro-supercapacitors and ii) to 

isolate organic or ionic liquid electrolytes from moisture in the air. Attempts have been made 

in our group [61] on encapsulation of organic electrolytes at wafer-level for carbon-based 

micro-supercapacitors. However, intensive research is required to settle several issues such as 

hermeticity and persistence. 

III Conclusion 

There have been several prototypes of carbon-based on-chip micro-supercapacitors 

described in section II.2.2, basically proof of concept either without ideal capacitive behavior 
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or without expected performance, because of difficulties in carbon processing using a micro-

fabrication process or the use of organic additives in the electrodes. Currently, the strategies 

for fabrication of micro-supercapacitors lies on i) processing carbon powers onto micro-sized 

current collectors or ii) processing carbon-containing films into the target pattern and then 

transforming the patterned films into carbon film.  

IV Objectives 

Hereby, the objective of this thesis is to develop a method for fabricating high specific 

energy carbon-based on-chip micro-supercapacitors via microfabrication techniques with 

different strategies. The challenge of this thesis is: 1) to process powders of different carbon 

materials onto a patterned chip; 2) to process binder-free carbon films into an interdigitated 

patterns and create a solid connection for electrochemical characterization; and 3) to improve 

the performance of fabricated micro-supercapacitors as much as possible. 

In Chapter II, activated carbon – the most widely used carbon material in supercapacitors – 

was used to set up a method according to the strategy of processing carbon powers via 

electrophoretic deposition (EPD) onto patterned gold micro-sized current collectors. A 

nanostructured non-porous carbon material onion-like carbon (OLC) was then used to build a 

micro-supercapacitor with high rate capability.  

In Chapter III, carbide derived carbon (CDC) based on-chip micro-supercapacitors were 

fabricated by patterning of carbon films. On-chip micro-supercapacitors based on CDC were 

also prepared from chlorination of already patterned carbide. Carbide is ceramic thus could 

afford patterning with photolithography. The strategy is to transform the patterned carbide 

directly into carbon by chlorination. 
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Chapter II:  On-chip Micro-supercapacitors by 

Electrophoretic Deposition (EPD) 

I Introduction 

As mentioned previously in the bibliographic part, most of the micro-supercapacitors 

reported employ sandwich configuration, which is in accordance with the macroscopic 

supercapacitors and thus easy to be fabricated. However, our aim is to develop a microdevice 

that could be incorporated on-chip with MEMS devices or electronics circuits. A planar 

configuration with electrodes patterned on a substrate is thus necessary. When starting the 

PhD, the team [1] had already elaborated an on-chip inkjet printed carbon-based micro-

supercapacitor and a capacitance of 0.3 mF.cm
-2

 per footprint area was achieved within 2.5 V. 

Here we present an original technique – electrophoretic deposition (EPD) [2, 3], for the 

deposition of more homogeneous layers of carbon materials without organic binder to achieve 

better performance, with larger voltage window and higher capacitance. 

Two types of carbon materials were deposited by EPD to produce carbon-based 

interdigitated micro-supercapacitors. Porous activated carbon was first tried to establish a 

routine process for fabrication of micro-supercapacitors. Then onion like carbon (OLC) was 

deposited to produce high-power carbon-based micro-supercapacitors with different 

electrolytes. 

II Materials & Electrolyte 

The carbon materials used in this chapter include activated carbon (AC) YP-17 and onion 

like carbon (OLC). OLC is highly conductive spherical carbon particles with no porous 

structure. OLC with specific surface area of 500 cm
2
.g

-1
 was synthesized in Drexel 

University, Philadelphia, US. 
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MgCl2 was used as charge carrier for EPD, as has already been used for deposition of 

various materials [4, 5]. 

Propylene carbonate (PC) is a safe choice as organic electrolyte with a high flash point (132 

°C) and low toxicity, compared to acetonitrile (AN) whose flash point is only 5 °C and 

defined as “harmful”.  

Finally a new electrolyte – an ionic liquid mixture (ILM) [6], eutectic mixture of N-methyl-

N-propylpiperidinium bis(fluorosulfonyl)imide (PIP13FSI) and N-butyl-N-

methylpyrrolidinium bis(fluorosulfonyl)imide (PYR14FSI) was also used to explore the 

performance at a wider temperature range from -50 °C to 80 °C with a larger voltage window 

to achieve higher specific energy. 

III Experimental 

All micro-supercapacitors described in this chapter were prepared by the same technique – 

electrophoretic deposition (EPD), with different carbon materials – activated carbon (AC) and 

onion-like carbon (OLC). The same formula of carbon slurry was used in all experiments 

introduced below. 

III.1 Design of the active area 

The two designs of the interdigitated electrodes are shown here in Figure II.1.  
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Figure II.1 The schematic illustration of the configuration of micro-supercapacitors used for EPD of carbon 

materials a) 4 fingers and b) 16 fingers. 

 

The four relatively large pads at the four corners are the pads for wire bonding on a support 

in order to achieve electrochemical characterizations. And the center area makes an 

interdigitated pattern with an interspace of 100 µm for 16 fingers configuration and 150 µm 

for 4 fingers. The 4 fingers pattern shows a finger length of 4450 µm and a finger width of 

1138 µm; while a 16 fingers pattern shows the same finger length but a finger width of 219 

µm. This makes a footprint area (surface area that occupied by the micro-supercapacitor 

including the area of the active electrodes and interspace) of 0.25 cm
2
 for both configurations 

shown in Figure II.1a and Figure II.1b and a single electrode area (the area of one electrode 

with active material loaded) of 0.11 cm
2
 for 4 fingers configuration and 0.088 cm

2
 for 16 

fingers pattern, respectively, as shown in Table II.1. 

Table II.1 Configurations of the micro-supercapacitors with details 

Configuration 4 fingers 16 fingers 

Finger length/µm 4450 4450 

Finger width/µm 1138 219 

Interspace/µm 150 100 

Footprint area/cm
2
 0.25 0.25 
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Single electrode area/cm
2
 0.11 0.088 

 

These patterns were drawn on a 5-inch photomask in order to transfer it to the 4-inch Si 

wafer.  

III.2 Micro-fabrication 

A layer of 800 nm SiO2 was grown on a 4-inch wafer by thermal oxidation under 800 °C 

via the reaction Si + 2H2O ! SiO2 + 2H2(g) and Si + O2 ! SiO2. Afterwards, a layer of 100 

nm Ti and a layer of 800 nm Au were deposited by evaporation on the wafer successively. Au 

is the material of current collectors of the targeted micro-supercapacitors and Ti is an 

intermediate layer in order to enhance the adherence between the SiO2 layer and deposited Au 

layer. The wafer was annealed later in N2 atmosphere at 250 °C for 20 minutes to reduce 

structural defects created during deposition within the Au layer: this way, the electrical 

conductivity is optimized and the mechanical stress is reduced [7]. The anneal step insures 

optimum conditions for the wire-bonding steps afterwards.  

