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Réesune 11

Dans de nombreux domaines d’applications, une vari@@gée dans I'espace euclidien est souvent
représentée par un échantillon de points. Nous défingsdans cette thése un systeme de coordonnées as-
socié a un tel échantillon sur la variété qui génigeales coordonnées naturelles définies par Sibson. Nous
exhibons ses propriétés mathématiques fondamentaisscae son application a I'interpolation d'une
fonction définie sur la variété. Nous introduisons laiorod’atlas de Voronoi, défini comme un ensemble
de cellules approximant le diagramme de Voronoi restreilat variété et montrons son application a la
reconstruction de surface et au remaillage. Enfin, nouslétes les propriétés des coordonnées naturelles
aux diagrammes de puissance et proposons une synthésetttexdas d'interpolation par coordonnées
naturelles. Cette derniére détaille des preuves omeses lés articles originaux.

Mots clés:nuage de points, surface échantillonnée, diagramme ambg coordonnées naturelles, inter-
polation sur une surface, reconstruction 3D, remaillagedétisation géométrique, CAO.

Abstract &

Surfaces and manifolds represented by a set of discretes@oimencountered in various application areas.
In this thesis, we define a coordinate system on the manifsdda@ated to such a point set which is a

generalization of Sibson’s natural neighbor coordinaiés.show its fundamental mathematical properties
as well as its application to scattered data interpolatomanifolds. Furthermore, we introduce the notion

of Voronoi atlas defined as a collection of Voronoi cells tagproximate the Voronoi diagram restricted to

the manifold. We describe its application in surface retroiction and re-meshing. In addition, we show

the basic properties of natural neighbor coordinates ingpadiagrams and we survey the interpolation

methods based on natural neighbor coordinates. This sdeteyls some proofs that are omitted in the

original papers.

Keywords: point set surface, Voronoi diagram, natural neighbor coatds, scattered data interpolation,
surface on surface problem, 3D reconstruction, re-meski@gmetric modeling, CAD

Thése préparée a 'INRIA dans le projet PRISME.
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Chapter 1

Introduction 1B

Dans ce chapitre, nous décrivons le probleme abordé dittes these: la définition d’'un systeme de
coordonnées et d’'un voisinage local associé a un nuagmidés répartis sur une variété lisse. Nous
présentons ensuite quelques applications de ce nouveaepto L'ensemble des chapitres ainsi que les
contributions nouvelles de cette these sont resumésl|dauite.

Définition du probleme

Le diagramme de Voronoi qui constitue I'objet d’étudenpipal de cette thése est une structure de données
fondamentale de la géométrie algorithmiqugtant donné un ensemble de points discrets dans I'espace
Euclidien, lediagramme de Vororigst la partition de I'espace en cellules qui contiennens tes points
ayant le méme plus proche voisin parmi les points de dahé@ette structure particuliere que Franz
Aurenhammer appell€he Universal Spatial Data Structifra attiré beaucoup d’attention dans le dernier
siecle. Nous renvoyons le lecteur a I'ouvrage [14] du re@uteur pour une mise en perspective historique
des divers aspects des diagrammes de Voronoi. Pour ¢elimportance du diagramme de Voronoi est
liee & trois facteurs principaux: son occurrence freggielans les processus naturels comme par exem-
ple en biologie ou en cristallographie, ses propriététhéraatiques riches et intéressantes et enfin, ses
applications informatiques nombreuses.

La triangulation de Delaunagst une structure de données toute aussi fameuse queesétiivitement
liee au diagramme de Voronoi. Plus particulieremerttjdagulation de Delaunay d’'un ensemble de points
donnés se définie comme le dual du diagramme de Vorongai ldasens suivant: deux point de données
sont liés par une aréte dans la triangulation de Delauretyssulement si leur cellules de Voronoi partagent
une frontiere commune. Un triangle existe dans la triaatipr si trois cellules de Voronoi partagent une

!Les points de données sont parfois appelésdesmets
2Une citation aprés la page internet de C. Gold sur les diagres de Voronoi http://www.voronoi.com/.
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frontiere commune etc. Les propriétés géomeétriguesombinatoires de ces structures, diagramme de
Voronoi et triangulation de Delaunay, sont complémeesaéet le calcul pratique de chacune de celles-ci
se déduit facilement I'un de I'autre.

L'intérét porté par la géométrie algorithmique poardiagramme de Voronoi depuis I'@mergence de
la discipline dans les années soixante-dix se traduituadjoui par de nombreux résultats pratiques et
théoriques. Parmiles questions théorigues examineggat citer, par exemple, I'étude de la complexité
combinatoire des diagrammes de Voronoi, la découverderelations entre diagrammes de Voronoi et
enveloppes convexes, ou encore la généralisation dgeadiaes de Voronoi a d’autres métriques que la
métrique Euclidienne. D’un point de vue beaucoup plusiguat ces travaux ont permis la conception
d’algorithmes tres efficaces pour le calcul de diagramnee¥adonoi et de triangulations de Delaunay et
I'on dispose aujourd’hui d’implantations robustes trauivde nombreux champs d’applications dans des
domaines divers.

Diagrammes de Vorond sur une variété

Dans ce manuscrit de thése, nous considérons le casyfiartioll I'ensemble des points de données est
issu d’'une variété de dimensianplongée dans I'espace Euclidien. Ce cas est extrémeménessant en
pratique ou une variété est souvent représentée pamsgmble de points discrets, comme c’est le cas, par
exemple, pour de nombreuses d’'applications en graphismegreeption assisté par ordinateur (CAO) et
ingénierie inverse, en traitement d'image ou calcul ddigoe.

Pour ces applications, la variété sous-jacente n’estqga@ment connue. Lorsque celle-ci est connue,
le diagramme de Voronoi peut étre définit par rapportdideance géodésique sur la variété, on parle alors
de diagramme de Vororiagéocesique ou par rapport a la distance Euclidienne dans I'espacdaatib
Les diagrammes de Voronoi géodésiques sur des surfacametrées sont spécifies dans [73] par Kunze,
Wolter et Rausch. Leibon et Letscher [74] formulent des @@ d'échantillonnage pour les variétés
Riemanniennes garantissant I'existence d’'une uniquadulation de Delaunay et d'un diagramme de
Voronoi dual possédant les mémes propriétés quescdlisn diagramme de Voronoi dans I'espace Eu-
clidien. Cependant, bien qu'apparaissant comme plusuadécjue la distance euclidienne de par son
caractere intrinséque a la variété, I'utilisation ldedistance géodésique rend le calcul pratique du dia-
gramme de Voronoi trés difficile. Pour illustrer ces difftés, prenons pour exemple un des éléments de
base du diagramme de Voronoi Hissecteude deux points de données, c. a. d. 'ensemble des points su
la variété qui sont équidistants aux deux points de deanAlors que celui-ci est défini par un hyperplan
en métrique Euclidienne, il peut étre courbé et décot@anpour la métrique géodésique.

Le diagramme de Vororigestreintspécifié par Edelsbrunner et Shah [54] est défini quamit@imme
la restriction du diagramme de Voronoi Euclidien a la & une cellule du diagramme de Voronoi re-
streint correspondant a l'intersection de la cellule deovioi avec la variété. Bien que dépendant du
plongement de la variété dans I'espa® il est possible de démontrer que la triangulation de Dredgu



duale au diagramme ainsi calculé est homéomorphe aikt&ai certains conditions d’échantillonnage
(qui peuvent étre vérifies) sont satisfaites. Comme f®weas du diagramme de Voronoi géodésique, le
principal inconvénient du diagramme de Voronoi restrest que celui-ci est impossible a calculer lorsque
la variété sous-jacente est connue uniquement sur lesspaeé données et que son calcul reste excessive-
ment coteux lorsque la variété sous-jacente est connue.

Nous proposons dans cette these une approche tres pratiquapproximer une cellule du diagramme
de Voronoi dans le cas ou seulement un nuage de pointdisepar la variété est donné. L'idée de base
consiste a approximer localement la variété autour gaint de données par son espace tangent en ce point
et a calculer le diagramme restreint a cette approximadtcale. |l existe dans la littérature plusieurs
méthodes pour estimer, a partir d’'un nuage de points idsedvarieté, I'espace tangent en un point
donné. Le chapitre 6 montre que I'espace tangent et latéasdnt tres proches a l'intérieur d'une cellule
du diagramme Euclidien si la variété est bien échamtilee relativement a la courbure et a I'épaisseur
locale de la variété.

Le diagramme ainsi calculé correspond a la restrictiordidgramme de Voronoi définit dami a
un sous-espace linéaire de dimensiont est en fait un diagramme de puissakedimensionnel. Ses
propriétés sont par conséquent bien connues et le diegealui-méme est facilement calculable avec les
méthodes existantes.

On appelleatlas de Voronbla collection des cellules du diagramme de Voronoi rastesi a I'espace
tangent de chague sommet (Chapitre 7). Les principalesiptep d’'un tel atlas résident dans le fait
gue chacune de ses cellules est homéomorphe a la celluesspondante sur la variété et que celui-ci
approxime linéairement et de facon optimale la vartés-jacente (chacun des points de la variété étant
approximé par I'espace tangent de son plus proche sombet)bords des cellules de I'atlas de Voronoi
ne sont toutefois pas en général communs avec d’autregesel

La triangulation duale a I'atlas de Voronoi est un graphesdlequel deux sommets sont reliés si
I'espace tangent a un des deux points intersecte la fadetironoi commune aux deux points. Bien
gue la triangulation duale a I'atlas de Voronoi n’est pas ttiangulation globale des points de données (la
relation de voisinage n’est pas nécessairement symeéjigelle-ci permet, néanmoins, d’obtenir autour
de chaque sommet une petite triangulation qui est homé&urea un voisinage du sommet sur la variété
(pourvue qu’une certaine condition d’échantillonnagi respectée). Le principal avantage d'une telle tri-
angulation est que, pour un sommet donng, 'ensemble deets adjacents dans la triangulation définit
un voisinage local autour du point.

Interpolation naturelle

L'interpolation par coordonnées naturelles, introdeiel 980 par Sibson [90][91], est une méthode d'inter-
polation de données discretes multivariées qui carestiuine des applications pratiques les plus impor-
tantes des diagrammes de Voronoi. Les coordonnées lhegucenstituent un systeme de coordonnées



barycentriques défini & partir du diagramme de Vorotitiant donné un point de requéte, on associe un
poids a chacun de ses sommets voisins de maniére a ceppiatlde requéte soit leur barycentre pondéré.

Les méthodes d'interpolation basées sur les coordenmé&tirelles sont particulierement intéressantes
du fait gu'elles s’adaptent facilement a des données miiormes et anisotropes, ce qui les rend parti-
culierement adaptées aux problemes issus de la matiélisgéophysique et des systemes d’information
géographique (SIG). De plus, ces méthodes d'interpiatie dépendent pas du maillage utilisé et sont
par conséquent indépendant d’une partition artificietla priori de I'espace. Une synthése des differentes
méthodes d’interpolation basées sur les coordonnéesetias est donnée dans le Chapitre 4.

Il est possible de généraliser la définition des cooréesmaturelles aux diagrammes de puissance
et, par conséquent, aux diagrammes de Voronoi restr&ints espace tangent. Défini sur une variété,
un tel systeme de coordonnées est tres utile pour Ipotation de données multivariées sur une surface.
On note cependant que cette solution est seulement ap@ixénle systeme de coordonnées n'étant
barycentrique que par rapport aux points de données psofelr I'espace tangent. Quelques propriétés
importantes de ce systeme de coordonnées sont déeelsplains cette these. On montre notamment que
ce systeme de coordonnée est local sur la variété, egtil'! continu presque partout sur celle-ci et on
détermine son gradient.

Dans le cas ou la variété n’est pas connue, nous défirissosysteme de coordonnées basé sur l'atlas
de Voronoi. Dans ce nouveau systeme, les coordonnéesnh@lss définies dans I'espace tangent du
point requéte mais par rapport aux espaces tangents desetsmoisins au point requéte. Bien que ne
disposant pas d’'autant de bonnes propriétés que lensgsté coordonnées précédent, celui-ci a I'avantage
d’étre applicable directement a partir d’'un échantillte points extrait de la variéteé.

Applications

Dans ce contexte, nous étudions trois applications prasigie I'atlas de Voronoi et du diagramme de
\Voronoi restreint a un espace tangent. La premiére ggedpolation de données éparpillées sur une
surface: étant donné un ensemble de valeurs discraias @bnction définie sur une surface, on souhaite
interpoler cette fonction sur la surface. Nous montronsdatte thése que les méthodes d'interpolation
par coordonnées naturelles se généralisent directam&rdiagrammes de Voronoi restreints aux espaces
tangents et constituent une solution adéquate pourtfintation sur des surfaces.

La seconde application aborde un probléme ayant attaédmp d’attention ces vingt dernieres années
a savoir la reconstruction de surface ou de courbe a mhuntir nuage de points. Nous proposons ici une
solution qui est tres semblable aux méthodes de filtrage¥gronoi ou la variété est approximée par un
sous-ensemble des faces de la triangulation de Delaunay.

Finalement, j'ai développé un prototype pour pour le gattune approximation des diagrammes de
Voronoi centroidal sur des surfaces. Un diagramme dendiroentroidal est un diagramme de Voronoi
dans lequel chaque sommet coincide avec le centre de masseellule qu'il définit. Pour le cas d'une



surface, dediagrammes de Voroiigentrddales contraintesnt été définit par Du, Gunzburger et Ju [50].
La méthode la plus efficace pour calculer ce type de diageueshbasée sur le calcul du diagramme de
Voronoi restreint a une surface. Comme nous I'avons acgaémment, le calcul d’un diagramme de
Voronoi restreint a une surface est cependant trés xaegeul le calcul de tel diagramme sur des cas
particuliers, comme par exemple la sphére, est envisteyehh nouvelle idée présentée dans la Section
8.3 consiste a calculer le diagramme de Voronoi cerdtd@igpartir de I'atlas de Voronoi, ce qui revient a
approximer la surface a l'intérieur de chaque cellulelpgnian tangent a la surface au sommet qui génere
la cellule. Le diagramme de Voronoi est alors calculé @ipdu diagramme approximé d’'une maniere
itérative. Nous présentons des résultats expérirngrités convainquants, notamment en ce qui concerne
la régularité de la triangulation duale par exemple.

Résumne des chapitres

Ce manuscrit est organisé de la maniere suivante.

1. Aprés l'introduction, le deuxieme chapitre préselete concepts de diagrammes de Voronoi et de
diagrammes de puissance. Leur interprétation dans Besdas sphéres est également rappelée.
Enfin, il est montré que l'intersection d’'un diagramme désgance avec un sous-espace affine est
elle-méme un diagramme de puissance. Cet observation @stlir de notre travail sur les systemes
de coordonnées sur des variétés.

2. Le troisieme chapitre généralise le concept de caurdes naturelles aux diagrammes de puis-
sances. Apres un état de I'art sur les coordonnées fiagioans des diagrammes de Voronoi et la
définition des fonctions de coordonnées généraljdesspropriétés de continuité et le gradient de
la fonction de coordonnée sont montrés. De plus, un nausgsteme de coordonnées proposé par
Clarkson dans [35] est présenté. Ce dernier possedquipsepropriétés supplémentaires par rapport
a celles des coordonnées naturelles sur lequel il est bas”

3. Le quatrieme chapitre contient une synthése desreiffés méthodes d'interpolation basées sur
les coordonnées naturelles. Cet état de I'art contienples, quelques améliorations de méthodes
existantes et il compléete certaines preuves qui n‘'ongp@asgournies dans les articles originaux.

4. Le cingieme chapitre introduit des notions topolog&j®t géométriques concernant les variétés
echantillonnées. Nous définissons ensuite le diagrader¢oronori restreint a une variété et nous
spécifions une condition d’échantillonnage suppodée\&rifiee dans la suite. La derniere partie
rappelle plusieurs résultats relatifs aux propriétesles d'une variété échantillonnée et a I'estima-
tion de certains quantités de la variété, comme par elel@pnormales, a partir des points d’échanti-
llonnage et en supposant la condition d’échantillonnayéfige.



5. Le coeur de ce travail est présenté dans le sixiemesepiiéme chapitreEtant donné un nuage de
points issu d’une variété, le sixieme chapitre contlartéfinition d’'un voisinage et d’'un systeme de
coordonnées pour chaque point de la variété. Il est ra@tus quelles conditions ces notions sont
locales sur la variété. En outre, les propriétés deiooité des fonctions de coordonnées et leurs
gradients (pour des surface uniguement) sont examinés.

6. Le septieme chapitre définit I'atlas de Voronoi d’'urage de points sur une variéte. Quelques
propriétés important de I'atlas de Voronoi et de son doat prouvées. Pour des variétés de dimen-
siond — 1, nous proposons une définition alternative pouvant &reegalisée afin de connecter les
differentes cellules de Voronoi. Enfin, un systeme dedoanées est défini par rapport a I'atlas de
Voronoi et quelques unes de ses propriétés sont déassntr

7. Quelques applications de ces concepts sont préseatisslel Chapitre 8. Les trois applications
traitées en détails sont l'interpolation de donnégmrée sur une variété, la reconstruction de sur-
face et de courbes ainsi qu’une technique de remaillageipgrainme de Voronoi centroidal. Ce
chapitre donne enfin quelques résultats expérimentaux.

8. Finalement, le dernier chapitre abordent les questietadives a I'implantation pratique de ces

travaux.

Contributions

A partir d’'un nuage de points répartis sur une variéténdavelle approche proposée dans cette thése
consiste a approximer linéairement une cellule du diagna de Voronoi restreint a la variété afin d’en
déduire un voisinage et un systeme de coordonnées suarikztés associé au nuage de points (Chapitre
6). Enfin, nous introduisons la notion dtlas de Vorond (Chapitre 7), et détaillons trois applications
potentielles.

D’autres contributions se trouvent dans la preuve des j@@srdes coordonnées naturelles généralisées
au cas des diagrammes de puissance et dans I'améliorasomé&thodes d'interpolation par coordonnées

naturelles.



Introduction e

This chapter motivates the problems addressed in thissthdse definition of a coordinate system and
a local neighborhood associated with a set of points segften a smooth manifold. We present some
applications of this new concept and discuss its furtherichpThen, an overview of the organization of
this thesis is given and the contributions of this thesissaramarized.

Problem definition

The Voronoi diagram is one of the most fundamental datatsires in computational geometry. It is also
the main object of attention of this thesis. Given a set afréite data points in Euclidean space,\toeonoi
diagramis a partition of the space in cells that contain all pointgiing.the same nearest neighbor among
the data points. This concept has attracted a lot of attemtithe last century. To underlay the generality
of Voronoi diagrams, we cite Franz Aurenhammer who call@h# Universal Spatial Data Structufeln
[14], Aurenhammer overviews different aspects of Vororiagdams including the historical perspective.
He gives three main reasons for the importance of Voronardias, namely, its frequent occurrence in
natural processes for example in crystallography, itsé@steng mathematical properties and, at last, the
numerous applications that are based on Voronoi diagrams.

Another prominent data-structure that is closely relateddronoi diagrams is thBelaunay triangu-
lation. The Delaunay triangulation is a graph on the data pointsishdual to the Voronoi diagram in
the following sense: Two data points are connected by an iedipe Delaunay triangulation if and only
if their Voronoi cells are adjacent, i.e. they share a comimomndary. A triangle exists in the Delaunay
triangulation if three Voronoi cells are adjacent one tothepand so on. The geometric and combinatorial
properties of both structures, Voronoi diagrams and Degunangulations, are complementary and most
properties translate easily from one structure to the otBgrthis, the study of both concepts is related
in theoretical aspects as well as for practical issues caoitgg for example, the computation of Voronoi
diagrams and Delaunay triangulations.

Detached from a particular application, the computatigedmetry community started to investigate
theoretical and practical viewpoints of Voronoi diagrantcs its emergence in the seventies. In the

8A citation after C. Gold’s Vioronoi website http://www.varoi.com/.
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eighties, it has become a major interest of this field. Therdtecal questions include the generalization
of Voronoi diagrams to different kinds of metrics, the stuafithe combinatorial complexity of Voronoi
diagrams, the discovery of a relation between Voronoi diagy and convex hulls, etc. On the other hand,
practical algorithms have been developed and implemewptedrhpute Voronoi diagrams and Delaunay
triangulations. This permitted the development of variapglications in all kinds of areas.

Voronoi diagrams on manifolds

In this thesis, we are interested in the particular case eviier data points are issued frorh-dimensional
manifold embedded in Euclidean space. This case is patlgumportant in practice where surfaces and
generalk-manifolds represented by a set of unordered sample pamisreountered in many application
areas such as computer graphics, computer aided design)@#aiDeverse engineering, image processing,
and scientific computation. In some cases, the underlyingjfold might be known, in others not.

If it is known, one can either resort to tigeodesic Voronoi diagrarat is defined by the metric on the
manifold or to the Voronoi diagram that is determined by thelElean metric in the embedding space.
Geodesic Voronoi diagrams on parametric surfaces arefsukbly Kunze, Wolter and Rausch in [73].
In [74], Leibon and Letscher formulate a sampling condiionRiemann manifolds that guarantees the
existence of a unique Delaunay triangulation and a dualn@rdiagram with the same properties as in
Euclidean space. While the geodesic distance might be nu@guate as it is intrinsic to the manifold,
it has the drawback that it is a lot more difficult to computes a example consider thésectorof two
points, i.e. the set of points that are at equal distanceetpdmts. It is a basic element in the computation
of Voronoi diagrams. While in Euclidean metric, the bisegtoa hyperplane, using geodesic distance, it
is curved and might not even be connected.

Using Euclidean distance, Edelsbrunner and Shah [54] defiestricted Voronoi diagranas the re-
striction of the Euclidean Voronoi diagram to the manifold.cell of the restricted Voronoi diagram is
then the intersection of the cell with the manifold. Evenutylo this Voronoi diagram depends on the par-
ticular embedding of the manifold iR¢, one can, for example, show that the dual Delaunay triatigala
is homeomorphic to the surface if some (checkable) conditere satisfied. However, even this diagram
might be too costly to compute.

If the underlying manifold is known only by the data pointsisi actually, impossible to compute the
restricted Voronoi diagram. For this reason, this thesippses a very practical approach to approximate
a cell of the restricted Voronoi diagram — even if only a pailtud issued from the manifold is known.
The main idea consists of approximating the manifold lgcéfiside a Voronoi cell, by the tangent space
to the manifold at the data point that generates the celelinanifold is well sampled with respect to the
curvature and to the local thickness of the manifold, thgé¢ah space and the manifold are close inside
the cell. This is explained in detail in Chapter 6. We need @&mtion that there exist several methods in
the literature to estimate the tangent spaces from a pauaticl



Furthermore, the restriction of a Voronoi diagram define®fnto a k-dimensional linear subspace
is, in fact, ak-dimensional power diagram, i.e. a Voronoi diagram for vaég points. Consequently,
it satisfies all properties known for power diagrams, andtexg algorithms can be easily adopted. The
complexity of a cell of the diagram (concerning the numbefacgs) depends on the dimensibwof the
manifold and not on the dimension of the embedding space Votanoi diagram restricted to the tangent
space of the manifold at a poigtis called the7,-restricted Voronoi diagram.

The collection of Voronoi cells restricted to the tangerdapof each sample point is the so-called
restricted Voronoi atlas defined in Chapter 7. By the Voraitas, the manifold is approximated linearly
in a best possible way with respect to the given data: a pairthe manifold is approximated by the
tangent space of the closest data point. If the samplindfiicigutly dense, each cell of the Voronoi atlas
is homeomorphic to the corresponding cell on the manifoldweler, the cells of the Voronoi atlas have,
in general, no common boundary.

The dual triangulation of the Voronoi atlas is the graph irichitwo data points are connected if one
of their tangent spaces intersects the dual Voronoi facés ddes not yield a global triangulation of the
data points because the neighborhood relation is not restlgssymmetric. Nevertheless, it allows to
obtain a small triangulation around each data point, whschomeomorphic to a small neighborhood of
that point on the manifold — provided that some sampling @¢mrdis satisfied. For each sample point, the
set of adjacent sample points in the triangulation definexal Iheighborhood around the point. This is
interesting in a variety of applications.

Natural neighbor interpolation

One important application of Voronoi diagramsniatural neighbor interpolation This is a multi-variate
scattered data interpolation method that has been inteablog Sibson in 1980 [90][91]. From the Voronoi
diagram, Sibson defines a barycentric coordinate systene -sdfcalled natural neighbor coordinates.
Given a query point, barycentric coordinates associate ighivéo each of the neighboring data points
such that the query point is their weighted barycenter. &@ilshows that the natural neighbor coordinates
fulfill this definition.

Interpolation methods based on natural neighbor coorelnate particularly interesting because they
adapt easily to non-uniform and highly anisotropic datar ths reason, they have been widely used in
geophysical modeling and GIS applications. Other imponaoperties are the locally bounded support
of the coordinate functions and the meshless charactereomitthods. No artifacts are introduced due
to a priori and often arbitrary subdivision of the space. Afrmm Sibson’s methods, other interpolation
methods exist that are based on natural neighbor coordinateoverview is given in this thesis.

The definition of natural neighbor coordinates can be gdimechato power diagrams, and, consequently,
to 7,.-restricted Voronoi diagrams. The resulting coordinattey — defined on the manifold — responds to
the demand of a definition of barycentric coordinates on ggmeanifolds, notably, for scattered data in-



terpolation on surfaces. Note that the solution is only apipnate, so the coordinate system is barycentric
only with respect to each tangent plane. Some importantepties of the resulting,.-coordinate system
are developed in this thesis. Notably, it is shown that ibisal on the manifold, that it i§'! continuous
almost everywhere on the manifold, and its gradient is detexd.

If the manifold is not known, another natural neighbor cauawte system is defined with respect to the
Voronoi atlas. While th&,.-coordinate system is defined in the tangent space of a poititeomanifold,
the natural neighbor coordinates in the Voronoi atlas afieel in the tangent spaces of the sample points.
Its definition domain is a small neighborhood of the manifolthus, even if its properties are weaker
than those of thé,-coordinate system, it has the advantage that it can beeappiithout knowing the
manifold.

Applications

In this context, | consider three applications of therestricted Voronoi diagram and the Voronoi atlas
in more detail. The first is scattered data interpolation uriases. Given discrete values of a function
that is defined on a manifold, the problem is to interpolate fitnction elsewhere on the manifold. Nat-
ural neighbor interpolation can be generalized in a sttboglvard manner to th&-restricted Voronoi
diagram. In this thesis, we show that this yields an adecgalteion to interpolation on surfaces.

The second application is concerned with reconstructingriase or a curve from a set of scattered
points. This problem has received a lot of attention in tisétlaenty years. Our solution is closely related
to existing so-called Voronoi-filtering methods where thanifold is approximated by a subset of faces of
the Delaunay triangulation.

At last, | developed a prototype for approximating centabidoronoi diagrams on manifolds. A cen-
troidal Voronoi diagram is a Voronoi diagram such that eagimtpdefining a Voronoi cell coincides with
the mass centroid of that cell. For the surface case, seeb@bnstrained Centroidal Voronoi diagrams
have been specified by Du, Gunzburger and Ju [50]. Their rdathaot practical for general surfaces
because, so far, there exist no software for computing gtected Voronoi diagram (even with Euclidean
metric). The new idea presented in Section 8.3 is computeghtoidal Voronoi diagram with respect to
the Voronoi atlas. This means to linearly approximate théase inside each Voronoi cell by the tangent
plane at the point that generates the cell. The centroidadn diagram is computed with respect to the
approximated diagram by an iterative method. Some expetaheesults are presented.

Outline of this thesis

This thesis is organized as follows.

1. After this introduction, the second chapter introdudesdoncepts of Voronoi and power diagrams
which are the basic underlying concepts to this work. Itlte@dso their description in the space of



spheres. Finally, it shows that the intersection of a povisgrdm with an affine subspace is itself a
power diagram which is, in some sense, the key to our worktaboaordinate system on surfaces.

. The third chapter generalizes the concept of naturalhbeigcoordinates from Voronoi diagrams
to power diagrams. After a state of art about natural neigbbordinates in Voronoi diagrams and
the definition of the generalized coordinate system, théiroity properties and the gradient of the
coordinate function are proven. Furthermore, a new coatdisystem is presented that is based on
natural neighbor coordinates but which has additional gigs. It has been proposed by Clarkson
in [35].

. A survey about scattered data interpolation methodsatfgabased on natural neighbor coordinate
systems is presented in the fourth chapter.

. The fifth chapter introduces the necessary topologicadig@ometric notations concerning the sam-
pled manifold. Then, it defines how a Voronoi diagram can Bé&ricted to a manifold, and it spec-
ifies a sampling condition that we suppose to be satisfiederséguel. At last, it re-calls several
results about local properties of a sampled manifold andialhe estimation of certain quantities
from the sample points supposing the sampling conditiongs m

. The heart of this work is presented in the sixth and in thversth chapter. Given a set of points
issued from a manifold, the sixth chapter contains the defimiof a neighborhood as well as a
coordinate system for each point on the manifold. It is shawader which conditions both notions
are local on the manifold. Furthermore, the continuity jerties of the coordinate functions as well
as their gradients are examined (the latter for surfaceg.onl

. The seventh chapter defines therestricted Voronoi atlas of a point cloud on a manifold. gom
properties of the Voronoi atlas and its dual are proven.(Fer 1)-manifolds, we present a different
definition which allows to connect the Voronoi cells betwdba tangent spaces. A coordinate
system with respect to the Voronoi atlas is specified and surite properties are shown.

. The applications of these concepts are presented in &hdpfThe three applications that are in-
vestigated in detail are scattered data interpolation pétfans on general surfaces, surface and
curve reconstruction and re-meshing with centroidal Voraliagrams. This chapter presents also
experimental results.

. Finally, the last chapter treats some implementatiameis$o demonstrate the practical feasibility of
this work.



Contributions

The main contribution of this thesis is the definition of aghdiorhood as well as a coordinate system on
a manifold associated with a point cloud scattered over thgiiold in Chapter 6 and the assembly of
the local neighborhoods to the Voronoi atlas described iapB#r 7. These chapters contain exclusively
original work. The proof of Lemma 6.3 is inspired from [9]. & bontent of Chapter 6 is the subject of two
publications [24] [25].

In Chapter 6, it is shown under which conditions the neighbod and the coordinate system are
local on the manifold. Furthermore, the continuity projsrtof the coordinate functions as well as their
gradients are examined (the latter for surfaces only). Ppecximation of a Voronoi diagram restricted to
a manifold by a7 -restricted Voronoi atlas is defined as well as its dual ctitbe of Delaunay simplices.
The alternative definition of the Voronoi atlas in SectioR ig.inspired from the work of Nullans [83]. A
coordinate system is determined with respect to the Voratias.

Three applications of the coordinate system and the attagrasented. For scattered data interpolation
of functions defined on surfaces, | adopted the existing austtof natural neighbor interpolation. The
methods are implemented and some experimental resultseserped.

The second application is surface and curve reconstructtamppears that this work is very close to
the work of Dey et al. on th€ OCONE algorithm (e.g. [7]). The reconstruction algorithm forfages is
only partially implemented.

The third application is remeshing with centroidal Vorod@agrams. | realized a prototype that pro-
duces convincing results. Implementation issues are atmsked in the practical part of the thesis,
namely in Chapter 9.

Another important contribution of this thesis consists tté generalization of the concept of natural
neighbor coordinates from Voronoi diagrams to power diangra The definition of this generalized co-
ordinate system is known from [12], however, to my knowledidpere exists no further analysis of its
properties. Chapter 3 contains, notably, a proof of theigaity properties (Lemma 3.6 and Lemma 3.7)
and a proof of the gradient of the coordinate function (Lenfi@&and Lemma 3.11). Also, the behavior
of the coordinate function close to a data point is examinegktail in Lemma 3.14 and Lemma 3.15.

At last, this thesis provides a synthesis about scatteréaligterpolation methods that are based on
natural neighbor coordinate systems. It completes ormssaf the original papers, notably, the proof
of the C!' continuity of Sibson’s interpolant was not contained in thiginal paper. A new interpolant
is defined that is designed specifically for interpolatiomjofdratic functions. Clarkson’s interpolation
method that is described in section 4.3 is so far unpublis@Géarkson mentioned it in a talk [35].



Chapter 2

Voronoi and power diagrams

One of the main topics of this thesis are Voronoi and powegrdias. In this section, we give a short
introduction and the necessary definitions concerning botitepts.

2.1 \Voronoi diagrams

We define d:-polytopeto be the intersection of a finite number of closed halfspac&¢ of dimensionk.

It can be bounded or unbounded. A boundepolytope can equivalently be defined as the convex hull of
a finite set of points ifR?. A cell complexC is a set of polytopes such that any face of a polytope is itself
a polytope inC' and such that the intersection of two polytopesCbis either empty or it is a polytope

of smaller dimension which is their common face of maximahelsion. If a bounded-polytope is the
convex hull ofk + 1 (affinely independent) points it is calledkasimplex A cell complex containing only
simplices is called aimplicial complex

Let? = {p1,...,pn} be aset of points ilR?. Without real loss of generality, we can assume that no
d + 2 points lie on the same sphere. The Voronoi celppfs the locus of points that are closergpthan
to any other point of?:

V(pi) = {x €R": [lx —pif| < lx —pll ¥j=1,....n}

where||x — y|| denotes the Euclidean distance between poings € R?. Let the bisector hyperplane of
two pointsp; andp; be calledH,;, andH;fj be the halfspace limited Ibj(;; that containg;. Then,V (p;)
is the intersection of the haIfspaCH%,j # . Itis a non-empty convex polytope that contagisand that
is unbounded ip; is a vertex of the convex hutbonv(P) of P.

One can show that the Voronoi cells and their faces form acoefiplex, see e.g. [26, chapter 17]. This
leads to the following definition:

Definition 2.1 The cell complex of Voronoi celld(p;),7 =1, ..., n, is called theVoronoi diagranof P
or Vor(P).
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Let P’ be a subset of points & whose Voronoi cells have a non-empty intersection. The eotull
conv(P’) is called a Delaunay face. The Delaunay faces form a cell tongalled the Delaunay triangu-
lation of P, denotedDel(P). The Delaunay triangulation dualto the Voronoi diagram which means that
for any k-face ofDel(P), k < d, there exists a duall — k)-face inVor(P) that is exactly the intersection
of the Voronoi cells of the: + 1 generators of the Delaunay face. In other words, if two Vorarells
share a commofd — 1)-face then the points generating the Voronoi cells are octedeby an edge in the
Delaunay triangulation, and vice versa. If three cells sllmcommon(d — 2)-face then their generators
are connected by a triangle, etc. See also Figure 2.1.

Figure 2.1: (left) a Voronoi diagram, (right) the dual Delay triangulation.

Each point on dd — k)-dimensional Voronoi face is equidistant from thet- 1 vertices of the dual
Delaunay face and is further away from all other verticesdgsiit is on the boundary of each of their
Voronoi cells). Consequently, there exist an open ballerect at the point that has ther 1 generators on
its boundary and that is empty of other points frémWe call such a ball aempty sphereln the dual, this
means that for each Delaunay face there is an empty sphesieagdsrough its generators that is centered
on the dual Voronoi face. This property is called #mapty-spher@roperty of the Delaunay triangulation.
Under the general position assumption, thdimensional faces dbel(P) are simplices an®el(P) is a
simplicial complex. Hence the name triangulation.

Each vertex of the Voronoi diagram is generated by the iattien of (d + 1)-Voronoi cells. Its dual
is a d-dimensional face oDel(P). The Voronoi vertex is therefore the center of the circunesphof
the Delaunay simplex. These empty spheres, that are cdrwer&oronoi vertices and circumscribe a
Delaunay face, are callddelaunay spheres

The arrangement of Delaunay spherissthe partition ofR? into cells such that all points of one cell
lie inside the same set of Delaunay spheres. The points otelhéave the following in common: if
they were added t@®, all Voronoi vertices ofVor(P) whose Delaunay spheres cover the cell would be



destroyed and so would their dual Delaunay faces. We sag th@intx is inserted intdvor(P) if Vor(P)

is replaced byor(P U {x}) (resp. forDel(P)). A point isin conflictwith a Delaunay sphere if it lies
inside the sphere. It is al$o conflictwith the Voronoi vertex that is the center of the Delaunayesptand
that disappears at its insertion iritor (7). After its insertion intaDel(P), the new point is incident to the
vertices belonging to the destroyed Delaunay faces.

(@) (b) ()

Figure 2.2: The arrangement of Delaunay spheres (top (&))tlae Voronoi diagram, (bottom (a)) with the
Delaunay triangulation. Insertion gf; (b) two Delaunay spheres are in conflict with, (c) one Delaunay
sphere is in conflict witlp,.

Figure 2.2 shows an arrangement of two Delaunay spheresfidgures in the middle show that two
Voronoi vertices (top figure) and resp. two Delaunay triaaglbottom figure) are destroyed after the
insertion ofp, into the dark grey cell of the arrangement. At its insertiotoche light grey cell, only one
vertex and resp. one triangle is destroyed (right figures).

2.2 Power diagrams

Next, we generalize the definitions of the previous sectiopdwer diagrams, i.e. weighted Voronoi di-
agrams. These diagrams are also calleduerre diagrams Let B = {B;, Bs,..., B, } be a set of

weighted points (or sites) iR?, B; = (p;, w;) € R? x R. A weighted pointB; can also be considered
as a sphere with centgr; and radius,/w;. Notice, thatw; might be negative and the associated sphere



imaginary. Thepower distanc@r Laguerre distancé'(B;, B;) between two weighted points is defined as
[(Bi, B;) := |pi — pjll* — wi — w.
A pointx € R? has power distancE;(x) with respect ta3;, where
Li(x) = [lpi = x[|* = wi.

A weighted pointB; (or the corresponding sphere)aghogonalto another weighted poiri§; (or sphere)
if their power distance is zero. Without real loss of gerigralve can assume that the weighted points are
in general position. This means that e 2 weighted points are orthogonal to the same sphere.

The power cell ofB; is the locus of points whose power distance wi#1.is less than its power distance
wrt. any other site3; € B:

P(B))={p € R :Ty(p) <Tj(p) Vj=1,...,n}

Let the bisector hyperplane of two weighted poitts and B; be the hyperplané{;; = {p € R? -
Ti(p) = I';(p)}, andH;; be the halfspace limited bjt;; such that for allp € ;; : I'y(p) < T';(p).
Again, P(B;) is the intersection of the halfspac‘esj,j # 1, but, in the weighted casé&)(B;) might be
empty and must not necessarily contpin However, if it is not empty, it is a convex polytope and one ca
show that the power cells and their faces form a cell complex.

Definition 2.2 The cell complex of power cell3(B;),i = 1,...,n, is called thepower diagranof 3 or
Pow(B).

The dual of the power diagram is called tlegular triangulationor Reg(B). The vertices ofReg(B)
belong to{p1,...,pn} and, under the general position assumption,#uemensional faces dReg(B)
are simplices andkeg(B) is a simplicial complex. Fok < d, eachk-face F'(B;,, ..., B;,) of Reg(B)
(with verticesp;,, ..., pi,) is dual to a(d — k)-face of Pow(B) that is exactly the intersection of the
power cells of the: + 1 corresponding sites, and, consequently, the intersecfitihre bisector hyperplanes
Hij,i,j € {ig,. .., }. We define

P(Biy,...,Bi,)= () P(Bi),0>k<d,
j=0..k
and we say thaB;, . .., B;, are thegeneratorof P(B;,, ..., B;, ). In particular, thgd — 1)-dimensional
power face dual to an edge Bkg() is contained in the bisector hyperplane of its generators.

