E. Baur, W. D. Treadwell, and G. Trumpler, Performance of the fuel chain at high temperatures, Z. Elektrochem. Angew. Phys. Chem, vol.27, pp.199-208, 1921.

F. T. Bacon, . Fuel-cell-some, . Thoughts, and . Recollections, The Fuel Cell: Some Thoughts and Recollections, Journal of The Electrochemical Society, vol.126, issue.1, pp.7-16, 1979.
DOI : 10.1149/1.2128992

E. Baur and H. Preis, On fuel chains with fixed cables, Z. Elektrochem. Angew. Phys. Chem, vol.43, pp.727-732, 1937.

M. C. Williams, J. P. Strakey, and S. C. Singhal, US distributed generation fuel cell program, J
DOI : 10.1016/B978-008044696-7/50036-2

M. C. Williams, J. P. Strakey, W. A. Surdoval, and L. C. Wilson, Solid oxide fuel cell technology development in the US. Solid State Ion, pp.17719-17744, 2006.

C. S. Song, Fuel processing for low-temperature and high-temperature fuel cells Challenges, and opportunities for sustainable development in the 21st century, Catalysis Today, vol.77, issue.1-2, pp.771-773, 2002.
DOI : 10.1016/S0920-5861(02)00231-6

N. T. Hart, N. P. Brandon, M. J. Day, and N. Lapena-rey, Functionally graded composite cathodes for solid oxide fuel cells, Journal of Power Sources, vol.106, issue.1-2, pp.1-2, 2002.
DOI : 10.1016/S0378-7753(01)01035-7

J. Deseure, Y. Bultel, L. Dessemond, and E. Siebert, Theoretical optimisation of a SOFC composite cathode, Electrochimica Acta, vol.50, issue.10, pp.50-2037, 2005.
DOI : 10.1016/j.electacta.2004.09.012

URL : https://hal.archives-ouvertes.fr/hal-00417212

J. Deseure, L. Dessemond, Y. Bultel, and E. Siebert, Modelling of a SOFC graded cathode, Journal of the European Ceramic Society, vol.25, issue.12
DOI : 10.1016/j.jeurceramsoc.2005.03.121

URL : https://hal.archives-ouvertes.fr/hal-00386438

C. Eur, C. W. Tanner, K. Z. Fung, and A. V. Virkar, The effect of porous composite electrode structure on solid oxide fuel cell performance .1. Theoretical analysis, J. Electrochem. Soc, vol.11, issue.121, pp.2673-2676, 1997.

M. L. Fontaine, C. Laberty-robert, F. Ansart, P. Tailhades, and L. J. Niinisto, Composition and porosity graded La2-xNiO4+delta (x >= 0) interlayers for SOFC: Control of the microstructure via a sol-gel process ZrO2-In2O3 thin layers with gradual ionic to electronic composition synthesized by atomic layer deposition for SOFC applications Electrodes and electrolytes in micro-SOFCs: a discussion of geometrical constraints. Solid State Ion, J. Power Sources Brahim, C.; Chauveau, F.; Ringuede, A.; Cassir, M.; Putkonen, M J. Mater. Chem. Fleig, J.; Tuller, H. L, vol.156, issue.14, pp.33-38, 2004.

A. Bernard, R. Gmur, T. S. Hocker, A. New, . Oxide-fuel-cell et al., A micro-solid oxide fuel cell system as battery replacement, J. Power Sources, vol.177, issue.11, pp.15-16, 1990.

R. Doshi, V. L. Richards, J. D. Carter, X. P. Wang, M. Krumpelt et al., Development of Solid-Oxide Fuel Cells That Operate at 500??C, Review on microfabricated micro-solid oxide fuel cell membranes, 10th Symposium on Fast Ionic Conductors, pp.1273-1278, 1999.
DOI : 10.1149/1.1391758

B. C. Steele, A. Heinzel, V. V. Kharton, F. M. Marques, and A. Atkinson, Materials for fuel-cell technologies Transport properties of solid oxide electrolyte ceramics: a brief review. Solid State Ion Taxonomies of SOFC material and manufacturing alternatives, Nature Wincewicz, K. C.; Cooper, J. S. J. Power Sources, vol.414, issue.242, pp.345-3521, 2001.

Y. Mizutani, K. Hisada, K. Ukala, H. Sum, M. Yokoyama et al., From rare earth doped zirconia to 1 kW solid oxide fuel cell system Electrolytes for solid oxide fuel cells, J. Alloy. Compd. J. Power Sources, vol.408, issue.261, pp.518-524, 2006.

H. Huang, M. Nakamura, P. C. Su, R. Fasching, Y. Saito et al., High-Performance Ultrathin Solid Oxide Fuel Cells for Low-Temperature Operation, Journal of The Electrochemical Society, vol.154, issue.1, pp.154-174, 2007.
DOI : 10.1149/1.2372592

I. Kosacki, T. Suzuki, V. Petrovsky, H. U. Anderson, E. Djurado et al., Deposition and characterization of nanocrystalline tetragonal zirconia films using electrostatic spray deposition. Solid State Ion 191-197. 30. Perednis Morphology and deposition of thin yttria-stabilized zirconia films using spray pyrolysis Thin Solid Films Influence of the process parameters on the ESD synthesis of thin film YSZ electrolytes. Solid State Ion Fabrication of YSZ thin films from suspension by electrostatic spray deposition Preparation of thin film YSZ electrolyte by using electrostatic spray deposition Thin Film Deposition by Spray Pyrolysis and the Application in Solid Oxide Fuel Cells Electrical properties of thin yttria-stabilized zirconia overlayers produced by atomic layer deposition for solid oxide fuel cell applications Electrical properties of thin bilayered YSZ/GDC SOFC electrolyte elaborated by sputtering Fabrication of bilayered YSZ/SDC electrolyte film by electrophoretic deposition for reduced-temperature operating anode-supported SOFC Atomic layer deposition of yttria-stabilized zirconia for solid oxide fuel cells Solid oxide fuel cell with corrugated thin film electrolyte Transition metal doped lanthanum gallates Solid State Ion, Mater. Lett. Int. J. Refract. Met. Hard Mat. Perednis, D. Appl. Surf. Sci. J. Power Sources J. Power Sources Shim, J. H Chem. Mat. Nano Lett, vol.136, issue.40, pp.1225-1233, 1999.

P. Majewski and P. Datta, ???Ag cermet for intermediate temperature solid oxide fuel cell cathodes, Advances in Applied Ceramics, vol.107, issue.1-2, pp.1-2
DOI : 10.1016/S0167-2738(00)00435-5

S. Lazure, C. Vernochet, R. N. Vannier, G. Nowogrocki, G. Mairesse et al., Composition dependence of oxide anion conduction in the BIMEVOX family. Solid State Ion A comparison of electrical properties of sputter-deposited electrolyte coatings dedicated to intermediate temperature solid oxide fuel cells, Briois, P, vol.14, issue.43, pp.90-117, 1996.

P. Briois, M. M. Vieira, J. Oliveira, A. L. Shaula, A. Cavaleiro et al., a combustible à oxydes solides (SOFC) fonctionnant à température intermédiaire Lanthanum silicate thin films for SOFC electrolytes synthesized by magnetron sputtering and subsequent annealing Synthesis and Characterization of Apatite Structure Sputter Deposited Coatings Dedicated to Intermediate Temperature Solid Oxide Fuel Cells, Synthèse par pulvérisation cathodique et caractérisation d'électrolytes solides en couches minces pour piles Thèse 2005. 45. Plasma spraying of lanthanum silicate electrolytes for intermediate temperature solid oxide fuel cells (ITSOFCs), pp.3316-3322, 2011.

T. Suzuki, I. Kosacki, H. U. Anderson, E. Gourba, P. Briois et al., Microstructure-electrical conductivity relationships in nanocrystalline ceria thin films. Solid State Ion Electrical properties of gadolinia-doped ceria thin films deposited by sputtering in view of SOFC application Chemical analysis of spray pyrolysis gadolinia-doped ceria electrolyte thin films for solid oxide fuel cells, J. Solid State Electrochem Chem. Mat, vol.151, issue.895, pp.1-4, 2002.