A standard photolithography process was applied on the Au deposited 4-inch wafer with 

the mask described above. It consists in the following steps: the Au coated wafer was cleaned 

in chromo sulfuric acid, rinsed and dehydrated at 200 °C for 20 min. A layer of positive 

photoresist was spin-coated on the wafer and then exposed to the UV light through a designed 

photomask with patterns shown in Figure II.1 to allow this part of the photoresist to be 

soluble in a developer. After development, the pattern was then transferred to Ti/Au layer by 

immersing the wafer first in a KI + I2 solution to etch away the gold layer and then in 5 % 

hydrofluoric acid (HF) buffer solution to remove the titanium layer. At the end of the etching 

step, the photoresist was dissolved by acetone. The wafer was then cut into pieces for EPD. 



 63 

III.3 EPD conditions 

Electrophoretic deposition (EPD) aims at depositing a uniform layer of materials onto 

conductive electrode surfaces using suspensions with colloidal particles as electrolytes under 

migration by applying an electric field. Unlike electroplating, i.e. electro deposition, 

producing metallic coating, a wider range of materials, such as metals, ceramics, polymers, 

etc. could be deposited by EPD upon a better design of the suspensions. Thus it could be one 

of suitable choices for deposition of carbon materials for processing powders into thin film. 

EPD is composed of two processes: i) electrophoresis – the motion of charged particles in a 

suspension under an electric field; and ii) deposition – the coagulation of particles to a dense 

mass.  

The key issue of electrophoresis is the stability of suspensions. In organic media, without 

dissociation or ionization of surface groups, adsorption of ionized species onto carbon 

powders is required to form a suspension. The stability of suspensions is determined by 

interaction between charged particles, mainly repulsion between particles to avoid 

coagulation when they collide. The repulsion could be evaluated by zeta potential, which the 

potential between particle surface and the shear layer plane that could be experimentally 

measured. [8] 

The amount of electrophoretically deposited powder depends on a number of parameters of 

the deposition process, summarized in an empirical relation known as Hamaker’s Law:  

w µEACdt
t
1

t
2

"  

The representation of Hamaker’s law has changed over the years, but it relates deposited 

powder mass (w) to the electric field strength (E), electrophoretic mobility (µ), surface area of 

the electrode (A) and the particle mass concentration (C) in the suspension. [9] 
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In the work of this chapter, the electrolyte bath which developed by Pech et al for EPD was 

a suspension which is based on a mixed solvent with 95 vol% of ethanol and 5 vol% of water. 

0.3 wt% of carbon material as active material and 0.03 wt% of MgCl2 were added together to 

form as the charge carrier during EPD in the finally formed carbon film on the electrode [10]. 

EPD was performed with the setup shown in Figure II.2, under a voltage of 50 V at room 

temperature under constant agitation by a magnetic stirring bar; carbon was then deposited 

only onto the current collector area with different thickness according to different deposition 

time.  

 

Figure II.2 A schematic illustration of EPD setup. 

 

As the carbon is conductive, the grains deposit on top of each others. It is inevitable that 

some carbon grain might occupy the interspace between the interdigitated fingers and cause 

short circuit if the deposition time is too long. Thus, samples are washed in an organic solvent 

(ethanol or acetone) between each 10s of EPD to wash away those carbon grains at the 
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interspace as much as possible. In addition, no thick carbon layer (thickness > 20 µm) could 

be deposited onto interdigitated patterned current collectors without short circuit. 

The deposited sample was then annealed at 250 °C in order to ensure a water content as low 

as possible. The thickness of the carbon material deposited was measured by confocal 

microscope. 

III.4 Electrochemical Characterization 

The chip was glued on a 16-pin TO-8 support, and wire bonding was performed between 

the contact pads of the micro-device and the support’s pads as shown in Figure II.3, thus 

facilitating the electrochemical characterization.  

 

Figure II.3 A microscopic photo of a micro-supercapacitor prepared by EPD for electrochemical characterization. 
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After wire bonding, the micro-supercapacitor was kept under vacuum at 130 °C to remove 

water trace which would cause electrolysis of water at >1 V during the EC test, hereby reduce 

the voltage window.  

The samples were characterized in 1M tetraethylammonium tetrafluoroborate (NEt4BF4) in 

propylene carbonate (PC) electrolyte or eutectic ionic liquid mixture (ILM) in a glove box 

under Ar atmosphere (H2O and O2 level lower than 0.1 ppm). The electrochemical test was 

carried out using a Biologic VMP2 potentiostat. Cyclic Voltamogram with different scan rates 

were conducted using the same equipment. EIS (Electrochemical Impedance Spectroscopy) 

measurements were done at the rest potential by applying a sinusoidal potential signal. Then 

the response within a proper frequency range (usually from 50 KHz to 10 mHz) was 

collected. 

IV Results & Discussion 

First, the pretreatment of Au current collectors, which are also the substrate of EPD, were 

studied to improve the adherence between current collectors and deposited carbon powders. 

In order to get a homogeneous carbon layer with clear interspace between two electrodes, 

deposition conditions were examined afterwards. Then, with activated carbon, thickness of 

active films was varied by varying deposition time on a non-patterned Au-coated Si/SiO2 chip 

in 3-electrodes configuration with Au surface as counter electrode and silver wire as the 

quasi-reference electrode. The relationship between thickness of the active material and 

capacitance was studied. On-chip micro-supercapacitors were prepared via EPD technique 

with AC and OLC, then tested electrochemically in 1M NEt4BF4/PC electrolyte. OLC based 

micro-supercapacitor was also characterized in a eutectic ionic liquid mixture (ILM) for 

temperature range study. 
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IV.1 Preparation of the substrate 

The deposited Au current collectors were prepared as the electrode of EPD. The surface 

treatment of Au by chromo sulfuric acid allows removal of the organic residues from 

photolithography processes and organic contamination from gold deposition [11]. However, 

with sample dried and exposed to the air even shortly (around 20 min) after the surface 

treatment, adherence of EPD deposited sample was not satisfactory. Carbon powders were 

easily falling off from the substrate by a slight shock. 

Hereby the evolution of the contact angle upon exposure to the air after cleaning with 

chromo sulfuric acid is presented in Figure II.4. 

