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Département d’Informatique

THÈSE
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A coordinate system associated to a point cloud
issued from a manifold: definition, properties and

applications
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Résuḿe

Dans de nombreux domaines d’applications, une variété plongée dans l’espace euclidien est souvent

représentée par un échantillon de points. Nous définissons dans cette thèse un système de coordonnées as-

socié à un tel échantillon sur la variété qui généralise les coordonnées naturelles définies par Sibson. Nous

exhibons ses propriétés mathématiques fondamentales ainsi que son application à l’interpolation d’une

fonction définie sur la variété. Nous introduisons la notion d’atlas de Voronoı̈, défini comme un ensemble

de cellules approximant le diagramme de Voronoı̈ restreintà la variété et montrons son application à la

reconstruction de surface et au remaillage. Enfin, nous étendons les propriétés des coordonnées naturelles

aux diagrammes de puissance et proposons une synthèse des méthodes d’interpolation par coordonnées

naturelles. Cette dernière détaille des preuves omises dans les articles originaux.

Mots clés:nuage de points, surface échantillonnée, diagramme de Voronoı̈, coordonnées naturelles, inter-

polation sur une surface, reconstruction 3D, remaillage, modélisation géométrique, CAO.

Abstract

Surfaces and manifolds represented by a set of discrete points are encountered in various application areas.

In this thesis, we define a coordinate system on the manifold associated to such a point set which is a

generalization of Sibson’s natural neighbor coordinates.We show its fundamental mathematical properties

as well as its application to scattered data interpolation on manifolds. Furthermore, we introduce the notion

of Voronoi atlas defined as a collection of Voronoi cells thatapproximate the Voronoi diagram restricted to

the manifold. We describe its application in surface reconstruction and re-meshing. In addition, we show

the basic properties of natural neighbor coordinates in power diagrams and we survey the interpolation

methods based on natural neighbor coordinates. This surveydetails some proofs that are omitted in the

original papers.

Keywords: point set surface, Voronoi diagram, natural neighbor coordinates, scattered data interpolation,

surface on surface problem, 3D reconstruction, re-meshing, geometric modeling, CAD
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Chapter 1

Introduction

Dans ce chapitre, nous décrivons le problème abordé danscette thèse: la définition d’un système de

coordonnées et d’un voisinage local associé á un nuage depoints répartis sur une variété lisse. Nous

présentons ensuite quelques applications de ce nouveau concept. L’ensemble des chapitres ainsi que les

contributions nouvelles de cette thèse sont résumés dans la suite.

Définition du probl ème

Le diagramme de Voronoı̈ qui constitue l’objet d’étude principal de cette thèse est une structure de données

fondamentale de la géométrie algorithmique.Étant donné un ensemble de points discrets dans l’espace

Euclidien, lediagramme de Voronoı̈ est la partition de l’espace en cellules qui contiennent tous les points

ayant le même plus proche voisin parmi les points de données.1 Cette structure particulière que Franz

Aurenhammer appelleThe Universal Spatial Data Structure2 a attiré beaucoup d’attention dans le dernier

siècle. Nous renvoyons le lecteur á l’ouvrage [14] du même auteur pour une mise en perspective historique

des divers aspects des diagrammes de Voronoı̈. Pour celui-ci, l’importance du diagramme de Voronoı̈ est

liée á trois facteurs principaux: son occurrence fréquente dans les processus naturels comme par exem-

ple en biologie ou en cristallographie, ses propriétés mathématiques riches et intéressantes et enfin, ses

applications informatiques nombreuses.

La triangulation de Delaunayest une structure de données toute aussi fameuse qui est tr`es étroitement

liée au diagramme de Voronoı̈. Plus particulièrement, latriangulation de Delaunay d’un ensemble de points

donnés se définie comme le dual du diagramme de Voronoı̈ dans le sens suivant: deux point de données

sont liés par une arête dans la triangulation de Delaunay si et seulement si leur cellules de Voronoı̈ partagent

une frontière commune. Un triangle existe dans la triangulation si trois cellules de Voronoı̈ partagent une

1Les points de données sont parfois appelés lessommets.
2Une citation après la page internet de C. Gold sur les diagrammes de Voronoı̈ http://www.voronoi.com/.
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2 Chapter 1. Introduction

frontière commune etc. Les propriétés géométriques et combinatoires de ces structures, diagramme de

Voronoı̈ et triangulation de Delaunay, sont complémentaires et le calcul pratique de chacune de celles-ci

se déduit facilement l’un de l’autre.