N. Watanabe and A. Ueno, Interface stability among solid oxide fuel cell materials with perovskite structures Stability of solid oxide fuel cell components. Solid State Ion, A621-A625. 54. Badwal, pp.143-182, 2001.

I. Taniguchi, R. C. Van-landschoot, J. Schoonman, A. Toriyama, K. Myoujin et al., Electrostatic spray deposition of Gd0.1Ce0.9O1.95 and La0.9Sr0.1Ga0.8Mg0.2O2.87 thin films. Solid State Ion Preparation and Characterization of La(0.8)Sr(0.2)Ga(0.8)Mg(0.2)O(3-delta) Film by Electrophoretic Deposition Method Preparation and characterization of La0, Electroceramics in, pp.271-279, 2003.

K. Sasaki, M. Muranaka, A. Suzuki, T. Terai, J. W. Yan et al., Synthesis and characterization of LSGM thin film electrolyte by RF magnetron sputtering for LT-SOFCS. Solid State Ion, Fabrication of La1- xSrxGa1-yMgyO3-(x plus y)/2 thin films by pulsed laser ablation. Solid State Ion, pp.21-26, 2000.

F. Abraham, J. C. Boivin, G. Mairesse, G. Nowogrocki, . The et al., Solid State Ion, pp.40-41, 1990.

O. Joubert, A. Jouanneaux, M. Ganne, R. N. Vannier, G. Mairesse et al., Solid State Ion Structural and computational studies of Bi(2)WO(6) based oxygen ion conductors Solid phase synthesis and characterization of new BIMEVOX series: Bi(4)V(2-x)M(x)O(11-x) (M=Cr-III, Fe-III) Solid State Ion Electrical properties of dense Medoped bismuth vanadate (Me = Cu, Co) pO(2)-dependent conductivity determined by impedance spectroscopy Synthesis, structure and properties of doped Bi2O3, Bismuth based oxide electrolytes - Structure and ionic conductivity, pp.73-309, 1994.

A. M. Azad, S. Larose, S. A. Akbar, . Bismuth-oxide-based, . Solid et al., Impedance study of the microstructure dependence of the electrical properties of BIMEVOXes. Solid State Ion delta-Bi2O3 thin films deposited on dense YSZ substrates by CVD method under atmospheric pressure for intermediate temperature SOFC applications Growth of the Bi2O3 thin films under atmospheric pressure by means of halide CVD Laser deposition of oriented BiMeVOx films Thin Solid Films, J. Mater. Sci. Surf. Coat. Technol. Takeyama, T J. Phys. Chem. Solids, vol.176, issue.717, pp.4135-415125, 1994.

R. S. Joshi, R. K. Nimat, S. H. Pawar, F. Lapostolle, A. P. Billard et al., Synthesis of fuel cell grade Bi2Co0.1V0.9O5.35 solid electrolyte thin films Investigations of Apatite-Structure Coatings Deposited by Reactive Magnetron Sputtering Dedicated to IT-SOFC, J. Alloy. Compd. Briois, P Plasma Process. Polym. Ionics, vol.74, issue.46, pp.471-461, 2007.

Y. Masubuchi, M. Higuchi, T. Takeda, and S. Kikkawa, Preparation of apatite-type

H. L. Sio4, A. S. Nowick, . Doped, . As, . Solid et al., O(2)oxide ion conductor by alcoxide-hydrolysis, J. Alloy. Compd, vol.408, issue.6, pp.641-644, 2006.

N. Ai, Z. Lu, K. F. Chen, X. Q. Huang, Y. W. Liu et al., Preparation of Sm0.2Ce0.8O1.9 membranes on porous substrates by a slurry spin coating method and its application in IT-SOFC, Journal of Membrane Science, vol.286, issue.1-2, pp.2861-2863, 2006.
DOI : 10.1016/j.memsci.2006.10.003

E. Ballee, A. Ringuede, M. Cassir, M. Putkonen, and L. Niinisto, Synthesis of a Thin-Layered Ionic ConductorO(3), by Atomic Layer Deposition in View of Solid Oxide Fuel Cell Applications Synthesis and characterization of stable and crystalline Ce(0.6)Y(0.4)O(1.8) nanoparticle sol, -based solid electrolytes -Review. Solid State Ion, pp.4614-4619, 1996.

A. A. Yaremchenko, A. P. Viskup, A. Carneiro, F. M. Marques, and J. R. Frade, Ceria-based materials for solid oxide fuel cells, J. Mater. Sci, issue.5, pp.36-1105, 2001.

J. Vanherle, T. Horita, T. Kawada, N. Sakai, H. Yokokawa et al., Low temperature fabrication of (Y,Gd,Sm)-doped ceria electrolyte. Solid State Ion Physicochemical compatibility of CGO fluorite, LSM and LSCF perovskite electrode materials with La2MO2O9 fast oxide-ion conductor, Solid State Sci, vol.84, pp.86-94, 1996.

B. C. Steele, S. P. Simner, J. P. Shelton, M. D. Anderson, J. W. Stevenson et al., Materials for IT-SOFC stacks 35 years R&D: the inevitability of gradualness? Solid State Ion Interaction between La(Sr)FeO(3) SOFC cathode and YSZ electrolyte. Solid State Ion, High performance electrode for mediumtemperature solid oxide fuel cells -La(Sr)CoO3 cathode with ceria interlayer on zirconia electrolyte, pp.3-20, 1999.

D. Stover, W. Mader, C. Stoermer, A. O. Rupp, J. L. Gauckler et al., -delta) protecting layers manufactured by physical vapor deposition for IT-SOFC. Solid State Ion Spray pyrolysis of electrolyte interlayers for vacuum plasma-sprayed SOFC. Solid State Ion Microstructural and electrical properties of gadolinium doped ceria thin films prepared by atomic layer deposition (ALD) Microstructures of CGO and YSZ thin films by pulsed laser deposition, Gourba, E.; Ringuede, A.; Cassir, M.; Paivasaari, J.; Niinisto, J.; Putkonen, M Adv. Funct. Mater. N, vol.179, issue.20031, pp.21-26, 2003.
URL : https://hal.archives-ouvertes.fr/pasteur-00709207

J. Schou, T. Lippert, P. Nanostructured, J. L. Rupp, A. Infortuna et al., Thermodynamic stability of gadolinia-doped ceria thin film electrolytes for micro-solid oxide fuel cells Preparation of Ce1-xGdxO2-0.5x thin films by UV assisted sol-gel method Microstructures and electrical conductivity of nanocrystalline ceria-based thin films. Solid State Ion Thin Solid Films, 2184- 2192. 95. Fang Investigation of nozzle shape effect on Sm0.1Ce0.9O1.95 thin film prepared by electrostatic spray deposition, pp.5341-5346, 2002.

I. Taniguchi, T. Hosokawa, T. Graule, and L. J. Gauckler, Deposition of SDC and NiO-SDC thin films and their surface morphology control by electrostatic spray deposition Flame spray deposition of nanocrystalline dense Ce(0.8)Gd(0.2)O(2-delta) thin films: Deposition mechanism and microstructural characterization. Solid State Ion, J. Alloy. Compd. Karageorgakis, N. I.; Heel, A, vol.99, issue.121, pp.460-464, 2008.

M. Gauckler and L. J. , Thin films for micro solid oxide fuel cells, J. Power Sources, vol.173, issue.1, pp.325-345, 2007.

G. Chiodelli, L. Malavasi, V. Massarotti, P. Mustarelli, and E. Quartarone, Synthesis and characterization of Ce0.8Gd0.2O2-y polycrystalline and thin film materials. Solid State Ion, pp.17617-17635, 2005.

L. Chen, C. L. Chen, D. X. Huang, Y. Lin, X. Chen et al., High temperature electrical conductivity of epitaxial Gd-doped CeO2 thin films. Solid State Ion, pp.1751-1755, 2004.

