.. Champ-magné-t-i-q-u-e, 75 3 . 5 . 1 I n s t a l l a t i o nd el ab o b i n e td el ab o b i n es u rl ec r y o s t a t, p.76

.. Système-graphène-sur-mé-t-a-l, 98 4 . 2 . 1 C o n t e x t e, p.100

.. Topographie-et-densitéd-'´-etats-du-graphène-sur-ir, 101 4 . 3 . 1 R i d u l e s, p.107

.. Fluctuations-de-la-densitéd-'´-e-t-a-t-s, 125 4.5.1 Renormalisation de la densitéd ' ´ e t a t s Interfé r e n c e sd eq, p.125

S. Guéron, H. Pothier, N. Birge, D. Esteve, and M. Devoret, Superconducting Proximity Effect Probed on a Mesoscopic Length Scale, Physical Review Letters, vol.77, issue.14, p.3025, 1996.
DOI : 10.1103/PhysRevLett.77.3025

S. Rajauria, P. S. Luo, T. Fournier, F. W. Hekking, H. Courtois et al., Electron and Phonon Cooling in a Superconductor???Normal-Metal???Superconductor Tunnel Junction, Physical Review Letters, vol.99, issue.4, p.47004, 2007.
DOI : 10.1103/PhysRevLett.99.047004

URL : https://hal.archives-ouvertes.fr/hal-00193193

J. Pillet, C. H. Quay, P. Morfin, C. Bena, A. L. Yeyati et al., Andreev bound states in supercurrent-carrying carbon nanotubes revealed, Nature Physics, vol.49, issue.12, p.965, 2010.
DOI : 10.1103/PhysRevB.79.134518

H. Le-sueur, P. Joyez, H. Pothier, C. Urbina, and D. Esteve, Phase Controlled Superconducting Proximity Effect Probed by Tunneling Spectroscopy, Physical Review Letters, vol.100, issue.19
DOI : 10.1103/PhysRevLett.100.197002

URL : https://hal.archives-ouvertes.fr/hal-00273401

Y. Zhang, V. W. Brar, C. Girit, A. Zettl, and M. F. Crommie, Origin of spatial charge inhomogeneity in graphene, Nature Physics, vol.5, issue.10, p.722, 2009.
DOI : 10.1088/0957-4484/13/2/312

G. Binnig, H. Rohrer, . Ch, . Gerber, and E. Weibel, Surface Studies by Scanning Tunneling Microscopy, Physical Review Letters, vol.49, issue.1, p.57, 1982.
DOI : 10.1103/PhysRevLett.49.57

G. Binnig, H. Rohrer, . Ch, . Gerber, and E. Weibel, Tunneling through a controllable vacuum gap, Applied Physics Letters, vol.40, issue.2, p.178, 1982.
DOI : 10.1063/1.92999

G. Binnig, C. F. Quate, and C. Gerber, Atomic Force Microscope, Physical Review Letters, vol.56, issue.9, p.930, 1986.
DOI : 10.1103/PhysRevLett.56.930

O. Fischer, M. Kugler, I. Maggio-aprile, C. Berthod, and C. Renner, Scanning tunneling spectroscopy of high-temperature superconductors, Reviews of Modern Physics, vol.79, issue.1, p.353, 2007.
DOI : 10.1103/RevModPhys.79.353

G. Binnig, H. Rohrer, . Ch, . Gerber, and E. Weibel, 7 ?? 7 Reconstruction on Si(111) Resolved in Real Space, Physical Review Letters, vol.50, issue.2, p.120, 1983.
DOI : 10.1103/PhysRevLett.50.120

M. F. Crommie, C. P. Lutz, and D. M. Eigler, Confinement of Electrons to Quantum Corrals on a Metal Surface, Science, vol.262, issue.5131, p.218, 1993.
DOI : 10.1126/science.262.5131.218

J. E. Jones, On the Determination of Molecular Fields. II. From the Equation of State of a Gas, Proc. R. Soc. Lond. A, pp.463-477, 1924.
DOI : 10.1098/rspa.1924.0082

F. Dahlem, E. Ahlswede, J. Weis, and K. V. Klitzing, Cryogenic scanning force microscopy of quantum Hall samples: Adiabatic transport originating in anisotropic depletion at contact interfaces, Physical Review B, vol.82, issue.12, p.121305, 2010.
DOI : 10.1103/PhysRevB.82.121305

K. D. Heller, A. C. Maranowski, and . Gossard, Coherent branched flow in a twodimensional electron gas, Nature, vol.410, p.183, 2001.

