Modélisation du comportement des structures et des matériaux élastomères
Erwan Verron

To cite this version:

HAL Id: tel-00833719
https://tel.archives-ouvertes.fr/tel-00833719
Submitted on 13 Jun 2013

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Mémoire d’habilitation à diriger des recherches

Modélisation du comportement des structures et des matériaux élastomères

Erwan VERRON

Institut de Recherche en Génie Civil et Mécanique

soutenue le 24 octobre 2003
à l’École Centrale de Nantes

devant le jury ci-dessous :

− DÉBORDES O., Professeur, ESM2 Marseille, Président ;
− BESSON J., Chargé de recherche CNRS, École des Mines de Paris, Rapporteur ;
− CHRYSOCHOOS A., Professeur, Université de Montpellier II, Rapporteur ;
− STOLZ C., Directeur de recherche CNRS, École Polytechnique, Rapporteur ;
− COMBESCURE A., Professeur, INSA de Lyon, Examinateur ;
− PESEX B., Professeur, École Centrale de Nantes, Examinateur ;
− POITOU A., Professeur, École Centrale de Nantes, Examinateur .

Directeur de Recherche : Bernard PESEUX
Table des matières

Avant-propos 5

Introduction 9

1 Premiers travaux et transition vers de nouvelles thématiques 11
 1.1 Premiers travaux ... 11
 1.1.1 Résumé du travail de thèse ... 11
 1.1.2 Extension du travail de thèse: thermoformage de polymères renforcés de fibres alignées .. 16
 1.2 Transition vers de nouvelles thématiques 18

2 Soufflage de membranes en grandes transformations 23
 Introduction ... 23
 2.1 État de l’art ... 24
 2.2 Développement d’éléments finis pour les membranes hyperélastiques en grandes déformations ... 26
 2.2.1 Une interpolation spline pour les membranes axisymétriques 26
 2.2.2 Un nouvel élément fini à tangente continue pour les membranes non-axisymétriques ... 30
 2.3 Application à l’étude de stabilité et de bifurcation 35

3 Modélisation de l’effet Mullins dans les élastomères 45
 Introduction ... 45
 3.1 Présentation des élastomères ... 46
 3.1.1 Généralités .. 46
 3.1.2 Description du comportement mécanique 48
 3.2 Modélisation du comportement mécanique des élastomères 57
 3.2.1 État de l’art .. 57
 3.2.2 Approches à retenir pour la modélisation 58
 3.3 Deux nouveaux modèles pour l’effet Mullins 60
 3.3.1 Mise en évidence des phénomènes. Campagne expérimentale 61
 3.3.2 Modélisation par la mécanique de l’endommagement 62
 3.3.3 Modélisation par la statistique des chaînes 69

Conclusion sur les activités de recherche 81

Annexes 83
A État de l’art sur la modélisation du comportement mécanique des élastomères 85
 A.1 Les théories fondateuses : 1940-1970 ... 86
 A.1.1 Hyperélasticité ... 86
 A.1.2 Viscoélasticité ... 90
 A.1.3 Comportement cyclique .. 95
 A.2 L’avènement de la simulation numérique : 1970-1990 97
 A.2.1 Hyperélasticité ... 97
 A.2.2 Viscoélasticité ... 99
 A.2.3 Comportement cyclique ... 102
 A.3 De nouveaux défis : de 1990 à nos jours ... 102
 A.3.1 Hyperélasticité ... 103
 A.3.2 Viscoélasticité ... 105
 A.3.3 Comportement cyclique ... 110

B Liste des publications personnelles .. 123
Avant-propos

La plus grande partie de mes travaux de recherche a eu lieu au Laboratoire de Mécanique et Matériaux de l’École Centrale de Nantes, dirigé par le Professeur Donatien Le Houedec. En effet, ingénieur de l’École Centrale de Nantes promotion 1994, j’ai obtenu mon DEA de Génie Mécanique spécialité Calcul des Structures la même année, et mon travail de thèse a débuté en décembre 1994 au Laboratoire. Mon doctorat s’est déroulé dans le cadre d’une collaboration internationale entre l’ECN, sous la direction du Professeur Bernard Peseux, et l’Institut des Matériaux Industriels (IMI), centre de recherche du Conseil National de Recherche du Canada (CNRC) situé à Boucherville dans la banlieue de Montréal, sous la direction du Professeur Roger Khayat et de Salim Derdouri (ingénieur de recherche). Cette collaboration m’a permis d’effectuer plusieurs séjours de travail au Canada. À la rentrée 1998, j’ai été recruté en tant que maître de conférences au Laboratoire de Mécanique et Matériaux, poste que j’occupe à l’heure actuelle.

Mon travail de thèse s’intéressait à la simulation des procédés de mise en forme des polymères thermoplastiques par soufflage : thermoformage et extrusion-soufflage. Le caractère appliqué des travaux de recherche menés à l’IMI ainsi que ma formation initiale m’ont conduit à aborder ce sujet avec le point de vue de l’ingénieur, c’est-à-dire dans le but de développer des méthodes applicables industriellement. Ainsi, je me suis intéressé à la mise en place de méthodes de caractérisation du matériau proches des procédés considérés (état de déformation biaxial), ainsi qu’à la programmation d’un outil numérique dédié, en collaboration avec Gilles Marckmann (ingénieur de recherche). Mon recrutement dans le laboratoire où j’avais effectué ma thèse a été un atout considérable pour valoriser celle-ci au travers de diverses publications, mais aussi pour la poursuite de ma collaboration avec l’IMI. Ainsi, dès mon entrée en poste, j’ai co-encadré avec Bernard Peseux le travail de thèse de Nicolas Chevaugeon qui a, dans un premier temps, étendu mon travail de thèse au cas des matériaux isotropes transverses.

Pendant ma première année en tant que maître de conférences, j’ai beaucoup travaillé sur la mise en place de collaborations industrielles dans le domaine de la mise en forme des polymères thermoplastiques afin de pérenniser cette thématique scientifique au sein du Laboratoire. En effet, compte tenu de leur caractère très appliqué, de telles études nécessitent des contacts étroits entre l’industrie et l’université. Malgré quelques pistes intéressantes, je me suis rapidement rendu à l’évidence qu’il serait difficile de continuer à travailler dans ce domaine. J’ai donc été conduit à m’interroger sur les thèmes que je devais privilégier pour poursuivre mes travaux. À la lumière des compétences acquises durant ma thèse et des opportunités de collaboration qui sont apparues, j’ai privilégié deux voies d’étude : la modélisation du phénomène de soufflage dans les membranes en grandes transformations et l’étude du comportement des matériaux élastomères.

Ma première thématique de recherche s’inscrit dans le cadre général de la modélisation du comportement des structures et vise à étudier la réponse de membranes en grandes déformations soumises à des chargements en pression. Ces travaux ne portent pas sur une application parti-

La seconde thématique de recherche vers laquelle je me suis tourné relève du domaine de la modélisation du comportement des matériaux. Elle s’intéresse plus particulièrement aux matériaux polymères et a débuté en 2000 au travers du co-encadrement avec Bernard Peseux de la thèse de Jessy Lefeuve portant sur le comportement des polymères thermoplastiques à l’état solide pour des applications de type « crash ». Ce travail m’a permis de mettre à profit mes travaux sur les modèles de comportement des matériaux en grandes déformations menés lors de ma thèse. Dès la fin de l’année 2000, Laurent Gornet (maître de conférences au Laboratoire) et moi-même avons noué des contacts avec Pierre Charrier, responsable recherche et développement pour la durabilité des élastomères dans le groupe Trelleborg, numéro un mondial de l’anti-vibratatoire automobile. Tous les trois nous avons mis en place le Groupe de Travail sur la Fatigue des Élastomères (GTFE) qui regroupe des industriels, des universitaires et des centres de transfert intéressés par le problème. Dans ce contexte, trois pistes de travail ont été simultanément abordées : la modélisation du comportement des élastomères avec la prise en compte des phénomènes inélastiques (thèse de Grégory Chagnon co-encadrée avec Laurent Gornet), l’étude expérimentale du comportement en fatigue des élastomères et de l’influence de différents paramètres sur la durée de vie (thèse d’Elisabeth Ostoja-Kuczynski co-encadrée avec Laurent Gornet), et la mise en évidence des phénomènes microscopiques à l’origine de l’endommagement (thèse de Jean-Benoît Le Cam, co-encadrée avec Laurent Gornet et le Professeur Arnaud Poitou). Au moment où j’écris ces lignes, seule la première étude est bien avancée et a déjà fourni des résultats nouveaux, les deux autres parties du travail ayant débuté depuis moins d’un an. L’intérêt croissant porté à cette thématique, dû notamment à la forte concurrence dans ce secteur industriel, place notre équipe dans une situation encourageante pour l’avenir et permet d’envisager sans risque sa pérennité à moyen terme.

Pour conclure cet avant-propos, il convient de faire deux remarques. La première concerne ma « pratique de la recherche » et plus particulièrement ma vision de la recherche appliquée. Compte tenu de ma formation d’ingénieur, des thématiques développées mais aussi de ma fonction d’enseignant au sein d’une école d’ingénieurs, j’essaie d’aborder les problèmes posés en respectant l’équilibre entre les résultats scientifiques nouveaux (à caractère parfois théorique) et leur transfert vers l’industrie. C’est notamment le cas pour nos travaux sur les élastomères régis par des clauses de confidentialité qui compliquent un peu plus cette tâche. Des relations de confiance ne peuvent s’établir entre industriels et universitaires qu’à la condition où chacun des partenaires trouve son intérêt dans la collaboration. C’est cette complémentarité que je m’efforce de respecter.

La seconde remarque se réfère à mon « positionnement scientifique ». Au travers de mes deux thématiques de recherche, je travaille à la fois sur la modélisation des structures et celle du comportement mécanique des matériaux. Ainsi, j’espère avoir une vision globale du problème de l’intégration de lois de comportement actuelles dans les outils de calcul modernes. En effet, les modèles de comportement sont de plus en plus réalistes et performants, puisque les méthodes de construction physiques prennent peu à peu le pas sur les approches phénoménologiques. Cependant, ces modèles sont souvent très complexes et ne répondent pas toujours aux critères requis par les spécialistes de la simulation numérique (simplicité mathématique, robustesse,
rapidité de calcul), ou par les utilisateurs de logiciels de calcul (détermination simple des paramètres matériels, convergence « assurée »). Cette problématique est évidemment au cœur de mes préoccupations et c’est donc à l’interface des deux domaines mécanique des matériaux-structures que je positionne mes travaux.

Nantes, le 25 juin 2003

Erwan Verron

En premier lieu, mes remerciements vont à Donatien Le Houedec, directeur du Laboratoire de Mécanique et Matériaux de l’École Centrale de Nantes, qui m’a soutenu et encouragé dans tous mes projets depuis mon arrivée au Laboratoire, ainsi qu’à Bernard Peseux, mon directeur de thèse puis de recherche, qui m’a fait confiance en m’associant à plusieurs co-encadrements de thèse.

Je remercie vivement Olivier Débordes, qui après avoir présidé mon jury de thèse en 1997, a accepté de présider mon jury d’habilitation, ainsi que Jacques Besson et André Chrysochoos pour l’intérêt qu’ils ont porté à mes travaux en acceptant d’en être les rapporteurs. Je remercie également Alain Combescure qui m’a fait l’honneur de participer à mon jury. En outre, je suis très reconnaissant à Claude Stolz, également rapporteur de ce travail, et Arnaud Poitou de leurs encouragements et conseils lors de la rédaction de ce mémoire.

Bien évidemment, je tiens à remercier les étudiants de DEA que j’ai encadrés. De plus, j’espère que les doctorants avec qui j’ai travaillé ou travaille encore au moment où j’écris ces lignes - je pense ici à Nicolas, Jessy, Grégory, Elisabeth et Jean-Benoît - n’ont pas eu à trop se plaindre de moi. J’espère surtout avoir réussi à leur « apprendre la Recherche », ou du moins ce que j’en connais ..., et à leur avoir donner envie de continuer dans une carrière de chercheur, que ce soit à l’Université ou dans l’industrie.

Finalement, je remercie tous mes collègues de l’École Centrale de Nantes avec qui j’ai travaillé, aussi bien dans le cadre de la recherche que de l’enseignement. Pour conclure cette difficile épreuve des remerciements, je veux remercier tout particulièrement mes « amis mais néanmoins collègues », Laurent Gornet, Gilles Marckmann et Jean-Pierre Regoin, pour toutes nos discussions fructueuses qu’elles portent sur la Recherche ou sur tout autre sujet.

Nantes, le 10 novembre 2003

Erwan Verron
Modélisation du comportement des structures et des matériaux élastomères
Introduction

Ce document présente mes activités de recherche, depuis ma thèse de doctorat sur la mise en forme des thermoplastiques à la mise en place du Groupe de Travail sur la Fatigue des Élastomères. Au travers de sa rédaction, trois objectifs sont visés. Il s’agit tout d’abord de présenter de façon synthétique les différentes thématiques abordées et de mettre en exergue les principaux résultats scientifiques obtenus. En second lieu, ce document permet d’expliquer et de justifier l’évolution de mes sujets de recherche, en insistant principalement sur la dualité structures-matériaux des différents thèmes. Finalement, ceci me conduira à proposer les voies futures de travail pour ces thématiques. Dans ce mémoire, j’ai essayé de formuler ces perspectives le plus précisément possible, notamment celles concernant la modélisation du comportement des élastomères puisqu’elles sont déjà abordées.

Le présent mémoire est divisé en trois chapitres. Le premier chapitre, assez court, rappelle tout d’abord les principaux résultats obtenus durant ma thèse, puis l’extension qui en a été faite par Nicolas Chevaugeon au début de son travail de doctorat. Ces rappels sont rassemblés sous le vocable de « travaux initiaux ». Ensuite, l’évolution de mes thématiques de recherche est exposée. Cette transition est justifiée par les compétences acquises au travers des travaux initiaux et du contexte général du Laboratoire. Ce paragraphe sert évidemment à introduire les deux chapitres suivants qui présentent les résultats scientifiques obtenus.

Le second chapitre est dédié aux études visant à modéliser le soufflage des membranes souples en grandes déformations. En premier lieu, deux nouveaux éléments finis sont présentés : l’un, fondé sur des fonctions splines, est adapté aux problèmes axisymétriques, l’autre assouplit l’élément classique Q4 dans le cas non-axisymétrique. Finalement quelques résultats concernant la stabilité et le comportement post-critique des membranes sont proposés. La plupart de ces études ayant fait l’objet de publications, ce chapitre est assez succinct.

Le troisième et dernier chapitre s’intéresse à la modélisation du comportement des élastomères. Comme cette thématique de recherche est assez récente, une très grande part de ce chapitre est consacrée à la description des différentes caractéristiques du comportement de ces matériaux, ainsi qu’à l’état de l’art relatif aux modèles de comportement (présenté en annexe). Ce bilan me conduit à proposer les voies qui me paraissent devoir être suivies dans l’avenir pour développer des lois de comportement adaptées aux défis industriels actuels, notamment en termes de simulation. Finalement, nos premiers travaux concernant la modélisation de l’effet Mullins dans les élastomères sont présentés.

Ce mémoire est conclu par les perspectives visées à court, moyen et long termes, ainsi que les approches proposées pour les aborder.

Remarques sur la rédaction. Dans ce mémoire, je me suis attaché à faire figurer les résultats essentiels dans le corps du texte. Les aspects plus précis des études menées sont le plus souvent décrits dans les légendes des figures qui les illustrent. Ce choix rend les légendes des figures
assez longues mais facilite, à mon avis, la lecture du document. D’autre part, les publications et communications relatives à chaque étude sont mentionnées au début des différents paragraphes en faisant référence à ma liste de publications personnelles présentée dans l’annexe B.
Chapitre 1

Premiers travaux et transition vers de nouvelles thématiques

Ce premier chapitre présente tout d’abord brièvement les résultats obtenus lors de ma thèse concernant la simulation des procédés de soufflage et de thermoformage des polymères thermoplastiques. En second lieu, l’extension de ces résultats au cas des matériaux renforcés par des fibres orientées, donc isotropes transverses, est exposée. Ces travaux ont été menés par Nicolas Chevaugeon au début de sa thèse.

L’expérience acquise lors de ces études, ainsi que le contexte général de recherche au Laboratoire m’ont conduit à faire évoluer mes activités de recherche. Cette transition vers de nouvelles thématiques est développée en conclusion du présent chapitre.

1.1 Premiers travaux

1.1.1 Résumé du travail de thèse

Le travail de recherche s’inscrit dans le cadre général de la simulation numérique des procédés industriels de mise en forme des corps creux plastiques. Les trois procédés concernés sont le moulage par extrusion-soufflage, le moulage par injection-étirement-soufflage et le thermoformage. Ces trois procédés suivent le même principe général : élaboration d’une structure mince de matériau polymère thermoplastique (polyéthylène, polyester...) appelée paraison, chauffage de celle-ci à la température de mise en forme puis finalement soufflage à l’intérieur d’un moule creux. Ces procédés permettent de fabriquer des bouteilles alimentaires (procédé d’injection-étirement-soufflage), des récipients de forme complexe comme des jerricans (procédé d’extrusion soufflage illustré sur la figure 1.1) ou encore des boîtiers (procédé de thermoformage).

Dans ce contexte, la simulation numérique vise à élaborer des outils de calcul fiables pour répondre aux demandes industrielles de maîtrise des procédés, notamment pour l’aide à la conception des moules ainsi que pour la prédiction de l’épaisseur des pièces finales, dans une optique de réduction des coûts de matière. Ce domaine de recherche est assez récent, puisque les
Modélisation du comportement des structures et des matériaux élastomères

premiers travaux faisant état de l’utilisation de la méthode des éléments finis pour la simulation numérique de ces procédés datent de la fin des années 80 (voir l’article de Zamani et al. (1989) et l’introduction de Marckmann et al. (2001) pour les travaux ultérieurs).

Dans ce projet, nous nous sommes plus particulièrement intéressés au comportement des polymères thermoplastiques à leur température de mise en forme ainsi qu’au développement d’un code de calcul efficace pour la simulation des procédés industriels. Ceci nous a conduit à considérer trois aspects complémentaires du problème : théorique pour l’étude des lois de comportement des matériaux, expérimental pour la caractérisation et l’identification de ces lois, et enfin numérique pour le développement d’un outil de calcul fiable. Ces trois aspects sont brièvement présentés dans la suite.

Modélisation du comportement des polymères thermoplastiques semi-fondus

Les polymères thermoplastiques chauffés à haute température ont un comportement très proche de celui du caoutchouc à la température ambiante : très grandes déformations (jusqu’à 500-600%), non-linéarité de la relation contrainte-déformation, comportement élastique ou viscoélastique. Nous avons donc recensé et étudié de manière très complète les formulations hyperélastiques et viscoélastiques non-linéaires permettant d’approcher le comportement de ces matériaux. Cette étude bibliographique des modèles existants ainsi que l’analyse de leur performance relativement à leur simplicité mathématique ont permis de privilégier l’utilisation d’un modèle hyperélastique d’Ogden (1972) et d’un modèle viscoélastique non-linéaire CBT (Chang et al., 1977) que nous avons par ailleurs amélioré. Dans la suite de l’étude, ces modèles ont été utilisés pour la caractérisation expérimentale et la simulation numérique.

Caractérisation des matériaux sous chargement équi-biaxial

Du point de vue expérimental, nous avons développé une méthode originale de caractérisation des matériaux. En effet, compte tenu du caractère biaxial des sollicitations auxquelles est soumise la paraison lors de sa mise en forme, il n’est pas raisonnable d’utiliser les montages classiques de traction uniaxiale ou de cisaillement pour déterminer des constantes matérielles qui seront utilisées ensuite lors de la simulation des procédés industriels. À l’IMI, j’ai donc réalisé un montage expérimental consistant à gonfler des membranes planes circulaires initialement chauffées. Ce montage est inspiré des travaux proposés pour les caoutchoucs (Trelor, 1943; Feng, 1992) et repris récemment par Reuge et al. (2002), et pour les polymères dans l’état semi-solide aussi.
bien à froid qu’à chaud (Denson et Gallo, 1971; Joye et al., 1972; Schmidt et Carley, 1975a,b). Cette approche permet l’obtention de déformations biaxiales très proches de celles rencontrées lors des procédés industriels. Au cours de ces expériences, nous enregistrerons l’évolution de la pression de soufflage à l’intérieur de la bulle et nous filmerons la déformation de celle-ci. La figure 1.2 présente le schéma du montage expérimental et la figure 1.3 montre trois vues de la bulle lors de son soufflage.

![Diagram](image1.png)

Fig. 1.2 — Montage expérimental de soufflage de membrane.

![Images](image2.png)

Fig. 1.3 — Trois phases de l’expérience de soufflage. Les cercles concentriques, ainsi que les méridiens sur la bulle permettent de mesurer les déformations a posteriori. Un système de miroirs est utilisé pour effectuer les mesures suivant différentes vues. Comme le montre la troisième photo, les erreurs de mesure sont assez importantes.

Pour tester et valider cette approche, une campagne d’essais a été menée sur l’Acrylonitrile Butadiène Styène (ABS) autour de 150°C. La bulle a été gonflée sous différents débits d’air et le caractère viscoélastique du matériau, la déformation dépendant de la vitesse de sollicitation, ainsi que l’évolution non-monotone de la pression à l’intérieur de la bulle ont été mis en évidence. En fait, la pression dépend fortement de l’état de déformation et ne peut pas être imposée comme un chargement extérieur, ce qui nécessite certaines précautions lors des simulations numériques. Dans le même temps, nous avons mis au point une méthode de recalage permettant de s’affranchir des hypothèses faites par la plupart des auteurs, notamment sur la sphéricité de la bulle au voisinage du pôle. Cette méthode est fondée sur la résolution exacte des équations régissant le mouvement de la membrane soufflée. Cette difficulté supplémentaire du point de vue théorique présente un avantage indéniable du point de vue expérimental puisqu’elle permet de simplifier
les mesures, seules la pression interne et la hauteur de la bulle devant être échantillonnées. L'utilisation conjointe des mesures effectuées sur l'ABS et du programme de recalage a permis d'identifier les constantes matérielles des lois de comportement que nous avions choisies (Ogden et CBT). La figure 1.4 présente la comparaison des résultats expérimentaux et des résultats identifiés pour les évolutions de la hauteur et de la pression lors du soufflage.

![Graphique de résultats expérimentaux et identifiés](image)

Fig. 1.4 – Résultats du recalage sur l’ABS pour le modèle CBT : (1) expériences, (—) modèle identifié. (a) Hauteur de la bulle mesurée et imposée comme condition aux limites dans le programme de recalage. (b) Courbes de pression sur lesquelles est appliqué l'algorithme de minimisation de l'erreur entre les essais et la simulation numérique.

Mise en œuvre numérique

Confortés par les résultats obtenus expérimentalement, un logiciel complet de simulation numérique des procédés industriels a été développé au Laboratoire. Ce code de calcul utilise la méthode des éléments finis et permet de traiter des problèmes géométriques tridimensionnels. Dans cet outil, les paraisons initiales sont discrétisées par des éléments triangulaires membranes isoparamétriques à trois nœuds soumis à de grandes transformations. Les lois de comportement hyperélastiques et viscoélastiques non-linéaires étudiées précédemment y sont implantées. Compte tenu des phénomènes physiques intervenant dans les procédés, mais aussi des difficultés numériques rencontrées lors de la résolution des équations quasi-statiques, une approche lagrangienne totale et une formulation dynamique explicite ont été choisies (Verron et al., 2001) (ce type de formulation est classiquement utilisé pour la simulation de la mise en forme des métaux par emboutissage). D’autre part, il est admis, dans la bibliographie, que lorsque la paraison chaude entre en contact avec le moule froid, celle-ci se raidit immédiatement et ne peut plus être déformée par le soufflage de l’air. En conséquence, un module de contact collant a été développé : la détection du contact se fait entre la trajectoire des nœuds de la paraison et les facettes triangulaires du moule. À ce code de calcul de base, nous avons ajouté deux modules originaux particulièrement bien adaptés à la physique des phénomènes rencontrés lors des procédés et donc aux préoccupations industrielles. Tout d’abord, le chargement peut se faire par un débit imposé de gaz et non plus seulement par incréments de pression. La thermodynamique du gaz est ainsi
prise en compte et l’évolution de la pression interne lors du procédé est calculée. La résolution numérique est rendue plus stable, puisqu’elle ne nécessite pas de méthode de longueur d’arc pour calculer la chute de pression. De plus, compte tenu des grandes variations de géométrie subies par les éléments au cours de la simulation, nous avons été amenés à développer un module de raffinement automatique du maillage. Cette subdivision des triangles se fait sur des critères géométriques. Elle permet de simplifier la tâche de l’utilisateur qui n’a plus à se préoccuper du maillage initial. Ce logiciel a été validé à partir de résultats analytiques et expérimentaux (Marckmann et al., 2001). Un exemple de validation est fourni sur les figures 1.5 et 1.6. Le test consiste à étudier le thermoformage d’un récipient cylindrique, ce résultat est présenté dans Marckmann et al. (1998).

Fig. 1.5 – Quatre phases du thermoformage d’un récipient cylindrique. Lors de ce calcul, le module de remaillage automatique a été utilisé : le maillage initial de 27 éléments se subdivise finalement en 996 éléments à la fin de la simulation du procédé.

Fig. 1.6 – Validation du code de calcul : répartition de l’épaisseur finale du récipient cylindrique, (I) points expérimentaux d’après deLorenzi et Nied (1991), (◦) éléments finis.

De plus, toujours en collaboration avec l’IMI, nous avons simulé l’extrusion-soufflage d’une bouteille de lessive. L’évolution de l’épaisseur de cette bouteille est présentée sur la figure 1.7. Cet exemple illustre bien les capacités de notre logiciel dans un cadre industriel.
Fig. 1.7 – Trois phases de l’extrusion-soufflage d’une bouteille de lessive : évolution de l’épaisseur. Des mesures expérimentales ont été effectuées et ont permis de démontrer le peu d’influence de la loi de comportement sur la répartition finale d’épaisseur (voir Marckmann et al. (2001) pour les détails).

1.1.2 Extension du travail de thèse : thermoformage de polymères renforcés de fibres alignées

Dès ma nomination en tant que maître de conférences au Laboratoire, j’ai poursuivi mes travaux sur la mise en forme des polymères thermoplastiques au travers de l’encadrement de la thèse de Nicolas Chevaugeon. En effet, ce travail de doctorat a débuté en septembre 1998 et portait sur le comportement des membranes anisotropes. La première partie de cette thèse s’est déroulée en collaboration avec l’IMI et visait à étendre mes travaux au cas des membranes élastiques non-linéaires isotropes transverses, afin de simuler le thermoformage des thermoplastiques contenant des fibres moyennes ou longues alignées qui suivent la matrice polymère.

Quelques références bibliographiques

En fait, la première étude menée durant cette thèse a permis d’adapter le code de calcul présenté dans le paragraphe précédent aux cas des matériaux hyperélastiques isotropes transverses. L’étude bibliographique a mis en lumière le faible nombre d’études relatives à ce problème. En effet, concernant le procédé industriel de thermoformage, on peut relever les travaux expérimentaux de Bhattacharyya et al. (1993), et numériques de deLuca et al. (1995), et Pickett et Johnson (1996) qui utilisent des modèles fluides visqueux, classiques pour la simulation du procédé d’injection. Dans une optique de simulation numérique, l’extension de l’hyperélasticité isotrope aux problèmes anisotropes est un problème assez récent (Holzapfel et al., 1996; Weiss et al., 1996; Bonet et Burton, 1998; Rüter et Stein, 1999; Reese et al., 2001) qui trouve ses applications les plus fréquentes dans l’étude des tissus biologiques (Jemiolo et T elega, 2001; Limbert et Taylor, 2002; Bischoff et al., 2002). Concernant la simulation du gonflement de membranes hyperélastiques isotropes transverses, nous n’avons, comme Bonet et al. (2000) avant nous, relevé que l’article de Kyriacou et al. (1996). Dans cet article, les auteurs développent une formulation éléments finis tridimensionnelle et étudient quelques cas simples, en mentionnant les difficultés rencontrées pour confronter leurs résultats à des solutions existantes. Dans la suite,
les principaux résultats que nous avons obtenus sont très brièvement présentés.

Résumé de nos travaux

Considérons un matériau hyperélastique chargé de fibres alignées dans la direction locale a_0. Le comportement isotrope transverse du matériau est alors caractérisé par l’existence du groupe de symétrie g_5 défini par:

$$Q \in g_5 \iff QAQ^T = A$$ (1.1)

où Q est une transformation orthogonale, et où A désigne le tenseur d’orientation d’ordre 2 $a_0 \otimes a_0$. Dans le cas isotrope, il est bien connu que la fonction énergie de déformation du matériau se réduit à une fonction des trois premiers invariants du tenseur de Cauchy-Green droit C:

$$W = W(C) = W(I_1, I_2, I_3)$$ (1.2)

avec:

$$I_1 = \text{tr}C, \quad I_2 = \frac{1}{2}[I_1^2 - \text{tr}(C^2)], \quad I_3 = \text{det}C$$ (1.3)

Dans le cas isotrope transverse, Spencer (1984), ainsi que Smith et Rivlin (1994) ont montré que cette fonction énergie de déformation devait dépendre explicitement de A au travers de deux nouveaux invariants:

$$W = W(C, A) = W(I_1, I_2, I_3, I_4, I_5)$$ (1.4)

avec:

$$I_4 = \text{tr}(CA), \quad I_5 = \text{tr}(C^2A)$$ (1.5)

En utilisant la forme générale de l’énergie de déformation isotrope transverse (1.4), la relation contrainte-déformation lagrangienne est établie dans le cas incompressible:

$$S = -pC^{-1} + \sum_{i=1,2,4,5} \frac{\partial W}{\partial I_i} \frac{\partial I_i}{\partial C}$$ (1.6)

où S est le second tenseur des contraintes de Piola-Kirchhoff et p la pression hydrostatique, conséquence de l’hypothèse d’incompressibilité. Dans cette équation, les grandeurs $\partial I_i/\partial C$ sont aisément calculées (Chevaugeon et al., 2000), et les fonctions $\partial W/\partial I_i$ sont les paramètres matériels. L’implantation de ce type de modèles de comportement dans le code de calcul dynamique explicite est identique à ce qui avait été fait précédemment pour les lois isotropes.