J. L. Rupp, A. Infortuna, and L. J. Gauckler, Microstrain and self-limited grain growth in nanocrystalline ceria ceramics, Acta Materialia, vol.54, issue.7, pp.54-1721, 2006.
DOI : 10.1016/j.actamat.2005.11.032

T. Suzuki, I. Kosacki, and H. U. Anderson, Defect and Mixed Conductivity in Nanocrystalline Doped Cerium Oxide, Journal of the American Ceramic Society, vol.79, issue.5, pp.85-1492, 2002.
DOI : 10.1111/j.1151-2916.2002.tb00302.x

S. T. Aruna, M. Muthuraman, and K. C. Patil, Synthesis and properties of Ni-YSZ cermet: anode material for solid oxide fuel cells. Solid State Ion, pp.1111-1113, 1998.

S. B. Adler, Factors governing oxygen reduction in solid oxide fuel cell cathodes, Chem

A. Bieberle-hutter, J. L. Hertz, and H. L. Tuller, Fabrication and electrochemical characterization of planar Pt???CGO microstructures, Acta Materialia, vol.56, issue.2, pp.56-177, 2008.
DOI : 10.1016/j.actamat.2007.09.006

R. Baker, J. Guindet, and M. Kleitz, Classification Criteria for Solid Oxide Fuel Cell Electrode Materials, Journal of The Electrochemical Society, vol.144, issue.7, pp.144-2427, 1997.
DOI : 10.1149/1.1837831

M. Mori, T. Yamamoto, H. Itoh, H. Inaba, and H. Tagawa, Thermal expansion of nickelzirconia anodes in solid oxide fuel cells during fabrication and operation, J. Electrochem. Soc, issue.4, pp.145-1374, 1998.

A. Bieberle and L. J. Gauckler, Reaction mechanism of Ni pattern anodes for solid oxide fuel cells, 12th International Conference on Solid State Ionics, pp.337-345, 1999.
DOI : 10.1016/S0167-2738(00)00462-8

A. Bieberle and L. J. Gauckler, State-space modeling of the anodic SOFC system Ni, H-2-H2O vertical bar YSZ. Solid State Ion, pp.1461-1463, 2002.

A. Bieberle, L. P. Meier, and L. J. Gauckler, The Electrochemistry of Ni Pattern Anodes Used as Solid Oxide Fuel Cell Model Electrodes, Journal of The Electrochemical Society, vol.148, issue.6, pp.148-646, 2001.
DOI : 10.1149/1.1372219

B. De-boer, M. Gonzalez, H. J. Bouwmeester, and H. Verweij, The effect of the presence of fine YSZ particles on the performance of porous nickel electrodes. Solid State Ion, pp.3-4, 2000.

M. Mogensen and S. Skaarup, Kinetic and geometric aspects of solid oxide fuel cell electrodes. Solid State Ion, pp.86-94, 1996.

O. A. Marina, C. Bagger, S. Primdahl, and M. Mogensen, A solid oxide fuel cell with a gadolinia-doped ceria anode: preparation and performance. Solid State Ion, pp.1-4, 1999.

U. P. Muecke, N. Luechinger, L. Schlagenhauf, and L. J. Gauckler, Initial stages of deposition and film formation during spray pyrolysis ??? Nickel oxide, cerium gadolinium oxide and mixtures thereof, Thin Solid Films, vol.517, issue.5, pp.517-1522, 2009.
DOI : 10.1016/j.tsf.2008.08.115

U. P. Muecke, G. L. Messing, and L. J. Gauckler, The Leidenfrost effect during spray pyrolysis of nickel oxide-gadolinia doped ceria composite thin films, Thin Solid Films, vol.517, issue.5, pp.517-1515, 2009.
DOI : 10.1016/j.tsf.2008.08.158

U. P. Muecke, S. Graf, U. Rhyner, and L. J. Gauckler, Microstructure and electrical conductivity of nanocrystalline nickel- and nickel oxide/gadolinia-doped ceria thin films, Acta Materialia, vol.56, issue.4, pp.56-677, 2008.
DOI : 10.1016/j.actamat.2007.09.023

A. Infortuna, A. S. Harvey, U. P. Muecke, and L. J. Gauckler, Nanoporous Ni???Ce0.8Gd0.2O1.9???x thin film cermet SOFC anodes prepared by pulsed laser deposition, Physical Chemistry Chemical Physics, vol.177, issue.155, pp.3663-3670, 2009.
DOI : 10.1039/b821473e

U. P. Muecke, K. Akiba, A. Infortuna, T. Salkus, N. V. Stus et al., Electrochemical performance of nanocrystalline nickel/gadolinia-doped ceria thin film anodes for solid oxide fuel cells. Solid State Ion, pp.17833-17867, 2008.

T. Takeguchi, R. Kikuchi, T. Yano, K. Eguchi, and K. Murata, Effect of precious metal addition to Ni-YSZ cermet on reforming of CH4

K. Sato, Y. Ohmine, K. Ogasa, and S. Tsuji, Solid-solutioning effect of the Ni-based CERMET on the electrochemical oxidation of methane, pp.695-703, 2003.

A. Mitterdorfer and L. J. Gauckler, La2Zr2O7 formation and oxygen reduction kinetics of the La0.85Sr0.15MnyO3, O-2(g)vertical bar YSZ system. Solid State Ion, pp.1113-1117, 1998.

H. Ullmann, N. Trofimenko, F. Tietz, D. Stover, and A. Ahmad-khanlou, Correlation between thermal expansion and oxide ion transport in mixed conducting perovskite-type oxides for SOFC cathodes. Solid State Ion, pp.1381-1383, 2000.

E. P. Murray, T. Tsai, and S. A. Barnett, Oxygen transfer processes in (La,Sr)MnO3/Y2O3-stabilized ZrO2 cathodes: an impedance spectroscopy study, Solid State Ionics, vol.110, issue.3-4, pp.1103-1107, 1998.
DOI : 10.1016/S0167-2738(98)00142-8

M. J. Jorgensen and M. Mogensen, Impedance of Solid Oxide Fuel Cell LSM/YSZ Composite Cathodes, Journal of The Electrochemical Society, vol.148, issue.5, pp.148-433, 2001.
DOI : 10.1149/1.1360203

S. P. Jiang, Development of lanthanum strontium manganite perovskite cathode materials of solid oxide fuel cells: a review, Journal of Materials Science, vol.36, issue.88, pp.43-6799, 2008.
DOI : 10.1007/s10853-008-2966-6

N. Q. Minh and . Ceramic-fuel-cells, Ceramic Fuel Cells, Journal of the American Ceramic Society, vol.137, issue.7, pp.563-588, 1993.
DOI : 10.1111/j.1151-2916.1993.tb03645.x

E. V. Tsipis and V. V. Kharton, Electrode materials and reaction mechanisms in solid oxide fuel cells: a brief review, Journal of Solid State Electrochemistry, vol.150, issue.153, pp.12-1367, 2008.
DOI : 10.1007/s10008-007-0468-0

E. V. Tsipis and V. V. Kharton, Electrode materials and reaction mechanisms in solid oxide fuel cells: a brief review, Journal of Solid State Electrochemistry, vol.150, issue.153, pp.12-1039, 2008.
DOI : 10.1007/s10008-007-0468-0

H. U. Anderson, . Review-of-p-type, . Doped, . Materials, . Sofc et al., Solid State Ion, pp.1-3, 1992.

J. C. Grenier, M. Pouchard, and A. Wattiaux, Electrochemical synthesis: oxygen intercalation, Current Opinion in Solid State and Materials Science, vol.1, issue.2
DOI : 10.1016/S1359-0286(96)80090-8

L. Qiu, T. Ichikawa, A. Hirano, N. Imanishi, and Y. Takeda, Ln(1-x)Sr(x)Co(1-y)Fe(y)O(3- delta) (Ln=Pr, Nd, Gd; x=0.2, 0.3) for the electrodes of solid oxide fuel cells. Solid State Ion, pp.1581-1583, 2003.

S. Uhlenbruck and F. Tietz, High-temperature thermal expansion and conductivity of cobaltites: potentials for adaptation of the thermal expansion to the demands for solid oxide fuel cells, Materials Science and Engineering: B, vol.107, issue.3, pp.107-277, 2004.
DOI : 10.1016/j.mseb.2003.11.018

S. R. Wang, M. Katsuki, M. Dokiya, and T. Hashimoto, High temperature properties of La0.6Sr0.4Co0.8Fe0.2O3-delta phase structure and electrical conductivity. Solid State Ion, pp.1591-1593, 2003.