J. Senzier, Spectroscopie locale de nanostructures supraconductrices pas microscopie combinée AFM-STMàtSTM`STMàt r ` es basse température, 2007.

A. L. Woodcraft, A. Gray, B. Young, B. Cabrera, and A. Miller, A low temperature thermal conductivity database. Low Temperature Detectors LTD 13, Proceedings of the 13th International Workshop, p.681, 2009.

F. Pobell, Matter and Methods at Low Temperatures, Third Edition

D. V. Pelekhov, J. B. Becker, and G. Nunes, Atomic force microscope for operation in high magnetic fields at millikelvin temperatures, Review of Scientific Instruments, vol.70, issue.1, p.114, 1999.
DOI : 10.1063/1.1149551

R. Euler, U. Memmert, and U. Hartmann, Fiber interferometer-based variable temperature scanning force microscope, Review of Scientific Instruments, vol.68, issue.4, p.1776, 1997.
DOI : 10.1063/1.1147992

K. Karrai and R. D. Grober, Piezoelectric tip???sample distance control for near field optical microscopes, Applied Physics Letters, vol.66, issue.14, p.1842, 1995.
DOI : 10.1063/1.113340

F. J. Giessibl, S. Hembacher, H. Bielefeldt, and J. Mannhart, Subatomic Features on the Silicon (111)-(7x7) Surface Observed by Atomic Force Microscopy, Science, vol.289, issue.5478, p.422, 2000.
DOI : 10.1126/science.289.5478.422

J. Senzier, P. S. Luo, and H. Courtois, Combined scanning force microscopy and scanning tunneling spectroscopy of an electronic nanocircuit at very low temperature, Applied Physics Letters, vol.90, issue.4, p.43114, 2007.
DOI : 10.1063/1.2436651

URL : https://hal.archives-ouvertes.fr/hal-00106410

S. Heike and T. Hashizume, Atomic resolution noncontact atomic force/scanning tunneling microscopy using a 1 MHz quartz resonator, Applied Physics Letters, vol.83, issue.17, p.3620, 2003.
DOI : 10.1063/1.1623012

T. An, T. Eguchi, K. Akiyama, and Y. Hasegawa, Atomically-resolved imaging by frequency-modulation atomic force microscopy using a quartz length-extension resonator, Applied Physics Letters, vol.87, issue.13, p.133114, 2005.
DOI : 10.1063/1.2061850

F. Giessibl, F. Pielmeier, T. Eguchi, T. An, and Y. Hasegawa, Comparison of force sensors for atomic force microscopy based on quartz tuning forks and length-extensional resonators, Physical Review B, vol.84, issue.12, p.125409, 2011.
DOI : 10.1103/PhysRevB.84.125409

K. Karrai and I. Tiemann, Interfacial shear force microscopy, Physical Review B, vol.62, issue.19, p.13174, 2000.
DOI : 10.1103/PhysRevB.62.13174

U. Grunewald, K. Bartzke, and T. Antrack, Application of the needle sensor for microstructure measurements and atomic force microscopy, Thin Solid Films, vol.264, issue.2, p.169, 1995.
DOI : 10.1016/0040-6090(95)05816-8

A. Michels, F. Meinen, E. Bechmann, T. Murdfield, W. Göhde et al., 1 MHz quartz length extension resonator as a probe for scanning near-field acoustic microscopy, Thin Solid Films, vol.264, issue.2, p.172, 1995.
DOI : 10.1016/0040-6090(95)05853-2

N. Moussy, Supraconducteurs mésoscopiquesmésoscopiquesétudiés par microscopie tunneì at r ` es basse température, 2000.

T. Quaglio, Spectroscopies locales sur des nanostructures hybrides horséquilibrehorséquilibre

M. Klein and G. Schwitzgebel, An improved lamellae drop-off technique for sharp tip preparation in scanning tunneling microscopy, Review of Scientific Instruments, vol.68, issue.8, p.3099, 1997.
DOI : 10.1063/1.1148249

P. S. Pearl and . Weiss, A double lamellae dropoff etching procedure for tungsten tips attached to tuning fork atomic force microscopy/scanning tunneling microscopy sensors, Rev. Sci. Instr, vol.74, p.1027, 2003.