L’intérêt porté par la géométrie algorithmique pour le diagramme de Voronoı̈ depuis l’émergence de

la discipline dans les années soixante-dix se traduit aujourd’hui par de nombreux résultats pratiques et

théoriques. Parmi les questions théoriques examinées on peut citer, par exemple, l’étude de la complexité

combinatoire des diagrammes de Voronoı̈, la découverte des relations entre diagrammes de Voronoı̈ et

enveloppes convexes, ou encore la généralisation des diagrammes de Voronoı̈ á d’autres métriques que la

métrique Euclidienne. D’un point de vue beaucoup plus pratique, ces travaux ont permis la conception

d’algorithmes très efficaces pour le calcul de diagrammes de Voronoı̈ et de triangulations de Delaunay et

l’on dispose aujourd’hui d’implantations robustes trouvant de nombreux champs d’applications dans des

domaines divers.

Diagrammes de Voronöı sur une variété

Dans ce manuscrit de thèse, nous considérons le cas particulier où l’ensemble des points de données est

issu d’une variété de dimensionk plongée dans l’espace Euclidien. Ce cas est extrêmement intéressant en

pratique où une variété est souvent représentée par unensemble de points discrets, comme c’est le cas, par

exemple, pour de nombreuses d’applications en graphisme, en conception assisté par ordinateur (CAO) et

ingénierie inverse, en traitement d’image ou calcul scientifique.

Pour ces applications, la variété sous-jacente n’est pasforcément connue. Lorsque celle-ci est connue,

le diagramme de Voronoı̈ peut être définit par rapport á ladistance géodésique sur la variété, on parle alors

de diagramme de Voronoı̈ géod́esique, ou par rapport à la distance Euclidienne dans l’espace ambiant.

Les diagrammes de Voronoı̈ géodésiques sur des surfaces paramétrées sont spécifiés dans [73] par Kunze,

Wolter et Rausch. Leibon et Letscher [74] formulent des conditions d’échantillonnage pour les variétés

Riemanniennes garantissant l’existence d’une unique triangulation de Delaunay et d’un diagramme de

Voronoı̈ dual possédant les mêmes propriétés que celles d’un diagramme de Voronoı̈ dans l’espace Eu-

clidien. Cependant, bien qu’apparaissant comme plus adéquate que la distance euclidienne de par son

caractère intrinsèque à la variété, l’utilisation dela distance géodésique rend le calcul pratique du dia-

gramme de Voronoı̈ très difficile. Pour illustrer ces difficultés, prenons pour exemple un des éléments de

base du diagramme de Voronoı̈, lebissecteurde deux points de données, c. à. d. l’ensemble des points sur

la variété qui sont équidistants aux deux points de donn´ees. Alors que celui-ci est défini par un hyperplan

en métrique Euclidienne, il peut être courbé et déconnecté pour la métrique géodésique.

Le diagramme de Voronoı̈ restreintspécifié par Edelsbrunner et Shah [54] est défini quant à lui comme

la restriction du diagramme de Voronoı̈ Euclidien à la variété, une cellule du diagramme de Voronoı̈ re-

streint correspondant à l’intersection de la cellule de Voronoı̈ avec la variété. Bien que dépendant du

plongement de la variété dans l’espaceRd , il est possible de démontrer que la triangulation de Delaunay
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duale au diagramme ainsi calculé est homéomorphe à la variété si certains conditions d’échantillonnage

(qui peuvent être vérifiés) sont satisfaites. Comme pourle cas du diagramme de Voronoı̈ géodésique, le

principal inconvénient du diagramme de Voronoı̈ restreint est que celui-ci est impossible à calculer lorsque

la variété sous-jacente est connue uniquement sur les points de données et que son calcul reste excessive-

ment coteux lorsque la variété sous-jacente est connue.