B. C. Steele, K. M. Hori, and S. Uchino, Kinetic parameters influencing the performance of IT-SOFC composite electrodes. Solid State Ion, pp.1351-1355, 2000.

Y. J. Leng, S. H. Chan, S. P. Jiang, and K. A. Khor, Low-temperature SOFC with thin film GDC electrolyte prepared in situ by solid-state reaction. Solid State Ion, pp.1-2, 2004.

F. Qiang, K. N. Sun, N. Q. Zhang, X. D. Zhu, S. R. Le et al., Characterization of electrical properties of GDC doped A-site deficient LSCF based composite cathode using impedance spectroscopy, Journal of Power Sources, vol.168, issue.2, pp.168-338, 2007.
DOI : 10.1016/j.jpowsour.2007.03.040

B. F. Angoua and E. B. Slamovich, Single solution spray pyrolysis of La0.6Sr0.4Co0.2Fe0.8O3-delta-Ce0, 8Gd0.2O1.9 (LSCF-CGO) thin film cathodes. Solid State Ion. 2012, pp.10-17

A. Esquirol, N. P. Brandon, J. A. Kilner, and M. Mogensen, Electrochemical characterization of La0.6Sr0.4Co0.2Fe0.8O3 cathodes for intermediate-temperature SOFCs, J. Electrochem. Soc, issue.11, pp.151-1847, 2004.

V. Dusastre and J. A. Kilner, Optimisation of composite cathodes for intermediate temperature SOFC applications. Solid State Ion, pp.1-2, 1999.

G. ). Ce, O-3 composite cathodes. Solid State Ion, pp.1-2, 2002.

W. G. Wang and M. Mogensen, High-performance lanthanum-ferrite-based cathode for SOFC. Solid State Ion, pp.5-6, 2005.

B. F. Angoua, P. R. Cantwell, E. A. Stach, and E. B. Slamovich, Crystallization and electrochemical performance of La0.6Sr0.4Co0.2Fe0.8O3-delta-Ce0.8Gd0.2O1.9 thin film cathodes processed by single solution spray pyrolysis. Solid State Ion, pp.203-62, 2011.

D. Beckel, U. P. Muecke, T. Gyger, G. Florey, A. Infortuna et al., Electrochemical performance of LSCF based thin film cathodes prepared by spray pyrolysis. Solid State Ion, pp.1785-1791, 2007.

C. R. Xia and M. L. Liu, A Simple and Cost-Effective Approach to Fabrication of Dense Ceramic Membranes on Porous Substrates, Journal of the American Ceramic Society, vol.146, issue.5, pp.1903-1905, 2001.
DOI : 10.1111/j.1151-2916.2001.tb00934.x

A. F. Jankowski, J. P. Hayes, R. T. Graff, and J. D. Morse, Micro-fabricated thin-film fuel cells for portable power requirements, In Materials for Energy Storage, Generation and Transport, vol.730, pp.93-98, 2002.

J. L. Rupp, J. Schneider, and L. J. Gauckler, Micro Solid Oxide Fuel Cells on Glass Ceramic Substrates, Adv. Funct. Mater, issue.20, pp.18-3158, 2008.

S. Rey-mermet and P. Muralt, Solid oxide fuel cell membranes supported by nickel grid anode. Solid State Ion, pp.27-32, 2008.

J. H. Joo and G. M. Choi, Micro-solid oxide fuel cell using thick-film ceria. Solid State Ion, pp.11-13, 2009.

R. Tolke, A. Bieberle-hutter, A. Evans, J. L. Rupp, and L. J. Gauckler, Processing of Foturan?? glass ceramic substrates for micro-solid oxide fuel cells, Journal of the European Ceramic Society, vol.32, issue.12, pp.32-3229, 2012.
DOI : 10.1016/j.jeurceramsoc.2012.04.006

C. W. Kwon, J. I. Lee, K. B. Kim, H. W. Lee, J. H. Lee et al., The thermomechanical stability of micro-solid oxide fuel cells fabricated on anodized aluminum oxide membranes, Journal of Power Sources, vol.210, pp.178-183, 2012.
DOI : 10.1016/j.jpowsour.2012.03.020

D. Ghosh, L. M. Doeswijk, J. C. Greer, and J. Brugger, Metal-supported solid oxide fuel cell operated at 400-600 degrees C, J. Power Sources 161. van den Boogaart, M. A. F, vol.167, issue.2, pp.336-339, 2007.

S. Kang, P. C. Su, Y. I. Park, Y. Saito, and F. B. Prinz, Thin-Film Solid Oxide Fuel Cells on Porous Nickel Substrates with Multistage Nanohole Array, Journal of The Electrochemical Society, vol.153, issue.3, pp.153-554, 2006.
DOI : 10.1149/1.2164769

L. Niinisto, Characterisation of thin films of ceria-based electrolytes for IntermediateTemperature -Solid oxide fuel cells (IT-SOFC), Ionics, vol.9, pp.1-2, 2003.

L. S. Wang, S. A. Barnett, . Sputter-deposited, . Medium-temperature, . Solid et al., Solid State Ion, pp.61-273, 1993.
URL : https://hal.archives-ouvertes.fr/hal-01113356

X. G. Wang, N. Nakagawa, and K. Kato, Active role of SDC interlayer in multi-layer anode of SOFCs, Electrochemistry, vol.70, issue.4, pp.252-257, 2002.

A. Ringuede and J. Guindet, Ideal Behavior of a Thin Layer of La(0.7)Sr(0.3)CoO(3-delta)
URL : https://hal.archives-ouvertes.fr/hal-00108194

A. Ringuede and J. Fouletier, Oxygen reaction on strontium-doped lanthanum cobaltite dense electrodes at intermediate temperatures. Solid State Ion, pp.3-4, 2001.
URL : https://hal.archives-ouvertes.fr/hal-00418256

J. W. Lee, Z. Liu, L. Yang, H. Abernathy, S. H. Choi et al., Preparation of dense and uniform La(0.6)Sr(0.4)Co(0.2)Fe(0.8)O(3-delta) (LSCF) films for fundamental studies of SOFC cathodes, J. Power Sources, issue.2, pp.190-307, 2009.

L. G. Coccia, G. C. Tyrrell, J. A. Kilner, D. Waller, R. J. Chater et al., Pulsed laser deposition of novel materials for thin film solid oxide fuel cell applications: Ce0, Appl. Surf. Sci, pp.96-104, 1996.

J. Januschewsky, M. Ahrens, A. Opitz, F. Kubel, and J. Fleig, Optimized La0.6Sr0.4CoO3- delta Thin-Film Electrodes with Extremely Fast Oxygen-Reduction Kinetics, Adv. Funct. Mater, issue.19, pp.19-3151, 2009.

Y. Takeda, Synthesis, structure, and electrochemical properties of epitaxial perovskite La0.8Sr0.2CoO3 film on YSZ substrate. Solid State Ion, pp.5-6, 2006.

F. S. Baumann, J. Fleig, H. U. Habermeier, and J. Maier, Impedance spectroscopic study on well-defined (La,Sr)(Co,Fe)O3-delta model electrodes. Solid State Ion, pp.17711-17723, 2006.

D. Beckel, A. Dubach, A. N. Grundy, A. Infortuna, and L. J. Gauckler, Solid-state dewetting of La0.6Sr0.4CO0.2Fe0.8O3 +/-delta thin films during annealing, J. Eur. Ceram. Soc, issue.1, pp.28-49, 2008.

A. Zomorrodian, H. Salamati, Z. G. Lu, X. Chen, N. J. Wu et al., Electrical conductivity of epitaxial La0.6Sr0.4Co0.2Fe0.8O3-delta thin films grown by pulsed laser deposition, Int. J. Hydrog. Energy, issue.22, pp.35-12443, 2010.

L. J. Gauckler, Tailoring of LaxSr1-xCoyFe1-yO3-delta Nanostructure by Pulsed Laser Deposition

J. Will, A. Mitterdorfer, C. Kleinlogel, D. Perednis, and L. J. Gauckler, Fabrication of thin electrolytes for second-generation solid oxide fuel cells. Solid State Ion, pp.1311-1313, 2000.

