X. Fan, L. Lin, P. B. Messersmith, J. Zhang, X. Xu et al., Cell fouling resistance of polymer brushes grafted from Ti substrates by surface-initiated polymerization: effect of ethylene glycol side chain length 7 p. 2443-2448. 53 Covalent attachment of polymer thin layers to selfassembled monolayers on gold surface by graft polymerization Nisin treatment for inactivation of Salmonella species and other gram-negative bacteria, Biomacromolecules Thin Solid Films Applied and Environmental Microbiology, vol.57, pp.76-84, 1991.

P. Blackburn, J. Polak, S. Gusik, and S. D. Rubino, Nisin compositions for use as enhanced, broad range bacteriocins Applied Microbiology, Inc. 56. J. Delves-Broughton, Nisin and its uses as a food preservative, Food Technology, issue.4, pp.100-112, 1989.

M. Kordel, F. Schuller, H. Sahl, B. De-kruijff, and E. Breukink, Interaction of the pore forming-peptide antibiotics Pep 5, nisin and subtilin with non-energized liposomes, Lipid II induces a transmembrane orientation of the pore-forming peptide lantibiotic nisin, pp.41-12171, 1989.
DOI : 10.1016/0014-5793(89)81171-8

W. Liu, J. N. Hansen, S. Ogawa, T. M. Lee, V. Héquet et al., The relation between the internal phosphorylation potential and the proton motive force in mitochondria during ATP synthesis and hydrolysis Optimized grafting of antimicrobial peptides on stainless steel surface and biofilm resistance tests Nisin antimicrobial activity and structural characteristics at hydrophobic surfaces coated with the PEO-PPO-PEO triblock surfactant Pluronic® F108 Dubos and C. Cattaneo, Studies on a bactericidal agent extracted from a soil Bacillus The Structure of Valine-and Isoleucinegramicidin A, 65. B.A. Wallace, Recent Advances in the High Resolution Structures of Bacterial Channels: Gramicidin A, pp.301-309, 1939.

H. Khandelia, J. H. Ipsen, and O. G. Mouritsen, The impact of peptides on lipid membranes Yarwood, An FTIR-ATR Study of the Incorporation of the Peptide Gramicidin D into DPPA Self-Assembled Multilayers, Biochimica et Biophysica Acta -Biomembranes Langmuir, issue.11, pp.1528-1536, 1778.

J. Yala, P. Thebault, A. Héquet, V. Humblot, C. Pradier et al., Elaboration of antibiofilm materials by chemical grafting of an antimicrobial peptide, Applied Microbiology and Biotechnology, vol.79, issue.4, pp.623-634, 2011.
DOI : 10.1007/s00253-010-2930-7

URL : https://hal.archives-ouvertes.fr/hal-00602954

J. F. Popplewell, M. J. Swann, N. J. Freeman, C. Mcdonnell, and R. C. Ford, Quantifying the effects of melittin on liposomes, Biochimica et Biophysica Acta (BBA) - Biomembranes, vol.1768, issue.1, pp.13-20, 1768.
DOI : 10.1016/j.bbamem.2006.05.016

C. E. Dempsey, The actions of melittin on membranes, Biochimica et Biophysica Acta (BBA) - Reviews on Biomembranes, vol.1031, issue.2, pp.143-161, 1031.
DOI : 10.1016/0304-4157(90)90006-X

E. Habermann and J. Jentsch, Sequence analysis of melittin from tryptic and peptic degradation products, Hoppe-Seyler Z. Physiol. Chem, pp.884-890, 1967.

L. Yang, T. A. Harroun, T. M. Weiss, L. Ding, H. W. Huang-74 et al., Barrel-Stave Model or Toroidal Model? A Case Study on Melittin Pores Melittin induces both time-dependent aggregation and inhibition of Na,K-ATPase from duck salt glands however these two processes appear to occur independently, 75. V.N. Lazarev, M.M. Shkarupeta, G.A. Titova, E.S. Kostrjukova, T.A. Akopian, and V.M, pp.81-1475, 1661.

S. A. Govorun, N. K. Klotz, J. Gaur, D. F. Rauceo, Y. Lake et al., Inhibition of adherence and killing of Candida albicans with a 23-Mer peptide (Fn/23) with dual antifungal properties, The Antimicrobial Agent Melittin Exhibits Powerful In Vitro Inhibitory Effects on the Lyme Disease Spirochete. Clinical Infectious Diseases, pp.25-48, 1997.