Les simulations qui ont été faites avaient pour objectifs de valider l’implantation numérique et de tester la faisabilité de tels calculs dans le cadre de la simulation du thermoformage. Dans ce contexte, un modèle de comportement très simple, identique à celui de Kyriacou et al. (1996), a été adopté:

$$W = C_1 (I_1 - 3) + C_2 (I_2 - 3) + C_f (I_4 - 1)$$ (1.7)

où C_1 et C_2 sont les paramètres matériels du modèle isotrope de Mooney (1940), et C_f traduit le comportement des fibres. Cette forme de W est donc la plus simple généralisation isotrope transverse du modèle classique de Mooney-Rivlin.

Le premier exemple étudié s’intéresse au soufflage libre d’une feuille carrée encastrée suivant son contour. Pour reproduire entièrement le problème traité par Kyriacou et al. (1996), elle est pré-étirée de 10% dans les deux directions de son plan. La forme (1.7) de W est utilisée avec $C_1 = 1, C_2 = 0$ et $C_f = 1$. La figure 1.8 montre les configurations déformées de cette membrane lors du soufflage, pour deux orientations des fibres. La validation de notre approche est faite en
comparant nos résultats avec ceux de Kyriacon et al. Cette comparaison est présentée sur la figure 1.9.

Le second exemple présenté s’intéresse à un cas simple de thermoformage. On considère la membrane qui vient d’être étudiée et on la met en forme à l’intérieur d’un moule cubique. Comme précédemment, le modèle néo-hookeen isotope transverse est utilisé, mais à présent le paramètre C_f est fixé à 3 pour amplifier les effets de l’anisotropie. Les résultats obtenus pour les membranes isotope et isotope transverse sont comparés sur la figure 1.10. Il est classiquement reconnu que la loi de comportement utilisée pour la simulation de la mise en forme de matériaux isotropes n’a que peu d’influence sur la répartition finale d’épaisseur (deLorenzi et Nied, 1991), le problème étant essentiellement géométrique. Ici, il est évident que la loi de comportement, et principalement le rapport des raideurs entre la matrice et les fibres influence très sensiblement la répartition finale de l’épaisseur.

1.2 Transition vers de nouvelles thématiques

Les études qui viennent d’être présentées ont donc été menées durant la préparation de ma thèse et durant la première année qui a suivi ma nomination au poste de maître de conférences à l’ECN (1998-1999). Par la suite, nous avons cherché des partenaires industriels pour continuer à travailler sur la simulation numérique des procédés de mise en forme par soufflage des thermoplastiques. En effet, cette thématique très appliquée ne pouvaient être poursuivie qu’au
Chap. 1. Travaux de thèse et transition vers de nouvelles thématiques

19

angle

Hauteur du pôle

0.258
0.259
0.26
0.261
0.262
0.263
0.264
0.265
0.266
0.267
0.268
0.269
0.27

Résultats de Kyriacou
Nos résultats

Fig. 1.9 – Soufflage d’une membrane carrée isotrope transverse : hauteur de la bulle en fonction de l’angle d’orientation initiale des fibres, \((\overline{X}, a_0)\). La différence entre nos résultats et ceux de Kyriacou et al. (1996) n’excède pas 0,1%, même si les approches suivies sont très différentes. En effet, nous utilisons une formulation dynamique explicite avec des éléments finis T3, et Kyriacou et al. ont développé une formulation statique implicite avec des éléments finis de type Q4.

Fig. 1.10 – Répartition de l’épaisseur lors du thermoformage dans un moule cubique : (a) cas isotrope, (b) cas isotrope transverse.

travers de partenariats avec l’industrie. Ces recherches de collaboration n’ont pas porté leurs fruits. C’est la raison pour laquelle il m’a fallu faire évoluer mes thématiques de recherche afin de pallier cette absence de partenaire.

Ceci m’a conduit à recenser les compétences que j’avais acquises lors de ces études initiales, ainsi que les domaines de recherche auxquels elles pouvaient s’appliquer. J’ai ainsi identifié deux domaines de compétences distincts : la modélisation et la simulation des membranes souples en grandes déformations, et la modélisation du comportement des matériaux hyperélastiques.
et viscoélastiques en grandes déformations. Le premier domaine peut être qualifié par le terme « structure » puisqu’il intègre des compétences en modélisation mécanique et en méthodes numériques, principalement la méthode des éléments finis, pour les problèmes fortement non-linéaires. Ce domaine est le plus proche de ma formation initiale d’ingénieur calcul des structures.

Le second domaine relève de la « mécanique des matériaux » et s’appuie sur les études que nous avons menées sur les modèles de comportement des matériaux de type caoutchouc, les méthodes d’identification des paramètres matériels et l’implantation numérique des modèles non-linéaires. Ces compétences me permettent d’aborder les problèmes relatifs au comportement des matériaux polymères en grandes déformations, principalement les polymères thermoplastiques et les élastomères.

Ainsi, à partir de ce bilan de compétences, j’ai poursuivi depuis 1999 mes travaux dans deux directions.

– La modélisation du soufflage des membranes en grandes déformations. Cette première thématique vise à améliorer les méthodes de simulation, principalement par la définition de nouvelles méthodes d’interpolation, mais aussi à explorer la réponse complexe de ces structures notamment leur stabilité. Ces travaux restent assez théoriques et n’ont pas, a priori, d’applications directes dans l’industrie.

– La modélisation du comportement des matériaux élastomères. Ma seconde thématique de recherche s’intéresse aux modèles de comportement applicables aux élastomères, avec pour principal objectif la prédiction de la durée de vie en fatigue des pièces anti-vibratoires. À l’inverse de la précédente, cette thématique s’appuie sur de très étroites collaborations avec des industriels du secteur automobile.

Les deux chapitres qui suivent développent successivement ces deux thématiques.
Bibliographie

Chapitre 2

Soufflage de membranes en grandes transformations

Introduction

Dans ce chapitre sont présentés les travaux relatifs à la modélisation et à la simulation du comportement des membranes hyperélastiques en grandes déformations. Le cadre général de ces travaux est la simulation du soufflage de membranes souples soumises à de très grandes déformations. La pression de gonflage est supposée uniforme à l’intérieur de la membrane. Les matériaux considérés se comportent comme le caoutchouc: ils sont supposés isotropes et incompressibles, et les lois de comportement utilisées sont hyperélastiques. Ce type d’études est nécessaire à la compréhension des phénomènes mis en jeu dans des domaines divers, comme par exemple la biomécanique pour comprendre la réponse des membranes biologiques aux sollicitations mécaniques (Beatty, 1987), ou pour la simulation de la mise en forme des corps creux en plastique (voir le paragraphe 1.1 p. 11).

Ce chapitre est composée de trois parties. En premier lieu, un bref état de l’art du domaine est proposé. Les travaux recensés se limitent strictement aux trois aspects du problème qui nous intéressent: les formulations axisymétriques et non-axisymétriques, ainsi que les problèmes d’instabilité. Dans la deuxième partie sont présentées deux formulations de type éléments finis adaptées aux problèmes de soufflage. L’objectif de ces deux modèles est la réduction du nombre de degrés de liberté nécessaires à l’étude des membranes en grandes transformations en améliorant les méthodes d’interpolation. La première formulation s’intéresse à l’utilisation de fonctions splines pour interpoler les membranes axisymétriques, et la seconde enrichit l’élément fini Q4 classique afin d’assurer la continuité de la métrique pour les applications non-axisymétriques. Finalement, la troisième et dernière partie présente quelques résultats relatifs aux problèmes d’instabilité et de bifurcation qui apparaissent lors du gonflage de membranes souples.

Remarque. Ces travaux sont présentés ici de manière succincte. Pour de plus amples détails, le lecteur peut se référer aux diverses publications et communications dont ils ont fait l’objet,
Modélisation du comportement des structures et des matériaux élastomères

ainsi qu’au mémoire de thèse de Nicolas Chevaugeon.

2.1 État de l’art

La mise en équations des problèmes de soufflage de membranes élastiques en grandes transformations a été établie dans les années 50-60 par Adkins et Rivlin (1952), puis Green et Adkins (1960). Afin de situer nos propres travaux, on se propose dans ce paragraphe de faire un bref état de l’art des travaux effectués pour résoudre ces équations. Les deux premiers paragraphes seront successivement consacrés aux cas axisymétriques et non-axisymétriques. Ici, nous avons choisi de distinguer ces deux types de problèmes afin de mettre en évidence l’importance des méthodes de résolution semi-analytiques dans le cadre axisymétrique. Finalement, les études relatives à la stabilité de ces structures seront succinctement présentées.

Remarque. Ici, seuls les problèmes quasi-statiques sont abordés, les travaux concernant la réponse dynamique des membranes étant assez rares (Akkas (1978); Jenkins et Leonard (1991); Jiang (1996); Jenkins (1996); Verron et al. (1999); Roussos et al. (2002) et les références plus anciennes figurant dans ces articles).

En fait, depuis le début des années 1980, les méthodes de résolution qui viennent d’être
évoquées ont été progressivement remplacées par des méthodes numériques, et principalement
par la méthode des éléments finis. Dans la plupart des cas, les auteurs adoptent une formulation
lagrangienne totale, des éléments finis de type membrane à deux nœuds, et utilisent l’algorithme
de Newton-Raphson pour résoudre le système non-linéaire. Un aspect important concerne la
prise en compte de l’hypothèse d’incompressibilité du matériau du point de vue numérique. En
effet, il est bien connu que cette hypothèse induit des difficultés importantes pour les calculs
effectués avec des structures épaisses. Dans le cas des membranes, cette difficulté est supprimée
en considérant l’hypothèse des contraintes planes. En effet, seul l’équilibre de la surface moyenne
de la membrane est vérifié et son épaisseur dans l’état déformé est calculée a posteriori en ap-
pliquant le principe de conservation du volume élément par élément. Le premier article utilisant
cette méthode est publié par Oden et Sato (1967). Plus récemment, Charrier et al. (1987) ont
étudié le soufflage libre et confiné de membranes pour des lois de comportement hyperélastiques
(modèle néo-hookeen). De la même façon, Warby et Whiteman (1988) proposent une formu-
lation viscoélastique du problème. Dans les années 90, plusieurs formulations éléments finis de
membranes en très grandes déformations ont été proposées (Wriggers et Taylor, 1990; Haddow
métodhes des éléments finis et des différences finies pour étudier le soufflage des membranes de
type Mooney-Rivlin. Ils démontrent que le soufflage avec contact, utilisé dans le cadre de la mise
en forme, peut être vu comme une série de problèmes de soufflage libre pour différentes parties
de la membrane.

Problèmes non-axisymétriques Pour les problèmes n’admettant pas de symétrie axiale, les
équations aux dérivées partielles d’équilibre de la membrane ne se réduisent plus à un système
d’équations différentielles ordinaires. La résolution du problème nécessite donc l’utilisation de
méthodes numériques, la méthode des éléments finis dans la plupart des cas.

Les premiers travaux proposant des solutions pour des problèmes non-axisymétriques n’utili-
sent pas la méthode des éléments finis. Yang et Lu (1973) utilisent la méthode des différences
finies, et Feng et Huang (1974) minimisent l’énergie potentielle par une méthode d’optimisa-
tion. Plus récemment, Khayat et Derdouri (1994b) ont développé une méthode hybride éléments
finis/différences finies (similaire à celle proposée dans le cadre axisymétrique proposée par les
mêmes auteurs et citée plus haut). Cette méthode facilite le traitement du contact pour les
problèmes de soufflage confiné (Khayat et Derdouri, 1995).

Plus classiquement, les auteurs utilisent la méthode des éléments finis. Les choix de modélisa-
tion et de résolution sont identiques à ceux effectués pour les problèmes axisymétriques, les
éléments finis adoptés ici étant le plus souvent des T3. La bibliographie concernant la simulati-
don des procédés de mise en forme par soufflage étant établie par ailleurs (Marckmann et al.,
2001), seuls seront cités les travaux à caractère plus général. Ainsi, Charrier et al. (1989), puis
Shrivastava et Tang (1993) s’intéressent au soufflage libre et confiné de membranes respecti-
vement élastiques (modèle de Mooney-Rivlin) et viscoélastiques (modèle intégral de Christensen).
Dans ces articles, l’opérateur tangent est évalué numériquement, et les auteurs rapportent des
problèmes de convergence dans les phases instables, c’est-à-dire lorsque la pression de gonflage
diminue. Pour leur part, Gruttmann et Taylor (1992), et De Souza Neto et al. (1995) calculent
exactement l’opérateur tangent, ce qui assure la convergence quadratique de l’algorithme de
Newton-Raphson. Finalement, mentionnons l’article récent de Bonet et al. (2000) qui s’intéresse
au cas des membranes fermées et remplies de gaz. Ces membranes sont soumises à des charge-
ments extérieurs qui modifient leur forme et la pression du gaz à l’intérieur de la membrane.

Pour les travaux relatifs aux membranes anisotropes, le lecteur peut se référer au rappel
bibliographique du paragraphe 1.1.2 p. 16.
Modélisation du comportement des structures et des matériaux élastomègres

Les articles relatifs à la stabilité des membranes non-axisymétriques en grandes transformations sont plus rares. À notre connaissance, seuls Reese et Wriggers (1995) ont exploré les branches secondaires asymétriques pour ce type de problème.

2.2 Développement d’éléments finis pour les membranes hyperélastiques en grandes déformations

À la lumière de la bibliographie, notamment celle portant sur les approches numériques, il apparaît que les grandes déformations subies par les membranes conduisent souvent à considérer des maillages très fins ou à mettre en œuvre des méthodes de remaillage automatique. Dans ce contexte, nous avons proposé deux nouveaux éléments finis plus « riches » que les formulations classiques, qui permettent de s’affranchir de ces difficultés.

Tout d’abord, pour les problèmes axisymétriques, Gilles Marckmann et moi-même avons construit une interpolation originale utilisant les B-splines. Ensuite, Nicolas Chevaugeon a proposé dans son travail de thèse un élément adapté aux problèmes non-axisymétriques. Celui-ci assure la continuité des tangentes en chaque nœud ; en pratique, la théorie a été appliquée à un quadrilatère à quatre nœuds pour développer l’élément Q4TC (Q4 à Tangente Continue).

2.2.1 Une interpolation spline pour les membranes axisymétriques

Mise en équations La géométrie d’un problème de soufflage d’une membrane axisymétrique peut être résumée par la figure 2.1. La description de la membrane se fait évidemment en coordonnées cylindriques. Les épaisseurs initiale et finale de la membrane sont notées respectivement \(H \) et \(h \). Dans chaque plan \(\theta = \text{Cte} \), chaque point matériel \((r,z)\) de la configuration déformée \(B \) est le transformé d’un point \((R,Z)\) de la configuration non-déformée \(B_0 \). Ainsi, les configurations de la membrane au cours du soufflage se réduisent à des courbes 1D et toutes les fonctions introduites \((R,Z,r,z,H,h)\) ne dépendent que de l’abscisse curviligne réduite \(s \) mesuré le long de...
la courbe non-déformée et qui varie entre 0 et 1. Pour les problèmes axisymétriques, les trois directions principales de déformation sont connues en tout point puisqu’il s’agit des directions méridienne, circonférentielle et normale, notées respectivement 1, 2 et 3 sur la figure 2.1. De même, les extensions correspondantes (λ_i)$_{i=1,3}$, ainsi que la normale sortante en chaque point, n, sont aisément calculables en fonction de s (Yang et Feng, 1970).

Pour un soufflage statique, le Principe des Travaux Virtuels s’écrit simplement :

$$g(u, \delta u, p) = \int_{B_0} \delta W dV - \int_{\partial B} \delta u \cdot p n dS = 0 \quad \forall \delta u$$

(2.1)

où u est le vecteur déplacement, δu un déplacement virtuel, W la fonction énergie de déformation par unité de volume non-déformé du matériau, et p la pression de soufflage. La seconde intégrale de l’équation se fait sur la frontière de la membrane déformée puisque la force de pression est une force suivante. Dans le cadre axisymétrique et avec les notations introduites, le résidu précédent se réduit à :

$$g(u, \delta u, p) = \int_0^1 2\pi RLH (\pi_1 \delta \lambda_1 + \pi_2 \delta \lambda_2) ds - \int_0^1 2\pi pr \left(\delta u_r z_s - \delta u_z r_s \right) ds$$

(2.2)

où L est la longueur non-déformée de la membrane, π_1 et π_2 sont les premières contraintes principales de Piola-Kirchhoff, et δu_r et δu_z sont les déplacements virtuels suivant les directions radiale et longitudinale, respectivement. Cette formulation très générale s’applique à tous les matériaux hyperélastiques au travers de la fonction énergie de déformation W.

Interpolation La discrétisation de l’équation précédente (2.2) est faite en utilisant deux fonctions splines, une pour chacune des coordonnées R et Z. Pour ce faire, on considère des fonctions B-splines cubiques définies sur $[0,1]$ (voir l’ouvrage de De Boor (1978) pour la définition précise du cadre mathématique). Ainsi, l’interpolation peut s’écrire :

$$R(s) = \sum_{i=-1}^{n+1} \alpha_i B^i(s) \quad \text{et} \quad Z(s) = \sum_{i=-1}^{n+1} \beta_i B^i(s)$$

(2.3)
où \((\alpha^i)_{i=-1,n+1}\) et \((\beta^i)_{i=-1,n+1}\) sont les \(n+3\) paramètres respectifs des deux splines, et où les fonctions \((B^i(\xi))_{i=-1,n+1}\) sont les B-splines. D’un point de vue mathématique, ces splines s’appuient sur \(n+1\) points de contrôle. Dans notre cas, ces points de contrôle sont assimilés aux \(n+1\) noeuds de la discrétisation éléments finis.

Pour chaque spline, les paramètres doivent être déterminés. Pour cela, on utilise les coordonnées des \(n+1\) noeuds ainsi que les conditions aux limites du problème correspondant à \(s = 0\) et \(s = 1\). L’interpolation des positions devient alors :

\[
R(s) = \sum_{i=0}^{n} \alpha^i B^i_r(s) \quad \text{et} \quad Z(s) = \sum_{i=0}^{n} \beta^i B^i_z(s) \tag{2.4}
\]

où les fonctions B-splines modifiées \((B^i_r(s))_{i=0,n}\) et \((B^i_z(s))_{i=0,n}\) sont des combinaisons linéaires des fonctions classiques \((B^i(\xi))_{i=-1,n+1}\). Ces nouvelles fonctions dépendent des conditions aux limites, et diffèrent suivant la position des points extrêmes : sur l’axe de symétrie (membrane fermée) ou non (membrane ouverte). Il convient de noter que dans le cas des éléments finis linéaires de membrane, la prise en compte de la condition de tangence pour les membranes fermées, \(r_s = 0\), au(x) point(s) extrême(s) situé(s) sur l’axe de symétrie, est impossible et le calcul nécessite un raffinement important du maillage au voisinage de ce point (Hassager et al., 1999).

Finalement, comme pour les éléments finis isoparamétriques, les déplacements des points matériels \(u_r(s)\) et \(u_z(s)\), et leurs contreparties virtuelles, \(\delta u_r(s)\) et \(\delta u_z(s)\), sont interpolés à l’aide des fonctions interpolant les positions (Eq. (2.4)). L’utilisation de cette méthode d’interpolation pour la discrétisation de l’équation (2.2) nécessite quelques calculs qui ne sont pas rappelés ici.

Méthode numérique Considérons maintenant le problème discrétisé. En notant \(U\) le vecteur des déplacements qui contient les déplacements des noeuds dans les directions radiale \(U_r\) et axiale \(U_z\), l’annulation du résidu du problème (2.2) peut s’écrire sous la forme :

\[
\delta U^T [F_{\text{int}}(U) - F_{\text{ext}}(U,p)] = 0 \quad \forall \delta U^T \tag{2.5}
\]

où \(F_{\text{int}}(U)\) et \(F_{\text{ext}}(U,p)\) sont les vecteurs des forces intérieures et extérieures, et \(\delta U\) un vecteur de déplacements virtuels nodaux. Ce système d’équations est évidemment fortement non-linéaire de par :

- les grandes transformations ;
- la non-linéarité de la relation contrainte-déformation (voir le chapitre 3 consacré au comportement des élastomères) ;
- la force de pression suivie, qui se traduit par le fait que \(F_{\text{ext}}\) dépende de \(U\), c’est-à-dire de la configuration déformée de la membrane.

Ainsi, la résolution du problème (2.5) nécessite le calcul de l’opérateur tangent \(K\), mais aussi l’utilisation d’une méthode de longueur d’arc pour appréhender les chutes de pression qui apparaissent au cours du soufflage (Beatty, 1987). Les formules explicites des grandeurs \(F_{\text{int}}, F_{\text{ext}}\) et \(K\) sont données par Shi et Moita (1996) pour les éléments finis axisymétriques de membrane à deux nœuds, et par Verron et Marckmann (2001) pour les splines.

Exemples Pour illustrer notre théorie, deux exemples sont brièvement présentés. Le premier s’intéresse au soufflage d’une membrane cylindrique de rayon \(R_0\) et d’épaisseur \(H\) uniformes, encastrée à ses deux extrémités ; il est présenté en détails dans Verron et Marckmann (2001).
Comme l’ont montré Khayat et al. (1992), il n’existe pas de solution analytique simple, et le caractère très instable du problème rend sa résolution difficile. La prise en compte de la symétrie du problème permet de limiter l’étude au demi-cylindre. Celui-ci est interpolé à l’aide de 101 nœuds. Comme la plupart des auteurs, nous adoptons ici l’énergie de déformation de Mooney-Rivlin pour représenter le comportement du matériau :

\[W = C [(I_1 - 3) + \alpha (I_2 - 3)] \] (2.6)

où \(C \) et \(\alpha \) sont les deux constantes matériales. L’évolution de la pression à l’intérieur de la membrane en fonction de l’état de déformation est calculée grâce à la méthode de longueur d’arc. Elle est présentée sur la figure 2.2 pour trois valeurs du paramètre \(\alpha \) (en termes de grandeurs adimensionnelles). Pour ces trois mêmes valeurs, l’évolution de la géométrie de la membrane est fournie par la figure 2.3.

Le second exemple présenté concerne le soufflage d’une membrane circulaire plane (rayon unité et épaisseur uniforme) dont le comportement est approché par des modèles moléculaires. Il fait l’objet de l’article de Verron et Marckmann (2003a), et ici seuls quelques résultats sont présentés. Les modèles de comportement étudiés sont les modèles néo-hookéen (Treloar, 1943), 3-chaînes (James et Guth, 1943), 8-chaînes (Arruda et Boyce, 1993) et de réseau complet (Wu et van der Giessen, 1993). Dans ce paragraphe, la formulation de ces modèles n’est pas rappelée ; elle l’est dans l’annexe A p. 85, et leurs performances sont comparées dans le paragraphe 3.3.3 p. 69. Considérons une membrane circulaire initialement plane et gonflée sous un chargement de pression uniforme. Celle-ci est discrétisée par des splines comprenant 21 nœuds. Dans ce cas,
Fig. 2.3 – Configurations déformées successives du cylindre: (a) $\alpha = 0$, (b) $\alpha = 0.1$ et (c) $\alpha = 0.25$. Sur les graphes, on distingue l'apparition d'une hernie qui se propage le long de la membrane. Dans le cas $\alpha = 0$, cette hernie est très marquée et est encore présente pour de grandes déformations. Pour $\alpha = 0.1$, elle est beaucoup moins visible (déformée correspondant à $p = 0.87$) et disparaît en grandes déformations. Finalement, dans le cas $\alpha = 0.25$, le gonflage se fait de manière très régulière sans l'apparition de cette hernie. En fait, celle-ci n'existe que pour les configurations instables de la structure, et disparaît lorsque la configuration est stable. Ces résultats sont conformes à ceux de Kyriakides et Chang (1991), et de Verron et al. (2001).

at pôle (point défini par $r = 0$), la condition de tangence $r, s(0) = 0$ est vérifiée grâce à notre méthode d'interpolation. Les paramètres matériels utilisés sont ceux proposés par Wu et van der Giessen (1993). Pour les quatre modèles, ils ont été identifiés à l'aide des données expérimentales de James et al. (1975). Seuls quelques résultats qualitatifs sont proposés, l'étude quantitative étant détaillée par ailleurs (Verron et Marckmann, 2003a). Les courbes de réponse déformation-pression sont présentées sur la figure 2.4 pour les quatre modèles. De plus, les états déformés de la membrane au cours du soufflage, correspondant au quatre lois de comportement, sont fournis sur la figure 2.5.

2.2.2 Un nouvel élément fini à tangente continue pour les membranes non-axisymétriques

† Ces travaux n'ont pas été publiés jusqu'à présent. Ils sont détaillés dans le mémoire de thèse de Nicolas Chevaugeon (2002).

Motivation Dans la bibliographie, la plupart des études sur le soufflage de membranes non-axisymétriques utilisent des éléments finis triangulaires à trois nœuds (T3) (De Souza Neto et al., 1995; Verron et al., 2001) ou quadrangulaires à quatre nœuds (Q4) (Gruttmann et Taylor, 1992). Cependant, sous l'effet des grandes déformations, la géométrie de la membrane évolue considérablement lors du soufflage et les éléments linéaires sont très déformés, ce qui altère considérablement les résultats. Considérons le problème axisymétrique du cylindre encastré néo-
Chap. 2. Soufflage de membranes en grandes transformations

Fig. 2.4 – Évolution de la pression dans la bulle en fonction de la cote du pôle pour les quatre modèles de comportement. Comme pour les membranes sphériques et les tubes cylindriques, le modèle néo-hookeien présente un point limite et la pression décroît lentement vers 0 lorsque la déformation augmente, ce qui laisse entrevoir les limites de l’approche gaussienne. Pour les trois modèles non-gaussiens qui prennent en compte l’extensibilité limitée des chaînes, les courbes de réponse sont similaires : il existe deux points limites séparant deux branches stables et une branche instable. La première partie stable de la courbe, qui correspond aux faibles déformations, est la même pour les trois modèles, et est quasi-identique à la réponse de néo-hookeien. Ce résultat est évident puisque les modèles non-gaussiens se réduisent au modèle gaussien pour des déformations modérées (voir l’annexe A pour les détails). De plus, lorsque les chaînes approchent leur limite d’extensibilité, la pression augmente très rapidement et la courbe de charge admet une asymptote verticale dont la valeur dépend du modèle.

Hookéen présenté précédemment sur la figure 2.3(a). Dans ce cas, l’apparition d’une hernie entraîne de très fortes variations locales du rayon de courbure, et même son changement de signe au voisinage de l’encastrement. Pour évaluer les performances des éléments finis classiques, ce problème de soufflage est simulé sans tenir compte de la symétrie axiale et en utilisant des éléments Q4. Quelques étapes du phénomène sont présentées sur la figure 2.6. Comme le montre la dernière déformation globale et l’agrandissement effectué sur la zone voisine de l’encastrement, l’inversion de changement de courbure n’est pas reproduit de façon satisfaisante par le modèle. Un maillage très fin serait nécessaire dans cette zone, mais la position de celle-ci dans la configuration non-déformée n’est pas connue a priori.

Au regard de cet exemple, il apparaît que les calculs en grandes déformations nécessitent soit un maillage initialement très fin, soit un algorithme de raffinement automatique (fondé sur des considérations géométriques), soit l’utilisation d’éléments finis plus performants. C’est cette troisième possibilité que nous avons explorée.

Mise en équations – Dans le cadre non-axisymétrique, l’expression générale du Principe des Travaux Virtuels (2.1) reste évidemment valable. Considérons à présent la surface moyenne de
Modélisation du comportement des structures et des matériaux élastomères

Fig. 2.5 – Configurations déformées successives de la membrane plane : modèles (a) néo-hookeen, (b) 3-chaînes, (c) 8-chaînes et (d) de réseau complet. Les profils présentés correspondent aux hauteurs de pôle égales à 1, 2, … et au dernier profil obtenu avant la divergence numérique. Sur chaque profil est précisée la valeur de la pression de soufflage. Pour \(r_\text{pole} = 1 \) et 2, les profils sont similaires pour les quatre modèles, ce qui confirme les observations faites sur la courbe de charge. Pour des hauteurs de bulle plus grandes (\(r_\text{pole} \geq 3 \)), la membrane néo-hookeenne présente une forme presque sphérique, alors que la prise en compte de la limite d’extensibilité dans le modèle de comportement change considérablement la forme de la bulle.

La membrane. Les positions de chaque point matériel dans les configurations non-déformée, \(\mathbf{X} \), et déformée, \(\mathbf{x} \), peuvent alors être repérées par deux coordonnées convectives notées \(\theta_1 \) et \(\theta_2 \). De même, les épaisseurs non-déformée et déformée de la membrane, \(\mathbf{H} \) et \(\mathbf{h} \), sont des fonctions de ces coordonnées. En utilisant ces notations, la variation d’énergie de déformation de l’équation (2.1) peut s’écrire :

\[
\delta W = \mathbf{S} : \delta \mathbf{E} = \frac{1}{2} S^{\alpha \beta} (\delta \mathbf{u}_{\alpha}^T \mathbf{x}_{\alpha, \beta} + \delta \mathbf{u}_{\beta}^T \mathbf{x}_{\alpha, \beta})
\]

où \(\mathbf{S} \) est le second tenseur de Piola-Kirchhoff, \(\mathbf{E} \) le tenseur des déformation de Green-Lagrange, et où la notation ‘\(_{,\alpha} \) désigne la quantité \(\partial \cdot / \partial \theta_\alpha \). De même, la force de pression s’exerçant sur
Fig. 2.6 – Soufflage d’une membrane cylindrique encastrée à l’aide d’éléments finis Q_4: cinq étapes du calcul et agrandissement de la zone de l’enca斯特rement. Ici, le calcul est effectué avec 64 éléments finis. L’apparition d’un pli et d’un point anguleux (sans signification physique) sur la surface du cylindre rend la simulation erronée. Pour limiter l’erreur à 1% sur la courbe de réponse en pression (par rapport au résultat axisymétrique), nous avons dû utiliser 256 éléments finis Q_4, soit 891 degrés de liberté. Malgré cela, la géométrie de la membrane n’était toujours pas satisfaisante.

la surface déformée dans l’équation (2.1) devient :

$$-p \mathbf{n} dS = -p (x_1 \wedge x_2) d\theta_1 d\theta_2$$

(2.8)

Finalement, en désignant par S_0 et S les surfaces moyennes respectivement non-déformée et déformée, le résidu de (2.1) peut se mettre sous la forme suivante :

$$g(u, \delta u, p) = \int_{S_0} \frac{1}{2} H S^{\alpha \beta} (\delta u_\alpha x_{,\beta} + x_{,\alpha} \delta u_{,\beta}) \|X_{,1} \wedge X_{,2}\| d\theta_1 d\theta_2$$

$$- \int_{S} p \delta u^T (x_1 \wedge x_2) d\theta_1 d\theta_2$$

(2.9)

L’adoption de la méthode des éléments finis et le choix de l’interpolation conduit alors à un système discret du type (2.5). Les expressions du résidu et de l’opérateur tangent discrétisés sont détaillées dans le mémoire de thèse de Nicolas Chevaugeon (2002). Une fois le système discret assemblé, la méthode de résolution est identique à celle utilisée pour les problèmes axisymétriques et présentée précédemment.