K. L. Choy, Chemical vapour deposition of coatings, Progress in Materials Science, vol.48, issue.2, pp.57-170, 2003.
DOI : 10.1016/S0079-6425(01)00009-3

S. J. Irvine and D. Lamb, Photo-assisted CVD, Royal Soc Chemistry: Cambridge, pp.477-493, 2008.
DOI : 10.1039/9781847558794-00477

J. Mcaleese, J. A. Darr, and B. C. Steele, The synthesis and thermal evaluation of a novel cerium precursor to grow thick ceria films by metal-organic chemical vapor deposition (MOCVD). Chem. Vapor Depos, p.244, 1996.

J. Mcaleese, J. C. Plakatouras, and B. C. Steele, The use of Ce(fod)4 as a precursor for the growth of ceria films by metal-organic chemical vapour deposition, Thin Solid Films, vol.280, issue.1-2, pp.1-2, 1996.
DOI : 10.1016/0040-6090(95)08193-3

T. Ami and M. Suzuki, MOCVD growth of (100)-oriented CeO2 thin films on hydrogenterminated Ssi(100) substrates, Mater. Sci. Eng. B-Solid State Mater. Adv. Technol, pp.541-543, 1998.

Y. F. Lu, H. Y. Fan, A. Stump, T. L. Ward, T. Rieker et al., Aerosol-assisted selfassembly of mesostructured spherical nanoparticles, Nature, issue.6724, pp.398-223, 1999.

H. Z. Song, H. B. Wang, S. W. Zha, D. K. Peng, and G. Y. Meng, Aerosol-assisted MOCVD growth of Gd2O3-doped CeO2 thin SOFC electrolyte film on anode substrate. Solid State Ion, pp.156-249, 2003.

M. Leskela, Recent developments in the MOCVD and ALD of rare earth oxides and silicates

M. Cassir, F. Goubin, C. Bernay, P. Vernoux, and D. Lincot, Synthesis of ZrO2 thin films by atomic layer deposition: growth kinetics, structural and electrical properties, Applied Surface Science, vol.193, issue.1-4, pp.1-4, 0193.
DOI : 10.1016/S0169-4332(02)00247-7

M. Cassir, A. Ringuede, and L. Niinisto, Input of atomic layer deposition for solid oxide fuel cell applications, Journal of Materials Chemistry, vol.31, issue.41, pp.8987-8993, 2010.
DOI : 10.1039/c0jm00590h

J. Han, Y. Zeng, G. Xomeritakis, and Y. S. Lin, Electrochemical vapor deposition synthesis and oxygen permeation properties of dense zirconia-yttria-ceria membranes. Solid State Ion, pp.981-983, 1997.

Z. Ogumi, Preparation of dense electrolyte layer using dissociated oxygen electrochemical vapor deposition technique. Solid State Ion, pp.1-4, 2004.

A. Mineshige, M. Inaba, S. Nakanishi, M. Kobune, T. Yazawa et al., Vapor-phase deposition for dense CeO2 film growth on porous substrates, J. Electrochem. Soc, issue.6, pp.153-975, 2006.

M. F. Carolan, J. N. Michaels, . Growth-rates, . And, . Of et al., Solid State Ion, pp.372-375, 1990.

C. Bernay, A. Ringuede, P. Colomban, D. Lincot, and M. Cassir, Yttria-doped zirconia thin films deposited by atomic layer deposition ALD: a structural, morphological and electrical characterisation, Journal of Physics and Chemistry of Solids, vol.64, issue.9-10, pp.649-659, 2003.
DOI : 10.1016/S0022-3697(03)00105-7

M. Putkonen, T. Sajavaara, J. Niinisto, L. S. Johansson, and L. Niinisto, Deposition of yttriastabilized zirconia thin films by atomic layer epitaxy from beta-diketonate and organometallic precursors, J. Mater. Chem, issue.3, pp.12-442, 2002.

H. L. Lu, G. Scarel, M. Alia, M. Fanciulli, S. J. Ding et al., Spectroscopic ellipsometry study of thin NiO films grown on Si (100) by atomic layer deposition, Applied Physics Letters, vol.92, issue.22
DOI : 10.1063/1.2938697

T. P. Holme, C. Lee, and F. B. Prinz, Atomic layer deposition of LSM cathodes for solid oxide fuel cells. Solid State Ion, pp.17927-17959, 2008.

M. Lie, O. Nilsen, H. Fjellvag, and A. Kjekshus, Growth of La1-xSrxFeO3 thin films by atomic layer deposition, Dalton Trans, issue.3, pp.481-489, 2009.

. Chamberl, . Rr, J. S. Skarman, . Chemical, . Deposition et al., Chemical Spray Deposition Process for Inorganic Films, Journal of The Electrochemical Society, vol.113, issue.1, p.86, 1966.
DOI : 10.1149/1.2423871

P. S. Patil, Versatility of chemical spray pyrolysis technique, Materials Chemistry and Physics, vol.59, issue.3, pp.185-198, 1999.
DOI : 10.1016/S0254-0584(99)00049-8

S. C. Tjong and H. Chen, Nanocrystalline materials and coatings, Materials Science and Engineering: R: Reports, vol.45, issue.1-2, pp.1-2, 2004.
DOI : 10.1016/j.mser.2004.07.001

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.469.1291

T. Setoguchi, M. Sawano, K. Eguchi, H. Arai, . Application et al., Solid State Ion, pp.40-41, 1990.

P. Bohac and L. Gauckler, Chemical spray deposition of YSZ and GCO solid electrolyte films. Solid State Ion, pp.1-4, 1999.

P. Charpentier, P. Fragnaud, D. M. Schleich, Y. Denos, and E. Gehain, Preparation of thin film SOFCs working at reduced temperature, Solid State Ionics, vol.135, issue.1-4, pp.1-2, 1998.
DOI : 10.1016/S0167-2738(00)00472-0

P. Charpentier, P. Fragnaud, D. M. Schleich, C. Lunot, and E. Gehain, Preparation of cathodes for thin film SOFCs, Ionics, vol.143, issue.2, pp.1-2, 1997.
DOI : 10.1007/BF02375540

D. Beckel, A. Dubach, A. R. Studart, and L. J. Gauckler, Spray pyrolysis of La0.6Sr0.4Co0.2Fe0.8O3-delta thin film cathodes, J. Electroceram, issue.3, pp.16-221, 2006.

C. H. Chen, F. L. Yuan, and J. Schoonman, Spray pyrolysis routes to electroceramic powders and thin films, European Journal of Solid State and Inorganic Chemistry, vol.35, issue.2, pp.35-189, 1998.
DOI : 10.1016/S0992-4361(98)80196-3

A. Princivalle, D. Perednis, R. Neagu, and E. Djurado, Microstructural investigations of nanostructured La(Sr)MnO3-delta films deposited by electrostatic spray deposition, Chem. Mat, issue.19, pp.16-3733, 2004.

C. Y. Fu, C. L. Chang, C. S. Hsu, and B. H. Hwang, Electrostatic spray deposition of La0.8Sr0.2Co0.2Fe0.8O3 films, Materials Chemistry and Physics, vol.91, issue.1, pp.91-119, 2005.
DOI : 10.1016/j.matchemphys.2004.10.041

D. Marinha, C. Rossignol, and E. Djurado, Influence of electrospraying parameters on the microstructure of La0.6Sr0.4Co0.2F0.8O3-delta films for SOFCs, J. Solid State Chem, issue.7, pp.182-1742, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00417170

A. Princivalle, D. Perednis, R. Neagu, and E. Djurado, Porosity Control of LSM/YSZ Cathode Coating Deposited by Electrospraying, Chemistry of Materials, vol.17, issue.5, pp.17-1220, 2005.
DOI : 10.1021/cm048503h

URL : https://hal.archives-ouvertes.fr/hal-00383676

A. Princivalle and E. Djurado, Nanostructured LSM/YSZ composite cathodes for IT-SOFC: A comprehensive microstructural study by electrostatic spray deposition, Solid State Ionics, vol.179, issue.33-34, pp.17933-17967, 2008.
DOI : 10.1016/j.ssi.2008.05.006

URL : https://hal.archives-ouvertes.fr/hal-00386322

B. H. Hwang, C. L. Chang, C. S. Hsu, and C. Y. Fu, Electrostatic spray deposition of NiO/CGO films, Journal of Physics D: Applied Physics, vol.40, issue.11, pp.40-3448, 2007.
DOI : 10.1088/0022-3727/40/11/028

A. Lintanf-salaun and E. Djurado, Fabrication by electrostatic spray deposition and structural investigation of ultra thin and dense zirconia films. Thin Solid Films, pp.517-6784, 2009.

