J. Liu, G. Cao, Z. Yang, D. Wang, D. Dubois et al., Oriented Nanostructures for Energy Conversion and Storage, ChemSusChem, vol.104, issue.88, pp.676-697, 2008.
DOI : 10.1002/cssc.200800087

A. Goetzberger, Photovoltaic materials, past, present, future, Solar Energy Materials and Solar Cells, vol.62, issue.1-2, pp.1-19, 2000.
DOI : 10.1016/S0927-0248(99)00131-2

A. Goetzberger, Photovoltaic materials, history, status and outlook, Materials Science and Engineering: R: Reports, vol.40, issue.1, pp.1-46, 2003.
DOI : 10.1016/S0927-796X(02)00092-X

B. O-'regan and M. , A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films, Nature, vol.353, issue.6346, p.737, 1991.
DOI : 10.1038/353737a0

T. Yoshida, J. Zhang, D. Komatsu, S. Sawatani, H. Minoura et al., Electrodeposition of Inorganic/Organic Hybrid Thin Films, Advanced Functional Materials, vol.25, issue.512, pp.17-43, 2009.
DOI : 10.1002/adfm.200700188

B. O-'regan, J. R. Durrant, P. M. Sommeling, and N. J. Bakker, Films in Dye-Sensitized Solar Cells. 2. Charge Density, Band Edge Shifts, and Quantification of Recombination Losses at Short Circuit, The Journal of Physical Chemistry C, vol.111, issue.37, pp.14001-14010, 2007.
DOI : 10.1021/jp073056p

J. W. Bowers, H. M. Upadhyaya, T. Nakada, and .. N. Tiwari, Effects of surface treatments on high mobility ITiO coated glass substrates for dye sensitized solar cells and their tandem solar cell applications, Solar Energy Materials and Solar Cells, vol.94, issue.4, pp.691-696, 2010.
DOI : 10.1016/j.solmat.2009.10.023

T. Minami, Transparent conducting oxide semiconductors for transparent electrodes, Semiconductor Science and Technology, vol.20, issue.4, pp.35-44, 2005.
DOI : 10.1088/0268-1242/20/4/004

A. Suzuki, T. Matsushita, N. Wada, Y. Sakamoto, and M. Okuda, Transparent Conducting Al-Doped ZnO Thin Films Prepared by Pulsed Laser Deposition, Japanese Journal of Applied Physics, vol.35, issue.Part 2, No. 1A, pp.56-59, 1996.
DOI : 10.1143/JJAP.35.L56

C. Sima, C. Grigoriu, and S. Antohe, Comparison of the dye-sensitized solar cells performances based on transparent conductive ITO and FTO, Thin Solid Films, vol.519, issue.2, pp.595-597, 2010.
DOI : 10.1016/j.tsf.2010.07.002

S. Ngamsinlapasathian, T. Sreethawong, and S. Yoshikawa, Enhanced efficiency of dye-sensitized solar cell using double-layered conducting glass, Thin Solid Films, vol.516, issue.21, pp.7802-7806, 2008.
DOI : 10.1016/j.tsf.2008.03.037

S. Ngamsinlapasathian, T. Sreethawong, Y. Y. Suzuki, and S. Yoshikawa, Doubled layered ITO/SnO2 conducting glass for substrate of dye-sensitized solar cells, Solar Energy Materials and Solar Cells, vol.90, issue.14, pp.2129-2140, 2006.
DOI : 10.1016/j.solmat.2005.12.005

B. Yoo, K. Kim, S. H. Lee, W. M. Kim, and N. Park, ITO/ATO/TiO2 triple-layered transparent conducting substrates for dye-sensitized solar cells, Solar Energy Materials and Solar Cells, vol.92, issue.8, pp.873-877, 2008.
DOI : 10.1016/j.solmat.2008.02.013

X. Wang, L. Zhi, and K. Müllen, Transparent, Conductive Graphene Electrodes for Dye-Sensitized Solar Cells, Nano Letters, vol.8, issue.1, pp.323-330, 2008.
DOI : 10.1021/nl072838r

M. Toivola, F. Ahlskog, and P. Lund, Industrial sheet metals for nanocrystalline dye-sensitized solar cell structures, Solar Energy Materials and Solar Cells, vol.90, issue.17, pp.2881-2893, 2006.
DOI : 10.1016/j.solmat.2006.05.002

M. Kang, N. Park, K. Ryu, S. Chang, and K. Kim, A 4.2% efficient flexible dye-sensitized TiO2 solar cells using stainless steel substrate, Solar Energy Materials and Solar Cells, vol.90, issue.5, pp.574-581, 2006.
DOI : 10.1016/j.solmat.2005.04.025

X. Fang, T. Ma, M. Akiyama, G. Guan, S. Tsunematsu et al., Flexible counter electrodes based on metal sheet and polymer film for dye-sensitized solar cells, Thin Solid Films, vol.472, issue.1-2, pp.242-245, 2005.
DOI : 10.1016/j.tsf.2004.07.083

C. Longo, J. Freitas, and M. Paoli, Performance and stability of TiO2/dye solar cells assembled with flexible electrodes and a polymer electrolyte, Journal of Photochemistry and Photobiology A: Chemistry, vol.159, issue.1, pp.33-39, 2003.
DOI : 10.1016/S1010-6030(03)00106-0

X. Li, H. Lin, J. Li, X. Li, B. Cui et al., Film for Flexible Dye-Sensitized Solar Cells, The Journal of Physical Chemistry C, vol.112, issue.35, pp.13744-13753, 2008.
DOI : 10.1021/jp800023z