Interpolation L’objectif étant de construire un élément fini plus « souple », nous avons choisi de développer une formulation qui assure la continuité de la métrique aux nœuds. Pour cela, on définit le vecteur position initiale généralisée :

$$\hat{\mathbf{X}} = \{\mathbf{X}; X_{,1}; X_{,2}\}$$

(2.10)
qui contient la position du nœud ainsi que les vecteurs tangent à la membrane en ce point.
Ainsi, en considérant une formulation isoparamétrique, chaque nœud de l’élément fini admet
neuf degrés de liberté (les trois composantes des vecteurs de \(\hat{X} \)). Cette approche a été appliquée
à l’élément classique Q4, pour définir un nouvel élément que nous avons appelé Q4TC (pour
Tangente Continue). Cet élément est représenté sur la figure 2.7(a). En considérant un élément
de référence classique, sur lequel \(\theta_1 \) et \(\theta_2 \) varient entre -1 et 1, les fonctions de forme peuvent
tre assez aisément établies (voir fig. 2.7(b)). L’utilisation de cette interpolation dans l’équation

\[
(2.9)
\]
conduit au système discret non-linéaire à résoudre sous la forme (2.5).

Quelques difficultés à résoudre Si le paragraphe précédent met l’accent sur la simplicité
de l’approche retenue, il n’en reste pas moins que l’utilisation de cet élément nécessite quelques
précautions. Celles-ci sont au nombre de trois.

- **Changement de paramétrage.** Dans le vecteur position généralisée (2.10), les coordonnées
des dérivées de la position sont définies par rapport au paramétrage élémentaire. Dans le
cas général, la membrane est définie par un paramétrage global et les variables nodales
du problème sont la position (ou le déplacement) des nœuds ainsi que leurs dérivées par
rapport à ce paramétrage global. C’est pourquoi, pour effectuer les calculs, il convient
d’utiliser un changement de paramétrage, assimilable à un changement de base. Dans un
premier temps, le passage du paramétrage global au local permet de calculer les résidus et
opérateurs tangents élémentaires ; puis le passage inverse (du paramétrage local au global)
est nécessaire pour effectuer l’assemblage. Ces formules de changement de paramétrage
ont été établies.

- **Connaissance des vecteurs tangents initiaux.** De par la formulation adoptée, le calcul néces-
site la connaissance des grandeurs \(\mathbf{X}_{1} \) et \(\mathbf{X}_{2} \) en chaque nœud de la membrane initiale
non-déformée. Pour les problèmes académiques, ce calcul ne pose pas de difficulté puisque
le paramétrage global est souvent très simple. Dans le cas de géométries complexes, il
convient d’avoir accès à une description paramétrique (au moins par morceaux) de la
géométrie initiale. Ceci peut être envisagé grâce aux outils modernes de CAO.

- **Conditions aux limites.** La mise en place des conditions aux limites, ou de symétrie, portant
sur les grandeurs dérivées est évidemment plus complexe que le simple « blocage » de
nœuds. Tous les cas de figure ont été étudiés par Chevaugeon (2002).
Exemples Ici, les problèmes du cylindre infini et du cylindre encastré sont étudiés. Dans le cas du cylindre infini, nous avons montré que l'utilisation de deux éléments Q4TC pour un quart de cylindre fournit une solution quasi-parfaite (moins de 0,1% d'écart avec la solution analytique) ; et que la solution avec un seul élément fini par quart de cylindre est déjà très acceptable (moins de 1% d’écart).

Les résultats relatifs au cylindre encastré sont présentés sur la figure 2.8. Ils font écho à ceux obtenus avec des éléments finis Q4 classiques décrits plus haut (voir fig. 2.6). Les résultats obtenus sont évidemment très intéressants, mais le seront d’autant plus pour des problèmes non-symétriques (comportement anisotrope ou problème de bifurcation par exemple). En effet, l’impossibilité de réduction du problème par la prise en compte de conditions de symétrie rendra plus performante l’utilisation de notre élément fini.

2.3 Application à l’étude de stabilité et de bifurcation

Pour illustrer les performances et l’intérêt des formulations précédentes, nous avons appliqué nos travaux à l’étude de la stabilité et du comportement post-critique des membranes soufflées. En effet, comme il l’a été souligné dans la synthèse bibliographique (paragraphe 2.1 p. 24), les courbes d’équilibre de ces structures admettent des points singuliers (aussi bien des points limites que des points de bifurcation) et donc parfois plusieurs branches.

Méthode utilisée L’objectif de notre étude est d’explorer complètement la courbe d’équilibre d’un problème donné. Cette courbe d’équilibre est constituée de la branche primaire, c’est-à-dire
Modélisation du comportement des structures et des matériaux élastomères

de la portion de courbe obtenue avec la méthode de longueur d’arc classique, et de branches secondaires, c’est-à-dire de portions de courbe émanant des points de bifurcation. Tout d’abord, rappelons qu’un point d’équilibre est dit stable si le déterminant de la matrice raideur de la structure est positif en ce point, et instable dans le cas contraire. Ce rappel étant fait, intéressons nous à présent à la méthode d’exploration des courbes d’équilibres. En fait, nous avons suivi la méthode classique décrite notamment dans les ouvrages de Crisfield (1991) et de Seydel (1994), et qui peut être divisée en quatre étapes distinctes.

1. Détection d’un point singulier. La première étape de l’étude consiste à détecter la présence d’un point singulier sur la courbe d’équilibre. Pour cela, il convient de définir un critère. Le critère le plus naturel est évidemment le changement de signe du déterminant de la matrice raideur tangente, mais celui-ci pose des difficultés numériques, puisque cette matrice est singulière aux points singuliers ! En s’inspirant des travaux de Sokół et Witkowski (1997), nous avons choisi d’utiliser le changement du nombre de valeurs propres négatives de la matrice tangente. Ce calcul étant assez coûteux, il n’a été utilisé que pour les problèmes axisymétriques et a été remplacé par le changement du nombre de pivots négatifs de cette matrice dans les cas non-axisymétriques, comme le proposent par exemple Shi et Moita (1996).

3. Nature du point singulier. Le point singulier étant isolé, sa nature, point limite ou de bifurcation, doit alors être déterminée. Pour cela, la valeur propre nulle est identifiée et son vecteur propre associé est calculé. Si ce vecteur est orthogonal au vecteur des efforts extérieurs \(\mathbf{F}_{\text{ext}} \) de l’équation (2.5), alors le point singulier est un point de bifurcation ; sinon c’est un point limite (Spence et Jepson, 1985).

Exemples Pour illustrer la méthode précédente, trois exemples, aussi bien axisymétriques que non-axisymétriques, sont présentés. Le premier s’intéresse au soufflage de deux ballons sphériques connectés. Ce problème a été abordé expérimentalement par Miller (1952), qui a souligné le caractère "étonnant" du phénomène. En effet, pour des valeurs de pression moyenne, l’équilibre du système est obtenu avec des ballons de rayons différents, alors que pour les faibles et fortes pressions, la symétrie du système est retrouvée. Diverses solutions analytiques de ce problème ont été proposées (Weinhaus et Barker, 1978; Nguyen, 1995; Müller, 1996). La difficulté de la résolution numérique du problème réside dans le fait que le premier point limite de la courbe
d’équilibre d’un ballon unique (qui correspond à la chute de pression mentionnée précédemment) est aussi un point de bifurcation du système de deux ballons. Dans ce travail, les modèles de Mooney-Rivlin et d’Ogden ont été considérés pour représenter le comportement du matériau. La formulation axissymétrique a été utilisée, tous les modes obtenus respectent donc la symétrie axiale. Les courbes d’évolution du volume des deux ballons sont présentées sur la figure 2.9(a) et (b), respectivement pour les modèles de Mooney-Rivlin et d’Ogden. Les résultats relatifs au modèle de Mooney-Rivlin rejoignent les résultats de la bibliographie cités plus haut et ont été publiés (Verron et Marckmann, 2003). Les résultats concernant le modèle d’Ogden sont, à notre connaissance, nouveaux et n’ont pas encore fait l’objet d’une publication.

Le deuxième exemple traité s’intéresse au comportement des membranes cylindriques encastrées, problème déjà abordé précédemment. Les calculs sont effectués en utilisant le modèle de Mooney-Rivlin. L’étude comprend deux étapes. Tout d’abord, la formulation axissymétrique est utilisée pour l’obtention des modes de bifurcation qui restent axissymétriques. La courbe d’équilibre correspondant au paramètre matériau α = 0,1, ainsi que la forme des modes sont présentées sur la figure 2.10. Les résultats et phénomènes relatifs à d’autres valeurs des paramètres matériels sont détaillés dans l’article de Chevaugeon et al. (2001). Dans un second
temps, les modes asymétriques sont appréhendés. Pour cela, le problème tridimensionnel a été étudié à l’aide des éléments finis Q4TC. Les résultats obtenus sont présentés sur la figure 2.11.

Finalement, pour illustrer les bonnes performances de la formulation non-axisymétrique, les différentes configurations d’une membrane torique de type Mooney-Rivlin ont été explorées. Ici, nous avons retrouvé les résultats de Reese et Wriggers (1995) : il n’y a pas de modes axisymétriques et les modes asymétriques sont définis par le nombre d’hernies qui apparaissent sur la membrane. Ce nombre est lié au rapport entre le rayon moyen initial du tore et le rayon initial de la section circulaire. Les modes correspondant au problème où ce rapport est égal à 4 sont présentés sur la figure 2.12.
Fig. 2.11 – Courbe d’équilibre et modes de bifurcation non-axisymétriques d’un cylindre encastré. Pour des difficultés de convergence, nous avons dû nous contenter de traiter le problème avec un facteur de forme L/R égal à 6. La courbe d’équilibre de la structure est présentée sur deux graphes construits en suivant la position du point de coordonnées (R,H) de la déformée (a). Ainsi, la courbe de gauche montre l’évolution de la pression en fonction du rayon R, et la courbe de droite cette même évolution en fonction de la hauteur H de ce point. La forme des modes est illustrée par les déformées (b), (c) et (d); le mode (c) correspond au mode axisymétrique 1 de la figure précédente 2.10.
Fig. 2.12 – Les cinq modes d’un tore de facteur de forme 4.
Bibliographie

Chapitre 3

Modélisation de l’effet Mullins dans les élastomères

Introduction

Comme il l’a été précisé dans le paragraphe 1.2 p. 18, la seconde thématique de mes travaux s’inscrit dans le cadre général de la « mécanique des matériaux ». En effet, ce deuxième axe de recherche s’intéresse à la prévision de la durée de vie en fatigue des pièces élastomères. Cette thématique a été développée sur la base de contacts industriels établis grâce aux compétences de l’équipe sur les lois de comportement des matériaux de type caoutchouc. Au travers de ces collaborations, le Groupe de Travail en Fatigue des Élastomères (GTFE) a été mis en place en 2000. Ce groupe de travail regroupe :

– des universitaires : notre équipe Élastomères (GéM, École Centrale de Nantes) et l’équipe de C. Stolz (LMS, École Polytechnique) ;
– des industriels : le groupe Trelleborg, numéro un mondial pour l’anti-vibratoire automobile, la Société Allevard-Rejna, fabricant de barres stabilisatrices pour l’automobile, ainsi que PSA ;
– un centre de transfert : le CETIM de Nantes.

Il convient de noter que plusieurs groupes d’intérêt de ce type ont été créés ces dernières années, aussi bien aux niveaux français qu’européen, ce qui traduit l’actualité et la pertinence du sujet.

La variété des acteurs intervenant dans le GTFE a permis de définir précisément les objectifs visés par les partenaires industriels et d’élaborer les stratégies scientifiques nécessaires pour les atteindre. D’un point de vue industriel, l’objectif principal de ces travaux est l’élaboration d’outils de simulation permettant la prédiction de la durée de vie en fatigue des pièces anti-vibratoires du secteur automobile (supports moteur, supports d’échappement ...). Depuis quelques années, cette question est devenue stratégique aussi bien pour les fabricants automobiles que pour leurs équipementiers. En effet, la réduction des délais de conception des véhicules couplé à des cahiers des charges de plus en plus sévères rend indispensable l’utilisation d’outils numériques permettant de diminuer la part des essais expérimentaux (longs et coûteux) dans le processus de conception.

D’un point de vue scientifique, la question de la fatigue des élastomères est un problème ouvert. Si le cas des matériaux métalliques ou des polymères thermoplastiques est aujourd’hui relativement bien documenté, les théories existantes ne peuvent pas être transposées aux élastomères, a priori. En effet, les gammes de déformation, le caractère fortement non-linéaire, mais aussi les mécanismes de rupture mis en jeu dans ces matériaux sont très différents. Pour
s’attaquer à ce problème, trois voies d’étude ont été ouvertes. La première vise à se doter de lois de comportement efficaces pour les élastomères, la prédiction de l’état de contrainte au sein des pièces étant indispensable au développement de critères de fin de vie (thèse de G. Chagnon). La deuxième voie concerne le phénomène d’initiation. La prédiction de l’apparition de fissures (dont la taille critique d’initiation est à établir) au sein du matériau nécessite la détermination des causes physiques de cette fissuration (cavitation, décohésion charges-matrice, rupture des agrégats de charge) puis la construction de critères simples prenant en compte ces observations microscopiques (thèse de JB. Le Cam). Finalement, le troisième domaine d’étude s’intéresse à la fatigue proprement dite et a pour objectif la détermination expérimentale et numérique des facteurs (macroscopiques) qui endommagent le matériau sous chargement cyclique (thèse d’E. Ostojå-Kuczynski).

Dans ce chapitre, seuls les résultats relatifs à la première voie d’étude, c’est-à-dire à la modélisation du comportement des élastomères, sont présentés. Plus particulièrement, les modèles que nous proposons visent à simuler le phénomène d’accommodation, connu aussi sous le nom d’effet Mullins, qui apparaît sous chargement cyclique. Une bonne modélisation de ce phénomène est évidemment indispensable dans la cadre de la fatigue. Avant d’exposer les résultats obtenus, une présentation des élastomères est proposée. Celle-ci met l’accent sur la description du comportement mécanique et plus particulièrement sur la séparation des phénomènes suivant leur nature. La rédaction de ce mémoire m’a ensuite conduit à faire une synthèse bibliographique des travaux portant sur la modélisation du comportement des élastomères. Celle-ci étant assez longue, elle est présentée dans l’annexe A p. 85. Cet état de l’art permet de dégager des pistes de réflexion sur la méthodologie à employer pour la construction d’un modèle de comportement adapté aux caractéristiques mécaniques des élastomères. Ces propositions sont développées dans la deuxième partie de ce chapitre. Nos travaux sur l’effet Mullins sont présentés dans la troisième partie. Le premier modèle proposé s’appuie sur la théorie classique de la mécanique de l’endommagement. Une analyse critique nous permet de mettre en évidence les avantages et limitations de cette approche qui est largement utilisée dans la bibliographie. Le second modèle présenté est développé à partir d’un concept plus original. Cette seconde loi de comportement est construite sur les bases d’une théorie moléculaire, en considérant que l’effet Mullins se traduit physiquement par une altération du réseau polymère.

3.1 Présentation des élastomères

3.1.1 Généralités

Les élastomères sont des matériaux polymères quasi-linéaires. Ils sont constitués de longues chaînes liées entre elles par des liaisons covalentes occasionnelles, des ponts de réticulation et des points d’enchevêtrement. Une chaîne est un assemblage de molécules monomères jointes par un squelette covalent d’atomes de carbone. Elle est généralement composée de milliers, voire de dizaines de milliers de monomères. À une échelle intermédiaire, le matériau peut être vu comme une pelote statistique où les chaînes sont dans une position très repliée et où les points de jonction (réticulation et enchevêtrement) forment des noeuds entre les chaînes. On décrit souvent cette configuration comme un « plat de spaghettis ». La représentation symbolique d’une chaîne et du réseau élastomère est présentée sur la figure 3.1.

Comme pour tous les matériaux polymères, les élastomères peuvent admettre deux états : l’état vitreux pour lequel des liaisons secondaires (de type Van der Waals) lient les segments monomères entre eux et l’état caoutchouc dans lequel ces liaisons n’existent plus. La frontière énergétique entre ces deux états est définie par l’existence d’une température de transition vi-
Chap. 3. Modélisation de l’effet Mullins dans les élastomères

Dans l’état caoutchouteux, le matériau est beaucoup plus souple et les changements de conformation sont aisés : sous les actions mécaniques, les chaînes peuvent se déplier aisément. Ces comportements sont illustrés par la figure 3.2 qui présente l’évolution du module d’Young d’un polymère en fonction de sa température d’utilisation réduite, c’est-à-dire adimensionnalise par rapport à T_g. La température de transition vitreuse des élastomères est comprise entre -100°C et -50°C suivant les spécificités du matériau considéré, c’est pourquoi les élastomères sont toujours en phase amorphe (caoutchouteuse) à température ambiante. Pour donner un ordre de grandeur, le module d’Young des élastomères à 20°C se situe entre 1 et 100 MPA.

On peut distinguer deux familles d’élastomères : les élastomères naturels (on dit plutôt caoutchoucs naturels) et les élastomères synthétiques. Le latex qui s’écoule de l’Hévéa après incision de son écorce est la base du caoutchouc naturel. Dans cet état naturel, le caoutchouc est un fluide viscoélastique qui s’écoule sous sollicitation mécanique, ce qui ne présente que peu d’intérêt pour des applications courantes. L’élaboration du caoutchouc naturel solide (NR) tel qu’on le connaît nécessite sa vulcanisation, c’est-à-dire la création de ponts de réticulation entre les longues chaînes par une réaction chimique entre le polymère et le soufre. Ainsi, la mobilité des chaînes est réduite ce qui fait perdre au matériau la possibilité de s’écouler.

Le prix du caoutchouc naturel et surtout les besoins engendrés par la seconde guerre mondiale ont conduit les industriels à s’intéresser aux produits de synthèse capables de remplacer les caoutchoucs naturels. Les recherches menées ont permis d’élaborer de nombreux élastomères de synthèse dont les plus connus sont les copolymères butadiène-styrène (SBR), les copolymères isoprène (IR) et les copolymères éthylène et propylène (EPDM). Il faut cependant préciser que, même si ces matériaux sont très performants, ils ne peuvent pas remplacer systématiquement le caoutchouc naturel. Par exemple, l’utilisation d’élastomères synthétiques dans le domaine de

![Diagram](image_url)
l’anti-vibratoire automobile est encore peu répandue.

Finalement, il faut noter que les élastomères ne sont que très rarement utilisés à l’état pur, leurs performances mécaniques étant très limitées. Pour les rendre plus rigides et augmenter leur durée de vie, on leur ajoute très fréquemment des charges renforçantes. Ces particules très fines sont le plus souvent des noirs de carbone, parfois des silices. Pour être précis, il conviendrait donc de toujours préciser si les élastomères étudiés sont chargés ou non, leurs propriétés mécaniques étant très différentes. Dans la pratique, l’utilisation du terme « élastomère » fait le plus souvent référence à des produits chargés. Ce sera le cas dans toutes nos études.

3.1.2 Description du comportement mécanique

Pour décrire les différents phénomènes physiques qui caractérisent le comportement des élastomères, nous allons utiliser les résultats d’essais mécaniques que nous avons menés au sein du groupe de travail GTFE.

Pour débuter, considérons un essai de traction uniaxiale cyclique. L’éprouvette de caoutchouc naturel est normalisée, de longueur utile 20 mm, de largeur 4 mm et d’épaisseur comprise entre 2 et 2,2 mm. Les essais consistent à effectuer cinq cycles à un niveau de déformation donné (donc en déplacement imposé) et à vitesse de déformation constante, fixée ici à 4,167 s⁻¹. L’élongation de l’éprouvette est mesurée à l’aide de pastilles collées aux extrémités de la zone utile et suivies par un laser au cours de l’essai; la force est aussi échantillonnée. Ces essais sont menés à bien pour onze niveaux de déformation: 25%, 50%, 75%, 100%, 125%, 150%, 200%, 250%, 300%, 400% et 500%. Les courbes expérimentales obtenues sont présentées sur la figure 3.3. À l’aide de ces résultats expérimentaux et de quelques autres plus spécifiques, on se propose de mettre en évidence les différentes facettes du comportement des élastomères, des plus classiques comme les grandes déformations et la viscoélasticité, aux moins connues comme l’hystérésis et l’accommodation par effet Mullins.

Remarque. Dans la très grande majorité des études, les élastomères sont considérés comme des
Chap. 3. Modélisation de l’effet Mullins dans les élastomères

La figure 3.3 représente la traction uniaxiale cyclique d’un élastomère : (a) de 25% à 125%, (b) de 150% à 500%. Sur ces graphes, les résultats sont fournis en terme d’elongation principale dans la direction de traction $\lambda = \frac{l}{l_0}$, où l_0 et l sont respectivement les longueurs utiles non déformée et déformée, et de contrainte de Piola-Kirchhoff I dans la direction de traction, F/S_0. Dans la bibliographie, les résultats d’essais sur les élastomères sont généralement présentés en fonction de ces grandeurs.

matériaux isotropes. Quelques travaux font mention d’une anisotropie induite par la déformation. Cependant, dans une première approche, cette propriété semble peu significative par rapport aux autres phénomènes que nous allons développer. C’est pourquoi dans toute la suite (description des phénomènes et modélisation), les caoutchous étudiés seront considérés isotropes.

Élasticité non-linéaire en grandes déformations

Une des propriétés les plus connues des élastomères est leur capacité à supporter de grandes déformations élastiques. C’est une des propriétés qui justifie l’utilisation de ces matériaux dans l’industrie. Celle-ci est illustrée par la figure 3.4 qui présente la courbe de charge du deuxième cycle à 500%.

Cette propriété est une conséquence directe de la structure microscopique des matériaux. La réponse élastique peut être grossièrement expliquée par trois phénomènes qui prennent place lors de l’extension. Tout d’abord, sous un faible allongement, les chaînes commencent à se déplier (de 0 à 50%). Une barrière énergétique est franchie, elle permet de rompre les quelques liaisons secondaires qui existent entre les chaînes. Ensuite, les chaînes se déplient complètement et s’alignent dans la direction de sollicitation (de 50 à 350%). Cet alignement a lieu sous faible contrainte même si les déformations sont importantes. Finalement, une fois les chaînes alignées et tendues, la contrainte augmente très sensiblement alors que la déformation approche une valeur limite (de 350 à 500%). Dans cette zone de raidissement (« strain-hardening »), la pente de la courbe correspond à la raideur des chaînes tendues. Il convient de noter que ce raidissement est plus ou moins prononcé suivant que l’élastomère est ou non cristallisable sous contrainte. En effet, la cristallisation sous contrainte se traduit par une réorganisation du réseau lorsque les chaînes sont étirées ; le réseau a tendance à s’ordonner jusqu’à induire un changement local de phase du matériau, passant de la phase amorphe classique à une phase cristallisée. Ce changement de phase (réversible) renforce significativement le matériau lors du raidissement et s’efface lorsque la
Sollicitation mécanique n’est plus appliquée. Remarquons que le matériau considéré ici cristallise sous contrainte.

L’élasticité des élastomères se traduit aussi par l’absence de déformation permanente après décharge : le matériau non sollicité revient à un état non déformé et non contraint quelle que soit la sollicitation qu’il a subie. Nous verrons dans la bibliographie relative à la modélisation du comportement que certains auteurs récusent cette absence de plasticité. D’un point de vue mésoscopique, l’élasticité est due aux liaisons entre les chaînes (quelques liaisons covalentes, points d’enchevêtrement, points de réticulation, et liaisons entre les charges et les chaînes) qui ne rompent pas sous sollicitation et ramènent le matériau à son état initial lors de la décharge.

Viscoélasticité

La deuxième propriété bien connue des matériaux élastomères est leur caractère viscoélastique. Comme mentionné précédemment, le comportement des polymères peut être élastique (aux faibles températures et vitesses de sollicitations élevées) ou visqueux (dans les conditions inverses). En fait, pour des conditions de température et des vitesses de sollicitation raisonnables, les élastomères intègrent ces deux types de comportement et sont dits viscoélastiques. Classiquement, ce phénomène est mis en évidence par deux essais bien connus : les essais de relaxation et de fluage. Dans le cas de la relaxation, on impose au matériau un niveau constant de déformation et on observe la relaxation des contraintes (la diminution) au cours du temps. Le fluage est le phénomène dual : on impose au matériau un niveau constant de contrainte et on observe l’accroissement de la déformation. Bien évidemment, d’un point de vue expérimental, il est plus aisé de mettre en place un essai à déplacement imposé (relaxation) qu’à force imposée (fluage).

La figure 3.5 présente les résultats d’essais de relaxation effectués sur des éprouvettes de cisaillement simple à deux blocs. Sur ces courbes, le caractère viscoélastique du matériau apparaît clairement : à la fin de la mise en charge (étirement) de l’éprouvette, la contrainte atteint un maximum puis décroît continuellement au cours du temps. Le matériau dissipe une partie de l’énergie qu’il avait emmagasinée lors de la mise en charge rapide. Sur une échelle de temps rela-
Fig. 3.5 – Essai de relaxation. Cisaillement deux blocs à trois niveaux de déformation : 100%, 125% et 250%. Pour chaque niveau de déformation, on mesure l’évolution de la contrainte au cours du temps. Pour obtenir des informations comparables, cette contrainte est normalisée, c’est-à-dire divisée par le maximum de la contrainte mesurée au cours de l’essai. Sur la légende figure entre parenthèses la valeur de cette contrainte maximale pour chaque niveau de déformation.

tivement courte, c’est-à-dire représentative des problèmes de structure auxquels on s’intéresse, l’existence d’une contrainte limite asymptotique est classiquement postulée. Cette contrainte est caractéristique des solides viscoélastiques pour lesquels il n’y a pas écoulement complet de la matière. En fait, sur de très longues échelles de temps, les essais que nous avons menés laissent apparaître un écoulement continu du matériau, la contrainte étant toujours décroissante.

Pour un matériau viscoélastique, l’état de contrainte à l’instant présent dépend de toute l’histoire qu’a subie le matériau jusqu’à cet instant. D’un point de vue mathématique, on écrit souvent la contrainte comme une fonction de l’histoire de la déformation et de la vitesse de déformation. De plus, il convient de s’interroger sur la linéarité du comportement viscoélastique. Sur le graphe, on constate que les courbes adimensionnalisées relatives aux niveaux de déformation de 100 et 125% sont confondues et le rapport des contraintes est égal au rapport de l’histoire des déformations (aisément démontrable en détaillant la cinématique de l’essai). Ainsi, pour de faibles déformations (pour des élastomères !), le comportement viscoélastique est linéaire. En revanche, la courbe relative à l’essai à 250% est très différente des deux autres, la décroissance de la contrainte étant plus importante. Ainsi, pour de plus grandes déformations le caractère viscoélastique des élastomères s’avère être non-linéaire : les fonctions viscoélastiques (relaxation et fluage) dépendent donc du niveau de sollicitation.

D’un point de vue mésoscopique, ces phénomènes viscoélastiques sont liés au glissement des chaînes les unes sur les autres ou sur les charges, mais aussi au processus interne de rupture et de réformation des liaisons entre les chaînes (Green et Tobolsky, 1946). Il convient de noter que les justifications physiques et leurs rebornées sur la modélisation du comportement viscoélastique sont beaucoup moins développées pour les polymères solides que pour les fluides non-newtoniens.

Remarque. Dans le cadre des petites déformations, le caractère viscoélastique des élastomères est classiquement étudié à l’aide d’essais dynamiques sinusoïdaux qui permettent de définir le module complexe dynamique (module élastique et module de perte). Dans ce mémoire, nous
Modélisation du comportement des structures et des matériaux élastomères

n’aborderons pas ce point et renvoyons le lecteur aux ouvrages généraux sur la viscoélasticité qui laissent une grande place à cette approche (Ferry, 1980; Christensen, 1982; Wineman et Rajagopal, 2000).

Incompressibilité

La troisième caractéristique bien connue du comportement des caoutchoucs est l’incompressibilité. Il est convenu de considérer que pour des sollicitations ne faisant pas intervenir d’efforts hydrostatiques trop importants, la déformation du matériau se fait sans variation de volume. En fait, cette caractéristique est une idéalisation de la réalité, puisqu’on montre expérimentalement que les élastomères sont compressibles. La figure 3.6 présente les résultats d’un essai de compression hydrostatique. Elle montre en premier lieu que la vitesse de compression n’a aucune influence sur la réponse de l’échantillon puisque les deux courbes sont rigoureusement identiques. Les deux courbes comportent tout d’abord (en partant de \(V/V_0 = 1 \)) une partie horizontale qui correspond à la mise en place du pion dans la cavité et qui n’est pas significative. La seconde partie de la courbe est une droite qui met en relation la variation du volume et l’effort de compression hydrostatique exercé. Le coefficient directeur de cette droite est proportionnel au coefficient de compressibilité du matériau.

La prise en compte de l’hypothèse d’incompressibilité des caoutchoucs (sous les conditions définies précédemment) est très intéressante du point de vue analytique et notamment pour le dépouillement des mesures expérimentales. En revanche, d’un point de vue numérique (métod des éléments finis), elle pose certaines difficultés maintenant bien identifiées.