 

Figure II.4 The evolution of the contact angle upon exposure to air after cleaning with chromo sulfuric acid 

 

From Figure II.4, it is very clear that the contact angle is getting larger upon exposure to the 

air. 15 minutes is enough to increase the contact angle from 18°C to 42°. Since gold surface 
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exposes to the air, the contact angle increases with the time of exposure. This might be from 

the adsorption of CO2 molecules in the air which increases the hydrophobicity and decreases 

the adherence as well [12]. To maximize adherence of deposited carbon layer on the Au layer, 

the Si chips with Au current collectors were thus kept in distilled water between the surface 

treatment and EPD procedure. 

IV.2 Deposition conditions 

During EPD, the Si chips should be washed in the solvent to remove the adsorbed carbon 

on the interspace to avoid short circuit every 10 seconds. Two solvents, ethanol and acetone, 

were tried to see the effect of removal, as shown in Figure II.5.  

 

Figure II.5 Microscope pictures of samples deposited with Onion Like Carbon (OLC) in 5s washed by a) ethanol 

and b) acetone. 

 

Both depositions exceed the area of the gold electrode and have carbon at the border of the 

interspace. This was due to the edges of gold current collectors which also attract charged 

carbon grains in the suspension. The sample washed by ethanol still has carbon left at the 

interspace, which bridged the two electrodes and will cause short circuit during the 

electrochemical test. Another washing in acetone seems more effective and could be a better 

choice to clean the interspace after EPD. In addition, the cracks of the deposited carbon are 
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more obvious in the sample with acetone as wash solvent, due to the faster drying rate of 

acetone than that of ethanol. 

However, in the cases where the pretreatment of the substrate in chromo sulfuric acid were 

not applied before EPD, the carbon material deposited would not adhere enough to the current 

collector and then totally washed away by acetone. By this phenomenon, the necessity of 

pretreatment for increasing the adherence of the deposited carbon materials is thus confirmed. 

IV.3 Activated Carbon – Influence of the thickness of the active film 

Activated carbon (AC) is the most widely used carbon material for commercial 

supercapacitors, as it is cheap and able to offer an average performance at the same time. 

Before preparing the interdigitated on-chip micro-supercapacitors described in Section 

III.1, AC was deposited on Au coated SiO2/Si chip. Au coating was masked with photoresist 

and only a spot of 0.25 cm
2
 Au was revealed for EPD. This way, with different deposition 

time, we could study the relationship between thickness of the carbon material and 

capacitance. Samples were tested electrochemically in a three-electrode configuration with 

Au coated Si chip as the counter electrode, Ag wire as the quasi-reference electrode and 1M 

NEt4BF4 as electrolyte (Figure II.6). 

 

Figure II.6 A schematic illustration of the 3-electrode cell for thickness study. 
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The thicknesses of samples were measured by confocal microscope. Confocal microscopy 

is an optical imaging technique used to increase optical resolution and contrast of a 

micrograph by using point illumination and a spatial pinhole to eliminate out-of-focus light in 

specimens that are thicker than the focal plane [13]. It enables the reconstruction of three-

dimensional structures from the obtained images, which allows the calculation of the average 

thickness of the 3-dimensional structure. 

Eight samples were prepared with different deposition time, 5s, 10s, 15s, 20s, 30s, 40s, 50s 

and 60s. They were annealed at 250 °C for 2 hours before electrochemical characterization. 

In order to test the combination of micro-scale on-chip device and carbon materials 

compared to macroscopic supercapacitors, the micro-supercapacitors were then characterized 

first in 1M NEt4BF4 in propylene carbonate (PC), which is a conventional organic electrolyte 

for macroscopic supercapacitors.  

EIS measurement was performed with 10 mV as the potential amplitude and response were 

collected from 50 kHz to 10 mHz. 

Figure II.7 shows the Nyquist plot measured by Electrochemical Impedance Spectroscopy 

(EIS) of sample with 5s of deposition in 1M NEt4BF4/PC electrolyte. 
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Figure II.7 The Nyquist plot of sample with 5s of deposition in 1M NEt4BF4/PC eletrolyte. 

 

The plot shows deviation from the signature of the supercapacitors (vertical increase of the 

plot) as mentioned in Chapter I. This deviation from vertical increase indicates the undesired 

parasitic redox reactions taking place during the electrochemical characterization upon the 

application of a voltage. The leakage could be from redox decomposition of the organic 

residue or water content in the electrode materials at the gold current collectors. The inset of 

Figure II.7 shows the Equivalent Series Resistance (ESR) of the 3-electrode cell, around 16 

!.cm
2
. The resistance seems high, but still reasonable, as the distance between the 2 

electrodes is large compared to both macroscopic supercapacitors and micro-supercapacitors. 

The semi-circle loop at high frequency indicates a contact resistance due to the poor contact 

between current collector and electrode, probably owing to the short annealing time after 

EPD. 
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Figure II.8 a) and b) shows the CV results of the samples deposited 5s and 60s at 100 mV/s 

within 2.2 V in 1M NEt4BF4 in PC respectively.  

 

Figure II.8 The CV results of the samples with a) 5s and b) 60s of deposition at 100 mV/s within 2.2 V in 1M 

NEt4BF4 in PC. 

 

The rectangular shape of 5s deposited sample indicates a typical capacitive behavior. The 

deviations from immediate increase of current at the beginning of both positive scan and 

reverse scan corresponds to the high ESR, also shown in Nyquist plot. Capacitive current was 

nevertheless reached in short time, meaning a short time constant for this 3-electrode cell, 

thanks to its thin layer, which allows fast electrolyte percolation compared to thick electrodes 

around 100 µm. In contrast, for 60s deposited sample, at the same scan rate, the CV plot is 

clearly distorted, indicating important ohmic drop in the carbon electrodes. Nevertheless, the 

capacitance of 60s deposited sample (53.43 mF) is much higher than that of 5s deposited 

(6.22 mF). 

The relationships between deposition time and thickness of the carbon material and 

capacitance are shown below in Figure II.9 and in Figure II.10 respectively. 



 73 

 

Figure II.9 The evolution of the thickness of carbon layer measured versus deposition time of EPD. 

 

In Figure II.9, except the first point with only 5s of deposition time, thickness of the other 

six samples showed linear relationship with deposition time with little deviations. The 5s 

deposited sample has an exceptionally low thickness since the first second of deposition is not 

as efficient as it should because of the rising time of the machine. There are also some other 

factors affecting the thickness measured: the thickness was measured with confocal 

microscope of a small area, where the thickness was not necessarily the average thickness of 

the carbon film deposited; the deposition time was controlled manually but not the power 

source, which introduced the deviation; the washing step was also manual, which makes the 

amount of carbon grains washed away random; in addition, the electrolyte bath is not actually 

a suspension: it was constantly stirred by a magnetic stirrer. Thus, there was concentration 
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gradient in the quasi-suspension. Hereby the carbon thickness deposited was also proportional 

to the deepness where the patterned area was placed during EPD. 