H. Duclohier, G. Molle, and G. Spach, Antimicrobial peptide magainin I from Xenopus skin forms anion-permeable channels in planar lipid bilayers, Biophysical Journal, vol.56, issue.5, pp.56-1017, 1989.
DOI : 10.1016/S0006-3495(89)82746-8

J. M. Nascimento, O. L. Franco, M. D. Oliveira, and C. A. Andrade, Evaluation of Magainin I interactions with lipid membranes: An optical and electrochemical study, Chemistry and Physics of Lipids, vol.165, issue.5, pp.2012-165
DOI : 10.1016/j.chemphyslip.2012.05.002

Y. Huang, J. Huang, and Y. Chen, Alpha-helical cationic antimicrobial peptides: relationships of structure and function, Protein & Cell, vol.18, issue.2, pp.143-152, 2010.
DOI : 10.1007/s13238-010-0004-3

M. Zasloff, Magainins, a class of antimicrobial peptides from Xenopus skin: isolation, characterization of two active forms, and partial cDNA sequence of a precursor, Proceedings of the National Academy of Sciences of the United States of America, pp.5449-5453, 1987.

. Pradier, The antibacterial activity of Magainin I immobilized onto mixed thiols Self- Assembled Monolayers, Biomaterials, pp.3503-3512, 2009.

L. Hedstrom, S. P. Mechanism, S. R. Bott, M. Ultsch, A. Kossiakoff et al., The three-dimensional structure of Bacillus amyloliquefaciens subtilisin at 1.8 A and an analysis of the structural consequences of peroxide inactivation, Chemical Reviews Journal of Biological Chemistry, vol.84, issue.263, pp.4501-4524, 1988.

M. Tasso, A. L. Cordeiro, K. Salchert, and C. Werner, Covalent Immobilization of Subtilisin A onto Thin Films of Maleic Anhydride Copolymers Method for the lysis of Gram-positive, asporogenous bacteria with lysozyme, Macromolecular Bioscience Applied and Environmental Microbiology, pp.922-929, 1980.

B. Masschalck, D. Deckers, and C. W. Michiels, Lytic and Nonlytic Mechanism of Inactivation of Gram-Positive Bacteria by Lysozyme under Atmospheric and High Hydrostatic Pressure, Journal of Food Protection, vol.65, issue.12, pp.1916-1923, 2002.
DOI : 10.4315/0362-028X-65.12.1916

C. Erridge, R. T. Ellison, T. J. Giehl, S. Nakamura, A. Kato et al., Lysozyme promotes the release of Toll-like receptor-2 stimulants from grampositive but not gram-negative intestinal bacteria Killing of Gram-negative Bacteria by Lactoferrin and Lysozyme Novel Bifunctional Lysozyme-Dextran Conjugate That Acts on Both Gram-Negative and Gram-Positive Bacteria, Gut Microbes Journal of Clinical Investigation Agricultural and Biological Chemistry, vol.89, issue.1, pp.383-387, 1990.

H. R. Ibrahim, H. Hatta, M. Fujiki, M. Kim, and T. Yamamoto, Enhanced Antimicrobial Action of Lysozyme against Gram-Negative and Gram-Positive Bacteria Due to Modification with Perillaldehyde, Journal of Agricultural and Food Chemistry, vol.42, issue.8, pp.42-1813, 1994.
DOI : 10.1021/jf00044a046

L. Grunclová, H. Fouquier, V. Hyp?a, P. Kopá?ek, C. A. Nelson et al., Lysozyme from the gut of the soft tick Ornithodoros moubata: the sequence, phylogeny and post-feeding regulation. Developmental & Comparative Immunology Identification of the naturally processed form of hen egg white lysozyme bound to the murine major histocompatibility complex class II molecule I-Ak Structure of hen egg white lysozyme, Antibacterial activity of hen egg white lysozyme against Listeria monocytogenes Scott A in foods. Applied and Environmental Microbiology, pp.757-761, 1965.