Comportement sous chargement cyclique

Les paragraphes précédents ont rappelé les caractéristiques principales du comportement des élastomères : grandes déformations élastiques et viscoélastiques incompressibles. À présent, nous allons aborder un point très particulier du comportement de ces matériaux : leur réponse à un chargement cyclique en déformations finies. Dans ce paragraphe, nous avons choisi d’étudier
Chap. 3. Modélisation de l’effet Mullins dans les élastomères

53

simultanément deux phénomènes, l’hystérésis et l’effet Mullins (ou accommodation), puisque la bibliographie laisse planer une ambiguïté sur la définition même de ces deux caractéristiques : certains auteurs les réunissent sous la même appellation d’effet Mullins, alors que d’autres les séparent. Ici, nous allons tout d’abord décrire la physique du phénomène à l’aide d’essais expérimentaux, ce qui nous conduira à préciser les définitions que nous allons adopter.

Pour illustrer nos propos, considérons deux essais dont les courbes sont présentées sur la figure 3.7. Au regard de ces courbes, plusieurs phénomènes mécaniques peuvent être mis en évidence (cette description s’inspire de celle proposée récemment par Drozdov et Dorfmann (2001)) :

1. quel que soit le cycle considéré, on observe une différence notable de la valeur de la contrainte pour une déformation donnée entre les courbes de charge et de décharge, ce qui met en évidence l’hystérésis (« retard dans l’évolution d’un phénomène physique par rapport à un autre, dont il dépend. ») du processus (figs 3.7(a) et (b)) ;

2. les contraintes décroissent avec le nombre de cycles, aussi bien en charge qu’en décharge. Ce phénomène est très prononcé lors des deux ou trois premiers cycles, plus faible ensuite (fig. 3.7(a)), voire inexistant après cinq cycles où un cycle limite d’équilibre est atteint. On dit alors que le matériau est accommodé ;

3. pour un niveau de déformation donné, la contrainte de charge relative au cycle \(m + 1 \) est supérieure à la contrainte de décharge du cycle \(m \) (figs 3.7(a) et (b)) ;

4. on observe des différences négligeables entre les contraintes à l’intérieur d’une éprouvette vierge (non accommodée) étirée à un niveau de déformation \(x \) et celles d’une éprouvette accommodée (après cinq cycles par exemple) à un niveau \(x_0 \) (\(x_0 < x \)), puis étirée au niveau \(x \) (fig. 3.7(b)). On peut qualifier ce phénomène de « retour sur la courbe de première charge » (matériau vierge), courbe qui peut être vue comme une courbe maîtresse. Ainsi, le niveau d’accommodation du matériau dépend du niveau de déformation maximal subi.

Fig. 3.7 – Réponse d’un élastomère à un chargement cyclique.
(a) Essai de traction uniaxiale : cinq cycles sont effectués à 500%.
(b) Essai de cisaillement simple quatre blocs : cinq cycles sont effectués en imposant une déformation de 50%, puis cinq cycles en imposant 100% et ainsi de suite jusqu’à 300%. Sur la courbe ne sont représentés que les deux premiers cycles relatifs à chaque niveau de déformation.
54 Modélisation du comportement des structures et des matériaux élastomères

5. les éprouvettes enregistrent des déformations résiduelles lors d’un chargement cyclique (fig. 3.7(b) où les courbes de décharge ne reviennent pas à un déplacement nul lorsque l’effort est annulé). Ces déformations résiduelles se résorbent et s’annulent pour un temps de repos suffisamment long.

Finalement, mentionnons une caractéristique supplémentaire : le recouvrement du phénomène d’adoucissement des contraintes (« stress-softening », phénomène 2. exposé plus haut), qu’on ne peut pas appréhender à partir de ces essais. Pour étudier ce recouvrement, des expériences ont été mises en place sur 150 jours. La figure 3.8 présente les résultats obtenus en termes de pourcentage de recouvrement en fonction du temps. Les détails de la méthodologie expérimentale sont détaillés dans la légende de la figure. Il faut retenir de ces essais que l’adoucissement des contraintes, c’est-à-dire ici la différence de raideur entre les premières charges d’un essai cyclique, est un phénomène quasi-réversible sur le long terme (de l’ordre de 90% de la raideur ont été recouvrés en 150 jours). En fait, dans la bibliographie, il apparaît que ce recouvrement est complet pour certains matériaux mais seulement partiel pour d’autres, en fonction de la composition de l’élastomère (Mullins, 1969). Cependant, dans tous les cas, la durée nécessaire au recouvrement est fortement réduite par un recuit du matériau (Bueche, 1961). Il est important de préciser que les phénomènes qui viennent d’être décrits existent aussi bien dans les élastomères chargés que non-chargés, même si l’adoucissement des contraintes est beaucoup plus marqué en présence de charges.

Il convient à présent de définir précisément la terminologie employée pour faire référence au comportement cyclique des élastomères. Cette terminologie a une grande importance puisque les termes choisis tendent à orienter les choix de modélisation (« à un terme correspond un phénomène mécanique, un phénomène mésoscopique et donc une modélisation »). Comme mentionné plus haut, certains auteurs nomment effet Mullins l’ensemble des phénomènes décrits.
Chap. 3. Modélisation de l’effet Mullins dans les élastomères

dans ce paragraphe (Govindjee et Simo, 1992; Septanika et Ernst, 1998a; Drozdov et Dorfmann, 2001). Pour notre part, nous adopterons la terminologie la plus classique qui considère deux phénomènes distincts :

- l’effet Mullins ou accommodation qui est l’adoucissement des contraintes ou perte de rai- deur du matériau entre les deux premiers cycles et est caractérisé par une différence impor- tante entre les courbes de charge correspondantes ;
- l’hystérésis du caoutchouc définie par la différence entre les courbes de charge et de décharge lors d’un cycle, et ce quel que soit le niveau d’accommodation au sein du matériau.

Cette distinction est la plus répandue dans la bibliographie (Mullins, 1948; Bueche, 1960; Mullins, 1969; Johnson et Beatty, 1993; De Souza Neto et al., 1994; Miehe, 1995; Bergström et Boyce, 1998; Ogden et Roxburgh, 1999; Klüppel et Schramm, 2000) et nous semble la plus raisonnable puisqu’elle permet de séparer deux phénomènes qui, à notre avis, sont différents par nature.

Du point de vue de la physique du réseau, il n’existe pas de justifications de l’hystérésis et de l’effet Mullins qui fassent l’unanimité. Concernant le phénomène d’hystérésis, les auteurs admettent son caractère viscoélastique (avec cependant des temps de relaxation beaucoup plus faibles que la relaxation classique) ou visco-plastique. Il serait dû à la reptation des chaînes, aux mouvements restreints des points d’enchevêtrement et à la formation de réseaux transi- toires (Bergström et Boyce, 1998; Septanika et Ernst, 1998a,b). Cet aspect visqueux peut être en partie illustré par les essais expérimentaux de Bergström et Boyce (1998) que nous avons nous-mêmes menés et qui sont présentés sur la figure 3.9. Ces essais mettent en évidence le

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{fig3_9.png}
\caption{Essais de cisaillement deux blocs : hystérésis des élastomères. Ici, les éprouvettes sont préalablement accommodées par cinq cycles à 450% qui effacent l’effet Mullins. L’essai proprement dit consiste à étirer l’éprouvette à 100%, laisser relaxer à ce niveau de déformation pendant une période donnée, poursuivre l’étirage à 200%, laisser à nouveau relaxer et ainsi de suite jusqu’à 400%. Le même processus est adopté lors de la décharge. Trois durées de repos sont imposées : 2 min, 10 min et 30 min.}
\end{figure}

caractère visqueux du phénomène d’hystérésis. En effet, on constate que lors de la charge de l’éprouvette, la relaxation se met en place et son amplitude est d’autant plus grande que la durée de pause est grande. De plus, ce phénomène de relaxation semble non-linéaire, puis- qu’il n’est pas le même pour les différents niveaux de déformation : aux petites déformations
Modélisation du comportement des structures et des matériaux élastomèrées

(100%), la contrainte relaxée est identique pour les trois durées de pause, alors que pour les grandes déformations, la différence entre les contraintes relaxées est importante. Dans la phase de décharge, il apparaît que la relaxation ne dépend pas de la durée des pauses, les valeurs des contraintes relaxées étant à peu près égales. Ces observations permettent de postuler l’existence d’un cycle limite d’équilibre (Lion, 1996) ou d’une courbe unique d’équilibre (charge et décharge confondues) (Bergström et Boyce, 1998). L’état actuel des connaissances ne permet pas de trancher entre ces deux hypothèses, ce qui rend difficile l’élaboration de modèles de comportement cohérents : s’il existe une courbe d’équilibre un modèle viscoélastique s’avéra approprié, dans le cas d’un cycle limite la modélisation sera plus complexe puisqu’il faudra distinguer la charge et la décharge dans la partie équilibrée du modèle (cycle plastique). De plus, rien n’empêche de penser que la nature de ce cycle d’hystérésis change d’un matériau à l’autre.

Concernant l’effet Mullins, plusieurs mécanismes moléculaires différents sont proposés pour l’expliquer. Ceux-ci prêchant à discussion, nous ne les présentons pas ici. Les différentes théories relevées dans la bibliographie seront développées et critiquées dans la partie relative aux modèles de comportement que nous avons développés.

Remarques finales

Dans cette partie, nous avons décrit dans le détail les différentes facettes du comportement des matériaux élastomèrées. Cette présentation a été faite en séparant les différents phénomènes dans un objectif de clarté. Il est bien évident que dans la réalité tous ces phénomènes sont intimement liés. Prenons par exemple le cas d’un essai de fatigue de longue durée, pour lequel une éprouvette diabolo, présentée sur la figure 3.10, est sollicitée par des cycles d’amplitude constante (déplacement imposé). Les caractéristiques cycliques présentées plus haut entre assurément en jeu, mais il apparaît aussi un phénomène de relaxation cyclique qui fait diminuer la valeur effective des efforts mesurés, comme le montre la figure 3.11.

La seconde remarque est une conséquence de la précédente et permet d’introduire la partie suivante sur la modélisation. À la lumière de ce qui a été présenté, il semble évident qu’une modélisation efficace du comportement (pour des applications prédictives) nécessite la prise en compte simultanée de la plupart des phénomènes mécaniques. Considérons le cas particulier de l’effet Mullins qui jusqu’aux années 1990 n’était que très rarement pris en compte. Il est aisé de considérer que si la pièce mécanique à étudier a déjà subi cinq cycles de charge à un niveau de
déformation suffisamment important, elle est accommodée à l'effet Mullins et donc la prise en compte de ce phénomène dans la modélisation n'est pas nécessaire. Cette conclusion hâtive est erronée puisque si une fissure apparaît dans cette pièce, une zone de concentration de contrainte va apparaître en fond de fissure ; dans cette zone, la déformation sera plus importante que dans le reste de la pièce et cette zone ne sera donc pas accommodée à l'effet Mullins pour ce niveau de déformation. Ainsi, une simulation numérique ne prenant pas en compte l'adoucissement s'avérera incomplète dans le cadre de la mécanique de la rupture des élastomères.

3.2 Modélisation du comportement mécanique des élastomères

3.2.1 État de l’art

Lors de la rédaction de ce mémoire, il m’est apparu semblé nécessaire d’effectuer un état de l’art des approches proposées dans la bibliographie pour la modélisation des différents phénomènes décrits dans la section précédente. Cette revue bibliographique a été rédigée en suivant un plan chronologique, ce qui permet d’insister sur l’évolution historiques des théories. De plus, je me suis attaché à mettre en exergue les relations étroites qui existent entre les mesures expérimentales macroscopiques, la compréhension des phénomènes physiques intervenant au niveau du réseau moléculaire, les approches théoriques utilisées pour traduire ces observations en lois de comportement et les restrictions imposées par la mise en œuvre numérique des dites lois.

Pour ne pas alourdir le corps du texte, cet état de l’art est proposé dans l’annexe A p. 85 du présent document. Cependant, les voies d’étude qu’ouvre cette synthèse sont exposées dans
le paragraphe suivant.

3.2.2 Approches à retenir pour la modélisation

À la lumière de la synthèse bibliographique proposée dans ce document, nous pouvons tirer quelques conclusions qui permettrons de guider nos futurs travaux dans le domaine. Ces conclusions peuvent être classées en deux familles, suivant leur nature: générales pour les remarques concernant tous les phénomènes et proposant plutôt une «philosophie» de modélisation, et particulières pour les pistes relatives à un seul phénomène caractéristique du comportement des élastomères. Commençons par les remarques d’ordre général.

1. Quels phénomènes modéliser ? S’il est aisé d’affirmer qu’il n’est pas utile de modéliser systématiquement tous les aspects du comportement des élastomères, il est beaucoup plus difficile de choisir parmi les phénomènes lorsqu’on est confronté à une application particulière. Pour illustrer ce propos, prenons un exemple classique de l’industrie des élastomères. Souvent, lors de l’élaboration d’une pièce anti-vibratoire, le concepteur à besoin d’estimer la raideur globale du composant. Pour cela, un simple calcul éléments finis utilisant un modèle hyperélastique de type Mooney-Rivlin est suffisant. Cependant, comme nous l’avons montré précédemment, la perte de raideur du matériau due à l’effet Mullins lors des premiers cycles de vie est très importante et ne pas la prendre en compte conduira irrémédiablement à une surestimation de la raideur globale de la pièce (une remarque similaire peut être faite sur l’importance de la relaxation cyclique qui apparaît sous chargement dynamique). Ainsi, la modélisation de l’accommodation du matériau apparaît essentielle même si l’information recherchée par l’ingénieur semble simple de prime abord.

2. Est-il possible de construire un modèle global ? On peut conclure de la remarque précédente que la construction d’un modèle complet est la solution idéale. En fait, au vu des travaux relevés dans la bibliographie, il est envisageable de construire un modèle de comportement hyper-élasto-visco-plastique avec endommagement, fondé évidemment sur une approche phénoménologique, qui sera capable de reproduire tous les phénomènes caractéristiques. Certains l’ont fait ... À notre avis, cette approche n’est pas appropriée, et ce pour deux raisons majeures. Tout d’abord, un tel modèle nécessite l’utilisation de nombreux paramètres matériels qu’il faudra, le moment venu, identifier. Compte tenu du caractère global du modèle, il conviendra d’envisager un nombre considérable d’essais pour assurer, si ce n’est l’unicité, du moins la pertinence des paramètres identifiés. D’autre part, comme le montre de nombreux travaux, de telles approches s’avèrent souvent incapables d’assurer le changement de mode de déformation ou la reproduction d’histoires de chargement complexes. Par exemple, si les fonctions matérielles sont identifiées en traction uniaxiale, les résultats obtenus lors de simulations biaxiales risquent d’être fort différents des mesures expérimentales.

À mon avis, il est plus intéressant de différencier les phénomènes et de construire la loi de comportement «par étages». En effet, si l’hyperélasticité n’est plus aujourd’hui une difficulté (la gamme de fonctions énergie de déformation disponibles est assez vaste), les autres caractéristiques du comportement sont moins bien connues et les approches utilisées pour la modélisation ne sont pas uniques (voir l’annexe A p. 85). Il sera donc plus raisonnable de bien comprendre les phénomènes (description macroscopique, causes physiques) et de les séparer avant de construire les différentes parties d’une loi de comportement complète. Ainsi, on pourra construire une théorie pour l’effet Mullins qui permet de reproduire la perte de raideur entre les deux premiers cycles d’un essai cyclique, puis s’attacher à la modélisation du phénomène d’hystérésis par des modèles viscoélastiques ou viscoplastiques.
fortement non-linéaires, et enfin coupler ce modèle cyclique à une théorie viscoélastique de relaxation-fluage plus classique. C’est cette méthodologie que nous avons choisie de privilégier.

3. Des essais, pour quoi faire ? La stratégie précédente de séparation des phénomènes ne peut être envisagée que si l’on est capable de mettre en place des essais expérimentaux qui eux aussi séparent les phénomènes. Pour cela, il faut évidemment concevoir des essais ciblés, c’est-à-dire que chaque essai entrepris doit avoir un objectif précis : mise en évidence d’un phénomène particulier, détermination de fonctions ou de paramètres matériels donnés ou essai discriminant pour un modèle déjà établi. D’autre part, cette volonté de séparer les phénomènes nécessite une importante phase de traitement des résultats expérimentaux, visant à éliminer certains phénomènes (la viscoélasticité long-terme par exemple). Ce traitement des données doit être justifié par des arguments scientifiques qui ne laissent pas de place au doute, afin d’assurer la validité des résultats obtenus. Notons qu’on trouve encore dans la bibliographie des modèles très complexes, identifiés en utilisant simplement un essai de traction uniaxiale sans précision sur les conditions expérimentales ...

4. Phénoménologie ou physique moléculaire ? De notre point de vue de mécanicien, la réponse ne peut pas être dogmatique. On sait bien que l’approche phénoménologique se prête bien à l’implantation numérique de par sa simplicité mathématique et que les performances des modèles phénoménologiques sont très satisfaisantes pour reproduire les courbes expérimentales. Cependant, on ne peut pas aujourd’hui ignorer la réussite des approches moléculaires (même très simples) qui permettent la construction de lois admettant peu de constantes matérielles mais capables de reproduire différents modes de déformation. C’est le cas par exemple du modèle 8-chains d’Arruda et Boyce (1993) qui peut être avantageusement comparé au modèle d’Ogden (1972) largement utilisé dans la bibliographie. D’autre part, les performances des approches moléculaires pour les polymères fluides ne peuvent que nous encourager dans cette voie. Finalement, le couplage des deux théories semble être l’approche la plus pragmatique pour le mécanicien. En effet, si les modélisations physiques permettent d’aider à l’élaboration de nouvelles lois de comportement performantes, l’emploi de concepts phénoménologiques permet de simplifier les formulations et d’aider grandement à la phase d’implantation numérique. Un compromis entre les deux approches est donc de mise.

À présent, nous proposons quelques pistes à suivre pour les différents phénomènes représentatifs du comportement des élastomères.

5. Hyperélasticité. Le modèle hyperélastique peut être vu comme le cœur de la loi de comportement complète. Suffisamment d’approches sont à présent disponibles pour choisir une fonction W à la fois performante et nécessitant peu de paramètres matériels. Un couplage entre modèles phénoménologiques et moléculaires semble être une voie intéressante comme le proposent plusieurs auteurs dans des publications récentes (Yeoh et Fleming, 1997; Meissner, 2000; Boyce et Arruda, 2000). Les points cruciaux sont le nombre de paramètres matériels et leur identification, ainsi que la simplicité de la mise en œuvre numérique. Notons qu’un modèle plus complet peut être proposé sans choisir a priori la forme de W, puisque les autres parties de la loi complète peuvent être développées indépendamment de la donnée explicite de la fonction énergie de déformation.

6. Incompressibilité. L’hypothèse d’incompressibilité peut être faite pour la plupart des applications industrielles. Elle est évidemment à réfuter lorsque le chargement n’est plus compatible avec elle (pièce en compression triaxiale). De plus, le traitement numérique de cette hypothèse ne pose plus de problème aujourd’hui (formulation quasi-incompressible,
éléments mixtes) et est implanté dans les codes de calcul industriels.

7. Viscoélasticité long-terme (relaxation-fluage). La viscoélasticité long-terme bénéficie elle aussi de théories bien établies. Du point de vue thermodynamique, l’utilisation de variables internes au travers de la généralisation aux grandes déformations des modèles classiques de Maxwell et Kelvin-Voigt est efficace. D’autre part, les travaux récents de Septanika et Ernst (1998a,b) inspirés de l’approche de Green et Tobolsky (1946) proposent un cadre moléculaire intéressant pour le développement de nouveaux modèles. Deux difficultés restent pourtant à résoudre. Tout d’abord, il convient de s’interroger sur la linéarité (ou la non-linéarité) du caractère viscoélastique. De plus, la relation entre la viscoélasticité classique (relaxation-fluage) et la viscoélasticité cyclique qui entre en jeu en fatigue est à établir.

8. Effet Mullins. Le comportement cyclique des élastomères reste aujourd’hui un problème ouvert. Si la définition de l’effet Mullins comme étant la perte de raideur entre le premier et le deuxième cycle nous semble reconnue, sa modélisation n’est en rien établie. De nombreuses approches ont été proposées récemment dans la bibliographie, la plupart d’entre elles étant phénoménologiques puisque les causes moléculaires de l’accommodation ne sont pas connues. C’est sur ce point que ce sont portés nos premiers travaux. Ceux-ci sont exposés dans la suite.

9. Hystéresis. Finalement, le problème de l’hystéresis apparaissant lors d’un cycle charge-décharge est lui aussi ouvert. Très peu de modèles sont proposés dans la bibliographie. À notre avis, le développement de lois de comportement pertinentes pour ce phénomène n’est pas à l’ordre du jour tant que la nature du caractère hystéritique des élastomères n’est pas déterminée. En effet, pour le moment, on ne sait pas si ce cycle est viscoélastique, c’est-à-dire si le cycle limite sous conditions de chargement infiniment lentes se réduit à une courbe (Bergström et Boyce, 1998), où s’il est viscoplastique (Lion, 1996), c’est-à-dire s’il existe un cycle limite. Un effort conséquent dans la modélisation de ce phénomène est aujourd’hui nécessaire, puisqu’elle permettra le calcul de l’énergie dissipée lors d’un cycle. Cette évaluation est, à notre avis, indispensable pour envisager des prédictions fiables en fatigue.

3.3 Deux nouveaux modèles pour l’effet Mullins

Comme nous venons de l’exposer, la modélisation du comportement mécanique des élastomères doit se faire de manière progressive pour aboutir à un modèle cohérent qui reproduise convenablement la majorité des phénomènes. Dans un premier temps, nous nous sommes intéressés à la modélisation de l’effet Mullins. Ici, la définition la plus classique de l’effet Mullins a été retenue, c’est-à-dire la perte de raideur entre les deux premières courbes de charge d’un essai cyclique (voir le paragraphe 3.1.2 p. 52). Pour développer de nouveaux modèles d’accommodation, il convient de proposer une méthode de correction pour la fonction énergie de déformation hyperélastique. Le cadre général de l’hyperélasticité étant bien établi, le choix de la fonction énergie de déformation n’est pas crucial et peut être adapté à la situation. Suivant les modélisations de la perte de raideur adoptées, des modèles phénoménologiques ou moléculaires peuvent être retenus.

L’exposé de nos travaux sur l’effet Mullins va à présent faire l’objet de trois parties. La première est consacrée à la base de données expérimentales qui sera utilisée pour la construction des modèles. Le traitement des données brutes qui permet d’isoler la perte de raideur des autres phénomènes inélastiques est présenté. Les deux parties suivantes sont consacrées à l’exposé
des modèles que nous proposons. Le premier s’appuie sur la théorie classique de l’endommagement continu. L’originalité du travail repose sur la mise en évidence des connections de cette approche avec les modèles fondés sur les théories de double réseau (voir le paragraphe A.3.3 p. 111), et sur les limitations inhérentes à l’application de la mécanique de l’endommagement à l’accommodation dans les élastomères. La troisième partie présente une approche plus originale fondée sur la physique du réseau moléculaire. En effet, même si les explications physiques de l’effet Mullins ne sont pas bien établies, il est largement reconnu que celui-ci est la conséquence d’un réarrangement du réseau lors des premières sollicitations. À partir de ces considérations, une théorie d’altération de réseau, inspirée des travaux de Septanika et Ernst (1998a,b) sur la viscoélasticité, est proposée. Elle est couplée avec succès avec le modèle 8-chaînes d’Arruda et Boyce (1993).

3.3.1 Mise en évidence des phénomènes. Campagne expérimentale

Pour établir et valider les modèles de comportement proposés, une base de données expérimentale a été mise en place. Celle-ci est constituée de résultats obtenus pour deux matériaux : un caoutchouc naturel (NR) contenant entre 25 et 30% de noirs de carbone et un élastomère synthétique SBR chargé à 40%. Deux types d’essais ont été considérés : des essais de traction uniaxiale et de cisaillement simple. Les éprouvettes correspondantes sont présentées sur la figure 3.12 et des résultats expérimentaux typiques sont fournis sur la figure 3.13. Sur cette figure,

![Fig. 3.12 – (a) Éprouvette rectangulaire mince de traction uniaxiale, (b) éprouvettes quatre blocs de cisaillement simple. Pour simplifier l’exploitation des résultats et le recalage des paramètres matériels, les mesures effectuées en cisaillement simple ont été systématiquement transformées en résultats de cisaillement pur suivant une méthode similaire à celle proposée par Charlton et al. (1994).](image)

on observe que la perte de raideur du matériau apparaît essentiellement entre les deux premiers cycles. Pour notre part, nous imputons la faible perte de raideur observée entre les cycles ultérieurs principalement au fluage du matériau.

Bien évidemment, les résultats expérimentaux bruts reflètent le comportement global de l’élastomère ; ils intègrent donc les différents aspects du comportement. Pour se concentrer sur l’effet Mullins (au sens où nous l’entendons), il est indispensable d’isoler ce phénomène des autres effets inélastiques tels que l’hystérésis et la viscoélasticité long-terme (relaxation-fluage). En premier lieu, l’hystérésis est éliminée en ne considérant que les courbes de charge et en faisant l’hypothèse que la décharge a lieu sur la courbe de charge. Ceci revient à considérer que la courbe de charge est la courbe d’équilibre du matériau (si celle-ci existe, comme le proposent Bergström et Boyce (1998)). D’autre part, l’effet de relaxation-fluage est supprimé en ne considérant que les deux premiers cycles et en corrigeant les dimensions de référence des éprouvettes entre ces deux cycles. Compte tenu de la géométrie des éprouvettes, cette correction est peu importante.
pour le cisaillement simple, mais primordiale pour les essais de traction uniaxiale pour lesquels l’éprouvette flambe lors du retour à étirement nul. Finalement, une fois pris en compte ce traitement des données expériementales, le comportement du matériau peut être schématisé par la figure 3.14.

3.3.2 Modélisation par la mécanique de l’endommagement

La première approche que nous avons adoptée se fonde sur la mécanique de l’endommagement introduite par Kachanov (1958) et Rabotnov (1968), et formalisée par Lemaitre et Chaboche (1985). Cette théorie a été appliquée avec succès à de nombreux matériaux (voir par exemple Voyiadjis et al. (1998)) et est utilisée depuis le début des années 90 pour modéliser l’effet Mullins dans les élastomères (Govindjee et Simo, 1991, 1992; De Souza Neto et al., 1994; Miehe, 1995; Miehe et Keck, 2000; Bikard et Desoyer, 2001; Aubard et al., 2002). Pour de plus amples détails sur ces travaux, le lecteur peut se référer à l’annexe A.

Dans la présente étude, l’accent est mis sur la justification de cette approche pour la modélisation de l’effet Mullins. Tout d’abord, l’utilisation de la mécanique de l’endommagement pour l’accommodation est discutée. Dans un deuxième paragraphe, le cadre thermodynamique de l’hyperélasticité avec endommagement est mis en place et l’équivalence avec les modèles issus de la théorie de double réseau (Green et Tobolsky, 1946) est démontrée au travers du choix du critère d’endommagement. Après avoir choisi la fonction énergie de déformation, les paramètres matériels sont déterminés à partir des essais expériementaux. Finalement, quelques exemples numériques sont présentés.
Chap. 3. Modélisation de l’effet Mullins dans les élastomères

Remarques préliminaires sur l’emploi de la mécanique de l’endommagement pour l’effet Mullins

Dans tous les articles sur le sujet, la mécanique de l’endommagement est appliquée sans restriction au cas de l’effet Mullins. À notre avis, le développement de modèles issus de cette théorie nécessite une discussion préalable. En effet, la mécanique de l’endommagement se fonde sur le concept de contrainte effective qui postule que les efforts intérieurs agissent sur une surface matérielle qui diminue à cause de l’apparition de micro-défauts et de micro-vides au sein du matériau sollicité. Ainsi, à partir de ce postulat, on peut considérer que :

1. l’évolution du dommage est croissante, car les micro-défauts ou micro-vides ne peuvent pas disparaître ;
2. l’endommagement évolue différemment suivant le mode de déformation puisque les micro-vides sont ouverts en traction et fermés en compression ;
3. l’endommagement évolue jusqu’à l’apparition d’une fissure macroscopique, et donc jusqu’à rupture, puisque la surface active tend vers zéro.

Malheureusement, concernant l’effet Mullins dans les élastomères, ces trois assertions sont fausses. En effet, le phénomène d’accommodation est la conséquence d’un réarrangement du réseau polymère et correspond plutôt à un adoucissement sous contrainte qu’à l’évolution d’un dommage :

1. il a été montré expérimentalement que l’effet Mullins se recouvre avec le temps (Mullins, 1969) ;
2. l’effet Mullins est comparable quel que soit le mode déformation considéré (Bergström et Boyce, 1998) ;
3. l’accommodation n’est pas un phénomène qui conduit à la rupture de l’élastomère. Ainsi, la variable d’endommagement utilisée ne peut pas être considérée comme un critère de rupture.

À la lumière de ces remarques, il conviendra d’appliquer avec précautions la théorie de l’endommagement à l’effet Mullins dans les élastomères, et de nuancer les résultats obtenus lors des simulations numériques.

Thermodynamique de l’hyperélasticité avec endommagement

Soit un matériau hyperélastique, isotrope et incompressible, sujet à un endommagement isotrope et continu. En conséquence, ce matériau est défini par l’existence d’une fonction énergie de déformation W qui dépend à la fois de l’état de déformation et du niveau d’endommagement :

$$W = W(I_1, I_2, d)$$

où I_1 et I_2 sont les deux premiers invariants du tenseur des dilatations de Cauchy-Green gauche \mathbf{B} et d la variable d’endommagement. Considérons à présent que la variable d’endommagement traduit la réduction la surface matérielle sur laquelle agissent les efforts intérieurs. En rappelant que dans le cadre de l’hyperélasticité les contraintes dérivent directement de W, cette énergie de déformation devient :

$$W = (1 - d)W_0(I_1, I_2)$$

où W_0 représente la fonction énergie de déformation du matériau vierge non-endommagé. En appliquant l’inégalité de Clausius-Duhem et après quelques manipulations classiques (Miehe, 1995), on établit aisément :

- la relation contrainte-déformation :

$$\sigma = -p\mathbf{I} + (1 - d)2\mathbf{B}\frac{\partial W_0}{\partial \mathbf{B}}$$

où σ est le tenseur des contraintes de Cauchy et $-p\mathbf{I}$ est un tenseur sphérique dû à l’hypothèse d’incompressibilité, et :

- la dissipation du phénomène d’endommagement :

$$\mathcal{D} = W_0 \dot{d} \geq 0$$

où la force thermodynamique associée à la variable d est $-W_0$.