Y. Kijitori, M. Ikegami, and T. Miyasaka, Highly Efficient Plastic Dye-sensitized Photoelectrodes Prepared by Low-temperature Binder-free Coating of Mesoscopic Titania Pastes, Chemistry Letters, vol.36, issue.1, pp.190-191, 2007.
DOI : 10.1246/cl.2007.190

Y. Saito, W. Kubo, T. Kitamura, Y. Wada, and S. Yanagida, I???/I3??? redox reaction behavior on poly(3,4-ethylenedioxythiophene) counter electrode in dye-sensitized solar cells, Journal of Photochemistry and Photobiology A: Chemistry, vol.164, issue.1-3, pp.153-157, 2004.
DOI : 10.1016/j.jphotochem.2003.11.017

T. N. Murakami, Y. Kijitori, N. Kawashima, and T. Miyasaka, Low temperature preparation of mesoporous TiO2 films for efficient dye-sensitized photoelectrode by chemical vapor deposition combined with UV light irradiation, Journal of Photochemistry and Photobiology A: Chemistry, vol.164, issue.1-3, pp.187-191, 2004.
DOI : 10.1016/j.jphotochem.2003.11.021

D. Zhang, T. Yoshida, K. Furuta, and H. Minoura, Hydrothermal preparation of porous nano-crystalline TiO2 electrodes for flexible solar cells, Journal of Photochemistry and Photobiology A: Chemistry, vol.164, issue.1-3, pp.159-166, 2004.
DOI : 10.1016/j.jphotochem.2003.11.018

M. K. Nazeeruddin, F. De-angelis, S. Fantacci, A. Selloni, G. Viscardi et al., Combined Experimental and DFT-TDDFT Computational Study of Photoelectrochemical Cell Ruthenium Sensitizers, Journal of the American Chemical Society, vol.127, issue.48, pp.16835-16882, 2005.
DOI : 10.1021/ja052467l

K. Zhu, E. Schiff, N. Park, J. Van-de-lagemaat, and .. J. Frank, Determining the locus for photocarrier recombination in dye-sensitized solar cells, Applied Physics Letters, vol.80, issue.4, p.685, 2002.
DOI : 10.1063/1.1436533

S. Ferrere, A. Zaban, and B. Gregg, Dye Sensitization of Nanocrystalline Tin Oxide by Perylene Derivatives, The Journal of Physical Chemistry B, vol.101, issue.23, pp.4490-4493, 1997.
DOI : 10.1021/jp970683d

Q. Zhang, C. S. Dandeneau, X. Zhou, and G. Cao, ZnO Nanostructures for Dye-Sensitized Solar Cells, Advanced Materials, vol.20, issue.41, pp.4087-4108, 2009.
DOI : 10.1002/adma.200803827

U. Ozgur, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov et al., A comprehensive review of ZnO materials and devices, Journal of Applied Physics, vol.98, issue.4, p.41301, 2005.
DOI : 10.1063/1.1992666

K. Keis, Optical characterization of nanostructured ZnO and TiO2 films, Optical Materials, vol.20, issue.1, pp.35-42, 2002.
DOI : 10.1016/S0925-3467(02)00031-9

V. Noack, H. Weller, and A. Eychmüller, Electron Transport in Particulate ZnO Electrodes:?? A Simple Approach, The Journal of Physical Chemistry B, vol.106, issue.34, pp.8514-8523, 2002.
DOI : 10.1021/jp0200270

J. Wu, G. Chen, C. Lu, W. Wu, and J. Chen, nanocomposite dye-sensitized solar cells, Nanotechnology, vol.19, issue.10, p.105702, 2008.
DOI : 10.1088/0957-4484/19/10/105702

E. A. Meulenkamp, Synthesis and Growth of ZnO Nanoparticles, The Journal of Physical Chemistry B, vol.102, issue.29, pp.5566-5572, 1998.
DOI : 10.1021/jp980730h

M. Vafaee and M. Ghamsari, Preparation and characterization of ZnO nanoparticles by a novel sol???gel route, Materials Letters, vol.61, issue.14-15, pp.3265-3268, 2007.
DOI : 10.1016/j.matlet.2006.11.089

S. Kar, A. Dev, and S. Chaudhuri, Simple Solvothermal Route To Synthesize ZnO Nanosheets, Nanonails, and Well-Aligned Nanorod Arrays, The Journal of Physical Chemistry B, vol.110, issue.36, p.17848, 2006.
DOI : 10.1021/jp0629902

P. Yang, H. Yan, S. Mao, R. Russo, J. Johnson et al., Controlled Growth of ZnO Nanowires and Their Optical Properties, Advanced Functional Materials, vol.12, issue.5, pp.323-331, 2002.
DOI : 10.1002/1616-3028(20020517)12:5<323::AID-ADFM323>3.0.CO;2-G

Q. Li, V. Kumar, Y. Li, H. Zhang, T. J. Marks et al., Fabrication of ZnO Nanorods and Nanotubes in Aqueous Solutions, Chemistry of Materials, vol.17, issue.5, pp.1001-1006, 2005.
DOI : 10.1021/cm048144q

X. Wang, Y. Ding, C. J. Summers, and Z. L. Wang, Large-Scale Synthesis of Six-Nanometer-Wide ZnO Nanobelts, The Journal of Physical Chemistry B, vol.108, issue.26, pp.8773-8777, 2004.
DOI : 10.1021/jp048482e

M. Fu, J. Zhou, Q. Xiao, B. Li, R. Zong et al., ZnO Nanosheets with Ordered Pore Periodicity via Colloidal Crystal Template Assisted Electrochemical Deposition, Advanced Materials, vol.44, issue.8, pp.1001-1004, 2006.
DOI : 10.1002/adma.200502658

Z. L. Wang, Zinc oxide nanostructures: growth, properties and applications, Journal of Physics: Condensed Matter, vol.16, issue.25, p.829, 2004.
DOI : 10.1088/0953-8984/16/25/R01