Nous proposons dans cette thèse une approche très pratique pour approximer une cellule du diagramme

de Voronoı̈ dans le cas où seulement un nuage de points répartis sur la variété est donné. L’idée de base

consiste à approximer localement la variété autour d’unpoint de données par son espace tangent en ce point

et à calculer le diagramme restreint à cette approximation locale. Il existe dans la littérature plusieurs

méthodes pour estimer, à partir d’un nuage de points issu d’une variété, l’espace tangent en un point

donné. Le chapitre 6 montre que l’espace tangent et la vari´eté sont très proches à l’intérieur d’une cellule

du diagramme Euclidien si la variété est bien échantillonnée relativement à la courbure et à l’épaisseur

locale de la variété.

Le diagramme ainsi calculé correspond à la restriction dudiagramme de Voronoı̈ définit dansRd à

un sous-espace linéaire de dimensionk et est en fait un diagramme de puissancek-dimensionnel. Ses

propriétés sont par conséquent bien connues et le diagramme lui-même est facilement calculable avec les

méthodes existantes.

On appelleatlas de Voronöı la collection des cellules du diagramme de Voronoı̈ restreintes à l’espace

tangent de chaque sommet (Chapitre 7). Les principales propriétés d’un tel atlas résident dans le fait

que chacune de ses cellules est homéomorphe à la cellule correspondante sur la variété et que celui-ci

approxime linéairement et de façon optimale la variétésous-jacente (chacun des points de la variété étant

approximé par l’espace tangent de son plus proche sommet).Les bords des cellules de l’atlas de Voronoı̈

ne sont toutefois pas en général communs avec d’autres cellules.

La triangulation duale à l’atlas de Voronoı̈ est un graphe dans lequel deux sommets sont reliés si

l’espace tangent à un des deux points intersecte la facettede Voronoı̈ commune aux deux points. Bien

que la triangulation duale à l’atlas de Voronoı̈ n’est pas une triangulation globale des points de données (la

relation de voisinage n’est pas nécessairement symétrique), celle-ci permet, néanmoins, d’obtenir autour

de chaque sommet une petite triangulation qui est homéomorphe à un voisinage du sommet sur la variété

(pourvue qu’une certaine condition d’échantillonnage soit respectée). Le principal avantage d’une telle tri-

angulation est que, pour un sommet donné, l’ensemble des sommets adjacents dans la triangulation définit

un voisinage local autour du point.

Interpolation naturelle

L’interpolation par coordonnées naturelles, introduiteen 1980 par Sibson [90][91], est une méthode d’inter-

polation de données discrètes multivariées qui constitue l’une des applications pratiques les plus impor-

tantes des diagrammes de Voronoı̈. Les coordonnées naturelles constituent un système de coordonnées
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barycentriques défini à partir du diagramme de Voronoı̈.Étant donné un point de requête, on associe un

poids à chacun de ses sommets voisins de manière à ce que lepoint de requête soit leur barycentre pondéré.

Les méthodes d’interpolation basées sur les coordonnées naturelles sont particulièrement intéressantes

du fait qu’elles s’adaptent facilement à des données non uniformes et anisotropes, ce qui les rend parti-

culièrement adaptées aux problèmes issus de la modélisation géophysique et des systèmes d’information

géographique (SIG). De plus, ces méthodes d’interpolation ne dépendent pas du maillage utilisé et sont

par conséquent indépendant d’une partition artificielleet a priori de l’espace. Une synthèse des différentes

méthodes d’interpolation basées sur les coordonnées naturelles est donnée dans le Chapitre 4.

Il est possible de généraliser la définition des coordonnées naturelles aux diagrammes de puissance

et, par conséquent, aux diagrammes de Voronoı̈ restreintsà un espace tangent. Défini sur une variété,

un tel système de coordonnées est très utile pour l’interpolation de données multivariées sur une surface.

On note cependant que cette solution est seulement approximative, le système de coordonnées n’étant

barycentrique que par rapport aux points de données projetés sur l’espace tangent. Quelques propriétés

importantes de ce système de coordonnées sont développ´ees dans cette thèse. On montre notamment que

ce système de coordonnée est local sur la variété, qu’ilestC1 continu presque partout sur celle-ci et on

détermine son gradient.