La définition complète du modèle de comportement nécessite à présent l’élaboration d’une loi d’évolution pour la variable d.

Comme nous l’avons rappelé précédemment, le niveau d’accommodation atteint localement semble, expérimentalement, dépendre de la déformation maximale précédemment subie localement par le matériau. C’est pourquoi, pour construire la loi pilotant l’évolution de d, il convient de définir une mesure scalaire de l’état de déformation. Notons $\alpha(t)$ cette mesure et $\dot{\alpha}$ son maximum entre l’instant initial et l’instant présent t. À l’instar de la plasticité (Simo et Hughes, 1998), on peut supposer que la loi d’évolution de la variable d est de la forme :

$$\dot{d} = h(\alpha) \dot{\alpha} \text{ pour } \alpha = \bar{\alpha} \text{ et } \dot{\alpha} > 0$$

et

$$\dot{d} = 0 \text{ dans tous les autres cas},$$
c’est-à-dire que l’endommagement n’évolue qu’en charge et lorsque l’état de déformation est maximal. Dans l’équation (3.5), h est la fonction d’évolution. L’intégration de cette loi d’évolution permet d’écrire la relation contrainte déformation sous la forme :

$$\sigma = -pI + \left(1 - \tilde{d}(\tilde{\alpha})\right)2B\frac{\partial W_0}{\partial B}$$ (3.7)

avec :

$$\tilde{d}_\alpha(\alpha) = h(\alpha) \text{ et } \tilde{d}(\tilde{\alpha} = 0) = 0$$ (3.8)

Finalement, il convient de choisir la mesure α de l’état de déformation qui va piloter l’évolution de l’endommagement. Si l’on considère le cadre général de la thermodynamique des processus irréversibles, l’évolution de d doit être une fonction de la force thermodynamique associée, c’est-à-dire $-W_0$. C’est ce qui fut fait dans les premiers travaux qui appliquaient l’équation de l’endommagement au cas de l’effet Mullins (Simo, 1987; De Souza Neto et al., 1994; Miehe, 1995). Cependant, ce choix pose une difficulté majeure puisqu’il faut postuler la forme de W_0 pour implanter numériquement le modèle. D’autre part, la physique du phénomène met en évidence l’influence de la déformation maximale. C’est pourquoi certains auteurs choisissent de formuler directement la loi d’évolution de d en fonction des invariants de la dilatation (Govindjee et Simo, 1991, 1992; Miehe et Keck, 2000). En fait, les modèles ainsi obtenus sont similaires à ceux fondés sur les approches de double réseau de Green et Tobolsky (1946) et/ou de polymère à deux phases de Mullins et Tobin (1957), qui ont été récemment proposés par Wineman et Rajagopal (1990); Johnson et Beatty (1993), et Beatty et Krishnaswamy (2000). Ces modèles considèrent que l’effet Mullins modifie durablement le réseau et que la fonction d’évolution de celui-ci, qui corrige l’énergie de déformation du matériau vierge W_0, dépend de la déformation maximale. D’ailleurs, il convient de noter que Beatty et Krishnaswamy ont formulé le parallèle entre leur approche et la mécanique de l’endommagement (voir la note de bas de page n°5 dans Beatty et Krishnaswamy (2000)). À notre connaissance, le choix de la mesure de déformation est arbitraire dans tous les travaux (mécanique de l’endommagement et réseau polymère). Cependant, en prenant en compte la thermodynamique du phénomène et les propriétés de l’énergie de déformation, il est possible de réduire le champ des mesures utilisables. Ainsi, nous avons établi dans Chagnon et al. (2003b) que, pour une mesure notée $\alpha = g(I_1,I_2)$, la fonction g doit vérifier :

- g est définie $[3, +\infty) \times [3, +\infty)$;
- g est dérivable par rapport à I_1 and I_2 sur $[3, +\infty) \times [3, +\infty)$;
- $g_{,I_1} > 0$ et $g_{,I_2} \geq 0$;
- le choix $g(I_1 = 3,I_2 = 3) = 0$, qui assure que la mesure est nulle pour le matériau non-déformé, est recommandé.

Construction du modèle proprement dit et détermination des paramètres matériels

Le cadre général étant défini, la mise en place d’un modèle utilisable numériquement nécessite à présent le choix d’une fonction énergie de déformation du matériau vierge W_0, une mesure de l’état de déformation α et une loi d’évolution pour l’endommagement $\tilde{d}(\tilde{\alpha})$.

Dans cette étude, nous avons choisi de mettre l’accent sur la loi d’évolution de l’endommagement, c’est pourquoi le modèle hyperélastique de Yeoh a été adopté :

$$W_0 = C_{10}(I_1 - 3) + C_{20}(I_1 - 3)^2 + C_{30}(I_1 - 3)^3$$ (3.9)

Ce modèle permet de reproduire fidèlement les très grandes déformations et est suffisamment simple mathématiquement pour envisager une implantation numérique aisée. Cependant, ses
performances pour les déformations modérées sont limitées (voir l'annexe A). Dans le même esprit de simplicité, la mesure de déformation utilisée est seulement fonction du premier invariant :

$$\alpha = \sqrt[3]{I_1} - 1$$ \hspace{1cm} (3.10)

et représente l’extension de la diagonale d’un cube matériel.

La loi d’évolution de l’endommagement est quant à elle déterminée directement à partir des résultats expérimentaux, en exploitant pleinement les propriétés du modèle d’endommagement. Pour ce faire, considérons deux types de courbes contrainte-déformation : la courbe primaire qui représente la première charge subie par le matériau (courbe \((I) \cup (II) \cup (III)\) sur la figure 3.14) et les courbes secondaires pour lesquelles la raideur du matériau a diminué (courbes \((I')\), \((II')\) et \((III')\) sur la figure 3.14). Ainsi, d’après la forme de la loi de comportement (3.7) :

- sur la courbe primaire, l’endommagement évolue et la contrainte nominale est donnée par :

$$\pi_p = \left[1 - \tilde{d} \left(\sqrt{I_1/3} - 1\right)\right] \pi_0$$ \hspace{1cm} (3.11)

où \(\pi_0\) est la contrainte nominale du matériau idéal vierge ;

- sur la \(i^{\text{ème}}\) courbe secondaire, l’endommagement est constant et la contrainte nominale est donnée par :

$$\pi_s^i = \left[1 - \tilde{d} \left(\sqrt{I_1^i/3} - 1\right)\right] \pi_0$$ \hspace{1cm} (3.12)

où \(I_1^i\) représente la valeur du premier invariant des dilatations au point de jonction entre la courbe primaire et cette \(i^{\text{ème}}\) courbe secondaire.

Alors, il apparaît évident que les contraintes entre deux courbes secondaires \(i\) et \(j\) (\(i < j\)) sont proportionnelles :

$$\frac{\pi_s^i}{\pi_s^j} = k_{ij} \quad \text{sur} \quad [1, I_1^i]$$ \hspace{1cm} (3.13)

où \(k_{ij}\) est le coefficient :

$$k_{ij} = \frac{1 - \tilde{d} \left(\sqrt{I_1^i/3} - 1\right)}{1 - \tilde{d} \left(\sqrt{I_1^j/3} - 1\right)}$$ \hspace{1cm} (3.14)

La relation de proportionnalité (3.13) est utilisée pour construire expérimentalement la loi d’évolution de \(d\). Ainsi, la figure 3.15 présente le domaine de validité du modèle (a) et la forme expérimentale de l’évolution de l’endommagement (b). À partir de cette dernière, l’équation d’évolution de l’endommagement peut être recalée sous la forme :

$$\tilde{d}(\tilde{\alpha}) = d_\infty \left[1 - \exp \left(-\frac{\tilde{\alpha}}{\eta}\right)\right]$$ \hspace{1cm} (3.15)

où \(d_\infty\) et \(\eta\) sont deux nouveaux paramètres matériels. Cette forme est identique à celle proposée de manière phénoménologique par Miehe (1995), pour qui la mesure de déformation \(\alpha\) est l’énergie de déformation \(W_0\).

Finalement, les cinq paramètres matériels (trois pour la fonction énergie de déformation et deux pour la loi d’endommagement) sont identifiés de manière globale sur l’ensemble des essais (traction et cisaillement). Pour cela, un algorithme génétique est utilisé pour fournir une première estimation, puis une méthode classique de plus grande pente permet de déterminer plus précisément les paramètres matériels. Les résultats obtenus sont fournis dans le tableau 3.1 et la comparaison du modèle avec les expériences est présentée sur la figure 3.16.
Chap. 3. Modélisation de l’effet Mullins dans les élastomères

Fig. 3.15 – Traction uniaxiale : (a) exemple de proportionnalité entre les courbes secondaires, (b) évolution de la fonction d’endommagement. La courbe (a) permet de mettre en évidence le domaine de validité du modèle (zone proportionnelle) pour laquelle les courbes de charge secondaires sont effectivement proportionnelles entre elles. En fait le modèle d’endommagement adopté est valide sur toute la courbe contrainte-déformation sauf pour le raidissement du matériau qui caractérise le retour sur la courbe primaire. Il convient de noter que les résultats obtenus en cisaillement simple sont similaires à ceux relatifs à la traction uniaxiale.

Tab. 3.1 – Valeurs des paramètres matériels pour le modèle hyperélastique avec endommagement.

<table>
<thead>
<tr>
<th>Paramètres</th>
<th>Valeurs</th>
</tr>
</thead>
<tbody>
<tr>
<td>C_{10}</td>
<td>3.99×10^{-2} MPa</td>
</tr>
<tr>
<td>C_{20}</td>
<td>-4.05×10^{-4} MPa</td>
</tr>
<tr>
<td>C_{30}</td>
<td>1.31×10^{-4} MPa</td>
</tr>
<tr>
<td>d_∞</td>
<td>1,744</td>
</tr>
<tr>
<td>η</td>
<td>3,85</td>
</tr>
</tbody>
</table>

Exemples numériques

De par sa formulation, l’approche par la mécanique de l’endommagement est propice à une implantation numérique aisée. Ainsi, ce modèle a été implanté dans le logiciel Abaqus en utilisant le sous-programme utilisateur UMAT. Pour ce faire, une version incompressible en contraintes planes et une version quasi-incompressible pour les problèmes tridimensionnels ont été développées. De plus, l’opérateur d’élasticité tangent a été calculé analytiquement. Ce calcul est essentiel pour améliorer grandement les propriétés de convergence du modèle numérique. Pour illustrer la mise en œuvre numérique du modèle, quelques résultats sont présentés sur la figure 3.17.
Modélisation du comportement des structures et des matériaux élastomères

Fig. 3.16 – Résultats de l’identification, (a) traction uniaxiale, (b) cisaillement pur: (············) résultats expérimentaux, (—) modèle. D’un point de vue qualitatif, les résultats sont satisfaisants, puisque l’influence du niveau d’accommodation sur la raideur du matériau est bien reproduite. Comme attendu, le retour sur la courbe primaire n’est pas reproduit de façon satisfaisante car le phénomène de raidissement ne peut pas être pris en compte par la forme de la fonction d’évolution de l’endommagement adoptée. D’autre part, les performances du modèle pour différents modes de déformation sont très discutables.

Fig. 3.17 – Quelques résultats numériques obtenus par l’approche hyperélastique avec endommagement. Niveau d’endommagement: (a) et (b) traction équibiaxiale d’une membrane trouée en contraintes planes, (c) torsion sur une épreuve diabolo. Les figures (a) et (b) illustrent l’anisotropie induite par l’effet Mullins : la figure (a) correspond à un cycle dans la direction horizontale suivi d’un cycle dans la direction verticale et la figure (b) correspond à un cycle dans la direction diagonale. La répartition de l’endommagement diffère donc suivant le chemin de chargement suivi. La figure (c) illustre la stabilité des développements proposés, et notamment de la quasi-incompressibilité, puisque le calcul converge pour un angle de torsion de 500°.
Remarques finales sur l’approche hyperélastique avec endommagement

Ces travaux illustrent les capacités et les limitations de l’emploi de la mécanique de l’endommagement pour l’effet Mullins dans les élastomères. Nous avons mis l’accent sur le fait que l’accommodation des élastomères n’est pas un phénomène d’endommagement stricto sensu. Cependant, sous certaines réserves et dans un cadre thermodynamique bien défini, nous avons démontré l’équivalence entre les modèles fondés sur l’endommagement continu et les modèles du type double réseau ou double phase classiquement utilisés pour les polymères. De plus, la mise en œuvre numérique de ce type de loi de comportement a été menée à bien.

 À présent, et en tenant compte de la présente étude (notamment de la méthode de recalage utilisée), l’hypothèse classique, commune à la grande majorité des auteurs, qui affirme que le niveau d’accommodation dépend que de la déformation maximale enregistrée précédemment par le matériau doit être abandonnée, et ce quelles que soient les approches adoptées, puisque le raidissement du retour sur la courbe de première charge n’est pas reproduit de manière satisfaisante. Pour améliorer la modélisation, la loi d’évolution de l’endommagement (3.5) doit être modifiée, par exemple sous la forme :

\[d = h(d, \alpha) \dot{\alpha} \quad \text{pour} \quad \alpha = \bar{\alpha} \quad \text{et} \quad \dot{\alpha} > 0 \]

(3.16)

3.3.3 Modélisation par la statistique des chaînes

Comme nous venons de le voir, l’emploi de la mécanique de l’endommagement pour l’effet Mullins bénéficie d’un cadre thermodynamique bien établi et se prête bien à l’implantation numérique. En revanche, le caractère phénoménologique de cette approche laisse entrevoir une difficulté majeure : le changement de mode de déformation. En effet, le recalage des paramètres matériels sur un essai simple donné (la traction uniaxiale, par exemple) n’assure en rien les performances du modèle sur les autres essais simples mettant en jeu des modes de déformation différents (traction biaxiale ou cisaillement simple) comme l’illustre par exemple la figure 3.16. En fait, cette difficulté rejoint le problème inhérent aux modèles hyperélastiques phénoménologiques déjà relevé par Ogden (1972) lors de la construction de son modèle, et par bien d’autres par la suite.

Pour pallier cette difficulté, nous proposons dans ce paragraphe une approche originale pour la modélisation de l’effet Mullins, fondée sur l’altération du réseau moléculaire. En effet, cette théorie s’appuyant sur les modèles moléculaires, elle permettra les changements de mode de déformation sans ajout de paramètres matériels supplémentaires, les paramètres des modèles étant directement liés à la physique de l’élastomère (voir l’annexe A). Notre théorie est développée dans la suite, en rappelant tout d’abord les modèles hyperélastiques moléculaires sur laquelle elle pourra être mise en œuvre. Ensuite, le principe d’évolution du réseau polymère est exposé et ses conséquences sur les équations de comportement sont détaillées. Enfin, les résultats obtenus sont comparés à l’expérience et critiqués.
Rappel sur les modèles hyperélastiques moléculaires

Dans ce paragraphe, les modèles hyperélastiques conçus sur des approches moléculaires sont brièvement rappelés. L'histoire et les hypothèses de ces modélisations sont présentés en détails dans l'annexe A p. 85.

D'une manière générale, la construction de modèles moléculaires pour les élastomères s'effectue en deux étapes. En premier lieu, il convient de décrire le comportement d'une chaîne polymère isolée, c'est-à-dire d'établir l'équation liant sa tension à son allongement. Puis, cette loi de comportement individuelle doit être intégrée au sein d'un réseau statistique pour représenter le comportement de l'élément de volume représentatif de l'élastomère.

Le modèle moléculaire le plus simple est le modèle gaussien, connu aussi sous le nom de néo-hookéen (Treloar, 1943). Les hypothèses sous-jacentes (comportement affine du réseau moléculaire) limitent les bonnes performances de ce modèle aux déformations modérées (jusqu'à 100%). La construction de modèles de comportement valides pour les grandes déformations s'appuie sur la théorie non-gaussienne de Kuhn et Grün (1942) qui prend en compte la limite d'extensibilité de la chaîne dans la relation entre sa tension σ et son extension λ :

$$\sigma = \lambda k T \sqrt{N} \mathcal{L}^{-1} \left(\frac{\lambda}{\sqrt{N}} \right)$$

où k est la constante de Boltzmann, T la température absolue, N le nombre de monomères constituant la chaîne et \mathcal{L}^{-1} l'inverse de la fonction de Langevin, qui est définie par $\mathcal{L}(x) = \coth(x) - 1/x$. Le comportement individuel d'une chaîne étant établi par cette équation, la mise en place d'un modèle continu du matériau nécessite la prise en compte de la répartition statistique des chaînes au sein d'un élément de volume élémentaire (la sphère unité par exemple). Les diverses propositions de répartition (simplifiée ou non) recensées dans la bibliographie sont présentées sur la figure 3.18. Pour choisir parmi ces modèles, nous avons tenu compte de leurs performances lors d'un changement de mode de déformation mais aussi de leur complexité mathématique. Leurs performances respectives peuvent être évaluées sur la figure 3.19. Compte tenu de ces résultats, mais aussi de sa simplicité mathématique, le modèle 8-chaines d’Arruda et Boyce (1993) est retenu comme point de départ de notre théorie. Dans les directions principales, la relation contrainte-déformation correspondante s'écrit :

$$\sigma_i = -p + \frac{1}{3} C_R \sqrt{N} \frac{\lambda_i^2}{\lambda_c} \mathcal{L}^{-1} \left(\frac{\lambda_c}{\sqrt{N}} \right)$$

où λ_c est l'extension des diagonales du cube déformé, égale à $\sqrt{I_1/3}$. Cette loi de comportement ne dépend que de deux paramètres matériels :

- $C_R = nkT$ qui représente la raideur du matériau aux faibles déformations (à un facteur multiplicatif près) et est proportionnelle au nombre de chaînes de polymère par unité de volume n ;
- N qui est le nombre moyen de monomères par chaîne et est donc représentatif de la longueur moyenne et de la limite d'extensibilité des chaînes (Doi, 1996).

Modélisation de l’évolution du réseau

Considérations générales Pour passer du modèle hyperélastique 8-chaines à un modèle intégrant l’effet Mullins, il est nécessaire de s’interroger sur les mécanismes physiques mis en jeu lors de l’accommodation. Pour cela, on peut se référer aux travaux passés proposant diverses
Fig. 3.18 – Les différents modèles hyperélastiques moléculaires. (a) Modèle de réseau complet proposé par Treloar et Riding (1979), et Wu et van der Giessen (1993). Ce modèle est le plus général puisqu’il suppose que les chaînes sont orientées de façon aléatoire à l’intérieur de la sphère unité. Toutefois, il nécessite une intégration numérique pour tout calcul de contrainte, ce qui le rend inutilisable numériquement. (b) Modèle 3-chaînes de James et Guth (1943). Un tiers des chaînes est orienté dans chacune des directions principales. (c) Modèle 4-chaînes de Flory (1944) et Treloar (1946). Les directions privilégiées sont les segments liant le centre de la sphère unité aux sommet d’un tétraèdre inscrit dans celle-ci. Le calcul des contraintes nécessite, ici aussi, un effort numérique. (d) Modèle 8-chaînes d’Arruda et Boyce (1993). Un quart des chaînes est orienté suivant les diagonales du cube inscrit dans la sphère unité.

Fig. 3.19 – Comparaison des modèles 3-chaînes, 8-chaînes et de réseau complet à partir des expériences de James et al. (1975). (a) Les paramètres matériels sont déterminés à partir des essais uniaxiaux. (b) Les prédictions obtenues en extension équi-biaxiale sont comparées à l’expérience.
explications. Les diverses contributions sont exposées en détails dans l’annexe A. Ici, seule une brève synthèse est proposée.

Comme le notent Drozdov et Dorfmann (2001), il n’y a pas aujourd’hui d’explication physique unanime pour l’effet Mullins. Cependant, que celui-ci soit dû à la transformation de phases dures très enchevêtrées du réseau en phases molles où les chaînes sont plus libres (Mullins et Tobin, 1957; Bonart, 1968; Lee et Williams, 1985), à la rupture des chaînes liant les agrégats de charges (Bueche, 1960, 1961), au glissement de ces chaînes au travers des agrégats (Dannenberg et Brennan, 1966; Dannenberg, 1966), ou encore aux mouvements des points de jonction au sein de la matrice caoutchouc sans aucun lien avec les charges (Harwood et Payne, 1966a,b), la seule conclusion avérée est que l’accommodation est la conséquence d’un réarrangement durable du réseau sous l’effet de rupture de liaisons en son sein.

Théorie d’altération de réseau Dans ce travail, nous avons donc considéré les ruptures de liaisons sans préjuger de la nature des liaisons rompues (au sein des chaînes, entre les chaînes, entre les chaînes et les charges, au sein des agrégats de charges). En effet, le recouvrement de la raideur avec la température laisse penser que, même si des ruptures chaînes-charges apparaissent lors du chargement, certaines liaisons faibles entre les chaînes sont aussi rompues.

Considérons l’élastomère au repos comme un réseau amorphe de chaînes liées entre elles aux points de jonction (charges ou enchevêtements). Lors de l’extension de ce réseau, des liaisons faibles sont cassées, certaines chaînes atteignent leur limite d’extensibilité et se rompent. Ainsi, le nombre de ruptures au sein du réseau augmente avec l’extension, et donc le nombre de points de jonction entre les chaînes diminue. La première conséquence est l’augmentation de la longueur moyenne des chaînes (définie comme la longueur active entre deux points de jonction) et donc du nombre de monomères par chaîne N. En tenant compte de ce qui vient d’être exposé, N est alors une fonction croissante de l’état d’extension maximale observé au sein du matériau lors de son histoire. La seconde conséquence du réarrangement du réseau sous sollicitation est la diminution du nombre de chaînes polymères par unité de volume, n. Celle-ci est la conséquence du principe de conservation de la masse qui veut que le nombre de segments monomères par unité de volume, nN, reste constant. En fait, ce principe peut être discuté puisque les segments concernés sont seulement ceux qui sont actifs dans la raideur du matériau. Ainsi, sous sollicitation, le nombre de segments actifs peut diminuer si certaines parties des chaînes initialement actives sont transformées en chaînes pendantes. Malgré cette remarque, dans la suite du travail, le produit nN sera supposé constant.

Notre théorie d’altération du réseau peut être reliée à celle proposée par Septanika et Ernst (1998a,b) pour la viscoélasticité long-terme. Leur théorie reprend les propositions de Green et Tobolsky (1946) en considérant que lors de l’extension des liaisons se rompent dans le réseau original et que des réseaux non-contraints sont reformés. Cette théorie se traduit par l’évolution du nombre de chaînes par unité de volume n sous la forme d’une fonction de relaxation, évidemment décroissante.

Mise en équations Les conséquences de notre théorie d’altération sur les grandeurs physiques du réseau étant établies, la traduction de celles-ci sur le modèle de comportement est très simple. Nous avons justifié précédemment le choix du modèle 8-chaînes d’Arruda et Boyce comme modèle hyperélastique moléculaire de référence. Celui-ci dépendant explicitement des grandeurs physiques n et N, la mise en pratique de la théorie est immédiate. En effet, ces paramètres, constants pour le modèle hyperélastique classique, deviennent des fonctions qui évoluent avec le maximum de l’histoire de la déformation pour le modèle incorporant l’accommodation. Seule reste à choisir la mesure de déformation qui servira de critère pour l’évolution de l’effet Mullins.
(comme dans le cas de l’endommagement). Le modèle 8-châînes faisant intervenir explicitement l’extension des diagonales du cube matériel au travers du terme \(\lambda_c = \sqrt{I_1/3} \) (Eq. (3.18)), nous avons choisi cette mesure comme critère d’évolution.

En résumé, le modèle 8-châînes intégrant l’altération du réseau est décrit par les équations suivantes:

\[
\sigma_i = -p + \frac{1}{3} C_R(\lambda_{\text{max}}) \sqrt{N(\lambda_{\text{max}})} \frac{\lambda_i^2}{\lambda_c} \mathcal{L}^{-1} \left(\frac{\lambda_c}{\sqrt{N(\lambda_{\text{max}})}} \right) \quad i = 1,3
\]

avec :

\[
C_R(\lambda_{\text{max}}) = n(\lambda_{\text{max}}) kT
\]

et :

\[
\lambda_c(t) = \sqrt{I_1(t)/3} \quad ; \quad \lambda_{\text{max}} = \max_{0 \leq \tau \leq t} [\lambda_c(\tau)]
\]

De plus, la condition \(nN = \text{Cte} \) est adoptée.

Détermination des paramètres matériels et critique des résultats

La détermination des paramètres matériels est effectuée pour un caoutchouc naturel chargé à 25% et pour un élastomère synthétique chargé à 40% sur les résultats d’essais de traction uniaxiale. Pour cela, les deux fonctions \(n(\lambda) \) et \(N(\lambda) \) sont développées sous forme de fonctions exponentielles. La méthode de recalage utilisée est celle décrite dans la partie relative au modèle fondé sur la mécanique de l’endommagement. Les résultats de l’identification sont présentés sur la figure 3.20.

D’autre part, on peut s’intéresser à l’évolution des paramètres physiques \(n \) et \(N \) en fonction de l’extension maximale \(\lambda_{\text{max}} \). La figure 3.21 montrent ces résultats. Notons tout d’abord que l’évolution qualitative des paramètres est similaire pour les deux matériaux étudiés, ce qui permet d’affirmer que l’effet Mullins est une conséquence de l’évolution du réseau quel que soit le type d’élastomère (naturel ou synthétique) et quel que soit le taux de charges. D’autre part, le nombre moyen de monomères par châîne \(N \) augmente lorsque le réseau est altéré (fig. 3.21(a)), ce qui confirme notre théorie, mais aussi l’hypothèse de Johnson et Beatty (1993) qui postulaient l’augmentation de la longueur moyenne des châînes polymères dans le réseau. Finalement, l’influence du taux de charge du matériau sur l’effet Mullins peut être mise en évidence. Sur la figure 3.21(a), la courbure de la courbe d’évolution de \(N \) est plus importante pour le SBR que pour le NR, alors que les valeurs extrêmes sont du même ordre de grandeur. Ces observations confirment que l’effet Mullins est d’autant plus prononcé que le matériau est chargé (Mullins, 1969), ce qui est aussi notable sur les courbes contrainte-déformation de la figure 3.20 au travers de l’aire séparant les courbes primaires et secondaires.

Remarque finale sur l’implantation numérique

Pour conclure sur cette théorie, il est nécessaire d’examiner son implantation numérique. En théorie, la mise en œuvre numérique de ce modèle ne pose pas de difficulté puisqu’il suffit de faire varier les paramètres \(n \) et \(N \) du modèle hyperélastique d’Arruda et Boyce (1993), en conservant au fil du calcul les valeurs de déformation maximale. D’un point de vue pratique, nous avons éprouvé quelques difficultés pour la programmation dans Abaqus (au travers du sous-programme UMAT). Ces difficultés n’étaient pas dues à la théorie d’altération, mais à la formulation du modèle 8-châînes proprement dit ! En effet, la présence de l’inverse de la fonction de Langevin \(\mathcal{L}^{-1}(x) \) qui admet une asymptote verticale pour \(x = 1 \) rend très difficile, voire
Modélisation du comportement des structures et des matériaux élastomères

Fig. 3.20 – Résultats de l’identification. (a) NR et (b) SBR : (····◦···) résultats expérimentaux, (—) modèle 8-chaines d’altération de réseau. Le modèle de comportement simule de façon très satisfaisante les expériences pour les deux matériaux étudiés. Le comportement en grandes déformations et le raidissement du retour sur la courbe de première charge sont très bien reproduits. En revanche, le comportement en petites déformations (de 0 à 50%) est mal représenté par le modèle. Cet écart n’est pas dû à notre approche mais est intrinsèque au modèle 8-chaines, qui se réduit au modèle néo-hookéen affine pour les petites déformations et qui souffre donc des limites de celui-ci.

Fig. 3.21 – Évolution des paramètres physiques en fonction de λ_{max}. (a) N et (b) C_R: (—) NR, (- -) SBR.

impossible, le calcul analytique de l’opérateur tangent. Cette difficulté est confirmée par le fait que le modèle 8-chaines implanté dans Abaqus n’est pas le modèle original d’Arruda et Boyce, mais son développement limité à l’ordre 5. Ceci facilite grandement l’implantation numérique mais ne reproduit pas de manière satisfaisante le comportement des chaînes au voisinage de leur limite d’extensibilité, c’est-à-dire là où le développement limité n’est plus valide. Pour notre
part, nous travaillons actuellement sur ce problème en essayant d’obtenir un modèle équivalent au modèle 8-chaines, mais ne faisant pas intervenir d’asymptote verticale (Chagnon et al., 2003a).
Bibliographie

Modélisation du comportement des structures et des matériaux élastomères
Conclusion et perspectives sur les activités de recherche

À la lumière de ce qui vient d’être exposé, ma thématique de recherche s’inscrit dans le cadre général de la modélisation des structures et des matériaux élastomères. Dans les deux cas, l’objectif visé est la compréhension des phénomènes mis en jeu afin de proposer des modèles performants. Cette thématique générale se situe à l’interface entre la mécanique des matériaux et la mécanique des structures, et tous les développements mis en œuvre, aussi bien pour la simulation du soufflage des membranes souples que pour les lois de comportement des élastomères, conduisent à l’élaboration ou à l’amélioration des outils numériques prédictifs, principalement au travers de la méthode des éléments finis.

Dans la suite de ce paragraphe, les perspectives relatives à mes deux thèmes de recherche sont présentées.

À plus long terme, l’étude du couplage entre un fluide et des membranes souples est un problème qui reste ouvert. Des applications de ce type peuvent s’avérer intéressantes dans le domaine de la biomécanique. Pour ma part, je me concentrerai dans un avenir proche sur la seconde thématique portant sur le comportement des élastomères. C’est pourquoi, j’utiliserai mes connaissances relatives aux membranes essentiellement pour la validation des modèles de comportement des élastomères qui seront développés.