U. Pal, J. Serrano, P. Santiago, G. Xiong, K. Ucer et al., Synthesis and optical properties of ZnO nanostructures with different morphologies, Optical Materials, vol.29, issue.1, pp.65-69, 2006.
DOI : 10.1016/j.optmat.2006.03.015

A. Elkhidir-suliman, Y. Tang, and L. Xu, Preparation of ZnO nanoparticles and nanosheets and their application to dye-sensitized solar cells, Solar Energy Materials and Solar Cells, vol.91, issue.18, pp.1658-1662, 2007.
DOI : 10.1016/j.solmat.2007.05.014

M. Akhtar, M. Khan, M. Jeon, and O. Yang, Controlled synthesis of various ZnO nanostructured materials by capping agents-assisted hydrothermal method for dye-sensitized solar cells, Electrochimica Acta, vol.53, issue.27, pp.7869-7874, 2008.
DOI : 10.1016/j.electacta.2008.05.055

C. Lin, H. Lin, J. Li, and X. Li, Electrodeposition preparation of ZnO nanobelt array films and application to dye-sensitized solar cells, Journal of Alloys and Compounds, vol.462, issue.1-2, pp.175-180, 2008.
DOI : 10.1016/j.jallcom.2007.07.104

Y. F. Hsu, Y. Y. Xi, C. T. Yip, A. B. Djurisic, and W. K. Chan, Dye-sensitized solar cells using ZnO tetrapods, Journal of Applied Physics, vol.103, issue.8, p.83114, 2008.
DOI : 10.1063/1.2909907

W. Chen, H. Zhang, I. M. Hsing, and S. Yang, A new photoanode architecture of dye sensitized solar cell based on ZnO nanotetrapods with no need for calcination, Electrochemistry Communications, vol.11, issue.5, pp.1057-1060, 2009.
DOI : 10.1016/j.elecom.2009.03.013

Q. Zhang, T. P. Chou, B. Russo, S. Jenekhe, and G. Cao, Aggregation of ZnO Nanocrystallites for High Conversion Efficiency in Dye-Sensitized Solar Cells, Angewandte Chemie International Edition, vol.21, issue.13, pp.2402-2408, 2008.
DOI : 10.1002/anie.200704919

H. Cheng and W. Hsieh, High-efficiency metal-free organic-dye-sensitized solar cells with hierarchical ZnO photoelectrode, Energy & Environmental Science, vol.110, issue.153, p.442, 2010.
DOI : 10.1039/b915725e

M. Wang, C. Ye, Y. Zhang, G. Hua, H. Wang et al., Synthesis of well-aligned ZnO nanorod arrays with high optical property via a low-temperature solution method, Journal of Crystal Growth, vol.291, issue.2, pp.334-339, 2006.
DOI : 10.1016/j.jcrysgro.2006.03.033

H. Wang and C. Xie, Controlled fabrication of nanostructured ZnO particles and porous thin films via a modified chemical bath deposition method, Journal of Crystal Growth, vol.291, issue.1, pp.187-195, 2006.
DOI : 10.1016/j.jcrysgro.2006.02.043

Y. Y. Xi, Y. F. Hsu, A. B. Djurisic, and W. K. Chan, Electrochemical Synthesis of ZnO Nanoporous Films at Low Temperature and Their Application in Dye-Sensitized Solar Cells, Journal of The Electrochemical Society, vol.155, issue.9, p.595, 2008.
DOI : 10.1149/1.2952519

K. Nonomura, One-step electrochemical synthesis of ZnO/Ru(dcbpy)2(NCS)2 hybrid thin films and their photoelectrochemical properties, Electrochimica Acta, vol.48, issue.20-22, pp.3071-3078, 2003.
DOI : 10.1016/S0013-4686(03)00381-5

S. Peulon and D. Lincot, Cathodic electrodeposition from aqueous solution of dense or open-structured zinc oxide films, Advanced Materials, vol.387, issue.2, pp.166-170, 1996.
DOI : 10.1002/adma.19960080216

S. Peulon and D. Lincot, Mechanistic Study of Cathodic Electrodeposition of Zinc Oxide and Zinc Hydroxychloride Films from Oxygenated Aqueous Zinc Chloride Solutions, Journal of The Electrochemical Society, vol.145, issue.3, pp.864-874, 1998.
DOI : 10.1149/1.1838359

M. Izaki, Electrolyte Optimization for Cathodic Growth of Zinc Oxide Films, Journal of The Electrochemical Society, vol.143, issue.3, p.53, 1996.
DOI : 10.1149/1.1836529

J. Baxter and E. S. , Dye-sensitized solar cells based on semiconductor morphologies with ZnO nanowires, Solar Energy Materials and Solar Cells, vol.90, issue.5, pp.607-622, 2006.
DOI : 10.1016/j.solmat.2005.05.010

M. Law, L. E. Greene, J. C. Johnson, R. Saykally, and P. Yang, Nanowire dye-sensitized solar cells, Nature Materials, vol.248, issue.6, pp.455-464, 2005.
DOI : 10.1021/la036122x

J. B. Baxter, M. Walker, K. V. Ommering, and E. S. , Synthesis and characterization of ZnO nanowires and their integration into dye-sensitized solar cells, Nanotechnology, vol.17, issue.11, pp.304-312, 2006.
DOI : 10.1088/0957-4484/17/11/S13

Z. Chen, Y. Tang, L. Zhang, and L. Luo, Electrodeposited nanoporous ZnO films exhibiting enhanced performance in dye-sensitized solar cells, Electrochimica Acta, vol.51, issue.26, pp.5870-5875, 2006.
DOI : 10.1016/j.electacta.2006.03.026