Dans le cas où la variété n’est pas connue, nous définissons un système de coordonnées basé sur l’atlas

de Voronoı̈. Dans ce nouveau système, les coordonnées ne sont plus définies dans l’espace tangent du

point requête mais par rapport aux espaces tangents des sommets voisins au point requête. Bien que ne

disposant pas d’autant de bonnes propriétés que le système de coordonnées précédent, celui-ci a l’avantage

d’être applicable directement à partir d’un échantillon de points extrait de la variété.

Applications

Dans ce contexte, nous étudions trois applications pratiques de l’atlas de Voronoı̈ et du diagramme de

Voronoı̈ restreint à un espace tangent. La première est l’interpolation de données éparpillées sur une

surface: étant donné un ensemble de valeurs discrètes d’une fonction définie sur une surface, on souhaite

interpoler cette fonction sur la surface. Nous montrons dans cette thèse que les méthodes d’interpolation

par coordonnées naturelles se généralisent directement aux diagrammes de Voronoı̈ restreints aux espaces

tangents et constituent une solution adéquate pour l’interpolation sur des surfaces.

La seconde application aborde un problème ayant attiré beaucoup d’attention ces vingt dernières années

à savoir la reconstruction de surface ou de courbe à partird’un nuage de points. Nous proposons ici une

solution qui est très semblable aux méthodes de filtrages par Voronoı̈ où la variété est approximée par un

sous-ensemble des faces de la triangulation de Delaunay.

Finalement, j’ai développé un prototype pour pour le calcul d’une approximation des diagrammes de

Voronoı̈ centroı̈dal sur des surfaces. Un diagramme de Voronoı̈ centroı̈dal est un diagramme de Voronoı̈

dans lequel chaque sommet coı̈ncide avec le centre de masse de la cellule qu’il définit. Pour le cas d’une
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surface, desdiagrammes de Voronoı̈ centröıdales contraintesont été définit par Du, Gunzburger et Ju [50].

La méthode la plus efficace pour calculer ce type de diagramme est basée sur le calcul du diagramme de

Voronoı̈ restreint à une surface. Comme nous l’avons vu pr´ecédemment, le calcul d’un diagramme de

Voronoı̈ restreint à une surface est cependant très coteux et seul le calcul de tel diagramme sur des cas

particuliers, comme par exemple la sphère, est envisageable. La nouvelle idée présentée dans la Section

8.3 consiste à calculer le diagramme de Voronoı̈ centroı̈dal à partir de l’atlas de Voronoı̈, ce qui revient à

approximer la surface à l’intérieur de chaque cellule parle plan tangent à la surface au sommet qui génère

la cellule. Le diagramme de Voronoı̈ est alors calculé à partir du diagramme approximé d’une manière

itérative. Nous présentons des résultats expérimentaux très convainquants, notamment en ce qui concerne

la régularité de la triangulation duale par exemple.

Résuḿe des chapitres

Ce manuscrit est organisé de la manière suivante.

1. Après l’introduction, le deuxième chapitre présenteles concepts de diagrammes de Voronoı̈ et de

diagrammes de puissance. Leur interprétation dans l’espace des sphères est également rappelée.

Enfin, il est montré que l’intersection d’un diagramme de puissance avec un sous-espace affine est

elle-même un diagramme de puissance. Cet observation est le coeur de notre travail sur les systèmes

de coordonnées sur des variétés.

2. Le troisième chapitre généralise le concept de coordonnées naturelles aux diagrammes de puis-

sances. Après un état de l’art sur les coordonnées naturelles dans des diagrammes de Voronoı̈ et la

définition des fonctions de coordonnées généralisées, les propriétés de continuité et le gradient de

la fonction de coordonnée sont montrés. De plus, un nouveau système de coordonnées proposé par

Clarkson dans [35] est présenté. Ce dernier possède quelques propriétés supplémentaires par rapport

à celles des coordonnées naturelles sur lequel il est bas´e.

3. Le quatrième chapitre contient une synthèse des différentes méthodes d’interpolation basées sur

les coordonnées naturelles. Cet état de l’art contient, en plus, quelques améliorations de méthodes

existantes et il complète certaines preuves qui n’ont pas ´eté fournies dans les articles originaux.