F. C. Wellstood, C. Urbina, and J. Clarke, Hot-electron effects in metals, Physical Review B, vol.49, issue.9, p.5942, 1994.
DOI : 10.1103/PhysRevB.49.5942

A. B. Zorin, The thermocoax cable as the microwave frequency filter for single electron circuits, Review of Scientific Instruments, vol.66, issue.8, p.4296, 1995.
DOI : 10.1063/1.1145385

D. C. Glattli, P. Jacques, A. Kumar, P. Pari, and L. Saminadayar, A noise detection scheme with 10 mK noise temperature resolution for semiconductor single electron tunneling devices, Journal of Applied Physics, vol.81, issue.11, p.7350, 1997.
DOI : 10.1063/1.365332

J. M. Martinis, M. H. Devoret, and J. Clarke, Experimental tests for the quantum behavior of a macroscopic degree of freedom: The phase difference across a Josephson junction, Physical Review B, vol.35, issue.10, p.4682, 1987.
DOI : 10.1103/PhysRevB.35.4682

H. Courtois, O. Buisson, J. Chaussy, and B. Pannetier, Miniature low???temperature high???frequency filters for single electronics, Review of Scientific Instruments, vol.66, issue.6, p.3465, 1995.
DOI : 10.1063/1.1146442

H. Le-sueur and P. Joyez, Microfabricated electromagnetic filters for millikelvin experiments, Review of Scientific Instruments, vol.77, issue.11, p.115102, 2006.
DOI : 10.1063/1.2370744

URL : https://hal.archives-ouvertes.fr/hal-00109442

D. H. Slichter, O. Naaman, and I. Siddiqi, Millikelvin thermal and electrical performance of lossy transmission line filters, Applied Physics Letters, vol.94, issue.19, 2009.
DOI : 10.1063/1.3133362

S. Martin, Near-Field spectroscopy of superconducting nanostructures, 2009.

J. B. Peterson and P. L. Richards, A cryogenic blackbody for millimeter wavelengths, International Journal of Infrared and Millimeter Waves, vol.45, issue.12, p.1507, 1984.
DOI : 10.1007/BF01040502

H. Nyquist, Thermal Agitation of Electric Charge in Conductors, Physical Review, vol.32, issue.1, p.110, 1928.
DOI : 10.1103/PhysRev.32.110

J. B. Johnson, Thermal Agitation of Electricity in Conductors, Physical Review, vol.32, issue.1, p.97, 1928.
DOI : 10.1103/PhysRev.32.97

H. Le-sueur and P. Joyez, Room-temperature tunnel current amplifier and experimental setup for high resolution electronic spectroscopy in millikelvin scanning tunneling microscope experiments, Review of Scientific Instruments, vol.77, issue.12, p.123701, 2006.
DOI : 10.1063/1.2400024

R. D. Grober, J. Acimovic, J. Schuck, D. Hessman, P. J. Kindlemann et al., Fundamental limits to force detection using quartz tuning forks, Review of Scientific Instruments, vol.71, issue.7, p.2776, 2000.
DOI : 10.1063/1.1150691

C. Wittneven, R. Dombrowski, S. H. Pan, and R. Wiesendanger, A low-temperature ultrahigh-vacuum scanning tunneling microscope with rotatable magnetic field, Review of Scientific Instruments, vol.68, issue.10, p.3806, 1997.
DOI : 10.1063/1.1148031

T. Mashoff, M. Pratzer, and M. Morgenstern, A low-temperature high resolution scanning tunneling microscope with a three-dimensional magnetic vector field operating in ultrahigh vacuum, Review of Scientific Instruments, vol.80, issue.5, p.53702, 2009.
DOI : 10.1063/1.3127589

Y. J. Song, A. F. Otte, V. Shvarts, Z. Zhao, Y. Kuk et al., Invited Review Article: A 10 mK scanning probe microscopy facility, Review of Scientific Instruments, vol.81, issue.12, p.121101, 2010.
DOI : 10.1063/1.3520482

N. Moussy, H. Courtois, and B. Pannetier, A very low temperature scanning tunneling microscope for the local spectroscopy of mesoscopic structures, Review of Scientific Instruments, vol.72, issue.1, p.128, 2001.
DOI : 10.1063/1.1331328

G. Interview-de and . Charpak, Interview donnée au journal téléviséd eF r a n c e 2, Archives INA, vol.15, issue.10, 1992.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang et al., Electric Field Effect in Atomically Thin Carbon Films, Science, vol.306, issue.5696, p.666
DOI : 10.1126/science.1102896