A sphere that is orthogonal to+ 1 weighted points is called therthosphereof the k + 1 sites. It
is emptyif it has positive or zero power distance to all sitesiof For anyk-face ofReg(3) there exist
an empty orthosphere of its + 1 generators. Its center lies on the dual power face. Thisgptpps
equivalent to the empty-sphere property of the Delaunapgulation. We say that a weighted poiniris
conflict with an orthospher# its power distance to the orthosphere is negative.



Theregular orthosphereof a d-face ofReg(B) is the empty orthosphere of its+ 1 generators. Its
center is a vertex dPow (B). If a weighted pointX is in conflict with a regular orthosphere, we may also
say that it isin conflict with the vertexf Pow () that is its center.

The set of regular orthospheres is cal@dThearrangement of regular orthospheresthe generalized
concept of the arrangement of Delaunay spheres. We say thatghted pointX lies in a cell of the
arrangement if it is in conflict with the regular orthospleetieat cover the cell. Thus, at the insertion of
X, i.e. whenX is added ta3, all faces ofReg(B) whose regular orthospheres are in conflict withare
destroyed and also all verticesBéw (3) that are the centers of these regular orthospheres. Hovikeer
arrangement of regular orthospheres is better defined lpgitivalent in a dual transform called the space
of spheres which is introduced in the next section. See 26j.fpr further properties of power diagrams
and regular triangulations.

2.3 Space of spheres

Itis well known that a power diagram can be obtained as a gioje of the facets of &+ 1)-dimensional
polytope ontdR?. See e.g. [26, chapter 17] and [39]. This polytope is defiryetiéwell known transform
from spheres oR? to hyperplanes iR?*!. In the sequel, théd + 1)th coordinate axis is calledertical
axis and a point is above (or below) another point if(i#s+ 1)th coordinate is bigger (or smaller) than the
other’s. Thevertical projectionis the projection onto the hyperplang,; = 0.

Let B; = (pi, w;) be the sphere (or the weighted point as described in thegirgcsection) of equation
(pi — x)'(pi — x) —w; = 0.

Its power distance to the origihis I';(0) = p;'p; — w;. The lifting of B; to the space of spheres is defined
by the bijection
¢: B; = (pi,w;) € R x R — ¢(B;) = (p;, [:(0)) € R,

We consider the image byof all spheres orthogonal ;. Let X = (x, w, ) be such a sphere aihg the
power distance wrtX . The centex and the squared radius, must satisfy the following equation:

(x— pi)t(x— pi) —wy —w; =0 <= x'x —w, = 2x"'p; — (pitpi —w;) <= T1,(0)=2 x'pi — r';(0).

Since the(d + 1)th coordinate ofy(X ) isT',.(0), we deduce that the spheres orthogonadBt@are mapped
by ¢ to the(d + 1)-dimensional hyperplan&; of equation

zap1 =2 x'p; — [(0).

We argue in the sequel that; is the hyperplanelual to ¢(B;) in the space of spheres. Thus, it is also
called ¢(B;)*. By H;" (equiv. ¢(B;)*") we refer to the positive halfspace delimited By, 441 >
2 pi'x — I';(0). Respectively, by~ (equiv. ¢(B;)*~), we refer to the negative halfspace.



A duality is any bijection that reverses inclusion relationships.e Bijection from¢(B;) to H; is,
indeed, a duality because

¢(B;) € H <= Ti(0) > 2pi'p; —T;(0) <= T;(0) > 2p;'p; —Ti(0) <= ¢(B;) € H
gzﬁ(Bl) c Hji < Fi([)) < 2pitpj — Fj(()) < Fj([)) < 2pjtpi — Fi([)) < gzﬁ(B]) c H;

Notice that, unless; = 0, B; is not orthogonal to itself, hence(B;) ¢ ¢(B;)*. Instead, the conjugate
weighted point (or spherd}; := (p;, —w;) is orthogonal taB; and¢(B;) lies in ¢(B;)*.

An unweighted point or sphere with zero radius is mappead by the unitd-paraboloid¥ with axis
i1t 0((x,0)) = (x,x'x). Its dual is the tangent plane b at (x, x'x). In general, the image b$ of
weighted points with the same weightis the paraboloidl(w). ¥(w) is the vertical translation of such
that ¥ (w) has the same axis thanbut is centered on a poif®, —w).! Indeed,¢((x,w)) = (x, x'x—w).
The dual hyperplane*(X) is tangent tol (—w) at ¢((x, —w)). The normal ofp*(X) is independent of
the weight: it is the normal o¥ at (x, x'x).

-

(@) (b)

Figure 2.3: (a)p(B;)* N ¥ projects onto the sphetB; (b) ¢(B;)* N ¢(B;)* projects onto the bisector
hyperplane;; .

The intersection of(B;)* with the paraboloidl vertically projects onto the spherg:
(Pi—x)'(pi—x)—w; =0 <= x'x=2%'p;i—Ii(0) <<= ¢((x,0)) € ¢(B;)".

See Figure 2.3 (a). A point is inside the spherd; if ¢((x,0)) is below ¢(B;)* and outsideB; if
#((x,0)) lies abovep(B;)*. The analogue works for the power distance: a weighted poihas negative
power distance t@®; if ¢(X) lies belowg(B;)* and it has positive power distance® if ¢(X) is above

10 denotes the origin ifR?



¢(B;)*. More precisely, the signed vertical distance¢dX') to ¢(B;)* is, in fact, the power distance
I'(B;, X): since the(d + 1)th coordinate ofp(.X') is I';(0) and the vertical line through intersects
¢(Bi)* atzgyy = 2 x'p; — [(0), we get

I0)—(2x'pi —Ti0) = x'x—w, —2x'p;+pi'pi —w;

= (pi —x)'(pi — %) —w; — w, = [(B;, X).

Consequently, if a poink has less power wrtB; than wrt. B; then the vertical line throughk inter-
sects¢(B;)* aboves(B;)*. The(d — 1)-dimensional bisector hyperplari¢;; is, therefore, the vertical
projection of the intersection ef( B;)* and¢(B;)*. See Figure 2.3(b).
We define the following polytope:

P(B):=H{Nn...NnH (2.1)

where H;" is the positive halfspace delimited ) B;)*. One can see that the faces7(3) vertically

project ontoPow (B): a point of the facef; of P(B3) carried by the hyperplang B;)* lies above all other
hyperplanesy(B;)*, so, its vertical projection has less power wst. than wrt. any other sité3;. See
Figure 2.4.

Figure 2.4:Pow (1) is the vertical projection of the faces B 5).

The empty-sphere property of the regular triangulationdi@tes as follows in the space of spheres: the
regular orthosphere of a simplex of the triangulation is@gonal to the sites of the simplex and has
positive power distance to all other sites®f This means that its dual hyperplane in the space of spheres



contains the image by of its generators and is below the imagedpf all other sites. More precisely,
let O = (o, w,) be orthogonal tdB, ..., Bs.1, H, be the dual ofp(O), and, H;" the positive halfspace
defined byH,. F'(By,...,Bg+1) is a face ofReg(B) if and only if

¢(B;) € Hyyi=1,...,d+1, and¢(B;) € Hf, j=d+2,...,n.

We deduce that the lower convex hull pf(B;),: = 1,...,n} projects vertically ontdReg(5). Refer
to Figure 2.5. The general position assumption is satisfie il + 2 points of ¢(5) lie in the same

d-dimensional hyperplane.

yan

P2

Figure 2.5: The lower convex hull ef(B) projects ontdReg(5).

The arrangement of regular orthospheres correspondsg ispi#ce of spheres, to the arrangement of
hyperplanes that are dual to the image of the regular ortfreyepO € O. We call itarr(¢(O)*). Of
course, the hyperplanes afr(¢(O)*) are equivalently defined by the simplices Idég(B): for each
simplex there exist a hyperplane in the arrangement thaatwthe image of the simplex’s generators. If
O is the simplex’s regular orthosphere, the hyperplarg (). All points within a cell of this arrangement
of hyperplanes have in common that their preimage lxyin conflict with the same regular orthospheres,
and the same simplices Bleg(3) are destroyed at their insertion inReg(B).

Expression for a vertex of the power diagram

vertex of the power diagram dual to the fa€eB;, , . . ., B, , ) of Reg(B). Itis the center of the regular or-
thosphere of this face. If¢*(O) is the dual hyperplane of(O), it must containy(B;, ), #(Bi, ), . . . ¢(Bi,., )

A vertex of the power diagram is a rational functions of itagiators. Re-call that(B;,,. .., B;,, ) isthe



Thus, we know the equation ¢gf (O) and we can determine the coordinates)g®) from it. The vertex
of the power diagram is the projection ¢fO) onxz,.; = 0. We develop the expression only fér= 2
because this facilitates the exposition. The same appr@ggles in any dimension.

In the two-dimensional case with; = ((z1,y1),w1), B2 = ((x2,y2), ws), Bs = ((v3,y3),ws), and
(B;)? := 2? + y? — w;, the equation of*(0) is

1 1 1

S —0 2.2)

1
X
Y1 Y2 Y3 ()
(B1)? (B2)* (B3)* =z

On the other hand, taking(O) = (z,, ¥,, 2,), We know thaty*(O) has the equation

zo = 0.

[NCR

1
z2=2(xx0 + YY) — 20 =  TTo+ YYo — §z —

We develop Equation (2.2) and identify the terms. In pakiicuve need to obtain the factérfor the
z-coordinate in Equation (2.3), thus, we divide EquatioY®y 2D with

1 1 1
D := Ty T2 I3

Yyr Y2 Y3

Identifying the factors of the- and they- coordinate, we find

1
P(B1, B3, B3) = (20,Y0) = 0 R Y2 ys || @1 T2 x3 . (2.3)

2.4 Power diagrams and sections of Voronoi diagrams

The following lemma proves that the intersection af-dimensional power diagram withiaflat  of R¢
with & < d is a power diagram of dimensidn A k-flat of R? is ak-dimensional affine subspaceRf.

We say thatH is in general positionif the intersection of arid — [)-dimensional face of the power
diagram, < k, with H is either empty or has dimensi@n- /, and if the intersection dff with a(d — [)-
dimensional face of the power diagram with £ is always empty. Notice, that a small perturbatior-of
always removes a degenerate position. Without loss of gétyerwe suppose the general position7éf
in order to ensure that the general position assumptiorhfaresultingk-dimensional power diagram is
satisfied.



Lemma 2.3 The intersection of the power diagraPow (B3) with a k-flat 4 of R? in general position is a
k-dimensional power diagranow(B) defined inH whereB = {B; = (pi,W;),i = 1,...,n} such that
pi is the orthogonal projection gb; onto’H andw; = w; — ||p; — p;||* for eachB; € B.

Proof: Becausép; is the orthogonal projection gf; ontoH, we know that

I

VxeH: ||x—pil* =|x-pil> + |pi — Bill>

Consequently, if';(x) is the power ofc wrt. the siteB; = (p;, w; — ||pi — Pill*)?
VxeH: Ii(x) <Tj(x) < [x=pill* +lpi = Bill* — wi < |x = B5|° + lIpy — B31* — w;

— [i(x) <Tj(x). O

The preceding lemma implies in particular that the inteisacf a Voronoi diagram witlH is a power
diagram. Let the Voronoi diagrafvior(P) be defined as before afidor(P) be the intersection of the
Voronoi diagram withH, Vor(P) := Vor(P) N'H. For allp; € P, V(p;) := V(pi) NH.

Observation 2.4 Vor(P) is the power diagram of the poings; that are the projection of the sample
pointsp; € P ontoH weighted withw; = —||p; — pil|®.

The notation is the same as for conjugate spheres. Howeeeajways mention specifically when the conjugate sphere is
referred to.



Chapter 3

Natural neighbor coordinates in power
diagrams

3.1 Introduction

Natural neighbor interpolation has been introduced by @if91] to interpolate multivariate scattered
data. Given a set of point8 = {p1,...,pn}, the natural neighbor coordinate system associatédit
defined from the Voronoi diagram @&. Various papers ([90], [56], [84], [29],[71]) show that #itsfies
the following definition by Brown [29].

Definition 3.1 ([29]) A system of coordinates ovet C R? associated withP is a set of continuous
functionss; : U/ — R,i =1,...,n, such that for alkk € U/,

(i) x =>"", si(x)p; (barycentric coordinate property or BCP).
(i) Foranyi < n,s;(p;) = 6;;, whered;; is the Kronecker symbol.
(i) Yoy si(x) =1 (partition of unity property).

In our context, it is useful to enlarge this definition. We dhgt the coordinate system @®nvex if
si(x) > 0 for all x € U, otherwise it is not convex. Let theeighted barycenteof a pointx € ¢/ be

n

b(x) =Y si(x)pi.

=1
With the barycentric coordinate propery= b(x). If the barycentric coordinate property is not satisfied
bute(x) = ||x — b(x)|| is small, we say that we are concerned with a coordinate reyttat isalmost
barycentric e(x) is the error concerning the barycentric coordinate prgpert
The coordinate system Iscal if the support of each coordinate functienis contained in a small
topological ball centered op;.1 We will see in this chapter that the natural neighbor coadirsystem

1See Section 5.1 for the definition of a topological ball.
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defined in a power diagram is a convex barycentric coordisiggéem. It is local whenever the weights of
the points are bounded.

Related Work

Sibson introduces the natural neighbor coordinate systef80d] and proves the barycentric coordinate
property in a generalized manner. (He calls this propentyldbal coordinate property In a second
paper, he describes its application to scattered datgpoitgion over a two-dimensional domain [91]. He
claims that the coordinate function is continuously diéfetiable except on the data sites but the proof is
omitted. He gives an algorithm to compute the natural negltbordinates in two dimensions. In 1988,
Aurenhammer enlarges the definition of natural neighbordinates to power diagrams and subsets of
several points in order to define various linear combinatemong points of the defining se{12]. Later,

he shows the relationship between natural neighbor comteknand the Gale transform [13]. Notably,
he proves that the so-callggbwer matrixrepresents a Gale transform Bf This matrix contains the
coordinates;(p;) of the diagram fofP \ {p;} for each pointp; in the interior of the convex hull oP.

Farin [56] discusses the question of support, differeiitigtand other properties of the natural neigh-
bor coordinate function in more detail than Sibson. Fanu@per refers also only to the two-dimensional
case.

The smoothness properties of the coordinate function itrary dimension have been properly proven
by Piper [84]. It is shown that the coordinate function is thmmous on the convex hudonv(P) of P
and continuously differentiable arnv(7P) except at the data poinf8 themselves. Fixing the poin,
the coordinate function;(x) is also continuously differentiable with respect to a datinpp; € P.
Furthermore, Piper shows a formula for the gradient of therdioate function orconv(P) \ P. The
gradient formula gives rise to another proof of the barygerbordinate property.

Brown [29] pursues a more algebraic than geometric appraaghneral method to produce barycentric
coordinate systems is defined which is based on the weigbtadioation of barycentric coordinates with
respect to a triangle. The proofs of the major properties efiriition 3.1 become immediate. As an
example, he gives the weight function leading to Sibsonwdinates. The work is written for the two-
dimensional case but generalizable to higher dimensions.

The most recent work on natural neighbor coordinates by $tiyand Sugihara [71] spent some effort
to smoothen the coordinate function not on the data poiritsrbthe Delaunay spheres. In fact, as observed
by Farin, the coordinate function &> in conv(P) except on the Delaunay spheres where it is aftly
In [71], a generalized coordinate systems is defined wititrarlp smoothness on the Delaunay spheres
except on the data points. This work leads to yet anothelf pfdbe barycentric coordinate property. The
same idea would be generalizable to natural neighbor coates in power diagrams, however, we do not
further pursue this direction.

Last but not least, Clarkson proposes the construction efxasystem of coordinates that is based on



natural neighbor coordinates. It is an unpublished idesghtdaescribes in a talk [35]. The new coordinate
system fulfills the barycentric coordinate property, i.poat is the linear combination of its neighbors, but
in addition, the squares of the point is the linear combamatf the square of its neighbors. This property
is interesting in scattered data interpolation. HowevéarkSon’s coordinate system is not convex which
means that the coordinate functions may have negativesialue

Outline of the chapter

In the sequel, we define a natural neighbor coordinate sytempower diagrams. Of course, the def-
inition also applies to Voronoi diagrams which are spec@@r diagrams — namely, when all sites have
equal weight. After the definition of the natural neighboobnates, we prove some of their basic prop-
erties, notably, the properties of Definition 3.1, the couity properties and the gradient of the coordinate
function.

Aurenhammer has defined the generalized natural neighlbodicates in [12] and he gives a proof for
the barycentric coordinate property. The contributionhis thesis is to develop further properties of the
coordinate functions by generalizing notably the work qid?i[84]. We also present a new proof of the
barycentric coordinate property.

3.2 Definition of the coordinate function and basic propertes

Let B be a set of, weighted points. The natural neighbor coordinate funatiba weighted poinfX’ with

respect to a sitd3; € B is defined as the proportion of the power cellXfthat has been 'stolen’ from

the siteB; at the insertion ofX into the power diagranfow (B). The natural neighbors are the sites that

have passed a part of their cells to the cellkafFor this to be well defined, the cell 6f has to be neither

empty nor infinite. Figure 3.1 shows an example of naturajimaors in a Voronoi diagram: the cell &f

is highlighted, and its partition with respect to the Vorodiagram withoutX is indicated by dotted lines.
The major difference between the coordinates in Voron@rdians and in power diagrams is due to the

fact that a site of a power diagram might have an empty celis Tannot happen in Voronoi diagrams.

It implies that the cell of some sites may disappear whenriimgea new siteX. However, this does

not change the definition of the coordinate function. Simply’stole’ the entire cell of the sité3; at

its insertion. In the sequel, we give a more formal definitibet X = (x,w,) € R? x R. We define

Pow™(B) := Pow(B U {X}) andReg™(B) := Reg(B U {X}). (Pow(B andReg(B are defined in

Section 2.2.) PT(X) is the power cell ofX in Pow™ (B) and the subcelP;(X) := P*(X) N P(B;)

is the part of the power celP*(X) that has been ’stolen’ fron?(B;) at the insertion ofX. Remark

that the cell ofB; can be entirely contained in the cell &f, so thatP;(X) = P(B;). The volume of

P;(X) is denoted byr;(X) and the volume of?(X) is denoted byr(X). The(d — k)-faces of P*(X)

are calledP* (X, B;,,..., B;,). The definition domain of the natural coordinate functiomshie subset



Figure 3.1:x has five natural neighbogs, ..., ps.

U={X eRIxR|7(X) #ocoAn(X) # 0} of R? x R. Further in this section, we explain its geometric
interpretation in the space of spheres.

We define the natural neighbor coordinate functions foynatid prove later in this section that they
fulfill Definition 3.1.

Definition 3.2 In the natural neighbor coordinate system associated totabaveighed points3, the

(natural neighbor) coordinate functiok;(X),i = 1,...,n,of apointX € ¢/ \ Bis \;(X) = 7:((;(()) and

Ai(Bj) = ¢;; for all B; € BB, whered;; is the Kronecker symbol.

Definition 3.3 Given a set of weighted points, the natural neighbors of a poinX’ € U/ are the sites
B; € Bwith \;(X) #0,i=1,...,n.

In Voronoi diagrams, the natural neighborsxodre exactly the neighbors &fin Del™ (P), i.e. vertices
connected tox by an edge oDel™ (P). In power diagrams, the natural neighborsiofinclude not only
the neighbors of( in Reg™ (B) but also the vertices that disappear friz(3) when insertingX .

The support of the natural neighbor coordinatés A; = {X € U | \;(X) # 0}. Itis the set of points
that are in conflict with at least one vertex of the d@(lB;). Remember that this means that the power
distance betweeX and the regular orthosphere centered on the vertex is meghtithis case);(X) # 0
because the vertex is 'stolen’ frof\ B;) at the insertion ofX.

With respect to the space of spheres, the insertion of thet poi € ¢/ into Pow(3) corresponds
to inserting the hyperplan&, = ¢(X)* into the space of spheres. The corresponding halfspgte
intersects the polytop® (1) “cutting off “ the polytopeP, which is the intersection of the halfspacds
with the halfspace?, described by, < 2-x'-x — ¥,(0). See Figure 3.2. Precisely,

Px = ﬁi:l,...,nlg-i+ N H:L‘_ (31)

The polytopeP,. projects vertically onta”*(X) and its lower facetsd;(X) project ontoP;(X). The
volume of F;(X) in the projection ist;(X) and the volume of the projection of the upper facet(X).
Hence,\;(X) can alternatively be defined in the space of spheres. Thefcallis empty if and only if



Figure 3.2: (a vertical cut) (a) The polytofge. # 0. < (b) X is in conflict with a cell ofarr(4(O)*).

»(X) is above the lower convex hull ef(5B). In this case X is in conflict with no regular orthosphere.
It is infinite if and only if the centek lies outside the convex hull of the centgssof the sitesB; € B.
This is independent of the weight &f. Thus, X has a finite and non-empty cell iff( X) lies in the
(unbounded) polytope whose upper facets are the lower gdnieof ¢(B;) and whose remaining facets
are delimited by vertical rays from the lower convex hulkto ; = —oc. This region is called (/) since
U is its preimage by. Refer to Figure 3.3 (a). The suppaxt corresponds to the set of pointsA;) that

(b)

Figure 3.3: (a vertical cut) (a)(¢/) is unbounded in direction;; = —oo. (b) The support)(A;) is
highlighted.

lie outsideconv (¢(B)), the convex hull of the points(B), and that “see’®%(B;) (in the sense that the line
from the point tog(B;) does not intersectonv(4(B))). In other words, the points af(A;) lie below at
least one hyperplane that supports a facet of the lower dmvi of ¢(53) incident to¢(B;). The dual
of such a hyperplanél, is the image by of a regular orthosphere whose center is a verteR(@s; ). If
o(X) lies belowH,, X is in conflict with this vertex. See Figure 3.3(b).



To be more precise, we define the coné@s;) to be the intersection of the positive halfspaces defined
by the hyperplanes that support the facets of the lower colnut of ¢(B) incident tog(B; ),

cone(¢(B;)) :== N{H, |H, € p(O)* andé(B;) € H,}. (3.2)

With this definition,
¢(Ai) =U\ cone(p(B;)).

An edge ofcone(¢(B;)) is the line throughy(B;) and¢(B;) whereB; is a neighbor of3; in Reg(B5).

The cell of B; disappears at the insertion &fif ¢(B;) is not a vertex of the convex hulbnv(¢(B) U
#(X)). In this casep(X) lies below all hyperplanes af(O)* containingg(B;). This part ofp(A;) is
indicated by the darkest region in Figure 3.3(b).

Notice what happens as changes: Changing the weight &finduces a vertical movement of X)
and of the hyperplan# . : if the weight growsg( X ) moves downwards whil&,, moves upwards (and the
opposite if the weight diminishes). The normalff is independent of the weight. Translating the center
x by some horizontal vectov’, ¢(X) stays on the paraboloi (w,) while the horizontal component of
the movement iS/. See Figure 3.4.

(@) (b)

Figure 3.4: Changing (a) the weight and (b) the centeX of

A finite cell P(X) can never become infinite only by raising the weightbecause the centarstays
in the interior of the convex hull of the centers of the othitgss Consequently, the cell is finite.

The interpretation in the space of spheres makes it easy thaethe volume function; is continuous
as long asX # B;. Indeed, the facek;(X) is contained ind; and delimited by, and some hyperplanes
Hj,j=1,...,n,j #1,

Fi(X)=H;Njz H NH,.



As H, changes continuously witl’, the volume ofF;(X) (and, thus,r;(X)) changes continuously as
long asH, # H;,i.e. aslong as{ # B;. With \;(X) = % we see thad; is continuous i/ as
long asX # B, € B. Before we show thak; is continuous even d8; € 3, we consider what happens as

X approaches the boundaryléfand asx — p; with w, > w;.

Behavior of 7; at the border of the definition domain

As X approaches the boundarydf two situations might occur: eithef{ X) — 0 or 7(X) — oo.

Y

@) (b)

Figure 3.5: (a vertical cuty(X) = 0: (a) H, does not intersed®(B), (b) ¢(X) is onconv(¢p(B)).

o O@ @@.@
O¥0 DY 0 DY ¢

(a

(b) (€)
Figure 3.6:X approache®3; while w, < w;. (&) X N B; # 0, (b) X is contained inB;, (¢) 7(X) = 0.

In the first caser(X) — 0, this means in the space of spheres th{a{ ) approaches the lower convex
hull of ¢(B) (Figure 3.5). InR? x R, this means thatv, diminishes and/or that the center &f moves
towards the center of a sif; that has bigger weight thak .

Figures 3.6, 3.7 and 3.8 depict the different power diagrasd§ changes.X corresponds to the black
circle and the cell ofX is indicated by the dark (blue) lines.



In Figure 3.6, we show what happens in the power diagram asdhierx approaches the center of
B; with bigger weight thanX: the bisector hyperplane @; and X approaches the centpt as long as
B; does not completely contaii (Figure 3.6(a)). WherX is contained inB;, the bisector hyperplane
moves away fronp; (while x — p;) until the cell of X disappearsg(X) = 0. At x = p;, the bisector
hyperplane ofX and B; is at infinity. However, the volume functions(X) as well asr;(X) change
continuously withX as long asr(X) # 0.

They are also continuous a$X ) — oo. Figure 3.7 shows how the cell af becomes unbounded as

x approaches the convex hull ;| B; € B}.

OY 0o OToe

Figure 3.7: The cell o\ becomes unbounded.

Behavior of \; and m; asx — p; with w, > w;

In a similar way\;(X) is well defined and continuous when the centetXofapproaches the center of
B; while the weight ofX is bigger than the weight aB;. This situation is depicted in Figure 3.8. At
some point, the cell oB; is entirely contained in the cell of, P;(X) = P(B;). In this casem;(X) is
constant with respect t§ and the coordinate functiok;(X) = ’“((X)) varies withr(X). Although;(X)

is constant,\;(X) is continuous withr(X) = >, m;(X) as long asY # B; and7(X) > 0. Remember
that, if P,(X) = P(B;), in the space of sphereg(X) lies below lies below all hyperplanes ofO)*
containingg(B;) as indicated by the darkest part in Figure 3.3(b).

V

(a)
Figure 3.8:X approache®3; while w, > w;. (&) m;(X) < w(B;), (b) m;(X) = 7(B;), (C) x = p;.



Verifying the conditions of Definition 3.1

As already mentioned, the natural neighbor coordinatésfgaiie conditions of Definition 3.1.

Property 3.1(ii), namely; (B;) = 6;; is satisfied by definition. Property 3.1(iii), namé&ly, \;(X) =
1, follows immediately from the definition of the coordinatenttions. Indeed, since the coordinate func-
tion is normalized by the total volume of the power cell, iturally sums to one. Before we overview the
different proofs of the barycentric coordinate property(i3, we show that the coordinate functions are
continuous. This is also a condition of Definition 3.1.

We argued before that the natural neighbor coordinate ifumet continuous id/ \ B since, elsewhere
than ons3, the volume functions;(.X') are continuous. It remains to show the continuitppait X = B,

e limx g, Ai(X) = 6.

As shown in Figure 3.9 and Figure 3.10, the volumEX) is not continuous aB3; unlessx = p;
asX — B;. Nevertheless, we can use an argument of extension by adwtinimy ., A;(X) = 6;;
becauséimy_.p, 7;(X) =0forall j #iand) , \(X) =), fj(())f)) = 1 while 7(X) is finite. It follows
thatlimx_. 5, A\i(X) = 1 andlimx_.z, A;(X) = 0forall j # i.

(b)

Figure 3.9: The limit as\ approaches3; (in the power diagram), (a) the general casex(b) ps.

Furthermore, the coordinate system is convex,M.E. € U, \;(X) > 0,7 = 1,...,n, because the
coordinate functions are defined by the ratio of two voluntieis. local whenever there is an upper bound
for the weight. Otherwisep(A;) is unbounded (recall Figure 3.3).

Proofs for the barycentric coordinate property

The proof of Property 3.1(i), also called the barycentriordinate property or BCP, requires more insight,
and there exist several different proofs in the literaturest of them written for the unweighted case. We
sketch the different approaches in this section —for theaigiited case. Then, we give, in detail, a proof
of the BCP for the natural neighbor coordinate system defimngmwer diagrams. This proof is related
to the space of spheres. (For Voronoi diagrams, we adoptthe siotations as for power diagrams. The
superscript” indicates that we refer to the Voronoi diagram (resp. theDey triangulation) 0P U {x}.)



(@) (b)

Figure 3.10: (vertical cut) The limit a& approache®3; (in the space of spheres), (a) the general case, (b)

X = Pps5.

The original proof by Sibson [90] is valid for a generalipatiof Voronoi diagrams, namely, a higher
dimensional space is considered that embedsittienensional space. The generalizédimensional
Voronoi diagram is the intersection of an ordinary Voroni@igitam in the higher-dimensional space by
the d-dimensional space. From Observation 2.4, we know thatgihigeralized diagram is a power dia-
gram. Sibson proves the cage= 1, and by an integration argument, the barycentric coordipabperty
for natural neighbor coordinates in this generalized diagis shown. A very similar proof is given by
Aurenhammer [12].

Piper proves the BCP by showing that the functiefiX') = > . \;(X)(p; — x) is constantly zero. He
deduces from the expression for the gradient that the devaf H is zero. Then, he shows that the limit
limy_.p, H(X) = 0 and concludes the BCP.

Brown shows how to define Sibson’s coordinate as weightethgeeof barycentric coordinates over
some Delaunay triangles. The proof of the BCP becomesltrivia

Figure 3.11: The Laplace coordinate functiti{x).

In [71], the proof of the BCP by Hiyoshi and Sugihara is based @roof of the BCP for the Laplace



coordinate function defined as follows:

Definition 3.4 In the Laplace coordinate system associate@t¢he (Laplace) coordinate functiokf (x)
of a pointx € conv(P) is defined as

O(gy — _Pi=x|| . _
/\Z(X) = Zlivm’l_lf"’n'
@ [[pi—x]]

whereuv;, denotes the volume of tfié — 1)-dimensional Voronoi face dual to the edge (p;, x).

The BCP for Laplace coordinates is easily shown with the loélp theorem by Minkowski stated as
follows (a proof can be found in [66, chapter 15.3]):

Theorem 3.5 The sum of the normal vectors of the facets of a convex pelytgpere the length of the
vector is the area of the corresponding facet, is zero.

In our case, consider the Voronoi céll* (x) which is always convex. The facet df(x) that is dual
to F+(pi, x) is part of the bisectoH,;, betweenx andp;. Of course, the unit normal of the facet is the
vector I prl, and the volume of the facetig,. See also Figure 3.11. We get

2 g =l e =2 Nk

The authors observe that Sibson’s coordinate function eavbkained as some integration of the Laplace
coordinate. Since the BCP is valid during the process ofjnatéon, it is also valid for the result.

A proof of the BCP using Minkowski’s theorem in the lifting map

There exists a direct proof of the BCP for power diagrams daseMinkowski’s theorem applied to the
polytopeP, that is defined in the space of spheres. See also the begioining chapter and, in particular
Equation (3.1).

Let f;(X) denote the volume of the fadg (X ) of P, that is contained it; = ¢(B;)* and f, denotes
the volume of the upper facet @, (that is contained irfl,). n; = (—2pj, 1) is the normal vector of
H; directed to the negative halfspa¢g™ andn, = (—2x,1) is defined in the same manner féf,.
Minkowski’s theorem applied t®, writes

2 NX = o =0 (3.3)

lnall

Since the polytopé,. projects vertically ontd®* (X) and its lower facet#;(X) project ontoP;(X), we
deduce that

_> —  fiX)

mi(X0) = S Xy e = T




whereid—H) denotes the unit vectdi0, 1) along the vertical axi$. Similarly, 7(X) = f. g igr1 =

ff’*‘\l%ﬂ' Equation 3.3 becomes
Zm(X)ﬁZ — m(X)n, = 0.

Finally, by using the expression for the normals and by ptojg ontox,,; = 0, this yields the BCP:

> —mi(X)pi + 7(X)x = 0.

i

3.3 Further continuity properties of the coordinate function

The following two sections treat essentially the geneadilin of Piper’s work [84] about natural neighbor
coordinates in Voronoi diagrams to natural neighbor comigis in power diagrams. We assuth#o be
given. We recall that/ = {X € R? x R |7(X) # oo A7(X) # 0}.

Continuity properties with respect to X

Lemma 3.6 The natural neighbor coordinata;(X) of X is C° continuous ovet/ and C! continuous
overl{ except at a finite set of lines in.

Proof: As Farin noticed in [56], the natural neighbor coordinateaivoronoi diagram is a piecewise
rational function ofx as long as the set of natural neighborsxafloes not change. This is also the case
in power diagrams. The coordinates of the vertices of thecsllbP;(X) are rational functions of.

In the two-dimensional case, the coordinates of a vertexgiaen by Equation (2.3) wittB; = X and

B, and B3 are natural neighbors of . Therefore,r;(X), which is the volume of’;(X), is a piecewise
rational function ofX. Since by assumption, the volume functioiX') = > m;(X') does not vanish, the
differentiability of the normalized coordinate follows from the differentiability of ther;.

In the space of spheres, the natural neighbor¥ afre the same as long a6X ') remains in one cell of
arr(¢(0)*), the arrangement of hyperplanes which are dual to the impgedf the regular orthospheres
O. This is explained in Section 2.3. The rational functief{X') changes whery(X) traverses the
boundary of a cell ofrr(¢(O)*) — because eithek has a new natural neighbor or it looses a neighbor.
We consider the functiom; o #~! defined in the space of spheres. Becati&¥) is differentiable and
bijective, 7; is differentiable ifr; o ¢! is differentiable.

In order to show the differentiability of; o o~ on the boundary of the cells, it is sufficient to show, for
each point on a hyperplanig, € ¢(0)*, the differentiability ofr; o ¢! restricted to a (one-dimensional)
curve that crosse#l, transversally. Inside each cell of the arrangementy ¢! is C° continuous.

2\We denote the scalar product of two vectorspy ¢ .



Hence, by showing the existence of some cross boundaryatieeywe establish the differentiability on
the boundary.

In the unweighted case, Piper restrictedo rays emanating frorp; because, on such a ray, has a
particularly simple form. The same approach works in powagrms if the center ok is constrained
to such a ray. With respect to the space of spheres, we maictresto ¢~' to an ascending ray whose
source is on the vertical line throughi B;) below all hyperplanes af(©)*. Hence, the ray intersects any
hyperplane transversally, and the derivative of the ret&tn of 7; 0 ¢! to the ray is a valid cross boundary
derivative. Refer to Figure 3.12. Observe that the sourdefay lies in the suppori(A;) of \; o ¢~*

Figure 3.12: A ray with sourcé (0) intersects any hyperplan®, transversally. It is parameterized by
distance tg; in the vertical projection.

because it lies below(B;). (Re-call from Figure 3.3(b) that the suppeftA;) = U/ \ cone(p(B;)).) For
the sake of the proof, the ray should leave the suppalt;) before it leaves the suppasti/). Notice that
the source can be chosen as low as necessary for the raybitdesect any hyperplane of( O)*.

Consider such a rag in R*! and suppose, at first, thatis not vertical. (This case is treated later.)
We parameterizd, by the distance tg; in the vertical projection, so thdt(t) projects vertically onto
some point () with ||p; — 1(¢)|| = t and L(0) projects vertically ontg;. Let X (¢) = ¢ ' (L(t)). In the
sequel, we consider the point = X (¢) to be fixed.

Let L* be the set of hyperplanes dual to the pointd.oBy duality, they intersect in & — 2)-flat A.
The hyperplaned; = ¢(B;)* is a vertical translation of.(0)* because the dual pointg B;) and L(0)
differ only by their height. (Their centers project vertlgaonto p; (Fig. 3.12); refer also to Section 2.3.)



The intersection off; with any hyperplane of.*(u),« > 0, is, therefore, parallel to th@l — 2) flat A.
As u varies fromo0 to oo, a part of the hyperpland; is swept byL(u«)* N H;. Refer to Figure 3.13.

Figure 3.13: Letd(u) = L(uw)* N H;. Asu — oo, L(u)* approaches the vertical hyperplane containing
A normal to the vertical projection df (cf. Section 2.3 and Section 3.2).

Recall thatF; is the facet of the polytop®(B) (defined in Equation (2.1)) carried by the hyperpldiie
F;(X) is the part ofF; that is “cut off” by the negative halfspadé, delimited byH, = ¢(X)*. Thus,
F;(X) is the facet of the polytop®,. carried byH,. (P, is defined in Equation (3.1). It is highlighted in
Figure 3.14.)F;(X) projects vertically ontd’;(.X), thus, the volumer;(X) is alternatively defined by the
volume of the projection of;(X). Let f;(X) be the ¢-dimensional) volume of;(X). Itis clear that the
differentiability of f; implies the differentiability ofr;.

Consider Figure 3.14. By definition, with = X (¢), F;(X) = F; N L(t)*. With the hyperplanes
L*, we can sweep the facét(X). Consider théd — 1)-dimensional volume;(«) of F; N L(u)*. We
obtain the volume of;(X) by integratingv;(u) from u = ¢ to co. There exists an intervaty, ¢;) on L
such thatv;(u) # 0 for all w € (co,c1) andv;(w) = 0 outside this interval, i.e. for alk € |cy, c1[. Of
course, ift < ¢, the volume is zero at the beginning of the sweep un# ¢y. (The boundg, andc¢; are
characterized in more detail later.)

The volume functiory; at X (¢) with X (¢) e U \ Bis

frfllax(t co) vi(u)du if t € (0,c1),

(3.4)
0 otherwise.

fi(X(t)) = {

By the fundamental theorem of calculus, the differentigbibf f; o »~' restricted taL follows from the
continuity ofv; in (¢g, ¢1). If v; was continuous ificy, ¢1) but discontinuous at a boundof the interval
(c=cpore=cy), f; o o~ would be differentiable o except at = c.



Figure 3.14: Withp(X) = L(t): sweepingF;(X) by the hyperplanes dual () for u € (t,¢q).
If L contains no point of discontinuity af, the derivative is

dfiy(X(t)) —vi(t) ift e (co,c1), 3.5)
dt 0 ifO<t<coport>c. '

We will now determine the interval bounds andc; and we show that; is continuous orl. except at
some isolated points that correspond to a bouaofithe interval(co, c1).

The two boundsy, and¢; correspond to the first and the last intersectior.okith the hyperplanes
of ¢(O)* incident to¢(B;). The intersections are ordered by increasing value.ofThe upper bound
c1 corresponds to the parameter at whicheaves the support(A;) of A\; o ¢~ 1. For allu > ¢1, L(u)
lies in cone(4(B;)). In Section 3.2, we explained that, in this cage!(L(u)) ¢ A,. For allu smaller
than the lower bound,, L(u) is sufficiently low so that)(B;) is no longer on the lower convex hull of
¢»(B) U L(u). This means, with respect to the dual hyperplanes, thatalspaceL («)*~ contains the
entire facetF;. Consequentlyl.(u)* does not intersedt;. (Refer again to Figure 3.14.)

v; is, indeed, a continuous function {ny, ¢;) because the boundary &f are portions of hyperplanes
andv;(u) is the volume ofL(u)* N F;. Itis discontinuous at (¢ = ¢y or ¢ = ¢;) only if L(c)* contains
a (d — 1)-dimensional facet of’;. This (d — 1)-dimensional facet is the intersection Hf with some
hyperplanef; = ¢(B;)* whereB; is a neighbor ofB; in Reg(B).