J. Shi, B. Peng, J. Pei, S. Peng, and J. Chen, An inexpensive and efficient pyridine-based additive for the electrolyte of dye-sensitized solar cells, Journal of Power Sources, vol.193, issue.2, pp.878-884, 2009.
DOI : 10.1016/j.jpowsour.2009.03.068

J. B. Asbury, Y. Wang, and T. Lian, Sensitized ZnO Nanocrystalline Thin Films, The Journal of Physical Chemistry B, vol.103, issue.32, pp.6643-6647, 1999.
DOI : 10.1021/jp991625q

K. Keis, J. Lindgren, S. Lindquist, and A. Hagfeldt, Studies of the Adsorption Process of Ru Complexes in Nanoporous ZnO Electrodes, Langmuir, vol.16, issue.10, pp.4688-4694, 2000.
DOI : 10.1021/la9912702

A. Yella, H. Lee, H. N. Tsao, C. Yi, A. K. Chandiran et al., Porphyrin-Sensitized Solar Cells with Cobalt (II/III)-Based Redox Electrolyte Exceed 12 Percent Efficiency, Science, vol.334, issue.6056, pp.629-663, 2011.
DOI : 10.1126/science.1209688

W. H. Howie, F. Claeyssens, H. Miura, and L. M. Peter, Characterization of Solid-State Dye-Sensitized Solar Cells Utilizing High Absorption Coefficient Metal-Free Organic Dyes, Journal of the American Chemical Society, vol.130, issue.4, pp.1367-75, 2008.
DOI : 10.1021/ja076525+

Q. Li, L. Lu, C. Zhong, J. Shi, Q. Huang et al., New Indole-Based Metal-Free Organic Dyes for Dye-Sensitized Solar Cells, The Journal of Physical Chemistry B, vol.113, issue.44, pp.14588-95, 2009.
DOI : 10.1021/jp906334w

R. Jose, V. Kumar, K. Thavasi, S. Fujihara, S. Uchida et al., Relationship between the molecular orbital structure of the dyes and photocurrent density in the dye-sensitized solar cells, Applied Physics Letters, vol.93, issue.2, p.23125, 2008.
DOI : 10.1063/1.2957988

T. Horiuchi, H. Miura, K. Sumioka, and S. Uchida, High Efficiency of Dye-Sensitized Solar Cells Based on Metal-Free Indoline Dyes, Journal of the American Chemical Society, vol.126, issue.39, pp.12218-12227, 2004.
DOI : 10.1021/ja0488277

D. Kuang, S. Uchida, R. Humphry-baker, S. M. Zakeeruddin, and M. , Organic Dye-Sensitized Ionic Liquid Based Solar Cells: Remarkable Enhancement in Performance through Molecular Design of Indoline Sensitizers, Angewandte Chemie International Edition, vol.629, issue.10, pp.1923-1930, 2008.
DOI : 10.1002/anie.200705225

A. Kay and M. , Artificial photosynthesis. 1. Photosensitization of titania solar cells with chlorophyll derivatives and related natural porphyrins, The Journal of Physical Chemistry, vol.97, issue.23, pp.6272-6277, 1993.
DOI : 10.1021/j100125a029

R. Y. Ogura, S. Nakane, M. Morooka, M. Orihashi, Y. Suzuki et al., High-performance dye-sensitized solar cell with a multiple dye system, Applied Physics Letters, vol.94, issue.7, p.73308, 2009.
DOI : 10.1063/1.3086891

P. Suri and R. Mehra, Effect of electrolytes on the photovoltaic performance of a hybrid dye sensitized ZnO solar cell, Solar Energy Materials and Solar Cells, vol.91, issue.6, pp.518-524, 2007.
DOI : 10.1016/j.solmat.2006.10.025

Z. Zhang, P. Chen, T. N. Murakami, S. M. Zakeeruddin, and M. , The 2,2,6,6-Tetramethyl-1-piperidinyloxy Radical: An Efficient, Iodine- Free Redox Mediator for Dye-Sensitized Solar Cells, Advanced Functional Materials, vol.40, issue.2, pp.341-346, 2008.
DOI : 10.1002/adfm.200701041

D. Li, H. Li, Y. Luo, K. Li, Q. Meng et al., Non-Corrosive, Non-Absorbing Organic Redox Couple for Dye-Sensitized Solar Cells, Advanced Functional Materials, vol.17, issue.19, pp.3358-3365, 2010.
DOI : 10.1002/adfm.201000150

H. Nusbaumer, J. Moser, S. M. Zakeeruddin, M. K. Nazeeruddin, and M. , Complex Rivals Tri-iodide/Iodide Redox Mediator in Dye-Sensitized Photovoltaic Cells, The Journal of Physical Chemistry B, vol.105, issue.43, pp.10461-10464, 2001.
DOI : 10.1021/jp012075a

S. Hattori, Y. Wada, S. Yanagida, and S. Fukuzumi, Blue Copper Model Complexes with Distorted Tetragonal Geometry Acting as Effective Electron-Transfer Mediators in Dye-Sensitized Solar Cells, Journal of the American Chemical Society, vol.127, issue.26, pp.9648-54, 2005.
DOI : 10.1021/ja0506814

K. Hara, T. Horiguchi, T. Kinoshita, K. Sayama, H. Sugihara et al., Highly efficient photon-to-electron conversion with mercurochrome-sensitized nanoporous oxide semiconductor solar cells, Solar Energy Materials and Solar Cells, vol.64, issue.2, pp.115-134, 2000.
DOI : 10.1016/S0927-0248(00)00065-9

S. Y. Huang, G. Schlichthörl, .. J. Nozik, M. Grätzel, and .. J. Frank, Solar Cells, The Journal of Physical Chemistry B, vol.101, issue.14, pp.2576-2582, 1997.
DOI : 10.1021/jp962377q