A. K. Booth and . Geim, Making graphene visible, App. Phys. Lett, vol.91, p.63124, 2007.

P. R. Wallace, The Band Theory of Graphite, Physical Review, vol.71, issue.9, p.622, 1947.
DOI : 10.1103/PhysRev.71.622

A. H. Castroneto, N. M. Peres, K. S. Novoselov, and . Geim, The electronic properties of graphene, Reviews of Modern Physics, vol.81, issue.1, p.109, 2009.
DOI : 10.1103/RevModPhys.81.109

G. Li, A. Luican, and E. Y. Andrei, Scanning Tunneling Spectroscopy of Graphene on Graphite, Physical Review Letters, vol.102, issue.17, p.176804, 2009.
DOI : 10.1103/PhysRevLett.102.176804

S. V. Grigorieva, A. A. Dubonos, and . Firsov, Two-dimensional gas of massless Dirac fermions in graphene, Nature, vol.438, p.197, 2005.

Y. Zhang, Y. Tan, H. L. Stormer, and P. Kim, Experimental observation of the quantum Hall effect and Berry's phase in graphene, Nature, vol.93, issue.7065, p.201, 2005.
DOI : 10.1103/PhysRevB.69.075104

M. I. Katsnelson, K. S. Novoselov, and A. K. Geim, Chiral tunnelling and the Klein paradox in??graphene, Nature Physics, vol.23, issue.9, p.620, 2006.
DOI : 10.1038/nphys384

N. Stander, B. Huard, and D. Goldhaber-gordon, Junctions, Physical Review Letters, vol.102, issue.2, p.26807, 2009.
DOI : 10.1103/PhysRevLett.102.026807

URL : https://hal.archives-ouvertes.fr/hal-00520813

A. F. Young and P. Kim, Quantum interference and Klein tunnelling in graphene heterojunctions, Nature Physics, vol.5, issue.3, p.222, 2009.
DOI : 10.1016/j.ssc.2008.02.024

S. D. Sarma, S. Adam, E. Hwang, and E. Rossi, Electronic transport in two-dimensional graphene, Reviews of Modern Physics, vol.83, issue.2, p.407, 2011.
DOI : 10.1103/RevModPhys.83.407

A. K. Geim and K. S. Novoselov, The rise of graphene, Nature Materials, vol.6, p.183, 2007.
DOI : 10.1142/9789814287005_0002

K. I. Bolotin, K. J. Sikes, Z. Jiang, M. Klima, G. Fudenberg et al., Ultrahigh electron mobility in suspended graphene, Solid State Communications, vol.146, issue.9-10, p.351, 2008.
DOI : 10.1016/j.ssc.2008.02.024

J. Chen, C. Jang, S. Adam, M. S. Fuhrer, E. D. Williams et al., Charged-impurity scattering in graphene, Nature Physics, vol.77, issue.5, p.377, 2008.
DOI : 10.1073/pnas.0502848102

J. Chen, W. Cullen, C. Jang, M. Fuhrer, and E. Williams, Defect Scattering in Graphene, Physical Review Letters, vol.102, issue.23, p.236805, 2009.
DOI : 10.1103/PhysRevLett.102.236805

N. Peres, Colloquium: The transport properties of graphene: An introduction. Reviews of Modern Physics, p.2673

S. Adam, E. H. Hwang, V. M. Galitski, and S. Sarma, A self-consistent theory for graphene transport, Proceedings of the National Academy of Sciences, vol.104, issue.47, p.18392, 2007.
DOI : 10.1073/pnas.0704772104

J. Martin, N. Akerman, G. Ulbricht, T. Lohmann, J. H. Smet et al., Observation of electron???hole puddles in graphene using a scanning single-electron transistor, Nature Physics, vol.53, issue.2, p.144, 2008.
DOI : 10.1038/nature02230

L. N. Chichester, K. W. Pfeiffer, and . West, Scanning Single-Electron Transistor Microscopy: Imaging Individual Charges, Science, vol.276, p.579, 1997.