A. Caro, V. Humblot, C. Méthivier, M. Minier, L. Barbes et al., Bioengineering of stainless steel surface by covalent immobilization of enzymes. Physical characterization and interfacial enzymatic activity, Journal of Colloid and Interface Science, vol.349, issue.1, pp.13-18, 2010.
DOI : 10.1016/j.jcis.2009.12.001

URL : https://hal.archives-ouvertes.fr/hal-00604709

A. Caro, V. Humblot, C. Méthivier, M. Minier, M. Salmain et al., Grafting of Lysozyme and/or Poly(ethylene glycol) to Prevent Biofilm Growth on Stainless Steel Surfaces, The Journal of Physical Chemistry B, vol.113, issue.7, pp.113-2101, 2009.
DOI : 10.1021/jp805284s

URL : https://hal.archives-ouvertes.fr/hal-00376076

L. Ploux, A. Ponche, K. Anselme, K. A. Whitehead, J. Colligon et al., Retention of microbial cells in substratum surface features of micrometer and sub-micrometer dimensions, Material Interfaces: Role of the Material and Cell Wall Properties Colloids and Surfaces B: Biointerfaces, 2005. 41 p, pp.129-138, 2010.

Y. L. Peng, C. G. Lin, and L. Wang, The Preliminary Study on Antifouling Mechanism of Shark Skin, Multi-Functional Materials and Structures II, Parts 1 and 2, pp.977-980, 2009.
DOI : 10.4028/www.scientific.net/AMR.79-82.977

A. Allion, J. P. Baron, and L. , Boulange-Petermann, Impact of surface energy and roughness on cell distribution and viability, Biofouling, pp.269-278, 2006.

Y. Lee, D. Lee, A. A. Narducci, and K. D. Karlin, Thiol-copper (I) and disulfide-dicopper (I) complex O2 -reactivity leading to sulfonate-copper (I ) complex or the formation of a crosslinked thioether-phenol product with phenol addition, Journal of Inorganic Biochemistry, issue.101, pp.1845-1858, 2007.

V. Dixit, J. Van-den-bossche, D. M. Sherman, D. H. Thompson, and R. P. Andres, Synthesis and Grafting of Thioctic Acid???PEG???Folate Conjugates onto Au Nanoparticles for Selective Targeting of Folate Receptor-Positive Tumor Cells, Bioconjugate Chemistry, vol.17, issue.3, pp.603-609, 2006.
DOI : 10.1021/bc050335b

T. Niidome, M. Yamagata, Y. Okamoto, Y. Akiyama, H. Takahashi et al., PEG-modified gold nanorods with a stealth character for in vivo applications, Journal of Controlled Release, vol.114, issue.3, pp.343-347, 2006.
DOI : 10.1016/j.jconrel.2006.06.017

A. Revzin, R. J. Russell, V. K. Yadavalli, W. G. Koh, C. Deister et al., Fabrication of Poly(ethylene glycol) Hydrogel Microstructures Using Photolithography, Langmuir, vol.17, issue.18, pp.5440-5447, 2001.
DOI : 10.1021/la010075w

A. Pallandre, K. Glinel, A. M. Jonas, and B. Nysten, Binary Nanopatterned Surfaces Prepared from Silane Monolayers, Nano Letters, vol.4, issue.2, pp.365-371, 2004.
DOI : 10.1021/nl035045n

B. M. Silverman, K. A. Wieghaus, and J. Schwartz, Comparative Properties of Siloxane vs Phosphonate Monolayers on A Key Titanium Alloy, Langmuir, vol.21, issue.1, pp.225-228, 2005.
DOI : 10.1021/la048227l

P. Kingshott and H. J. Griesser, Surfaces that resist bioadhesion, Current Opinion in Solid State and Materials Science, pp.403-412, 1999.
DOI : 10.1016/S1359-0286(99)00018-2

S. J. Xiao, M. Textor, N. D. Spencer, M. Wieland, B. Keller et al., Immobilization of the cell-adhesive peptide Arg-Gly-Asp-Cys (RGDC) on titanium surfaces by covalent chemical attachment, Journal of Materials Science: Materials in Medecine, pp.867-872, 1997.