The capacitance of the sample with different thickness is shown in Figure II.10.  

 

Figure II.10 The evolution of capacitances of the single carbon electrode versus the thickness measured. 

 

The capacitance increases as the thickness increases linearly, except for the sample 

deposited with only 5s, thanks to thin electrode that allows better electrolyte percolation and 

better electrolyte ion accessibility inside the carbon electrode: its volumetric capacitance (42.2 

F.cm
-3

) is about twice the one of thicker films (~ 20 F.cm
-3

). The sample with 40s of 

deposition time, actually corresponding to the high thickness measured shown in Figure II.9, 

shows important deviation. 
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Therefore, the 5s of deposition, which offers exceptional better performance concerning 

volumetric capacitance, was chosen for deposition of carbon materials for fabrication of 

carbon-based interdigitated micro-supercapacitors. 

IV.4 AC based on-chip micro-supercapacitors in PC based electrolyte 

Activated Carbon ( ) was deposited onto the interdigitated patterned current collectors 

shown in Figure II.1b through EPD. As in Figure II.7, the Nyquist plot of the 3-electrode cell 

for thickness study indicated a leakage which is suspected to originate from the water content 

in the deposited carbon film, an annealing treatment of the samples at 250°C after EPD and 

drying process under vacuum at 120°C before electrochemical test were extended to 

overnight instead of 2h for each operation. Anhydrous PC solvent was also used to prevent 

the impurity. 

Figure II.11 shows the Nyquist plot of this 5 µm thick AC based micro-supercapacitor in 

1M NEt4BF4/PC electrolyte from 100 kHz to 10 mHz.  
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Figure II.11 Nyquist Plot of AC based on-chip micro-supercapacitor in 1M NEt4BF4/PC from 100 kHz to 10mHz 

with 10 mV as the voltage amplitude. 

 

The value on the real axis of the beginning point of Nyquist plot at high frequency (inset of 

Figure II.11) defines the equivalent series resistance (ESR) of the cell, which is 2.8 !.cm
2
, 

comparable to carbon-based macroscopic supercapacitors in the same electrolyte [14]. At high 

frequency from 100 kHz to 1 kHz, the plot is almost horizontal, indicating difficulty in 

electronic transfer in the electrode. The carbon grains deposited with inorganic binders might 

not have good contact between each other and cause this difficulty. There is no semi-circle 

loop at high frequency in this micro-supercapacitors, meaning that the contact resistance 

between current collectors and active material is small. A good adherence between Ti/Au 

substrate and EPD deposited AC layer is thus confirmed thanks to longer annealing time after 

EPD. At 100 Hz, Nyquist plot is at the transition state between resistive behavior (an almost 
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horizontal line) and capacitive behavior (a nearly vertical line). This transition point is called 

“knee frequency”. From 1 kHz to 100 Hz, there is still resistive behavior, linked with 

electrolyte ions accessibility inside the porous structure of AC. Finally, at low frequency 

below 100 mHz (Figure II.11), capacitive behavior of sharp increase of the imaginary part 

was observed similar to the dielectric capacitors, showing stable adsorption and desorption of 

electrolyte ions. 

Complex capacitance was calculated from experimental Nyquist data according to Eq. 17.  

Evolution of stack capacitance (C’) with frequency is plotted in Figure II.12, showing an 

increase of capacitance with decrease of frequency, thus with evolution of time. However, the 

maximum capacitance (plateau) was not yet reached. The absence of plateau in the plot 

indicates a limitation during the electrochemical characterization, which is assumed to be 

linked with limited ion transport in the inner porous network of the activated carbon.  
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Figure II.12 Evolution of stack capacitance of AC based micro-supercapacitor in 1M NEt4BF4/PC versus 

frequency. 

 

Figure II.13 shows evolution of the imaginary part of the complex stack capacitance with 

frequency.  
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Figure II.13 Evolution of the imaginary part of the stack capacitance of the AC based micro-supercapacitor in 1M 

NEt4BF4/PC electrolyte. 

 

The C” peak is located at 1.43 Hz, corresponding to a time constant of 700 ms for AC 

based micro-supercapacitor in 1M NEt4BF4/PC electrolyte. This peak corresponds to a ! 

angle of -45°, i.e., to the minimum time needed to discharge the cell with the energy 

efficiency " 50 %. This suggests a short time for electrolyte ions to reach stable adsorption 

rate. Compared to macroscopic supercapacitors with the same material (time constant #0 = 10 

s [14]), the relaxation time constant of the microdevice is much lower, thanks to the higher 

accessibility of electrolyte ions to carbon materials in this interdigitated configuration 

obviously due to the small thickness of the active film than in AC-based macroscopic 

supercapacitors. A higher rate capability could be expected and becomes an advantage for 

micro-supercapacitors compared to macroscopic supercapacitors. 
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CVs of AC based micro-supercapacitor from 500 mV/s to 10 V/s were collected within 3V 

shown in Figure II.14.  

 

Figure II.14 CV plots of AC based micro-supercapacitor in 1M NEt4BF4/PC a) at 500 mV/s, b) at 1 V/s, c) at 5 V/s 

and d) at 10 V/s within 3V. 

 

Although time constant is measured to be far shorter than that in macroscopic 

supercapacitors, at a scan rate as high as 500 mV/s, distortion was observed on the CV plot 

owing to the ionic resistivity, evidencing difficulties in migration of electrolyte ions transport 

in AC porous network at this scan rate. Although distorted, capacitive behavior was still kept 

up to 1 V/s as shown in Figure II.14b.  

a) b) 

c) d) 
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Two severely squeezed CV plots were shown in Figure II.14c and d, corresponding to the 

sample at 5 V/s and at 10 V/s. No capacitive behavior was observed and expected in these 

high scan rates even for micro-supercapacitors [1, 15], especially that based on porous carbon 

materials, owing to the high ionic resistance at these scan rates. 

CV plots shown in Figure II.14 were distorted from a pure capacitive behavior marked by 

rectangular shape which could be observed in macroscopic supercapacitors using thick 

electrodes (~ 100 µm thick) at 20 mV/s [16]. Scan rate was increased from usually used 20 

mV/s to 500 mV/s here in order to be able to test the micro-supercapacitors under a large 

voltage window. Because increasing scan rate increases the value of current measured, self-

discharge and leakage current are hereby overcome. Moreover, this on-chip micro-

supercapacitor survived scan rate up to 1 V/s which macroscopic supercapacitors could not 

achieve [17, 18]. In this sense, the advantage of micro-scale device on power performance is 

emphasized. 