It is easier to explain this situation in the power diagranme Tntersection off; and L(u)* projects
onto the (d — 1) dimensional) bisector hyperplane of the two weighted athtand X («), calledH (u).
As u varies,H(u) sweeps the sub-cel;(X). v;(u) is discontinuous at only if H(c¢) coincides with the
bisector hyperplané{;; as depicted in Figure 3.15.1f the vertical projection ofL contains the center
of some siteB; that is a neighbor oB; in Reg(B), there must be a point(«) such thatH(u) = H;;
(because the hyperplang&«) are parallel toH;; and they sweep the entire facet). This must be either
L(cp) or L(c;) becausét;; contains the boundary of the céi).

Figure 3.15:P;( X (t)) is swept by parallel hyperplanes avaries fromt to ¢;. (a) The volume function
v(u) is continuous oveft, ¢ ]. (b) v(u) is discontinuous at; becausé(ci) = H;;.

From duality, we can derive thatif is discontinuous at, thenZ(c) lies on the line through( B;) and
#(Bj): the hyperplanes(B;)*, ¢(B;)* andL(c)* have a commolid — 1)-dimensional intersection, thus,
by duality, ¢(B;), ¢(B;) andL(c) must lie on one line. The lines througfiB;) and¢(B;) whereB; is a
neighbor ofB; in Reg(B) are exactly the edges ofne(¢(B;)).

The differentiability off; implies the differentiability ofr;. We conclude that; restricted tap=! (L)
is differentiable as long as the poiht¢) does not lie on an edge oéne(¢(B;)). So far, we excluded the
case that. is a vertical ray. However, the proof works in the same masiree the faceF;(X) can also
be swept by the hyperplanés which are, this time, parallel. In Lemma 3.10, we determhedradient
of mr; in this direction. This will complete the proof.

We can now conclude. Le&f; be the setX € A; such thatp(X) lies on an edge ofone(¢(B;)).
Obviously,&; is a subset oR? x R with measure). TheC'!' continuity of the restriction ofr; to ¢~ (L)
implies the differentiability ofr; in all ¢/ \ &; as we argued in the beginning. The differentiability \of

®Both drawings are schematic so there no coherence betweelistances.



follows from the differentiability ofr;. TheC continuity of \; has been shown in the preceding section.
At the points¢; \ B it is obvious becausg; is defined by volume functions which af& continuous. At
Bj € B, theC? continuity of \;(X) is extended by continuity. O

Continuity properties with respect to a data site B

In Chapter 6, we make use of the partial derivativergfX') with respect to a sample poift; assuming
X to be fixed. The proof of the following lemma about the coritywproperties ofr;(X) with respect
to a sample poinB; is useful to understand the formula for the gradient. Theltes the same as in
unweighted Voronoi diagrams.

Lemma 3.7 The natural neighbor coordinat;(X) of X € ¢/ is aC? continuous function oB; € B
and aC'! continuous function aB; € B except at a finite set of lines in.
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Figure 3.16: (a)P, /(X) with Pow(3~7) (dotted lines) andPow(5~71) (slashed lines) (b, 7 (B;)
with Pow(B~7)(dotted) and®ow (B)(solid) (c)Pi_j*(Bj) with Pow (B—71) (slashed) an®ow™ (B)(small
slashed lines).

@ (b)
Figure 3.17: (a);(X) (b) dark grey:P, ”*(B;), middle grey:P, /(B;)\ P, **(B;), light grey: P;(X).

Proof: Piper's proof [84, section 3] generalizes directly to powigrams: Let3 7 = B\ {B;} and
B=7+ = B\ {B;} U{X}. Inthe sequel, the superscriptj (resp.—;+) indicates thaPow(B7) (resp.



Pow(B~71)) is referred to. Similar to Piper [84], the sub-cél(X) is obtained as a composition of
several power cells froow (B~7) andPow(B~71):

Pi(X) =P (X)\ [P (B;)\ P, (B)),i # j (3.6)

)

See Figures 3.16 and 3.17 for a geometric proof of the forimuti@o dimensions. In the sequel we give a
formal proof that is valid in any dimension. It consists oftig the equations of each power cell as done
in [84].

The subcells? 7 (B;) and P,/ (B;) consists of the points with less power distancétdahan to any
site exceptB;. In P[j +(Bj), the points have also less powerXothan toB;. The power distance of a
point p with respect taX is denoted™,(p). Its power distance with respect &) isT';(p).

P (Bj) = {p € R : T'y(p) < Tx(p), i # k. j, T;(p) < Ti(p)}.
P 9(B;) = {p € R? : Ti(p) < Ti(p). i # k. j, Ti(p) < Tu(p), Tj(p) < Tu(p)}.
P7(B;) without its subcellP, " (B;) is
P (Bj)\ P71 (B)) = {p € R : Ti(p) < Tw(p), i # k,Jj, Ti(p) > Tu(p), T;(p) < Ti(p)}-
In the power diagram withouB;, the subcellP, (X)) has the equation
P (X)={peR?:Ti(p) <Ti(p), i #k,j, Ta(p) < Ti(p)}.
We gather the equations to obtain

P(X)\ [P (B)\P,7"(Bj)] = {peR:Ty(p) <Tw(p), i #k,j, Tu(p) <
= {peR':Iy(p)<Tu(p), i #k, [u(p) <T
= P(X).

Li(p), Tj(p) > Ti(p)}
i(p)}

This is exactly the subcelf;( X') which proves Equation 3.6.
With Equation 3.6 and sincg, *(B;) is included inP, 7 (B;) while P, 7 (B;) \ P, " (B;) is included

in Pi_j(X), the volumer;(X) can be re-written

mi(X) =1 (X)) = [, (By) — 7 7 H(By)) i # . (3.7)

)

A similar re-writing is possible for the cage= j. See also [84].

i=j: m(X) = m (B) - Do m (B + g (B) (38)

ki ki

It follows that the continuity and differentiability of;(X) = Zﬁfr)&) wrt. B; depends on the continu-
ity properties ofzr;j( B;j) andw’”( ;). For both functions, Lemma 3.6 applies as long as the cdli;of
is not empty inPow (B) ", i.e.m 7+ (B;) = 0. However, as the cell aB; disappears, i.ec 7+ (B;) — 0,

also its subcells disappear, so thatX) — 7, J(X). The latter function is constant wi;. O



3.4 Gradient of the coordinate function

In this section, we derive the formula for the gradient ofitbleime functionr;. With \;(X) = %
the gradient of the coordinate function can easily be detexthfromVr;(X). We first state the lemma.
The proof is given in two parts because we compute the patéabatives with respect ta and w,.
separately. The one-dimensional case is proven apartceNitiatV 7;(X) = 0if P;(X) =0 or P(X) =
P(B;) because, in both cases(X) is constant with respect t§. The gradient ofr; is well defined and

different from zero only inside the s&f with
U :={X eU\E& | P(X)#DandP(X) # P(B;)}.

Lemma 3.8 Let X € U/ \ &;. The gradient of the volume functian(X') which is the volume aP;(X) in
Pow™(B) is

e [ TF ) iy ey
V(X)) = Toix 1 A e,

0 otherwise,
wherewv;, is the (d — 1)-dimensional volume of the fade(X) of Pow™ (B), for d > 1, andc;, is the
centroid of P;( X)),

Ford =1, v;, = 1.

The gradient in the one-dimensional case

We prove at first the one-dimensional case. AssumeXhatl{;. OtherwiseV;(X) = 0 becauser;(X)
is constant. Foil = 1, ¢;,. is the vertexP* (X, B;) of Pow™ (1) and

m(X) = |[PF(X, B;) - P(B;, B).

See Figure 3.18. Solving;(P*(X,B;)) = I',(P"(X,B;)), we obtain the equation of the vertex
P*(X,B;):

T+ p; Wy — W

2 2(pi — )
LetY = (y,wy). The volumer;(Y') and the vertex’* (Y, B;) are defined in the same way as fér If
Y is close enough t& (so thatP* (X, B;) lies on the same side &f(B;, B;) asP* (Y, B;)), the sign of
P*(X,B;) — P(Bj,B;) andP* (Y, B;) — P(Bj, B;) is the same. It is determined by the sigrppf-
(cf. Figure 3.18). We obtain

PT(X,B;) =

||:c—y+ Wy — Wi Wy — w; ||
2 2pi —x)  2(pi—y)"

We compute the two directional derivatives with respect #nd tow,.. In order to obtain the derivative

17 (X) = (V)| = [PT(X, Bi) = PT(Y, By)|| =




Pi(X

) ) (X /\

B?J | P(B,, B)\*/P+(XB)@
P+(X7Bj)

Figure 3.18:P;(X) is delimited byP(B;, B;) andP(X, B;).

wrt. x, we takeY = (z + h,w,) and get

ox(X) _ | [PHX.B) - PH(V.B)| (pi -
dr  h—0 h lpi — :C||

(pi — ) 1
||— L = (Cip—),
2 2(1% o) i =l llp =2l

because;, = P*(X,B;) andP* (X, Bi) — x = B~ + %

To compute the derivative with respect to the weight we takeY = (z, w, + h):
or(X) (X)) -m(Y) 1

dwg e h T o — ||

This proves Lemma 3.8 fatf = 1 and X € U;:

d=1: Vm(X)= #<Ci$_x>.

il \ 1

Partial derivative with respect to x

Piper derived a formula for the gradient of the volume funreti; (X) in the unweighted Voronoi diagram.
His proof can be adapted to the weighted case. For dimengiong, however, we show a simpler proof
by induction over the dimension. We consider thdimensional derivative of the volume functiafn( X )
as a function of the point locatiox while the weightw,. is constant,

%M(X) = (87”(X> Omi(X) Omi(X)

).

Ory = Oxy 77 Oy
Lemma3.9 Let X € U \ &. The gradient of the volume function(X) as a function of with fixed
weightw,, is
im(X) _ { lexen it X €U,

0 otherwise,

wherev;, andc;, are defined as in Lemma 3.8.

Proof: Suppose thak € ;. OtherwiseVr;(X) = 0 becauser;(X) is constant. First, we consider the
two-dimensional case] = 2. The proof follows all steps of Piper’s proof with some snthfferences.
Let the vertices of the edgé™ (X, B;) be calleda;, anda;,. We suppose that the vertay, is dual to the
triangle F*(B;, X, B;) € Reg™(B). The gradient is determined asmoves on a circle centered on the



Figure 3.19: Replacing by r(t) changes;, but nota;, .

vertexa;, (thus, we compute the scalar product of the gradient withvéfetorxag, * that is orthogonal

to xay, ). Contrary to the unweighted case, this circle does notsseedy pass through the centers of the
two other generators af;, . However, ask moves on this circlea;, remains the vertex dual to the triangle
F*(B;, X, Bj). Only the second vertex;, changes as shown in Figure 3.19. We proceed as Piper and

Figure 3.20: The area of the highlighted triangle ([s) — ¢(0).

assume the circle to be parameterized counterclockwisg(tjysuch thatr(0) = x andt is the angle
Zxaj, r(t). DefineX(t) = (r(t),w,) andg(t) = m;(X(t)). We want to compute the derivative(0)
given byg'(0) = lim;_ M Leta;, (t) be the vertex of the edge™ (X (¢), B;) other tham;, — see
Figure 3.20. For small enoughthe difference between the power cellg@t= 0 andt is a triangle with
areal sin(0(t))v;,vi.(t) whered(t) is the angleZxp;r(t) and,v;,(t) is the volume of the face between



X(t) and B;. (The triangle is highlighted in Figure 3.20.) We determine;_., w Let « be the

Figure 3.21: Ag — 0, r(t) lies on the tangent line.

angle atx in the triangle(xr(t)p;). With law of sines, we can rewritén(6(¢)):

sin(é(t)) _ _ sina = sin(0(t)) = sina [|x — r(t)|| (3.9)
Ix =r@®)[  llpi —r(t)]] Ipi — r(t)]]
Forlim¢ — 0, r(t) lies on the line perpendicular to the lifg;, x) containingx. Therefore, we approxi-
mate
lim [x — v(t)]] = lim tan(t) [x — ag || = limt [x - aj, . (3.10)
Furthermore,
lim [[p; = r(t)]| = [Ipi — x| (3.11)
With Equations (3.9), (3.10), and (3.11), we obtain:
L sin(0(t) _ sin(a) [x — r(t)]] _ sin(a) x —ay || _ [x — m|
t=0 ¢ tlpi — r(t)]] Ix — pill Ix — pill
wherem is the orthogonal projection ef;, onto the line(xp;). The last equality is due to the fact that

xmi is the orthogonal projection ofa;, ontoxp; (thus,||x — m|| = cos(¥ — a)||x — ay, [|).

We have shown that .| |
0 — , v |lx —m
— (X : — 0) = ==

axﬂ-i( )Xall g ( ) ZHX_pIH

By a similar argument, the gradient can be determined in @ngkdirectionxa;, - wherea;, denotes the

- P Nl vhllx—m]|
second vertex oP* (X, B;). We get—m;(X )xa, ~ = — il -

(3.12)

Hence, we only need to verify that the two directional ddies correspond to the formula in the lemma.

Notice thatxc,, = 3(xaj, + Xaj, ).
d —
&Fi(X)Xail L

Vix
2[|pi — x|

, xard = U gl
(xai, + xa;,)xai, 2pr — x| Xaj, Xaj,



Piper remarks thakag,xa;, - is twice the area of the trianglexa;, a;,). The same quantity can be
written asv;;||x — m|| since||x — my|| is the triangle’s height and;, = ||a;, — aj,||. Hence, replacing
Xaj,Xa;, - = vi;||x — ml||, we obtain the directional derivative of Equation (3.12)mr arguments

hold for the second direction.

The generalization to higher dimensions is obtained by dodtive argument over the dimension. The
volumer;(X) in ad-dimensional power diagram can be obtained by sweepingeth&¢ X') with parallel
hyperplanes and by integrating the volume of the interseotif P;(X) with the sweeping plane. We
denote the sweeping hyperplanetyt) wheret € [ty, t;] such that

Ht)NP(B;,X)#0 Vt € [to,t1] and H(t)NP(B;,X) =0, otherwise.

From Lemma 2.3, we know that the intersectibiit) N Pow(B) is a(d — 1)-dimensional power diagram

— assuming thati(t) is in general position. However, it is sufficient to prove tradient ind linearly
independent directions so that this is no constraint. Algtothe sweeping plane depends on the direction
for which we compute the gradient, degenerate positiondeavoided.

Letp;i(t) be the projection op; ontoH(t) andw;(t) = w; —||p; —Pi(t)]|*. We use the same notation as
in Lemma 2.3 and, for each; € B3, we denote the site correspondingRpin H(t) N Pow (B) by B;(t) =
(pi(t),w;(t)) (the same forX (¢)). Of courser; (X (t)) is the volume ofP; (X (t)) = H(t) N P;(X).

The gradient ofr;(X) is the integral of the gradientéf(—t)m(f(t)) over the intervalty, t1]:

wi(X):/tlm(Y(t)) At — 8—3xm(X) :/tl%m(Y(t))dt.

It is computed in a fixed, arbitrary directiovi other tharkp;. We choose the sweeping plane to be parallel
to v and toxp;. Thus, during the sweep, we maintdip; — x|| = ||pi(t) — X(¢)||. Observe that for any
vectorxy:

—

X(t)y(t)- vV =Xy - V
becauseév is in the sweeping plan# (¢) onto which we project.
Ford = 2, we know the gradient from the first part of the proof. In direc V', by replacing the
expression for the centroid, it writes as follows:
0 1
d=2: .—m(X)-V)zi/ xq - vdq.
ox lpi — x|l gEP(X)

By inductive hypothesis, we suppose that we know the grafibenlimensiond — 1, d > 2, in the diagram
H(t) N Pow(B):

0 1



We show that

0 — /t1 0 ~ — /t1 1 / = =
—mi(X)- v = —m(X(t))dt) v = _— X(t)q- v dq) dt
oK) o ax XAV = | Gm ==l ey ™ )
t1
S / %4 ¥ dqdt
IPi = x|l Jty Joer (Xt

lpi — x| qEP;(X)

Derivative as function of w,,

Lemma 3.10 The partial derivative of the volume functian(X), X € U/ \ &;, with respect tav,, is

9 xy =] e T U
Owy 0 otherwise,

wherev;, is defined as in Lemma 3.8.

Proof: Suppose thak € U/;. OtherwiseVr;(X) = 0 becauser;(X) is constant. The volume d?;(X)
can be obtained by sweeping the cell with a hyperplaiie) parallel to the bisector hyperplarié;, =
H(0) of B; andX. Let h be the maximum distance of a vertex/@f X') to #(0), and#(¢) be at distance
t from H(0),¢t € [0... h]. Furthermorel;(t) is the volumeH (¢) N P;(X). We write

(X)) = /0 "L, (3.14)

Another way to obtain this sweep is to decrease the weightntil the cell P;(X') disappears and to
consider the volume;((x, w)) of the intersection of the bisector hyperplandfw) and B; with P(B;).
Refer to Figure 3.22(a). We can writ@s a function ofv with [;(¢) = v;((x,w)) for ¢t = f(w). Changing
the variable in Equation 3.14, we obtain

J7Hh)
w0 = [

We need to determine the functigitw), its derivatef’(w) and the new boundaries=!(0) and f~1(h).
From the formula for the power distance from Chapter 2, weaudedhe distance from to the closest
pointy € H;, by solvingl';(y) = ', (y):
1 Wy — W
lx -yl = §Hpi —x| + Api—x||’

The distance fronx to the closest poing(t) € H(t) (see Figure 3.22) is

w — w;

1
x—y®)|=zlpi x| + 55—
I =yl = s =) + g



(x, wy)

Figure 3.22: (a) Sweeping;(x) by changingw,. (b) The distance between betwegrand y(t) is

= Wes
2lpi—x]]

Hencet, the distance betweeH,, andH(t), is

Wy — W 1

t=fw)=|x-y|[|-|lx—-yit)|==——— with derivative f' (w) = — ——.
flw) = =yl = Ix = y(®)] = g flw) = 5

Letwy = f*(h) so thath = Qﬁ;fi’fn. wy is the largest weight withy; ((x, wy)) = 0. With these results

(and replacing; (f (w)) = v;((x, w))), Equation 3.4 writes
m(X) = /w,; de

wy 2lpi—x|

Notice thatf is continuous over the interval to w,, andl;(¢) is continuous ovef (wy) to f(w,) —except
whenH;, contains a bisector hyperplane pf and one of its neighbors. This is excludedn &; as
explained in the proof of Lemma 3.6. The result follows:

9 x) = 2 ( I 7”(("’“%@0):”i“xv“’w”—

Qwy  Owy \ Ju, 2pi — x| 2llpi — x| 2llpi — x|

U
With Lemma 3.9 and the preceding lemma, we complete the @fdoémma 3.8.

Remark: It is important to notice that, except X € &;, the volumeuv;, of the faceP™ (X, B;)
approaches zero d3(X) — 0 or P;(X) — P(B;). Consequently, the gradient is continuous(ify &;. If
X — Y € &, the bisector ofX andB; contains a(d — 1)-dimensional) face oP(B;), solimx .y v;, >
0. This is explained in the proof of Lemma 3.6. Refer to Figurkb3

Gradient as function of a data site 3;
Let P;;(X) be the part of the fac®(B;, B;) that is “stolen” from it at the insertion ot into Pow(B),

P;j(X) := P(B;,Bj) N PT(X).



We are interested in the gradient of the volumeX') of the subcellP;(X) as a function of a data sit@;.

(X') depends orB; wheneverP;;(X) # 0. We define

Uij = {X S U\5i| PZ](X) 7’5 (Z)}
Only if X € U;;, the subcellP;(X) exists and is influenced ;. Outsidel/;;, P;(X) is constant as3
changes. The gradient of the volume functig.X ) is therefore zero.

Lemma 3.11 The gradient of the volume functian(X), X € U/ \ &, with respect taB; € B is

(i) for j # i
g ii(X) —py .
_”zJ(X) ( cj( 1) p‘] > if X Guija
2

%m(x) _ ) Toi-pil
’ 0 otherwise,

(i) else,
v (X) czk(X) — Pi v Ciz — Pi . )
i71'()() = Zk;ﬁl IPi —Px || ( 1 [Ipi—x|| 1 if X e ula
0B; ‘ 2 2
otherwise,

0

wherev;;(X) is the volume of the facB;;(X) = P;(X) N P;(X) andc;;(X) is its centroid.v;, andc;,

are defined as in Lemma 3.9.

Proof: For X ¢ U;;, m;(X) is constant with respect tB;, so the gradient i®
SupposeX € U;;. The proof follows from Lemma 3.7 and Lemma 3.8. For the ¢age
9 _ 9 (i gy _ =it - O ~i(B.) 1+ IR,
55,70 = g (7700 = 57 (B5) = B1)) = 55 (-7 B+ (),
becauser, ’(X) is constant wrtB;.
Lemma 3.8 applied t@; in the power diagraniPow 7 (B) yields the gradienta?jw

the partial derivatives with respect pg andw; separately and replace the expression for the centrgid

~(Bj). We write

denotes the volume of the fad¢q B;, B;).

0 —j 1 / —

By = pid dg (3.15)
opj ' B Ipi = pill Joersim;) "
ad —j Vij
2 By = W 3.16
ou;" B = eyl -

The gradient,%-m, 7% (B;) is very similar. InPow /% (B), the face betweem; and B; is P*(B;, B;)
and notP(B;, B;). To obtain aB J+(Bj), we replace, in the preceding equatiod¥,B;, B;) by

P*(B;, B;) andv;; by the vqumevJr of P*(B;, B;).



Figure 3.23: The simplification of the gradient formula.

From Figure 3.23, itis easy to tell th&(B;, B;) \ P*(B;, B;) = P,;(X). This simplifies the expres-
sion of the gradient. The partial derivatives with respegi;tandw; reduce to

0 1 1
LA S S PR
p.] ||pi - pj” qEP(Bi,B]-) le - pj” qEP*(Bi,B]-)
1
Sl T— p;jd dq
||P1 PJ|| q€P(B;,B;)\P+(B;,B;)
—0y(X) ———
= / qu dq = Uipjcij(X), and
pi — sl pJII 4P, Ipi — psll
iﬂ,(X) o Tuitvy —vij(X)
w; " 2(lpi — pjll  2llpi — pjll

For the casg = i, we simplify Equation 3.8 in the same way.

0 0 . . .
ap ) = 55 Zw;’(&) - gﬁ;w;*(&) — 7y (B))
Z dB; - WI;H(BZ)) aaB 7Z+(Bz>

Z vip(X ci(X)—pi |\ v Cie ~Pi |
Ipi Pk|| : lpi — x|| :

Limit behavior of A;(X)and V \;(X) at B;

Since the coordinate function is not differentiable on thessof 3, it is particularly interesting to look
at the behavior of\; as X approaches a sitB;. Remember that only ifv,, > w;, X is in the definition
domainl/ asx — pj. The critical case occurs if the weights approach faster tha point positions, i.e.
Iill;::;j)ﬂ — 0 asX — B;. Otherwise Vr;(X) = 0 (asX — B;). We show that the coordinate function
is Lipschitz atB; and that the norm of the gradient is bounded. |B3}; — X ||, we denote the Euclidean

distance betweeX andB; in R? x R.




At first, we show two corollaries concerning the volume fimrctr;.

Corollary 3.12 There exist some real constamtsand ¢, such that for any unit vecton € R? x R and
X el,

1. if || X — Byl sufficiently small and with # j, |V 7;(X) - d| < ¢,
Proof: From Lemma 3.9, we know the gradientof X ).

Case # j: if || X — B;|| is sufficiently smallV;(X) has a bounded norm for alk% j becausd|p; — x||
and||c;, — x|| are bounded and,,. is bounded or approaches zero. Thus,

|V7Ti(X)'H>|:|L<Cm1_X ) W[ < e, ifi £
2

In fact, v;,, becomed) as the cellP;(X) disappears angd;(X) — 0 or asP;(X) is completely contained
in PT(X) andm;(X) — 7(B;). The exception to this behavior occursXif — Y € &;.

Case: = j: Sincev;j, and||c;x — x|| are bounded,

| . s
IV (X)W = |—2— [ STip—
i Ip; — x| !
J 2

— .0
lp; — x|

Corollary 3.13 There exists some real constagt such that for # j,

mi(X) < c3 || X — Bj|| with|| X — B;|| small enough.
Proof: We write the Taylor expansion af;(B;) at X:

mi(B;) = mi(X) + Vmi(X) (Bj — X) + O(| X — B;||%).
Sincer;(B;) = 0, we can boundr(X) by

mi(X) = Vmi(X) (X = Bj) + O(|X = Bj||*) < es [|X = By,

with Corollary 3.12 (1) since # j and||.X — B;|| is small. O
Lemma 3.14 The coordinate function;(.X) is Lipschitz atX = B;, i.e. there exists a constanf € R

such that
|Ai(X) = Xi(Bj)| < ¢esa [|X — Bj|| with || X — Bj|| small enough.



Proof: Let ¢ andc; denote real constants.

Casei # j: Because\;(X) = 7::(())(()) andlimy . g, 7(X) = ¢, the lemma is proven with Corollary 3.13.

Indeed,

. . . 1

Casei = j: With \;(X) =1 =37, ., Ak(X), we have shown the lemma because

Jim (A (X)) = A5(By) = XIE%_H_Z)\I@(X)_”:XIE%_|_Z)\I¢(X)|
! ’ k#j T kA
< Y erllX =Byl <es | X - Byl|.0
K

Lemma 3.15 The norm of the gradier%¥ \;(X) is bounded, i.e. there exists a constant real valusuch
that for any unit vectord in R¢ x R

Proof. Again, letcg, k = 1, ... denote real constants.

With 7(X) = >, mx(X), the gradient of the coordinate functiof(X) = 7;:(())(()) can be written as

V(X)) n(X) — mi(X) Va(X) _ 1
m(X)? w(X)

V(X)) = (v T (X) —)\i(X)ZVm.(X)>
k

At first, we suppose thatX — B;|| is sufficiently small and consider the caset j. We make three
observations:

1. Fori # j, we know from Lemma 3.14 tha;(X') < ¢4]| X — B[
2. Fork # j, we know from Corollary 3.12 tha¥ r(X) - 0| < ¢;. Therefore,

Ai(X) |V (X) - W] < es]| X — Bj.

3. Fork = j, Corollary 3.12 yield$Vr;(X) - u| < Consequently, with Lemma 3.14,

c2
Ix=psll*

caca | X = Bjl| _ eaca (Ix = pjl| + Jwe — wj])
Ix—pjll ~ lIx — pjl

X ()| (X) - T

IN

< C9,



because eithéiv, — w;| < ||x — pj|, or \i(X)|Vr;(X) - 0| = 0 asx — p;.
—
u

Using again Corollary 3.12 (to confirm that 7;(X) -

< ¢1), we obtain

1
X (|V7T1( )W+ \(X)|V (X -u|+2)\ WYV 7 (X u|)

k#j
C10- (318)

|V A\ (X) -

IA

IA

For the case = j, we exploit the following relation which is true for everymuaalized coordinate system:
NN =1 = D VANX)=
=1 1=1
With the right equation, we can expregs\;(X) = — > ;| V \;(X) and the result follows immediately
from the bound of Equation (3.18):

[V A (X) - 1 :|—ZV>\1‘(X)'?| <ncyp < ¢

3.5 Non-convex natural neighbor coordinates

In this section, we define a system of coordinates that is otex, i.e. the coordinate functions may be
negative, but it has an interesting additional propertig din unpublished idea of Clarkson that is described
in [35]. By combining natural neighbor coordinates, a cawaite function is constructed such thats a
linear combination of its natural neighbors, and, at theestime,x? = x'x, the square of the norm &f,
is a linear combination of the square norms of the neighbortpoHowever, to obtain this goal, we give
up the convexity condition and allow negative coordinates.

As in the original work, our exposition uses natural neightmordinates for Voronoi diagrams. Re-call
that? = {p1,...,pn} is a set ofn points inR? and Vor(P) its Voronoi diagram. Since the weight is
constantly zero, we denote the coordinate function\ff) and the volume function by;(x).

Definition of the coordinate function 7;

We now describe how to define the coordinate functjgi)that has the above properties. Let(p;) be the
natural coordinate g; with respect tax in the power diagranVor(P U {x} \ {pi}), and)\;’(pi) be the
natural coordinate op; with respect top; in the same diagram. They are defined by the corresponding
volume functionsr;! (p;), W;'(pi), andn(p;), the volume of the cell op; in Vor™ (P). See also Figure
3.24(a). We state precisely that

oy 7raJ:r(pi) + Wj(pl)
Yo (i) = 7+ (pi) and A pr) = m+(pi)



We denote byl (x) the set of indices of the natural neighborsxofind by J;(x) the set of indices of
the Delaunay neighbors @f; in Del™ (P) other thanx. Let I5(x) = I)(x) Ujer,(x) Ji(x) be the natural
neighbors ofx as well as the neighbors ibel* (P) of the natural neighbors of (other thanx). Notice,
I, (x) C I(x). See Figure 3.24(b). The first observation is that the batyicecoordinate property is also

IQ(\x) .
h //. .
N
bi
// N
) x (z
o |

Figure 3.24: (a) The volume functiomg*(pi) andr(p;) defined fromVor(P U {x} \ {pi}). 7+ (p;) is
the total volume of the highlighted zones. (b) The first armbad ring neighbors of.

true for any natural neighbgs; of x wrt. /\;f, i.e.pi = A (pi) x + > /\;_(pi) p;- The equation for the
barycentric coordinate property pf can be re-arranged in order to expr&sas a linear combination of
pi and its neighbors:

pi=A(p)x+ Y AN(p)p X =17 ( ) - > X(pi) py)- (3.19)
jei(x) ©\Pi jeJi(x)

We also know that

= 3 (3.20)

€11 (x)

Sincef (x) = x? is a convex function, we obtain from Equations 3.19 and h2Fallowing two inequal-
ities when taking the square of the poifits:

v

P’ <A X+ Y Af(p)pt = x
jeJi(x)

N

2
(Z i > < > (3.21)
€11 (x) €11 (x)

“Jensen’s inequality about the convex combination of a cofwection f says thatf (3", siz:) < Y, sif(z:) wheres; are
positive real numbers with . s; = 1.



The errors of both inequalities with respecttbare

doAp’-xt = = ) Ax)p’-

i€l (x) i€l (x)
1
€ =X~y A p) - D Ap?) = x= A+(p-)(pi2_ > Afpopy’) +ei
A JETi(x) ARt JEJi(x)

From Inequalities 3.21, we know that ande; are positive. We combine the equalities fgrto obtain

€ €x )
x = — () N pif)+——( T - Aeop) = Y, et
. €+ ex Az )
JjEJi(x) JeL(x)UJ;(x)
(3.22)

The coordinate function}, i€ I(x),j € Ji(x)UI(x), is obtained by re-arranging all terms concerning

the same sample poipt:

. €; e 1
: = L e 3.23
7i(x) p—i— (x) + et en 2 (pr) (3.23)
+
. € € (pl)
iy) — Ly e . 3.24
7] (X) e; + € ](X) e; + €y /\;(pl) I ? 7é ] ( )

Notice that\;(x) = 0 if p; is not a natural neighbor &f, in particular ifj € J;(x)\[1(x), and)\j*(pi) =0
if p; is not a Delaunay neighbor @f in Del ™ (P), hence forj € I1(x) \ Ji(x).

The sum of the coordinate functions is one because, it is ge®kocombination of two systems of
coordinates (which satisfy Definition 3.1):

) e; €x 1
Yoo = . ( > )\j(x)) +mm(1— > Arp)

JEJi(x)UI1 (x)

; 1
= + 1—(1-=X(py)) = 1.

For the same reason, the barycentric coordinate propenmtgsigected. It is a convex combination of
Equations 3.19 and 3.20:

> 4ix)p;

th(x)UJi(x)

- > Ap)py)) =

JEJi(x)

Z A e-fe (/\+ )

Ca Jjeh x)

We show that, ak = py, € P, the coordinate function evaluates to
Yi(pk) =k Vi€ I1(x),j € Ji(x) ULi(x):

Sincelimy_.p, €, = 0 while limy_.p, e; > 0for: # k and withA;(px) = 0 and\(pk) = 1, we confirm
the result fori # k.

Fori =k = j, \i(px) = 1 andlimy__,, %
. AT (pk) k
andlimy_.p, m =0, sov; (pk) = 0.

= 1,507 (pk) = 1. Fori = kandj # k, \j(px) = 0



For the final result, we combine the coordinate functiq;\sfor every natural neighbop; of x, i €
I, (x), weighted with\;(x). The following equalities are satisied:

Y A = Y A ( ) 7§(X)) = Y Ax) = 1

i€l (x),7€I2(x) ieli(x) jEI(x) i€l (x)
Z Ai(x)i(x)py = x
iel1(x),j€l2(x)

Z Ai(x) %i'(X) p;'p; = x'x. (3.25)
1€l (x),j€I2(x)

The definition of the non-convex natual neighbor coordimatepends only on the local coordinate
property of the natural neighbor coordinates. The samenigahs can be applied to natural neighbor
coordinates in power diagrams because they also satisfptbperty as shown in Section 3.2.






Chapter 4

Scattered data interpolation with natural
neighbor coordinates

In this chapter, we describe several methods for scatteagal idterpolation that are based on natural
neighbor coordinates. The methods are originally definedyugatural neighbor coordinates from Voronoi
diagrams. They are based on the fact that natural neighlbodioates are local and constitute a coordinate
system as described in Definition 3.1. Again, our expositises natural neighbor coordinates for Voronoi
diagrams as in the original works. The same techniques capjteed to natural neighbor coordinates in
power diagrams since we will see in the sequel that the methoelbased on the barycentric coordinate
property (Definition 3.1 (i)) and on the continuity and ditfatial properties of the coordinate function.
In Section 3.2 and in Lemma 3.6, we have shown that these piepare equally satisfied by the natural
neighbor coordinate system defined in power diagrams.

We re-call thatP = {p;,...,pn} is a set ofn point inR? and Vor(P) its Voronoi diagram. Since
the weight is constantly zero, we denote the coordinatetifomdy \;(x), the volume function byr;(x),
and the gradient from Lemma 3.9 Byr(x) = %w((x, 0)). Let ® be a scalar function defined on the
convex hull of P. We assume that the function values are known at the poiris dé. to eactp; € P,
we associate; = ®(p;). Sometimes, the gradient @f is also known ap;. We denote ig; = V&(p;).
The interpolation is carried out for a poixtin the convex hull ofP.

We overview the results presented in this chapter. We definelinear interpolants, Sibson’g®
interpolant (in Section 4.1) and Clarkso&’ interpolant (in Section 4.3). For all other interpolantss t
gradientsg; are assumed to be part of the input. Two interpolants, nptaitison’sZ! interpolant and
Farin’s interpolant, ar€'! continuous. Sibson’€! interpolant is described in Section 4.1. It re-produces
exactly spherical quadriédsThe interpolant is”! continuous by definition everywhere except at the data
pointsP (because all of its components including the natural coateifunctions ar€'! continuous). The
first terms of the Taylor expansion af" at a data poinp; yield the proof of theC'! continuity atp; € P.

A spherical quadric has the ford(x) = o 4+ b'x + v xx.

57



Farin’s interpolant is summarized in Section 4.2. It is lobhee Bernstein-Bézier techniques. In op-
position to Sibson’s interpolant, it re-produces genetaldyatic functions. Again, th€'! continuity is
obvious everywhere apart from the data points. There, ibigined by a careful choice of the control net
of the Bézier simplex. At last, we present an interpolatiedal! that is designed to re-produce quadratic
functions. We bound its error with respect to the interpotabf general functions by looking at the first
terms of the Taylor expansion &t around the poink.

Figure 4.1: The example data set used in this chapter.

Throughout this chapter, we use the same data set to illedtna results of the different interpolation
methods. It contains four non-zero function values and méare function values. The data set is depicted
in Figure 4.1. All methods are applied with gradiénat the data points. In the function graph, the data
points correspond to the highest and the lowest points. Weotlindicate them further because we want
to show theC'! continuity or discontinuity of the interpolant at thesemisi A second example is depicted

if an interpolation method relies on the gradient. We applydame data set given the gradients that are
indicated by the horizontal lines in Figure 4.1. In this ¢dke data points are indicated in the graph.

4.1 Sibson’s natural neighbor interpolants

Sibson’s natural neighbor interpolants have found apjitina in a variety of areas such as geology, geo-
physics [89], and partial differential equations [27]. Ba¥atson implemented Sibson’s interpolants [99],
[100] and his code has, for example, been integrated intbl@&R Graphics Software package for scien-
tific visualization and contouring.

Linear precision interpolation

Sibson [91] defines a very simple interpolant that re-preddmear functions exactly. The interpolation
of ®(x) is given as the linear combination of the function valuedatrtatural neighbors weighted by the

2http://ngwww.ucar.edu/ng4.3/index.html



coordinates:
= Z Ai(x)z
Indeed, ifz; = a + b'p; for all natural neighbors of, we have
=Y Xi(x)(a +b'p) = a + b'x

by the barycentric coordinate property.

Sibson'sZ! interpolant

The so-calledZ! interpolant proposed by Sibson [91] ' continuous with gradieng; at p;. It re-
produces spherical quadrics of the fofix) = a + b'x + v x'x exactly. The proof relies on the
barycentric coordinate property of the natural neighbardmates and assumes that the gradiend at
the data points is known or approximated from the functiones as described in [91]. However, in this
context, we suppose that the function vatyas well as the gradieny; of ® is known atp; € P.

Sibson’sZ! interpolant is a combination of the linear interpol&ft and an interpolanf. The inter-
polant¢ is the weighted sum of the first degree functions

22 Te—pi i (%)
G(x)=z+g'(x—pi), &x)= —H l;'l(lx -
2i Tl
Sibson observed that the combinationZ8fandé¢ reconstructs exactly a spherical quadric if they are mixed
as follows:
Z°(x) + B(x)&(x) 2 Ai(x)[x — pil
ZY(x) = a(x) wherea(x) = 1 and (%) |x — pill.
(x) i) 5 500 == 309 = 3 A9l il

Indeed, suppose@(x) = a + b'x + v x'x andz; = a + b’p; + v pi'p;. Each ofZ° and¢ yields an error
with respect tob. We will show that

Z°(x) - @(x) =7 A(x) and  (x)—E(x) =7 alx) (4.1)
In Z*, by the combination of? and¢, the error terms cancel out aud (X) = &(X).