Y. Zhang, V. W. Brar, F. Wang, C. Girit, Y. Yayon et al., Giant phonon-induced conductance in scanning tunnelling spectroscopy of gate-tunable graphene, Nature Physics, vol.6, issue.8, p.627, 2008.
DOI : 10.1038/nphys1022

I. Brihuega, P. Mallet, C. Bena, S. Bose, C. Michaelis et al., Quasiparticle Chirality in Epitaxial Graphene Probed at the Nanometer Scale, Quasiparticle Chirality in Epitaxial BIBLIOGRAPHIE Graphene Probed at the Nanometer Scale, p.206802, 2008.
DOI : 10.1103/PhysRevLett.101.206802

URL : https://hal.archives-ouvertes.fr/hal-00339197

S. Cho and M. Fuhrer, Charge transport and inhomogeneity near the minimum conductivity point in graphene, Physical Review B, vol.77, issue.8, p.81402, 2008.
DOI : 10.1103/PhysRevB.77.081402

M. Gibertini, A. Tomadin, F. Guinea, M. Katsnelson, and M. Polini, Electron-hole puddles in the absence of charged impurities, Physical Review B, vol.85, issue.20, p.201405, 2012.
DOI : 10.1103/PhysRevB.85.201405

M. I. Katsnelson and A. K. Geim, Electron scattering on microscopic corrugations in graphene, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.438, issue.7065, p.195
DOI : 10.1038/nature04235

R. Decker, Y. Wang, V. W. Brar, W. Regan, H. Tsai et al., Local Electronic Properties of Graphene on a BN Substrate via Scanning Tunneling Microscopy, Nano Letters, vol.11, issue.6, p.2291, 2011.
DOI : 10.1021/nl2005115

L. A. Ponomarenko, R. Yang, T. M. Mohiuddin, M. I. Katsnelson, K. S. Novoselov et al., Environment on Charge Carrier Mobility in Graphene, Physical Review Letters, vol.102, issue.20, p.206603, 2009.
DOI : 10.1103/PhysRevLett.102.206603

C. Berger, X. Song, Z. Li, X. Wu, N. Brown et al., Electronic Confinement and Coherence in Patterned Epitaxial Graphene, Science, vol.312, issue.5777, p.1191, 2006.
DOI : 10.1126/science.1125925

G. M. Rutter, J. N. Crain, N. P. Guisinger, T. Li, P. N. First et al., Scattering and Interference in Epitaxial Graphene, Science, vol.317, issue.5835, p.219, 2007.
DOI : 10.1126/science.1142882

S. Y. Zhou, G. Gweon, A. V. Fedorov, P. N. First, W. A. De-heer et al., Substrate-induced bandgap opening in epitaxial graphene, Nature Materials, vol.51, issue.10, p.770, 2007.
DOI : 10.1038/nmat2003

W. Li, X. Cai, J. An, S. Kim, J. Nah et al., Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils, Science, vol.324, issue.5932, p.1312, 2009.
DOI : 10.1126/science.1171245

A. Reina, X. Jia, J. Ho, D. Nezich, H. Son et al., Large Area, Few-Layer Graphene Films on Arbitrary Substrates by Chemical Vapor Deposition, Nano Letters, vol.9, issue.1, p.30, 2009.
DOI : 10.1021/nl801827v

]. H. Ueta, M. Saida, C. Nakai, Y. Yamada, M. Sasaki et al., Highly oriented monolayer graphite formation on Pt(111) by a supersonic methane beam, Surface Science, vol.560, issue.1-3, p.183, 2004.
DOI : 10.1016/j.susc.2004.04.039

D. E. Starr, E. M. Pazhetnov, A. I. Stadnichenko, A. I. Boronin, and S. K. Shaikhutdinov, Carbon films grown on Pt(111) as supports for model gold catalysts, Surface Science, vol.600, issue.13, p.2688, 2006.
DOI : 10.1016/j.susc.2006.04.035

S. Mccarty and . Kodambaka, Orientation-dependent work function of graphene on Pd(111), Applied Physics Letters, vol.97, p.143114, 2010.

P. W. Sutter, J. Flege, and E. Z. Sutter, Epitaxial graphene on ruthenium, Nature Materials, vol.90, issue.5, p.406, 2008.
DOI : 10.1038/nmat2166

E. N. Voloshina, Y. S. Dedkov, S. Torbrugge, A. Thissen, and M. Fonin, Graphene on Rh(111): Scanning tunneling and atomic force microscopies studies, Applied Physics Letters, vol.100, issue.24, p.241606, 2012.
DOI : 10.1063/1.4729549

J. Coraux, A. T. N-'diaye, C. Busse, and T. Michely, Structural Coherency of Graphene on Ir(111), Nano Letters, vol.8, issue.2, p.565, 2008.
DOI : 10.1021/nl0728874