Evolution of capacitances of AC based micro-supercapacitor in 1M NEt4BF4/PC versus 

scan rates was plot in Figure II.15.  
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Figure II.15 Evolution of relative capacitance of AC based micro-supercapacitor in 1M NEt4BF4/PC versus scan 

rate. 

 

The capacitance drops significantly and only of initial capacitance at 5  remains, 

indicating a limitation of ion transport AC. 

A specific capacitance of 5.4 mF.cm
-2

 per footprint area achieved at rate from this 

AC based micro-supercapacitor in 1M NEt4 4 , hence 24.3 mJ.cm
-2

 as specific energy 

and 0.500 .cm
-2

 as specific . For AC electrode material, 92.8 F.cm
-3

 achieved as 

volumetric capacitance of AC, is much higher than that in macroscopic supercapacitors 

the same material . macroscopic cells, the ss of electrode is much higher 

100 and thus the accessibility of the electrolyte ions to the carbon materials is much 

than that in micro-supercapacitors. advantage of micro-scale device  thus 
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proved not only with higher power capability, but also higher volumetric capacitance 

compared to macroscopic supercapacitors. 

IV.5 OLC based micro-supercapacitor in PC based electrolyte – Ultra-high Power 

Performance 

On-chip micro-supercapacitor showed a better power capability than macroscopic 

supercapacitors as mentioned in section IV.4, although limitation of ion transport inside the 

pore network in AC was observed. In order to further boost the high power competence, i.e. 

eliminating the limitation of ion transfer inside the pores of the activated carbon (with specific 

surface area of 2500 m
2
.g

-1
), onion like carbon (with specific surface area of 500 m

2
.g

-1
), 

which has no porous network inside the carbon grain, was used to prepare a 7 µm thick micro-

supercapacitor with the same configuration by electrophoretic deposition (EPD). 

Electrochemical characterization was performed on it in the same electrolyte – 1 M NEt4BF4 

in propylene carbonate (PC). 

Nyquist plot of OLC based on-chip micro-supercapacitor in 1M NEt4BF4/PC electrolyte is 

shown in Figure II.16, indicating a typical capacitive behavior with a vertical increase even at 

high frequency, between 1kHz and 100 Hz shown in the inset, compared to that of AC which 

is shown in Figure II.11. This could be attributed to low thickness of the electrode and the 

high accessibility of the OLC surface without limitation of ion transport inside the porous 

network, which was the case for activated carbon. However, a small deviation was observed 

at frequency lower than 100 mHz, owing to leakage current in the system, probably from the 

electrolysis of impurities in the system. 
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Figure II.16 Nyquist plot of OLC based on-chip microsupercapacitors in 1M NEt4BF4/PC from 100kHz to 10mHz 

with 10 mV as the voltage amplitude. 

 

Figure II.17 shows the evolution of stack capacitance with frequency, indicating better 

capacitive behavior with a plateau at low frequency end, which was missing in the same plot 

of AC based micro-supercapacitor under the same condition in Figure II.12. The plateau is not 

totally flat, suggesting leakage in the system, in accordance with that observed in Nyquist 

plot. Despite of that, a micro-supercapacitor with little restriction of ion transfer in the 

electrode was achieved and high power capability was expected. The stack capacitance of 

OLC based micro-device (1.1 F.cm
-3

) calculated from impedance is much lower than that of 

AC based micro-device (12.5 F.cm
-3

) [20], since the lack of porous structure in OLC particle 

makes less surface area available for adsorption of electrolyte ions. To get high power 

capability, capacitance performance was compromised.  
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Figure II.17 Evolution of stack capacitance of OLC based micro-supercapacitor in 1M NEt4BF4/PC versus 

frequency. 

 

Evolution of imaginary part of the stack capacitance of OLC based micro-supercapacitor in 

1M NEt4BF4/PC electrolyte was shown in Figure II.18. 
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Figure II.18 Evolution of imaginary capacitance with frequency of OLC based micro-supercapacitor in 1M 

NEt4BF4/PC electrolyte. 

 

The plot with OLC based micro-supercapacitor in 1M NEt4BF4/PC electrolyte shows a 

relaxation time constant of 26 ms, even shorter than AC based micro-supercapacitor in the 

same electrolyte, as OLC has the spherical structure to allow fully accessibility of electrolyte 

ions. The combination of OLC and microdevice configuration highly increased the rate 

capability, thus boost the power performance of the device. 

The high power capability was also proved by CV measurements up to 100 V/s. CV plots at 

1 V/s, 10 V/s, 100 V/s and 200 V/s are shown in Figure II.19 and Figure II.20. 
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Figure II.19 CV plots OLC based micro-supercapacitor in 1M NEt4BF4/PC a) at 1 V/s and b) at 10 V/s. 

 

Thanks to the fully accessible surface area of OLC particles to electrolyte ions and lack of 

inner porous structure, there is no restriction on ion transport here and capacitive behavior is 

still maintained at 10 V/s. At this scan rate, AC based micro-supercapacitor was not able to 

keep its capacitive behavior with a CV plot severely distorted as shown in Figure II.14c. Here 

it shows the synergy between the on-chip micro-supercapacitor and nanostructure carbon 

material with high rate capability. 

Scan rate was further increased, in order to find out the limit of this micro-scale device. In 

Figure II.20, the CV plots at a scan rate of 100 V/s and 200 V/s are shown. The behavior is 

similar to that of AC electrode at 500 mV/s, i.e. it keeps a capacitive behavior even at 100 V/s 

This scan rate is more than two orders of magnitude higher than any results reported with 

alternative devices [17, 18], including microdevices [1, 15, 21] and micro-cavity electrodes 

[22, 23]. 

a) b) 
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Figure II.20 CV plots of OLC based micro-supercapacitor in 1M NEt4BF4/PC electrolyte at 100V/s and 200V/s 

within 3 V. 

 

Figure II.21 shows the evolution of stack capacitance of the micro-supercapacitor with scan 

rates in 1M NEt4BF4/PC electrolyte from 1 V/s to 200 V/s.  

a) b) 
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Figure II.21 Evolution of relative capacitance of OLC based on-chip micro-supercapacitor versus scan rate in 1M 

NEt4BF4/PC electrolyte . 

 

It shows that the capacitance decreases with scan rate slowly with 80% of capacitance kept 

around 30 V/s. Compared to the similar plot with AC electrode in Figure II.15, the power 

performance of OLC electrode is much better, thus proving that combination of on-chip 

micro-supercapacitor architecture and carbon nanomaterials boosts the power capability to an 

incredible level with capacitive behavior preserved up to 100 V/s. 