À plus long terme, les perspectives de ce travail se concentreront évidemment sur la prédiction du comportement en fatigue. Comme mentionné dans l’introduction du chapitre 3, deux thèses ont débuté récemment dans cette optique. La première s’intéresse aux phénomènes macroscopiques entraînant l’initiation de fissures dans l’élastomère. Ces travaux sont menés par Elisabeth Ostoja-Kuczynski depuis juillet 2002, dans le cadre d’un financement CIFRE en collaboration avec le groupe Trelleborg. Les premiers résultats disponibles mettent en évidence l’importance des phénomènes caractéristiques du comportement des élastomères sur la durée de vie : niveau d’accommodation (effet Mullins), énergie dissipée dans la boucle d’hystérésis et relaxation cyclique. À la lumière de ces observations, il a été décidé que la prochaine étape du processus de modélisation du comportement s’intéressera à la boucle d’hystérésis, caractéristique de la réponse du matériau sous chargement cyclique. L’étude bibliographie relative à ce sujet étant faite, nous nous attacherons dans un premier temps à la mise en place de procédures expérimentales originales permettant de qualifier qualitativement et quantitativement ce phénomène. La première interrogation concerne évidemment la nature même de cette boucle d’hystérésis : viscoélastique ou viscoplastique ? Dans le même temps, les relations entre relaxations statique et cyclique seront explorées.

Le second travail de thèse vise à déterminer les phénomènes microscopiques qui pilotent l’apparition des fissures dans les élastomères. Ce travail, qui a débuté en janvier 2003, est mené par Jean-Benoît Le Cam au travers d’une convention CIFRE avec la société Allevard-Rejna et le CETIM de Nantes. L’objectif de cette étude est double : déterminer les scénarios microscopiques conduisant à la création de fissure et proposer des modèles les traduisant.

L’objectif de ces deux doctorats est évidemment l’élaboration de critères d’initiation de fissure utilisables dans les outils de simulation numérique, et donc macroscopiques au sens de la mécanique des milieux continus. La mise en place de ces critères devra évidemment repose sur la compréhension des processus physiques, la mise en évidence des phénomènes macroscopiques endommageants et le calcul numérique pour la prédiction du champ de contrainte. À notre avis, ces trois aspects du problème sont indissociables et seront abordés simultanément.
Annexes
Annexe A

État de l’art sur la modélisation du comportement mécanique des élastomères

Dans le paragraphe 3.1.2 (p. 48) de ce mémoire, le comportement mécanique des élastomères a été décrit en détails. La complexité de ce comportement a conduit aux développements de nombreux modèles, la plupart d’entre eux ne s’intéressant qu’à un, voire deux, des phénomènes mis en exergue précédemment. L’objectif de la présente annexe n’est pas de recenser de manière exhaustive les différents travaux, mais plutôt de proposer une synthèse des approches suivies par les auteurs. Ainsi, seules seront retenues les références bibliographiques les plus significatives à nos yeux.

Remarque. Dans la suite, il apparaîtra que l’approche des mécaniciens, qui vise à modéliser le comportement du matériau pour ensuite étudier des structures, et celle des physiciens, qui a plutôt pour but d’élaborer des modèles très représentatifs des phénomènes physiques observés au niveau de la microstructure, sont assez différentes, voire antinomiques. Même si aujourd’hui ces différences tendent à s’estomper, elles sont encore très présentes en comparaison avec la mécanique des fluides non-newtoniens. Pour notre part, nous privilégierons l’approche mécanicienne en ne présentant que les modèles qui sont utilisables par l’ingénieur en conception ou simulation, même si nous sommes évidemment conscients qu’une bonne représentation de la physique des phénomènes est un gage de qualité pour un modèle de comportement.

Dans toute la suite de cette partie, les élastomères sont considérés homogènes, isotropes et incompressibles. L’abandon de ces hypothèses sera précisé s’il y a lieu.
A.1 Les théories fondateuses : 1940-1970

A.1.1 Hyperélasticité

Préliminaires

Avant de s'intéresser effectivement aux théories de l'élasticité caoutchoutique développées entre 1940 et 1970, rappelons tout d'abord un résultat fondamental établi dans les années 30, puis le cadre thermodynamique dans lequel nous allons nous placer.

Meyer et Ferri (1935) ont montré que l'élasticité des caoutchoucs est essentiellement de nature entropique. Pour ce faire, ils ont mis en place des essais de traction uniaxiale (à 350%) à différentes températures sur un caoutchouc faiblement vulcanisé. En considérant le caoutchouc incompressible, ils lièrent ainsi la force de traction f à la température T par une équation linéaire du type $f(T) = \alpha T$ où α est une constante. En comparant cette relation expérimentale à l'équation thermodynamique :

$$f = \left(\frac{\partial U}{\partial z} \right)_T - T \left(\frac{\partial S}{\partial z} \right)_T$$

(A.1)

qui lie la force exercée sur l'éprouvette (qui s'allonge de dz en conservant son volume) à son énergie interne U, son entropie S et sa température T, il apparaît immédiatement que l'influence de l'énergie interne sur le comportement est négligeable et que les contraintes engendrées au sein de l'éprouvette s'opposent à la diminution d'entropie due à la force appliquée. En fait, soumis à des sollicitations mécaniques, le réseau s'ordonne et le matériau résiste pour retrouver son état désordonné initial.

$$\sigma = -p\mathbf{I} + 2\mathbf{B} \frac{\partial W}{\partial \mathbf{B}}$$

(A.2)

Compte tenu de l’hypothèse d’incompressibilité du matériau, ce tenseur est défini à un tenseur sphérique près $-p\mathbf{I}$, où p est la pression hydrostatique. De plus, l’hypothèse d’isotropie du matériau impose à W d’être une fonction scalaire isotrope du tenseur \mathbf{B}. Ainsi, elle peut être écrite comme une fonction des deux premiers invariants principaux de \mathbf{B}, I_1 et I_2 (le troisième, $I_3 = \det \mathbf{B}$, étant égal à l’unité de par l’incompressibilité), qui sont donnés par :

$$I_1 = \text{tr} \mathbf{B} \quad \text{et} \quad I_2 = \frac{1}{2} \left[I_1^2 - \text{tr} (\mathbf{B}^2) \right]$$

(A.3)

Ainsi, la relation contrainte-déformation (A.2) devient :

$$\sigma = -p\mathbf{I} + 2 \left(\frac{\partial W}{\partial I_1} + I_1 \frac{\partial W}{\partial I_2} \right) \mathbf{B} - 2 \frac{\partial W}{\partial I_2} \mathbf{B}^2$$

(A.4)

Évidemment, à la lumière des résultats obtenus par Meyer et Ferri, l’énergie de déformation précédente est reliée à l’entropie par unité de volume non déformé, s, par :

$$dW = -T ds$$

(A.5)
Ce cadre général étant établi, la difficulté consiste maintenant à expliciter la fonction \(W \) (ou \(s \)). C’est ce que se sont efforcés de faire les différents auteurs, soit par des considérations physiques sur la statistique du réseau moléculaire, soit de manière phénoménologique.

Approches moléculaires

Les formulations physiques de l’élasticité caoutchoutique s’appuient sur deux étapes distinctes. La première consiste à établir la distribution des conformations possibles d’une chaîne polymère, c’est-à-dire la fonction de distribution des écarts entre les extrémités d’une chaîne en fonction de son allongement. Puis, une fois cette distribution établie, la fonction énergie de déformation du réseau est déterminée en intégrant les contributions individuelles des chaînes, au prix d’hypothèses simplificatrices sur le comportement du réseau.

Le premier modèle moléculaire proposé est le modèle dit néo-hookéen de Treloar (1943). Celui-ci se fonde sur la distribution gaussienne des conformations d’une chaîne établie par Kuhn (voir par exemple Kausch et al. (2001)). Considérons une chaîne polymère, c’est-à-dire une macromolécule délimitée par deux points de jonction (réticulation ou enchevêtrement), constituée de \(N \) monomères inextensibles de longueur \(a \) librement orientables. La chaîne contient donc \(N + 1 \) nœuds. On note \(r \) l’écart entre les deux extrémités de la chaîne (norme du vecteur liant les deux nœuds extrêmes, voir le schéma 3.1(a) p. 47). En supposant que cette chaîne soit longue \((N \text{ élevé}) \) et faiblement étirée \((r \ll Na) \), la distribution des conformations peut être approchée par une fonction gaussienne et la force de rétraction s’écrit alors :

\[
f = \frac{3kT}{Na^2} r \tag{A.6}
\]

où \(k \) est la constante de Boltzmann et \(T \) la température absolue. Cette force correspond à la fonction énergie de déformation individuelle \(w \) (définie à une constante additive près \(w_0 \)) suivante :

\[
w = \frac{3}{2} kT \lambda^2 - w_0 \tag{A.7}
\]

où \(\lambda \) est l’extension de la chaîne définie comme le rapport \(r/\sqrt{Na} \), \(\sqrt{Na} \) étant la distance moyenne entre les extrémités de la chaîne non déformée (voir l’ouvrage de Doi (1996) pour les détails). La réponse d’une chaîne étant établie, il convient ensuite de s’intéresser au réseau. Pour cela, on considère un réseau constitué de \(n \) chaînes par unité de volume. Pour passer de la réponse d’une chaîne à celle du réseau, des hypothèses supplémentaires doivent être faites. Treloar adopte l’hypothèse de déformation affine :

(i) les fluctuations statistiques des points de jonction (réticulation et enchevêtrement) autour de leurs positions moyennes sont négligées ;

(ii) le vecteur \(r \) liant les extrémités d’une chaîne suit la déformation locale du milieu continu. Autrement dit, les points de jonctions entre chaînes suivent le milieu continu (ils sont donc fixes dans la configuration déformée) et l’élasticité est engendrée par les conformations que les chaînes peuvent adopter entre ces points. Cette hypothèse est évidemment très stricte, puisqu’il est difficile d’envisager une telle situation : les chaînes fluctuent alors que leurs extrémités restent fixes ! Avec cette hypothèse, l’énergie de déformation par unité de volume \(W \) peut être écrite sous la forme (Flory, 1944) :

\[
W = \frac{1}{2} nkT (I_1 - 3) \tag{A.8}
\]

et, en considérant l’hypothèse d’incompressibilité, la contrainte de Cauchy associée à un essai de traction uniaxiale est :

\[
\sigma = nkT \left(\lambda^2 - \frac{1}{\lambda^2} \right) \tag{A.9}
\]
où λ représente ici l’extension de l’éprouvette dans la direction de traction (« l/l₀ »). À partir d’hypothèses très différentes sur le comportement des chaînes dans le réseau, James et Guth (1947) développent le modèle de réseau fantôme. Les auteurs considèrent que seuls quelques points de jonction sont fixes dans le réseau, mais que tous les autres peuvent fluctuer librement sans tenir compte des restrictions de mouvement dues à la structure de réseau (d’où le terme « fantôme ») : une chaîne peut en traverser une autre. Les développements statistiques conduisent alors à la fonction énergie de déformation suivante (Mark et Erman, 1988) :

\[W = \frac{1}{2} \left(1 - \frac{2}{\phi} \right) nkT (I_1 - 3) \tag{A.10} \]

où φ est la fonctionnalité du réseau, c’est-à-dire le nombre moyen de chaînes accrochées à chaque point de jonction. Cette fonction a exactement la même forme que celle du modèle néo-hookéen (A.8). Seule, la valeur de la constante de raideur diffère. En effet, pour un réseau tétra-fonctionnel parfait (φ = 4), la raideur du modèle fantôme (A.10) est la moitié de celle du modèle néo-hookéen. Pour les mécaniciens, ces deux modèles se confondent, puisque la constante matérielle du modèle (nkT ou (1 - 2/φ)nkT) est appréhendée de manière phénoménologique et déterminée comme telle. Dans la totalité des applications mécaniques, on ne retient que le modèle néo-hookéen. Compte tenu des hypothèses adoptées, ces approches sont limitées aux matériaux à chaînes longues (ce qui est majoritairement le cas pour les élastomères) soumis à de faibles déformations (jusqu’à 100%).

Pour remédier à ces restrictions, Kuhn et Grün (1942) ont établi la fonction de distribution des conformations des chaînes courtes ou fortement étirées. En effet, comme le montre simplement l’équation (A.6), dans l’approche gaussienne la chaîne peut atteindre une longueur infinie suivant la force appliquée. Dans la réalité, ce n’est pas possible puisque la longueur maximale d’une chaîne est sa longueur entièrement dépliée, soit Na. Kuhn et Grün proposent de lier la force de rétraction d’une chaîne à la distance entre ses extrémités par :

\[f = \frac{kT}{a} \mathcal{L}^{-1} \left(\frac{r}{Na} \right) \tag{A.11} \]

où \(\mathcal{L}^{-1} \) est l’inverse de la fonction de Langevin, définie par \(\mathcal{L}(x) = \coth(x) - 1/x \). L’énergie de déformation de la chaîne s’exprime alors sous la forme :

\[w = NkT \left(\frac{\lambda}{\sqrt{N}} \beta + \ln \frac{\beta}{\sinh \beta} \right) - w_0 \tag{A.12} \]

Bien évidemment, l’inverse de la fonction de Langevin tend vers +∞ au voisinage de 1, et donc la force \(f \) tend elle-même vers l’infini lorsque \(r \) approche l’extension maximale \(Na \) (A.11). La prise en compte de ce comportement individuel dans un réseau aléatoire est beaucoup plus complexe que dans le cas de la distribution gaussienne. Celle-ci n’a été établie que très récemment par Wu et van der Giessen (1993) et n’est pas facilement exploitable. En revanche, dès les années 40, James et Guth (1943) proposent de simplifier cette intégration sur le réseau en supposant que pour une densité de chaînes \(n \), \(n/3 \) chaînes sont orientées dans chacune des directions principales de déformation. Cette hypothèse conduit à l’élaboration du modèle 3-chaînes pour lequel la contrainte observée lors d’un essai de traction est :

\[\sigma = \frac{nkT}{3} \sqrt{N} \left[\lambda \mathcal{L}^{-1} \left(\frac{\lambda}{\sqrt{N}} \right) - \frac{1}{\sqrt{\lambda}} \mathcal{L}^{-1} \left(\frac{1}{\sqrt{N\sqrt{\lambda}}} \right) \right] \tag{A.13} \]

Ce modèle prend certes en compte les très grandes déformations, mais éprouve quelques difficultés à reproduire des états de déformation différents avec les mêmes constantes matérielles
Annexe A. État de l’art sur les lois de comportement des élastomères

(Marckmann et al., 2002). Cette difficulté est due au découplage des extensions dans les trois directions principales de déformation qui ne sont pas liées entre elles lors de la déformation. À la même époque, Flory et Rehner (1943) puis Treloar (1946) proposent d’utiliser quatre directions préférentielles pour les chaînes. Dans une sphère unité, les chaînes sont distribuées suivant les quatre segments quilient le centre de la sphère aux quatre sommets d’un tétraèdre inscrit dans celle-ci. La fonction énergie de déformation correspondante ne peut pas être écrite de manière explicite et le calcul des contraintes est difficile, puisqu’il nécessite l’évaluation de la position du centre de la sphère. Ces difficultés couplées aux performances limitées de ce modèle (son comportement est similaire à celui du modèle 3-chaînes) en font une approche très peu utilisée.

Remarque. Évidemment, de nombreux travaux ont été menés pour expliquer le comportement des réseaux caoutchoucs, notamment par P. J. Flory (prix Nobel de chimie en 1974). Cependant, l’accent est mis ici sur les travaux ayant une retombée directe en modélisation mécanique.

Approches phénoménologiques

La seconde méthode utilisée pour établir la forme de la fonction énergie de déformation est l’approche qualifiée de phénoménologique dans la bibliographie. Pour définir ce terme nous reprendrons ici la définition proposée par Treloar (1975) qui présente les théories phénoménologiques comme « des approches ayant l’objectif plus limité [que celui des approches moléculaires] de décrire les propriétés mécaniques du caoutchouc à l’aide d’un cadre mathématique bien défini sans se soucier des interprétations moléculaires ».

La théorie fondatrice fut établie par Rivlin (1948), qui proposa d’écrire l’énergie de déformation sous la forme d’un développement en série sur les variables $I_1 - 3$ et $I_2 - 3$:

$$\begin{equation}
W = \sum_{(r,s)=(0,0)}^{\infty} C_{rs} (I_1 - 3)^r (I_2 - 3)^s \tag{A.14}
\end{equation}$$

Bien évidemment, ce développement ne peut pas être utilisé sous cette forme ; cependant, toute troncature « bien choisie » pourra être considérée. Ce développement fut la source de nombreux modèles et surtout il généralise les approches néo-hookeenne et de Mooney (1940), qui proposa d’écrire l’énergie de déformation comme une fonction linéaire des deux premiers invariants de la déformation :

$$\begin{equation}
W = C_1 (I_1 - 3) + C_2 (I_2 - 3) \tag{A.15}
\end{equation}$$

où C_1 et C_2 sont les deux constantes matérielles du modèle. Ce modèle est encore aujourd’hui l’un des plus utilisés en simulation numérique de par sa simplicité mathématique (et donc sa stabilité numérique), et ses bonnes performances pour des niveaux de déformation modérés (de 100 à 150%). En revanche, deux critiques peuvent lui être faites : tout d’abord, la justification moléculaire de l’influence du second invariant I_2 n’a toujours pas été établie (voir par exemple Fried (2002)), mais surtout le modèle éprouve certaines difficultés à reproduire des états de déformation différents (notamment la traction et la compression).

Un autre résultat qui aura une grande influence sur les modèles développés ultérieurement est l’hypothèse de Valanis et Landel (1967). Avant de la présenter, revenons à la fonction W. Nous avons écrit précédemment W sous la forme d’une fonction des deux premiers invariants de B (dans le cas incompressible). En fait, on peut aussi l’écrire comme une fonction symétrique des trois élongations principales (racines carrées des valeurs propres de B) :

$$\begin{equation}
W = W(\lambda_1, \lambda_2, \lambda_3) \tag{A.16}
\end{equation}$$
À partir de cette écriture, Valanis et Landel font l’hypothèse que W peut s’écrire sous une forme séparable :

$$W = w(\lambda_1) + w(\lambda_2) + w(\lambda_3)$$ \hspace{1cm} (A.17)

Comme le note Treloar (1975), cette forme n’est pas une nécessité mathématique, mais est plausible a priori, puisque les modèles néo-hookéen, de Mooney et 3-chaines la vérifient.

A.1.2 Viscoélasticité

Préliminaires

Avant de s’intéresser aux théories viscoélastiques développées dans le cadre des grandes déformations, les théories linéaires bien établies vont être brièvement rappelées. Pour de plus amples détails, le lecteur peut se référer aux ouvrages généraux de Christensen (1982), Tschoegl (1989), ou Wineman et Rajagopal (2000).

La viscoélasticité est un phénomène mécanique qui englobe à la fois les caractéristiques des solides élastiques et des fluides visqueux. Pour le modéliser, il apparaît naturel de « mélanger » les modèles de ces corps. Cela se traduit classiquement par des formulations uniaxiales utilisant les schématisations du ressort (solide élastique) et de l’amortisseur (fluide visqueux). Les deux modèles de base, le fluide de Maxwell et le solide de Kelvin-Voigt, sont bien connus. Il sont présentés respectivement sur les figures A.1(a) et (b). Étant établi que ces deux modèles ne sont pas suffisants pour représenter le comportement général d’un corps viscoélastique (Wineman et Rajagopal, 2000), au moins trois composants mécaniques doivent être utilisés pour modéliser effectivement un solide viscoélastique. Ceci conduit à définir les solides à trois paramètres ou solides linéaires standards décrits sur la figure A.2. Ces deux modèles conduisent à des équations de comportement uniaxiales qui lient la contrainte et la déformation par des opérateurs différentiels.

Fig. A.1 – (a) Fluide de Maxwell. (b) Solide de Kelvin-Voigt. Compte tenu de leur modélisation, ces deux modèles ne peuvent pas représenter qualitativement le comportement d’un matériau viscoélastique. En effet, le modèle de Maxwell ne peut pas simuler le phénomène de fluage et le modèle de Kelvin-Voigt ne peut pas reproduire la relaxation.

Fig. A.2 – Solides linéaires standards : (a) fluide de Maxwell et ressort élastique en parallèle, (b) solide de Kelvin-Voigt et ressort élastique en série. Ces deux modèles sont les plus simples permettant de simuler complètement la viscoélasticité linéaire. On peut envisager d’augmenter le nombre de fluides de Maxwell (en parallèle) ou de solides de Kelvin-Voigt (en série) pour approcher au mieux le spectre de relaxation du matériau, chaque sous-ensemble permettant de définir un temps de relaxation (Tschoegl, 1989).
linéaires. L'extension aux lois de comportement tridimensionnelles se fait par passage à la forme tensorielle puis par la réduction des opérateurs en tenant compte des symétries matérielles.

La seconde approche permettant la mise en place du formalisme de la viscoélasticité linéaire est l'utilisation du principe de superposition de Boltzmann (voir par exemple Ward (1983)). Celui-ci postule que (i) le retard de réponse d’un échantillon dépend de toute l’histoire de la déformation et que (ii) chaque incrément de chargement fournit une contribution indépendante à la déformation finale, celle-ci étant simplement la somme des différentes contributions. Dans le cadre isotrope, ce principe conduit à la relation contrainte-déformation suivante :

$$\sigma(t) = \int_0^t \lambda(t - \tau) \frac{d}{d\tau} [\text{tr}(\varepsilon(\tau))] \, d\tau + \int_0^t 2\mu(t - \tau) \frac{d}{d\tau} [\varepsilon(\tau)] \, d\tau \quad (A.18)$$

où 0 est choisi comme l’instant de référence (matériau non déformé et non contraint), et $\lambda(u)$ et $\mu(u)$ sont respectivement les modules de relaxation de compressibilité et de cisaillement (Haddad, 1988).

Nous verrons dans la suite que ces deux théories sont utilisées comme des résultats de référence pour les approches en grandes déformations.

Approches en transformations finies

Le premier article qui propose de modéliser le comportement viscoélastique des élastomères est dû à Green et Tobolsky (1946). Dans cet article, les auteurs proposent une approche moléculaire du problème visant à construire la contrepartie viscoélastique du modèle élastique néohookéen. Les résultats présentés peuvent être qualifiés de « visionnaires » puisqu’ils sont restés inexploités pendant près de quarante ans avant d’être reformulés par Lubliner (1985), et de devenir la base de la plupart des modèles viscoélastiques modernes. Deux résultats primordiaux sont exposés dans cet article.

1. À partir des résultats expérimentaux de Tobolsky et al. (1944), obtenus par des expériences de relaxation sur des caoutchoucs naturels et synthétiques à faibles déformations (50%) et à différentes températures, les auteurs expliquent la décroissance de la contrainte comme une manifestation physique d’une détérioration chimique du réseau moléculaire lors de l’elongation. En remarquant que la viscoélasticité est linéaire et qu’elle s’efface (pas de déformation permanente), Green et Tobolsky expliquent la décroissance de la contrainte par la rupture des liaisons du réseau lors de l’elongation, rupture qui relaxe des chaînes étirées. De plus, pour justifier l’absence de déformation permanente, ils considèrent que les liaisons rompues se reforment dans l’état déformé, mais que celles-ci ne contribuent pas à la contrainte dans la configuration où elles ont été reformées. En considérant que le taux de rupture des liaisons est égal au taux de reformation, les auteurs proposent un modèle uniaxial viscoélastique intégral qui généralise le modèle de Boltzmann (A.18) ainsi que son équivalent différentiel qui généralise le modèle de Maxwell (fig. A.1(a)).

2. Le second résultat très important est présenté en annexe de l’article comme un résultat très simple ! Il consiste à généraliser l’approche uniaxiale différentielle au cas tridimensionnel. Ici, nous reprendrons la réécriture du modèle proposée par Lubliner (1985), puisque celle-ci utilise les notations de la mécanique des milieux continus moderne. On note \mathbf{F} le gradient de la transformation et \mathbf{C} le tenseur des dilatations de Cauchy-Green droit. Le matériau est supposé incompressible et son énergie libre d’Helmholtz est donnée par :

$$\Psi = \Psi_0(T) + \frac{1}{2} cnkT \left[\text{tr} (\mathbf{C} \mathbf{A}) - 3 - \text{tr} (\det \mathbf{A}) \right] \quad (A.19)$$
Ici, nkT est le module déjà obtenu dans le modèle néo-hookéen (A.8), c est une constante qui corrige la rigidité nkT et qui peut être reliée à l’approche fantôme (A.10), et A est une variable interne tensorielle symétrique et définie positive. La contrainte de Cauchy associée est alors:

$$\sigma = -pI + 2F \frac{\partial W}{\partial C} F^T = -pI + cnkT F A F^T$$ \hspace{1cm} (A.20)

la notation \cdot^T désignant la transposition. La variable interne A permet de modéliser les effets viscoélastiques qui apparaissent hors de l’équilibre élastique. Ainsi, à l’équilibre, A doit vérifier:

$$\frac{\partial \Psi}{\partial A} \bigg|_{\text{éq}} = 0 \quad \Leftrightarrow \quad A \bigg|_{\text{éq}} = C^{-1}$$ \hspace{1cm} (A.21)

En utilisant cette relation, la contrainte à l’équilibre est purement hydrostatique, ce qui caractérise un corps fluide:

$$\sigma = (-p + cnkT) I$$ \hspace{1cm} (A.22)

De plus, pour faire évoluer la contrainte inélastique, cette variable interne doit suivre une loi d’évolution. Dans leur article, Green et Tobolsky (1946) proposent l’équation différentielle linéaire suivante:

$$\dot{A} = \frac{1}{\tau_R} (C^{-1} - A)$$ \hspace{1cm} (A.23)

où la notation $\dot{\cdot}$ désigne la dérivation temporelle, et où τ_R peut être assimilé à un temps de relaxation. En fait, la simplification de ce modèle dans le cadre de la transformation infinitésimale conduit au fluide (linéaire) de Maxwell (Lubliner, 1985).

Il convient de noter qu’en utilisant la décomposition multiplicative du gradient de la transformation, décomposition classique en plasticité finie (voir l’article de Nedjar (2002) et les références citées) et aussi utilisée dans le cadre viscoélastique (Sidoroff, 1974), qui s’écrit:

$$F = F_e F_i$$ \hspace{1cm} (A.24)

F_e étant la partie élastique de la transformation et F_i sa partie inélastique, Lubliner montre que le modèle généralisant le fluide de Maxwell en grandes transformations est équivalent au modèle de Green et Tobolsky (A.20) avec:

$$A = C_i^{-1}$$ \hspace{1cm} (A.25)

où C_i est la dilatation de Cauchy-Green droit inélastique. En fait, les tenseurs F_e et F_i correspondent respectivement aux transformations associées au ressort et à l’amortisseur.

Nous verrons dans la suite comment cette approche a été améliorée pour servir de base aux modèles viscoélastiques plus complexes.

$$\sigma(t) = \frac{1}{\tau_R} \{ F(\tau) \}$$ \hspace{1cm} (A.26)
Annexe A. État de l’art sur les lois de comportement des élastomères

où \mathcal{F} est la fonctionnelle de réponse du matériau.

Après prise en compte du principe d’objectivité, Green et Rivlin proposent d’écrire la relation précédente sous la forme :

$$\sigma(t) = F(t) \cdot \mathcal{G}(\tau = -\infty) \{\mathbf{E}(\tau), \mathbf{E}(t)\} \cdot F(t)^T$$

(À.27)

où \mathcal{G} est la fonctionnelle de réponse du matériau qui lie le second tenseur de Piola-Kirchhoff à l’histoire de la déformation de Green-Lagrange $\mathbf{E}(\tau)$. En supposant que la fonctionnelle \mathcal{G} évolue de façon suffisamment « continue », c’est-à-dire que de faibles déformations engendrent de faibles contraintes, les auteurs l’approchent par une série d’intégrales :

$$\mathcal{G} = \sum_{I=1}^{N} \mathcal{G}_I$$

(À.28)

où \mathcal{G}_I est une intégrale multiple d’ordre I. Ainsi, \mathcal{G}_1 est définie par :

$$\mathcal{G}_1 = \int_{-\infty}^{t} \mathbf{K}_1(t - \tau) : \dot{\mathbf{E}}(\tau) \, d\tau$$

(À.29)

où $\mathbf{K}_1(\tau)$ est un tenseur de relaxation d’ordre 4. De la même façon, le terme d’ordre 2 est :

$$\mathcal{G}_2 = \int_{-\infty}^{t} \int_{-\infty}^{t} \left[\mathbf{K}_2(t - \tau_1, t - \tau_2) : \dot{\mathbf{E}}(\tau_1) \right] : \dot{\mathbf{E}}(\tau_2) \, d\tau_1 d\tau_2$$

(À.30)

où $\mathbf{K}_2(\tau_1, \tau_2)$ est un tenseur de relaxation d’ordre 6. Les termes d’ordres supérieurs s’obtiennent de manière similaire. Comme le précisent les auteurs, plus les déformations sont petites, moins il convient de retenir de termes dans l’expansion. Notons toutefois que la terminologie « petites déformations » employée ici désigne des déformations non infinitésimales, mais qui restent faibles pour des élastomères. Comme le précise Pipkin (1964), l’utilisation d’un tel développement est difficile en pratique compte tenu du nombre de fonctions de relaxation à déterminer. En effet, dans le cas d’un matériau isotrope, le tenseur de la première fonctionnelle, \mathbf{K}_1, contient deux fonctions de relaxation (à une variable), celui de la deuxième fonctionnelle, \mathbf{K}_2, quatre fonctions supplémentaires (à deux variables) et le tenseur de la troisième fonctionnelle nécessite six fonctions supplémentaires (à trois variables). Ainsi, l’utilisation d’un modèle fondé sur une série à trois termes, ce qui est raisonnable pour reproduire des déformations assez importantes (Pipkin, 1964), nécessite l’identification de douze fonctions de relaxation ! Dans le cas incompressible qui nous intéresse, ce nombre se réduit à quatre et le développement au 1er ordre de la série est :

$$\sigma(t) = -pI + F(t) \int_{-\infty}^{t} k_1(t - \tau) \dot{\mathbf{E}}(\tau) \, d\tau \cdot F(t)^T$$

(À.31)

où $k_1(t - \tau)$ est l’unique fonction de relaxation. Celle-ci est décroissante (comme toutes les autres) et sa limite à l’infini est non nulle si le matériau est un solide.