URL : https://hal.archives-ouvertes.fr/hal-00990954

K. Lee, V. Suryanarayanan, and K. Ho, Influences of different TiO2 morphologies and solvents on the photovoltaic performance of dye-sensitized solar cells, Journal of Power Sources, vol.188, issue.2, pp.635-641, 2009.
DOI : 10.1016/j.jpowsour.2008.12.002

A. Fukui, R. Komiya, R. Yamanaka, A. Islam, and L. Han, Effect of a redox electrolyte in mixed solvents on the photovoltaic performance of a dye-sensitized solar cell, Solar Energy Materials and Solar Cells, vol.90, issue.5, pp.649-658, 2006.
DOI : 10.1016/j.solmat.2005.01.020

Z. Kebede and S. Lindquist, Donor???acceptor interaction between non-aqueous solvents and I2 to generate I???3, and its implication in dye sensitized solar cells, Solar Energy Materials and Solar Cells, vol.57, issue.3, pp.259-275, 1999.
DOI : 10.1016/S0927-0248(98)00178-0

M. K. Nazeeruddin, A. Kay, I. Rodicio, R. Humphry-baker, E. Mueller et al., Conversion of light to electricity by cis-X2bis(2,2'-bipyridyl-4,4'-dicarboxylate)ruthenium(II) charge-transfer sensitizers (X = Cl-, Br-, I-, CN-, and SCN-) on nanocrystalline titanium dioxide electrodes, Journal of the American Chemical Society, vol.115, issue.14, pp.6382-6390, 1993.
DOI : 10.1021/ja00067a063

K. Keis, E. Magnusson, H. Lindström, S. Lindquist, and A. Hagfeldt, A 5% efficient photoelectrochemical solar cell based on nanostructured ZnO electrodes, Solar Energy Materials and Solar Cells, vol.73, issue.1, pp.51-58, 2002.
DOI : 10.1016/S0927-0248(01)00110-6

T. N. Murakami and M. , Counter electrodes for DSC: Application of functional materials as catalysts, Inorganica Chimica Acta, vol.361, issue.3, pp.572-580, 2008.
DOI : 10.1016/j.ica.2007.09.025

T. Yohannes and O. Ingana, Photoelectrochemical studies of the junction between poly[3-(4-octylphenyl)thiophene] and a redox polymer electrolyte, Solar Energy Materials and Solar Cells, vol.51, issue.2, pp.193-202, 1998.
DOI : 10.1016/S0927-0248(97)00213-4

Y. Saito, I???/I3??? redox reaction behavior on poly(3,4-ethylenedioxythiophene) counter electrode in dye-sensitized solar cells, Journal of Photochemistry and Photobiology A: Chemistry, vol.164, issue.1-3, pp.153-157, 2004.
DOI : 10.1016/j.jphotochem.2003.11.017

P. Balraju, P. Suresh, M. Kumar, M. S. Roy, and G. D. Sharma, Effect of counter electrode, thickness and sintering temperature of TiO2 electrode and TBP addition in electrolyte on photovoltaic performance of dye sensitized solar cell using pyronine G (PYR) dye, Journal of Photochemistry and Photobiology A: Chemistry, vol.206, issue.1, pp.53-63, 2009.
DOI : 10.1016/j.jphotochem.2009.05.014

W. Hong, Y. Xu, G. Lu, C. Li, and G. Shi, Transparent graphene/PEDOT???PSS composite films as counter electrodes of dye-sensitized solar cells, Electrochemistry Communications, vol.10, issue.10, pp.1555-1558, 2008.
DOI : 10.1016/j.elecom.2008.08.007

S. Sakurai, H. Jiang, M. Takahashi, and K. Kobayashi, Enhanced performance of a dye-sensitized solar cell with a modified poly(3,4-ethylenedioxythiophene)/TiO2/FTO counter electrode, Electrochimica Acta, vol.54, issue.23, pp.5463-5469, 2009.
DOI : 10.1016/j.electacta.2009.04.045

Z. Li, B. Ye, X. Hu, X. Ma, X. Zhang et al., Facile electropolymerized-PANI as counter electrode for low cost dye-sensitized solar cell, Electrochemistry Communications, vol.11, issue.9, pp.1768-1771, 2009.
DOI : 10.1016/j.elecom.2009.07.018

J. Wu, Q. Li, L. Fan, Z. Lan, P. Li et al., High-performance polypyrrole nanoparticles counter electrode for dye-sensitized solar cells, Journal of Power Sources, vol.181, issue.1, pp.172-176, 2008.
DOI : 10.1016/j.jpowsour.2008.03.029

A. Kay and M. , Low cost photovoltaic modules based on dye sensitized nanocrystalline titanium dioxide and carbon powder, Solar Energy Materials and Solar Cells, vol.44, issue.1, pp.99-117, 1996.
DOI : 10.1016/0927-0248(96)00063-3

K. Imoto, High-performance carbon counter electrode for dye-sensitized solar cells, Solar Energy Materials and Solar Cells, vol.79, issue.4, pp.459-469, 2003.
DOI : 10.1016/S0927-0248(03)00021-7

T. Hino, Y. Ogawa, and N. Kuramoto, Preparation of functionalized and non-functionalized fullerene thin films on ITO glasses and the application to a counter electrode in a dye-sensitized solar cell, Carbon, vol.44, issue.5, pp.880-887, 2006.
DOI : 10.1016/j.carbon.2005.10.027

J. Chen, K. Li, Y. Luo, X. Guo, D. Li et al., A flexible carbon counter electrode for dye-sensitized solar cells, Carbon, vol.47, issue.11, pp.2704-2708, 2009.
DOI : 10.1016/j.carbon.2009.05.028