J. B. Huang, C. L. Chang, C. S. Hsu, and B. H. Hwang, Electrostatic Spray Deposition of Doped Ceria Films, Fuel Cells, vol.60, issue.6, pp.1095-1099, 2010.
DOI : 10.1002/fuce.201000015

C. Rossignol, B. Roman, G. D. Benetti, and E. Djurado, Elaboration of thin and dense CGO films adherent to YSZ by electrostatic spray deposition for IT-SOFC applications, New Journal of Chemistry, vol.177, issue.115, pp.35-716, 2011.
DOI : 10.1039/c0nj00570c

S. E. Pratsinis, Flame aerosol synthesis of ceramic powders, Progress in Energy and Combustion Science, vol.24, issue.3, pp.197-219, 1998.
DOI : 10.1016/S0360-1285(97)00028-2

S. Charojrochkul, K. L. Choy, and B. C. Steele, Cathode electrolyte systems for solid oxide fuel cells fabricated using flame assisted vapour deposition technique. Solid State Ion, pp.1-4, 1999.

K. Choy, W. Bai, S. Clarojrochkul, and B. C. Steele, The development of intermediatetemperature solid oxide fuel cells for the next millennium, J. Power Sources, pp.711-713, 1998.

K. L. Choy, S. Charojrochkul, and B. C. Steele, Fabrication of cathode for solid oxide fuel cells using flame assisted vapour deposition technique. Solid State Ion, pp.961-963, 1997.

N. I. Karageorgakis, A. Heel, A. Bieberle-hutter, J. L. Rupp, T. Graule et al., Flame spray deposition of La0.6Sr0.4CoO3-delta thin films: Microstructural characterization, electrochemical performance and degradation, J. Power Sources, issue.24, pp.195-8152, 2010.

M. Faustini, B. Louis, P. A. Albouy, M. Kuemmel, and D. Grosso, Preparation of Sol???Gel Films by Dip-Coating in Extreme Conditions, The Journal of Physical Chemistry C, vol.114, issue.17, pp.114-7637, 2010.
DOI : 10.1021/jp9114755

URL : https://hal.archives-ouvertes.fr/hal-00477806

C. J. Brinker, Y. F. Lu, A. Sellinger, and H. Y. Fan, Evaporation-induced self-assembly: Nanostructures made easy, Adv. Mater, issue.117, p.579, 1999.
DOI : 10.4000/annuaire-cdf.1105

A. Atkinson, R. M. Guppy, . Mechanical, . Stability, . Sol-gel et al., Mechanical stability of sol-gel films, Journal of Materials Science, vol.89, issue.14, pp.3869-3873, 1991.
DOI : 10.1007/BF01184984

C. C. Chen, M. M. Nasrallah, and H. U. Anderson, SYNTHESIS AND CHARACTERIZATION OF (CEO2)(0.8)(SMO1.5)(0.2) THIN-FILMS FROM POLYMERIC PRECURSORS, J. Electrochem. Soc, issue.12, pp.140-3555, 1993.

D. Terribile, A. Trovarelli, J. Llorca, C. De-leitenburg, and G. Dolcetti, The preparation of high surface area CeO2???ZrO2 mixed oxides by a surfactant-assisted approach, Catalysis Today, vol.43, issue.1-2, pp.431-433, 1998.
DOI : 10.1016/S0920-5861(98)00136-9

D. Terribile, A. Trovarelli, J. Llorca, C. De-leitenburg, and G. Dolcetti, The Synthesis and Characterization of Mesoporous High-Surface Area Ceria Prepared Using a Hybrid Organic/Inorganic Route, Journal of Catalysis, vol.178, issue.1, pp.178-299, 1998.
DOI : 10.1006/jcat.1998.2152

T. Brezesinski, M. Antonietti, M. Groenewolt, N. Pinna, and B. Smarsly, The generation of mesostructured crystalline CeO2, ZrO2 and CeO2-ZrO2 films using evaporation-induced selfassembly, New J. Chem, issue.1, pp.29-237, 2005.

T. Brezesinski, D. Fattakhova-rohlfing, S. Sallard, M. Antonietti, and B. M. Smarsly, Highly Crystalline WO3 Thin Films with Ordered 3D Mesoporosity and Improved Electrochromic Performance, Small, vol.27, issue.10, pp.1203-1211, 2006.
DOI : 10.1002/smll.200600176

T. Brezesinski, J. Wang, R. Senter, K. Brezesinski, B. Dunn et al., Thin Films, On the Correlation between Mechanical Flexibility, Nanoscale Structure, and Charge Storage in Periodic Mesoporous CeO, pp.967-977, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00071261

P. Stefanov, G. Atanasova, D. Stoychev, and T. Marinova, Electrochemical deposition of CeO2 on ZrO2 and Al2O3 thin films formed on stainless steel, Surface and Coatings Technology, vol.180, issue.181, pp.446-449, 2004.
DOI : 10.1016/j.surfcoat.2003.10.083

T. D. Golden and A. Q. Wang, Anodic electrodeposition of cerium oxide thin films -II

A. Q. Wang and T. D. Golden, Anodic electrodeposition of cerium oxide thin films -I. Formation of crystalline thin films, J. Electrochem. Soc, issue.9, pp.150-616, 2003.

V. Lair, J. Sirieix-plenet, L. Gaillon, C. Rizzi, and A. Ringuede, Mixtures of room temperature ionic liquid/ethanol solutions as electrolytic media for cerium oxide thin layer electrodeposition, Electrochimica Acta, vol.56, issue.2, pp.56-784, 2010.
DOI : 10.1016/j.electacta.2010.09.102

V. Lair, L. S. Zivkovic, O. Lupan, and A. Ringuede, Synthesis and characterization of electrodeposited samaria and samaria-doped ceria thin films, Electrochimica Acta, vol.56, issue.12, pp.56-4638, 2011.
DOI : 10.1016/j.electacta.2011.02.101

L. S. Zivkovic, V. Lair, O. Lupan, and A. Ringuede, Electrochemical synthesis and properties of ceria films grown on stainless steel. Russ, J. Phys. Chem. A, issue.13, pp.85-2358, 2011.

L. Yang, X. Pang, G. Fox-rabinovich, S. Veldhuis, and I. Zhitomirsky, Electrodeposition of cerium oxide films and composites, Surface and Coatings Technology, vol.206, issue.1, pp.206-207, 2011.
DOI : 10.1016/j.surfcoat.2011.06.029

F. B. Li, R. C. Newman, and G. E. Thompson, In situ atomic force microscopy studies of electrodeposition mechanism of cerium oxide films: nucleation and growth out of a gel mass precursor, Electrochimica Acta, vol.42, issue.16, pp.42-2455, 1997.
DOI : 10.1016/S0013-4686(96)00433-1

H. Chen, K. Cheng, F. Ye, and W. J. Weng, Preparation and characterization of graded SSC???SDC MIEC cathode for low-temperature solid oxide fuel cells, Ceramics International, vol.37, issue.4, pp.37-1209, 2011.
DOI : 10.1016/j.ceramint.2010.11.047

C. Kleinlogel and L. J. Gauckler, Sintering and properties of nanosized ceria solid solutions, 12th International Conference on Solid State Ionics, Halkidiki, Greece, 1999.
DOI : 10.1016/S0167-2738(00)00437-9

T. Siemieniewska, . Reporting, . Data, . Gas, . Systems et al., Design, Synthesis, Structural and Textural Characterization, and Electrical Properties of Mesoporous Thin Films Made of Rare Earth Oxide Binaries, Chem. Mat, issue.11, pp.21-2184, 2009.