4. Le cinqième chapitre introduit des notions topologiques et géométriques concernant les variétés

échantillonnées. Nous définissons ensuite le diagrammede Voronoı̈ restreint a une variété et nous

spécifions une condition d’échantillonnage supposée être vérifiée dans la suite. La dernière partie

rappelle plusieurs résultats relatifs aux propriétés locales d’une variété échantillonnée et à l’estima-

tion de certains quantités de la variété, comme par exemple les normales, à partir des points d’échanti-

llonnage et en supposant la condition d’échantillonnage vérifiée.
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5. Le coeur de ce travail est présenté dans le sixième et leseptième chapitre.́Etant donné un nuage de

points issu d’une variété, le sixième chapitre contientla définition d’un voisinage et d’un système de

coordonnées pour chaque point de la variété. Il est montré sous quelles conditions ces notions sont

locales sur la variété. En outre, les propriétés de continuité des fonctions de coordonnées et leurs

gradients (pour des surface uniquement) sont examinés.

6. Le septième chapitre définit l’atlas de Voronoı̈ d’un nuage de points sur une variété. Quelques

propriétés important de l’atlas de Voronoı̈ et de son dualsont prouvées. Pour des variétés de dimen-

siond � 1, nous proposons une définition alternative pouvant être généralisée afin de connecter les

différentes cellules de Voronoı̈. Enfin, un système de coordonnées est défini par rapport à l’atlas de

Voronoı̈ et quelques unes de ses propriétés sont démontrées.

7. Quelques applications de ces concepts sont présentés dans le Chapitre 8. Les trois applications

traitées en détails sont l’interpolation de données répartie sur une variété, la reconstruction de sur-

face et de courbes ainsi qu’une technique de remaillage par diagramme de Voronoı̈ centroı̈dal. Ce

chapitre donne enfin quelques résultats expérimentaux.

8. Finalement, le dernier chapitre abordent les questions relatives à l’implantation pratique de ces

travaux.

Contributions

À partir d’un nuage de points répartis sur une variété, lanouvelle approche proposée dans cette thèse

consiste à approximer linéairement une cellule du diagramme de Voronoı̈ restreint à la variété afin d’en

déduire un voisinage et un système de coordonnées sur la variété associé au nuage de points (Chapitre

6). Enfin, nous introduisons la notion d’atlas de Voronöı (Chapitre 7), et détaillons trois applications

potentielles.

D’autres contributions se trouvent dans la preuve des propriétés des coordonnées naturelles généralisées

au cas des diagrammes de puissance et dans l’amélioration des méthodes d’interpolation par coordonnées

naturelles.



Introduction

This chapter motivates the problems addressed in this thesis: the definition of a coordinate system and

a local neighborhood associated with a set of points scattered on a smooth manifold. We present some

applications of this new concept and discuss its further impact. Then, an overview of the organization of

this thesis is given and the contributions of this thesis aresummarized.

Problem definition

The Voronoi diagram is one of the most fundamental data structures in computational geometry. It is also

the main object of attention of this thesis. Given a set of discrete data points in Euclidean space, theVoronoi

diagramis a partition of the space in cells that contain all points having the same nearest neighbor among

the data points. This concept has attracted a lot of attention in the last century. To underlay the generality

of Voronoi diagrams, we cite Franz Aurenhammer who called itThe Universal Spatial Data Structure.3 In

[14], Aurenhammer overviews different aspects of Voronoi diagrams including the historical perspective.

He gives three main reasons for the importance of Voronoi diagrams, namely, its frequent occurrence in

natural processes for example in crystallography, its interesting mathematical properties and, at last, the

numerous applications that are based on Voronoi diagrams.

Another prominent data-structure that is closely related to Voronoi diagrams is theDelaunay triangu-

lation. The Delaunay triangulation is a graph on the data points that is dual to the Voronoi diagram in

the following sense: Two data points are connected by an edgein the Delaunay triangulation if and only

if their Voronoi cells are adjacent, i.e. they share a commonboundary. A triangle exists in the Delaunay

triangulation if three Voronoi cells are adjacent one to another and so on. The geometric and combinatorial

properties of both structures, Voronoi diagrams and Delaunay triangulations, are complementary and most

properties translate easily from one structure to the other. By this, the study of both concepts is related

in theoretical aspects as well as for practical issues concerning, for example, the computation of Voronoi

diagrams and Delaunay triangulations.