P. Dubruel, E. Vanderleyden, M. Bergada, I. Depaepe, H. Chen et al., Comparative study of silanisation reactions for the biofunctionalisation of Ti-surfaces, Surface Science, vol.600, issue.12, pp.600-2562, 2006.
DOI : 10.1016/j.susc.2006.04.021

K. C. Olbrich, T. T. Andersen, F. A. Blumenstock, and R. Bizios, Surfaces modified with covalently-immobilized adhesive peptides affect fibroblast population motility, Biomaterials, vol.17, issue.8, pp.759-764, 1996.
DOI : 10.1016/0142-9612(96)81412-8

L. A. Chrisey, G. U. Lee, and C. E. , Covalent attachment of synthetic DNA to selfassembled monolayer films, Nucleic Acids Research, pp.3031-3039, 1996.

N. Smith, A. Antoun, W. Ellis, and . Crone, Improved adhesion between nickel???titanium shape memory alloy and a polymer matrix via silane coupling agents, Composites Part A: Applied Science and Manufacturing, vol.35, issue.11, pp.35-1307, 2004.
DOI : 10.1016/j.compositesa.2004.03.025

J. P. Matinlinna, M. Ozcan, L. V. Lassila, and P. K. Vallittu, The effect of a 3-methacryloxypropyltrimethoxysilane and vinyltriisopropoxysilane blend and tris(3-trimethoxysilylpropyl)isocyanurate on the shear bond strength of composite resin to titanium metal, Dental Materials, vol.20, issue.9, pp.804-813, 2004.
DOI : 10.1016/j.dental.2003.10.009

J. Amalric, P. H. Mutin, G. Guerrero, A. Ponche, A. Sotto et al., Phosphonate monolayers functionalized by silver thiolate species as antibacterial nanocoatings on titanium and stainless steel, J. Mater. Chem., vol.6, issue.1, pp.141-149, 2009.
DOI : 10.1039/B813344A

URL : https://hal.archives-ouvertes.fr/hal-00332902

E. L. Hanson, J. Schwartz, B. Nickel, N. Koch, and M. F. Danisman, Bonding Self-Assembled, Compact Organophosphonate Monolayers to the Native Oxide Surface of Silicon, Journal of the American Chemical Society, vol.125, issue.51, pp.16074-16080, 2003.
DOI : 10.1021/ja035956z

K. Glinel, A. M. Jonas, T. Jouenne, J. Leprince, L. Galas et al., Antibacterial and Antifouling Polymer Brushes Incorporating Antimicrobial Peptide, Bioconjugate Chemistry, vol.20, issue.1, pp.71-77, 1920.
DOI : 10.1021/bc800280u

N. Huang, R. Michel, J. Vörös, M. Textor, R. Hofer et al., -poly(ethylene glycol) Layers on Metal Oxide Surfaces:?? Surface-Analytical Characterization and Resistance to Serum and Fibrinogen Adsorption, Langmuir, vol.17, issue.2, pp.17-489, 2001.
DOI : 10.1021/la000736+

URL : https://hal.archives-ouvertes.fr/hal-00309089

J. L. Dalsin, L. Lin, S. Tosatti, J. Vörös, M. Textor et al., Protein Resistance of Titanium Oxide Surfaces Modified by Biologically Inspired mPEG???DOPA, Langmuir, vol.21, issue.2, pp.640-646, 2005.
DOI : 10.1021/la048626g

R. Kurrat, M. Textor, J. J. Ramsden, P. Böni, and N. D. Spencer, Instrumental improvements in optical waveguide light mode spectroscopy for the study of biomolecule adsorption, Review of Scientific Instruments, vol.68, issue.5, pp.2172-2176, 1997.
DOI : 10.1063/1.1148069

. I. Références-bibliographiques-1, G. H. Klotz, H. A. Czerlinski, and . Fiess, A Mixed-valence Copper Complex with Thiol Compounds, Journal of American Chemical Society, pp.2920-2923, 1958.

V. Humblot, J. Yala, P. Thebault, K. Boukerma, A. Héquet et al., The antibacterial activity of Magainin I immobilized onto mixed thiols Self-Assembled Monolayers, Biomaterials, vol.30, issue.21, pp.3503-3512, 2009.
DOI : 10.1016/j.biomaterials.2009.03.025

A. Caro, V. Humblot, C. Méthivier, M. Minier, M. Salmain et al., Grafting of Lysozyme and/or Poly(ethylene glycol) to Prevent Biofilm Growth on Stainless Steel Surfaces, The Journal of Physical Chemistry B, vol.113, issue.7, pp.113-2101, 2009.
DOI : 10.1021/jp805284s

URL : https://hal.archives-ouvertes.fr/hal-00376076

Z. Kong, Z. Luo, Z. Fu, and Y. Shi, Synthesis of amphiphlic heteroarm star-shapedpolymer by the use of polyfunctional chain-transfer agent via conventional free radical polymerization, Acta Polymerica Sinica, issue.2, pp.102-106, 2008.