J. Wintterlin and M. Bocquet, Graphene on metal surfaces, Surface Science, vol.603, issue.10-12, p.1841, 2009.
DOI : 10.1016/j.susc.2008.08.037

A. Grüneis and D. Vyalikh, Tunable hybridization between electronic states of graphene and a metal surface, Physical Review B, vol.77, issue.19, 2008.
DOI : 10.1103/PhysRevB.77.193401

C. Enderlein, Y. S. Kim, A. Bostwick, E. Rotenberg, and K. Horn, The formation of an energy gap in graphene on ruthenium by controlling the interface, New Journal of Physics, vol.12, issue.3, p.33014, 2010.
DOI : 10.1088/1367-2630/12/3/033014

A. Vázquez-de-parga, F. Calleja, B. Borca, M. Passeggi, J. Hinarejos et al., Periodically Rippled Graphene: Growth and Spatially Resolved Electronic Structure, Physical Review Letters, vol.100, issue.5, p.56807, 2008.
DOI : 10.1103/PhysRevLett.100.056807

P. Sutter, J. T. Sadowski, and E. Sutter, Graphene on Pt(111): Growth and substrate interaction, Physical Review B, vol.80, issue.24, p.245411, 2009.
DOI : 10.1103/PhysRevB.80.245411

N. Blanc, J. Coraux, C. Vo-van, A. T. N-'diaye, O. Geaymond et al., Local deformations and incommensurability of high-quality epitaxial graphene on a weakly interacting transition metal, Physical Review B, vol.86, issue.23, p.235439, 2012.
DOI : 10.1103/PhysRevB.86.235439

URL : https://hal.archives-ouvertes.fr/hal-00711816

I. Pletikosi´cpletikosi´c, M. Kralj, P. Pervan, R. Brako, J. Coraux et al., Dirac Cones and Minigaps for Graphene on Ir(111), Dirac Cones and Minigaps for Graphene on Ir, p.56808, 2009.
DOI : 10.1103/PhysRevLett.102.056808

C. Busse, P. Lazi´clazi´c, R. Djemour, J. Coraux, T. Gerber et al., Graphene on Ir(111): Physisorption with Chemical Modulation, Physical Review Letters, vol.107, issue.3, p.36101, 2011.
DOI : 10.1103/PhysRevLett.107.036101

E. Starodub, A. Bostwick, L. Moreschini, S. Nie, F. Gabaly et al., In-plane orientation effects on the electronic structure, stability, and Raman scattering of monolayer graphene on Ir(111), -plane orientation effects on the electronic structure, stability, and Raman scattering of monolayer graphene on Ir, p.125428, 2011.
DOI : 10.1103/PhysRevB.83.125428

C. Vo-van, A. Kimouche, A. Reserbat-plantey, O. Fruchart, P. Bayle-guillemaud et al., Epitaxial graphene prepared by chemical vapor deposition on single crystal thin iridium films on sapphire, Applied Physics Letters, vol.98, issue.18, p.181903, 2011.
DOI : 10.1063/1.3585126

URL : https://hal.archives-ouvertes.fr/hal-00576661

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri et al., Raman Spectrum of Graphene and Graphene Layers, Physical Review Letters, vol.97, issue.18, p.187401, 2006.
DOI : 10.1103/PhysRevLett.97.187401

URL : https://hal.archives-ouvertes.fr/hal-00130091

M. Goerbig, Electronic properties of graphene in a strong magnetic field, Reviews of Modern Physics, vol.83, issue.4, p.1193, 2011.
DOI : 10.1103/RevModPhys.83.1193

F. Guinea, M. I. Katsnelson, and . Geim, Energy gaps and a zero-field quantum Hall effect in graphene by strain engineering, Nature Physics, vol.6, issue.1, p.30, 2009.
DOI : 10.1103/PhysRevLett.100.056802

C. Neto and M. F. Crommie, Strain-induced pseudo-magnetic fields greater than 300 tesla in graphene nanobubbles, Science, vol.329, p.544, 2010.