La seconde méthode de développement de la fonctionnelle (À.26) est proposée par Coleman et Noll (1961). En premier lieu, les auteurs proposent d’adopter comme configuration de référence la configuration actuelle, ce qui permet de s’affranchir de la définition d’une configuration de référence a priori non déformée et non contrainte, qui conduit classiquement à remplacer la borne $-\infty$ des intégrales précédentes par 0 (temps de référence). Pour utiliser la configuration
actuelle comme référence, il convient de définir le gradient relatif de la transformation entre le temps présent t et un temps courant précédent τ, noté $F_t(\tau)$ et donné par (Sidoroff, 1982):

$$F_t(\tau) = \frac{\partial x(\tau)}{\partial x(t)} = F(\tau)F(t)^{-1} \tag{A.32}$$

où x est le vecteur position. Ainsi, en utilisant le formalisme classique de la mécanique des milieux continus, le tenseur des dilatations de Cauchy-Green droit relatif est :

$$C_t(\tau) = F_t(\tau)^T F_t(\tau) \tag{A.33}$$

En tenant compte du principe d’objectivité et en utilisant ces grandeurs relatives, la relation de comportement des matériaux matériellement simples (A.26) peut se mettre sous la forme :

$$\sigma(t) = R(t) h \{C(t)\} R(t)^T + R(t) \int_{\tau=-\infty}^t \{C_t(\tau) - I, C(t)\} R(t)^T \tag{A.34}$$

où $R(t)$ désigne le tenseur de rotation issu de la décomposition polaire de $F(t)$. Ainsi, la réponse du matériau est la superposition d’un terme d’équilibre (élastique) au travers de la fonctionnelle h, et d’un terme qui dépend de l’histoire de la déformation et qui s’efface à l’équilibre au travers de la fonctionnelle δ.

Pour passer de la forme précédente (A.34) à une équation de comportement utilisable, les auteurs supposent que la fonctionnelle de réponse ne varie pas fortement pour de petites déformations (ce qui est en accord avec les phénomènes physiques observés) et que le mouvement a été « suffisamment » lent dans un passé récent. Cette hypothèse est identique à celle faite par Green et Rivlin pour justifier leur développement en intégrales multiples (voir plus haut). Ainsi, en supposant que le matériau est isotrope et en utilisant le tenseur de Cauchy-Green gauche, le comportement du matériau peut être approché par l’approximation au premier ordre suivante :

$$\sigma(t) = h'(B(t)) + \int_{\tau=-\infty}^t \Gamma(B(t),t-\tau) : \{C_t(\tau) - I, C(t)\} \ d\tau \tag{A.35}$$

où h' est une fonctionnelle isotrope qui peut être écrite sous la forme :

$$h'(B) = h_0 I + h_1 B + h_2 B^2 \tag{A.36}$$

h_0, h_1 et h_2 étant des fonctions des trois premiers invariants de B. Dans (A.35), Γ est un tenseur isotrope d’ordre 4 composé de douze fonctions de relaxation qui dépendent à la fois du temps et des trois premiers invariants de B. Finalement, en considérant que le matériau est incompressible, la contrainte est connue à pression hydrostatique près, la fonctionnelle h' fait intervenir que deux constantes et le nombre de fonctions de relaxation (qui dépendent maintenant du temps, de I_1 et de J_2) est réduit à huit (McGuirt et Lianis, 1970). Comme dans le cas de l’approche de Green-Rivlin, il est possible d’étendre le développement à un ordre supérieur pour augmenter la capacité du modèle à reproduire les grandes déformations. Cependant, de tels développements nécessitent la détermination d’un grand nombre de fonctions de relaxation, ce qui est impossible pratiquement.

Il convient de remarquer que si les développements de Green-Rivlin, et de Coleman-Noll se fondent sur le même point de départ, la définition des matériaux matériellement simples, les modèles développés sont assez différents. En effet, dans le développement de Green-Rivlin les fonctions de relaxation ne dépendent que du temps (A.29-A.30), alors qu’elles dépendent aussi du niveau actuel de déformation pour Coleman-Noll (A.35). Comme nous l’avons laissé entendre à plusieurs reprises, ces développements s’avèrent inutilisables en l’état, le nombre de
fonctions de relaxation à déterminer expérimentalement étant beaucoup trop important. En fait, le succès de ces approches viendra des travaux Kaye (1962), et de Bernstein et al. (1963) qui simultanément, mais indépendamment, proposent de simplifier les développements de Green-Rivlin et de Coleman-Noll pour élaborer une loi de comportement viscoélastique en grandes déformations à la fois simple et capable de reproduire les résultats expérimentaux. Bernstein et al. proposent deux modèles distincts : l’un pour les solides fondé sur l’expansion de Green-Rivlin qui met en avant l’existence d’une configuration de référence connue, l’autre pour les fluides s’appuyant sur la théorie de Coleman-Noll qui privilégie la configuration actuelle. Dans les deux cas, les auteurs voulurent mettre en place des modèles simples et ils se limitèrent donc à des développements au premier ordre. En fait, seul le second modèle (fluide) s’avèrera efficace et sera largement utilisé par la suite. Pour des matériaux incompressibles, les auteurs postulent l’existence d’une fonction potentielle

\[U = \frac{1}{2} \partial U \frac{\partial U}{\partial E_\tau} F_t(\tau) - T d\tau \]

où \(U \) est une fonction d’invariants de \(E_\tau(t) \), ici \(\text{tr} E_\tau(t) \) et \(\text{tr} E_\tau(t)^2 \), et du temps \(t - \tau \). Dans le même temps, Kaye (1962) propose de généraliser le modèle de Lodge (1956) sous la forme :

\[\sigma(t) = -pI + \int_{-\infty}^{t} 2g(t-\tau)C_t(\tau)^{-1} d\tau \]

où la fonction de relaxation \(g \) est obtenue par analogie avec l’énergie de déformation des solides hyperélastiques. Finalement, à la lumière de ces deux théorie, Zapas et Craft (1969) proposèrent le modèle suivant, connu aujourd’hui sous le nom de K-BKZ :

\[\sigma(t) = -pI + \int_{-\infty}^{t} \left(\frac{\partial U}{\partial J_1} C_t^{-1}(\tau) - \frac{\partial U}{\partial J_2} C_t(\tau) \right) d\tau \]

où \(U \) est une fonction potentielle qui dépend des invariants \(J_1 = \text{tr} C_t^{-1}(\tau) \) et \(J_2 = \text{tr} C_t(\tau) \), et du temps \(t - \tau \). Généralement, on propose de séparer le potentiel \(U \) en produit d’une fonction d’amortissement \(h \) et d’une fonction de relaxation \(m \) tel que :

\[U(J_1,J_2,t - \tau) = h(J_1,J_2) m(t - \tau) \]

C’est sous cette forme (A.39-A.40) que le modèle K-BKZ sera beaucoup utilisé dans les années 80, notamment pour les fluides caoutchoutiques (Tanner, 1988).

A.1.3 Comportement cyclique

Le comportement cyclique des élastomères et notamment l’effet Mullins a été mis en évidence pour la première fois au début du 20ème siècle par Bouasse et Carrière (1903). Jusqu’à la fin des années 40, seules quelques études qualitatives sont proposées. Pour le détail de ces travaux, le lecteur peut se référer aux articles de synthèse de Harwood et al. (1967), et de Mullins (1969). La première étude complète qui met en évidence les différents phénomènes relatifs au comportement cyclique des élastomères et les quantifie par des résultats expérimentaux exploitables est celle de Mullins (1948). Dans cet article, on retrouve les différents aspects du comportement sous chargement cyclique, comme nous les avons exposés précédemment lors de la description détaillée du comportement des élastomères (paragraphe 3.1.2 p. 48). C’est à partir de cet article que le phénomène d’accommodation du matériau sous chargement cyclique est appelé effet Mullins.
Les travaux qui suivirent la mise en évidence de ces phénomènes n’avaient pas pour objectif de proposer des lois de comportement au sens actuel du terme, c’est-à-dire tridimensionnelles et implantables dans les codes de calcul, mais plutôt d’expliquer la physique des phénomènes et de proposer des modèles uniaxiaux permettant de les reproduire. Ainsi, Mullins et Tobin (1957) proposèrent une modélisation phénoménologique de l’effet Mullins. Le comportement du caoutchouc vulcanisé et chargé est alors approché par un modèle à deux phases: une phase de caoutchouc mou qui contribue fortement à la déformation et une phase de caoutchouc dur. Sous la déformation, la phase dure se transforme en phase molle et la fraction de phase molle augmente. Cette fraction dépend de la déformation maximale déjà atteinte au sein du matériau et évolue donc lors de la première charge. Bonart (1968), puis Lee et Williams (1985) justifient la théorie phénoménologique de Mullins et Tobin en considérant le caoutchouc comme un ensemble de groupes de chaînes liés entre eux par des liaisons de Van der Waals et des enchevêtrements, dont la rupture fait passer des groupes de la phase dure à la phase molle.

Par une approche similaire, Dannenberg et Brennan (1966), et Dannenberg (1966) imputent l’effet Mullins, mais aussi la relaxation (viscoélasticité long terme) et l’hystérésis, au glissement des chaînes sur les agrégats de charges lors de l’extension. En effet, les auteurs affirment que lorsqu’une chaîne est complètement étirée entre deux agrégats de charges, elle peut soit rompre, soit se détacher des charges (ce sont les deux hypothèses de Bueche), soit glisser à travers la surface de l’agrégat de charges. C’est cette troisième possibilité qui est privilégiée, puisque c’est celle qui nécessite le moins d’énergie. Ainsi, une fois le matériau au repos, la structure moléculaire initiale a évolué vers une configuration plus « molle », ce qui explique l’accommodation. Comme le soulignent Harwood et al. (1967), le glissement des chaînes au travers des charges lors de l’étirement n’est pas démontré, mais cette explication reste plausible pour expliquer la perte de raideur.

Cependant, comme nous l’avons déjà mentionné, l’effet Mullins existe aussi pour les matériaux non chargés. De plus, comme le montre Harwood et al. (1965), le degré d’adoucissement est comparable dans les systèmes chargés et non-chargés lorsqu’on tient compte de l’amplification des contraintes due à la présence des charges. Cette constatation permet à Harwood et Payne (1966a,b) d’affirmer que l’adoucissement du matériau se fait très majoritairement dans la matrice caoutchouc plutôt qu’aux jonctions matrice-charges. Ainsi, l’effet Mullins serait principalement causé par un réarrangement du réseau moléculaire au travers des mouvements des points de jonction (enchevêtrement, réticulation et charges), mouvements dus à la déformation locale qui n’est plus affine lorsque des chaînes courtes sont complètement étirées (Mullins, 1969).

Pour conclure sur ces travaux, il convient de noter qu’aucune de ces explications ne peut être aujourd’hui écartée, puisque les phénomènes moléculaires qui caractérisent l’effet Mullins ne sont pas encore bien identifiés (Drozdov et Dorfmann, 2001). Comme le proposent Marckmann et al. (2002), il est très probable que tous les phénomènes précédents entrent en jeu, la seule certitude étant que la structure du réseau change notablement sous déformation et que la longueur moyenne des chaînes augmente.
A.2 L’avènement de la simulation numérique : 1970-1990

Comme nous venons de le voir, entre 1940 et 1970 les travaux relatifs aux élastomères ont eu pour objectif de décrire très précisément leur comportement mais aussi de proposer des cadres théoriques permettant de modéliser ce comportement. À partir de 1970, l’avènement de la simulation numérique et principalement de la méthode des éléments finis influe considérablement sur la nature des travaux publiés. En effet, l’objectif prioritaire devient alors le développement de modèles qui reproduisent fidèlement le comportement du matériau pour différents états de déformation mais aussi qui sont suffisamment simples mathématiquement pour être implantés dans les outils de calcul. Ainsi, il est évident que les approches phénoménologiques vont dominer ces vingt années puisqu’elles visent à répondre à ces deux objectifs.

Dans cette revue bibliographique, nous ne mentionnerons que très peu de travaux numériques, c’est-à-dire les travaux qui s’intéressent à la mise en œuvre numérique des différents modèles, pour ne s’intéresser qu’aux lois de comportement proposées. Pour de plus amples détails sur l’application de la méthode des éléments finis dans le cadre de l’hyperélasticité en grandes transformations, le lecteur peut se référer par exemple à l’ouvrage de Bonet et Wood (1997).

A.2.1 Hyperélasticité

Approches moléculaires

Même si durant cette période les travaux numériques prirent une grande importance, les physiciens continuaient de travailler sur le développement de fonctions énergie de déformation à partir de l’analyse du réseau moléculaire. Dans ce contexte, deux voies d’étude ont été suivies, chacune d’elles visant à dépasser une limitation des théories fondatrices présentées précédemment.

Tout d’abord, les auteurs ont cherché à améliorer les performances de l’approche gaussienne pour des niveaux de déformation modérés. En effet, les modèles néo-hookean (A.8) et fantôme (A.10) éprouvent quelques difficultés à reproduire le premier changement de raideur de la courbe contrainte-déformation. Classiquement, les auteurs expliquent cette différence par l’hypothèse de réseau idéal sur laquelle se fondent les approches affine et fantôme. En effet, dans les deux cas, les hypothèses faites sur les mouvements des points de jonction sont trop restrictives : pour l’approche affine, ils sont supposés rester fixes dans le milieu continu, et dans le cas du réseau fantôme, ils peuvent se déplacer totalement librement. Pour améliorer la modélisation, plusieurs propositions ont été faites. Elles sont toutes fondées sur le même point de départ : considérer le réseau fantôme idéal et sa fonction énergie de déformation, et lui ajouter une énergie due aux restrictions de fluctuation des points de jonction. L’énergie de déformation du matériau est alors la somme de ces deux contributions :

\[W = W_{\text{ph}} + W_c \]

(où \(W_{\text{ph}} \) représente la fonction énergie de déformation du réseau fantôme définie précédemment (A.10) et \(W_c \) est l’énergie due aux restrictions de fluctuation. On peut retenir trois approches majeures pour élaborer cette dernière fonction :

- **le modèle slip-link** (lien glissant) (Ball et al., 1981; Edwards et Vilgis, 1986) qui suppose que les enchevêtrements entre les chaînes ne sont pas fixes dans le milieu continu et peuvent glisser le long des chaînes ;

- **le modèle des jonctions contraintes** (Flory et Erman, 1982; Mark et Erman, 1988) qui considère que les points de jonction fluctuent de manière non-affine et que ces fluctuations dépendent très fortement des chaînes pendantes voisines ;
– le modèle de Van der Waals (Kilian, 1981; Ambacher et al., 1989) fondé sur l’analogie entre le réseau réel de chaînes et les gaz réels. Les auteurs utilisent l’approche de van der Waals relative aux gaz pour aboutir à une description thermomécanique du réseau.

Ces trois modèles conduisent à des conclusions assez similaires : ils sont assez efficaces pour modéliser le comportement des élastomères aux déformations modérées, mais leur complexité mathématique reste un frein à une utilisation systématique dans le cadre numérique.

Approches phénoménologiques

Depuis son développement en 1940, le modèle de Mooney (A.15) est le plus utilisé pour modéliser le comportement élastique des élastomères pour des déformations modérées, c’est-à-dire jusqu’à 150%. Il allie la simplicité mathématique, puisque seulement deux constantes matérielles sont nécessaires, à une efficacité satisfaisante en termes de modélisation. Ce modèle est aujourd’hui implanté dans la plupart des codes de calcul commerciaux (Hibbitt et al., 1999) et reste la référence dans la plupart des articles numériques et théoriques.

Cependant, celui-ci n’est pas adapté pour simuler les grandes déformations élastiques et notamment le raidissement du matériau. Pour pallier cette carence, de nombreux modèles hyperélastiques de nature phénoménologique ont été proposés dans les années 1950 et 1960 par Gent et Thomas (1958), Hart-Smith (1966), ou encore Alexander (1968) par exemple. Cependant, aucun de ces modèles n’a vraiment fait l’unanimité, le plus souvent à cause de leur incapacité à reproduire des états de déformation différents avec des paramètres matériels fixés. C’est dans ce contexte qu’est développé le modèle d’Ogden (1972, 1984b). Comme Valanis et Landel (1967) précédemment, Ogden (1972) propose d’utiliser les extensions principales plutôt que les trois premiers invariants du tenseur B et d’écrire la fonction énergie de déformation sous la forme d’une série :

\[
W = \sum_{k=1}^{n} \frac{\mu_k}{\alpha_k} (\lambda_1^{\alpha_k} + \lambda_2^{\alpha_k} + \lambda_3^{\alpha_k} - 3) \quad (A.42)
\]

où $(\mu_k,\alpha_k)_{k=1,n}$ sont les $2n$ constantes matérielles. Ces coefficients sont tous réels. Les contraintes principales de Cauchy sont alors données par :

\[
\sigma_i = -p + \sum_{k=1}^{n} \mu_k \lambda_i^{\alpha_k} \quad i = 1,3 \quad (A.43)
\]

Plusieurs remarques sont à faire sur ce modèle. Tout d’abord, l’utilisation des exposants réels rejoint la définition des déformations généralisées proposées par Seth (1964). Ainsi, pour $\alpha_k = 2$, on retrouve la déformation pour laquelle les valeurs propres du tenseur des dilatations sont les termes λ_i^2, c’est-à-dire le tenseur B. De plus, le modèle d’Ogden est une généralisation des approches antérieures : la fonction énergie de déformation vérifie l’hypothèse de Valanis et Landel, et les modèles neo-hookéen et de Mooney en sont des cas particuliers. Il convient de
noter que trois termes de la série sont nécessaires pour reproduire simultanément les différents états de déformation (Ogden, 1972). En effet, avec six paramètres, le modèle d’Ogden reproduit parfaitement les données expérimentales de Treloar (1944) obtenues avec des essais de traction uniaxiale, de cisaillement pur et de traction équibiaxiale. Ce modèle est le plus utilisé pour approcher les grandes déformations élastiques des élastomères dans les travaux numériques. Il a fait l’objet de nombreuses publications, notamment concernant les méthodes numériques à adopter pour son implantation (voir par exemple la note deorman Jr. (1986) sur le calcul des contraintes sans passer par les directions principales). Toutefois, le modèle d’Ogden fait l’objet de plusieurs critiques. Tout d’abord il semble incongru que la mesure de la déformation devienne un paramètre matériel dans lequel se concentre une partie de la non-linéarité du comportement (coefficients réels α_k). De plus, pour assurer l’unicité de la réponse du matériau, des conditions doivent être imposées sur la valeur des coefficients matériels (Twizell et Ogden, 1983):

$$\mu_k \alpha_k > 0 \text{ et } |\alpha_k| > 1 \quad k = 1,n$$ \hspace{1cm} (A.44)

Finalement, la critique la plus importante concerne la difficulté d’identification des paramètres (Seibert et Schöche, 2000). En effet, six paramètres sont nécessaires et ceux-ci sont purement phénoménologiques, ils ne peuvent pas être reliés à des grandeurs physiques et l’utilisation de méthodes de recalage s’avère délicate.

Pour conclure ce paragraphe, mentionnons les travaux de Blatz et al. (1974) qui proposent un modèle comparable à celui d’Ogden, puisqu’il utilise aussi les mesures de déformation généralisée, sous la forme :

$$W = 2 \frac{G}{\alpha^2} (\lambda_1^\alpha + \lambda_2^\alpha + \lambda_3^\alpha - 3) + \frac{B}{\alpha^\beta} (\lambda_1^\alpha + \lambda_2^\alpha + \lambda_3^\alpha - 3)^\beta$$ \hspace{1cm} (A.45)

où G, α, B et β sont les quatre constantes matérielles. À notre connaissance, ce modèle n’a jamais été utilisé dans la pratique. Il a été occulté par le succès du modèle d’Ogden.

A.2.2 Viscoélasticité

Modèles intégraux

La première s’appuie sur les développements intégraux de Green-Rivlin et de Coleman-Noll exposés plus haut. Pour les liquides, le modèle K-BKZ s’est avéré très performant et a été largement utilisé durant cette période (Tanner, 1988). En revanche, pour les matériaux solides, aucun modèle intégral n’a vraiment été plébiscité. Plusieurs auteurs ont développé des équations constitutives en s’inspirant des modélisations hyperélastiques, le matériau étant supposé se comporter de manière hyperélastique pour des chargements infiniment lents ou rapides. Ainsi, Christensen (1980) établit la contrepartie viscoélastique du modèle néo-hookéen en utilisant l’expansion de Green-Rivlin (A.28-A.29) au 1er ordre :

$$\sigma(t) = -p I + g_0 B(t) + F(t) \int_0^t g_1(t - \tau) \dot{E}(\tau) d\tau F(t)^T$$ \hspace{1cm} (A.46)

où g_0 est une constante élastique et $g_1(\tau)$ est la fonction de relaxation dont la limite à l’infini est nulle. Classiquement celle-ci est écrite sous la forme d’une série de Prony :

$$g_1(\tau) = \sum_{i=1}^n g_i^{(i)} \exp \left(-\frac{\tau}{\tau_R^{(i)}}\right)$$ \hspace{1cm} (A.47)
où les constantes matérielles \(\left(\tau_{R(i)}^{(n)} \right)_{i=1,n} \) sont des temps de relaxation qui permettent d’approcher le spectre de relaxation du matériau. Comme le souligne Christensen, ce modèle est le modèle viscoélastique non-linéaire le plus simple pour les matériaux de type caoutchouc. Évidemment, il est limité aux déformations modérées (jusqu’à 100%), comme le modèle néo-hookéen, et à des écarts faibles avec l’équilibre thermodynamique (déviations faibles par rapport à la réponse élastique). Ce modèle est plutôt utilisé pour mettre en évidence des résultats qualitatifs dans des travaux numériques, comme par exemple sur les membranes (Feng, 1992; Shrivastava et Tang, 1993; Verron et al., 2001).

Évidemment, d’autres travaux se sont orientés vers des modèles présentant des performances plus intéressantes pour les grandes déformations. Ceux-ci se sont appuyés sur l’efficacité des mesures de déformation généralisée mise en évidence par le modèle d’Ogden (1972). Dans cet esprit, on peut citer le modèle CBT de Chang et al. (1976, 1977) qui vise à modéliser le caractère viscoélastique des élastomères dans la gamme de déformations où la relaxation du matériau est indépendante du niveau de déformation. Au regard de la description de la viscoélasticité que nous avons faite précédemment, ce comportement est linéaire au sens de la viscoélasticité et non-linéaire pour la relation contrainte-déformation élastique, c’est-à-dire pour des charge-ments infiniment lents. En introduisant les mêmes grandeurs matérielles que pour le modèle de Christensen (A.46), la relation contrainte-déformation est donnée par :

\[
\sigma(t) = -pI + \frac{2}{3\alpha} g_0 B\hat{=}^2 (t) + \frac{1}{3\alpha} \int_{-\infty}^{t} g_1(t - \tau) \left[B\hat{=}^2 (t) \dot{C}_t^\alpha (\tau) + \dot{C}_t^\alpha (\tau) B\hat{=}^2 (t) \right] d\tau \tag{A.48}
\]

où \(\alpha \) est un paramètre matériel qui concentre la non-linéarité de la courbe contrainte-déformation (comme dans le cas du modèle d’Ogden). Ici, le tenseur de dilatation généralisée \(B\hat{=}^2 \) est défini à partir de sa matrice représentative par :

\[
B\hat{=}^2 = n \Lambda^\alpha n^{-1} \tag{A.49}
\]

où \(n \) est la matrice des directions propres du tenseur de Cauchy-Green gauche \(B \) et \(\Lambda \) contient les élongations principales, c’est-à-dire que c’est la matrice diagonale contenant la racine carrée des valeurs propres de \(B \). Le tenseur \(\dot{C}_t^\alpha (\tau) \) est défini de manière similaire. Pour plus de détails sur ces notations, le lecteur peut se référer à l’article de Chang et al. (1976). L’équation (A.49) est établie en généralisant les relations uniaxiales et de façon à assurer l’objectivité de la loi. Une dizaine d’années plus tard, Morman Jr. (1988) propose un modèle assez proche en reprenant la théorie de la viscoélasticité linéaire finie de Coleman-Noll avec une mesure de déformation généralisée :

\[
\sigma(t) = -pI + \frac{2}{3\alpha} g_0 B\hat{=}^2 (t) + \frac{2}{3\alpha} \int_{-\infty}^{t} g_1(t - \tau) B\hat{=}^2 (t) \dot{C}_t^\alpha (\tau) B\hat{=}^2 (t) d\tau \tag{A.50}
\]

Ces deux modèles sont sensiblement différents mais ils sont tous les deux limités à des déformations n’excédant pas 250% au-dessus desquelles la relaxation dépend du niveau de déformation et qui, selon Morman Jr., nécessiterait l’utilisation d’intégrales d’ordre supérieur dans les expansions de Green-Rivlin ou Coleman-Noll (Morman Jr., 1988).

Pour modéliser le comportement lorsque le temps et le niveau de déformation ne sont plus séparables, Sullivan (1987), puis Sullivan et Mazich (1989) proposent d’utiliser deux mesures
Annexe A. État de l’art sur les lois de comportement des élastomères

de déformation généralisée, l’une pour la partie élastique du modèle, l’autre pour la partie viscoélastique :

\[\sigma(t) = -pI + \frac{2}{3\alpha}g_0B^\alpha(t) - \frac{2}{3\beta}\int_{-\infty}^{t} g_1(t - \tau)C_t^{-\alpha/2}(\tau)\,d\tau \]

(A.51)

où \(\alpha \) et \(\beta \) sont les deux constantes réelles relatives aux deux mesures de la déformation. Les auteurs justifient ce choix par le fait que les deux phénomènes (élasticité et viscosité) sont d’origines physiques différentes et qu’ainsi la façon de mesurer la déformation pour chacun d’eux peut différer.

Pour conclure, précisons qu’après la fin des années 80, quasiment aucun modèle intégral n’a été utilisé dans des applications numériques (excepté le modèle K-BKZ en mécanique des fluides). À notre avis, deux raisons majeures sont en cause. La première est la limitation dans la faible amplitude des déformations couvertes par ces modèles du fait de la troncature des expansions au 1er ordre. La seconde est l’absence de méthode d’intégration numérique robuste dans les publications. Même si certains travaux peu connus font référence aux méthodes d’intégration (Feng, 1986, 1992), les modèles sont toujours présentés seuls, c’est-à-dire sans exemples numériques correspondant à des états de déformation non-homogènes nécessitant l’emploi de la méthode des éléments finis.

Modèles différentiels

– Tout d’abord, Lubliner étudie les matériaux compressibles, en adoptant la séparation, aujourd’hui classique, entre déformations volumique et isochore (Ogden, 1984a) :

\[\mathbf{F} = J^{1/3} \mathbf{F} \]

(A.52)

où \(J \) est le jacobien de la transformation qui définit la variation de volume et \(\mathbf{F} \) désigne la part de la transformation qui se fait à volume constant (det \(\mathbf{F} = 1 \)).

– Le comportement élastique limite vers lequel tend le modèle complet viscoélastique n’est plus limité au modèle néo-hookéen, mais peut être étendu à d’autres fonctions énergie de déformation.

– Le matériau n’est plus supposé relaxer complètement et donc la limite du nouveau modèle pour une transformation infinitésimale doit être représenté par un modèle solide standard (voir fig. A.2 p. 90) et non plus par le modèle de Maxwell.

Pour construire son modèle, Lubliner considère la séparation du gradient de la transformation en parties élastique et inélastique :

\[\mathbf{F} = \mathbf{F}_e \mathbf{F}_i \]

(A.53)

et suppose que la déformation inélastique se produit à volume constant (ce qui est une hypothèse très courante), soit det \(\mathbf{F}_i = 1 \), ce qui conduit à la séparation suivante :

\[\mathbf{F} = J^{1/3} \mathbf{F}_e \mathbf{F}_i \]

(A.54)
avec \(J = J_e \). Ainsi, l’énergie libre par unité de volume est définie comme la somme d’une énergie de déformation volumique \(\phi_0 \), d’une énergie élastique incompressible \(\phi_e \) qui peut être celle de n’importe quel modèle hyperélastique et d’une énergie inélastique \(\phi_i \) qui ne dépend que de la part inélastique de la déformation :

\[
\phi (J, \overline{C}_e, C_i) = \phi_0 (J) + J \phi_e (\overline{C}_e) + \phi_i (C_i)
\]

où la variable interne \(C_i \) suit la loi d’évolution linéaire suivante :

\[
\dot{C}_i^{-1} = \frac{1}{\tau_R} \left[\beta I + (1 - \beta) \overline{C}^{-1} - C_i^{-1} \right]
\]

Ce modèle est la généralisation aux grandes transformations du solide standard représenté par un ressort et un modèle de Maxwell en série (fig. A.2(b)). De la même façon, l’auteur propose la généralisation du second solide standard (fig. A.2(a)) et l’extension du modèle à des temps de relaxation multiples qui permet de couvrir le spectre de relaxation du matériau.

Le second article qui remet au goût du jour l’approche différentielle de Green et Tobolsky est celui de Simo (1987). L’auteur propose de séparer la réponse du matériau en la somme d’une contrainte élastique et d’une contrainte inélastique, qui devient une variable interne du modèle réglée par une loi d’évolution linéaire. La séparation entre déformations volumique et isochore est ici aussi adoptée. La forme de l’énergie libre proposée est alors :

\[
\phi (E, Q) = \phi_0 (J) + \phi_e (E) - Q : E + \phi_i (Q)
\]

où \(Q \) représente une variable interne de type contrainte et où la nature des différentes énergies est la même que pour le modèle de Lubliner (A.55). La variable \(Q \) suit une loi d’évolution linéaire inspirée des modèles standards pour la transformation infinitésimale :

\[
\dot{Q} + \frac{1}{\nu} Q = \frac{1 - \gamma}{\nu} \text{dev} \frac{\partial \phi_e}{\partial E} \quad \text{avec} \quad Q|_{t=0} = 0
\]

où \(\text{dev} \) représente l’opérateur déviateur. Ce modèle permet la prise en compte de l’anisotropie et est équivalent au modèle K-BKZ (Govindjee et Reese, 1997). De plus, il se réduit à l’approche de Lubliner sous certaines hypothèses. Cependant, la force de l’article de Simo réside essentiellement dans sa seconde partie qui présente de façon tout à fait détaillée l’implantation numérique de ce modèle dans le contexte des éléments finis. Son efficacité numérique ayant été démontrée (Govindjee et Simo, 1992), il est aujourd’hui implanté dans les codes de calcul industriels (Hibbitt et al., 1999).