M. Bolle, K. Luther, and J. Troe, Photochemically assisted laser ablation of doped polymethyl-methacrylate, Applied Surface Science, vol.46, issue.1-4, pp.279-283, 1990.
DOI : 10.1016/0169-4332(90)90156-T

A. Héquet, V. Humblot, J. Berjeaud, and C. Pradier, Optimized grafting of antimicrobial peptides on stainless steel surface and biofilm resistance tests, Colloids and Surfaces B: Biointerfaces, vol.84, issue.2, pp.84-301, 2011.
DOI : 10.1016/j.colsurfb.2011.01.012

P. Dubruel, E. Vanderleyden, M. Bergada, I. Depaepe, H. Chen et al., Comparative study of silanisation reactions for the biofunctionalisation of Ti-surfaces, Surface Science, vol.600, issue.12, pp.600-2562, 2006.
DOI : 10.1016/j.susc.2006.04.021

X. Fan, L. Lin, and P. B. Messersmith, Cell Fouling Resistance of Polymer Brushes Grafted from Ti Substrates by Surface-Initiated Polymerization:?? Effect of Ethylene Glycol Side Chain Length, Biomacromolecules, vol.7, issue.8, pp.2443-2448, 2006.
DOI : 10.1021/bm060276k

E. A. Smith, W. N. Chen-10, L. Aissaoui, J. Bergaoui, J. Landoulsi et al., Silane Layers on Silicon Surfaces: Mechanism of Interaction, Stability and Influence on Protein Adsorption. Langmuir, 2012. 28 p. 656-665. 11 Surfaces modified with covalentlyimmobilized adhesive peptides affect fibroblast population motility Fabrication and Surface Characterization of DNA Microarrays Using Amine-and Thiol- Terminated Oligonucleotide Probes, How To Prevent the Loss of Surface Functionality Derived from Aminosilanes. Langmuir 13. R.M. Pasternack, S. Rivillon Amy, and Y.J. Chabal, Attachment of 3-(Aminopropyl)triethoxysilane on Silicon Oxide Surfaces: Dependence on Solution Temperature, pp.12405-12409, 1996.

J. A. Howarter and J. P. Youngblood, Optimization of Silica Silanization by 3-Aminopropyltriethoxysilane, Langmuir, vol.22, issue.26, pp.11142-11147, 2006.
DOI : 10.1021/la061240g

J. H. Waite, M. L. Tanzer, A. Charlot, V. Sciannaméa, S. Lenoir et al., Polyphenolic Substance of Mytilus edulis: Novel Adhesive Containing L-Dopa and Hydroxyproline. Science 1981. 212 p. 1038-1040. 16 All-in-one strategy for the fabrication of antimicrobial biomimetic films on stainless steel, Journal of Materials Chemistry, pp.4117-4125, 2009.

R. Rodriguez, M. A. Blesa, and A. E. Regazzoni, Surface Complexation at the TiO2(anatase)/Aqueous Solution Interface: Chemisorption of Catechol, Journal of Colloid and Interface Science, vol.177, issue.1, pp.122-131, 1996.
DOI : 10.1006/jcis.1996.0012

J. L. Dalsin, L. Lin, S. Tosatti, J. Vörös, M. Textor et al., Protein Resistance of Titanium Oxide Surfaces Modified by Biologically Inspired mPEG???DOPA, Langmuir, vol.21, issue.2, 2005.
DOI : 10.1021/la048626g

P. Spencer, g-poly(ethylene glycol) Layers on Metal Oxide Surfaces: Surface- Analytical Characterization and Resistance to Serum and Fibrinogen Adsorption, Langmuir, pp.851-859, 1998.

P. Kingshott, H. J. Griesser, S. Yuan, D. Wan, B. Liang et al., Surfaces that resist bioadhesion Current Opinion in Solid State and Materials Science Lysozyme-Coupled Poly(poly(ethylene glycol)methacrylate)-Stainless Steel Hybrids and Their Antifouling and Antibacterial Surfaces Reaction of proteins with glutaraldehyde, Langmuir Archives of Biochemistry and Biophysics, vol.23, issue.126, pp.403-412, 1968.