C. Boissiere, D. Grosso, S. Lepoutre, L. Nicole, A. B. Bruneau et al., Porosity and Mechanical Properties of Mesoporous Thin Films Assessed by Environmental Ellipsometric Porosimetry, Langmuir, vol.21, issue.26, pp.12362-12371, 2005.
DOI : 10.1021/la050981z

URL : https://hal.archives-ouvertes.fr/hal-00022622

V. Gil, C. Moure, and J. Tartaj, Sinterability, microstructures and electrical properties of Ni/Gd-doped ceria cermets used as anode materials for SOFCs, Journal of the European Ceramic Society, vol.27, issue.13-15, pp.2713-2728, 2007.
DOI : 10.1016/j.jeurceramsoc.2007.02.119

P. Datta, P. Majewski, and F. Aldinger, Synthesis and reactivity study of gadolinia doped ceria???nickel: A potential anode material for solid oxide fuel cell, Journal of Alloys and Compounds, vol.455, issue.1-2, pp.4551-4553, 2008.
DOI : 10.1016/j.jallcom.2007.01.143

U. P. Muecke, S. Graf, U. Rhyner, and L. J. Gauckler, Microstructure and electrical conductivity of nanocrystalline nickel- and nickel oxide/gadolinia-doped ceria thin films, Acta Materialia, vol.56, issue.4, pp.56-677, 2008.
DOI : 10.1016/j.actamat.2007.09.023

J. L. Rupp, A. Infortuna, and L. J. Gauckler, Microstrain and self-limited grain growth in nanocrystalline ceria ceramics, Acta Materialia, vol.54, issue.7, pp.54-1721, 2006.
DOI : 10.1016/j.actamat.2005.11.032

J. H. Gao, R. G. Thompson, and B. R. Patterson, Computer simulation of grain growth with second phase particle pinning, Acta Materialia, vol.45, issue.9, pp.3653-3658, 1997.
DOI : 10.1016/S1359-6454(97)00048-7

T. Suzuki, I. Kosacki, and H. U. Anderson, Defect and Mixed Conductivity in Nanocrystalline Doped Cerium Oxide, Journal of the American Ceramic Society, vol.79, issue.5, pp.85-1492, 2002.
DOI : 10.1111/j.1151-2916.2002.tb00302.x

T. Suzuki, I. Kosacki, and H. U. Anderson, Microstructure-electrical conductivity relationships in nanocrystalline ceria thin films. Solid State Ion, pp.151-152, 2002.

H. V. Atkinson, . Theories, . Of, . Grain-growth, . In et al., Journal of Physics C- Solid State Physics Nanophase Transition Metal Oxides Show Large Thermodynamically Driven Shifts in Oxidation-Reduction Equilibria Mean stresses in microstructures due to interface stresses: A generalization of a capillary equation for solids Imperfect oriented attachment: Dislocation generation in defect-free nanocrystals Redox cycling of Ni-based solid oxide fuel cell anodes: A review, L773-L776. 14, pp.469-491, 1961.

T. Kudo, H. Obayashi, E. M. Mixed, and M. S. Doescher, Mixed Electrical Conduction in the Fluorite-Type Ce[sub 1???x]Gd[sub x]O[sub 2???x???2], Journal of The Electrochemical Society, vol.123, issue.3, pp.415-419, 1976.
DOI : 10.1149/1.2132840

D. R. Rolison, S. Rupp, J. L. Gauckler, L. J. Critical, . In et al., Microstructures and electrical conductivity of nanocrystalline ceria-based thin films. Solid State Ion, Chem. Mat. Journal of Physics C-Solid State Physics Journal of Physics C-Solid State Physics Kirkpatr.S, PERCOLATION AND CONDUCTION. Rev. Mod. Phys, vol.18, issue.264, pp.50-58, 1973.

H. Scher, R. Zallen, . Critical, . In, . J. Percolation-processes et al., Reduction and reoxidation kinetics of nickelbased SOFC anodes X-ray diffraction study of nickel oxide reduction by hydrogen Analysis of Ni nanoparticle gas phase sintering, A654-A663. 30. Szekely, Diffusion in nanocrystalline nickel. Nanostruct. Mater, pp.137-150, 1901.

P. Maier, K. Mehrer, H. Lessmann, E. Schule, W. Self-diffusion et al., 3596-&. 36, Phys. Status Solidi B-Basic Res, vol.36, issue.112, pp.78-689, 1965.

A. A. Yaremchenko, A. P. Viskup, A. Carneiro, F. M. Marques, and J. R. Frade, Ceriabased materials for solid oxide fuel cells, J. Mater. Sci, issue.5, pp.36-1105, 2001.

D. Perez-coll and G. C. Mather, Electrical transport at low temperatures in dense nanocrystalline Gd-doped ceria. Solid State Ion, pp.1-2

G. Geneste, Influence of synthesis route and composition on electrical properties of La9.33+xSi6O26+3x/2 oxy-apatite compounds. Solid State Ion, pp.33-34, 2008.

J. L. Rupp and L. J. Gauckler, Microstructures and electrical conductivity of nanocrystalline ceria-based thin films. Solid State Ion, pp.26-32, 2006.

C. Bernay, A. Ringuede, P. Colomban, D. Lincot, and M. Cassir, Yttria-doped zirconia thin films deposited by atomic layer deposition ALD: a structural, morphological and electrical characterisation, Journal of Physics and Chemistry of Solids, vol.64, issue.9-10, pp.649-659, 2003.
DOI : 10.1016/S0022-3697(03)00105-7

C. Brahim, A. Ringuede, M. Cassir, M. Putkonen, and L. Niinisto, Electrical properties of thin yttria-stabilized zirconia overlayers produced by atomic layer deposition for solid oxide fuel cell applications, Applied Surface Science, vol.253, issue.8, pp.253-3962, 2007.
DOI : 10.1016/j.apsusc.2006.08.043

C. Brahim, F. Chauveau, A. Ringuede, M. Cassir, M. Putkonen et al., ZrO2- In2O3 thin layers with gradual ionic to electronic composition synthesized by atomic layer deposition for SOFC applications, J. Mater. Chem, issue.6, pp.19-760, 2009.

. Layered-ionic-conductor and . Ceo, O(3), by Atomic Layer Deposition in View of Solid Oxide Fuel Cell Applications, Chem. Mat. J, issue.22, pp.4614-4619, 2009.

M. Putkonen and L. Niinisto, Characterisation of thin films of ceria-based electrolytes for IntermediateTemperature -Solid oxide fuel cells (IT-SOFC), Ionics Gourba, E.; Ringuede, A.; Cassir, M.; Paivasaari, J.; Niinisto, J.; Putkonen, M, vol.912, issue.11, pp.15-20, 2003.

L. Niinisto, Microstructural and electrical properties of gadolinium doped ceria thin films prepared by atomic layer deposition (ALD), 2003.

A. Ringuede and L. Niinisto, Input of atomic layer deposition for solid oxide fuel cell applications 8987-8993. 13. Zhao, F.; Virkar, A. V., Dependence of polarization in anode-supported solid oxide fuel cells on various cell parameters, J. Mater. Chem. J. Power Sources, vol.2003, issue.12411, pp.267-274, 2005.

S. C. Decaluwe, H. Zhu, R. J. Kee, and G. S. Jackson, Importance of Anode Microstructure in Modeling Solid Oxide Fuel Cells, Journal of The Electrochemical Society, vol.155, issue.6, pp.155-538, 2008.
DOI : 10.1149/1.2898206

J. D. Bass, D. Grosso, C. Boissiere, and C. Sanchez, Pyrolysis, Crystallization, and Sintering of Mesostructured Titania Thin Films Assessed by in Situ Thermal Ellipsometry, Journal of the American Chemical Society, vol.130, issue.25
DOI : 10.1021/ja078140x

B. Louis, N. Krins, M. Faustini, and D. Grosso, Understanding Crystallization of Anatase into Binary SiO2/TiO2 Sol-Gel Optical Thin Films: An in Situ Thermal Ellipsometry Analysis, J. Phys. Chem. C, issue.7, pp.115-3115, 2011.