T. N. Murakami, S. Ito, Q. Wang, M. K. Nazeeruddin, B. Takeru et al., Highly Efficient Dye-Sensitized Solar Cells Based on Carbon Black Counter Electrodes, Journal of The Electrochemical Society, vol.153, issue.12, pp.2255-2261, 2006.
DOI : 10.1149/1.2358087

C. Magne, F. Dufour, F. Labat, G. Lancel, O. Durupthy et al., Effects of TiO2 nanoparticle polymorphism on dye-sensitized solar cell photovoltaic properties, Journal of Photochemistry and Photobiology A: Chemistry, vol.232, pp.22-31, 2012.
DOI : 10.1016/j.jphotochem.2012.01.015

URL : https://hal.archives-ouvertes.fr/hal-01494501

S. Ito, T. N. Murakami, P. Comte, P. Liska, M. Grätzel et al., Fabrication of thin film dye sensitized solar cells with solar to electric power conversion efficiency over 10%, Thin Solid Films, vol.516, issue.14, pp.4613-4619, 2008.
DOI : 10.1016/j.tsf.2007.05.090

H. Kokubo, B. Ding, T. Naka, H. Tsuchihira, and S. Shiratori, nanofibrous membranes for dye-sensitized solar cells, Nanotechnology, vol.18, issue.16, p.165604, 2007.
DOI : 10.1088/0957-4484/18/16/165604

J. Duchoslav, L. Rub, and J. Proch, Clean Technology, Proc, pp.50-52, 2008.

W. Yang, F. Wan, Y. Wang, and C. Jiang, Achievement of 6.03% conversion efficiency of dye-sensitized solar cells with single-crystalline rutile TiO2 nanorod photoanode, Applied Physics Letters, vol.95, issue.13, p.133121, 2009.
DOI : 10.1063/1.3240870

H. Byun, R. Vittal, D. Y. Kim, and K. Kim, Solar Cells, Langmuir, vol.20, issue.16, pp.6853-6857, 2004.
DOI : 10.1021/la040032q

P. Roy, D. Kim, K. Lee, E. Spiecker, and P. Schmuki, TiO2 nanotubes and their application in dye-sensitized solar cells, Nanoscale, vol.19, issue.1, pp.45-59, 2010.
DOI : 10.1039/B9NR00131J

X. Feng, K. Shankar, O. K. Varghese, M. Paulose, T. J. Latempa et al., Nanowire Arrays Grown Directly on Transparent Conducting Oxide Coated Glass: Synthesis Details and Applications, Nano Letters, vol.8, issue.11, pp.3781-3786, 2008.
DOI : 10.1021/nl802096a

B. Liu and E. S. , Nanorods on Transparent Conducting Substrates for Dye-Sensitized Solar Cells, Journal of the American Chemical Society, vol.131, issue.11, pp.3985-3990, 2009.
DOI : 10.1021/ja8078972

K. H. Ko, Y. C. Lee, and Y. J. Jung, Enhanced efficiency of dye-sensitized TiO2 solar cells (DSSC) by doping of metal ions, Journal of Colloid and Interface Science, vol.283, issue.2, pp.482-487, 2005.
DOI : 10.1016/j.jcis.2004.09.009

J. Zhang, Z. Zhao, X. Wang, T. Yu, J. Guan et al., Surface by La-Doping for Dye-Sensitized Solar Cells, The Journal of Physical Chemistry C, vol.114, issue.43, p.18396, 2010.
DOI : 10.1021/jp106648c

F. Labat, P. Baranek, C. Domain, C. Minot, and C. Adamo, Density functional theory analysis of the structural and electronic properties of TiO2 rutile and anatase polytypes: Performances of different exchange-correlation functionals, The Journal of Chemical Physics, vol.126, issue.15, p.154703, 2007.
DOI : 10.1063/1.2717168

F. Labat, P. Baranek, and C. Adamo, Surfaces:?? An ab Initio Investigation, Journal of Chemical Theory and Computation, vol.4, issue.2, pp.341-352, 2008.
DOI : 10.1021/ct700221w

O. Durupthy, J. Bill, and F. Aldinger, : Effect of Amino Acids on Nanoparticles Structure and Shape, Crystal Growth & Design, vol.7, issue.12, pp.2696-2704, 2007.
DOI : 10.1021/cg060405g

T. Sugimoto, X. Zhou, and A. Muramatsu, Synthesis of uniform anatase TiO2 nanoparticles by gel???sol method, Journal of Colloid and Interface Science, vol.259, issue.1, pp.53-61, 2003.
DOI : 10.1016/S0021-9797(03)00035-3

S. Cassaignon, M. Koelsch, and J. Jolivet, From TiCl3 to TiO2 nanoparticles (anatase, brookite and rutile): Thermohydrolysis and oxidation in aqueous medium, Journal of Physics and Chemistry of Solids, vol.68, issue.5-6, pp.695-700, 2007.
DOI : 10.1016/j.jpcs.2007.02.020

URL : https://hal.archives-ouvertes.fr/hal-00333851

A. Pottier, C. Chanéac, E. Tronc, L. Mazerolles, and J. Jolivet, Synthesis of brookite TiO2 nanoparticles by thermolysis of TiCl4 in strongly acidic aqueous media, Journal of Materials Chemistry, vol.11, issue.4, pp.1116-1121, 2001.
DOI : 10.1039/b100435m

R. D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides, Acta Crystallographica Section A, vol.32, issue.5, p.751, 1976.
DOI : 10.1107/S0567739476001551

S. Mo and W. Y. Ching, Electronic and optical properties of three phases of titanium dioxide: Rutile, anatase, and brookite, Physical Review B, vol.51, issue.19, p.13023, 1995.
DOI : 10.1103/PhysRevB.51.13023