K. Okuda, I. Urabe, Y. Yamada, and H. Okada, Reaction of glutaraldehyde with amino and thiol compounds, Journal of Fermentation and Bioengineering, vol.71, issue.2, pp.71-100, 1991.
DOI : 10.1016/0922-338X(91)90231-5

M. Reichlin, [8] Use of glutaraldehyde as a coupling agent for proteins and peptides, Methods in Enzymology, pp.159-165, 1980.
DOI : 10.1016/S0076-6879(80)70047-2

Q. Jian-xun and J. Fan, The balance of flexibility and rigidity in the active site residues of hen egg white lysozyme Structural Details at Active Site of Hen Egg White Lysozyme with Di and Trivalent Metal Ions, Chinese Physics B Biopolymers, pp.74-80, 2006.

K. Z. Marolia and S. F. Souza, Enhancement in the lysozyme activity of the hen egg white foam matrix by cross-linking in the presence of N-acetyl glucosamine, Journal of Biochemical and Biophysical Methods, vol.39, issue.1-2, pp.115-117, 1999.
DOI : 10.1016/S0165-022X(98)00021-9

C. Branca, S. Magazù, G. Maisano, F. Migliardo, P. Migliardo et al., Hydration Study of PEG/Water Mixtures by Quasi Elastic Light Scattering, Acoustic and Rheological Measurements, The Journal of Physical Chemistry B, vol.106, issue.39, pp.10272-10276, 2002.
DOI : 10.1021/jp014345v

B. Malisova, S. Tosatti, M. Textor, K. Gademann, S. J. Zürcher et al., Poly(ethylene glycol) adlayers immobilized to metal oxide substrates through catechol derivatives: influence of assembly conditions on formation and stability Protein secondary structures in water from secondderivative amide I infrared spectra 29 p. 3303-3308. 38. S Membrane pores induced by magainin The balance of flexibility and rigidity in the active site residues of hen egg white lysozyme Structural Details at Active Site of Hen Egg White Lysozyme with Di and Trivalent Metal Ions, Maes, and Z. Pawelka, Solvent influence on the rotational isomerism in terephthalaldehyde. Structural Chemistry, pp.4018-4026, 1990.

D. Britton, C. Structure-of-terephthalaldehyde, S. Tanuma, C. J. Powell, D. R. Penn et al., A polymorph of terephthalaldehyde 64 p. 01562-sup1-01562-sup6. 44 Calculations of electorn inelastic mean free paths. II. Data for 27 elements over the 50?2000 eV range Structure of hen egg white lysozyme The disulfide bond of egg white lysozyme (muramidase), Journal of Chemical Crystallography Acta Crystallographica Section E Surface and Interface Analysis Nature Journal of Biological Chemistry, pp.601-604, 1965.

H. Zeng, K. K. Chittur, and W. R. Lacefield, Analysis of bovine serum albumin adsorption on calcium phosphate and titanium surfaces, Biomaterials, vol.20, issue.4, pp.377-384, 1999.
DOI : 10.1016/S0142-9612(98)00184-7

M. Wilhelmi, C. Müller, C. Ziegler, M. K. Kopnarski-49, Y. Park et al., BSA adsorption on titanium: ToF-SIMS investigation of the surface coverage as a function of protein concentration and pH-value, Bacterial adhesion on PEG modified polyurethane surfaces Lysozyme- Coupled Poly(poly(ethylene glycol)methacrylate)-Stainless Steel Hybrids and Their Antifouling and Antibacterial Surfaces, pp.400-697, 1998.
DOI : 10.1007/s00216-011-4833-6

T. Cserhati and M. Szögyi, Role of hydrophobic and hydrophilic forces in peptide-protein interaction: New advances, Peptides, vol.16, issue.1, pp.165-173, 1995.
DOI : 10.1016/0196-9781(94)00134-R

S. K. Hood and E. A. Zottola, Adherence to stainless steel by foodborne microorganisms

R. Bibliographiques, Infrared Study of Adsorbed Molecules on Metal Surfaces by Reflection Techniques, Journal of Chemical Physics, pp.310-310, 1966.