Using the barycentric coordinate property, the erroZdfwith respect tob evaluates to

Z(x) - @(x) = Z Ai(x)z — (x) = Z Xi(x)(a+b'pi + 7 pi'pi) — (e + b'x + 7 x'x)

= Z )‘ 7p1 Pi — ’YXtX = (Z /\ P1 p1> (XtX -2 XtX)

= vaiX(pitpertx—?xpi =7 A(x)(x = pi)'(x = pi) =7 B(x).

i



The erroré(x) with respect tab(x) depends on the error ¢f(x) with respect tab(x),

&i(x) = a+b'pi+ypi'pi+ (b+27p)(x—pi)=a+b'x—vpi'pi+27pi'x

= ®(x)—vx'x—ypi'Pi+27pi'x=2(x) — 7 (x—pi)'(x — pi)

For eacht;(x), we obtain®(x) — &;(x) = ~ ||pi — x/|?, thus the error of (x) with respect tod(x) is
®(x) — £(x) = v a(x). Equations (4.1) are henceforth proven.

Rote [87] pointed out that other weighting factors are gaesn order to mix the first degree functions
¢. Instead of 22 (x)

s —x||”

tions¢; with ﬁ. The slope off around the origin determines how fast the interpolant agugres

one might choose any smooth positive functfowith f(0) = 0 to weight the func-

¢ asx — pj.
In the general casey(x) becomes

l—ps]?
22 M) Fc i
NG

2 Fi—pil

Figure 4.3 depicts the result of Sibson’s interpolants oata-get with only four non-zero values and

a(x) =

gradient0. These data points correspond to the highest points of @apingin Figure 4.2, the gradient is
directed from the data-point to the origin (the center ofititerpolated zone) as shown in Figure 4.1. The
data points correspond to the dark points indicated in taptgr

The gradient of Sibson’s interpolant

In the sequel, we show that tt#' interpolant is indeed’! continuous. This has been stated in Sibson’s
original paper but the proof was omitted. We develop the fii@towing a suggestion of Rote [87]. Except
on the data points themselves, the interpolant is diffeablg since all ingredients, namely the coordinate
function, the distance function, arjg are differentiable. Therefore, we need to consider theignaaf

Z! at a data poinp;.

We determine the first two terms of the Taylor expansiorZ bfat p;. The first order term yields the
gradient ofZ! at p;- In fact, we compute the Taylor expansionsAfand¢ at p; and we boundy(x) and
B(x). Putting the approximations that we obtain in Equation®)(44.3) and (4.4) together will yield the
result.

In the Taylor expansion of at p;, we writez; = z; + g;'(pi — p;j) + O(|lpi — p;/|*) and
2°(x) = Y Ai(x)zi = ZA (z; +gj'(pi — p3) + O(llpi — p5I*))

= z+g'(x—pj)+ > \x)O(lpi - pill*)

i



As x approachegp;, the last term behaves as follows: from Lemma 3.14, we knavXfix) = O(||x —
p;ll) while the factorO(||p; — pj||?) is constant. We deduce that

Z%(x) = z; + O(||x — pj)), asx — p;. (4.2)

Concerning the interpolagdt we observe that it is continuous and differentiablg;atecause of following
two statements.

1. &(py) = &(py) = 7
because/i # j : limy_p, i)

[x—pill —

= 0, therefore Jimy_p, Hx pJH/Z e i(x) b= 1.

2. Vé(py) = gj:
we use Lemma 3.14 to show that the partial derivativé af p; with respect to théth coordinate
corresponds to theth coordinate of;. This proves the claim.

Letix, k =1,...,d, be the unit vector along theth coordinate axis, and lei(2) = p; + h ix. By
definition, h = ||x(h) — pj]|.
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i AL Ge() 0
ho WA (L ey e o)
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o &LX(R) = py) + £ () O(h)
o h(1+0(m)

= lim g;" i + f(R)O(1) = g5 .
We write the Taylor expansion gfat p;:

E(x) =z +g' (x —py) + O(lx — pj*). (4.3)

For «(x), we obtain the following result by factorising the denonaraand applying Lemma 3.14:

A (x) 12 Ai(x) 2
e = Bill* + X e 1 — pil

(x) = T
o) i —pil) e
e mn LT TN it Tkl
_ |x — p;l|? f(lx = p;l) O(lx = pjll)
L+ f(llx = pjll) O(]x — pjll) 1+ O(|lx — pjll)

= O(lx = p;l*) + £(IIx = psll) OCllx — pg]])-



If we assume thaf is at least linear, thea(x) = O(||x — pj||?). With Lemma 3.143(x) is O(||x — p;|))-
We get

_ ™) (k= ps Blx)  _ 1 _ .
o1 a0~ Ok piland T = oy = L O Rl (@)
Putting the approximations of Equations (4.2), (4.3) and)(tbgether yields
lx) = a(x) 0(x B(x) <
70 = S’ ™ e+ e
= 7a(xj“f)ﬁ(x) (25 + O(lIx — ps]) + %@j et (x— ps) + (% — pall?)

= z+gj(x—pj) +O([x — pj[)*>, asx — p;.

We deduce the gradient pj,
VZ(p;) = gj.

() (d)

Figure 4.2: The result of SibsonZ! interpolants on 4 non-zero values with gradient directethéo
center of the figure. From top left to bottom rigi#! interpolants with () (||x — pil|) = +/llpi — xI,
(®)f ([Ix—pill) = lx—pill, the “classical’Z" interpolant, (c)f (||lx—pill) = lx—pill*, (d) f(Ix—pil}) =

I — pill*.



(e) (f)

Figure 4.3: The result of Sibson’s interpolants on 4 noreaelues with gradien®. From top left to

bottom right: (a)Z° interpolant,Z! interpolants with (bj ([|lx — pil|) = /[[pi — x|, (©)f(||x — pill) =
Ix — pill, the “classical’Z" interpolant, (d)f (/lx — pill) = Ilpi — x[I*°, (€) f(IIx — pill) = llpi — x[*,
() f(lx = pil) = lpi — x[I*.



4.2 Farin’s C' interpolant

Farin [56] extended Sibson’s work and realize§acontinuous interpolant by embedding natural neigh-
bor coordinates in the Bernstein-Bézier representatfca aubic simplex. Bernstein-Bézier patches and
related concepts are widely used in the area of computedajgometric design and surface approxima-
tion. An introduction to this theory can, for instance, berfd in [57] or [38]. Farin’s interpolant has found
applications for example in partial differential equatid@2] and in free form deformations [81] used for
hand simulation. Farin defines it only for the two-dimensiorase.

In Section 3, we noticed that all points within a cell of theamgement of Delaunay spheres have the
same natural neighbors. Farin shows that such a set of hatighbors can be used as a support for a
multivariate Bézier simplex of arbitrary degree. Multilde Bézier polynomials over higher-dimensional
simplices were formally defined by de Boor [37]. Accordingthe degree of the polynomial, a Bézier
control net must be built from the vertices of the simpleg, from the natural neighbors in our case. Any
location inside the convex hull of the natural neighbors loarexpressed in terms of multivariate Bézier
polynomials, and the interpolant over a cell of the arrang@nof Delaunay spheres is constructed based
on these polynomials.

Assume thak € conv(P) hasl + 1 natural neighborsV,. = {po, ..., p1}, and the associated natural
coordinatear = (A\p(x), A1 (x),. .., \(x)). We consider the points 0¥, as the projection of the vertices
of an/-simplexc onto the plane. Each poistin the plane which had/, as natural neighbors corresponds
to a unique poinia in R because it can be written as a unique linear combinationeof th 1 natural
neighbors\V,. Therefore, we can define a Bernstein-Bézier polynomial tivis simplex ofR'.

We first define the multivariate Bernstein polynomials (aft]) which are the basic elements of

this interpolation method. Lef = (ig,is,...,%;) be amulti-index i.e. an(l + 1)-tuplet of indices.
I| = iy + i1 + ...+ i; denotes its norm, anfl/m = (2,..., ). The multi-index withi; = m and

all other entries; = 0,7 # j is denoted;. Given the barycentric coordinatesover an/-dimensional
simplexo (notably, defined byV,.), theBernstein polynomialef degreem are defined as:

m M\ i i mY m!
B[ (u) = (I>/\00/\11 - /\ll7 Where([) = m
They are monomials of degree. They have the propertEm:m B*(u)=(Ao+ A +...+ )" =1.
Moreover,B}’j‘(u) = AT

An [-variate Bézier simplexalso called éBernstein-Bzier polynomigl interpolates a scalar function
(defined inR') that is known at the vertices of tHedimensional simplex. It is determined by the
Bernstein polynomials and by iB&zier control net This is a network of (( + 1)-dimensional)control
pointseach composed of @ézier) base poinfalso calledabscissan the relevant literature) — that is its
projection inR! — as well as of §Bézier) heighialso calledbrdinate) — which is a real value determining



its height overR'. Thecornersof the control net are the vertices of the simptekifted by their function
value toR'*1,

A Bézier simplex of degree one is the linear interpolatidrthe corners of the control net. For a
simplex of higher degree, there are additional control fgoivhose base points are linear combinations of
the vertices of the simplex.

For each multi-indeX with norm|I| = m, there exist exactly one control poihtm = (qr, br) in the

control net. If the vertex set @f is {po, . . . , p1}, the Bézier base poinrj; is the weighted barycenter
Lo
a=) —p; (4.5)
j=1

For a quadratic polynomialn{ = 2), the Bézier base points are the vertices plus the midpaifithe
edges formed by all pairs of vertices. A cubic polynomial £ 3) has three type of base points which
are the weighted barycenter of one, two or three vertices. beise points of a Bézier tetrahedron include
q(3000) = P1.9(1200) = 3P1+ P2 andq(1110) = 5P1+ 5P2+ 5ps. The other base points are obtained
by permuting the indices (and replacing the correspondatg goints). Figure 4.4 depicts the projection
of the control net of a quadratien. = 2) and a cubigm = 3) Bézier tetrahedron onto the plane.

40020 q0030

90200

70002

42000 43000

Figure 4.4:1 = 4 and (a)m = 2: projection of the control net of a quadratic Bézier tetdton, (b)
m = 3: projection of the control net of a cubic Bézier tetrahed(barin [56]).

The corner that corresponds to the data ppinis I;/m = (pj, z;), thus, its height i$;, = z;. The
way that the heights of the remaining control points are ehds not fixed a priori. It depends on the
properties that are expected from the interpolant, e.goitsinuity properties.

The interpolant of the functio® for which we know the function values = ®(p;) for all p; € P is



the/-variate Bézier simplex™ constructed ovel, of degreem. It is defined by

fru) =Y brBf(w),
[I|=m
whereB}" are the Bernstein polynomials of degreeandb; is the Bézier height of the control poiffm.
The one-variate Bézier simplg¥ corresponds to Sibson&’ interpolant,

fHw) =Y Xix)z,
=1

becauseB}j(u) = \j(x) andb;, = zjforj =1,... ,n.

The interpolantf™ is continuously differentiable except on the data pointslse the natural neighbor
coordinates are not differentiable there. However, Famarks in [56] that the directional derivatives of
f™ at (pi, z;) are linear combinations of the control points that are diyemonnected tqp;, z;) in the
control net. Thusf™ is differentiable atp;, z;) iff all these control points are coplanar.

Them control points connected {@;, z;) have theith entryj; = m — 1 and one other entry. They
form the 1-ring neighbors of p;, z;). See also Figure 4.4.

Assume we know the gradiegt of ® atp;. We might choose the Bézier height of the 1-ring neighbors
of (py, z;) such that they lie in the tangent planedaft p; (which is determined byg;). The derivative of
the Bézier simplex then yields that the gradienf ®fat p; is g;. The interpolant is overall'* continuous,
whatever the Bézier heights of the remaining control [goae.

For a cubic polynomial/ts = 3), Farin [56] determines the heights of the remaining cdrgoints in
order to obtain an interpolant that re-produces quadratictions. The same idea has been used before
by the same author [55] for interpolation over triangulaz®t patches. It is based on so-calttahree
elevation(see also [67, chapter 4.4.6]) which means that a polynoohidégreem — 1 is re-written as a
polynomial of degreen such that

Y aBf(m) = > byBY H(w). (4.6)

[I|=m |J|=m—1
By multiplying the right hand side of Equation 4.6 withy + A1 + ... + \;) = 1 and by gathering the
appropriate terms, we find the new Bézier heights

1
cr = E(ilblfeil +i2breiy + .o Finbrei, ), 4.7)

wherel — ei; = (ig,...,4—1,t; — 1,7j41,...,7;) is then-tuple of indicesl except that; is replaced by
ij — 1.

For each triplet of sites iV,., nine control points of the cubic polynomial are fixed by tlaadpoints
and their 1-ring neighbors. The height of one control powlhdse base point is the barycenter of the



three sites) is not determined. It will be fixed such tfiats the re-writing of a quadratic polynomial as
in equation 4.6. To do so, Equations (4.7) can be transfotmeapress the coefficients, |.J| = 2, of a
quadratic polynomial in dependence of the coefficient$/| = 3, of the cubic. The undetermined Bézier
height is then, in turn, given by Equation (4.7).

Precisely, the solution is as follows. L&t be the subscript of a control point with undefined Bézier
height. Its base point is the barycenterpgf p; andpy. ;. has the thred-entriesi; = i; = i, = 1
and all other entries aie There are nine subscripts with the satnentries ad;;;: I;, I; and I, which
correspond to data points (with oAentry and all otherg) and six other indices which correspond to the
1-ring neighbors ob;, p; andpy (with one2 and onel entry and all other entrie®). Leta be the average
of the heights corresponding to the data poiats; %(b;i + by, + by, ), andb be the average of the heights
corresponding to their-ring neighbors. If we choose the Bézier height

1
°p_ =
2"

blijk = 2

d
f? reproduces quadratic functions of the fofiix) = a + b'x + x! Ox with Q = ( ; f )

The cubic polynomialf? is actually quadratic, it interpolates the function valaesl the gradients on the
data points, and is globallg'® continuous. Since the six parametersbadire determined by three function
values and three gradients, the quadratic funcfidis unique.

Two examples are depicted in Figure 4.5.

Figure 4.5: The result of Farin’s interpolants on 4 non-aexioes with (a) gradiera, (b) gradient directed
to the center of the image. In the left picture, the non-zexta ghoints correspond to the four peaks.



4.3 Clarkson’s K" interpolant

Another way to construct &' smooth interpolant using natural neighbor coordinatesaiset on an
unpublished idea of Clarkson that is described in [35]. Ia thesis, they are introduced in Section 3.5.
The interpolant defined by this new coordinate system is

KO%x) = Y A X) 2.
€li(x),7€l2(x)
It reproduces spherical quadrics of the fofifx) = a + b'x + yx'x — without knowing the gradient cb
at the data points as it was the case in the preceding sectiaeed, if® is a spherical quadric, we write
zj = a + b'p; + yp;'p;. With equations 3.25, we obtain

K'x) = Z Ai(x) vj(x) (a+ b'p; + vp;'pj) = a + b'x + yx'x = ®(x).
€li(x),7€l2(x)

Figure 4.6 shows the result of th€’ interpolant on the example data set (see Figure 4.1). Wigh th
interpolant, the gradient is not known.

Figure 4.6: The result of Clarkson’s interpolants on 4 nerszvalues.

Even though the graph appears smooth at the data points, veenee able to show the global®
continuity of this interpolant.

4.4 Quadratic precision interpolant

In this section, we define an interpolant that re-producedpiic functions, i.e. functions of the form
®d(x) = a + b'x + x'Qx. If the interpolated function has higher order terms, $aig aC’* continuous
function, k£ > 2, it is interpolated up to its second order terms when thedest between he sample point
tends to zero,i.e. the density of the sampling tends to tgfiAis additional input, we assume the gradients



gi = V(®(p;)) of @ at all sample pointp; € P to be known. The interpolant is defined as follows:
Z/\ )(zi + g1 ‘(x - pi))

We estimate the error of the interpolation by looking at thgldr expansion o atx up to the second
order terms. Let(®(x)) denote the Hessian df atx. We write
1
2= (x) + V(2(x))(pi = %) + 5(pi — ) H(2(x))(pi — x) + O([|x — pill*)

andg; = V(®(x)) + H(2(x))(pi —x) + O(||x — pi*)1.

Applying the barycentric property tb', we obtain

I'x) = ZA )+ V( (x)) (Pi_X)‘l‘%(Pi_x)tH(q)(X))(Pi_X)

+%(p' = x)"H(®(x))(x — pi) + O(|x — pill’) + O(Ix — pil|*)1°(x — p1))

= d(x)+ V( (x —x —I—Z)\ |X0_pl”)
- 060+ ZA0(Ipi - xI")

From the above calculations, we deduce that, firstly, a qu@diunction is exactly interpolated since
the remainders of the Taylor expansion are zero. Secorglifyeasampling density tends to infinity, the
second order terms of a general functidrare exactly interpolated because the distance frotu its
neighborsp; vanishes while\;(x) is finite. The interpolant is nat'* continuous orP because of the*
discontinuity of the coordinate functiorls onP.

Figure 4.7 depicts the result of thé interpolant on a data-set with onliy non-zero values. The
gradient of® at these points is directed from the data-point to the orftlie center of the interpolated
zone). Notice, that we obtain respectively Sibsdfisinterpolant if the gradient i.

Figure 4.7: The result of the quadratic precision interpblE on four non-zero values with gradient
directed to the center.



The gradient of the I'! interpolant

In this section, we compute the gradient of tHeinterpolant, in order to examine its value gt Let
hi(x) = z; + %git(x — pi). The gradient of ! is as follows:

n

VINz) = D (VAi(@)hi(x) + Ni(x)Vhi(z)) =Tt + Ty,
=1

1
whereT; = ZV/\ Vhi(x), andTy = Z/\ gl, sinceVh,(z) = S8t

From) " , Ai(z) = 1 and from} " , \;(z)p; = x, we derive the two following equations concerning
the gradientsv \;(z) (0 denotes the origin dR%):

Y Vi(z) =0, Y VAi(x)'p; = 1. (4.8)

We use the equations to re-arrange the writin@of

L= Y VAEh(x) - b)),

i=1,i#j
and to notice that
D V@) (pi — py) =1 - VA(x)'ps + VA (x)'py) =1 (with Y VAi(2) = —VAj(x)).
i#] i#]
We consider now the case— pj: from limy_.p, Aj(x) =1 andlimy.p, Ai(x) = 0,7 # j, it follows
thatlimy—.p, 7o = % gj. The analysis of thé; term is a bit more involved. We inject the Taylor expansion
of z;, z;, andg; aboutx shown in the preceding section:

1
lim Ty = lim Z VAi(X)(z — 2 + 58’ (x = pi)))  (with lim (x —p;) = 0.)
x~>pj X—p Z 17/7&.] 2 X*)p.]
= Jlim > VAGIVE) (31t 5%~ pi) + (pr X HD(x)) (s — )
<op 2 2
Vi= 1,i#7
+0(|Ipi — x|I*)).

With Equations 4.8, we simpliffim, ., Y71, i VA(x)(5pit3x—pj) = 5(1-VA;(x) =5 VA;(%)+
V)j(x) = £. Thus,

i T = Ly Jim > VA 0 M0 ) + Oy X))
i=1,i#£j]

Because we know from Lemma 3.14 thiab, .. |V i(x)]| is of orderO(1), we deduce that

lim VI'(x) =g;+O(|pi — x||*) €

X—Pj

wherep; is the furthest natural neighbor gfande is a unit vector ofR?.



Chapter 5

Sampled manifolds: definitions and results

In this chapter, we consider the case where the sample gdits taken from a smooth, closkdnanifold

M. In the first section, we introduce some notations concgritie definition of the manifold and the
assumptions we make. Then, we define the restriction of andbidiagram to a manifold, and finally we
are concerned with the sampling density/ef, and recall several results about the local behavior of the
manifold samples. Apart from very few lemmas that we haveptetbor derived, this chapter contains no
proofs as it recalls known concepts and results. The readgrrafer to the original literature for further
details.

5.1 Topological notions, medial axis and local feature size

Two topological spaces are callémeomorphidf there exists a bijective map from one space to the
other that is continuous in both directions.ndighborhoodf x in a setM is an open sub-set 0¥1 that
containsx. A topological k-ball is a subset oR? that is homeomorphic t&" .

A homotopybetween two functiong and g from a spacé/ to a space) is a continuous map :
U x[0,1] — V such thath(z,0) = f(x) andh(z,1) = g(x). Two functionsf andg are homotopic
if there exists a homotopy between them, i.e. if they can be continuously transformmechfone to the
other. Two topological spacésand)’ arehomotopy equivaler{pr of the saméomotopy typeif one can
find two continuous mapg : ¢/ — Vandg: V — U suchthatyo f : ¢/ — U is homotopic to the
identity map inl/ andf og : V — V is homotopic to the identity map M. U/ is contractibleif it is
homotopy equivalent to a point.

M C R? is aclosedk-manifoldof R? if the neighborhood of each poist € M is homeomorphic to
R¥. It is a k-manifold of R? with boundaryif the neighborhood of each poist € M is either homeo-
morphic toR* (aninterior point) or homeomorphic to a closed half-spacéRbf(a boundarypoint). The
boundaryof a k-manifold F, i.e. the set of boundary points &f, is either empty or it is & — 1)-manifold.
Let a(d — 1)-manifold be called &ypersurface

71



The tangent spacef M atx is called7,. We define it via a parameterization ofl: Suppose that
fe = (feyy--os fo,) : U C R¥ — R?is a local parameterization of &1. At the pointx = f,(0), the
tangent spac@, is the image of the Jacobian ¢f as a linear transformation froi"* to R?.

We call \V,, the normal spaceof M atx, i.e. the affine sub-space & that is spanned by the unit

normals{rﬁi}izl J—k, atx and that is orthogonal t@,. SinceM is ak-manifold of R¢, 7T, is of

dimensionkt and\,, of dimensiond — k.

At last, we need to introduce the notion sxfbanalyticsets. This theory allows for example to define
precisely what is usually referred to as piecewise anagis. Some important properties of subanalytic
sets will be used in Chapter 6 (and notably in Lemma 6.2). @haad Soufflet [32] claim that most
general manifolds belong to this setting and consider itgengralization of real semialgebraic geometry.

The definition is as follows (omitting some technical desgillf a function isanalyticin a regionR,
it is infinitely differentiable inR. A setX’ C R? is semianalyticif, for all x € X, there is an open
neighborhood/ of x such thatY N/ is a finite Boolean combination of se{x ¢ ¢/|f(x) = 0} and
{x € Ulg(x) > 0}, wheref,g : U — R are analytic. Thus, such a set is locally defined by analytic
equalities and inequalitiest’ C R is subanalyticif, for all x € X, there is an open sét and a bounded
semianalytic se} ¢ R"*™ such thatt’' N/ is the projection of) into /. (We omit the exact definition of
the properties of this projection.) This is a generalizatid semianalytic sets (and it is, unlike the further,
stable under linear projections). See [32] for a short digison of the properties of subanalytic geometry.

We suppose in the sequel th&t is closed, compact and sufficiently smooth, i.e. three tidiffsren-
tiable. We suppose further thatt is subanalytic. This property is used in the proof of Lemnia &et
P C M be a set of sample points fromt. We denoteB(x, ) an open ball centered atwith radiusr.

The following definitions allow to characterize some featuof a manifold. See [101] and [9] for basic
results on properties of the medial axis.

Definition 5.1 1. (Medial axis) The medial axis of a manifoldt in R? is the closure of the set of
points with more than one closest point 6.

2. (Medial ball) A ball that is centered on the medial axis, tangent to the folthiand whose interior
does not intersect the manifold is called a medial ball.

3. (Local feature size)The local feature sizéfs(x) of a pointx € M is the distance fronx to the
medial axis ofM.

We show that the local feature size is Lipschitz. The lemnsldeen first stated in [9, lemma 1].
Lemma 5.2 For any two points<,y € M, Ifs(x) < Ifs(y) + ||x — y||.

Proof: Since the balB(y, Ifs(x) — ||x — y||) is contained in the balB(x, Ifs(x)), it does not contain any
point of the medial axis. Thus, its radius must be smallen thdy ), i.e.1fs(x) — ||x — y|| < lUfs(y). O



The following two propositions will be useful in Section 2nd Section 8.2. They have been stated
by Boissonnat and Cazals [19] for the cdse d — 1.

Lemma 5.3 [19, Proposition 13]
Let B = B(x,r) be a ball that intersecta1. If B N M is not a topological ball, theB contains a point
of the medial axis af.

Of course, the dimension of the topological ball is the digw@m of thek-manifold M. This observation
generalizes [19, Proposition 14].

Lemma 5.4 For anyx € M and anyr < lfs(x), M N B(x,r) is a topologicalk-ball.

Proof: By definition oflfs(x), B(x, ) cannot contain a point of the medial axis/of. Lemma 5.3 implies
that M N B(x, r) is a topological-ball. O

At last in this section, we show a lemma that is needed for thefpf Lemma 6.2. It is topological
result based on the work of Milnor [79]. The proof follows aygestion of Chazal [33].

Lemma 5.5 Let M be a compact-manifold ofR¢ and .\, the normal space toV at a pointx € M.
There always exists a second paititc M N N,. other thanx.

Proof: Consider the orthogonal projectigh: M — 7, from M onto7,.. BecauseM is compact, there
must exist an open subset®f that is not in the image of. Consequently, there exists a regular vajue
of f without pre-image inM1, thus,ff ~'(y) = 0 wheret f ~!(y) denotes the number of (distingt)such
that f(p) = y. Milnor [79, §4] shows that the residue class modalof 1 f ~!(y) is independent of the
regular valuey. It is called thedegreemod 2 of f. We deduce thaf has degre® mod 2.

SinceT, and\, are orthogonal angl = 7, N\, the pre-imag¢g ! (x) of x are the intersection points
of M with A/,.. We prove by contradiction: Supposevere the only point iflN,, N M. In this case, it is
a regular value of since M intersectsV,. transversally inc. However, by [79§4], £f~!(x) mod 2 = 0,
thus, there must be an even number of poin®linN M. This contradicts the assumption. O

5.2 Voronoi diagram restricted to a k-manifold

We first define the Voronoi diagram of a set of points restddteak-manifold of R?, following previous
work by Chew [34] (for the casé = 3, k = 1, 2) and Edelsbrunner and Shah [54].

Definition 5.6 Let P be a set of points. The Voronoi diagram®frestricted toM is the (curved) cell
complex obtained by intersecting each fac&'ef(P) with M. We denote it byor ¢ (P).

We denote by (p;) the Voronoi cell ofVor ¢ (P) consisting of the points aM that are closer to
pi € P (for the Euclidean distance) than to amyc P, j # . A vertex of Vj(p;) is the intersection of a
(d — k) dimensional face oV (p;) with M. Hence, it is the center of a ball passing through 1 points
of P and not enclosing other points Bf The dual of the restricted Voronoi diagram is defined aovait



Definition 5.7 LetP be a set of points. The Delaunay triangulatiorofestricted toM is the subcomplex
of Del(P) consisting of the faces ddel(P) whose dual Voronoi faces intersedtt. We denote it by
Dely(P).

Boissonnat and Cazals [19] define the natural neighbors ofrg g € M with respect to the Voronoi
diagram ofP restricted taM.

Definition 5.8 Given a set of point® C M,

(@) theM-(natural) neighbors of a point of M are the vertices of the facets Btly (P U {x}) that
are incident tox.

(b) Two sample points ar&1-neighbors if they are adjacent iDel y((P).

The topological concepts and the lemma that are introduestiare employed by Edelsbrunner and
Shah [54] to show a sufficient condition under whigkl ,((P) is homeomorphic toV. If £ is a collection
of sets, we denote the union of all setsfily UE and their intersection by&.

A subspaceF C R? istriangulableif there exist a simplicial complek such thatJK is homeomorphic
to F. A finite coveringof F is a finite collectionS of subsets ofF such thatF = UE. Thenerveof a
finite covering€ of F is a set of collections of sets that consists of all subcttlas of £ with non-empty
intersection.

Nrv(€) :={E CE|NE # 0D}

We observe thatls, C E; andE; € £ implies thatEy € £ which is the property of a cell complex as it
was introduced in Chapter 2. geometric realizatiorof Nrv(€) is a simplicial complexXC together with
a bijections from & to the vertices ofC so thatE' € Nrv(€) iff S(E) spans a simplex ifC.

The following theorem by Leray is known under the nameeve theorem

Theorem 5.9 [75]Let £ be a finite closed covering of a triangulable spaEeC R? so that for every
E C &,NE'is either empty or contractible. L&t be a geometric realization dfrv(€), thenF and UK
are homotopy equivalent.

In particular, the nerve of a Voronoi diagram of a set of mimt general position is its dual Delau-
nay triangulation, and the nerve of the restricted Vororiagthm Vor v(P) is the restricted Delaunay
triangulationDel ((P). From Theorem 5.9, we can deduce sufficient conditions uwtiéh Dely(7P)
is homeomorphic to the closgdmanifold M. We deduce directly that they are of the same homotopy
type if the intersection of a set of cells ¥br(P) is either empty or contractible. If, in addition, any
non-empty intersection of a face wbr(7P) VorP with M has the “right” dimension, i.e. the intersection
of a(d — I)-dimensional face with\1 has dimensiork — [, then,Dely((P) and M are homeomorphic.
For details, see [54].



5.3 Properties of well sampled manifolds

In this section, we are concerned with sample pointBdtsat fulfill some sampling condition with respect
to the underlying manifold. The sampling condition allowsieduce some properties of the sample points,
and, notably, to estimate the normal space. Most resulisgpeed from Amenta and Bern [9] where they
were originally written for2-manifolds inR?. The work of Dey et al. [46] performs the generalization to
k-manifolds in order to define an algorithm that detects theedision of a manifold from a sample set by
looking at the shape of the Voronoi cells. Notably, the cphed apole vectowhich has been introduced
in [9] is enlarged to the general case.

Definition 5.10 LetP be a set of sample points of a smoétmanifold M.

1. (e-sample)For ¢ < 1, P is ane-sample ofM if every pointx € M has a sample point at distance
at moste Ifs(x).

2. ((e,6)-sample)Lete and ¢ such that; < 6 < e < 1. Pis an(e, ¢)-sample ofM if it is an e-sample
of M and if each sample poini; € P is at least at distancé 1fs(x) from any other sample point.

The definition of €,6)-sample is necessary if the dimension of the manifetdis not known in advance
[46]: without the requirement of a minimum distance betws@mple points, the sample points of a surface
could, for example, trace a curve on the surface and the taesga= 1 or k£ = 2, are not distinguishable
even ife is small.

Because the local feature siig() is Lipschitz, given are-sampleP, it follows that the maximum
distance betweer € M and the closest sample poipt € P is t1fs(p;):

€

€

[x —pill < elfs(x) <e(Ufs(pi) + Ix—pil) <= [x—pil < ] Ifs(p;)- (5.1)

— €
The next lemma by Boissonnat and Cazals bounds the maxinsiande betweex and itsM-neighbors.
It is the same as the maximum distance between two adjaceittegeofDel v (P).

Lemma5.11 [19, Lemma 9 (2)]

LetP be ane-sample ofM with e < % If p; andp; are M-neighbors, i.e. they are adjacentlivel \(P),

then||p; — pjl| < Z<1fs(p;) and||p; — pjll < Z<1fs(py)

Proof: If p; andp; are connected by an edgelel\((7), there exist a point € M that is part of the
Voronoi faceV (p;, pj). The ball centered om havingp; andp; on its boundary is empty of other sample
points. Consequently; andp; are the closest sample points fram With » = ||[v — pi|| = ||v — pjl|,
we deduce from Equation (5.1) that

‘ Ifs(p;) andr < ‘
—€ 1—ce¢

r<g Ifs(pj).



The distance|p; — p;|| at most twice the distancebetweenv andp; or p;. O

Amenta and Bern were the first to apply Theorem 5.9 to show ifithe sampling is sufficiently dense,
the three-dimensional Delaunay triangulation of the sanmalints contains a subset of triangles that is
homeomorphic to the sampled surfaté.

Theorem 5.12 [9, Theorem 2] LetM be a2-manifold inR?. For ¢ < 0.1, the restricted Delaunay
triangulation of ane-sampleP of M is homeomorphic tgu1.

Location of Voronoi vertices

If the underlying manifoldM is a curve = 1), we can show with Lemma 5.3 that no Voronoi vertex of
Vor(P) is close taM with respect to the local feature size.

Lemma 5.13 The minimum distance from € M to a Voronoi vertex of V' (x) is an upper bound for

Lfs(x), $1fs(x) < miny ey (x) [[x = v||.

Proof: A Voronoi vertexv is the center of an empty Delaunay ball and it intersects tineecat itsd + 1
generators. Either its intersection with the curve istzall which means that it is or it contains a medial
ball. In this case, its radius is greater or equal than thal liature size of each of the generators. Or it is
not al-ball and Lemma 5.3 implies that it must contain a point of¢heve’s medial axis, thus, the radius
of the Delaunay ball must be greater or equal than half thal feature size of each of the generatofs.

Figure 5.1: Which side of the sliver tetrahedron is closeMo (a) the outer side witfl}; andT;, or (b)
the inner side witl{; and7,?

The same does not work for higher dimensional manifolds dugmicalledsliver tetrahedra. A sliver
is a very flat simplex of the Delaunay triangulation whosdiges lie almost on &/ — 1)-ball. The center
of its Delaunay sphere (of dimensiaf) might be arbitrary close to the manifold, and, conseqygefdr
from the medial axis ofM. Figure 5.1 shows a sliver iBiD seen from the exterior of the surfagé.
Without further input, it is not possible to determiiel,(7P) even if the sampling is very dense



might intersect the Voronoi edges dual to the “outer” triesg}, andT5, or those dual to the “inner”
triangles, T3 andT,. Knowing only the sample points, the information is not préas

Even though not all Voronoi vertices of arsample are close to the medial axis of the manifold, at
least some of them are. The definitions and results that @ided below are based on this observation.

Normal estimation via poles

The Voronoi diagram of am-sample consists of cells that are long and skinny in the abdirections

at a pointx € M. Therefore, the normal directions can be estimated fromvtitenoi cell V'(x) of
Vor(P U {x}).! For hypersurfaces, i.éd — 1) manifolds, this observation led to the definition of a pole
by Amenta et at. [9]. The authors show that the vector fromstiméace point to the furthest point in its
Voronoi cell is a good estimate for the normal to the hypdesar at this point. In the general case, the
concept of poles has been defined in [46]. To be more speciicerall the exact definition.

Definition 5.14 ([46]) The Voronoi subpolytopes for a poirt € M are subsetd’(x) C V(x),i =
1,...,d — k, (of dimensiond — i + 1) defined recursively as follows: lét'(x) = V(x) and assume
V*(x) to be defined. Thpole v’ is the Voronoi vertex of *(x) which is furthest fronx, and theith pole
vectorv,* of x is the unit vector with directiosv,’. If V(x) is unboundedy’, is taken at infinity and
the direction ofv,’ is the average of all directions of unbounded edgelggk). The Voronoi subpolytope

Vitl(x) is the minimal polytope containing all poinfy € V'(x)|Zxyv,' = 1 }.

As stated in the next lemma, the pole vectors provide a gopdoapnation of the (non-oriented)
direction of the normals toVf atx. Therefore, we refer td/, as the affine space with origi spanned
by the pole vectors,¢,i = 1,...,d — k. The affine spacé], that containsc and is orthogonal toV,
approximates well the tangent spaceMbat x.

Lemma 5.15 [9, lemma 5], [46, lemma 3.1There exist a normal vectat,’ € N, for each pole vector

v,',1 <i < d -k, such that the smaller angle betweefy andv,’ is at most arcsin(7< ).

The next lemma from [46] shows that for any unit veaigre ., there exists a corresponding vector
in the approximated normal spa&ég which makes a small angle wiik,.

Lemma 5.16 [46, lemma 3.3For any unit vectom,, € A, there exists a corresponding vectof € N,

such that the anglg between both vectors is bounded/bx 4v/d — k arcsin(1=).

Normal estimation via closest neighbors

The following lemma from [9] justifies another method to e&tte the normal. It has the advantage of
being independent from the Voronoi diagravor(P). This is important for very large sets of sample

*All results are written with respect to an arbitrary paine M. Notice, that they hold equally for a sample painte P.



points and, even more, for manifolds embedded in higher wémeal spacesi(> 3). In both cases, it
may be too costly to computéor(P). The lemma generalizes directly temanifolds inR?.

Lemma 5.17 Generalization of [9, lemma 2]
For any two pointsx andy on M with ||x — y|| < p Ifs(x), the smaller angle between the line segment
[xy] and any vectorm ,, from the normal space/, to M atx is at least — arcsin(5).

Proof. The proof of [9] is independent of the dimensiothi®nd k. The manifold M is exterior to the
tangent balls toV atx, soy € M cannot lie inside any tangent ball. The anglleetween a vector NV,
and the segmeriky]| is minimized whery lies on one of the tangent balls. Since the radius of the teinge

balls is at leastfs(x) and||x — y|| < p lfs(x), we obtaind > arcsin(%). 0

For curvesk = 1, we apply this lemma in Section 8.2 in order to estimate thgeat line7,, atx by
the line throughx and its closest neighbor iA.

For surfaces i3 D, Dey, Funke and Ramos proposed a normal estimation methddjirand in [60]
based on this lemma: Choopéo be the nearest neighborxfc M in P andq to be the nearest neighbor
of x among all points of” such that the angl€pxq is betweent5° and135°. The normal to the triangle
(pxq) approximates the normal,. Since the distances from to p and toq are small, Lemma 5.17
applies. They claim

Lemma 5.18 [60, lemma 8.2] [44, lemma 2]
For x € M, let p and q be determined as above. The angle betwegand the normal to the triangle

(pxq)isO(e).

However, this method is very sensitive to the sampling deresid does not work in undersampled
zones. Other methods are more stable since they estimatmtimal from thek-nearest neighbors of a
point for some greatet. For example, Hoppe et al. [72] approximaig by the normal to the least-square
fitting plane of thek-nearest neighbors af. This method is also justified with 5.17 as long askheearest
neighbors are sufficiently close 1o Gopi et al. [65] propose to estimaig by the vector that minimizes
the variance of the dot product between itself and the véigior x to its k-nearest neighbors. The authors
of [65] affirm that both methods are equivalent.

Normal variation

In the remainder of this section, we restrict ourselves foehgurfaces, i.ek = d — 1. Considering two
points on the hypersurface that are close, Amenta and Benu #fat the angle between the normals at
the sample points is small. The proof is again based on theregt that the medial balls tangent.td

at a pointx are not intersected by1. From this lemma, we derive other properties that are ugeful
some issues in Chapter 6. The generalizatioh-toanifolds seems possible, however, it would require to
introduce additional notations and concepts.



Lemma5.19 [9, lemma 3]
For any two pointsx andy on M with ||x — y|| < p Ifs(x), p < 3, the angle between the normals.d

atx and aty is at most;£2 T

From the preceding lemmas, we can deduce that the angle dretive tangent plane t&1 at a point
x and the bisector hyperplane of any two sample points thatlase tox cannot be too small. This is
shown in the next lemma.

Lemma 5.20 The angle between the tangent plaheto M at x € M and the bisector of two sample

pointsp; andp; that are at distance at mogtifs(x) fromx, p < 1, is atleastr/2 — arcsm(lpp) T pgp.

Figure 5.2: Bounding the angle between the normaand the segmerip;p;|.

Proof: See Figure 5.2 for notations. We derive a lower bound for tiggear between the vectgs;p; and
the surface normah; at p; and an upper bound for the anglebetween the normals g andx. The
angle betweem,, andp;pj is at leastv — 3.