A. Beltran, L. Gracia, and J. Andre, Density Functional Theory Study of the Brookite Surfaces and Phase Transitions between Natural Titania Polymorphs, The Journal of Physical Chemistry B, vol.110, issue.46, pp.23417-23423, 2006.
DOI : 10.1021/jp0643000

Y. Li, Z. Liu, L. Liu, and W. Gao, Mechanism and Activity of Photocatalytic Oxygen Evolution on Titania Anatase in Aqueous Surroundings, Journal of the American Chemical Society, vol.132, issue.37, pp.13008-13023, 2010.
DOI : 10.1021/ja105340b

Y. Li and Z. Liu, Particle Size, Shape and Activity for Photocatalysis on Titania Anatase Nanoparticles in Aqueous Surroundings, Journal of the American Chemical Society, vol.133, issue.39, pp.15743-52, 2011.
DOI : 10.1021/ja206153v

J. Bisquert, Theory of the Impedance of Electron Diffusion and Recombination in a Thin Layer, The Journal of Physical Chemistry B, vol.106, issue.2, pp.325-333, 2002.
DOI : 10.1021/jp011941g

J. Bisquert and V. S. Vikhrenko, Interpretation of the Time Constants Measured by Kinetic Techniques in Nanostructured Semiconductor Electrodes and Dye-Sensitized Solar Cells, The Journal of Physical Chemistry B, vol.108, issue.7, pp.2313-2322, 2004.
DOI : 10.1021/jp035395y

Q. Wang, J. Moser, and M. , Electrochemical Impedance Spectroscopic Analysis of Dye-Sensitized Solar Cells, The Journal of Physical Chemistry B, vol.109, issue.31, pp.14945-53, 2005.
DOI : 10.1021/jp052768h

H. Cheng and W. Hsieh, Electron transfer properties of organic dye-sensitized solar cells based on indoline sensitizers with ZnO nanoparticles, Nanotechnology, vol.21, issue.48, p.485202, 2010.
DOI : 10.1088/0957-4484/21/48/485202

T. Yoshida, T. Pauporté, D. Lincot, T. Oekermann, and H. Minoura, Cathodic Electrodeposition of ZnO/Eosin Y Hybrid Thin Films from Oxygen-Saturated Aqueous Solution of ZnCl[sub 2] and Eosin Y, Journal of The Electrochemical Society, vol.150, issue.9, p.608, 2003.
DOI : 10.1149/1.1598213

T. Pauporté and J. Rathousky, Electrodeposited Mesoporous ZnO Thin Films as Efficient Photocatalysts for the Degradation of Dye Pollutants, The Journal of Physical Chemistry C, vol.111, issue.21, pp.7639-7644, 2007.
DOI : 10.1021/jp071465f

T. Goux, D. Pauporté, L. Lincot, and . Dunsch, In Situ ESR and UV/Vis Spectroelectrochemical Study of Eosin Y Upon Reduction with and without Zn(II) Ions, ChemPhysChem, vol.7, issue.6, pp.926-957, 2007.
DOI : 10.1002/cphc.200700009

V. M. Guérin, C. Magne, T. Pauporté, T. Le-bahers, and J. Rathousky, Electrodeposited Nanoporous versus Nanoparticulate ZnO Films of Similar Roughness for Dye-Sensitized Solar Cell Applications, ACS Applied Materials & Interfaces, vol.2, issue.12, pp.3677-3685, 2010.
DOI : 10.1021/am1008248

A. Goux, T. Pauporté, J. Chivot, and D. Lincot, Temperature effects on ZnO electrodeposition, Electrochimica Acta, vol.50, issue.11, pp.2239-2248, 2005.
DOI : 10.1016/j.electacta.2004.10.007

T. Dentani, Y. Kubota, K. Funabiki, J. Jin, T. Yoshida et al., Novel thiophene-conjugated indolinedyes for zinc oxide solar cells, New J. Chem., vol.74, issue.1, p.93, 2009.
DOI : 10.1039/B808959K

S. M. Waita, B. O. Aduda, J. M. Mwabora, G. Niklasson, C. G. Granqvist et al., Electrochemical characterization of TiO2 blocking layers prepared by reactive DC magnetron sputtering, Journal of Electroanalytical Chemistry, vol.637, issue.1-2, pp.79-83, 2009.
DOI : 10.1016/j.jelechem.2009.10.004

J. Bisquert and F. Fabregat-santiago, Electron Lifetime in Dye-Sensitized Solar Cells: Theory and Interpretation of Measurements, The Journal of Physical Chemistry C, vol.113, issue.40, pp.17278-17290, 2009.
DOI : 10.1021/jp9037649

J. Bisquert, F. Fabregat-santiago, I. Mora-seró, G. Garcia-belmonte, E. M. Barea et al., A review of recent results on electrochemical determination of the density of electronic states of nanostructured metal-oxide semiconductors and organic hole conductors, Inorganica Chimica Acta, vol.361, issue.3, pp.684-698, 2008.
DOI : 10.1016/j.ica.2007.05.032

M. Matsui, A. Ito, M. Kotani, Y. Kubota, K. Funabiki et al., The use of indoline dyes in a zinc oxide dye-sensitized solar cell, Dyes and Pigments, vol.80, issue.2, pp.233-238, 2009.
DOI : 10.1016/j.dyepig.2008.07.010

Y. Sakuragi, X. Wang, H. Miura, M. Matsui, and T. Yoshida, Aggregation of indoline dyes as sensitizers for ZnO solar cells, Journal of Photochemistry and Photobiology A: Chemistry, vol.216, issue.1, pp.1-7, 2010.
DOI : 10.1016/j.jphotochem.2010.08.015