H. Yan, Y. Sun, L. He, J. Nie, and M. H. Chan, Observation of Landau-level-like quantization at 77 K along a strained-induced graphene ridge, Physical Review B, vol.85, issue.3, p.35422, 2012.
DOI : 10.1103/PhysRevB.85.035422

S. Jung, G. M. Rutter, N. N. Klimov, D. B. Newell, I. Calizo et al., Evolution of microscopic localization in graphene in a magnetic field from scattering resonances to quantum dots, Nature Physics, vol.345, issue.3, p.245, 2011.
DOI : 10.1103/PhysRevB.72.075413

A. Luican, G. Li, and E. Andrei, Quantized Landau level spectrum and its density dependence in graphene, Physical Review B, vol.83, issue.4, p.41405, 2011.
DOI : 10.1103/PhysRevB.83.041405

Z. Sun, S. Hämäläinen, J. Sainio, J. Lahtinen, D. Vanmaekelbergh et al., Topographic and electronic contrast of the graphene moir?? on Ir(111) probed by scanning tunneling microscopy and noncontact atomic force microscopy, Physical Review B, vol.83, issue.8, p.81415, 2011.
DOI : 10.1103/PhysRevB.83.081415

J. Xue, J. Sanchez-yamagishi, D. Bulmash, P. Jacquod, A. Deshpande et al., Scanning tunnelling microscopy and spectroscopy of ultra-flat graphene on hexagonal boron nitride, Nature Materials, vol.446, issue.4
DOI : 10.1038/nmat2968

S. Adam, S. Jung, N. Klimov, N. Zhitenev, J. A. Stroscio et al., Mechanism for puddle formation in graphene, Physical Review B, vol.84, issue.23, p.235421, 2011.
DOI : 10.1103/PhysRevB.84.235421

F. Hiebel, P. Mallet, L. Magaud, and J. Veuillen, : A scanning tunneling microscopy study, Physical Review B, vol.80, issue.23, p.235429, 2009.
DOI : 10.1103/PhysRevB.80.235429

G. Giovannetti, P. Khomyakov, G. Brocks, V. Karpan, J. Van-den et al., Doping Graphene with Metal Contacts, Physical Review Letters, vol.101, issue.2, p.26803, 2008.
DOI : 10.1103/PhysRevLett.101.026803

J. L. Da-silva, C. Stampfl, and M. Scheffler, Adsorption of Xe Atoms on Metal Surfaces: New Insights from First-Principles Calculations, Physical Review Letters, vol.90, issue.6, p.66104, 2003.
DOI : 10.1103/PhysRevLett.90.066104

H. B. Michaelson, The work function of the elements and its periodicity, Journal of Applied Physics, vol.48, issue.11, p.4729, 1977.
DOI : 10.1063/1.323539

M. A. Vozmediano, M. I. Katsnelson, and F. Guinea, Gauge fields in graphene, Physics Reports, vol.496, issue.4-5, p.109, 2010.
DOI : 10.1016/j.physrep.2010.07.003

L. Petersen, . Ph, E. W. Hofmann, F. Plummer, and . Besenbacher, Fourier Transform???STM: determining the surface Fermi contour, Journal of Electron Spectroscopy and Related Phenomena, vol.109, issue.1-2, p.97, 2000.
DOI : 10.1016/S0368-2048(00)00110-9

J. E. Hoffman, K. Mcelroy, D. Lee, K. M. Lang, H. Eisaki et al., Imaging Quasiparticle Interference in Bi2Sr2CaCu2O8+delta, Science, vol.297, issue.5584, p.1148, 2002.
DOI : 10.1126/science.1072640

I. M. Vishik, E. Nowadnick, W. S. Lee, Z. X. Shen, B. Moritz et al., A momentum-dependent perspective on quasiparticle interference in Bi2Sr2CaCu2O8+??, Nature Physics, vol.5, issue.10, p.718, 2009.
DOI : 10.1209/0295-5075/86/37007

J. Xue, J. Sanchez-yamagishi, K. Watanabe, T. Taniguchi, P. Jarillo-herrero et al., Long-Wavelength Local Density of States Oscillations Near Graphene Step Edges, Physical Review Letters, vol.108, issue.1, p.16801, 2012.
DOI : 10.1103/PhysRevLett.108.016801

C. Hwang, D. A. Siegel, S. Mo, W. Regan, A. Ismach et al., Fermi velocity engineering in graphene by substrate modification, Scientific Reports, 2012.
DOI : 10.1038/srep00590

C. Park, L. Yang, Y. Son, M. L. Cohen, and S. G. Louie, Anisotropic behaviours of massless Dirac??fermions in graphene under periodic??potentials, Nature Physics, vol.76, issue.3, p.213, 2008.
DOI : 10.1038/nphys890

P. Mallet, I. Brihuega, S. Bose, M. M. Ugeda, J. M. Gómez-rodríguez et al., Role of pseudospin in quasiparticle interferences in epitaxial graphene probed by high-resolution scanning tunneling microscopy, Physical Review B, vol.86, issue.4, p.45444, 2012.
DOI : 10.1103/PhysRevB.86.045444

URL : https://hal.archives-ouvertes.fr/hal-00725506

V. I. Fal-'ko, K. Kechedzhi, E. Mccann, B. L. Altshuler, H. Suzuura et al., Weak localization in graphene, Solid State Communications, vol.143, p.33, 2007.