In order to boundx, we apply Lemma 5.17. The distance between the sample peibtsunded by
Ipi — pill < llpi —x[| + [Ip; — x|| < 2plfs(x). Using Lemma 5.2, we gefs(x) < Ifs(p;) + p Ufs(x)
andlfs(x) < =
m/2 — arcsin(% ) The angles between the normals gt andx is at most-ty- |f p <3 L (Lemma5.19).

Concluding, we getv — 3 > 7/2 — arcsm(lpp) 1_3,)’ provided thap < 5. O

1= 1fs(pi). Hence,||pi — pjl| < 22 > 1fs(pi). It follows from Lemma 5.17 that is at least

From this lemma, we deduce the corollary.

Corollary 5.21 The tangent plan€, to M at a pointx € M cannot be parallel to the bisector of two
sample points that are at distance at mpEt(x) fromx, for p < %

Lemma 5.22 Foranyp < the parallel projection ont@’, of the intersection of the balb(x, p Ifs(x))

with M is 1-1.

2+3 !

Proof: By Lemma 5.19, for any point at distance at mogtlfs(x) from x, the angle between the normals
to M atx and aty is at mostl_—pgp. The projection is 1-1 ifl_%p <G = p < g5 2027 O



Bounding the local feature size

If the underlying manifoldM is a curve = 1), we saw in Lemma 5.13 that the minimum distance from
x € M to a Voronoi vertexv of V(x) is an upper bound foglfs(x). For hypersurfacel = d — 1, the
local feature sizéfs(x) can be upper bounded by the distance to the furthest Vor@mtces ofV (z).

There is only one pole vector, so we omit the superscript anoi itv, . It is thepositivepole vector
in opposition to thanegativepole vectorv ; : thenegative poles, be the furthest Voronoi vertex f (x)
such that the angle between the positive and the negatieevpotor,v'; = xv;, is bigger tharg.

We show in the sequel that the distance from the polesrtwist be greater thdfs(x). Intuitively, one
can say that the Delaunay spheres centered at the positivithamegative pole approximate the medial
balls atx. Sincelfs(x) is smaller than the smallest radius of the medial balls tanige\1 atx, the smaller
distance fromx to its poles is an estimate for the local feature size. Foptbef, we need the following
lemma from Amenta and Bern [9].

Lemma 5.23 [9, lemma 5]Letx € M andv be any point inV (x) with ||v — x|| > vifs(x) for v > 0.
The angle atx between the vector te and the normaln, (oriented in the same direction) is at most

. . ¢
arcsin ) 4+ arcsin =Rk

We can state the lemma. The proof is part of the proof of Thadrérom [41].

Lemma 5.24 (after [41])Letk = d — 1 ande < 0.27. The poles/; andv, of x are at distance at least
1fs(x) from x.

Proof: It is sufficient to prove the lemma for the negative pole bseathe positive pole is, by definition,
further fromx than the negative pole. We choose the medial ballaith centerm such that/;- andm lie

Figure 5.3: The anglg = = — a™ — o~ must be bigger thag.



on different sides ofM, i.e.xm makes a large angle greater tHawith the positive pole vector, ©. See
Figure 5.3. We know thdix — m|| > Ifs(x) andm € V' (x). By convexity ofV (x), there exists a Voronoi
vertexv that is the furthest Voronoi vertex in directiomm and|x — v|| > Ifs(x). Thus, with Lemma
5.23, the angler~ betweenxm andxv is smaller tha® arcsin (1—;) This is also the case for the angle
o™ betweenv,t andn,, but in the opposite direction (Lemma 5.15). Fok 0.27, the angle between
v, andxv is greater thar§, : 7 — (a* + ) = 7 — 4arcsin =g > 3 fore < 22@ < 0.27.

(1—e +v2-v2

Thus, eithew = v, or v is further away fronmx thanv. O






Chapter 6

A coordinate system on a-manifold of RY

6.1 Introduction

Surfaces and generatmanifolds represented by a set of unordered sample poiaterecountered in
many application areas such as computer graphics, comgidest design (CAD) and reverse engineering,
image processing, and scientific computation. Many algor#t that are applied to sampled manifolds
rely on the definition of a local neighborhood on the manifolleconstructing the manifold from the
sample points is one way to respond to this demand. Howevweight be unnecessary and also too costly
to establish a global approximation of the manifold. Diéetly, by adapting the definition of natural
neighbor coordinates to the manifold case, our method defifoe any point on a sampled manifold,
a set of neighboring sample points as well as a set of codedinassociated to them. If the sampling
is sufficiently dense, this coordinate system is provabbtalan the manifold and has good continuity
properties. Unless the manifold is locally flat, it is notyantric but the distance between a point of
the manifold and its weighted barycenter is bounded witpeesto the sampling density. Moreover, the
set of neighbors and the coordinate functions can be com@ifieiently because locality allows efficient
filtering methods. We do not impose any restriction on theugesi the manifold, the number of connected
components, nor any other global features of the manifoldfddm sampling is neither required, and we
allow the sampling density to be related to the local cumeati the manifold:

Related Work

The interest in the definition of an easy-to-compute coatdirsystem on general manifolds is for example
witnessed by [82]. The major drawback to applying the nataeighbor coordinate system as they are
defined in thel-dimensional Voronoi diagram to points issued from a maditmmes from the fact that
its definition is limited to the convex hull of the sample psinTo avoid this problem, a common solution
consists of adding a box enclosing the object. Obviouslg, gblution causes problems, e.g. the choice

1This chapter is the subject of two publications [24] [25].
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of the size of the bounding box, the number of sample poirkentdrom it, artifacts arising from the
bounding box points, and the augmented computation cog29ln Brown has enlarged the coordinate
definition outside the convex hull to cover the union of théaDaay balls, which is still too restrictive in
many applications.

A second drawback is that a point is likely to have neighbloas &re far away from the point. Boisson-
nat and Cazals show that the sum of the coordinates asgbtietieose neighbors that are far away tends
to zero when the sampling density increases [19]. Howeven though the influence of the far neighbors
is small, the fact that Sibson’s coordinates are not lodated not only the beauty and rigor of the result,
but the time required to compute the coordinates and themesg of an interpolation scheme.

For points issued from a sphere, Brown proposes a solutid@8h Instead of referring to thé-
dimensional Voronoi diagram, Brown defines natural neighdmmrdinates with respect to the geodesic
Voronoi diagram on the sphere. This definition generalizbsd’s coordinates in a straightforward man-
ner. Therefore, the basic properties of definition 3.1 alféléd, except the barycentric coordinate property
(i) which cannot be fulfilled since points on the sphere do nairigeto the convex hull of their neighbors.
The obvious difficulty in enlarging Brown'’s approach to gextenanifolds is that geodesic Voronoi dia-
grams are much more complicated than Euclidean diagramslifiindilt to compute [74]. Moreover, in
many applications the manifold is not known and neither ésgbodesic Voronoi diagram.

In this thesis, we suggest another system of coordinatgsoiots on a manifold. It is closely related
to natural neighbor coordinates, yet instead of considetie geodesic Voronoi diagram on the manifold,
as Brown, or the Euclideastdimensional Voronoi diagram of the sample points, as Sip#as defined
in the intersection of the tangent space of each manifoldtpeith the Euclidean Voronoi diagram of the
sample set. If the tangent spaces are not given as part afiplig they can be easily estimated from the
sample points. The resulting coordinate system is localtaednherentlyk-dimensional.

Outline of the chapter

After this introduction, we define in section 6.2 tfig-neighbors of a manifold point with respect to a
sample of the manifold. We show that dll-neighbors ofx lie in a small neighborhood aroundif the
manifold is well sampled. In section 6.3, we define Thecoordinate system on the manifold associated to
the sample. We show the main properties ofThecoordinates; in particular, we show that the coordinate
functions have compact supports and are continuouslyréiff@able almost everywhere on the manifold.
Although a point on a manifold cannot, in general, be exge@ss a convex combination of other points
on the manifold, we show in subsection 6.3.3, that the batyicecoordinate property is approximately
satisfied, with an error that depends on the local curvattitkeomanifold and on the sampling density.
For surfaces i3 D, we determine the gradient of the coordinate function. At, lare define a non-convex
coordinate function for surfaces that fulfills the barycentoordinate property.



6.2 Manifold neighbors

With this section begins the core part of the thesis in whieldefine a local neighborhood of a poibf

a smooth, compadt-manifold M without boundary with respect to arsampleP of M. For the proof

of Lemma 6.2, we suppose further th&t is subanalytic, see also Section 5.1. In order not to compute
the geodesic Voronoi diagram owt, we approximate\ locally by the tangent spacg, of x to M. We
determine the natural neighbors »fin the Voronoi diagraniVor(P) restricted to7,., and we call them
7,-neighbors ofx.

Figure 6.1: Natural neighbor§” and7,.-neighbors7,. of x

In Figure 6.1, a schematic drawing illustrates that soméefratural neighbors of which are high-
lighted in the picture can be far away fraawith respect to the geodesic distance/oh The7,.-neighbors
are the subset of the natural neighbors that are clogeoto M. In the remainder of this section, we for-
mally define the7,.-neighbors of a poink € M and prove that they are closexto

6.2.1 Definition of 7,-neighbors

At first , we assume that for each poiate M, the set of normal$n,‘};—; . 4 & to M atx is known,
and therefore, the tangent spakeatx. Let Vor(P) be the intersection dfor(7) with the tangent space
7.. The Delaunay triangulation restricted Ip that consists of the faces 8fel(?) whose dual Voronoi
faces intersect, is calledDel(P). Alternatively, by Observation 2.4or(P) is thek-dimensional power
diagram of the weighted point8; = (pj, w;) wherep; is the projection of the sample poipy € P
onto 7, andw; = —||pi — pil*>. The(k — [)-faces ofVor(P), I < k, areV(piq,.-.,Py) = Tz N
define’V(’x) =V (x)NT,.

Let Reg(P) be the regular triangulation dual ¥or(7P). Since two cells ofVor(P) are adjacent iff
their corresponding cells iWor(P) are adjacent and interse&t, Reg(P) is the projection ofDel(P)

onto 7.



Definition 6.1 (7,-neighbor of x) Given a set of sample poinf8 C M The7,-neighbors of a point
x € M are the sample points; € P such that their projectiofp; is a natural neighbor ok in Vor (7).

To see that the concept Bf-neighbors is well-defined, we make two observations: Rinstdefinitions
of Section 2.2 assume general position of the point siteg CHse that two sites have the same position
and the same weight must be excluded. In our context, thigredtthe bisector of twd/,.-neighborspy
andp; of x coincides with7,.: px andp; are projected at the same position, and they have the sargbtwei
because they are at the same distance to the tangent spacedpposite sides.

Fork = d — 1, we can easily show that the angle betwé&grand the bisector hyperplane pf and
pj is strictly positive, ife < %: In the remainder of this chapter, we show tpatandp; are at distance at
2¢_]fs(x) to x (Lemma 6.3), thus, Corollary 5.21 applies wjth= —2

VI—2¢ VI=2e’
In any case, we can assume without real loss of generalitynthaisector hyperplane of two sample

most

points is tangent to\1 because any small perturbation/fwould remove this situation.

Second, we need the following lemma to show tkdies in the convex hull of the projection of its
T.-neighbors. It is equivalent to show thaties in the convex hull of its natural neighborsVior(7) or
to show thafl’(x) is bounded.

Lemma 6.2 x € M belongs to the convex hull of the projection ofifsneighbors or7.

Proof: For a contradiction, assume thidtx) is unbounded. Then the interior &f(x) contains a point
P at infinity. Among the points o U {x}, x is the closest t@., sincep lies in the Voronoi cell
of x. Therefore, there is no point @? in the halfspacé{™ that containg., and that is limited by the
hyperplaneH passing througk and normal to the linéxp.. ). See Figure 6.2.

H+

—7 TN,

Poo

Figure 6.2:H* must contain sample points.

The proofis easier fok = d— 1. In this case, since the hypersurfatéis closed, it delimits a bounded
region inR?. There is exactly one medial ball tangentte at x that lies inside this region. Suppose its
center isc. Lety be the intersection point of1 with the ray issued frone that is orthogonal tG< and



contained inH{*. Such a point must always exist since the region delimited\bys closed. Figure 6.2
shows a view onto the plane containivgp.., y, andc.

By definition, ¢ is a point of the medial axis oM. We have|ly — c|| > 1fs(y) and for anyp; €
P,lly — pill > lly — || because* is empty of sample points. This contradicts the fact tRads an
e-sample withe < 1.

Fork < d — 1, the proof is slightly more complicated because it is moffécdit to construct the point
y that lies in# ™ and whose orthogonal projection orttois the center: of a medial ball passing through
x. If such a pointy is found, the proof is completed because the arguments fbmveaapply.

By construction, the vectatp., is orthogonal toH and contained ifi{*. Also, it lies in the tangent
spaceT, becausep.,, € V(x). ConsequentlyH{ must contain the normal spadé.. Consider the set of
medial ballsB tangent taM atx. Their centerg’ lie in V.. More precisely, they lie in the intersection of
N with the medial axis of\ (see Def. 5.1).

We distinguish two cases: ¥ lies in the interior of the convex hull of1, any rayr in A/, emanating
from x contains exactly one centey € C at finite distance fronx: A growing sphere tangent td1 atx
with center onr must interseciM before degenerating to a halfspace because any hypermateireng
x must intersectM. The medial ball centet, is the first intersection point of with the medial axis of
M. Notice that this intersection is in isolated points beeaaigontact poiny of the medial ballB,. other
thanx is contained in any ball centered ertangent taM atx with larger radius, thus, these balls cannot
be empty. See figure 6.3.

Figure 6.3: The contact poist of the medial ballB, (with centerc,) is necessarily contained in the ball
B! (with centerc’)).

Let A be the union of segmen{sc,| for all , A := |J,[xc,]. Assuming some generic condition,
the boundary.4 has dimensiorid — & — 1) and it separated/, into two disconnected components. In
particular, this is true if the medial axis 8ff is subanalytic. (In this cas@,A is a(d — k — 1)-dimensional



subanalytic set.) Following Chazal and Soufflet [32], teishsured ifM is subanalytic

In the second case, lies on the convex hull oM. Any ray in thenormal coneof the convex hull of
M, i.e. the cone spanned by the normals to the convex hutMotdefines a halfspace tangentita at x
that does not intersec¢¥! and that is normal to the ray. Such halfspaces corresporegengrate maximal
balls with center at infinity. We consider them to be part @f skt of medial ball8. Any rayr emanating
from x in AV, that lies outside the normal cone intersects the medialafxist at finite distance. Each
such rayr contains, therefore, exactly one centgre C corresponding to the first intersectionofvith
the medial axis ofM. SinceM is compact, there must exist somec C at finite distance and, with the
same arguments as aboyé, \ C has two disconnected components.

Figure 6.4: The construction gffor a curve inR?.

We determine a s€l7 by adding an affine translation of the tangent spagcéo eachc € C, 0J =
C x 7T,. By constructionp.7 separate®? into two components. Lef be the region determined &7
that contain. In 7' = J \ B, the interior of the medial ball§ is excluded from7. At x, J' has
no thickness because the medial b#llare tangent to each other (and.td). Moreover, 7' N'H = x
because the normal spatg is contained ir, the tangent spacg, is contained in7" and N, N7, = x.
Figure 6.4 indicates the intersection7gfwith the medial ball$3 as well as the regioty (enclosed by the
horizontal rays) in the case of a curveRn.

In the neighborhood ok, M must lie in the interior of7’ becausex € 7' and M is exterior to all
medial ballsB. By Lemma 5.5, there exists a second poihin the intersection of\ and NV, C H.
However,x’ cannot lie inside7’ because7’ N 'H = x andx’ # x. ConsequentlyM must leave7’ in
HT, thus, it must intersed@.7 .

Lety be any intersection point 0¥1 andd.7. Its orthogonal projection ontH is the center of a medial
ball c € C because liesinoJ = C x 7, and’H is orthogonal tdZ,.. With the arguments from above, the

232, Theorem 2.1] shows that the medial axis of a subanahyiersurface is subanalytic. This work can be extended to
general subanalytie-manifolds [33].



lemma follows. O

If the normals atk are not known (this may be the case when the manifold is onbyvknat a finite
set of points), we can approximate the tangent spacby the spacef; that passes throughk and is
orthogonal to the: pole vectors ok (see Definition 5.14). We can defiﬁN’@—neighbors in very much the
same way ag,-neighbors: The only difference is thét is replaced bﬁ;.

6.2.2 Locality of the7,-neighbors

We now derive a bound on the distance between a poiat.M and its7,-neighbors with respect to the
local feature sizéfs(x). The proof of the lemma is closely inspired from [9, lemma 5].

Lemma 6.3 Let P be ane-sample ofM andx € M.
(a) TheT,-neighbors ofk are all contained in a ball of radius%lfs(x) centered ak.
(b) Theﬁ—neighbors ofk are contained in a ball of radius

€

(1 +4Vd - k)) Ufs(x)

- sec(arcsin( T
(c) In both cases, th@,-neighbors andf;-neighbors ofx are contained in a ball of radiuge(1 +
O(e)) Ifs(x).

Proof: (a) Letv be a vertex o¥ (x). We derive an upper bound on the distance betweandv. Because

V(x) is bounded by the (intersection witf} of the) bisector hyperplanes &fand its7,-neighbors, the
distance betweer and its7,-neighbors is at most twice the distance betwreamdyv.

Let B; be a ball with radiusfs(x) that is tangent to\ atx with centerm; such that the line segment
[vin, | intersectsM at the pointq. (B; is uniquely defined only fok = 1 ork = d — 1.) Let« be the
angleZvmix. We find the same anglte = Zvxq' whereq' is the orthogonal projection of onto [vm; ].
See Figure 6.5. The balt(v, ||x — v||) is empty of sample points because= V*(x). BecauseB is also

empty of sample pointss is the point of P U {x} that is closest tey. It follows that||x — q| < 1< lfs(x).

On the other handjx — q|| > [|x — ¢'|| = sin a Ifs(x). Hencea < arcsin(1<).

Since the trianglév x mj ) has a right angle at and since the radius @#; is lfs(x), we obtain

|Ix — v|| = tan(a) lfs(x) < tan(arcsin(l i E))lfs(x) = ﬁlfs(x)
with tan(arcsin(1=)) = ﬁ

(b) We consider a vertex of V(x) = V*(x) N 7,(x). This time, we define3; to be a ball tangent to
M atx with centerm; such thafv, m;] intersectsM in q, and the anglex is defined byn = Zvm; x.
As in part (a),B(v, |x — v||) and B; are empty of sample points, so we can apply the same argutoents

obtain the boundgx — q|| < % 1fs(x) anda < arcsin(1=; ). See Figure 6.6 for notations.




By

Figure 6.5: For the proof of Lemma 6.3(a)

Figure 6.6: For the proof of Lemma 6.3(b)

BecauseB; is tangent toM atx, the unit vectom,, with directionm;x lies in the normal spacs/;,.
From Lemma 5.16, we know that there exists a correspondictpve,, N, such that the angle
betweenn, andvy, is bounded. Eitheryy, lies in the same plane with, x, andm; (and, consequently,
with 1), or we project it orthogonally onto this plane. This doescimnge the upper bound on the angle

B (B = £xny).

Let y be the intersection point of the lirf&, m; ) with the hyperplane perpendicular g containing
x. (Fork = d — 1, this hyperplane i, soy € V(x). But this is not true in general.) The anglds also
the angleZyxq’ and/ is the angle/vxy. Refer to Figure 6.6.



With the upper bound fotv and 3, we can conclude: Lef = /m;vx = § — a — 3. From triangle
vxq', we know that

/

lo' =xll __ lx-al _ ‘

siny T osin(f —a—f) T (1 —€)cos(a+ )

Ix =Vl =

In the casé: = d — 1, we know from Lemma 5.15 that < 2 arcsin(1=;), thus,

IIx —v| < . i - sec(3 eurcsin(1 ‘ ) Ifs(x) = e(1 + O(e)) Us(x).

— €

In the general case, Corollary 5.16 shows that 4\/d — k arcsin(1= ) which yields

IIx — v < - sec(eurcsm(1

i (L +4vd — k) lfs(x) = e(1 + O(e)) Ufs(x).

d
The following lemma states thatand all its7,.-neighbors are contained in a small topological ball, if
€ < 0.3. Itis a direct consequence of Lemma 6.3.

Lemma 6.4 Let B(x, ) be a ball centered at with radiusr = \/% (x).Ife< ‘/54’1, B(x,r)NnM
is a topologicalk-ball that contains all7,-neighbors ofk.

Proof: By Lemma 6.3, all7,-neighbors ofx are contained in a balB(x,r) centered aik of radius
(x). With Lemma 5.4,M N B(x,r) is a topologicalk-ball if » < 1fs(x), which is true for

~ 0.3. 0

r =

6.3 Manifold coordinate system

We can now define a coordinate system.bhassociated with a set of sample poifts Similarly to
the 7,-neighbors, it is defined in the tangent space of each mangoint and consequently callef.-
coordinate system. In the rest of the section, we show somygepies of theZ,-coordinate system:
we show that the support of thE, -coordinates is local in Subsection 6.3.1, we study themtinaity
properties in Subsection 6.3.2, and we prove in Subsect®i éhat the barycentric coordinate property
is approximately satisfied, with an error that depends onldbal curvature of the surface and on the
sampling density.

In this section, we suppose given a query psirg M together with the tangent spa@g to M at x.
Thus, the manifold including the first derivatives are knawrat least query points with this information
are provided. This corresponds to the setting in the applicaf the coordinate system to interpolation
on surfaces that is described in Section 8.1.



6.3.1 Definition of the7,-coordinate function

The same definitions as in Section 6.2 apply.

Definition 6.5 (7,-coordinate system associated witl® ) In the7,-coordinate system associated with a
set of sample point® C M, the7,-coordinater;(x) of a pointx of M is the natural neighbor coordinate
\;i(x) of x in the power diagranVor(P),i = 1,...,n.

By construction, theZ .-coordinatesr; fulfill properties (ii) and (iii) of a system of coordinates over
M associated with? as they are listed in Definition 3.1. The barycentric cocaténproperty 3.%i) is
satisfied for the projected sample poipts With respect tdP, the barycentric coordinate property is only
true if the manifold is locally planar so that &l}.-neighbors ok lie in the tangent spacg,.

Locally bounded support

Let A; denote the support of, i.e. the subset of the pointse M such thatr;(x) # 0. In order to show
the locality of A; on M, we apply the bound on the distance between a pomtM and its7,.-neighbors.

2¢e

Corollary 6.6 The supportA; of 7; is contained in a balB(p;, ) of radiusr = g

atp;. Fore < 0.19, B(pj, ) N M is a topologicalk-ball that containsA;.

1fs(p;) centered

Proof: Applying Lemma 6.3 and Lemma 5.2, we obtain that— p;|| < 6 Ifs(x) < t2:1fs(p;) with

§ = 2 for anyx € A,. ConsequentlyB(p;, r) with r = 1251fs(p;) Ifs(p;) containsA;.

_ 2¢
V1=2¢ T VI—2e—2¢

With Lemma 5.4,M N B(p;j, r) is a topologicak-ball if » < 1fs(x), thus, fore < \/%*1 ~0.195. O

6.3.2 Continuity properties of the coordinate function

In this section, we study the continuity of the functigrwhenx moves onM. Let us first state the lemma:
Lemma 6.7 The7,-coordinater;,7 = 1, ..., n, associated withP is continuous everywhere ow.

Proof: Assume thatM is parameterized by = (uq,...,u;). The coordinate functiom;(x(u)) is, by
definition, equal to the natural neighbor coordinaté(x(u),0)) in the power diagranVor(?). When
x moves onM, the projected sample points change their position and w®ght in the power diagram
continuously. Indeed, sinc&1 is smooth, the projection onto the tangent space is a smoagpimgy:
x(u) is differentiable, and the normais,” € A/,(u) are continuous. The position pf(u) is given by

_— . .
Pi(w)=pi— > (x(wpi-nt) .
7 ENg (u)



The weight ofp; is

P=- 3 (x(wpi n’)

7 ENz(u)

wi(u) = —|[pi — Pi(u)

Recall also from Lemma 6.2, thatis always in the convex hull of the projected sample pointen-C
sequently, theZ.-coordinates are continuous on all 8t because the natural neighbor coordinates are
continuous as proven in Lemma 3.6. O

Lemma 6.8 The7,-coordinater;,» = 1,...,n, associated with is continuously differentiable every-
where onM except atP and at the pointsx € M such that the intersection d&f, with a (d — 2)-
dimensional Voronoi face of the Voronoi cell" (x) in Vor(P U {x}) has dimensiort — 1.

Proof: Consider the power diagraior(?). By Lemma 3.6;; is C'* continuous onM \ P except at a
finite number of other points. We want to characterize thesetp of C'' discontinuity with respect to the
d-dimensional Voronoi diagrariWor(P).

The natural neighbor coordinatgis not continuously differentiable at a poitsuch that the bisector
hyperplane ok andp; contains &k —1) face ofVor(P) sayV (pi, p;). (See also the proof of Lemma 3.6.)
This means that a point of the face has equal power with respecttoB;, and B;. But, by definition
of W“L(P), this means also thatis at equal distance from;, p;, andx. Consequently, thek — 1)
dimensional power face df (x) is part of the intersection of @ — 2) dimensional face ofor™ (P) with
T.. O

6.3.3 Bounding the distance to the weighted barycenter

In this section, we bound the distance frame M to its weighted barycentds(x), that ise(x) =
x — >, 7(x)pi. This is the error committed with respect to the barycemtniordinate property at € M.
Boundinge(x) corresponds to bounding the distance df,aneighbor ofx to the tangent spacg,,

since
d—k

x =Y n(x)Pi= ) m(x)(pi+ Y (xpi-n.’) n,?).
i i j=1
We show the following corollary which is more general.
Corollary 6.9 Consider two pointx andy on M with ||x — y|| < p lfs(x). If ¥ is the orthogonal
projection ofy onto the tangent spacg, of M at x, then

) 2
Iy -5 < X0 P,

21fs(x)
Proof: Because the projection is orthogongy; — ¥|| = ||y — x|/ sin @ wheref = Zyxy. Sincey does
not belong to any ball of radiugs(x) tangent taM atx, sin ) < gﬁs_(ﬂ O

It is now straightforward to show the next proposition.



Proposition 6.10
d—k
X = ZTi(X)pi + Z O(e)fs(x) my.
- o

)

Proof: Itis sufficient to prove that the distance betweeh aneighborp; € P of x € M and its orthogonal
projectionp; on the tangent spack,, is bounded by

2 2
Ipi = Bill < 7= 16s(x) = O(e)lfs(x).
1—2¢
With Lemma 6.3, we havdp; — x|| < \/%lfs(x) which implies, together with Corollary 6.9, the
inequality above and the proposition. d

Bounding ||p; — pil| with respect to the curvature

Using differential geometry, we can express the distan@Z@tneighbor to the tangent plane in terms of
the curvature of the manifold. We restrict our attentionudaces inR3.

Thenormal curvaturex, at a points € M in a given directionv’ in the tangent plan&, is defined as
the curvature of the intersection curve of the surface withglane formed bw’ andn,. In the sequel,
we relate the distancgp; — pi|| to the normal curvature,. atx € M wherev; is the direction ofp;,
ie. vi = x_ﬁ. The minimum and the maximum normal curvature are callegtheipal curvatures Its
associated directions are tpencipal directions See for example [48].

Define a local coordinate frame with origi) the tangent plang, as plane: = 0, and the two principal
directions of M atx asx- andy-axis. It is well known that, locally, any smooth surfacehe graph of
a differentiable function in such a coordinate system. llbfes that, in a neighborhood of, S can be
represented in the form = h(z,y). In our case; is the distance of a point to the tangent plahei.e.
zi = ||pi — pil| for pi = (x4, v, i) in the barycentric coordinate system — see [48, pp. 163-165]

Corollary 6.11 Letp; € P be a7,-neighbor ofx € M andp; = («;,y;,0) in the coordinate frame with

origin x, the two principal directions as- and y-axis, and the norma,, aligned with the: axis. Then,

2
Ko, T . . R(x;,y;
Ipi — Pill = Rlwi,yi) = —vé =+ R(xi, y;), with lim - (TZZ o)

=0,

wherer; = \/a? + y? is the distance of; to x and «,, is defined as above.

Proof: A Taylor's expansion abouyb, 0) shows thati(z, y) = £ (k12? +kay?) + R(z, y) whereR(z, y) is
the sum of the higher order terms. This is due to the fact th#te tangent plané,(0,0) = 0, /,(0,0) =
0, andh,(0,0) = 0. ., (0,0) = 0 because the coordinate system is aligned with the prindipattions.
It follows that k1 (x) = hy.(0,0) andkz(x) = hy,(0,0). Using polar coordinates with respect to the
same coordinate system, we @gt, ) = ~-r1os” Ok S°0) 1 R(x,y) wherer = /22 + 2 and@ is
the angle of the vectdrr, y) with the z-axis. Withk, = x; cos? # + k, sin? §, we get the result. a




6.3.4 Visualization of the coordinate function

In order to demonstrate the locality and the smoothnessedf'thoordinate, we visualize the coordinate
function r; with respect to a sample poipt on a parameterized surface. Figure 6.7 shows an example
of the cylinder from two different viewpoints and of the terur; is computed on a (perturbed) regular
grid of 40000 points with respect to a subset of 100 randorhgsen sample points. Each grid point is
translated by the value of the coordinaten direction of the surface normal at that point. Of coursg,
itself has the highest value fay (7;(p;) = 1). Note the locality of the coordinate function, as well as th
¢! discontinuity on the sample poigt itself.

Figure 6.7: The coordinate functiafon the cylinder and the torus.

6.4 Gradient of the T-coordinate function defined on a surface inR?

In this section, we derive the formula for the gradient of fheoordinate functionr; for the case of a
surface inR?. Theoretically, this restriction is not necessary, butritifies the exposition. To make it
clear, we change notations and c&lthe 2-manifold M. In fact, we compute the gradient of the volume
function 7; which is the volume of the cell;(x) = V(p;) N V' (x). It defines the coordinate function as
n(X) = 4y

In order to compute the gradient af as the pointx moves on the surface, we express the sample

points in a canonical coordinate frame centereckpwe translate the entire frame to the origin, and then
we computer;(0) as a function of the sample points which move in dependengeaofl as a function of
the weights which also depend an Without loss of generality, we suppose tikamoves on a geodesic
curve~ parameterized by arc length We need to evaluate the differential of the position of thegle
points as well as their weights in the power diagram as a immatf the curve parameter Furthermore,
we determine the differential of;(0) as a function of the positions as well as the weights of theptam
points. LetF be the function fronR to R3" x R" that maps the curve parametetio the positions and the
weights of the sample points in the canonical coordinateéraentered os.



R — Rrxr 5 R
s = B ()} T m(0){(B;(s),wi(s)}).

The position and the weight of the sample points as a functioof s

Letx € S and?, be a unit vector tangent ® atx. Let the geodesig be parameterized by the arc length
s such thaty(0) = x and 32 (0) = to. For all s, we define a canonical frami@ (s), &3(s), &3(s)) with
origin ~(s) such thaie; (s) = t (s) where t (s) denotes the tangent vector4aat~(s), e3(s) = o (s)
where ' (s) denotes the normal vector ®at (s), andes(s) = U (s) whereu (s) denotes the vector
tangent taS at~(s) such that(?(s), U (s), ' (s)) forms a direct orthonormal frame.

We can express any sample pajntin the frame( ¢ (s), W (s), T (s)):

pj = a;(5) t (s) + Bj(5) W (s) +wi(s) W (s).

In the sequel, we omit applicatidr) and write for examplev instead ofa(s) knowing that all quantities

depend or.
As s varies & moves alongy), the position ofp; does not change. In particular,
dp;j
— =0
ds
—_—
— dt _ du _ dn
— ¢t+%ﬁg+@u+@ﬁg+%n+%ag
= ¥ +ah(T, )W + 4T + 4T, U)W + i

—wi(h(E, )T +h(E, )W),
where/ is the second fundamental form Sfat~(s).
Projectingp; onto?, u and T, we obtain the following three equations which determifes; andw;:

Since the projection gb; onto the tangent plane s, = aj?+ﬂjﬁ>, we obtain the tangential component
dp; dp;
d_sj(tan) of d_sJ as
dp;
ds (tan)
Still we need to move this coordinate frame, so far centereg(s), to the origin:

—

_ — — — —
d(pj - 7(8))(tan)ds = (w]h( t,t ) - 1) t + wjh( t 7?) u,
with j—Z(s) = 1. The weight ofp; is, by definition,w; = —wjz-. It is invariant by translation parallel to

the tangent plane. We get



The gradient of 7; as a function of s

In this section, we put together the ingredients develop&kiction 3.4 and in the preceding paragraphs in
order to obtain a formula for the differential of(x) in the directiont, of the tangent plane. By varying
t_(; aroundx, the differential can be obtained in all directions of thegant plane. We use the notations
as in the previous section but all functions ©will be evaluated or. In particular,h denotes the second
fundamental form of atx, t = %, @ = w(0), a; = a;(0), 3; = 3;(0), andw; = w;(0). We obtain

D(mjo F)(0)

= Dm(0)({(pj — 7(0),wj)})(w(m)(o), %(0)) (Matrices of size8n x 1 and1 x 3n.)

= Ziﬁl(O)(p_J—y(O))M (0)+07rl( )dwj (0)

7 opj ds (tan) ow; ds
-2 (321,%” B, 0+ FGE0) + T E o)+ F )
- -3 (ﬁ@(x) ~Bh(ET) - DT+ (T )
:

+ (Z<W<cij<x> ~P7) - %(cmpn) ((wi (T, E) = )T +wi b(F,W)W)
i P *

+ (Z( iij(xl ) + _Um ) Wy (alh(?,?) + ﬁl h(?, ﬁ)) .

porll | Tl 71 RN il

Notice, that the gradient is invariant by translation ofénére coordinate frame and, therefog%m(o)(ﬁj—
J
x) = 5i(%)(Bj).

As expected, in the caslg?, t)= h( ) = 0 when the surface is locally flat, we obtain the same
gradient as in the plane: From |V|Ink0WSkIS theorem appledhe cellV;(x) (see Figure 6.8V;(x) =
V(pi) NV (x)), we know that

—Pi) —

Z e
5



Figure 6.8: Minkowski’s theorem applies to the cEl(x).

Because the weights are 0, the gradient expression sinsphiiel with Equation 6.1, we get:

(% . _ Vix _ —
D(mio F)(0) = Z ) ((cij(x) = P5) — (cij(x)) = D7) + ———(cix — D) | ¢
1P pJII IPi — x||
Vi Vix _ —
= Z l] PJ) + %(Cix -pi) | t
1P pJII IPi — x|l
U; =
= + ((Pi —x) + (cix — Pi)) t
IPi — ||
= " (e —x)T.
IPi — x||
Summarizing, we put the lemma that follows from this sectising the notations from above.
Lemma 6.12 The directional derivative of the volume functief(x),: = 1,...,n, at a pointx € S

which is the volume oF (x, p;) in the power diagranVor(x) in direction g is

Um0 B = Y (emmn o)+ Ty 0 eI () 4 Ay
= 0 ds (tan) dw; ds Ipi ds (tan) dw; ds



6.5 Non-convex coordinate system for convex surfaces withabycentric
property

In this section, we show how to construct a coordinate syste®@convexd — 1)-manifold that meets the
barycentric property, i.e. we construct a coordinate ﬁoncxé- such thatk = Zj X;-(X)pj. ‘P is supposed
to be ane-sample withe < 0.1. Because of the restriction to hypersurfaces, we denotmérefold by S
(instead ofM).

As explained in Section 6.3.3, thE.-coordinate system does not necessarily verify the batsicen
property unless all.-neighbors of lie in the tangent (hyper-)plan&, of S atx. Of course, to obtain
the barycentric property, we cannot avoid to give up the egity condition and we must allow negative
coordinates. Otherwise, eitherwould have to lie in the convex hull of its neighbors or thetian of
unity property of Definition 3.1 would be violated.

Inspired from Clarkson’s idea to construct smoother caowtdi functions (see Section 3.5), we combine
the coordinate functions fat with those for itsT-neighborp; in the Voronoi diagranVor™ (P \ {pi})
restricted to the tangent plarfg. It is denotedW+(P \ {pi}). In the tangent plane, with respect to the
projected data poinfs;, the barycentric coordinate property is satisfied, i.e.

X = Z 7;(X)Pi- (6.2)
Z

Similarly, we can express a neighbey of x as the weighted barycenterofand its other neighbois; in
W+(P\{pi}). As in Section 3.5, we arrange the equationgpas to writex as a convex combination of
the pointsp; andp;. Together with equation 6.2, we obtain two independent waygrite x as a convex
combination of the projected data poifis. (We explain this in detail later.) Re-placing the projecte
data pointgp; by the original pointgp; yields in both cases an error in direction of the normabecause
Pp;j is the projection ofp; alongny. SincesS is convex, we show later that the error is always in opposite
directions, so a convex combination of both equations altmwcancel the error out and to establish the
barycentric coordinate property.

The definition is restricted to hypersurfaces because sdase the normal space is one-dimensional
and so is the error concerning the barycentric coordinateguty. For manifolds with higher co-dimension,
one has to be careful about the number of (linearly indepath@guations needed to cancel out the error.