R. G. Greenler, Reflection Method for Obtaining the Infrared Spectrum of a Thin Layer on a Metal Surface, The Journal of Chemical Physics, vol.50, issue.5, pp.50-1963, 1969.
DOI : 10.1063/1.1671315

T. Buffeteau, B. Desbat, and J. M. Turlet, Polarization Modulation FT-IR Spectroscopy of Surfaces and Ultra-thin Films: Experimental Procedure and Quantitative Analysis, Applied Spectroscopy, vol.45, issue.3, pp.45-380, 1991.
DOI : 10.1366/0003702914337308

H. N. Russell and F. A. Saunders, New Regularities in Spectra of the Alkaline Earths, Astrophysical Journal, pp.61-99, 1925.

A. R. Chourasia and D. R. Chopra, Handbook of Instrumental Techniques for Analytical Chemistry, pp.791-808, 1997.

P. Auger, Sur l'effet photo??lectrique compos??, Journal de Physique et le Radium, vol.6, issue.6, pp.205-208, 1925.
DOI : 10.1051/jphysrad:0192500606020500

L. A. Harris, Some Observations of Surface Segregation by Auger Electron Emission, Journal of Applied Physics, vol.39, issue.3, pp.1428-1431, 1968.
DOI : 10.1063/1.1656375

L. A. Harris, Analysis of Materials by Electron???Excited Auger Electrons, Journal of Applied Physics, vol.39, issue.3, pp.1419-1427, 1968.
DOI : 10.1063/1.1656374

G. Moretti, Auger parameter and Wagner plot in the characterization of chemical states by X-ray photoelectron spectroscopy: a review, Journal of Electron Spectroscopy and Related Phenomena, vol.95, issue.2-3, pp.95-144, 1998.
DOI : 10.1016/S0368-2048(98)00249-7

C. J. Powell, Recommended Auger parameters for 42 elemental solids, Journal of Electron Spectroscopy and Related Phenomena, vol.185, issue.1-2, pp.2012-185
DOI : 10.1016/j.elspec.2011.12.001

G. Binnig and C. F. Quate, Atomic Force Microscope, Physical Review Letters, issue.56, pp.930-933, 1986.

A. Or-gramicidin, 16 or stainless steel surfaces modified by Nisin 77 A; 17 the two first antimicrobial peptides being produced by an 78 amphibian, Xenopus laevis and a microorganism, Lactococcus 79 lactis, respectively. The procedure indeed permitted 50?80% of 80 the attachment of bacteria to be inhibited; the activity of the 81 grafted peptide was shown to be bacteriostatic, rather than 82 bactericidal, likely because it could not aggregate and form 83 pores across the bacterial membrane, p.84

. Propanol, 20 This preparation is expected to increase the 126 amount of hydroxyl groups on the surface

X. Spectroscopy, XPS analyses 186 were performed using a PHOIBOS 100 X-ray photoelectron 187 spectrometer from SPECS GmbH (Berlin, Germany) with a 188 monochromated Al K? X-ray source (h? = 1486.6 eV) 189 operating at P = 1 × 10 ?10 Torr or less. Spectra were carried 190 out with a 50 eV pass energy for the survey scan and 10 eV pass 191 energy for the C1s, O1s, N1s, and Ti2p regions. High- 192 resolution XPS conditions have been fixed: " fixed analyzer 193 transmission " analyses mode, a 7 × 20 mm entrance slit, leading 194 to a resolution of 0.1 eV for the spectrometer, and an electron 195 beam power of 150 W (15 kV and 10 mA). A takeoff angle of 196 90° from the surface was employed for each sample. Element 197 peak intensities were corrected by Scofield factors, 24 The 198 spectra were fitted using Casa XPS v.2.3.15 Software (Casa 199 Software Ltd.) and applying a Gaussian/Lorentzian ratio G/L 200 equal to 70, p.201

. Ev, which we already saw on other titanium oxide samples, 328 without explaining it unambiguously; it might also be due to 329

N. and ?. C?n, amide II), confirm the covalent grafting of the 352 second PEG layer, p.36

T. and T. Samples, as described in the 429 Experimental Methods. After being rinsed and dried, the 430 samples were analyzed with RAIRS; antiadhesive properties of 431 functionalized samples were then compared to those of clean 432 titanium samples, pp.6-433