J. Bardeen, L. N. Cooper, and J. R. Schrieffer, Theory of Superconductivity, Physical Review, vol.108, issue.5, p.1175, 1957.
DOI : 10.1103/PhysRev.108.1175

B. D. Josephson, Possible new effects in superconductive tunnelling, Physics Letters, vol.1, issue.7, p.251, 1962.
DOI : 10.1016/0031-9163(62)91369-0

P. W. Anderson and A. H. Dayem, Radio-Frequency Effects in Superconducting Thin Film Bridges, Physical Review Letters, vol.13, issue.6, p.195, 1964.
DOI : 10.1103/PhysRevLett.13.195

R. C. Jaklevic, J. Lambe, A. H. Silver, and J. E. Mercereau, Quantum Interference Effects in Josephson Tunneling, Physical Review Letters, vol.12, issue.7, p.159, 1964.
DOI : 10.1103/PhysRevLett.12.159

B. Pannetier and H. Courtois, Andreev reflection and proximity effect, Journal of Low Temperature Physics, vol.118, issue.5/6, p.599, 2000.
DOI : 10.1023/A:1004635226825

G. E. Blonder, M. Tinkham, and T. M. Klapwijk, Transition from metallic to tunneling regimes in superconducting microconstrictions: Excess current, charge imbalance, and supercurrent conversion, Physical Review B, vol.25, issue.7, p.4515, 1982.
DOI : 10.1103/PhysRevB.25.4515

P. G. De-gennes and D. Saint-james, Elementary excitations in the vicinity of a normal metal-superconducting metal contact, Physics Letters, vol.4, issue.2, p.151, 1963.
DOI : 10.1016/0031-9163(63)90148-3

H. Courtois, P. Gandit, D. Mailly, and B. Pannetier, Long-Range Coherence in a Mesoscopic Metal near a Superconducting Interface, Physical Review Letters, vol.76, issue.1, p.130, 1996.
DOI : 10.1103/PhysRevLett.76.130

D. J. Thouless, Maximum Metallic Resistance in Thin Wires, Physical Review Letters, vol.39, issue.18, p.1167, 1977.
DOI : 10.1103/PhysRevLett.39.1167

M. Vinet, C. Chapelier, and F. Lefloch, Spatially resolved spectroscopy on superconducting proximity nanostructures, Physical Review B, vol.63, issue.16, p.165420, 2001.
DOI : 10.1103/PhysRevB.63.165420

N. Moussy, H. Courtois, and B. Pannetier, Local spectroscopy of a proximity superconductor at very low temperature, Europhysics Letters (EPL), vol.55, issue.6, p.861, 2001.
DOI : 10.1209/epl/i2001-00361-2

F. Zhou, P. Charlat, B. Spivak, and B. Pannetier, Density of States in Superconductor-Normal Metal-Superconductor Junctions, Journal of Low Temperature Physics, vol.110, issue.3/4, p.841, 1998.
DOI : 10.1023/A:1022628927203

H. and L. Sueur, Cryogenic AFM-STM for mesoscopic physics, Annales de Physique, vol.33, issue.6, 2007.
DOI : 10.1051/anphys/2009004

URL : https://hal.archives-ouvertes.fr/tel-00261434

M. Brink, Imaging single-electron charging in nanostructures by low-temperature scanning force microscopy, 2007.

L. Pascal, Electronic refrigeration and thermal couplings in superconducting hybrid devices, 2012.

G. J. Dolan, Offset masks for lift???off photoprocessing, Applied Physics Letters, vol.31, issue.5, p.337, 1977.
DOI : 10.1063/1.89690

R. Meservey, Properties of Very Thin Aluminum Films, Journal of Applied Physics, vol.42, issue.1, p.51, 1971.
DOI : 10.1063/1.1659648

T. Quaglio, F. Dahlem, S. Martin, C. B. Winkelmann, and H. Courtois, A sub- Kelvin scanning probe microscope for the electronic spectroscopy of an individual nano-device, 2012.