Definition of the non-convex7,-coordinate function ‘<§

We define the new coordinate functio@. Let 7./ (p;) be the natural neighbor coordinate Bf =
(P1, —|Ipi — Pill?) with respect tox in the power diagranor (P \ {p;}) defined in7. Let 7 (pi)
be the natural neighbor coordinate ®f with respect taB; = (p;, —||p; — P;l|*) in the same diagram.
We noticed that the barycentric coordinate property issBat in the tangent space, so tfigtcan
be written as convex combination of its neighbgrsweighted byrj-*(pi). We denote by/(x) the set



of indices of the7,-neighbors ofx and by .J;(x) the set of indices of the natural neighbors Bf in
Vor (P \ {pi}) exceptx.

pi=r/(p)x+ ), T (PP = X:% (Pi > Tf(Pi)Pi) (6.3)
! )

.
j€Ji(x) * JETi(x

Replacing the projected data poifisby the original pointg;, we get

R T o) o |
b; T;—(Pi) (pl Z Fi (pl) pJ)

jEJ@‘(x)

Let the signed distance @f; to the tangent hyperplarig, be denoted by:; = (p; — p;) - n,. SinceS is
convex, we can suppose that> 0,i = 1, ..., n. (Otherwise, the orientation af, can be reversed.) With
Equation (6.3) angy; = p; + & - n,, the (signed) distance betwebpandx in directionn,, is

(o 5 ) (5 o)) 5
’ FETi(x) el JETi(x)

- mm(MZ ) o9

JjEJi(x)

From Section 6.3.3, we re-call the errey concerning the barycentric coordinate property of fhe
coordinates:

¢x = (x —=b(x)) - ng = ( > rx)pi- Y, mx) Pi) 0y =Y 7i(x) b

iel(x) iel(x) 2

We need to show that ande, have the same sign, thus, supposing> 0, we need to show; > 0.
Lemma6.13 Leth; > 0,i =1,...,n. If Sis convex and < 0.1, thene; > 0.
Proof. From Equation 6.4, it follows that
e, >0 <— ;< Z TJ-J“(pi) h;.
J€Ji(x)

Lemma 5.19 and Lemma 6.3 (about the locality of fheneighbors) allow to show that the angle between
n, and the normal t& at any pointp inside the ballB,, containing all7,-neighbors ok is smaller tharf;

if e < 0.1. Thus, insideB,, S is locally the graph of the height function ov&}. In the coordinate frame
with 7, as hyperplane:; = 0, we getp; = (p;, h;) andx = (x,0). The convexity ofS implies thatp;

lies outsideconv(P \ {pi}), thus,p; lies below the convex hull of its neighbors, i.e. it has a $enal;_;



coordinate in this coordinate frame than the convex hulhtsoiSincep; is the convex combination of its
neighbors, i. e.
Pi=7.(p)x+ > 7 (pi)P;
JEJi(x)
it follows that
hi <mF(pi) 0+ > 7 (pi) by

J€Ji(x)
U
Both errorse; ande,, are in directionn,, and we have
x=b;j—¢ -n, and x=b(x)+e,-n,.
The convex combination of both expressions yields
X = Co b; + G b(x)
e; + e e; + ez
€ 1 €;
= — ——(pi— Y TP |+ > 7i(x) pi
ei +ex \ 72 (Pi) T e; + g ieI00)
= > Xi®p (6.5)
JEL(x)UJi(x)
The coordinate functioa;'-(x) is obtained by re-grouping all terms fpg.
0 = —n) b ©6)
i B T n e +exT ;(Pl) .
+
i €; €r ] (pl) . .
l. = > _— . 6-7
N0 = ) - S i (6.7)

Finally, for alli € I(x), we mix Equation (6.5) weighted hy(x):

x= Y > 7\ p;

tel(x) geJi(x)

If e, = 0, we obtainx = 3",/ 7i(x) pi.

Locality of the non-convex7,-coordinate function Xé-

In the next lemma, we bound the maximum distance fsoto a sample poinp; with X;(x) # 0. The
normaln, to M atx is supposed to be known or estimated in a way that the angleebef, and the

estimated normal i€ (¢).

Lemma 6.14 LetP be ane-sample ofM andx € M. All sample pointg; with X;(x) # 0 are contained
in a ball of radius6 € (1 4 O(¢)) Ifs(x) centered ak.



Proof: Let p; be aZ,-neighbor ofx. If p; is a sample point Witb(j-(x) # 0 thenp; andp; have a common
face in the Voronoi diagramWJ“(P) that is restricted t@,. With Lemma 5.11 we can easily bound the
distance betweer and anM-neighborpy of p;. We see this in detail later. However, the neighbors
of p; in the Voronoi diagram restricted t6, must not necessarily be the same as.tfeneighbors (in
the Voronoi diagram restricted t&1). As explained in Chapter 5, vertices of tlielimensional Voronoi
diagram might be close t81 so that the fac& (p;, p;) that intersects,, does not intersect1 .

v 2 i
\

2

Figure 6.9: The regioff includesV (p;) and thereforer. (This situation is not realistic.)

Let ¢, be the halfspace that is delimited by the bisector hypeegtan of p; and anM-neighborpy
of p; and that containg;. Consider the intersectidah of halfspaces+,,

T =(\H € {H} | px is M-neighbor ofp; }.

Refer to the schematic drawing in Figure 6.9. By definitidre Woronoi cellV (p;) is contained inZ
because it is the intersection of the halfspaﬂ(—;‘{;of all Delaunay neighbors gb;. A line throughx and

a vertexv € V(p;) must intersect the boundary &fin a pointv’ that lies on a bisector hyperplaft€é;

of p; and anM-neighborpy of p;. Eitherv’ is further fromx or v = v'. In the sequel, we determine an
upper bound fotjx — v'||.

Becausep; is a7Z,-neighbor ofx, Lemma 6.3 implies that the distance betweesndp; is
lx=pill < 2e(1+0(e)) Ufs(x) (6.8)

From Lemma 5.11 and the Lipschitz propertyifsf), we know that the distance frop to py is at most

2¢€

— €

lpi — Pkl < I lfs(pi) < 2¢ (1+ O(e)) lfs(x). (6.9)



We deduce that
Ix —pxll < [Ix—=pill + llpi — Pkl <4 € (14 O(e))lfs(x). (6.10)

Becausep; andpy are M-neighbors, there exists a poin, of the Voronoi faceél/,(pj, px) andpyg
andp; are the closest sample pointsvg,. Refer to Figure 6.10. Therefore,

€

91 = Vinl < —185(py) < € (1 + O(e)ls(x).
0
ik
Um, __—
UI o T
I} Pi
U’I’TL
//
Pro|
| Hip '

Figure 6.10: The point’ cannot be far fronx.

To bound||x — v'||, we compute a bound on (x — v, || and (2)||vim — V|| (Wherevy, is the orthogonal
projection ofv,, onto7,). Then, (3), we bound the distance framg, to v/, in order to obtain

Il = vl < llx = Vmll + [IFm = V| < [lx = V|l + [V = Vil + [¥m = V']I- (6.11)

(1) By the triangle inequality, we know that

[x=vml < llx=pill +[pi = vinll <3 € (1 + O(e))Us(x). (6.12)

(2) With Equation 6.12 and Corollary 6.9, we obtain

X — Vil
% < % (14 0(e))? Ifs(x) = O(e?) Ifs(x). (6.13)

(3) Now we can boundvy; — v'||. With Lemma 5.20, we know a lower bound on the anglbetween
the bisector hyperpland,; and7,, and, consequently, an upper bound on the angiév,,, between the
line (v, v') and(vm, Vvim). See also Figure 6.10. Notably,

[Vin — V|

p p 1x — pxll
)+ 1fs(x)

B < arcsin( -
1—p 1-3p

with p = <4¢€(14O(e)), thus, tan 5 = O(e).



W=V = tan(B) [I¥m — vanll = O(e*)lis(x). (6.14)

With Equations 6.12, 6.13 and 6.14, Equation 6.11 becomes

Ix = vl < [lx =V < (Be(+0(e) +O(?) + O(e?)) fs(x)
3e€

= 1= 36(1 + O(e))lfs(x).

Suppose that is the furthest vertex € V(p;) from x. A sample pointp; so thatv € V(p;, pj) is at
most twice as far fronx thanv sincev € V(p;) implies that||v — p;|| < [|v — x||. With ||x — p;|| <
2 ||x — v||, we obtain the result.

d

The support\; of the all coordinate functionsg,i =1,...,n,Is
Aj={xel| X;(x) #0,i=1,...,n}.

Itincludes the suppor; of 7;,i.e.A; C A;. Additionally, itincludes all points that have &, -neighbor
B; which is a neighbor of3; in the Voronoi diagranVor ' (P \ {p;}) restricted to the tangent spacesof

Corollary 6.15 The support\; of UiX; is contained in a ball of radiuse (1 + O(¢)) lfs(pj) centered at
Pj-

Proof: Applying Lemma 6.14 and Lemma 5.2, we obtdin — p;|| < 6 lfs(x) < Z1fs(pj) = 6e (1 +
O(e)) with 6 = 6¢e (1 + O(e)). O

Continuity properties of the non-convex7,-coordinate function x;

The continuity properties o;%; depend on the continuity properties of thg-coordinate functions. We
suppose without real loss of generality that the intereactif a tangent plan&;,i = 1,...,n with a
(d — 2)-dimensional Voronoi face of the Voronoi céll(p;) is either empty or it has dimensidn— 2. If

it has dimensiork — 1, a small perturbation of; removes this situation.

Lemma 6.16 The coordinate functiorxé,z’ =1,...,n,j € I(x), is continuous and continuously dif-
ferentiable everywhere ofi except at the pointg € S such that the intersection @f, with a (d — 2)-
dimensional Voronoi face of the Voronoi celif (x) in Vor(P U {x}) has dimensiort — 1.

Proof: X;(x) is built from the functions;(x), Tj+(pi) and7;(p;). Lemma 6.7 and Lemma 6.8 show the
continuity properties of;. With the same approach as in the proof of Lemma 3.7, we shawf]ﬁ(pi)
andr, (p;) have the same properties aéx). O



Figure 6.11: The coordinate function ., Ti(X)X;(X) on the cylinder.

Visualization of the coordinate function

We demonstrate the locality and the smoothness of the noverd@’-coordinate as we did for the convex
7;-coordinates. We visualize the coordinate function., r,-(x)X;-(x) with respect to a sample point
p; on a parameterized surface. Figure 6.11 shows an examphe alytinder from two different view-
points. >, L(x) ri(x)xg-(x) is computed on a (perturbed) regular grid of 40000 pointf waspect to a
subset of 100 regularly placed sample points. Each gridt®inanslated by the value of the coordinate
sumy r,-(x)g;i (x) in direction of the surface normal at that point. Of counsgijtself has the biggest
coordinate value) ;. ; ) 7i(Pj)x;(p;) = 1. Notice the locality of the coordinate function and the zone
where the function values are negative. Thediscontinuity at the sample poim; is less obvious than
for the convex coordinate functior).






Chapter 7

The Voronoi atlas of a point cloud on a
k-manifold of R?

Suppose (again) that1 is a smooth and boundedmanifold without boundary embedded Rf and

P C M is a set of sample point that fulfills thesampling condition. In the preceding chapter, we
examined the local restriction of the Euclidean Voronoigd#éen of P to the tangent space of a point

x € P. We showed that, in this restriction, the Voronoi cellohas good properties, namely, it is well

defined everywhere ai, it has a small, bounded diameter and it is homeomorphic wmghhorhood of

x in M. The results apply equivalentlysfis a sample poinp; € P whose Voronoi cell (p;) is restricted

to its tangent spacg;. In this chapter, we define th& (restricted) Voronoi atlas oP. This collection of

N~
(b)

Figure 7.1: (a) Theq -restricted) Voronoi atlas of a point setand (b) its dual.

(@)

cells contains the restriction of each Voronoi cell of theclielean Voronoi diagram to the tangent space
of the point that defines the cell. Note that it is not a pantitof a domain, as this is usually the case of a
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Voronoi diagram because the so-callEerestricted Voronoi cells have, in general, no common baoyd
Refer to Figure 7.1(a). However, for each Voronoi cell onrtrenifold, there exist a bijection between this
cell and the corresponding Voronoi cell in the tangent splaeace, the name “Voronoi atlas”.

Each 7 -restricted Voronoi cell reveals the properties that wdrews in the preceding chapter. In
particular, it is homeomorphic to the corresponding cellhie Voronoi diagram restricted t&1 — if the
sampling condition is satisfied. Furthermore, both cells @bse one to each other because they are
contained in small balls centered on the sample point. Timeision of & -restricted Voronoi cell is the
dimension of the manifold. We define also the dual of Theestricted Voronoi atlas. It is a collection of
simplices that are part of the Delaunay triangulatioPofor each sample point, a subset of the simplices
incident to the point forms &-manifold. In Chapter 8, we will show that this dual is an impat tool to
compute piecewise linear approximationsidf. Figure 7.1 depicts a Voronoi atlas as well as its dual.

For hypersurfacesi(= d — 1), the definition domain of the Voronoi atlas can be enlargedonnect
the cells such that we obtain a Voronoi diagram that is, iddéiee covering of a hypersurfaée The
nerve theorem can be applied to show that the dual Delaunaples is homotopy equivalent to the
hypersurfacé.

In Section 7.3, we define a system of coordinates in the Vorathas which has the advantage to be
defined in the neighborhood of the manifold without exactvidedge of it.

7.1 Definition and basic properties

In this section, we define formally tHE-restricted Voronoi atlas associated with a set of poindgtered
on ak-manifold. Fork = d — 1, there is an alternative definition of the Voronoi atlas vihidlows to
enlarge the cells of the atlas such that it is actually a Vordragram. This is presented in Section 7.2.

7.1.1 The Voronoi atlas

In the general case, le¥! be a smooth:-manifold of R?, k < d, andP C M be ane-sample of M.
Vor(P) is the Voronoi diagram of andV (p;) is the Voronoi cell ofp;. Let 7; be the tangent space of
M atp; € P. The normal spacd/; is spanned by the normal vectc{rE”}l:L”,d_k. We suppose that the
normal space is known. In the contrary case, it can be estanaith the techniques defined in Chapter 5.

Definition 7.1 (Voronoi atlas) The (7 -restricted) Voronoi atlas oP is

n

AP) = J(TinV(p).

=1

! Re-call from Chapter 5 that a covering 8fC R? is a finite collectiont of subsets ofF such thatF = UE.
2 See Theorem 5.9.



In Observation 2.4, we showed that the intersectioVef(?) with a hypersurface oR? is a power
diagram. TheT -restricted Voronoi atlas is therefore a collection of gaif different power diagrams
because each cell is defined in the intersection of a tangaaeswithVor(7). The Voronoi cell ofp;
restricted tdZ; is

V(pi) =V(pi)NT:.

The(d — [)-dimensional facé (pj,, ..., pj, ), | < k, intersects7; in the (k — [)-dimensional face

V' (Pjos -+ Pit) = V(Pjo» -+ Pjy) N T

The sample pointp;,, ..., p;, are thegeneratorsof the face. Each vertex; = Vi(pj(” ..y Pj,. ) OF A(P)
is the center of an empty ball passing through khe 1 generators of,. We call them theA-Delaunay
balls.

The orthogonal projection of a poigtonto7; is calledx’. Similarly, the sample point; € P projects
orthogonally ontep;’. LetVor' (P) be the power diagram of the weighted poitts= (p;’, —|Ipj—P;'ll*)
andB; = (pj, 0) defined in the tangent spage

A homeomorphism between the Voronoi cell$/y(p;) and V (p;)

If P is ane-sample,V (p;) intersectsM in a topologicalk-ball: The Voronoi cellV(p;) is contained
in a small ballB(p;, p Ifs(p;)) centered orp; with radiusp Ifs(p;) < =1fs(p;) (see also the proof of
Lemma 5.11). With Lemma 5.4\1 N B(p;, p 1fs(p;)) is a topologicalk-ball if p < 1. Infact, & < 1
if € < % SinceV(p;) is the intersection of thé-dimensional convex polytopg (p;) with M and it is

contained inB(p;j, p lfs(p;)), it is a topologicalk-ball.

Similarly, the cellV (p;) is homeomorphic to a topologicatball because it is a (non-empty) cell in a
k-dimensional power diagram. It is always non-empty andiitamsp; because; € V (p;) andp; € 7;
thus,p; € V(p;) = V(pi) N 7;. FurthermoreV (p;) is close toV(p;) if the sampling is sufficiently
dense. If the tangent spa@e is known, the proof of Lemma 6.3 yields that the bBl{p;, p lfs(p;))
containsV (p;) if p = ———. Withp < 1 <= ¢ < /21 < 0.41, B(pj, p Ifs(p;)) "M is a topological

V1-2¢"
k-ball. These remarks lead to the next lemma.

Lemma 7.2 For e < v/2 — 1 < 0.41, the Voronoi cellV,((p;) and the Voronoi cell’(p;) are homeomor-
phic.

Proof: As argued before, in this case, both Voronoi celis;(p;) andV (p;), are topologicak-balls and
therefore homeomorphic one to another. O
We deduce that there exist a bijection betw&an(p;) andV (p;).

For curves k£ = 1), the separate cells can be easily connected in order tinabtgobal homeomor-
phism between the curve and a Voronoi atlas. Recall from Lafii3 that, fok = 1, all Voronoi vertices



are far from the curve. Therefore, one can show thate fer 0.31, a Voronoi edgél’ (p;, pj) which is
intersected by; is also intersected by;. This will be proven in Theorem 8.1.

Figure 7.2: The Voronoi fac¥ (p, p;) intersectsZ; but not7;. A top view on the cell/(p;) and some of
its neighboring cells.

In general, it is not as easy to join a fa?é(pi, p;j) to a corresponding face i; because this face
might not exist. Indeed, fot > 1, the d-dimensional Voronoi diagram might have Voronoi verticestt
are close toV (and, consequently, close to the tangent spdgesd7;) so that a Voronoi fac& (p;, pj)
might intersectZ; but not7;. This is indicated in Figure 7.2.

7.1.2 The dual of the Voronoi atlas

The dual of A(P) is a collection ofk-simplicesG(P) that are part of the Delaunay triangulatibel(P).
It is defined in the sequel. At first, we define a subset of sipegliofG(P) that is adjacent to a point
pi € P and that is homeomorphic to the neighborhoogbpin M.

Definition 7.3 (Umbrella) The (local) umbrelld/; of p; € P is the set ok-faces oDel(P) that are dual
to the vertices of (p;).

It is called the umbrella op; because it is a set df-simplices incident tg; that forms ak-manifold?

In three-dimensions, this resembles an umbrella becaisthi set of triangles incident to one point that
forms a surface around it/; forms ak-manifold because it is the dual of tlhedimensional Voronoi cell
V(pi).

% This name has been used for the three-dimensional case yyAetzal. [1].




Definition 7.4 (7;-neighbors) The7;-neighbors ofp; € P are the vertices adjacent {o; in its umbrella
U;.

The 7T -neighbors are all pairs of poings; and p; such thatp; is a7Z;-neighbors ofp; or p; is a7;-
neighbors ofp;. They will be connected by an edge in the dual of Theestricted Voronoi atlasi(P).

Figure 7.3:G(’P) contains the entire sliver tetrahedya;, p;, p1, px) whose dual Voronoi vertex ig.

It is important to notice that this neighborhood relatiomé& necessarily symmetric. §§; has a7;-
neighborp;, this does not necessarily mean tpats a7;-neighborp;. This reflects the fact that a Voronoi
faceV (pj, p;) might intersect’; but not7; if p; andp; are vertices of a sliver, i.e. a very flat simplex of
the Delaunay triangulation whose vertices lie almost @¢d & 1)-ball. The dual Voronoi vertex of this
sliver lies betweerY; and7;. Figure 7.1 depicts a Voronoi atlas as well as its dual inweedimensional
case. In Figure 7.3, we indicate the atlas as well as the dgdDi

Definition 7.5 (Dual of the Voronoi atlas) The dual of the -restricted Voronoi atlasd(P) is the set of
simplices

n

Gg(P):= U U;

=1
whereU; is the local umbrella op; € P, i.e. the set ok-faces ofDel(P) that are dual to a vertex of
7' (po).

In G(P), a(k — 1)-dimensional simplex dual t&"(p;, p;) might be incident to only oné-dimensional
simplex. Similarly, it might be incident to more than twedimensional simplices. In other words(P),



the collection of all umbrellag’;,i = 1,...,n, is not combinatorially &-dimensional triangulation nor
homeomorphic to &-manifold. A simplex that is generated by tiferestricted Voronoi celV (p;) with
vertex p; is not necessarily part of the umbrellg. Figure 7.4 shows a reducedP) for two different
data sets. Only those triangles are depicted that are patiefst umbrellas withl = 2 in Figure 7.4(a)
and! = 3 in Figure 7.4(b).

€Y (b)

Figure 7.4: Reduced version ¢fP) containing all triagles present in at ledsaimbrellas. (a) Model
“Schale” with|P| = 2714, | = 2, running time: 7,2s foDel(P) + 2s forG(P), (b) Model “Octopus” with
|P| = 16,944, [ = 3, running time: 60s foDel(P) + 15s forG(P)

7.2 Enlargement for hypersurfaces

For hypersurfacest = d — 1, there is an alternative definition of ti¥e-restricted Voronoi atlas which
allows to enlarge the cells of the atlas such that the cadleaif cells is actually a Voronoi diagram. The
resulting7 -restricted Voronoi diagram is defined by a subset of facesieflimensional Voronoi diagram
which form a(d — 1)-manifold. The basic idea has been introduced by Nullankff83he reconstruction
of geographic data.

In this section, we suppose théts a closed orientable hypersurface afdbe the region enclosed by
S. The point setP is now ane-sample ofS and we suppose that the normgl of S at a pointp; € P
is known and oriented to the exterior &%. In the contrary case, it can be estimated with the techsique
defined in Chapter 5 and a consistent orientation can benautdiy propagation (see e.g. [8]). L&t



be the tangent (hyper-)plane pf. The positive halfspace defined Hy and nj is calledZ;" and the
corresponding negative halfspace is called.

7.2.1 TheT -restricted Voronoi diagram

We construct a point s’ in which each poinp; € P is replaced by two pointp;~ andp;™ that are
slightly perturbed in each direction of the nornigl Let § be an arbitrarily small positive real value.

n
Pi= U{Pi+7 pi }, Wherep; = p; — 6n; andp;" = p; + 6m;.
=1
The perturbation op; is asymbolic perturbationConceptually, each geometric coordinate is replaced
with a symbolically perturbed coordinate which means éhatin fact, a polynomial rather than a constant.
When evaluating geometric tests, the substitution of thml®fically perturbed coordinates in the test
results in a polynomial whose coefficients are determinethbyoriginal geometric coordinates.

(b)

Figure 7.5: (a) Duplicating the points separates all fabas are intersected by the tangent plane in two
parts. (b) The fac& (p;, p;) is partitioned inV (p;~, p;7), V(pi ", p; ) andV (p; . p; ).

The bisector hyperplane @f,~ andp;™ is the tangent hyperplarig to S at p;. Duplicating the point
p; in this manner, splits the Voronoi célf (p;) in two parts,V(p;~) = V(pi) N7, andV(p;t) =
V(p;i) N 7;". Refer to figure 7.5(a). The Voronoi fad&(p; , pi ") between both cells is exactly the cell
V(pi) (with V(p;) = V(p;) N T;). This is proven in the next lemma. The lower-dimensionakof
V(p;) that are intersected 1% are likewise divided. See figure 7.5(b).

All faces of Vor(P) that are not intersected by the bisector hyperplanes af ¢fegierators exist also
in Vor(P’). An empty sphere that is centered on a point of a fac€wfP) and that has the generators



of this face on its boundary, remains empty if each genefatds replaced byp;~ andp;™ because the
latter points are at an infinitely small distancepto The Voronoi face has either the genergtor or p; .
It cannot have botlp;~ andp;™ as generators unless it is intersected by their bisectoerpjame, the
tangent pland;. This is indicated in Figure 7.6(a).

Lemma 7.6 The Voronoi diagranVor(P’) contains all faces ofA(P).

Proof: Any pointv € V(p;) = V(p;) N7; is at equal distance tp; ~ andp;* and further away from any
other point ofP’. Consequentlyl/ (p;) is the(d — 1)-faceV (p;*, pi~) of Vor(P').

A (d — I)-dimensional face" of V(p;), 0 < [ < d, is generated by the intersection of&a— [ + 1)-
dimensional face oYor(P) with 7; (see Section 2.4). A point € F is the center of an empty balt with
the ! generators of" on its boundary. Whef® is replaced byP’, the same balB is still empty. Sincev
lies in 7;, thus, on the bisector hyperplanemf andp;™, it must contain both pointg;~ andp;™, on
its boundary.v is, therefore, the center of an empty ball with- 1 points of P’ on its boundary. Notice
that B cannot contain both duplicates of any other generpjo# p; of F unless the tangent spacgés
and7; intersect inv. This is a degenerate situation that is removed by a smalladisment op; or p;.
Generically,v lies in a(d — [)-face of Vor(P’). See figure 7.6 (b). O
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Figure 7.6: (a) The ball$3; and B, must be empty of sample points andp; are duplicated. (b)
vy € T; is the center of the empty ball; with p;~ andp;™ on its boundary. The tangent planespgfand
Pk intersect inv4. The empty ballB, passes through the duplicates of both sample p@ingdp;.

If the sampling is sufficiently dense, except in the neighbod of 7;, V(p; ) lies inside F and
V(p;i™) lies outsideF. This idea will be used to approximat€ by the union of Voronoi celld’ (p; ™).
The boundary of thig-volume is a hypersurface which should approximate theasas.

Definition 7.7 (7 -restricted Voronoi diagram) LetS be a hypersurface an® C S. The normal taS
atp; € Pisn; andp;* = p; & én; for some arbitrary small real valué. P' = [JI_, {pi ", pi "} A



“bipolar” facet of Vor(P’) is a facetV (p; —, p;"). The7 -restricted Voronoi diagram oP is the cell
complex of bipolar facets of the Voronoi diagramr(7’) and their sub-faces,

Vorr(P) := U V(pf7pj+).

1<i,j<n

(b)

Figure 7.7: (a)Vor7(P) contains all bipolar facets. (b) A zoom on the c&l(p;). Its annulus is
V(pi~,p;") andV(pi~, px ")

We can show that the union of the faces\afr7(P) is a hypersurface: The facets that constitute
Vorz(P) are the boundary of the union of the Voronoi céllsp; ), p; € P. The cells are convex solids
which may share commaf — 1)-dimensional faces. Any lower dimensional face shared loydells of
Vor(P') is necessarily part of their commdt — 1)-dimensional face because, in the dual triangulation,
the existence of a simplex with verticesand ¢ implies the existence of the edge betweesnd ¢ which
implies the existence of the dual — 1)-dimensional Voronoi face. Thus, the boundary of the unicthe
cells is a hypersurface and, furthermover+(P) is a covering of it (refer to Section 5.2).

Figure 7.7(a) depicts a two-dimensioriAtrestricted Voronoi diagranVory(P). The cell of p; in
Vorz(P) is the union of the facets 6for7(P) that are incident td’ (p; ) as shown in figure 7.7(b).

Definition 7.8 The cell ofp; € P in Vory(P) is
Vr(pi) == |J V(i pih).
1<j<n
Thecoreof the cellVz(p;) is V(pi—, piT). Theannulusof V7 (p;) are the facetd (p; —,pjT),1 < j <
n,i # j, together with their faces and subfaces.

An annulus faceVr(pj, pj) is either the faceV/ (p;~, p;*) or V(p;*, p;~) of Vor(P’) depending on
which one exists. Both exist only #; = 7, because in this case, the facetg; —, p;7) andV (p; ™, p; )
coincide and their dimension is— 2. In the general casér (p;, pj) is (d — 1)-dimensional.



The definition of Vory(P) should be coupled with a condition on the Voronoi diagrsor(P’) in
order to impose that its cells are connected and contractlbthe condition is fulfilled, the/ -restricted
Voronoi diagram and, in particular, its dual triangulati@efined in the next section) have nice properties
because we will show in the sequel that the nerve theorenmeappl

Definition 7.9 The 7 -restricted Voronoi diagranVor7(P) is valid if the union of the bipolar facets of
each cellV(p; ™), pi € P, is atopological(d — 1)-ball.

For small dimensions] < 3, this condition is easily checked. It suffices to computehipolar facets of
Vor(P’) incident top; ~ while controlling that they build a connected componenhwitt holes.

The T -restricted Voronoi diagram for an e-sampleP

In this section, we consider the case tRais ane-sample ofS. This is not imposed in Definition 7.7 but
it allows to show some additional properties\afrs(P).

From the proof of Lemma 6.3, we know that the déllp;) is contained in a small ball centeredggt
The following lemma shows that any intersection of a VordiagietV (p;, p;) with 7; is also contained
in a small ball centered op;. Consequently, no tangent plaiigintersects a fac# (p;, p;) of V(p;) far
from p;.

Lemma 7.10 A point v of the intersection of the tangent plarfe of S at p; with the Voronoi facet
V(pi, pj) of Vor(P), i.e.v € V(p;, pj) N 75, is at distance
€
v —pill < 71f$ i)
I pill < V1= 26— 2¢ (pi)

Proof:. From the proof of Lemma 6.3, we know that

€
v — =lv —pil| £ ——==Ifs .

Due to the Lipschitz property dfs, we obtain

€ €
v —mpill < ﬁ(lfs(l)i) +[Ipi — pkll) < m(lfS(pi) +2|v—npil)

2¢ €

— (1- -pill < Ifs(p;
€
— HV_piH = m_zel S(pi)'D

Recall thatF is the region enclosed hy.

Lemma 7.11 Consider a poiny € V(pj, p;j) with

v

1 —
v — pil| = vifs(ps) Vi—2¢



(@) IfveF thenveV(pi ,p; ) ie.veV(pi,p) NT, NI .

(b) If v ¢ F,thenv € V(p;*,p;T),i.e.v € V(pi,pj) N7, N ’]T.

Proof: With Lemma 5.23, we know that the vector frgs to v makes a small angle with the norma]

that is oriented in the same directiafi(n;, p;v) < arcsin Ji—g + aresin 5. Thus, ifv ¢ F and the

normal is oriented to the exterior @f, we obtain (using maple) that

— : 1—¢)?
Z(T.piv) < arcsin — LA S €
(nj, piv) < arcsin A=) + arcsin =0 =3 v > Nier

The same arguments worksvife F except that the normal is oriented to the opposite direction [

At last in this section, we state an open question which wievelo be true but which we could not
yet prove.

Open question 7.12There exists a positive real constansuch thatVor7(P)V (p;) is valid in the sense
of Definition 7.9 ifP is ane-sample ofS with e < c.

7.2.2 TheT-restricted Delaunay triangulation

In the preceding section, we defined therestricted Voronoi diagram and we argued that it is a corgeri
of a hypersurface. In this section, we define the dual Delatmengulation of this Voronoi diagram. We
show that, ifVorz(P) is valid, the nerve theorem (Theorem 5.9) can be applied whiarantees that
the dual triangulation is homotopy equivalent to the don@ivered by the Voronoi diagram, thus, to a
hypersurface.

Definition 7.13 (7 -restricted Delaunay triangulation) With the notations of Definition 7.7, tHe-restricted
Delaunay triangulationDel7(7) contains all faces obel(P) that are dual to faces iVor,(P). It con-
sists of the edges that are dual to bipolar facet¥of(P’).

Lemma 7.14 If the 7 -restricted Voronoi diagranVor7 () is valid, then the7 -restricted Delaunay tri-
angulationDel 7 (P) is homotopy equivalent to the hypersurface defined by tlenwficells ofVor(P).

Proof: Let X’ be the hypersurface that consists of the union of fac&sof (P). Itis indeed a hypersurface
because it is the boundary of the union of Voronoi clip; ),: = 1,...,n. We apply the nerve theorem,
Theorem 5.9, to the restriction &for(P) to X'. The restriction ofVor(P) to a hypersurface is a finite
closed covering of the latter (cf. [54]). In our case, iVisc7(pj)-

We need to show that the conditions of the nerve theorem aisfisd, notably, the intersection of
every set of Voronoi cell8’r(p;), V7 (p;),... must be empty or contractible. Already, a défi(p;) is
contractible becaus€orz(P) is valid. The faces oVorz(P) are faces olVor(P’). By definition, they
are convex and contractible. O



7.3 Natural-neighbor coordinates defined in the Voronoi aths

Let P be ane-sample of a-manifold M embedded irR?. The natural neighbor coordinates in tie
restricted Voronoi atlas o can be defined in the usual manner. The difference between tbeordinate
functions defined in the preceding chapter is quite subtlail&\the 7,.-coordinate functior;(x) (of the
preceding chapter) is defined for a potate M in the tangent spac&, of x, the natural neighbor
coordinates in the Voronoi atlas are defined in the tangestesp of each sample point. Its definition
domainA is restricted to the neighborhood &fl. PreciselyA is the union of4-Delaunay balls, i.e. the
union of (open) balls that are centered on vertices offtkestricted Voronoi atlas and empty of sample
points. We show thaf encloses the manifold1 if P is ane-sample ofM.

7.3.1 Definition of the coordinate functiony;

Before we define the coordinate function more formally, wel@x the intuition behind it. At the insertion
of a pointx € A into thed-dimensional Voronoi diagrarior(7), we consided’*(x), the cell ofx in
Vor(P U {x}, and its subcell¥;(x) = V*(x) N V(p;). If the tangent spacg; intersectsV;(x), x has a
non-zero coordinate with respectpg. This intersection is, in fact, the célf(x) in the power diagram
Wi(P) (defined by the intersection ofor(P) with 7;). In this power diagramx corresponds to the
weighted pointX; = (X!, —||x’ — x||?). The volume of the celV;(x) is denotedr;(X;). (Of course,X;
is a function ofx.)

The natural coordinate function in the-restricted Voronoi atlas is defined as follows:

Definition 7.15 (Atlas-coordinate system associated witR ) In the Atlas-coordinate system associated

with a set of sample point8 C M, the A-coordinate function:;(x) of a pointx € A is defined by

mi(Xi)

pi(x) = -
>, mi(X5)

The sample points with non-zero coordinate functions allect#he neighbors of the poink in the

\Voronoi atlas.

Definition 7.16 (Atlas-neighbors ofx) Given a set of sample poin8 C M, the Atlas-neighbors of a
pointx € A are the sample pointg; € P such thatu;(x) # 0.

Verifying the conditions of Definition 3.1

In Chapter 3, we have analyzed the functig.X;) in detail. The coordinate functiom;(x) inherits the
continuity properties ofr;(X;) because it is simply the ratio of several function$X;) — even if they
are not defined in the same power diagram. Siigehanges smoothly witk, the results hold. We can
deduce thaj; is C° continuous and that it i€'' continuous except in a set of measure zero. We can



determine its gradient because Lemma 3.8 defines the gtaufien(X;). We establish these results in
more detail in the next section.

The Atlas-coordinate system fulfills two properties of Digfim 3.1: 1;(x) = 6;; becausg.;(p;) = 0
for j # i andp;(pi) > 0. Also, >, u;(x) = 1 by definition.

It does not satisfy the barycentric coordinate property efifition 3.1. If the tangent spaces of all sam-
ple pointsp; with 1;(x) # 0 coincide, i.e. the manifold is locally flat, the barycenibéx) = >, 1:(x)pi
is the projection ok onto the (flat) manifold. Notice thatis not necessarily on the manifold, so that even
in this caseb(x) # x is possible.

The distance between and the barycentds(x) is bounded, nevertheless, by the simple fact that the
distance of and its Atlas-neighbors is bounddol(x) must lie in the convex hull of these neighbors.

Corollary 7.17 The distance betweenand the barycenteb(x) defined by thed-coordinate system is

2¢€

vV1—2e—2c¢

Proof: Corollary 6.6 bounds the distance betwggre M and a poink € M such thak is a7;-neighbor

[x =bX)|| < Ifs(x).

of p;. This yields the result becaud¢x) cannot be further fromx than the furthest neighbgy;. O

The support of the coordinate function

The supportd; of u; is the union of4-Delaunay balls that are centered on vertice¥ 0p;). InsideA;,
the cellV*(x) has a non-empty intersection with(p;). The radiusr of such anA-Delaunay ball is
bounded by the upper distance betweemnd a vertex o¥/ (p;),

€
< ———1fs(pj).
X P S(pl)
Lemma 7.18 LetP be ane-sample of\1 with e < 0.31. The support\; contains the Voronoi cel,(p;)

of p; restricted toM. Consequently, the suppait of the 4-coordinate system contain®t.

Proof: A pointq € Vi (p;) lies insideA; if a part of V(p;) would be “stolen” byq at its insertion into
Vor(P). This means that there exists a pojnt V (p;) with ||q — y|| < |lp; — y||. We say that, in this
caseq is in conflictwith y. Assume, at first, that the orthogonal projectigof q onto7; lies in V(p;).
We show that, in this case,is in conflict withq.

Let® = Zqpiq and||p; — q|| = plfs(pi). (Becausey € Vi(pi), p < = with Equation 5.1.) Thus,

Ipi —all = [lpi —qll cos(#) and ||lq—q] = [|pi — qll sin(f).

(See Figure 7.8(a)) From Lemma 5.17, we know that arcsin(£). It follows that|lq — q|| < ||p; — q|
if @ <2 < p< V2. With p < =, we deduce thaf is in conflict withq if ¢ < 1.
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Figure 7.8:q € Vr((p;) must be in conflict with the celWV (p;).

However,q may not lie inV(p;). Letv be the intersection point of the lirip;, q] and a facé’ (p;, p;)
of V(p;). We show that is in conflict withv. From Lemma 5.17, we deduce that the angleetween any
normalm; of M atp; and the bisector hyperplarte;; that containd’ (p;, p;) is small becausgp; — p;|| <
\/%lfs(pi) by Lemma 6.3. In facta < arcsin(\/ﬁ). The pointq does not necessarily lie dt;; but
it must lie inside the halfspack;; induced byH,;; that containsp;. Otherwiseq could not be inV(p;)

because it would be closer tg than top;.

In order to obtair|q — v|| < ||pi — V||, the angles = Zvqp; must be larger thaé. Refer to figure 7.8(b).
We obtain

gz

o 3

—0—a>0 < g>a+29<:arcsin( ) + 2 arcsin(

€
1—2¢ 2(1 —¢)

S e < 0.31.

Figure 7.9: The coordinatg;(x) = 1 becausex is only in conflict withv € V(p;) but with no other
T -restricted Voronoi cell.



Notice that the cell/(p;) can never be entirely contained ¥i" (x): As we noticed beforeB; must
have a non-empty cell in the power diagralﬁi(P U x) because the weight dB; is zero while the
weight of all other sites, including;, is negative or zero. Also, it might occur that the coordérfainction
pi(x) = 1 while x # p;. This is the case whex lies in the supporf\; but outside any suppork;. x is
in conflict with a vertex oft/(p;) but not with the corresponding vertices in other tangentepdif they
exist). Refer also to figure 7.9.

7.3.2 Continuity properties and gradient of the coordinatefunction ;

Lemma 7.19 The.4-coordinatey;,: = 1, ..., n, associated witlP is continuous everywhere i.

Proof: The volume functionsr;(.X;) are continuous everywhere . The tangent spacg is fixed and

X; = (%, ||x* — x]|) is a smooth function o. The ratioy;(x) := E”f&) is continuous ifX; andr; is

continuous, for alf. O

Lemma 7.20 The .A-coordinatey;,: = 1,...,n, associated withP is continuously differentiable every-
where inA except atP and at the pointx € A such that the intersection @f,7 = 1,...,n, with a
(d — 2)-dimensional Voronoi face of the Voronoi subdél{x) has dimensior — 1.

Proof: The same arguments as for the proof of Lemma 6.8 apply. Thelicate functiony; is differ-
entiable iff the volume functions;(X;),i = 1,...,n, are differentiable. They are defined in (different)
power diagram%i(P). Lemma 3.6 about the differentiability of the volume fuoctir;(X) shows
that 7;(X;) is differentiable unless the bisector hyperplanexaind p; contains &k — 1)-dimensional
face of the power diagram dual {8 and another poinp;. As we noticed in the proof of Lemma 6.8,
this means thak, p; andp; define a(d — 2)-dimensional Voronoi face of *(x) that intersects; in a
(k — 1)-dimensional face. O

The gradient of the coordinate function

We determine the gradieNtr;(.X;) as a function ok. With p;(x) = % this yields the gradient

V/li-

The volume functionr;(X;) is a composite function becau&g is a function ofx. All other elements
defining 7;(X;) are constant, namely, the tangent spacand the weighted point8; = (pj’, —||p; —
p;'|l) that define the power diagram.