Specific capacitance of 1.04 mF.cm
-2

 was achieved with OLC based on-chip micro-

supercapacitor in 1M NEt4BF4/PC from CV test at 1V/s, hence 4.68 mJ.cm
-2

 as specific 

energy and 0.592 W.cm
-2

 as maximum specific power. Per electrode material, a volumetric 

capacitance of 9.7 F.cm
-3

 of OLC was achieved.  
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Cycling performance was tested at 10 V/s and shown in Figure II.22. Reproducible 

capacitance was remained almost unchanged up to 10000 cycles; hereby stability of this on-

chip micro-supercapacitor in 1M NEt4BF4 in PC was confirmed.  

 

Figure II.22 Cycling results of OLC based micro-supercapacitor in 1M NEt4BF4/PC at 10V/s. 

 

A stable OLC based on-chip micro-supercapacitor was successfully prepared by EPD 

technique. Ultra-high power capability was achieved in 1M NEt4BF4/PC by combination of 

highly accessible nano-scale carbon material and micro-scale power device configuration. 

IV.6 Electrochemical Characterization of OLC in ILM under extreme temperatures 

Micro-supercapacitor prepared through EPD showed outstanding performance as 

mentioned in sections above. To further improve the energy density, new type of electrolytes, 

which could tolerate large voltage window, should be considered. Ionic liquid could be one of 
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the solutions thanks to their large potential window. However, ionic liquids generally suffer 

from high viscosity, and low conductivity at room temperature and below. They are thus 

usually used at temperature higher than 60 °C [24, 25]. 

A eutectic ionic liquid mixture (ILM) of N-methyl-N-propylpiperidinium 

bis(fluorosulfonyl)imide (PIP13FSI) and N-butyl-N-methylpyrrolidinium 

bis(fluorosulfonyl)imide (PYR14FSI), as described in bibliographic part, is able to work under 

extreme temperatures down to -50°C, which is lower than PC (-30°C) and AN (-40°C) [26]. 

OLC based micro-supercapacitors with configuration shown in Figure II.1a were prepared 

with thickness of 7 µm in the same condition mentioned above and electrochemically 

characterized in ILM at -50°C, -40°C, 20°C and 80°C to explore the effect of the combination 

of this eutectic ILM with micro-scale device using a nanostructured carbon material. 

IV.6.1 EIS Results 

The EIS results of OLC based micro-supercapacitor in ILM from 500 kHz to 10 mHz with 

300 mV as potential amplitude were shown Figure II.23 with an inset of the evolution of 

capacitance with frequency.  
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Figure II.23 Nyquist plot of OLC based micro-supercapacitor in eutectic ionic liquid mixture at 20°C and 80°C 

with volumetric capacitances versus frequency in the inset. 

 

The high frequency part indicates a typical capacitance behavior for sample under both 

temperatures with a vertical increase without small loops at the high frequency ends, thanks to 

the high conductivity of the electrolytes at high temperature. However, the low frequency part 

of Nyquist plot of sample at 20°C shows a slight deviation from the ideal vertical increase, 

associated with the presence of a leakage current usually caused by undesired redox reaction 

such as decomposition of impurities presented in the system, with the help of gold current 

collectors which could be a catalyst. The sample at 80°C suggests significant deviation from 

the ideal capacitive behavior of vertical increase with the same reason enhanced by the high 

temperature. The higher temperature accelerated the redox decomposition of impurities. 



 93 

The inset of Figure II.23 shows the evolution of capacitance versus frequency of the OLC 

based micro-supercapacitor in ILM at 20°C and 80°C. Both capacitances reach a plateau at 

low frequency end, however, sloping, indicating a leakage current involved in the process, in 

accordance with results drawn from the Nyquist plots. 

The Nyquist Plots of the sample collected in the same condition as mentioned above at two 

lower temperatures are shown in Figure II.24 with an inset of evolution of capacitance versus 

frequency.  

 

Figure II.24 Nyquist plot of based micro-supercapacitor in eutectic ionic liquid at -50°C and -40°C 

with volumetric capacitances versus frequency in the inset. 

 

The two low-temperature Nyquist plots at -40°C and -50°C both show a semi-circle loop at 

high frequency end, as the resistance is high below 0 °C. At low temperature, the response of 

electrolyte ions slows down; a semi-circle loop due to the low conductivity of electrolyte is 
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thus shown at frequency at 500 kHz when temperature reaches -40°C. The right end of the 

loop intercepts the real axis at about 1.39 k!.cm
2
 at -40°C and increases dramatically to 4.27 

k!.cm
2
 at -50°C, which is about 3 times the resistance at -40°C. The equivalent series 

resistance (ESR) of the cell depends mainly on the conductivity of the ILM at low 

temperature. The conductivity of the ILM is around 10
-2

 mS.cm
-1

 at -50 °C [6] compared to 

4.9 mS.cm
-1

 at room temperature.   

The low frequency sections both increase vertically as redox reaction from impurities is not 

favored kinetically at such low temperatures according to Arrhenius law. The inset shows the 

evolution of stack capacitance with frequency. Obviously, capacitance of this OLC based 

micro-supercapacitor in ILM at -40°C is much higher than that at -50°C. The capacitances 

increased as the frequency decreases, but failed to form a plateau at low frequency ends, 

corresponding to the restriction of ion mobilities in the gel-like ILM at these low 

temperatures. 

IV.6.2 CV Results 

Figure II.25 shows the comparison of the CV curves at 200 mV/s at two different 

temperatures, -40°C and 20°C up to 3.7V.  



  

 

Figure II. - -   

 

For this high scan rate as 200 mV/s, the CV curve at -40°C, which is a very low 

temperature, still showed capacitive behavior, although distorted.  high temperature 

largely increases the conductivity of  CV curve at 20°C demonstrates ideal capacitive 

behavior with deviation at the high voltage part which is due to the beginning of the 

decomposition of electrolyte on Au current collectors. immediate increase of current 

at initial scan and back scan indicates low resistance even at this relatively high scan rate 200 

mV/s for ionic liquids , proving the synergetic benefit of combination between  and 

micro-supercapacitor configuration. 

At high temperature 80°C, the voltage window could not reach V but only 2.8 V. High 

temperature increases the kinetic (thus rate constant) of undesirable redox reactions at high 
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voltage, following Arrhenius law. Hereby, the voltage window of cyclic voltammogram is 

getting smaller with increase of the temperature. 

Figure II.26 shows a comparison of the CV curves of OLC micro-supercapacitor in ILM at 

1 V/s at 20°C and 80°C within 2.8 V.  

 

Figure II.  CV -supercapacitor in ILM at 20°C and 80°C at 1 V/s within 2.8V. 