A.2.3 Comportement cyclique

A.3 De nouveaux challenges : de 1990 à nos jours

Depuis le début des années 90, on note un fort regain d’intérêt pour les travaux concernant la modélisation du comportement des élastomères. Ceci est par exemple illustré par la tenue de congrès entièrement dédiés à ce sujet (Dorfmann et Muhr, 1999; Besdo et al., 2001). Ces
travaux sont le plus souvent motivés par de nouvelles demandes industrielles qui visent à utiliser les outils numériques de prédiction pour améliorer la conception ou le dimensionnement de pièces mécaniques dans des domaines tels que l’anti-vibratoire automobile, les pneumatiques ou le matériel médical. Dans ce contexte, la modélisation des phénomènes par des lois de comportement simples mais complètes est un préalable indispensable à tout développement.

A.3.1 Hyperélasticité

S’il est vrai que l’élasticité caoutchouteuse est le domaine qui a été le plus exploré par le passé, il n’en reste pas moins évident qu’il n’existe pas de modèle universel pour décrire le comportement des élastomères. La majorité des travaux récents semble s’orienter sur la définition de modèles simples mathématiquement et fondés sur des théories moléculaires qui permettent de donner une signification physique aux constantes matérielles utilisées. Les travaux purement phénoménologiques sont petit à petit abandonnés.

Approches moléculaires

Les premiers travaux notables s’appuyant sur une approche moléculaire remettent au goût du jour un problème qui avait été laissé de côté depuis 15 ans : la prise en compte dans un réseau aléatoire du comportement non-gaussien des chaînes (James et Guth, 1943; Treloar, 1954; Treloar et Riding, 1979).

Comme nous l’avons précisé plus haut, James et Guth ont développé en 1943 le modèle 3-chaînes qui postule que \(n/3 \) chaînes sont orientées suivant chaque axe du repère principal de déformation ; Flory développe le modèle 4-chaînes un an plus tard ; puis Treloar (1954), et Treloar et Riding (1979) ont effectué l’intégration exacte de la répartition aléatoire sur un volume unitaire dans les cas uniaxial et biaxial. Beaucoup plus récemment, Arruda et Boyce (1993) considèrent le cube inscrit dans une sphère unité et supposent que \(n/8 \) chaînes sont orientées suivant chaque demi-diagonale de ce cube. Ce modèle, nommé modèle 8-chaînes, est caractérisé par sa symétrie par rapport aux trois axes du repère principal. Ainsi, sous extension, les huit chaînes représentatives des huit directions préférentielles subissent la même extension \(\lambda_c = \sqrt{I_1/3} \), et les contraintes principales s’écritent :

\[
\sigma_i = -p + \frac{1}{3} nkT \sqrt{N} \frac{\lambda_i}{\lambda_c} \mathcal{L}^{-1} \left(\frac{\lambda_c}{\sqrt{N}} \right)
\]

où on rappelle que \(n \) représente le nombre de chaînes par unité de volume et \(N \) le nombre moyen de monomères par chaîne. Ce modèle s’avère très performant puisqu’avec seulement deux constantes matérielles, il reproduit de façon très satisfaisante les données expérimentales relatives à différents modes de déformation (Wu et van der Giessen, 1993).

La même année, Wu et van der Giessen (1993) proposent une méthode d’intégration sur la sphère unité pour une répartition aléatoire des chaînes, et ce quel que soit le mode de chargement, ce qui généralise les travaux précédents (Treloar, 1954; Treloar et Riding, 1979). Les contraintes principales s’exprime alors sous la forme :

\[
\sigma_i = -p + \frac{1}{4\pi} nkT \int_0^\pi \int_0^{2\pi} \lambda^4 \mathcal{L}^{-1} \left(\frac{\lambda}{\sqrt{N}} \right) m_i^2 \sin \theta d\theta d\phi
\]

avec :

\[
m_1 = \sin \theta \cos \phi \quad m_2 = \sin \theta \sin \phi \quad m_3 = \cos \theta
\]
et :

\[\lambda^{-2} = \sum_{i=1}^{3} \frac{m_{i}^{2}}{\lambda_{i}} \]

(A.62)

Ce modèle s’avère lui aussi performant, mais moins que l’approche d’Arruda et Boyce, ce qui est assez paradoxal puisque le modèle 8-chains est une simplification de la théorie de Wu et van der Giessen. Pour expliquer cette différence, les auteurs invoquent les déviations entre le réseau réel et le réseau idéal qu’ils considèrent. Malgré ses performances, le modèle de Wu et van der Giessen ne peut pas être utilisé dans le cadre des éléments finis, le calcul des contraintes nécessitant une coûteuse intégration numérique.

\[W = \frac{G_{c}}{2} (I_{1} - 3) + \frac{2G_{e}}{\beta^{2}} \left(\lambda_{1}^{-\beta} + \lambda_{2}^{-\beta} + \lambda_{3}^{-\beta} - 3 \right) \]

(A.63)

où \(G_{c}, G_{e} \) et \(\beta \) sont les trois constantes matérielles. La première partie de cette fonction énergie de déformation est représentative du modèle fantôme (A.10) puisque \(G_{c} \) est lié au nombre de chaînes par unité de volume et à la fonctionnalité des liaisons. La seconde partie de l’énergie de déformation est semblable au développement d’Ogden (A.42) et approche le comportement du tube aux grandes déformations puisque \(G_{e} \) est une constante qui dépend du nombre de monomères par chaîne, de la longueur d’un segment monomère et du diamètre du tube de fluctuation. Finalement \(\beta \) est un paramètre empirique qui pilote la déformation du tube (allongement-contraction).

En 1999, les auteurs étendent leur approche au cas des élastomères fortement chargés (Kaliske et Heinrich, 1999). En effet, pour ces matériaux, la présence de charges en grande quantité induit l’existence de nombreuses chaînes actives courtes voire inextensibles, ce qui modifie sensiblement le comportement aux petites déformations. Ainsi, la partie gaussienne de la fonction énergie de déformation précédente (A.63) est modifiée, ce qui fournit une nouvelle énergie, connue sous le nom de « modèle tube étendu »:

\[W = \frac{G_{c}}{2} \left[\frac{(1 - \delta^{2})(I_{1} - 3)}{1 - \delta^{2}(I_{1} - 3)} + \ln \left[1 - \delta^{2}(I_{1} - 3) \right] \right] \]

\[+ \frac{2G_{e}}{\beta^{2}} \left(\lambda_{1}^{-\beta} + \lambda_{2}^{-\beta} + \lambda_{3}^{-\beta} - 3 \right) \]

(A.64)

où \(\delta \) est une nouvelle constante matérielle qui traduit l’inextensibilité des chaînes courtes. Évidemment, pour \(\delta = 0 \) ce modèle étendu se réduit au modèle tube classique.

Ces deux modèles fournissent des résultats intéressants et les auteurs démontrent la facilité d’implantation numérique de ces développements. Cependant, jusqu’à présent, ces modèles n’ont pas été utilisés dans un cadre numérique par d’autres chercheurs.
Approches phénoménologiques

Depuis le début des années 90, les auteurs se tournent de moins en moins vers des considérations phénoménologiques pour construire de nouveaux potentiels de déformation. En effet, il semble que la prise en compte de la structure moléculaire des élastomères dans la modélisation du comportement est un gage de qualité et notamment pour aborder les problèmes de déformations multi-axiales.

Cependant, deux modèles phénoménologiques ont été proposés récemment dans la bibliographie. Le premier est dû à Yeoh (1990, 1993), qui propose d’utiliser une expansion de Rivlin (A.14) à l’ordre 3 en négligeant tous les termes relatifs au second invariant \(I_2 \). L’auteur constate en effet expérimentalement que \(\frac{\partial W}{\partial I_2} \) est négligeable devant \(\frac{\partial W}{\partial I_1} \). L’énergie de déformation est alors simplement :

\[
W = C_{10} (I_1 - 3) + C_{20} (I_1 - 3)^2 + C_{30} (I_1 - 3)^3
\]

(A.65)

Ce modèle permet une bonne représentation des grandes déformations, mais ses performances sont médiocres pour les déformations modérées, puisqu’il ne corrige pas la théorie gaussienne.

Le second modèle phénoménologique est développé par Gent (1996). L’objectif de l’auteur est d’établir une fonction énergie de déformation adaptée aux très grandes déformations, ne dépendant que de deux constantes matérielles et plus simple mathématiquement que les modèles faisant intervenir la fonction de Langevin (modèles 3 et 8-chains par exemple). Ainsi, Gent propose l’énergie de déformation suivante :

\[
W = -\frac{E}{6} J_m \ln \left(1 - \frac{I_1 - 3}{J_m} \right)
\]

(A.66)

où \(E \) et \(J_m \) sont les deux paramètres matériels. En fait, comme le montre Boyce (1996), ce modèle est équivalent au modèle 8-chain d’Arruda et Boyce (A.59). La qualité de la modélisation est similaire et la constante matérielle \(J_m \) joue le même rôle que le nombre de monomères par chaîne \(N \) dans le modèle précité : elle permet de définir une extensibilité maximale que le matériau ne peut excéder et qui se traduit par le raidissement aux grandes déformations.

A.3.2 Viscoélasticité

À partir de la fin des années 80, sous l’impulsion des travaux de Lubliner (1985) et de l’efficacité numérique du modèle proposé par Simo (1987), la viscoélasticité en grandes transformations ne se conçoit plus qu’au travers des modèles à variables internes. Les approches par intégrales
héréditaires sont aujourd'hui quasiment inexistantes. Citons toutefois les travaux d’O’Dowd et Knauss (1995) qui proposent un modèle très général pour le comportement viscoélastique des polymères en grandes déformations. Leur approche s’appuie sur le modèle K-BKZ solide et sur le modèle 8-chains d’Arruda et Boyce qui représente le comportement limite à long terme (lorsque la viscoélasticité s’est effacée). L’influence de la température est prise en compte au travers de l’évolution de l’échelle de temps, s’inspirant ainsi des travaux de Schapery (1969). Quelques résultats intéressants sont fournis mais essentiellement pour des polymères thermoplastiques ce qui laisse penser que ce modèle leurs est destiné. Cependant, l’approche adoptée est trop générale pour être appliquée simplement et il n’est nullement fait mention des méthodes numériques permettant son implantation.

Ainsi, l’approche qui fait aujourd’hui l’unanimité se fonde sur l’utilisation de variables internes. D’un point de vue rhéologique, elle transpose le modèle linéaire généralisé de Maxwell présenté sur la figure A.3 au cas des grandes déformations. Au travers des publications sur le

\[
\text{Fig. A.3 – Modèle de Maxwell généralisé. La part élastique à long terme du comportement est représentée par le ressort seul. C’est elle qui fournit la réponse du matériau pour un chargement infiniment lent. Les autres branches du modèle sont définies par différents temps de relaxation, visant à couvrir le spectre de relaxation du matériau.}
\]

sujet, il est possible de mettre en avant les propriétés principales de ce type de modélisation. Ce cadre général est très fortement inspiré des théories similaires éprouvées pour la plasticité en grandes transformations.

1. Pour tenir compte de la quasi-incompressibilité du matériau, le gradient de la transformation est séparé en parties isochore et d’expansion du volume, comme le préconise Flory (1961):

\[
\mathbf{F} = J^{1/3} \tilde{\mathbf{F}}
\]

où \(J \) est le jacobien de la transformation et décrit la variation de volume, et \(\tilde{\mathbf{F}} \) est le tenseur gradient de la transformation isochore qui vérifie donc \(\det \tilde{\mathbf{F}} = 1 \).

2. L’énergie libre du matériau est alors la somme de trois énergies distinctes :

\[
\Psi (C, \tilde{C}_k) = U(J) + \Psi_\infty(\tilde{C}) + \sum_{k=1}^p \Psi_k(\tilde{C}, C_k)
\]

où \(\tilde{C} \) est le tenseur de Cauchy-Green droit de la déformation incompressible (\(\det \tilde{C} = 1 \)) et les grandeurs tensorielles \((C_k)_{k=1,p}\) sont les \(p \) dilatations inélastiques dans les amortisseurs du modèle de Maxwell généralisé (fig. A.3). Ce sont des grandeurs internes non mesurables. \(U \) est la fonction énergie de déformation relative à la compressibilité du matériau. Elle
Annexe A. État de l’art sur les lois de comportement des élastomères

n’existe pas lorsque le matériau est incompressible et ne dépend évidemment que de la partie volumique de la transformation au travers de J. La fonction énergie de déformation Ψ_∞ est l’énergie hyperélastique du matériau, c’est-à-dire l’énergie de déformation obtenue à l’équilibre thermodynamique lorsque les composantes dissipatives se sont effacées. Elle correspond au ressort seul du modèle de Maxwell généralisé (fig. A.3) et peut être modélisée par n’importe quel modèle hyperélastique proposé précédemment. Cette énergie de déformation ne dépend évidemment que de l’état de déformation actuel \bar{C}. Finalement, les fonctions Ψ_k représentent les énergies de déformation des composantes dissipatives du comportement (les modèles de Maxwell sur la figure A.3). Elles dépendent de la déformation actuelle \bar{C} et des déformations dans les amortisseurs $(C^i_k)_{k=1,p}$. Ces composantes dissipatives sont classiquement considérées incompressibles.

En utilisant l’énergie de déformation (A.68), le second tenseur des contraintes de Piola-Kirchhoff s’écrit :

$$ S = S_{vol} + S_\infty + \sum_{k=1}^{p} S^i_k $$

Dans cette équation, la contrainte S_{vol} est la contrainte de compressibilité :

$$ S_{vol} = p \, J \, C^{-1} \quad \text{avec} \quad p = \frac{\partial U}{\partial J} $$

De même, la contrainte élastique d’équilibre S_∞ est donnée par :

$$ S_\infty = 2 \frac{\partial \Psi_\infty(\bar{C})}{\partial C} $$

Et finalement, la contrainte visqueuse dans le modèle de Maxwell k, S^i_k, associée à la déformation C^i_k s’écrit :

$$ S^i_k = 2 \frac{\partial \Psi_k(\bar{C}, C^i_k)}{\partial C} $$

3. Les grandeurs internes $(C^i_k)_{k=1,p}$ et $(S^i_k)_{k=1,p}$ sont respectivement les déformations et les contraintes inélastiques. Elles représentent l’état de déformation ou de contrainte dans les amortisseurs du modèle de Maxwell généralisé et ne peuvent pas être explicitement mesurées. Suivant les approches, l’une ou l’autre des familles de tenseurs (dilatations ou contraintes inélastiques) est considérée comme variable interne. Dans les deux cas, chacune des p variables est régie par une équation différentielle, classiquement du premier ordre, appelée équation d’évolution. Pour les modèles fondés sur des variables internes de type déformation, les auteurs considèrent la décomposition multiplicative du gradient de la transformation en parties élastique et inélastique comme c’est le cas en plasticité finie. Pour les modèles s’appuyant sur des contraintes internes, les auteurs retiennent la notion de sur-contrainte visqueuse, contrainte qui vient s’ajouter à la contrainte élastique d’équilibre thermodynamique pour modéliser l’écart avec cet équilibre.

Remarque. Il convient de noter que dans le cas de la transformation infinitésimale (viscoélasticité linéaire), on peut choisir les contraintes ou les déformations comme variables internes, ces choix étant équivalents (Reese et Govindjee, 1998).

4. Comme le font Reese et Govindjee (1998), il est possible de séparer les modèles viscoélastiques en déformations finies en deux groupes. Tout d’abord, on parle de viscoélasticité linéaire finie (ce qui rejoint les concepts de Coleman et Noll (1961)) pour les modèles visant à reproduire seulement de faibles écarts avec l’équilibre thermodynamique. Dans ce cas,
les équations d’évolution des variables internes sont linéaires. Le second groupe de modèles est plus général puisqu’il autorise de grands écarts avec l’équilibre thermodynamique. On utilise alors le terme de viscoélasticité finie. Les équations d’évolution sont le plus souvent non-linéaires.

Sur la base des quatre propriétés précédentes, de nombreux modèles ont été proposés. Ils diffèrent par le choix des fonctions d’énergie de déformation, des variables internes et de leurs équations d’évolution, mais aussi par les méthodes de construction invoquées (moléculaires ou phénoménologiques). Ces modèles sont présentés dans les paragraphes suivants.

Une première série de nouveaux modèles s’appuie sur la mécanique des chaînes pour justifier et mettre en place les concepts précédents. Ceux-ci sont plutôt utilisés pour le comportement cyclique (hystérésis) et non le comportement à long-terme (relaxation et fluage) des élastomères. Dafalias (1991) propose de modéliser de manière macroscopique la résistance du réseau à se déformer de manière affine instantanément. Ainsi, il approche cet aspect transitoire de la déformation par une variable interne de sur-contrainte qui résiste à la mise en place de la déformation affine. L’équation constitutive est écrite dans un cadre eulerien, le matériau est incompressible et sa partie élastique est approchée par le modèle d’Ogden à un terme. L’équation d’évolution lie la sur-contrainte α et le taux de déformation eulerien \mathbf{D} de manière linéaire. Cette équation eulerienne nécessite la définition précise du taux de contrainte $\dot{\alpha}$ pour assurer l’objectivité de la loi. Elle est établie en considérant la coaxialité des contraintes et des déformations à l’équilibre. Ce modèle est amélioré par Spathis (1997) qui reprend les mêmes idées sur l’évolution du réseau mais essaie de calculer les différents paramètres à partir de ces considérations moléculaires et non plus sur des bases phénoménologiques comme le faisait Dafalias. Ainsi, il remplace le modèle d’Ogden par le modèle 3-chains et les paramètres de la loi d’évolution sont déterminés à l’aide d’hypothèses sur le mouvement des chaînes dans le réseau (utilisation du modèle de Rouse). Ainsi, les paramètres, constants dans l’approche de Dafalias deviennent des fonctions de l’état de déformation dans l’approche de Spathis, ce qui rend la loi d’évolution non-linéaire. Ces deux modèles sont utilisés pour simuler le phénomène d’hystérésis dans les élastomères. Le modèle de Spathis reproduit très fidèlement les résultats expérimentaux de Harwood et al. (1965). Cependant, quelques calculs analytiques mettent en évidence la très forte dépendance de la forme du cycle d’hystérésis à la vitesse de déformation, dépendance qui apparaît moins importante sur les résultats expérimentaux fournis par Bergström et Boyce (1998). Cette différence peut être due aux valeurs des coefficients matériels utilisées par l’auteur.

Bergström et Boyce (1998) s’intéressent eux aussi à la boucle d’hystérésis observée sous chargement cyclique. Les auteurs proposent tout d’abord une série de résultats expérimentaux permettant de mieux comprendre le phénomène et notamment sa dépendance vis-à-vis du niveau de déformation maximal, de la vitesse de déformation et de la quantité de charges dans le matériau. De plus, ils mettent en place des essais de relaxation au cours du chargement cyclique que nous avons repris et qui visent à mettre en évidence le caractère viscoélastique de la boucle d’hystérésis (voir la figure 3.9 p. 55). Leur modèle est similaire à celui de Spathis excepté le choix de la variable interne, puisqu’ici les auteurs choisissent la déformation inélastique. Ils

D’autres auteurs s’inspirent de façon plus importante des travaux de Green et Tobolsky, et notamment du principe d’évolution du réseau qui se traduit par la destruction et la reformation de réseaux sous chargement. C’est le cas de Johnson et al. (1992, 1995), et Johnson et Quigley (1993) qui développent une approche dite visco-hyperélastique. Les auteurs supposent que la contrainte élastique est due à l’allongement des chaînes entre les points de jonction (hyperélasticité classique) et que l’écart avec l’équilibre thermodynamique est dû au glissement des points d’enchevêtrement et à la rupture des chaînes. Pour élaborer leur modèle, ils considèrent la superposition de plusieurs solides hyperélastiques possédant des états de référence non déformés et non contraints différents les uns des autres. Le potentiel élastique de tous les solides reformés au cours du temps est identique, mais différent du potentiel initial du matériau. Ainsi, les variables internes sont les contraintes de Cauchy dans les différents solides qui évoluent en suivant des lois linéaires identiques, chacune contenant des informations différentes sur le spectre de relaxation (au travers des temps de relaxation qui sont les paramètres de ces lois d’évolution). Les auteurs s’intéressent à tous les aspects du problème, de la méthode de recalage des constantes à l’implantation numérique.

Finalement, une dernière famille de modèles viscoélastiques en grandes transformations est à mentionner. Celle-ci s’appuie essentiellement sur des considérations phénoménologiques pour la construction des équations constitutives, mais les auteurs mettent l’accent sur les méthodologies

A.3.3 Comportement cyclique

Depuis le début des années 90, de nombreux travaux s’intéressent à la réponse des élastomères sous chargement cyclique. Le plus fréquemment, les phénomènes d’accommodation et d’hystérésis sont découpés lors de la construction des modèles.

Autres modèles pour l’hystérésis

Fig. A.4 – Représentation schématique des modèles (a) élasto-plastique de Kaliske et Rothert (1998), (b) élasto-visco-plastique de Miehe et Keck (2000).
Effet Mullins

De nombreux modèles ont été récemment proposés pour représenter l’effet Mullins dans les élastomères. La très grande majorité des travaux ne s’intéresse qu’à l’aspect d’accommodation à l’effet Mullins, c’est-à-dire la perte de raideur de la réponse élastique lors des premiers cycles. Le plus souvent les auteurs font l’hypothèse que tout le phénomène d’accommodation a lieu lors du seul premier cycle de chargement, et qu’il ne dépend que de l’histoire de la déformation et plus précisément du niveau maximal de la déformation subi par le passé par le matériau. Ces deux hypothèses sont raisonnables compte tenu des observations expérimentales.

La première méthode adoptée pour modéliser l’effet Mullins est l’utilisation de la mécanique de l’endommagement éprouvée par ailleurs (Kachanov, 1958; Lemaitre et Chaboche, 1985). Le premier article utilisant le terme d’endommagement pour désigner l’effet Mullins est celui de Gurtin et Francis (1981) qui proposent un modèle uniaxial très simple permettant de reproduire fidèlement des essais uniaxiaux sur un propergol solide. Simo (1987) est le premier à utiliser effectivement la mécanique de l’endommagement dans le cadre d’une loi de comportement tri-dimensionnelle. L’endommagement est supposé isotrope et l’auteur introduit une variable interne scalaire qui corrige l’énergie de déformation du matériau en fonction du niveau maximal de déformation atteint précédemment. Pour Simo, la mesure adoptée pour représenter ce niveau de déformation est la valeur correspondante de l’énergie de déformation initiale (c’est-à-dire sans endommagement) qui est la force thermodynamique associée à la variable interne introduite. La loi d’évolution suivie par la variable d’endommagement est une loi exponentielle décroissante de la mesure précédente. Dans l’article, l’auteur détaille le cadre thermodynamique associé à son approche, cadre qui va faire référence par la suite. De Souza Neto et al. (1994) utilisent une approche identique. Ils insistent sur la mise en œuvre numérique d’un tel modèle et proposent quelques simulations numériques complexes. La nécessité du calcul exact de la matrice raideur tangente est soulignée.

Plus tard, Miehe (1995) reprend la même approche mais améliore la modélisation en considérant deux sources d’endommagement. La première, qualiﬁée de discontinue, est celle décrite plus haut et n’intervient que sur la courbe de première charge d’un essai cyclique. La seconde, dite continue, représente l’accumulation du dommage sur toute l’histoire de déformation. Elle permet ainsi de modéliser la perte de raideur entre les \(n \)ième et \(n+1 \)ième cycles de chargement. La première source d’endommagement est à nouveau une fonction du maximum atteint par l’énergie de déformation lors du chargement et la seconde dépend de la longueur d’arc parcourue sur la courbe d’énergie au cours de l’histoire de déformation. À nouveau, l’accent est mis sur la simulation numérique. L’approche de Miehe a été utilisée très récemment par Kaliske et al. (2001) dans un cadre viscoélastique permettant de simuler simultanément l’accommodation et l’hystérésis, et de reproduire ainsi les résultats expérimentaux cycliques. Les résultats sont intéressants, mais ces modèles ne permettent pas de modéliser de façon satisfaisante des sollicitations à amplitude de cycles croissante.

Pour conclure sur cette approche, notons que l’assimilation de l’effet Mullins à un phénomène d’endommagement est une théorie discutable pour deux raisons majeures. Tout d’abord, la mécanique de l’endommagement est fondée sur la notion de contrainte effective qui postule que le matériau se dégrade sous chargement et que la surface d’application des efforts internes diminue à cause des micro-cavités et micro-fissures qui apparaissent au sein du matériau lors de la déformation (Lemaitre et Chaboche, 1985). Même si l’explication moléculaire de l’effet Mullins n’est pas à ce jour précisément connue, il est évident que l’accommodation résulte d’un réarrangement du réseau de chaînes au travers de la rupture de différentes liaisons. Ce phénomène
mésoscopique n’est pas, a priori, compatible avec l’idée de contrainte équivalente (ou réduite). D’autre part, l’endommagement est un phénomène irréversible qui traduit une dégradation du matériau, alors que l’accommodation est connue pour être un phénomène réversible, au moins en partie, comme nous l’avons rappelé précédemment.

La deuxième approche de la modélisation de l’effet Mullins est elle aussi phénoménologique. Elle est très proche de la théorie de l’endommagement précédente par sa mise en œuvre même si les auteurs emploient très peu cette terminologie. Les points de départ des modèles exposés dans ce paragraphe sont l’approche de double réseau de Green et Tobolsky (1946) qui postule la destruction et la reformation de réseaux moléculaires lors de la déformation, et le modèle à deux phases proposé par Mullins et Tobin (1957) pour simuler le phénomène d’accommodation. Ainsi, Wineman et Rajagopal (1990), puis Rajagopal et Wineman (1992) proposent une méthode générale pour décrire la déformation des matériaux qui subissent des transformations micro-structurales, méthode appliquée à l’effet Mullins dans les élastomères par Wineman et Huntley (1994), puis Huntley et al. (1996, 1997). Les auteurs considèrent l’existence d’une fonction de reformation de réseau qui corrige multiplicativement la contrainte et d’un seuil d’activation de cette fonction. Ces grandeurs sont des scalaires qui ne dépendent que d’un paramètre d’état de déformation calculé à partir des deux premiers invariants de la déformation. En utilisant une méthode similaire à celle de Green et Tobolsky, les auteurs construisent un modèle intégral qui prend en compte l’accommodation de la raideur et qui s’avère de plus capable de reproduire la déformation rémanente grâce à la définition d’un seuil d’activation. Ce modèle est limité à des états de déformation simples et n’est pas, à notre connaissance, généralisé au cas tridimensionnel.

De manière assez similaire, Beatty et Krishnaswamy (2000) proposent une loi de comportement tridimensionnelle qui généralise les travaux précédents de Johnson et Beatty (1993a,b, 1995) qui concernaient des états de déformation particuliers. Pour développer cette loi les auteurs considèrent la théorie de Mullins et Tobin (1957) qui postulent l’existence de phases dure et molle au sein du matériau. Pour décrire la transition entre ces phases, Beatty et Krishnaswamy introduisent une fonction d’accommodation qui dépend de l’état de déformation maximal précédent (à nouveau au travers des invariants de la dilatation) et qui n’évolue que lors de la charge. Cette fonction est un facteur de correction multiplicatif des contraintes et peut être assimilé à une variable d’endommagement (voir la note de bas de page n°5 dans l’article de Beatty et Krishnaswamy).

Pour leur part, Ogden et Roxburgh (1999) proposent un modèle pseudo-élastique pour l’effet Mullins. Dans ce modèle, l’énergie de déformation du matériau est la somme de l’énergie du matériau vierge et d’une énergie d’endommagement qui dépend du maximum de l’énergie de déformation enregistrée précédemment dans le matériau (comme pour les approches fondées sur la mécanique de l’endommagement). La différence entre cette approche et toutes les autres réside dans l’activation de la fonction d’accommodation (ou d’endommagement) : ici, celle-ci est active lors de la décharge et des charges secondaires (jusqu’au maximum de déformation précédent) et non plus sur la courbe de première charge. Si cette différence est très intéressante du point de vue pratique (la courbe de première charge peut être identifiée directement par un modèle hyperélastique classique), le modèle ne respecte plus la physique du phénomène d’accommodation qui veut que la nature mésoscopique du matériau évolue lors de la première charge. Une théorie comparable a été proposée très récemment par Elias-Zuniga et Beatty (2002).

Finalement, pour conclure sur ces travaux, il convient de noter que les théories précédentes sont des versions modifiées (ou plutôt aménagées) du cadre classique de la mécanique de l’endommagement pour prendre en compte les spécificités des matériaux polymères. Une des difficultés réside dans le choix de la mesure (scalaire) de l’état de déformation. Pour Wineman et al.,
Annexe A. État de l’art sur les lois de comportement des élastomères

ainsi que Beatty et al. (cités plus haut), celui-ci se fait directement à l’aide du tenseur des déformations. Les autres auteurs privilégient l’énergie de déformation (du matériau vierge), ce qui semble moins général puisque cela postule l’existence d’une fonction d’énergie de déformation, mais mieux adapté au cadre thermodynamique car cette énergie est la force thermodynamique associée à la variable d’endommagement. De plus, Simo (1987) souligne l’intérêt numérique du choix énergétique qui assure la symétrie de la matrice raideur tangente.

Finalement, mentionnons l’approche de Marckmann et al. (2002) qui proposent un modèle simple d’évolution du réseau pour simuler l’accommodation. Les auteurs considèrent que l’effet Mullins peut être décrit comme la rupture de liaisons au sein du matériau, sans préciser la nature des liaisons rompues. Ainsi, le réarrangement du réseau se traduit par la diminution de la densité de chaînes n et l’augmentation du nombre moyen de monomères par chaînes N (ce qui augmente la limite d’extensibilité des chaînes). Ces deux observations sont introduites dans le modèle moléculaire 8-châines (A.59) où les paramètres matériels (n et N) deviennent des fonctions de l’extension maximale subie précédemment par les chaînes. Les résultats obtenus sur des états simples de déformation sont encourageants.
Bibliographie

Annexe B

Liste des publications personnelles

Cette annexe präsenté mes différentes publications et communications qui sont mentionnées dans les différents paragraphes du présent document.

A. Revues internationales à comité de lecture
 9 articles publiés et 2 article soumis

B. Revues d’impact national à comité de lecture

2 articles publiés

C. Congrès internationaux avec actes

13 comptes-rendus

D. Congrès nationaux avec actes
7 comptes-rendus

E. Congrès sans actes ou à diffusion restreinte
9 conférences