X; = (fi(x),w;(x)) is defined by

fi(x) =X =x-Y (pX-m') ;' (7.2)



and
‘ d—k
wiloe) = —[I% x| = || Y (pixk - 1) w1 (7.2)
=1
Since an orthogonal projection is always a linear transftion, the Jacobian matrif; and the gradient
Vw; are constant. Denote By X; = (Vf;, Vw;) the Jacobian of;.
The gradient ofr;(X;) is determined by Lemma 3.8. We need the following definitions

1. v;, is the(k — 1)-dimensional volume of the face betwe&hnandB; in V;(x) if & > 1, andiﬁx =1,
if k=1,

2. ¢;, is the centroid of this facet,

o Cix — X' .
Hi—zill ) if x € A,
VWQ(XQ) = Pi )

0 otherwise,

The composition ofX; andr; is summarized as follows:

T

rR* =4 R” x R R
x =5 X = (fi(x),wi(x) =5 m(X).

Notice that the gradieri 1;(x) # 0 only if x lies in the support of at least one other coordinate function
x € U;;(Ai N Aj). Otherwisey;(x) is constanty;(x) = 1.
By the chain rule, we obtain

VXl(X) Vﬁl(Xl) if x € Uj;éi(AiﬂAj)?
0 otherwise,

Vri(Xi(x)) = {



Chapter 8

Applications

In this chapter, we present three different applicationthefconcepts defined in this thesis. In section 8.1,
the7,-coordinates is applied to interpolation on surfaces. Dewing section deals with reconstruction
of surfaces and curves from point clouds. Finally, in Sec8d3, we present a re-meshing technique that
is based on centroidal Voronoi diagrams.

8.1 Interpolating a function on a surfaceS

In this section, theZ,.-coordinate system defined in Chapter 6 is used for scatttatdinterpolation on
smooth surfaces. This means that we interpolate a fundietrig defined on the surface and that is known
on discrete sample points. We will apply four interpolatimethods described in Chapter 4 by replacing
the natural neighbor coordinates by thecoordinates defined on the surface. The reader may reeall th
these methods depend only on the barycentric coordinagepyo(Definition 3.1 (i)) and on the continuity
and differential properties of the coordinate function.ek¥hough the barycentric coordinate property is
not satisfied by th&,-coordinate, the interpolation methods can be applied. &#ict the experiments
presented in this section to surfaces, 2@anifolds inR3.

More precisely, the problem is stated as follows. We wanpforeximate® : S — R! whereS C R3
corresponds to a manifold1 defined as before and= {1, 2,...}. We assume that ansampleP of S
with function values{(pj, z;) : pi € P,z = ®(p;)} is given. The interpolation is carried out for a point
x € S (andn, is its normal taS).

The section gives a short overview about previous work asghdblem, then, it defines the different
interpolation functions that are proposed and, finallyrésents some experimental results.

8.1.1 Introduction and related work

This problem, which is also called the 'surface on surfacebfem or 'scattered data fitting on surfaces’,
arises in a variety of settings. In geodesy, geophysics,naete¢orology,S is some model of the earth,
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and the function to interpolate from a number of discrete susaments represents temperature, rainfall,
pressure, etc. In other contexts,might be a complicated surface, e.g., the surface of soméanel
piece inC AD, a molecular surface or the wing of an airplane [17]. Therpukation of vector fields
defined on surfaces has applications in fluid dynamics and-taied moving boundary problems from
partial differential equations. For example, the surf&amight represent the interface between solid and
liquid phases of a material substance, e.g. ice and watkit @aries in time. The interpolated data consists
of the normal vectors t&, the mean curvature, or the velocity of the moving bound&se [82] for an
introduction to the “surface on surface” interpolation fgesm and notably to splines on surfaces.

Several methods exist to solve this problem. One of the mgstlgr is to enlarge the definition of
splines to treat the case of a non-planar parameter domaiis. wias first done for the spherical case in
[3]. With this achievement, it suffices to partition a getherafacesS into a collection of non-overlapping
surface patches, for instance geodesic triangles, andfitwede globally smooth interpolation function
as piecewise polynomials on the patches that are carefatigrded at the boundaries. However, as
Neamtu concludes in [82], the definition of spline spacesemegal surfaces depends upon the existence
of barycentric coordinates. For some special surfacespgnuordinate functions with good properties
exists, but, to my knowledge, there exist no general way time¢hem.

Implicit Bernstein-Bézier patches are used by Bajaj etra]15] to reconstruct the surfacg from a
sample set but also to approximate a scalar function defirtbe gample points. A user-defined parameter
bounds the approximation tolerance, i.e. the maximum miigtdoetween the approximated and the input
data on the sample points. The surface is represented asriiveantour of an implicit function which
approximates the signed distanceSto In a first step, the surface is approximated by so-callenblids
which are subsets of the Delaunay triangulatiorPof The distance function (defined by the distance to
the a-solid) is approximated by piecewise polynomial functimigained from least-square fitting with
barycentric Bernstein-Bézier patches and incrementaliyned until the approximation tolerance is re-
spected. In the same way, a piecewise polynomial is constiuny least squares fitting that approximates
the scalar function defined on the sample points. At last,aéhiing is necessary to obtain globatly*
smooth surfaces.

Radial basis functions (RBF) is another popular method fmedterpolation. Lodha and Franke [77]
give a recent introduction to the field (for interpolation®A andR?). For a long time, the practical use
of RBF was prohibited by the large computation cost. Acawgdb the authors, new progress has made
the RBF approach feasible even for very large data sets.ninasi to spline based methods, they have the
advantage to bmeshlessi.e. independent of a partition of the definition space. fitan ingredient for
RBFs is the radial function which is a function that is symmeedround a center point as it depends only
on the distance to the center. Its support might be unbouadedmpact. The solution to the interpolation
problem is a linear combination of translates of radial fiors plus, in some cases, a polynomial term.
It is subject to a system of linear equations that imposeritexpolation of the function data at the data



points. Only recently, methods have been developed thav &l compute the solution to this —often poor
conditioned — linear system efficiently. For interpolati@infunctions on surfaces;ardy multiquadrics
were the first type of RBFs which have been used with apptinatin geophysics [69]. Applications of
RBFs for scattered data interpolation on the sphere are swized by Fasshauer and Schumaker in [58].

Other interpolation methods are variational methodsadist weighted methods, transfinite methods
or multi-resolution methods. Most methods are defined fergpherical case. See [58] for a survey of
the principal methods for scattered data fitting on the sphdio our knowledge, there exist only few
methods for interpolation on general surfaces. For ingtanwltiresolution techniques are widely used
for constructing surfaces. Apart from a work by Sweldenq [8Bere wavelets are defined for arbitrary
surfaces, there seems to be few activity wrt. the surfaesuoface problem.

Pottman [85] defines a transfinite method for arbitrary atleaice-differentiable surfaces. Transfinite
methods are based on a patrtition of the function domain aadidfinition of smooth functions on the
edges of the partition which are themselves interpolated each cell.

In this context, our method has several advantages: It ihle®s i.e. it applies directly to the point
samples without need of a prior subdivision or triangulated the surface. The quality of the result
depends on the curvature of the surface and on the samplimgtyge If the surface is locally planar,
the interpolant has linear precision. If, additionallye thradientV(®(p;)) of ® at the sample points
pi,t = 1,...,n, is known, we define an interpolant that reproduces exactlyaalitic function — again
if the surface is locally planar. Our method generalizeslyetsinterpolation of vector-valued functions,
i.e. functions® : S — R!, 1 = 2,3.... Each coordinate of the result vector is interpolated iedeently
as if it were a scalar function. The only draw-back lies in lidted differentiability on the data points
themselves. With Sibson’s and Farin’s methods (see Secfichand 4.1), the interpolant is globally*
smooth but it seems difficult to increase the smoothnesseddta points. The interpolants are tested in
different settings. Examples are shown in Section 8.1.3.

8.1.2 Definition and properties of interpolants

In the sequel, the interpolation methods described in @naptre applied to interpolation on surfaces.
The natural neighbor coordinate system defined in the eBticdideand-space is simply replaced by the
T,-coordinate system whose definition domain is limited tosilnéace. For a point € S, we compute its
T.-coordinates and we replage by the7,.-coordinate functior; in the interpolation scheme. The result
of the interpolation is the same wheneveralineighbors of lie in the tangent plan&,. If this is not
the case, th@,-coordinates may not satisfy the barycentric coordinatpgnty which causes an error in
the interpolation scheme. However, this error can be balimdéh respect to the local feature sife(x)
(we refer to Section 6.3.3). We tested the interpolationcafas functions using Sibson’s interpolants’(
and Z'), Farin’s interpolant and the quadratic precision intéapb(7°). We did not compute Clarkson’s
coordinate function but we tested SibsoA%interpolant with the non-convex coordinate system desdrib



in Section 6.5. The experiments were run on a Bi-processatiu®e Il computer, 1 GHz, 1024 MB RAM

8.1.3 Experimental results
Functions in 3D

We assume that we are given a real-valued funcfign) that can be evaluated at all pointse S. For
example, we interpolated the following three functions loa $phere:

o filz,y,z) =42 +y* + 627,

[} f2(3’)7 Y, Z) = 672((1:71)24’?/2‘1’32) + 0.5 674(172+(y*0.7)2+(270.7)2) —0.25 674(-732+(y+0-7)2+(3+0.7)2)7
o fs(m,y,2) =1 +a8+ e + 622 +10myz.

The functionsf; and f3 are test functions from [59] and [2].

To visualize the result, we deformed the sphere at each pong its normal by the amount of the
corresponding interpolation result. Figures 8.2, 8.3, &dddepict the result of the interpolation ¢f,
f2, and f3 resp. knowing50 and 250 pseudo-random sample points. In Figures 8.5, 8.6, and 87, t
error statistics are depicted together with the exact reguthe function application where the function
is evaluated at thé000 points of the sphere model and the sphere is deformed cordsmly. For
each interpolant, mean and maximum errors are given withertgo the absolute difference between the
actual and the interpolated function value on the 6000 el points. The linear interpolat® with
convex coordinates is the least accurate concerning meaalbas maximum error followed by the same
interpolant using the non-convex coordinate system and'tiveerpolant. Farin’s interpolant and Sibson’s
Z' interpolant achieve comparable results, yet, Mhanterpolant yields to be slightly better than Farin’s
interpolant if few sample points are known. The running timrecomputing the interpolants on tl6600
points on the sphere is depicted in Table 8.1.

|P| 100 200 500 1000 | 2000

convex coordinates | 15.14 s| 16.84 s| 18.25s| 18.48 s| 19.19 s

non-convex coordinates62.14 s| 67.1s | 80.61 s| 82.64 s| 99.29 s

Figure 8.1: Running time (in seconds) for interpolatio@i0 points on the sphere.



() (b)
Figure 8.2: Interpolation of; with (a) 50 and (b) 250 sample points.

(a) (b)
Figure 8.3: Interpolation of, with (a) 50, (b) 250 sample points.

(@) (b)
Figure 8.4: Interpolation of3 with (a) 50, (b) 250 sample points.
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Functions on parameterized surfaces

In this section, we suppose that we are given a parametesingateS defined by

s:R? — R3, such thas(u,v) = (z(u,v), y(u,v), z(u,v)) €S

and a functiomi(u,v) : S — R defined onS. We evaluateS on a regular grid of 40000 points (which
is for numerical reasons slightly perturbed). The functiors evaluated on a random set of points uni-
formly distributed in parametric space. The gradient néedse expressed with respect to the Cartesian
coordinates

h IL
> Bu Ol (11, ;) + 9200 (y; ;)
—1
g=| & | hos o= | B + BB w
0 Ou Oh Ov Oh
7z 2 gu (uiy vi) + 52 55 (i, v;)

We use Sibson's’? and Z! interpolants, the quadratic precision interpolahtand Farin’s interpolant?

to estimate the function value on the grid points. The serfaadeformed by the value of the interpolant
in direction of the surface normal. An exact model is obtdilg evaluating the function on the grid
points and by deforming the surface accordingly. Figurd &iépicts an example of Farin’s interpolant
on the torus. The corresponding error statistics as welhagxact model are shown in Figures 8.10 and
8.9. The error statistics show that Sibso#@s and Farin’sf? interpolants yield the best results. Farin’s
f? interpolant has a smaller maximum error and a smaller mean iéthe sampling of the function is
dense. For sparser samples, Sibsdéffsnterpolant is better with respect to the average error. lifear
7Y interpolant with convex coordinates produces the largest® followed byZ° interpolant with non-
convex coordinates and ttié interpolant. Notice that the non-convex coordinate systanmot be applied
on the torus (since it is not a convex surface).

|P| 100 200 500 750 1000 2000

convex coordinates 155.44 s| 179.26 s| 219.71 s| 241.47 s| 260.13 s| 302.34 s

Figure 8.8: Running time (in seconds) for interpolatiod@D00 points.
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Figure 8.9: Exact model and mean error statistic for therpati@tion of »(u,v) = 0.6 cos(6v) on the
torus. Z° interpolant: dotted curve with pointg! interpolant: dark solid curve with diamonds, Farin’s
interpolant: grey solid curve with crosses! interpolant: slashed curve with boxes.
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Figure 8.10: Maximum error statistic for the interpolatioiv.(«, v) = 0.6 cos(6v) on the torus. Interpre-
tation of curves cf. Figure 8.9.



Figure 8.11: Interpolation of(«,v) = 0.6 cos(6v) on the torus with 100, 200, and 400 random sample
points (from left to right). Top row: sample points. Bottoow: result of interpolation.

Vector fields on parameterized surfaces

The interpolation of vector fields, i.e. functions that aedimed from the surface to a higher dimensional
space, can be treated in the same way as scalar functiongelngdlating each coordinate of the result
separately with one of the interpolants presented in thap@h. For example, let : S — R? with
v(u,v) = (vz(u,v),vy(u,v),v.(u,v)), then,v,, v, andv, are interpolated independently. The error
of the interpolation is measured by the squared distancseleet the vector obtained by applying the
function on a poini and the interpolation result at Figure 8.12 shows the interpolation afu, v) with
vy(u,v) = —cos(u) cos(v), vy(u,v) = —cos(u) sin(v), andv.(u,v) = —sin(u) on the cylinder. The
function as well as the function gradient is known at a smathber of random points, and the interpolants
are evaluated on0, 000 grid points. For surfaces with boundary, all boundary gréhis are part of the
sample points. To visualize, we translate each point by &wtov resulting from the interpolation or the
function application. We tested Sibsor#Z8 and Z! interpolants and thé! interpolant. Concerning the
error statistics, Figure 8.13, this time the mean error ef4H interpolant is worse than the maximum
error of I' and Z'. The Z! interpolant produces less error than theinterpolant. The third and the
fourth highest curves correspond to the maximum error in/thand theZ! interpolant (in this order).
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Figure 8.12: Interpolation of(u, v) on the cylinder with (a) 100 regularly spaced sample poist®wWn
in red), (b) 500, (c) 1000 and (d) 4000 random sample points.
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Figure 8.13: Exact model and error statistic for Figure 8lti#rpretation of curves (in descending order).
7Y interpolant maximum error: dotted curve with cross&8,mean error: dotted curve with points!
interpolant maximum error: dark solid curve with diamonds jnterpolant maximum error: slashed curve
with circles, ' mean error: dark solid curve with cross&s, mean error: slashed curve with boxes.



8.2 Delaunay-based surface and curve reconstruction

In this section, we describe how the conceptZeheighbors can be applied to curve and surface recon-
struction inR?. The problem of reconstructing a surface or a curve from afketattered points has
received a lot of attention in the last twenty years. Onesctdsalgorithms to solve this problem is based
on the Delaunay triangulation of the input points. It hastb&®own that — under some sampling condition
— the surface and the restriction of the Delaunay trianguiab this surface are homeomorphic (Lemma
5.12). Therefore, the approach chosen in this class ofitgus is to extract the restricted Delaunay trian-
gulation (or a plausible estimation) from the Delaunaynmialation. In the sequel, we precisely define the
problem and we overview several curve and surface recatistnumethods which are based on the Delau-
nay triangulation, and we situate our approach with resgettte existing methods. Then, we introduce
the 7 -neighbor based approach and discuss the relation torexistethods.

Problem statement

The reconstruction problem for a surface and resp. a curstaied as follows:

Given a set of point$ sampled from a closed surface(resp. from a closed curv€) embedded iR?
as well as the corresponding normal vectorsSt¢resp.C), construct a polygonal surface (resp. curve)
such that the points @P lie on’R and such thaR approximatesS (resp.C).

We suppose that it is known whether the points are issued &oorve or a surface. If this is not the
case, the dimension of the manifold can be determined faligithe work of Dey et al. [46]. Similarly,
if the normals are not part of the input, they can be estimhyedne of the methods described in Chapter
5. Furthermore, we suppose that the samplePs&t ane-sample of the manifold, i. e. it satisfies the
e-sampling condition for some< 1.

An algorithm for the reconstruction problemtapologically correcif the polygonal approximatiofik
is homeomorphic to the underlying manifafti(resp.C). In addition, one would like that the Hausdorff
distance betweeR andsS (resp.C) is small.

8.2.1 Previous work

Even though there exist significant contributions to thishpem that are not based on the Delaunay tri-
angulation, we restrict our attention to Delaunay basechaukt in order to compare and classify our
algorithm with respect to them.



Sculpture, wrapping, flow and convection

The first method for three-dimensional surface reconstmdiased on the Delaunay triangulation is de-
fined by Boissonnat [20] and is call@&CULPTUREStarting from the convex hull of the sample points
(the exterior facets of the Delaunay triangulation), te#dra are removed one-by-one from the Delaunay
triangulation following some priority criteria (based atal geometric properties) and ensuring topolog-
ical correctness. During this process, the boundary of éheaining tetrahedra contains more and more
sample points, and the algorithm stops when all sample dimton it. Due to the topological rules,
SCULPTUREworks only for surfaces with genus zero. A major drawbackésgensibility to the order of
removal: The algorithm might in some cases be blocked béiiishing because the topological rules do
not allow any further removal of simplices.

This “sculpturing” process can also be interpreted as tlodugon of a surface to best fit the sample
points. Evolution (or flow) based approaches have been tigqarblished in [51], [62] and [31]. The new
approaches are different in the sense that they computdalgiadering of the Delaunay simplices rather
than depending on local criteria. The acyclic relation lestw the simplices is motivated from Morse
theory in [51], from flow complexes in [62] or from a physicarwection model in [31]. The resulting
surface is some stable configuration of the evolution psac&$e result of these algorithms is manifold
by construction.

Surface-based or advancing front methods

A second method by Boissonnat [20] constructs the surfa@etti from the point cloud. It is called
surface-basedpproach in opposition to the volume-based nature oStOELPTURElgorithm. Another
common classification iadvancing fronimethod.

Starting from the shortest edge, a contour is propagatediding triangles one by one. Given an edge
of the contour, the sample points in the neighborhood argegex onto the (estimated) tangent plane of
one of the endpoints. The next triangle is built from the oantedge and the point that maximizes the
angle when its projected counterpart is connected to the.€Hage process is repeated until the surface is
closed, and all sample points are included. A priori, thinds a Delaunay based method, however, the
author remarks that the candidate triangles may be chosentfre Delaunay triangulation [20].

A new method in which the surface is propagated or spread tbréepoint cloud has been defined
recently by Cohen-Steiner and Da [36]. The criterion to edten edge is, this time, based on distance
and angle measures. The surface is guaranteed to be mawyftie topological rules imposed during the
propagation.

All algorithms presented so far ensure by constructiontti@teconstructed surface is manifold. There
exist another category of algorithms that collect a subk#aes of the Delaunay triangulation without
considering global topological criteria. For most curveamstruction algorithms, the right topology is



guaranteed, nevertheless, by the sampling conditionr(i@feection 5.3). In surface reconstruction, it can
often be established in a post-treatment. Most algorithrasgmted in the sequel are of this type.

Alpha shapes

Alpha shape$®y Edelsbrunner et al. were first defined for the two-dimemaicurve reconstruction prob-
lem [52] and then enlarged to three-dimensions [53]. Fraeblaunay triangulation of the input points,
the simplices are removed whose radius of the smallestrosphere is smaller than the parameteFor

the two dimensional case, it has been proven in [18] thaetbrist values of for which the alpha shapes
reconstructs the curve, provided that the sampling defisigpiform. Several algorithms are based on
a-shapes, notably, Teichmann et al. introduce anisotrogyder to improve the results, the Ball Pivoting
Algorithm by Bernadini et al. [16] is very close te-shape as it removes triangles with circumradius less
than the radius of the pivoting ball.

Crust

The CRUSTalgorithm by Amenta et al. [10] is the first algorithm with dretical guarantees for the three-
dimensional surface reconstruction problem. The auth@reduce a sampling condition based on the
local feature sizgi.e. the smallest distance of a surface point to the meslial & Definition 5.10, we call

it e-sampling condition.

First developed for the two-dimensional case only,@JSTis based on the fact that the Voronoi ver-
tices of the2 D Voronoi diagram of the sample points approximate the medial of the curve. Therefore,
all edges of the dual Delaunay triangulation that travensenedial axis are destroyed if the Voronoi ver-
tices are inserted into the Delaunay triangulation of tmega points. Those Delaunay edges that connect
two sample points in the enlarged Delaunay triangulatiamde points plus the Voronoi vertices) do not
traverse the medial axis and are likely to belong to the Delguriangulation restricted to the curve. The
collection of such edges is called t&&RUST Fore < 0.26, the CRUSTconnects exactly all neighboring
curve points and no others.

This idea does not extend directly to surface reconstmigti®?, since in the three-dimensional case,
Voronoi vertices might be far from the medial axis of the anef due to so-called sliver tetrahedra (refer to
Chapter 5). We re-call that a sliver is generated by four Inpugo-circular points so that its circumcenter
may be arbitrary close to the surface independently fronsémepling density.

It was the notion of poles that allowed to generalize@RUST the pole of a sample point (which is its
furthest Voronoi vertex) is close to the medial axis, andgbke vector that is the vector from the sample
point to the pole, is a good approximation of the normal tosiingace at the sample point [9]. The second
pole is the furthest Voronoi vertex such that the angle beiatbe two pole vectors (the vectors from the
sample point to the first and to the second pole) is bigger than



The 3D CRUSTbuilds the Delaunay triangulation of the sample points phesfirst and the second
poles and extracts the triangles in which all three vertaressample points. A second filtering step re-
moves the triangles that exceed a bound on the angle betWeérangle’s normal and the vertices’ pole
vectors. Thirdly, poles and triangles are oriented, andntheifold is extracted from the collection of
triangles. If the sampling is sufficiently dense @sample withe < 0.1), it is proven that the restricted
Delaunay triangulatiodels(7) is homeomorphic to the surface (Lemma 5.12) and thatORESTin-
cludes all triangles of the restricted Delaunay triangotatHowever, it is not shown that the result of the
manifold extraction step is homeomorphic to the surface.

Cocone

The COCONE algorithm [7] presents a different Voronoi filtering criten that has the same goal: to ex-
tract the Delaunay triangulation restrictBdls(P) to the surface. The result of the algorithm is (provably)
homeomorphic to the surface given @asample withe < 0.006. We present this algorithm in detail, since
it is very close to th& -neighbor based approach that we will describe in the segjubls chapter.

The global approach consists of computing a collection nfldate triangles and to extract a manifold
from the triangle set. A candidate triangle is chosen frommelaunay triangulation if its dual Voronoi
edge intersects theo-conesof its three vertices. The co-cone of a sample peginis the set of points
that are close to the tangent plangatin the sense that the vectap; forms an angle close t with the
normal atp; (which can be estimated by the pole vector).

The collection of candidate triangldsselected by th€ OCONEalgorithm meets the following three
criteria [7]:

|. T includes all triangles of the restricted Delaunay triaagioh Dels(P),

Il. each triangle inl" is small (the radius of its circumcircle is much smaller ttta distance to the

medial axis), and

lll. for each triangle, the angles between the triangle’smads and the surface normals at the vertices
are small.

Under this conditions, a piecewise-linear manifold can xteaeted fromI" that is homeomorphic to the
surface. The manifold extraction algorithm is based on twaciples: first, every two adjacent triangles
should form an angle greater thgnat their common vertex, and, second, every sample pointdHeu
adjacent to at least one triangle. To meet the first propstiycalledsharp edgesre removed from the
candidate set. An edge is sharp if the angle between twodntidangles is greater tha3§ or if the edge
has only one incident triangle. The authors show that nagteof the restricted Delaunay triangulation
Dels(P) is sharp ife < 0.006. After the removal of sharp edges, a manifold is construbied depth-
first search along the outer boundary of each of its compenéhthe sampling condition is met, such a
manifold must exist, and the success of the algorithm isgrov



This first version of theCOCONEalgorithm is very sensitive to the sampling condition, whis, in
practice, met by very few point sets. Several papers ralisiCOCONEalgorithm to make it valuable in
practice. We call them the OCONEbased algorithms since the basic idea stays the same.

Most of these ideas apply directly to tHeneighbor based reconstruction method that we describe in
the sequel of this section. Both methods are very close eaddsof restricting the Voronoi cells to the
co-cone of the sample point, iA-neighbor based reconstruction, they are restricted tdethgent space
(which is a subspace of the co-cone).

The COCONEhas been adopted to work for large sets of data in [95]. It s hused to detect
undersampled zones and boundaries in [45] and [41]. Theitdgoto detect oversampled zones as well
as undersampled zones ([40]) served to describe a sampieaden algorithm in [94] and a decimation
and re-sampling algorithm that deletes sample points ih R6bustness issues of the implementation are
discussed in [97]. An algorithm usifgOCONEto find out the dimension of a manifold from the set of
sample points is defined in [46].

Dey, Funke and Ramos [44] elaborated an algorithm that ctespheCOCONEtriangles without
constructing the entire Delaunay triangulation of the dampint and that is therefore more efficient. The
authors suppose that the sampling is locally uniform. Timglies that any sphere centered on a sample
point and including all its neighbors in the restricted elay triangulatiorDels(P) contains a constant
number of points of°. This assumption makes it efficient to collect all co-conmglnieors of a point from
a data-structure fat-nearest neighbors search.

Notice that the normals to the surface at the sample poimisatde estimated from the poles without
computing the three-dimensional Delaunay triangulatidime authors suggest to estimate the normals
from the triangle formed by a sample point and its two neamegihbors which form a sufficiently big
angle. Refer to Lemma 5.18. In [60], Funke and Ramos desaribethod to decimate sample points in
order to meet the local uniformity. However, the impleméptaof this algorithm seems quite involved
and to our knowledge, there exist no implementation so fackvbould prove the practical impact of the
method.

We describe in more detail the ideas behind the boundary iameihdion detection from [41] and [46].
In a second time, we give a sketch of the manifold extractiethods used foCOCONE

The special shape of the Voronoi cells, namely their longskihy shape in the normal direction while
being of small diameter in the tangent space, allows to temendaries as well as the dimension of the
underlying manifold. With the help of a lemma equivalent &nima 6.3, the diameter of a Voronoi cell
restricted to theo-coneof its generator sample point is upper bounded with resgettid local feature
size. Also, the distance of the sample point to its pole isaefdbound for the local feature size. If the
ratio of the diameter of the restricted Voronoi cell and tistathce to the first pole as well as the second
pole is greater than a certain constant, the sample point loeusn the boundary af. This is shown in
[41].



The dimension detection algorithm [46] exploits the sancéfiar manifolds with higher co-dimension.
It detects the dimension of the normal space by checkingeif\bronoi cell is long and skinny in the
direction of a potential normal while having small diameirits orthogonal space. The normals are
approximated by pole vectors (see Definition 5.14). The Noraell is successively restricted to the
estimated tangent space until the ratio of the diametereofaktricted Voronoi cell and the distance to the
poles is sufficiently small. The dimension of the manifoldhie dimension of the first restricted Voronoi
cell that meets the ratio bound. It is necessary for thisrilyn that sample points cannot be arbitrary
close to each other, $8 is supposed to be an, §) sample withé > 5. The algorithmSHAPE COCONE
computes a polygonal approximation of the manifold.

Two types of manifold extraction strategies are proposedni®@COCONEbased algorithms: In [47],
the TIGHT COCONEeconstructs closed surfaces by a volume-based approatchrtduces watertight
polygonal reconstructions. In [41], a surface-based aggra@llows to reconstruct surfaces with bound-
aries. Starting from one triangle, the surface is develdizgecan advancing oriented front while choosing
new triangles from the candidate set of ®®CONE Boundary edges were detected prior to the manifold
extraction using the boundary detection algorithm. Bothtsgies can be applied almost directly to the
candidate set computed by tieneighbor based approach. Details are given Section 8.2.2.

Power Crust

The Power Crustalgorithm by Amenta et al. [8] is also based on the fact thattiedial axis is approxi-
mated by the poles but it makes a very different use of this.iRemember that the medial axis is the locus
of the centers of medial balls, i.e. the largest empty sghieneching any point on the surface (Definition
5.10). Any surface point lies on the boundary of two medidlsbahe outer medial ball that is outside
the solid whose boundary i$ and the inner ball that is included in the solid. The medidisbhean be
approximated by the Delaunay balls that are centered orea pbls yields a good approximation because
the poles are close to the medial axis and the Delaunay baltha largest balls that are empty of sample
points. They are calledolar balls.

Amenta et al. develop some heuristics to distinguish outdrianer polar balls. Of course this resumes
to decide whether a pole lies inside or outside the solidnTtiepower crustomputes the power diagram
of the polar balls, and the reconstructed surface are tlesfat the power diagram that are dual to edges
between inner and outer polar balls. The result is guardriteeonstitute a manifold.

In contrary to the other Delaunay based methodsptiveer crustis quite robust against noise. In [8],
the authors conjecture that the power crust is the threesiional equivalent of the following method by
Attali.



r-regular shapes

Attali [11] introduces the notion aformalized mestvhich corresponds to the restricted Delaunay triangu-
lation (Section 5). The algorithm, valid only #D, relies again on the observation that the circumspheres
to Delaunay triangles approximate the medial ball. Therfidtgerion is related to another property of
medial balls: since the medial balls are tangent to the ¢uineeangle at a curve point between the center
of the inner and the outer medial ballis Consequently, if an edge is part of the reconstructionatigge
formed at one of the sample points by the vectors to the twondrvertices dual to the two triangles
adjacent to the edge should also be close.téttali filters the Delaunay triangulation with respect hast
angle criterion. An--regular shape is a shape whose curvature is boundedlbthe underlying curve is
r-regular, then a minimum sampling density exists such tiagatgorithm by Attali produces a polygonal
curve with the same topology as the original curve. This iea difficult to extend t8D due to the
presence of slivers.

Localized Delaunay approach

This approach by Gopi et al. [65] is very similar to theneighbor based approach in the sense that the
surface is approximated locally around each sample poird bwo-dimensional local triangulation. In
contrast to most other methods presented so far, it doesonetract the3 D Delaunay triangulation. The
surface normals are approximated from theearest neighbors of each point. For each sample pgint
potential neighbors are collected in some sphere of inflei@moundp; whose radius is a multiple of the
distance fronp; to its nearest neighbor iA. This candidate point set is further pruned with respedi¢o t
distance of the candidate points to the (estimated) targane. At last, the candidate points are mapped
(or projected) onto the tangent plane in a way that the distdretweerp; and its potential neighbor is
not changed by the mapping. The local Delaunay triangulatiop; and the projected candidate points
is computed and the “umbrella” of triangles aroupdwith their original 3D geometry are potential
triangles of the polygonal reconstruction. The authoregatze their approach within the advancing
front approaches since the manifold is extracted in this Wwapropagating a contour. Of course, the local
triangulations are not always coherent with one anothesangle heuristics are proposed to disambiguate
these cases.

Natural neighbor interpolation

Boissonnat and Cazals [22] define an implicit function whose-set approximates the surfage Fol-

lowing an idea of Hoppe et al. [72], they associate, to eadhpsa point, the signed distance function
representing the distance to its tangent plane. The imflioction is defined by natural neighbor inter-
polation of the signed distance functions. They show that#ro-level of the implicit function cannot be
far from the underlying surface and that, on a surface pdet,implicit function has a small value. As



e — 0, the zero-contour of the implicit function approaches tindase and the Delaunay triangulation of
the point set restricted to the implicit function is a polpgbapproximation homeomorphic & Further-
more, the quality of the polygonal approximation can bewasd by looking at the distance of its facets
to the implicit surface. It can be refined by adding pointstenzero-level of the implicit surface wherever
the quality of the polygonal reconstruction is poor. Moreg¥he implicit function can be used to simplify
the polygonal surface by deleting points while guarantpéiat the reconstruction stays correct [21].

Umbrella Check

Last but no least, we present an original method to re-eaftite manifold property with the help of a
system of linear constraints. Tli&abriel complex is a subset of the Delaunay triangulation that ¢cosita
all faces whose smallest circumsphere is empty of sampleggpofAdamy et al. define in [1] an order on
the Gabriel simplices which is related to the largest emptygassing through the vertices of the simplex
and being empty of sample points. The simplex has higherityriand it is more likely to belong to the
reconstruction if there is at least one side on which all otlaenple points are far away.

Secondly, they formulate a topological condition for theulg calledumbrella condition Because
on a closed surface, the neighborhood of each sample pdisnieomorphic to a disk, this should also
be the case in the polygonal reconstruction. For each sapophe, there must exist a local “umbrella”
of triangles, i.e. a set of triangles that forms a disk aroiind he algorithm chooses such an umbrella
for each sample point from the ordered set of Gabriel sireplicThe existence of local patches that are
homeomorphic to the surface does not yet guarantee globalreoce. Therefore, it is necessary to do
a topological clean-up. First, all triangles are deleteat #hre either incident to a vertex but none of
its incident triangles are or two umbrellas are in conflicaatiangle’s vertex. This way, some holes
might have been created which must be filled while respedtiegtopological constraints. The idea is
to formulate topological surface conditions as a systeninagfak constraints such that an integer value
solution specifies a topological correct solution to fill thade.

Curve reconstruction methods

There exists several methods that are designed specialtyifee reconstruction. An experimental study
by Althaus et al. described in [6] compares five approachesutve reconstruction iBD with respect

to the reconstruction quality as well as the running time.efsta and Bern’€rust, a Delaunay approach
by Gold [64] and theConservative Crusby Dey, Mehlhorn and Ramos [43] were reported to be quite
sensible concerning the sampling density. The two remgimethods, notably the TSP-algorithm by
Giesen [61] (later improved by [5]) and tidN-Crustby Dey and Kumar [42], seem to work best. The
TSP-algorithm computes the Traveling Salesmen Path.oGiesen showed that there exists a sampling
density for which the TSP is a correct reconstruction of theve. It is notable that this algorithm does
also work for non-smooth, open curves and in arbitrary dsm@rs. The extension in [5] is written for the



two-dimensional case only.

The NN-Crust[42] is easily generalized to curves in higher dimensionge method is very simple:
Each each sample point is connected to its nearest neighbben, vertices that are not incident to two
edges are further connected to the closest point that makasgie greater tha} with the first edge. The
authors show that thieN-Crustyields a correct polygonal reconstruction of the curv® iis ane-sample
with € < %

8.2.2 Reconstruction with7-neighbors: the basic idea

In this section, we explain the basic idea behind reconstrugvith 7 -neighbors. The main ingredients are
explained in Section 7.1.2. Roughly speaking, our appraacisists of approximating the manifold, in a
first time, by the duadi(P) of the 7 -restricted Voronoi atlas (Definition 7.5) or by a subset.o¥We obtain
a local approximation of the manifold around each samplatp&iork > 1, the local approximations do
not match consistently. Thus, the reconstruction algaritieeds a post-processing step that establishes a
closed manifold by adding faces Dkl(P) to G(P) and by deleting some faces. Other algorithms which
are based on a similar approach suffer from the same probdenprapose manifold extraction methods.
See for example the co-cone algorithm [7] and Xheomplex [1].

We refer to the computation ¢f(P) as theZ -neighbor computation becau§é?) connects all pairs
of 7-neighbors by an edge.

Outline: the7 -neighbor based reconstruction algorithm performs theviohg steps:

(S1) Normal estimation (e.g. via poles)

(S2) 7 -neighbor computation

(S3) Manifold composition

The 7 -neighbor based reconstruction algorithm is very closé¢d@OCONEbased algorithmsCO-
CONE[7] for surfaces in3D and COCONE-SHAPHElgorithm for general manifolds embeddedRA
[46]. The COCONEbased algorithms collect all Delaun&ysimplices such that the dual Voronoi face
intersects the co-cones of its vertices. They are calledahédidate simpliceg’. Our algorithm is more
strict and collects all Delaunay faces such that the duabnvairface intersect the tangent spaces of the
vertices. Of course, since the tangent planes are inclutéukico-cones, a Voronoi edge intersects the
tangent planes only if it intersects the co-cones. We dethat¢/(P) C T'.



This observation makes it possible to use several appreablae have been proposed BOCONE
based algorithms. Notably, the shape dimension algorithchthe boundary detection algorithm apply
directly to our approach.

One important difference between both methods lies in tbetfeat, provided the sampling condition
is satisfied, the set of candidate simpli@gsomputed by &£OCONEbased algorithm must contain the
simplices of the Delaunay triangulatidbel o((P) restricted to the manifold1. This is not always the
case for the Delaunay complé€XP). Consequently, the manifold extraction algorithms pregiosy Dey
et al. may not be applied directly to our approach becai($2) may not contain a subset of simplices
homeomorphic to &-manifold.

For closed surface reconstruction3®, the TIGHT-COCONEalgorithm can be adapted to our algo-
rithm. Also other methods could be applied to establish asdamanifold fromg(P). For example, the
LP-based approach by Adamy et al. [1] seems particularlg@ate because it is specially designed to fix
local holes by extending the surface through them. Its daat@ge is the running time which is very de-
pendent on the particular model and the size and nature ¢idlles. Advancing-front approaches such as
the algorithm of Cohen-Steiner and Da [36] could be run lgdalorder to propagate the surface through
the holes.

In the sequel, we consider in more detail the case of curv@®irFor curves, we show the correctness
of the algorithm independently of the dimension of the endleglspace.

8.2.3 T-neighbor based curve reconstruction

In this section, we prove that the collection of edg&$) reconstructs the smooth cur¢eif it is well
sampled. Figure 8.14 shows an example of a reconstructed.cur

Figure 8.14: The example of a reconstructed curve given Bpkapoints (two different viewpoints).



Topological correctness

Let Cr be the polygonal approximation ¢f obtained by connecting each pair of sample points that is
adjacent orC. If P is ane-sample € < 1), the curveC is homeomorphic to its polygonal approximation
Cr because any arc between two adjacent sample poi@itaam be straightened out to a segment without
traversing the medial axis. Consequently, the segmentotantersect any other component ©f We
show under which sampling conditiagi(’?) = Cr which proves thatj(P) is homeomorphic t@. We
state this result formally.

Theorem 8.1 The collection of edges(P) is homeomorphic to the curné
(a) if e < 0.31 and the normals and bi-normals &bare known at each sample point,
(b) if e < 0.135, if the normals are estimated by pole vectors.
(c) if e < 0.26, if the normals are estimated from the nearest neighbor.

Proof: Suppose that the distance from a sample ppjr¢ 7 to a Voronoi vertexs of V (p;) (the Voronoi
cell restricted to the tangent lirig) is smaller tharifs(p;). We show that under this conditiai( P) = Cg,
i.e.(1) G(P) CCrand(2) Cr C G(P). The same arguments apply if the tangent lines are estinflayed
either method) and if the distance from a sample ppint P to a Voronoi vertexy of V (p;) (the Voronoi
cell restricted to the estimated tangent Iiﬁgais smaller tharifs(p;).