 

The charging current at 80°C is notably higher than that at 20°C, while the discharge 

currents were found to be similar, thus indicating a higher leakage current at 80°C, in 

accordance with the Nyquist plot at the same temperature shown in Figure II.23, decreasing 

the coulombic efficiency. Typical capacitive behavior without restriction was achieved with 

this micro-supercapacitor at 1 V/s at 20°C and 80°C, as the conductivity was ensured at these 

temperatures. CV tests at even higher scan rate have afterwards been performed. 
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II.27 compares performance of the micro-supercapacitor at high scan rate 10  

( II.27a  ( II.27b) up to  

 

Figure II.27 CV plots of OLC based micro-supercapacitor in ILM a) at 10 V/s and b) at 20 V/s at 80°C up to 2.8V. 

 

At sample under both 20°C and shows the advantage of temperature tolerance 

for this ILM. And even at 80°C, the micro-supercapacitor could exhibit a well-conserved 

rectangular shape at 20V/s, which is already a high scan rate even for micro-supercapacitors 

[1, 15]. Compared to OLC based micro-supercapacitor in 1M NEt4BF4/PC electrolyte, the rate 

capability has been compromised with ILM electrolyte. The shape of CV plot at 10 V/s within 

2.8 V in ILM shown in Figure II.27a is more distorted than that at 10 V/s in PC based 

electrolyte shown in Figure II.19b, owing to the relatively higher viscosity of ILM. 

Low temperature CVs (-50°C and -40°C) were also recorded with the OLC based micro-

supercapacitor with ILM as electrolyte. At high scan rate such as 200 mV/s, sample at -50°C 

loses capacitive behavior with a severely squeezed CV plot, indicating important limitation by 

ohmic drops, i.e. low conductivity of ILM at low temperatures. However, the CV plot of 

sample at -40°C still exhibit a capacitive behavior with the quasi-rectangular CV plot shown 

in Figure II.28. 

a) b) 
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Figure II.28 CV plots of OLC based micro-supercapacitor in ILM at -50°C and -40°C at 200 mV/s up to 3.7V. 

 

At low temperature, the conductivity of ILM electrolyte became very low and could not 

preserve capacitive behavior at high scan rate. To show the low temperature performance, 

cyclic voltammogram at relatively lower scan rates (from 10 mV/s) were collected. 

Figure II.29 shows the CV results of the OLC based micro-supercapacitor in ILM at -50°C 

and -40°C at 10mV/s within 3.7 V.  
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Figure II. - - - /s up to . 

 

Capacitive behavior was preserved even at -50°C, where conventional electrolytes like AN-

based electrolytes stop operating, within 3.7V, a larger voltage window (3 V for AN and PC-

based electrolytes) [16]. At high voltage, the increase of current is due to the electrolyte 

degradation through redox reaction. 

Volumetric capacitances of the micro-supercapacitor at different scan rates and different 

temperatures over 2.8 V were compared and shown at Figure II.30. 
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Figure II.30 Evolution of volumetric capacitance of micro-supercapacitor versus scan rate at different 

temperatures in ILM within 2.8 V voltage window. 

 

The volumetric capacitance of micro-supercapacitor decreases with increasing potential 

scan rates, since the ohmic drop increases with increasing scan rate. Temperature plays an 

important role on capacitance. The lower the temperature the faster the capacitance decrease, 

since at low temperature the ionic conductivity of the electrolyte decreases, thus increasing 

the series resistance of the cell. The higher the temperature, the higher the capacitance at the 

same scan rate. This is also linked with the increase of the ionic conductivity at high 

temperature.  

At 20°C, a maximum specific capacitance of 1.11 mF.cm
-2

 was achieved according to the 

footprint area of this OLC based micro-supercapacitor in ILM at 500 mV/s over 3.7 V. Hence 

a maximum volumetric capacitance of the device was calculated to be 7.36 F.cm
-3

. The 
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capacitance at -50 °C and -40 °C kept 77% and 89% of that at 20 °C, respectively, although 

not at the same scan rate. Low temperature performance of this OLC based micro-

supercapacitor in ILM is thus confirmed. 

The change of the relative capacitance versus the cycle number at 1 V/s for the micro-

supercapacitor is shown in Figure II.31. C0 represents the capacitance achieved at the first 

cycle. Capacitance decreases with cycles, 90% of capacitance was remained after 1000 

cycles. 

 

Figure II.31 Cycling test results of OLC based micro-supercapacitor in ILM at 1 V/s. 

 

A stable OLC based micro-supercapacitor was achieved with 1.1 mF.cm
-2

 as the 

capacitance per footprint area of the device in ILM, hence a specific energy of 7.5 mJ.cm
-2

 

and a specific power of 241 mW.cm
-2

. Energy performance has been improved as expected 

with this ILM. 
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V Conclusion & Perspectives 

A series of micro-supercapacitors were prepared through electrophoretic deposition of 

different carbon materials, including activated carbon and onion like carbon. Activated carbon 

was deposited to study the relationship of the thickness and deposition time.  

Performance of all the micro-supercapacitors demonstrated in this chapter is presented in 

Table II.2 below.  

Table II.2 Performance of micro-supercapacitors with different carbon materials and electrolytes. 

Carbon Electrolyte Configuration 
C/mF.

cm-2 

E/mJ.

cm-2 

Pmax/mW

.cm-2 

Voltage 

window 

Max. 

scan rate 
Features 

AC 
1M 

NEt4BF4/PC 
16 fingers 5.40 24.3 500 3 V 0.5 V/s Higher C 

OLC 
1M 

NEt4BF4/PC 
16 fingers 1.04 4.68 592 3 V 100 V/s 

Ultra high 

Power 

OLC 
1M 

NEt4BF4/PC 
4 fingers 1.04 4.68 203 3 V 10 V/s - 

OLC ILM 4 fingers 1.11 7.50 241 3.7 V 
20 V/s at 

80 °C 
-50 - 80 °C 

 

Onion like carbon (OLC) was deposited and the micro-supercapacitors showed 

exceptionally high power in 1M NEt4BF4 in PC thanks to its ability of ultra fast charging and 

discharging. The OLC based micro-supercapacitor in 1M NEt4BF4/PC could conserve 

capacitive behavior at scan rate as high as 100 V/s, although the capacitance performance was 

compromised as OLC is not porous and doesn’t have a large surface area. Besides, the 

configuration of micro-supercapacitors also played an important role in rate capability. The 

one with 16 fingers could tolerate 10 times higher scan rate than that with 4 fingers. 