Detached from a particular application, the computationalgeometry community started to investigate

theoretical and practical viewpoints of Voronoi diagrams since its emergence in the seventies. In the

3A citation after C. Gold’s Voronoi website http://www.voronoi.com/.

7
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eighties, it has become a major interest of this field. The theoretical questions include the generalization

of Voronoi diagrams to different kinds of metrics, the studyof the combinatorial complexity of Voronoi

diagrams, the discovery of a relation between Voronoi diagrams and convex hulls, etc. On the other hand,

practical algorithms have been developed and implemented to compute Voronoi diagrams and Delaunay

triangulations. This permitted the development of variousapplications in all kinds of areas.

Voronoi diagrams on manifolds

In this thesis, we are interested in the particular case where the data points are issued from ak-dimensional

manifold embedded in Euclidean space. This case is particularly important in practice where surfaces and

generalk-manifolds represented by a set of unordered sample points are encountered in many application

areas such as computer graphics, computer aided design (CAD) and reverse engineering, image processing,

and scientific computation. In some cases, the underlying manifold might be known, in others not.

If it is known, one can either resort to thegeodesic Voronoi diagramthat is defined by the metric on the

manifold or to the Voronoi diagram that is determined by the Euclidean metric in the embedding space.

Geodesic Voronoi diagrams on parametric surfaces are specified by Kunze, Wolter and Rausch in [73].

In [74], Leibon and Letscher formulate a sampling conditionfor Riemann manifolds that guarantees the

existence of a unique Delaunay triangulation and a dual Voronoi diagram with the same properties as in

Euclidean space. While the geodesic distance might be more adequate as it is intrinsic to the manifold,

it has the drawback that it is a lot more difficult to compute. As an example consider thebisectorof two

points, i.e. the set of points that are at equal distance to the points. It is a basic element in the computation

of Voronoi diagrams. While in Euclidean metric, the bisector is a hyperplane, using geodesic distance, it

is curved and might not even be connected.

Using Euclidean distance, Edelsbrunner and Shah [54] definea restricted Voronoi diagramas the re-

striction of the Euclidean Voronoi diagram to the manifold.A cell of the restricted Voronoi diagram is

then the intersection of the cell with the manifold. Even though this Voronoi diagram depends on the par-

ticular embedding of the manifold inRd , one can, for example, show that the dual Delaunay triangulation

is homeomorphic to the surface if some (checkable) conditions are satisfied. However, even this diagram

might be too costly to compute.

If the underlying manifold is known only by the data points, it is, actually, impossible to compute the

restricted Voronoi diagram. For this reason, this thesis proposes a very practical approach to approximate

a cell of the restricted Voronoi diagram – even if only a pointcloud issued from the manifold is known.

The main idea consists of approximating the manifold locally, inside a Voronoi cell, by the tangent space

to the manifold at the data point that generates the cell. If the manifold is well sampled with respect to the

curvature and to the local thickness of the manifold, the tangent space and the manifold are close inside

the cell. This is explained in detail in Chapter 6. We need to mention that there exist several methods in

the literature to estimate the tangent spaces from a point cloud.
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Furthermore, the restriction of a Voronoi diagram defined inRd to a k-dimensional linear subspace

is, in fact, ak-dimensional power diagram, i.e. a Voronoi diagram for weighted points. Consequently,

it satisfies all properties known for power diagrams, and existing algorithms can be easily adopted. The

complexity of a cell of the diagram (concerning the number offaces) depends on the dimensionk of the

manifold and not on the dimension of the embedding space. TheVoronoi diagram restricted to the tangent

space of the manifold at a pointx is called theTx-restricted Voronoi diagram.

The collection of Voronoi cells restricted to the tangent space of each sample point is the so-calledT -

restricted Voronoi atlas defined in Chapter 7. By the Voronoiatlas, the manifold is approximated linearly

in a best possible way with respect to the given data: a point on the manifold is approximated by the

tangent space of the closest data point. If the sampling is sufficiently dense, each cell of the Voronoi atlas

is homeomorphic to the corresponding cell on the manifold. However, the cells of the Voronoi atlas have,

in general, no common boundary.