M. Chigane, M. Ishikawa, and H. Inoue, Further XRD characterization of electrochromic nickel oxide thin films prepared by anodic deposition, Solar Energy Materials and Solar Cells, vol.64, issue.1, pp.65-72, 2000.
DOI : 10.1016/S0927-0248(00)00048-9

Y. Zhou, Y. Y. Geng, D. H. Gu, W. B. Gu, and Z. Jiang, Effect of film thickness on the optical constants and optical absorption properties of NiOx thin films, Physica B: Condensed Matter, vol.405, issue.18, pp.405-3875, 2010.
DOI : 10.1016/j.physb.2007.02.100

D. Adler and J. Feinleib, Electrical and optical properties of narrow-band materials. Physical Review B-Solid State, pp.3112-3134, 1970.

C. Boissiere, D. Grosso, S. Lepoutre, L. Nicole, A. B. Bruneau et al., Porosity and Mechanical Properties of Mesoporous Thin Films Assessed by Environmental Ellipsometric Porosimetry, Langmuir, vol.21, issue.26, pp.12362-12371, 2005.
DOI : 10.1021/la050981z

URL : https://hal.archives-ouvertes.fr/hal-00022622

P. Debye and P. Scherrer, Interference on inordinate orientated particles in x-ray light

G. Renaud, R. Lazzari, and F. Leroy, Probing surface and interface morphology with Grazing Incidence Small Angle X-Ray Scattering, Synthèse par pulvérisation cathodique et caractérisation d'électrolytes solides en couches minces pour piles a combustible à oxydes solides (SOFC) fonctionnant à température intermédiaire Thèse, pp.255-380, 2005.
DOI : 10.1016/j.surfrep.2009.07.002

URL : https://hal.archives-ouvertes.fr/hal-01442842

C. Des, D. Types, A. De-pile, . Specifique-et-densite-d-'energie, . Des et al., 14 FIGURE 1-4 : 30 FIGURE 1-7 : (A), Liste des figures et tableaux FIGURE 1-1 : 700°C (C,D) ET 1200°C (E,F) PENDANT 5H, SOUS AIR.63 FIGURE 2-2 : IMAGES 50 % (C,D), 70 % (E,F) ET 100 %(G,F) CALCINES A 700 °C PENDANT....................... 67 FIGURE 2-6 : (A) DIAGRAMMES DE DIFFRACTION DES RAYONS X DE FILMS MINCES POREUX DE LSCF50- CGO50 ET (B) DIAMETRES MOYENS DES CRISTALLITES DE CGO ET LSCF MESURES PAR ANALYSE DRX EX SITU DE FILMS MINCES POREUX DE LSCF50-CGO50, CGO PUR ET LSCF PUR CALCINES PENDANT 5H A DIFFERENTES TEMPERATURES SOUS AIR (5°C.MIN -1 ). LES PICS FINS SUPPLEMENTAIRES CORRESPONDENT.. 69 FIGURE 2-7 : (A) DIAGRAMMES DE DIFFRACTION DES RAYONS X DE FILMS MINCES POREUX DE LSCF- CGO EN FONCTION DU %VOL. DE LSCF CALCINES A 700°C ET (B), pp.16-17

D. En, °. De, S. Air, . Percolation-electronique, . Le et al., 86 FIGURE 3-2 : SPECTREA) 150 °C 88 FIGURE 3-3: °C.MIN -1 ) 90 FIGURE 3-5 : IMAGES, C) 400 °C, (D) 500 °C 92 FIGURE 3-7: (A) CLICHE GISAXS D'UN FILM MINCE NIO50-CGO50 POREUX (PS40-B-PEO45) CALCINE A 700 °C PENDANT 10 H SOUS AIR ET (B) PROFIL LINEAIRE A QZ = 0 NM -1 . (C) IMAGE) CGO ET (C) IMAGE MET. (D)B) IMAGE SEM-FEG (EN ELECTRONS RETRO DIFFUSES) UTILISEE POUR LES CARTOGRAPHIES EDX DE SI (C) ET NI (D) DIAMETRE MOYEN DES CRISTALLITES DE NIO (VERT) ET CGO (BLEU) DE FILMS MINCES POREUX EN FONCTION DU %VOL. DE NI ET DE LA TEMPERATURE DE CALCINATION (600°C, 700°C ,800°C, 1000°C), (1°C.MIN -1 ,1H). ........... LN [T(D 2 -D0 2 )]EN FONCTION DE 1/) KJ.MOL -1, pp.450-500

A. Un, D. De, N. De-d0-=1, 1. Sous-air, .. De-maille et al., 102 FIGURE 3-14 : A) IMAGES, DIAGRAMMES DE DRX DE FILMS MINCES POREUX DE NI(O)50-CGO50 CALCINES A 700°C SOUS AIR (0H), ET REDUITS A 580°C PENDANT 30 MIN (0,5H) ET 1H SOUS 10%H2/AR. ............... 109 FIGURE 3-18 : IMAGES SEM-FEG DE SURFACE DE FILMS MINCES POREUX DE NI(O)50-CGO50 CALCINES A 700°C SOUS AIR (A) PUIS REDUITS A 580°C PENDANT 30 MIN (B), 1H (C), 15H (D) SOUS, pp.3-16

1. , A. Min, 1. Sous-air, E. R. Elles, . De-150°c-a-700°c et al., 110 FIGURE 3-19JCPDS : 089-5881) ET NI (JCPDS : 065-2865), -1 ) D'HYDROGENE (10%H2/N2)CGO (C) DENSE, (D) PS40-PEO45, (E)CGO POUR DIFFERENTE TENEUR EN NI : (A) 30%, (B) 50% ET (C) 70%. LES FILMS D'EPAISSEUR ~250 NM SONT DEPOSES SUR SUBSTRAT D'AL2O3. LA REDUCTION A ETE EFFECTUEE AVEC UN FLUX DE 3L.H -1 DE 10%H2/N2 EN FONCTION DU TEMPS POUR DES TEMPERATURES : 350°C, 400°C, 450°C, 500°C. (D) SCHEMA DES DIFFERENTES ETAPES IDENTIFIEES LORS DU TRAITEMENT DE REDUCTION : 1-CONDUCTION IONIQUE (?I,), 2-REDUCTION ET PERCOLATION DU RESEAU DE NI, 3- REDUCTION DE NIO VERS NI, 4-CONDUCTION MIXTE (?I,E), pp.50-5070

C. Totale, E. Energie-d-'activation, . De, . Minces-de-nio-cgo, . En et al., 122 FIGURE 3-28 125 FIGURE 3-30, ) CGO, 2 : (200) CGO, 3 : (220) CGO, 4 : (311) CGO. (C) IMAGES MEB DE SURFACE DE FILMS MINCES DE CGO CALCINES PENDANT 1H A (C) 500°C, (D) 800°C, (E) 1000°C SOUS AIR (2 °C.MIN -1 ).. 142 FIGURE 4-5 : IMAGES MEB DE SECTION DE FILMS MINCES DE CGO, D'EPAISSEUR (A) 50 NM ET (B) 150 NM CALCINES A 600°C PENDANT 1H SOUS AIR (2 °C.MIN -1 )................................................. 142 FIGURE 4-6 : IMAGES MEB DE LA SURFACE (A,B) ET DE LA SECTION (C) DE FILMS MINCES DE CGO CALCINES A 600°C PENDANT 1H SOUS AIR (2 °C.MIN-1). (A) FILM DE CGO, (B, C) FILM DE CGO-NIO- POREUX (1)/CGOCGO CALCINE A 600 °C PENDANT 1 H SOUS AIR, pp.119-122

E. S. De, C. Temperature, °. De, . Pendant, A. Sous et al., 146 FIGURE 4-10 : ISOTHERMES 148 FIGURE 4-13 : IMAGES, NIO-CGO) ET DE CATHODE (LSCF- CGO) ET ~700 NM D'ELECTROLYTE (CGO), CHAUFFEE A 500 °C PENDANT 10H SOUS AIR (1 °C.MIN - 1 )C) 800°C, (D) 1000°C, (E) 1200°C PENDANT 10H SOUS AIR (1 °C.MIN -1 ). A : ANODE, pp.145-149

F. A. Schema, .. Montage-d-'ellipsometrie-porosimetrie-7, . Spectroscopique-d-'impedance, . E. En, . Un et al., 187 FIGURE A2 ANALYSE 190 FIGURE A2, FIGURE A2, 0194.