A. Mishra, M. K. Fischer, and P. Bäuerle, Metal-Free Organic Dyes for Dye-Sensitized Solar Cells: From Structure: Property Relationships to Design Rules, Angewandte Chemie International Edition, vol.130, issue.14, pp.2474-99, 2009.
DOI : 10.1002/anie.200804709

J. N. Clifford, E. Palomares, M. K. Nazeeruddin, R. Thampi, and M. , Films, Journal of the American Chemical Society, vol.126, issue.18, pp.5670-5671, 2004.
DOI : 10.1021/ja049705h

URL : https://hal.archives-ouvertes.fr/hal-00273497

F. Inakazu, Y. Noma, Y. Ogomi, and S. Hayase, Dye-sensitized solar cells consisting of dye-bilayer structure stained with two dyes for harvesting light of wide range of wavelength, Applied Physics Letters, vol.93, issue.9, p.93304, 2008.
DOI : 10.1063/1.2976677

H. Tanaka, A. Takeichi, K. Higuchi, T. Motohiro, M. Takata et al., Long-term durability and degradation mechanism of dye-sensitized solar cells sensitized with indoline dyes, Solar Energy Materials and Solar Cells, vol.93, issue.6-7, pp.1143-1148, 2009.
DOI : 10.1016/j.solmat.2009.02.006

H. Horiuchi, R. Katoh, K. Hara, M. Yanagida, S. Murata et al., ) Aggregate Formation, The Journal of Physical Chemistry B, vol.107, issue.11, pp.2570-2574, 2003.
DOI : 10.1021/jp0220027

T. and L. Bahers, Optimisation Des Cellules Solaires à Colorants à Base De ZnO Par Une Approche Combinée Théorie/expérience, 2011.

D. G. Thomas and J. J. Lander, Hydrogen as a Donor in Zinc Oxide, The Journal of Chemical Physics, vol.25, issue.6, p.1136, 1956.
DOI : 10.1063/1.1743165

C. Van-de-walle, Hydrogen as a Cause of Doping in Zinc Oxide, Physical Review Letters, vol.85, issue.5, pp.1012-1017, 2000.
DOI : 10.1103/PhysRevLett.85.1012

A. Usami, Theoretical study of application of multiple scattering of light to a dye-sensitized nanocrystalline photoelectrichemical cell, Chemical Physics Letters, vol.277, issue.1-3, pp.105-108, 1997.
DOI : 10.1016/S0009-2614(97)00878-6

J. Ferber and J. Luther, Computer simulations of light scattering and absorption in dye-sensitized solar cells, Solar Energy Materials and Solar Cells, vol.54, issue.1-4, pp.265-275, 1998.
DOI : 10.1016/S0927-0248(98)00078-6

S. Hore, C. Vetter, R. Kern, H. Smit, and A. Hinsch, Influence of scattering layers on efficiency of dye-sensitized solar cells, Solar Energy Materials and Solar Cells, vol.90, issue.9, pp.1176-1188, 2006.
DOI : 10.1016/j.solmat.2005.07.002

Z. Zhang, S. Ito, B. O-'regan, D. Kuang, Z. M. Shaik et al., Light-Scattering Layer in Dye-Sensitized Solar Cells, Zeitschrift f??r Physikalische Chemie, vol.221, issue.3, pp.319-327, 2007.
DOI : 10.1524/zpch.2007.221.3.319

S. Colodrero, A. Mihi, L. Häggman, M. Ocaña, G. Boschloo et al., Porous One-Dimensional Photonic Crystals Improve the Power-Conversion Efficiency of Dye-Sensitized Solar Cells, Advanced Materials, vol.10, issue.125, pp.764-770, 2009.
DOI : 10.1002/adma.200703115

C. López-lópez, S. Colodrero, S. R. Raga, H. Lindström, F. Fabregat-santiago et al., Enhanced diffusion through porous nanoparticle optical multilayers, J. Mater. Chem., vol.3, issue.5, p.1751, 2012.
DOI : 10.1002/adfm.201102159

J. Qi, X. Dang, P. T. Hammond, and A. M. Belcher, Highly Efficient Plasmon-Enhanced Dye-Sensitized Solar Cells through Metal@Oxide Core???Shell Nanostructure, ACS Nano, vol.5, issue.9, pp.7108-7116, 2011.
DOI : 10.1021/nn201808g

T. P. Chou, Q. Zhang, G. E. Fryxell, and G. Cao, Hierarchically Structured ZnO Film for Dye-Sensitized Solar Cells with Enhanced Energy Conversion Efficiency, Advanced Materials, vol.248, issue.18, pp.2588-2592, 2007.
DOI : 10.1002/adma.200602927

H. Chen, W. Li, H. Liu, and L. Zhu, Immobilizing ZnO nanoparticles to porous film by occlusion electrosynthesis for photoelectrochemical cells, Materials Letters, vol.65, issue.4, pp.614-616, 2011.
DOI : 10.1016/j.matlet.2010.11.047

T. Pauporté and I. Jirka, A method for electrochemical growth of homogeneous nanocrystalline ZnO thin films at room temperature, Electrochimica Acta, vol.54, issue.28, pp.7558-7564, 2009.
DOI : 10.1016/j.electacta.2009.08.022

V. Guérin and T. Pauporté, From nanowires to hierarchical structures of template-free electrodeposited ZnO for efficient dye-sensitized solar cells, Energy & Environmental Science, vol.50, issue.42, p.2971, 2011.
DOI : 10.1039/c1ee01218e

A. Hagfeldt and M. , Light-Induced Redox Reactions in Nanocrystalline Systems, Chemical Reviews, vol.95, issue.1, pp.49-68, 1995.
DOI : 10.1021/cr00033a003