Part 1. Lete = (ps, p;j) be an edge of . We show that is part of the restricted Delaunay triangulation
if € < 1. Then, we show under which sampling conditiois part ofG(P). Let q be the intersection point
of the bisector plangt;; with the arc ofC formed byp; andp; that is empty of other sample points. Refer
to Figure 8.15.

pj
Di

Figure 8.15: (a) If the sphere centeredpis empty of sample pointg, € Del:(P). If the sphere centered
onv is empty of sample points, € Delz, (P).

By Lemma 5.4, we know that the ball centered @that passes through the sample point closest to
q intersect<C in a topological disk. Otherwise its radius would be gre#tanlfs(q) which contradicts



the sampling condition. Sinog lies in the arc ofC covered byp; andp; and since this arc is empty of
other sample pointg; andp; must be the sample points closesttéand, by definition ofy, both are at
the same distance tg). Consequentlyq lies on the Voronoi face dual toande is part of the restricted
Delaunay triangulatiobelc (7). We need to show under which sampling condition the int¢iseof ;;
with the tangent lineZ; lies also on the Voronoi face dual to If this is the caseg is an edge oDelr (P)
and, therefore, of (P).

Let v be this intersection point; := H;; N 7;. If ||p; — v|| < %lfs(pi), the ball with centex passing
throughp; intersects’ in a topological disk (to be exact, its intersection witts the arc covered bjy; and
p;). Thus, by the same argument as above, it contains no ottrgleaoints, and we found a necessary
and sufficient condition foe to be inG(P).

(a) From the proof of Lemma 6.3(a), we know that the distaretvéen the Voronoi vertex of the

restricted Voronoi cell/ (p;) andp; is at most||p; — v|| < \/ﬁ Ifs(p;). In consequence, \/Hﬁ <
1 < ¢<V2-1=%0.31,¢is an edge off (P).

(b) The same argumentation holds if the normals are estimasepoles: from the proof of Lemma
6.3(b), we know that the distance between the Voronoi vettex the restricted Voronoi celV (p;) and

p; at most is
€

) + ) lfs(pi),

where 3 is the error bound between the normalCtat p; and the estimated normals (in the sense of
Lemma 5.15). Thus,

1 ‘
Ipi — V|| < 71 i sec(a,rcsm(1

— €

—1 +sin(8) 4+ /2 — 2sin(J3)

— v < 1lfs(p; — <
lpi — v < 1fs(pj) €S 1+ sinj3

In the general cas@, < 4v/d — k arcsin(1=) and ford = 3 andk = 1, the bound evaluates to< 0.135.
(c) If the normal space is estimated to be orthogonal to tlye edth the nearest neighbor &f we

know from Lemma 5.17 that the angte< arcsin We obtain
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- 1
Ipi = ¥l < Jlfs(pi) = € < 0.26.

Part 2: Now, lete = (py, p;) be an edge of (P) andv be the vertex dual te in V(p;) (resp. inV (p;)).
We show thaie € Cy if ||p; — v|| < Ifs(p;). (In the first part of the proof, we showed under which
condition one, this bound must be true.) In this case, the ball centered passing througlp; andp;
intersectg’ in a topological disk (again by Lemma 5.4). Sincés a Voronoi vertex, it is empty of sample
points, and in particular the arc 6finside the ball contains no sample points. gtandp; bound the
arc on the each side, so thgtandp; are adjacent od. Consequently; is an edge o€y if the sampling
condition holds ]

Notice that, for the cases (a) and (c), this proof is indepanhdf the dimension of the embedding space
since it is based on Lemma 6.3(a) and Lemma 5.4 which are émdigmt of the dimension. However, the



normal estimation via poles is less exact if the dimensiothefembedding space is higher thHann the
two-dimensional space, the resulkis: 0.4.

8.3 Centroidal Voronoi diagrams on a surface

Surfaces represented by a set of unordered sample pointssurface meshes are encountered in many
application areas such as computer graphics, computet desgn (CAD) and reverse engineering, image
processing, and scientific computation. Rarely, thesetptduds are evenly distributed over the surface,
nor do they follow any adaptive distribution depending oralccurvatures or similar criteria that allow to
optimize between the number of sample points and the infilomahey carry. Rather, the point clouds
are issued from laser scanners or similar acquisition devand the sampling density is far from optimal.
Also, it is often suitable to have regular meshes where fhadles’ angles are maximized. This is, for
example, very crucial for finite element computations onrttesh. In this section, we restrict ourselves
to the three-dimensional case which has the most practigzddt. However, the idea should apply to any
dimension.

8.3.1 Introduction and previous work

In this section, we define a centroidal Voronoi diagram inegah Then, we introduce previous work on
the enlargement of this concept to sample points issued &sorface and we present a definition of the
centroidal Voronoi diagram on surfaces in detail. In thetrs®ction, we present our solution that is an
approximation of the centroidal Voronoi diagrams on swefadExperimental results are shown in the last
section.

Centroidal Voronoi diagrams

The mass centroid; of the Voronoi cellV (p;) is defined by

4 xdx

zi:M fori=1,...,n. (8.1)
Jv gy dx

A centroidal Voronoi tesselation (CVT9 a Voronoi diagram such that = p;,i = 1,...,n. See [49]

for a recent overview about centroidal Voronoi diagramjudimng a proof of existence, applications, and
algorithms to compute CVTs.

Constrained centroidal Voronoi diagrams and related work

Recently, Du, Gunzburger and Ju [50] define a centroidal Mardiagram for the case that the point set
is constrained to lie on a (hyper-)surface®sf. This problem has been motivated in the beginning of
this section. The so-callecbnstrained centroidal Voronoi tesselation (CC\g defined with respect to



the (Euclidean) Voronoi diagrafviors restricted to the surface. The definition of the centroidadovioi
diagram needs to be modified because, in general, the massidef a Voronoi cell inVors does not lie
on the surface. The generalized definition proposed in Bagifollows.

Theconstrained mass centroif of a Voronoi cellVs(p;) is the solution to the following minimization
problem:

z{ = argmin F;(z), with F(z)= / |x — z||%dx. (8.2)
2€5 Vs(pi)

The authors show that there exists always a solution fomtinismization problem and, furthermore, that
this solution is the projection ont§ of the (unconstrained) centroid df(p;) defined by Equation 8.1
(with V(p;) = Vs(pi)) along the normal t& atz¢. This yields the following algorithm to compute the
CCVT by a Lloyd’s relaxation [76].

1. Build the Voronoi diagranVs(P).
2. Compute the centroids of theVoronoi cells and project them onto the surfate

3. ReplaceP by the set of projected centroids and repeat Steps 1 and|Xatisifactory convergence
is achieved.

In the traditional setting without restriction to a surfagri, Faber and Gunzburger [49] report a signifi-
cantly faster convergence of Lloyd’s relaxation algoritimmsomparison with other methods. In the surface
setting, the major drawback is the computation of the Vordiagram restricted to the surface. According
to the authors, there is no software available, except foon@ diagrams on the sphere [86]. There-
fore, probabilistic methods have been developed for itsprdation that do not need the computation of
Vors(P). The reader may refer to [50] for further reading.

For isotropic surface remeshing, Alliez et al. [4] employtteidal Voronoi diagrams that are defined
in the parameter space of the surface. The results are vewincing as to the regularity of the mesh, etc.
Nevertheless, this approach has several disadvantageatticular, in order to compute the parameteriza-
tion, it is necessary to flatten the surface which means ti cuthe case of closed surfaces. This might
lead to artifacts along the cut edges. Also, it is necessaadd a density function when computing the
centroidal Voronoi diagram in order to compensate the fiaiteof the surface.

In this thesis, we propose a method to approximate the @nstt centroidal Voronoi diagram defined
by Du et al. Instead of computing the CCVT in the surface iestl Voronoi diagram, we rely on the
restriction of each Voronoi cell to the tangent plane of gmerator. In Chapter 7, we showed that, if the
sampling of the surface is sufficiently dense, the cell ofe point in the so-called Voronoi atlas is
very close to the corresponding cell in the Voronoi diagrasiricted toS. This encouraged us to test
Lloyd’s method in the Voronoi atlas. Our method is very effiti since it is based on the computation of
very small power cells which determine the Voronoi cellsha atlas. It can be applied on closed smooth



surfaces, as well as on triangle meshes. No restriction derabout the genus, or the number of connected
components of the surface.

8.3.2 T'-restricted centroidal Voronoi diagrams

To avoid the computation dfors(P), we propose to approximate it by the Voronoi atlaspP) that is
defined in Chapter 7. Because every cellAGP) is very close to the corresponding cell Yors(P)

(by Lemma 6.3, both are contained in a small ball centerechergenerator), it seems reasonable that
both solutions converge —up to the approximation error—doraparable solution. We tested this method
experimentally but we cannot yet present formal proofs.

The experimental results showed that the energy of eactigar in terms of distance between the cen-
troid and the generator of each cell, decreases rapidly amhcously. The dual Delaunay triangulation
becomes very regular with respect to the distribution okddggths and angles. Almost all angles in the
triangulation are sixty degrees. Some charts are shownatioBes.3.3.

8.3.3 Experimental results of re-meshing with Centroidal \dronoi diagrams

The presented examples are computed starting from a tt@egusurface. For each vertgx of the
triangular mesh, we compute its Voronoi cel(p;) and the centroid of this cell. The latter is projected
onto the triangular surface. In the next Lloyd iteratipr,is replaced by the projected centroid of its cell
and the process is repeated.
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Figure 8.16: A surface representing the Connolly surfa@nailanine molecule and its re-meshed version
(after 40 iterations). Running time: 80s per iteration. (The original is courtesy from Steve Oudot)

Figure 8.17: A zoom on the Connolly surface (a) the origibdlafter 40 iterations.
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Figure 8.18: Histograms of angles depicting the differenetwveen the original and each re-meshed
version (a) afted 0 iterations, (b) aftet0 iterations.

ST T T T T T T T

I Criginal S5 T T T T T T T
d
L d
L -l
0.02 0.04 0.06 0.08 e%.;e Iengt?{m 014 0.16 015 oo 004 0.08 0.08 0 012 014 016 e
edge length
S T T T T T T ! T ST T T T T T T T T
Bl lteration 10 B lteration 40
4t B 4l d
3+ 1 sl i
7 #
2+ B alb .
1F . 1+ 1
D 1 1 1 i} ol 1 1 1
o.0z2 0.04 0.08 0.08 0.1 012 014 0.16 018 0.02 0.04 0.06 0.08 0.1 012 014 016 0135
edge length edge length

Figure 8.19: Histograms of edge lengths depicting the idifiee between the original and each re-meshed
version (a) afted 0 iterations, (b) aftet0 iterations.



Figure 8.20: A zoom on another triangulated surface andeitmeshed version (100 iterations). (The
original is courtesy from Steve Oudot)

Figure 8.21: Histograms of angles and edge lengths degittim difference between the original and the
re-meshed version of Figure 8.20.



Chapter 9

Implementation of 7 -coordinates in CGAL

9.1 Introduction

This chapter describes the implementation of the coordiocaimputation and the interpolation application
for three-dimensional data taken from curves or surfacé® ifplementation is based orc&L (Com-
putational Geometric Algorithms Library)[30], @+ library of geometric algorithms that is developed
by a consortium of eight research teams in Europe and Isi@ehkL started as a research program in
the framework of two successive European projects. FromomwCGAL is commercialized by a private
company but it remains free for academic use. The goal@4ICis to provide robust, efficient, flexible
and easy to use implementations of geometric algorithmslatadstructures. The benefits are particularly
interesting as geometric algorithms are known to be harcthfle@ment because they are highly sensitive
to arithmetic errors and because they include a lot of spease treatment. The programs described in
the sequel make use of tBé Delaunay triangulation as well as tBé& regular triangulation of GAL.
See e.g. [23] for an introduction to triangulations isAL and [70] for the general concepts. The manual
pages of GAL are available at http://www.cgal.org.

Design overview and specifications

The implementation of the coordinate computation as weitsagpplication to interpolation on surfaces
is designed in order to achieve a maximum of robustness axitifiy. All predicates are based on the

computation of low degree determinants which allows fastrfilg to avoid robustness problems. At a
higher level, the template mechanism is used to assureiflgxibr example in the nature of the function

values to interpolate, e.g. the same software interpofatdss/alue and vector functions.

The classes can be divided in several levels of dependeingyloWest level contains the computation
of the 1D and2D power diagrams that describe the intersection ®PaVoronoi diagram with a line or
a plane. For th@D case, this means to compute a regular triangulation by speagially designed geo-
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metric tests applied on the tBé points. This module is calledoronoi SectionsA thorough description
is given in Section 9.2.1.

The second level models the point cloud itself and cont&i@$unctions to compute the-neighborhood
andT'-coordinates. It is a Delaunay triangulation of the poimiud that contains additional data, added
to the vertices of the Delaunay triangulation, like the nalsof the surface at the points. The additional
functionalities are the computation of the Voronoi Gélix) of a given pointx € S, the computation of
theT'-coordinates ok, and the computation of the pole »fin order to approximate the normal Sfatx.
This class is calle&urface neighbordt is described in Section 9.2.2.

At the highest level, the concept @f-coordinates is applied to function interpolation on a @cef
There are two different settings: either the surface is ddfioy a parameterized surface (the function of
the surface is known) or it is just known from the sample i either case, the sample points are
associated to a function value and, if known, to the gradeérihis function at the sample point. The
function might be a real or a vector value function. Therefate different types of interpolants: the
linear interpolant, a quadratic interpolant, Farin’s iptdant and Sibson's?! interpolant. For the last
three interpolants, it is necessary to know the gradiertt®fiinction. See Section 9.2.3 for the details.

9.2 Main classes and their functionalities

The design of GAL is based on a strict separation between the combinatoriabpan algorithm and the
geometric primitives necessary for the algorithm to dedbheecombinatorial information. The geometric
primitives and the arithmetic used for the computationgddafened in the so-calletlaits class. For a given
algorithm, like the computation of a regular triangulatitime traits class can be easily replaced using the
template mechanism @++. As long as the combinatorial part of the algorithm remalres $ame, the
implementation of the algorithm is unchanged — apart froengdometric tests. The software described in
the sequel uses this technique at a large extend.

9.2.1 \Voronoi sections

In this section, we describe the details of the implememratif Voronoi sections ir3D. In other words,
we compute the power diagram that describes the intersecfia 3D Voronoi diagram with a plang{
(2D Voronoi intersection), or the partition of a liiénto intervals that correspond to tB® Voronoi cells
intersected by (1D Voronoi intersection). As usual, we proceed by computirg dhal of the Voronoi
intersection diagram, that is a regular triangulation fe¥2D intersection and a sequence of points for
1D.

The planeH (resp. the lind) is a member of the traits class that is used in the regulandtilation.
(The traits class is instantiated each time a Voronoi ietien diagram is computed.) The pointsfofre
inserted incrementally, and the natural neighbors as wehe natural coordinates of a point with respect



to the Voronoi intersection diagram might then be computed.

2D Voronoi intersection

In Chapter 6, we showed that the Voronoi intersection diagigthe power diagram of the projected
sample points weighted by the negated squared distanced&etthie projected and the original point.
Consequently, a straightforward implementation consirtitis power diagram via its dual regular trian-
gulation using GAL. However, it should be avoided to explicitly construct thejpcted points and to run
the algorithm on the derived data because this increasesneahrounding errors. Also, €AL provides
efficient filtering methods which allow to do certified exachtputation. These techniques cannot be used
on derived data.

We explain how the classical incremental algorithm worksyrider to show that a simple change in the
traits class of the regular triangulation is sufficient iderrto compute the dual of the Voronoi intersection
diagram. The vertex exists in the power diagram iff there is an empty sphere cetdtenv that is
orthogonal to three sites. In the dual regular trianguhgtibis means that the power distance between
the triangle’s orthosphere and all sites/®fs positive or zero. During the incremental constructioraof
regular triangulation, a triangleB;, By, B;) of the current triangulation is destroyed at the insertiba o
new siteB; iff the power distance betweeB; and the triangle’s orthosphere is negative. In this cage, th
vertexv that is dual to the triangle does no longer exist. After aifeg all triangles that are in conflict
with B;, the second part of the algorithm, namely, the creationehtw triangles incident t8;, is purely
combinatoric.

We callpower testhe predicate that computes the sign of the power distarteeeba a siteB; and the
orthosphere of three sitd$;, B, andB;, and say thab; is in conflictwith the triangle(B;, By, B;) if the
power test is negative. The incremental algorithm to costthe regular triangulation depends only on
two predicates: the predicapower testand the predicaterientationthat determines the orientation of a
triangle in the plane (i.e. whether the triangle’s vertiaes given in clockwise or counterclockwise order).

The following observation makes it possible to compute thekoi intersection diagram without con-
structing the projected points: When computing the intise of a3 D Voronoi diagram with a plane,

a Voronoi vertex is generated by the intersection of a Voredge of the3 D-Voronoi diagram with the
plane. The existence of a poimton the Voronoi edge is witnessed by an empty sphere centered-on
having the three generating pointseodn its boundary (namely;, pk, p1 if e = V(p;) NV (pk) NV (p1)).

In particular, this must be the case for= e N H, and a vertex exists in the2D Voronoi intersection
diagram iff there exists a sphere centeredvoa H that has three sample points on its boundary and is
empty of sample points. Concerning the dual, this meansath@ngle(B;, By, B;) exists in the regular
triangulation iff there is an empty sphere centeredohavingpy, p1, pm On its boundary.

It follows that the dual of the Voronoi intersection diagréon H can be computed by simply replac-
ing the power tespredicate in the D incremental construction algorithm byph ane_cent er ed.i n_



spher e-test that tests whether the pojsitto insert is inside the sphere centeredroand passing through
three points forming a triangle. In fact, tik ane_cent er ed.i n_spher e-test resumes to computing
the sign of a4 x 4 and a3 x 3 determinant as described in detail below. Tdrentation predicate is
replaced by a three-dimensional orientation test thatraébes the orientation of the triang(@;pkpi)
seen from a poinp, + 1 where is the normal toH. With help of Figure 9.1, it is quite easy to see
that the orientation ofp;pxp1) seen from the positive halfspace determinedtbye.g. from the point
pk + con’) must be the same as the orientatior{fpx p1) seen frompy + .

Figure 9.1: The orientation ¢p;pkp1)-

CGAL provides a very convenient way to replace predicates: tgelae triangulation class is tem-
plated by the traits classes which defines all predicateserefbre, we only need to define our proper
traits class that defines the weighted points t@Bbepoints and that callpower testwhat is, in fact, the
pl ane_cent er ed.i n_spher e-test. The plané{ for which we compute the Voronoi intersection dia-
gram is a member of the traits class. It is defined by a pointlaadormal vectom’ to / and needs to be
known at the creation of an instance of the traits class.

The 2D Voronoi intersection diagram has the same functionala®e&sAL’'s Regul ar nei ghbor s
_2. h class including the incremental construction of the reguilangulation, the dual functionalities and
the computation of'-coordinates. In addition, there exist access functiorabtain the plané{ defining
the intersection.

1D Voronoi intersections

The 1D case is not available in its full functionality. In fact, werapute only the cell’(x) of a pointx.
We assume, furthermore, thias defined byx and by two orthonormal vectors tbt atx, the normal and
the binormal. (This corresponds to our setting.) We comgttgx) N [ as well as the decomposition
of V*(x) Nl into subcellsV (x, p;),i = 1,...,n, (see Section 3). Th&-neighbors ofx are the sample



pointsp; with V'(x, p;) # 0, and thel'-coordinates are defined by the ratio of the length¥ of, p;) and
V*(x). The reasoning that allows to avoid the explicit projectiéthe sample points onto the liriés the
same as in theD case: a vertex = V(p;) NV (pk) N exists in the Voronoi intersection diagram iff the
sphere centered drwith p; andpy on its boundary is empty. The predicate that tests for a paiiftit is
inside the sphere centered bwith p; andpy on its boundary is calletli ne_cent er ed_i n_sphere
test. We say thap; is in conflict with the edgdpy, p)) if the | i ne_cent er ed.i n_spher e test is
positive. The algorithm is based on a second predicat®/| | er _al ong. i ne_3, that compares the
position of the projections of two points on the orienteelinThe incremental algorithm is very simple:

P2

p1//

DL s
T
Viz V14 ) Va3

Figure 9.2: Insertion op4: (a) p4 is in conflict with (p1, p2). p2 is not in conflict withp, andps. (b)
V(x) after the insertion.

we maintain the list of"-neighbors ok ordered by their projections alogsmal | er al ong_l i ne_3).
The extremal pointspin andpmax are the leftmost and the rightmost points of this list. A nemnpp;
is located in ther-neighbor list (i.e. its projection is located on the liheand we test if it is in conflict
with its neighbors in the list. If the test is negatiyg,is not al-neighbor ofx. Otherwisep; is inserted

into theT-neighbor list. (If its projection is left op,,;, onl, we test ifp; is in conflict with (p,;,,, x). It

min
the test is positivep; is inserted into the list, and all points with projectiontlef p; are removed. If the
projection is right ofp,,,., we proceed similarly.) Thei ne_cent er ed_i n_spher e test determines
recursively whether a neighbe of p; is in conflict with p; and the second neighbor on the other side of

p;- If not, p; is removed becausé(x, p;) no longer intersects See also Figure 9.2.

Predicates for Voronoi intersection diagrams

In this section, we give the details of thé ane_cent er ed_i n_spher e predicate. The parameters of
the predicate aré(, determined by a point and the normah’, as well as four pointp, q, r andt. The
predicate decides whethefies inside the sphere centered Hrwith p, q, r on its boundary.

First, all points are translated such thabecomes the originp( := 0, a := a— p,q := q — p,



r:=r — p,t :=t — p). Whethert lies inside the sphere centered Hnwith p, q, andr on its boundary
is determined by the sign of the following expression:

Ty Ty Ty I‘2

@ ¢y ¢ 9
Ng Ny N, 2n-a

ty ty t.

Ng Ty N

/ ez qy {4z (9.1)

Te Ty T2

Thel i ne_cent er ed.i n_spher e predicate with parameteiis determined by a poina and the
normalsn’ andE’, as well as three poings, q, andr is determined by the sign of the following expression:

Ty Ty T r
g ¢ g q2 e 4y 4z
T /| ne ny n. (9.2)
Ng Ny N, 2n-a
by by, b

b, b, b. 2b-a

9.2.2 Surface and curve neighbors

The next level of the software models the point clddidnd provides a way to compute the Voronoi cell
V(x) of a pointx € M as well as itsT-coordinates. Of course, this class could simply be a coetai
for the points ofP, and, given a manifold point with its normal(s), the Voronoi intersection diagram for
x can be computed using all points Bf However, from the preceding chapters, it follows that diely
points of P areT-neighbors ofx, and it is, in fact, too costly to consider all & when computing the
Voronoi cellV(x). So, we do not compute the entire Voronoi intersection diagwith the planel’, but
we insert only the sample points relevant to compgute) and its partition into subcell® (x, p;). There
are different ways to filte® such that we get all’-neighbors ofx but as few points of” as possible.
We chose the following: we know that tf¥e-neighbors ofx are a subset of the Delaunay neighbors of
x in Vor™(P). By maintaining the three-dimensional Delaunay trianitaof 7, we can efficiently
determine the neighbors afand insert only these into the Voronoi intersection diagréns sometimes
necessary to compuigel(P), anyway, if the normal ok needs to be determined by its pole vector.

The classesur f ace_nei ghbor s_3. h andCur ve_nei ghbor s_3. h inherit from the3 D Delau-
nay triangulation. In addition to the insert, remove, andldunctionalities inherited fronbel aunay _
triangul ati on_3. h, they allow to compute th&-neighbors of a surface (curve) point supplied with
its normal(s). The traits class &8ur f ace_nei ghbor s_3. h (Cur ve_nei ghbor s_3. h) has no spe-
cial requirements other than to follow the model for the Daky triangulation traits class. However, if
one wants to compute thé-coordinates for a sample point itself or if the reconsinrcfunctionalities de-
scribed in Section 8.2.2 and 8.2.3 are used, a spE&ciahngul ati on_vert ex_base_w t h_i d_and_
nor mal . h is needed in order to associate each sample point with a hamdaan id. The vertex id is
only necessary for visualization purposes and might betethit



T-coordinate computation

The T-coordinates can be computed for a painte M that is not a sample point or for a sample
point p; € P with respect to the Voronoi diagram @t \ {p;}. In both cases, the normal(s) to the
manifold needs to be supplied. The result of the coordinataputation is an instance of the class
Vor onoi i ntersecti oncoordi nat es. hthat contains a vector of pairs associating a sample point
(via avert ex_handl e) to the corresponding coordinate function value.

In the casex ¢ P, thefi nd_confl i cts function of the Delaunay triangulation allows to simulate
the insertion ot into the Delaunay triangulation. The sample points in conflith x are the Delaunay
neighbors ofx in Vor™(P). Similarly, for p; € P, we insert only the Delaunay neighborsmfinto the
Voronoi intersection diagram with the plafig which is sufficient to compute the céll(p;) N Z; and its
partition into subcelld’ (p;, pj)-

Reconstruction

The reconstruction function allows to dump an unordereagtangles that approximate the surface. It
is the dualg (P) of the Voronoi atlas o defined in Section 7.1.2 or its subsét$P),: < 3. For this, we
need to compute the local umbrella for each sample poiry; € P. The theoretical properties 6f( P)
andgs(P) are described in Section 7.1.2 and 8.2.2. The manifold eidraprocedure is not implemented,
thus, the collection of triangles does not constitute a folhi In the class, there exists also a function
to compute the umbrella of a sample point separately. Thif isterest if a local approximation of the
surface around a specific sample point is needed. The ndidrséescribes a fast method to compute the
local umbrellal; of p; € P.

Local umbrella computation

The following method allows to compute all triangles incitdéo a samplep; in a two-dimensional tri-
angulation — without computing the entire triangulatiohislinspired from [65] who proposes a similar
approach to compute a local Delaunay triangulation.

Let n; = |A;| denote the number of sample points that remain after theirfiffestep as potential
neighbors ofp;. In our caseN; is the set of neighbors gf; in the Delaunay triangulation. To compute
the umbrellal; of p; € P, i.e. the triangles oDel7. (P) that are incident tg;, we propose a local method
with O(n; log n;) running time. This complexity is theoretically the same @sthe computation of the
regular triangulation al;, yet, in practice, it is a lot faster. The output is a sortetldf theZ;-neighbors of
p;- If the filtering is efficient, so that; is small compared to the total number of points, this metsaetiy
efficient. If the surface is well sampled, the number neighlaf p; in the three-dimensional Delaunay
triangulation is constant in average. A local umbrella dantbe computed in constant time.

The major steps are as follows: starting with the edge tolibsest neighbop,,,;, of x in P, the points



pj € N are sorted with respect to the angle formedfy.,, x andp;, the projection ofp; onto 7;.
The sorting take®)(n; log n;) time. The predicate necessary for the sorting consists st three3 D
orientation tests.

Then, the7;-neighbors are computed in the following loop inspired friiva Graham scan algorithm
for convex hull. We iterate over the ordered set of pointsiw@med in an array calleddjacent) and
eliminate points until all triplets of consecutive pointsfill the empty-sphere property (refer to Section
2.2).

[/ compute local umbrella of p:

/I nei ghbors: the array containing the result
//adjacent: the array containing the candi date points,
/1 sorted by angle around p

//the outer | oop:
for(int i=0; i < adjacent.size(); ++i){
//the inner |oop:
while (k > 0 &&
traits. power_test(neighbors[k-1]->point(), neighbors[k]->point(),
p, adjacent[i]->point()) == ON_POCSITIVE_SI DE){
__k;
nei ghbors. pop_back();
}

k++;

nei ghbors. push_back(adj acent[i]);

The entire loop takes linear time which we can see by theviatig argument: each time the test in the
inner loop evaluates true, a point is erased frlomthus, there is at most a linear number of negative tests.
For each sample point passed in the outer loop, there is dtonegositive evaluation of the test.

Normal estimation

If the normal is not supplied by the user, it is estimated l®/pble vector which is the vector from the
data point to its furthest Voronoi vertex. The functiset _pol es() computes the pole vector for all
sample points and updates the appropriate field in the véder instance. If this functionality is used, it
is recommended to use the i angul ati on.cel | _lbase_wi t h_l azy_i nf 0. h such that the dual of



each cell can be kept in memory and repeated computatiohge gbime Voronoi vertex are avoided. In the
case of curves, we compute a second pole vector as desamilSetiion 5.3 and in [46].

An alternative method is implemented that estimates theatsrfrom the nearest neighbors of a point.
The theoretical justification is described in Section 5.8r €urves, this method works very well. The
normals are orthogonal to the line segment that connectsatfmple poinip; to its nearest neighbor. For
surfaces, two nearest neighbors are chosen such thatdahglériofp; and its two neighbors has a large
angle atp;. This method appears to be very unstable in practice.

9.2.3 Function interpolation on a surface

The application that we developed basedSur f ace nei ghbor s_3 is function interpolation on a
surface. To each sample point, a function value of any deitader-defined type is given. The value type is
specified by a template parameter of the classer pol at i on. In addition, the gradient value, a vector
containing the directional derivatives of the functionte sample point i, y, andz direction might be
given for each sample point. The four different interpadaftt, 7', f2 andZ! described in Chapter 4 are
implemented. The result of the interpolation is of the wdefined value type. The interpolation functions
are called with a surface pointe S ¢ P together with the surface normaj as parameter. For testing, it
is possible to pass the interpolated function to the dlagser pol at i on (via a functor) and to compute
some error statistics concerning the mean and the maximunletween the interpolated function value
and the real one.

Visualization is possible by moving each surface point ®yititerpolated function value in direction
of the normal at the point. The reconstruction functionssof f ace nei ghbor s_3 allow to visual-
ize the result in order to evaluate the smoothness and essctf the method. Another possibility for
visualization is to color the points according to the fuactivalue. This has not been implemented.

Interpolation over parametric surfaces

The knowledge of the surface, e.g. in form of a parametéozatllows to interpolate the function on a
grid of surface points. The sample points may either beidigid at random or on a grid. We implemented
an extension to thent er pol at i on class which takes, in addition to sample points and funataduoes,
the parameter function in form of a function. It evaluates thterpolant over a grid. The size of the
grid is specified by the number of grid points inand in v direction. In this setting, the surface is
easily approximated by a quadrilateral grid over the grith{go Visualization is done as before by the
deformation approach.






Conclusion <

For a point cloud issued from a manifold, this thesis presantefficient and practical approach to ap-
proximate the so-called manifold restricted Voronoi déagr This is the intersection of thiedimensional
Voronoi diagram of a point seé? C M with the manifold M. It represents an important way to define
a Voronoi diagram on a manifold. However, without knowing thanifold, this diagram cannot be com-
puted and even in the contrary case, itis very costly to caen®y linearly approximating the manifold in
each Voronoi cell with the tangent spacel¢ at the generator of the cell, we present an approximation of
this Voronoi diagram that is provably close to the exact tsofuif the sample points are sufficiently dense.
This Voronoi diagram defines in a natural way a neighborh@dation between points that are close on
the manifold as well as a local coordinate system. We destriét first, the local neighborhood and the
coordinate system for one point that lies on the manifolderftthe Voronoi atlas is considered which
is the collection of local neighborhoods for each sampl@pdi is shown to be useful in the context of
manifold reconstruction and re-meshing.

Furthermore, this thesis develops the basic propertiesanfral neighbor coordinates in power dia-
grams. Even if this concept was defined by Aurenhammer in fh2]properties were not yet elaborated
in detail. A survey over interpolation methods based onmhteighbor coordinates is as well presented.
This survey completes some missing details of the originpkps and presents a method by Clarkson [35]
that has been, so far, unpublished.

A few open questions remain to be solved. First, we could abskiow wether Clarkson’s coordinates
areC'' continuous or not and second, question 7.12 is not yet proven

There are several important directions for future reseatohill present some of the ideas in more
detail.

Manifolds embedded in high dimensions

It seems straightforward to apply the presented conceppwittt clouds issued from low dimensional
manifolds that are embedded in higher dimensional Eualidgeace. This topic attracts the attention of
several research groups as well in computational georeetryGiesen and Wagner [63], as in other fields
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such as cognitive science and image processing, see fanaesf88], [98] and [78].

In the theoretical part of this thesis, the generalizatias already been taken into account. However,
further research is necessary to elaborate practicali@otutThe approximation of tangent spaces seems
possible based on the work of Har-Peled and Varadarajan Té@&ly propose a method to compute a linear
subspace of a fixed dimension that best fits a given point se¢ cbmplexity is linear with respect to
the dimension of the embedding space. If the dimension ofrtheifold is small £ < 3), we presented
in this thesis an efficient algorithm to compute, locallye toronoi cell restricted to the tangent space
7; (Chapter 9). For higher dimensions, similar local methddsu&l be possible but this question needs
further investigation.

Estimation of geodesic quantities and enlargement of the Vonoi atlas on generalk-manifolds

If the sampling condition holds, it should be possible tormbthe maximum distance between the length
of a geodesic on the manifold and the corresponding shqotebss in the Voronoi atlas. In the same
context, one can determine the maximum error when appraxignthe area of ap-sampled manifold by
the area of the Voronoi cells in the atlas. Both achievemsimisild enable the theoretical analysis of the
approximation of the centroidal Voronoi diagram preserie8ection 8.3 because they allow to bound the
distance between a centroid in the surface restricted \dotiagram and its corresponding centroid in the
Voronoi atlas.

In addition, it would be nice to define a natural enlargeméith@ Voronoi atlas in order to connect the
Voronoi cells. For hypersurfaces, this is achieved in ®acti.2. Some ideas for general manifolds came
up but they remain to be formalized in detail.

Noisy sampling

Another important enlargement is the treatment of noisypdarsets. In practice, data is always noisy — at
least due to the fact that it is discretized. It seems quissipte that the methods presented in this thesis
adapt to noisy samples. In [80], Mitra and Nguyen descrilve tiarmals can be estimated from noisy data.
Also, it should be possible to detect outliers in a pre-trestt of the data. Of course, the Voronoi cells do
not have the same properties for noisy data. In particules,no longer guaranteed that each Voronoi cell
is long and skinny which is a major argument of most Vororesda surface reconstruction algorithms.
However, it should nevertheless be possible to show thatesteiction of a Voronoi cell to the tangent
space of the manifold at the generator has a small diametso, fere is a subset of points for which
the Voronoi cell is long and skinny — if not in every directiohthe normal space, so at least in a subset
of normal directions. A formalization of the properties slibbe worthwhile. The use of higher-order
Voronoi diagrams in the context of noise also deservesduitivestigation.



Conclusion B

Nous avons introduit dans cette these une approche peatiggs diagrammes de Voronoi restreints a une
variété M qui consiste, a partir d’'un ensemble de poiRtéchantillonnantM, a approximer la restriction
d’'une cellule de Voronoi a la variété par sa restrictidiespace tangent a la variété au point définissant la
cellule. Une telle cellule de Voronoi restreinte a I'espgangent permets de définir une relation de voisi-
nage entre le point de la variété définissant la cellulespoints de I'échantillon qui posséde une bonne
propriété de localité ainsi qu'un systeme de coor@@msnassociés a cette notion de voisinage dont nous
avons demontré les propriétés fondamentales: |écdlitsupport, continuité et differentiabilité des fenc
tions de coordonnées, etc. Ensuite, nous avons prélsention d’'atlas de Voronoi et montré son utilité
dans le contexte de reconstruction de variété et du ragail Leffectivité de 'ensemble des méthodes
élaborées nous a permis de proposer des solutions effipace les problemes d'interpolation de fonc-
tions, de reconstruction de surfaces et de remaillage.

Deux questions ouvertes restent pourtant a aborder: Eiqneuverte 7.12 et la preuve de la differen-
tiabilité ou non-differentiabilité des fonctions de cdonnées de Clarkson définit dans le paragraphe 3.5.

Nous présentons dans la suite quelques directions derobehantéressantes qui se sont présentées
durant nos travaux.

Reconstruction de varetés plonges dans des grandes dimensions

Le theme de la reconstruction d’'une variété (de petiteedision) plongée dans un espace euclidien de
grande dimension attire I'attention des chercheurs auesi dans le domaine de la géométrie algorith-
migue (cf. Giesen et Wagner [63]), que dans celui de la seieognitive et du traitement d'images (voir
[88], [98] et [78]).

La plupart des résultats théoriques de cette these sdapéndants de la dimension de la variété et
de I'espace ambiant et s'applique donc directement a celggre. Des recherches restent cependant
nécessaires afin d'obtenir des solutions pratiques. ldedRet Varadarajan [68] ont proposé une méthode
permettant le calcul d’un sous-espace linéaire de dimankée qui s’adapte le mieux a un ensemble
de points donné et qui semble rendre possible I'approximat'espaces tangents. La complexité de leur
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méthode est linéaire en la dimension de I'espace dansglliémuariété est plongée. Cette these propose un
algorithme efficace pour le calcul local de cellules de Voiaestreintes a I'espace tangéhtlorsque la
dimension de la variété est petite € 3) (cf. chapitre 9), il serait intéressant d’étudier langéalisation de
cette algorithme a de plus grandes dimensions.

Estimation de quantités geodeésiques et gréralisation de I'atlas de Vorond a desk-variétées

Si la condition d’échantillonnage est satisfaite, le ahlt’'une borne supérieure sur la distance maxi-
male entre une géodésique sur la variété et le plus abharnin correspondant dans I'atlas de Voronoi
ainsi que le calucl majoration de I'erreur d’approximatioommise en approchant I'aire d'une variété
e-echantillonnée par l'aire des cellules de I'atlas deovimi semble possible. Ce type de résultat permet-
trait I'obtention de garanties théoriques sur la convecgede I'approximation du diagramme de Voronoi
centroidal présentée a la section 8.3.

Il serait de plus intéressant de définir un élargisserdentatlas de Voronoi qui connecterait les cel-
lules de Voronoi. Cette thése propose une solution powasedes hypersurfaces (cf. section 7.2), la
généralisation au cas des variétés générales sembitageable et reste a traiter.

Données bruites

En pratique les points de données sont toujours bruitésitie leur discrétisation, le traitement de ce type
de données s’avere donc &étre particulierement cruced méthodes présentées dans cette these semblent
pouvoir s’adapter a ce probleme. L'estimation des noesalpartir d'un échantillon bruité est possible par
des méthodes telles que celle proposée par Mitra et Ng@@@nDe plus, une grande parties dasliers
peuvent étre détecter lors d’'un phase de pré-traiterdestpoints de I'eéchantillon. Malheureusement,
certaines propriétés du diagramme de Voronoi ne sosty#@tifiees dans le cas de données bruitées: on ne
garantit désormais plus, par exemple, que chaque cebBulerggue et fine, propriété utilisée par la plupart
des algorithmes de reconstruction basée sur le diagrarenverdnoi. Il semble cependant envisageable
de montrer que la restriction d’'une cellule de Voronoiggpace tangent de la variété au point définissant
la cellule a alors un petit diametre et qu’il existe un seasemble de points de données pour lequel
les cellules de Voronoi sont longues et fines au moins powous-ensemble des directions de I'espace
normal. Une formalisation de ces propriétés serait ddjimtérét. L'utilisation de diagrammes de Voronoi
d’'ordre supérieur semble aussi constituer une piste pteos® pour ce type de probleme.
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