T. Ti and T. , after contact 435 with a solution of bacteria. On the clean titanium surface, one 436 sees intense bands which are indeed bacterial markers, the C? 437 O?C stretching of membrane carbohydrates at 1085 cm ?1 , the 438 C?O?P stretching of polysaccharides also contained in the 439 membrane, at 1242 cm ?1, Figure 6a shows the RAIRS spectra of the three types of 434 surfaces bands at 1403, 1556, and at 1662 440 cm ?1 can be respectively attributed to the symmetric COO ? 441 stretching, ? COO? , of fatty acids, 41 and to the two amide bands, p.442

|. J. Phys, . Chem, X. Xxxx, and X. F. , 451 The question is thus whether these adhered bacteria are still 452 alive and prone to develop on the surface, or significantly 453 damaged. The followed test thus aims at the observation of 454 adhered bacteria After deposition of L. ivanovii on Ti, Ti-Cat- 455 PEG, and Ti-Cat-PEG-Mag surfaces, the latter have been f7 456 imaged by AFM. The highest images of Figure 7 show first the 457 topography of clean Ti surfaces after deposition of bacteria, at 458 two different scales. One observes that bacteria, adhered to the 459 surface, form aggregates keeping their elongated and rather 460 thick native shape. 43 Intermediate images of Figure 7, obtained 461 on Ti-Cat-PEG surfaces after bacteria deposition, again show 462 aggregation of bacteria; noticeable is their less well-defined 463 shape as if some bacteria were partially crashed, or 464 preferentially deposited on top of an already adhered one. 465 Eventually, in the lowest images of Figure 7, recorded on Ti- 466 Cat-PEG-Mag surfaces, bacteria have lost their native shapes by damaging their membranes, These images suggest that 469 Mag and H 2 N-PEG-NH 2 have a detrimental effect on bacteria, pp.470-471

. As-a-prospective, Another strategy using enzymes, such as Hen 611 Egg White Lysozyme, instead of antibacterial peptides is under 612 study Enzymes have a different action mode compared to the 613 action of peptides, for instance, lysozymes hydrolyze the 614 membrane of Gram-positive bacteria, thus enhancing the 615 bactericidal property of the so-modified surface. It would be 616 interesting to compare the antibacterial activities of peptides 617 and enzymes and correlate the results to their mode of 618 operation. 619 ? ASSOCIATED CONTENT 620 * S Supporting Information 621 XPS spectra of the Ti2p regions for Ti, Ti-Cat, Ti-Cat-PEG, 622 and Ti-Cat-PEG-Mag. This material is available free of charge 623 via the Internet at http, pp.33-44

I. B. Beech, Corrosion of technical materials in the presence of biofilms???current understanding and state-of-the art methods of study, International Biodeterioration & Biodegradation, vol.53, issue.3, pp.177-183, 2004.
DOI : 10.1016/S0964-8305(03)00092-1

A. M. Klibanov, Permanently microbicidal materials coatings, Journal of Materials Chemistry, vol.103, issue.175, pp.2479-2482, 2007.
DOI : 10.1039/b702079a

K. Glinel, P. Thebault, V. Humblot, and C. M. Pradier, Antibacterial surfaces developed from bio-inspired approaches, Acta Biomaterialia, vol.8, issue.5, pp.1670-1684, 2012.
DOI : 10.1016/j.actbio.2012.01.011

URL : https://hal.archives-ouvertes.fr/hal-00689996

J. Yala, P. Thebault, A. He?quethe?quet, V. Humblot, and C. Pradier, Elaboration of antibiofilm materials by chemical grafting of an antimicrobial peptide, Applied Microbiology and Biotechnology, vol.79, issue.4, pp.623-634, 2011.
DOI : 10.1007/s00253-010-2930-7

URL : https://hal.archives-ouvertes.fr/hal-00602954

J. L. Dalsin, L. Lin, and S. Tosatti, Vo? ro? s, J, vol.674

M. Binggeli and C. M. Mate, Influence of capillary condensation of water on nanotribology studied by force microscopy, Applied Physics Letters, vol.65, issue.4, pp.415-417, 1994.
DOI : 10.1063/1.113020

S. T. Kelly and A. L. Zydney, Mechanisms for BSA fouling during microfiltration, Journal of Membrane Science, vol.107, issue.1-2, pp.115-127, 1995.
DOI : 10.1016/0376-7388(95)00108-O