OLC-based micro-supercapacitors were also tested in an ionic liquid mixture, which is able 

to allow electrochemical characterization under extreme temperatures from -50 °C to 80 °C 

with a large voltage window: 3.7 V. The results show the ability of the micro-supercapacitor 

to work under the corresponding low temperature environment. The micro-supercapacitor 



 103 

also kept the feature of OLC carbon of tolerating high scan rate until 20 V/s even in ILM. In 

addition, this ILM improved the capacitance of OLC material. With larger voltage window, a 

much higher energy density was reached as expected, although power density was 

compromised because of high resistance te.  

Theoretically, if thicker electrodes could be deposited onto the electrode, higher specific 

capacitance and energy would be achieved by micro-supercapacitors per cm
2
. To achieve this 

goal, EPD conditions such as suspension solvent, charging agent, suspension composition, 

etc. should be further adjusted. 

Other materials, especially new materials such as carbide derived carbon (CDC), could be 

deposited to produce new micro-supercapacitors and explore additional features when in 

small scale.  

This chapter reported results on carbon-based on-chip micro-supercapacitors prepared by 

deposition – processing carbon powder into thin-films. The following chapter will introduce 

carbon film based micro-supercapacitors, to directly pattern carbon or carbon precursor thin 

films into interdigitated configuration. 
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Chapter III  Micro-supercapacitors from Carbide Derived 

Carbon (CDC) Film 

I Introduction 

Processing of carbon powder into a micro-size electrode has been the key issue for 

developing micro-supercapacitors. Usually, organic binder such as PVDF and PTFE are used 

for processing carbon powder into films. However, the carbon film processed from powder 

(Figure III.1a) has voids in the film that are filled with binders; the volume of carbon film 

increases with increasing the ratio of binders. Compared to the bulk carbon film (Figure 

III.1b), the carbon density of the film processed from powders is much lower, thus has lower 

capacitance, power density and energy density for the same material. In addition, binders are 

generally non-conductive and electrons are transferred via the contacts between carbon 

grains; a certain part of carbon grains is thus electrically isolated and conductivity of the 

whole film is reduced, compromising the total performance of micro-supercapacitors. 

Moreover, from material point of view, patterning thin-film is far more likely to be produced 

in quantity than processing powders into films; thus facilitate the mass production. 

 

Figure III.1 Schematic diagram of a) carbon film processed from powder and b) bulk carbon film. 

 

To increase the carbon density, hence the total performance of carbon-based micro-

supercapacitors, binder-free bulk carbon films, such as carbide derived carbon (CDC) films 

could be used as electrode material for micro-supercapacitors. 
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As mentioned in Chapter I, thin-film supercapacitors with sandwich configuration based on 

CDC film [1] were reported. The sandwich was composed of a piece of CDC film on glass 

carbon as working electrode, a PTFE separator and a piece of processed activated carbon as 

counter electrode. A capacitance of 180 F.cm
-3

 was achieved, much higher than that of 

supercapacitors based on CDC powders (60 F.cm
-3

 of TiC-CDC in organic electrolyte) [2].  

CDC film could be used to develop on-chip micro-supercapacitors, which is easier for 

integration into a system. Compared to sandwich configuration, planar interdigitated 

electrodes realized on-chip have the advantage of containing no separator in the device, 

facilitating the fabrication of this micro-scale devices. Electrochemical properties (power in 

particular) are expected to be enhanced at this scale.  

In this chapter, we will present several on-chip micro-supercapacitors based on CDC films 

with different preparation processes, including reactive ion etching (RIE) of both CDC film 

and carbide film and focused ion beam (FIB) to etch away the undesired part of the film, thus 

patterning interdigitated electrodes. The current collectors were deposited afterwards on top 

of the electrodes. This configuration (current collectors on top of electrode material) was 

chosen because high temperatures are applied during chlorination of the carbide film: no 

metal placed underneath would sustain such a process (exposure to Cl2 and high temperature) 

without being corroded. Materials characterization and electrochemical performance for each 

type of micro-device will be compared.  

II Materials and equipments 

Titanium Carbide films were deposited by reactive DC magnetron sputtering with a 

Titanium target and acetylene (C2H2) gas as a carbon source [3] in Rowan University, New 

Jersey. The Ti target is run at 200 W at an overall pressure of 4 Pa. The gases were mixed in a 

manifold with an argon flow rate of 40 sccm (standard cubic centimeters per munites) and a 
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C2H2 flow rate of 2.5 sccm. The substrate is heated to approx 700°C to produce textured TiC 

in the (111) orientation. The resulting deposition rate was approximately 25 nm/min on Si 

wafer (resistivity 1~100 Ohm.cm with 200 nm wet thermal oxide). The SEM picture of TiC 

film is shown in Figure III.2. 

 

Figure III.2 SEM photo of top view of TiC film. 

 

The silicon carbide film was deposited by sputtering in Ar atmosphere with a silicon 

carbide (SiC) target in LPN, France. The substrate was not heated during sputtering, and 

sputtering was conducted at a working voltage of 500 W with an overall pressure of 1 Pa. 

Chlorination was performed in Drexel University, Pennsylvania. TiC-CDC and SiC-CDC 

films were obtained by chlorination of TiC or SiC films in a tube furnace at high temperature 

with Cl2 inside as shown in Figure III.3.  
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III.  

 

Reactive Ion Etching (RIE) was performed in Omega 201 equipment from SPTS, which is 

equipped with Inductively Coupled Plasma (ICP). The schematic diagram of the equipment is 

shown in Figure III.4. 

 

III.  The schematic diagram of the equipment for RIE [4]. 

A spiral inductive coil was mounted on a dielectric window on the reactor. Plasma was 

generated inductively by coupling the oscillation radio frequency (RF) magnetic field (13.56 

MHz). The CDC or carbide films to be etched were clamped on the chuck (bottom electrode) 

in the reactor. The chuck was powered by a separate RF source to control the ion 

bombardment energy (RF bias). [4] 
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II.1.1 Chlorination & Raman Results for SiC films 

Chlorination was performed on SiC samples at 400 °C, 450 °C and 500 °C for 30 minutes. 

The corresponding Raman results of chlorinated samples recorded using the excitation 

wavelength of 514.5 nm are shown below in Figure III.5. 

 

Figure III.5 Raman spectra of SiC film after chlorination at 400 °C, 450 °C and 500 °C. 

 

For SiC sample chlorinated at 400 °C, there is a small broad bump at around 1450 cm
-1

, 

between the D band position (1350 cm
-1

) and the G band position (1600 cm
-1

). However, 

without any trace of D band and G band, there is no CDC formed after chlorination at 400 °C. 

For SiC sample chlorinated at 450 °C, there are small trace of peaks at around 1400 cm
-1

 

and 1600 cm
-1

. The peaks are almost hidden in the noise, indicating the formation of 

extremely small quantity of carbon. However, as there is no sign of D band peak or G band 