The dual triangulation of the Voronoi atlas is the graph in which two data points are connected if one

of their tangent spaces intersects the dual Voronoi face. This does not yield a global triangulation of the

data points because the neighborhood relation is not necessarily symmetric. Nevertheless, it allows to

obtain a small triangulation around each data point, which is homeomorphic to a small neighborhood of

that point on the manifold – provided that some sampling condition is satisfied. For each sample point, the

set of adjacent sample points in the triangulation defines a local neighborhood around the point. This is

interesting in a variety of applications.

Natural neighbor interpolation

One important application of Voronoi diagrams isnatural neighbor interpolation. This is a multi-variate

scattered data interpolation method that has been introduced by Sibson in 1980 [90][91]. From the Voronoi

diagram, Sibson defines a barycentric coordinate system – the so-called natural neighbor coordinates.

Given a query point, barycentric coordinates associate a weight to each of the neighboring data points

such that the query point is their weighted barycenter. Sibson shows that the natural neighbor coordinates

fulfill this definition.

Interpolation methods based on natural neighbor coordinates are particularly interesting because they

adapt easily to non-uniform and highly anisotropic data. For this reason, they have been widely used in

geophysical modeling and GIS applications. Other important properties are the locally bounded support

of the coordinate functions and the meshless character of the methods. No artifacts are introduced due

to a priori and often arbitrary subdivision of the space. Apart from Sibson’s methods, other interpolation

methods exist that are based on natural neighbor coordinates. An overview is given in this thesis.

The definition of natural neighbor coordinates can be generalized to power diagrams, and, consequently,

toTx-restricted Voronoi diagrams. The resulting coordinate system – defined on the manifold – responds to

the demand of a definition of barycentric coordinates on general manifolds, notably, for scattered data in-
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terpolation on surfaces. Note that the solution is only approximate, so the coordinate system is barycentric

only with respect to each tangent plane. Some important properties of the resultingTx-coordinate system

are developed in this thesis. Notably, it is shown that it is local on the manifold, that it isC1 continuous

almost everywhere on the manifold, and its gradient is determined.

If the manifold is not known, another natural neighbor coordinate system is defined with respect to the

Voronoi atlas. While theTx-coordinate system is defined in the tangent space of a point on the manifold,

the natural neighbor coordinates in the Voronoi atlas are defined in the tangent spaces of the sample points.

Its definition domain is a small neighborhood of the manifold. Thus, even if its properties are weaker

than those of theTx-coordinate system, it has the advantage that it can be applied without knowing the

manifold.

Applications

In this context, I consider three applications of theTx-restricted Voronoi diagram and the Voronoi atlas

in more detail. The first is scattered data interpolation on surfaces. Given discrete values of a function

that is defined on a manifold, the problem is to interpolate this function elsewhere on the manifold. Nat-

ural neighbor interpolation can be generalized in a straightforward manner to theTx-restricted Voronoi

diagram. In this thesis, we show that this yields an adequatesolution to interpolation on surfaces.

The second application is concerned with reconstructing a surface or a curve from a set of scattered

points. This problem has received a lot of attention in the last twenty years. Our solution is closely related

to existing so-called Voronoi-filtering methods where the manifold is approximated by a subset of faces of

the Delaunay triangulation.

At last, I developed a prototype for approximating centroidal Voronoi diagrams on manifolds. A cen-

troidal Voronoi diagram is a Voronoi diagram such that each point defining a Voronoi cell coincides with

the mass centroid of that cell. For the surface case, so-called Constrained Centroidal Voronoi diagrams

have been specified by Du, Gunzburger and Ju [50]. Their method is not practical for general surfaces

because, so far, there exist no software for computing the restricted Voronoi diagram (even with Euclidean

metric). The new idea presented in Section 8.3 is compute thecentroidal Voronoi diagram with respect to

the Voronoi atlas. This means to linearly approximate the surface inside each Voronoi cell by the tangent

plane at the point that generates the cell. The centroidal Voronoi diagram is computed with respect to the

approximated diagram by an iterative method. Some experimental results are presented.

Outline of this thesis

This thesis is organized as follows.

1. After this introduction, the second chapter introduces the concepts of Voronoi and power diagrams

which are the basic underlying concepts to this work. It recalls also their description in the space of
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spheres. Finally, it shows that the intersection of a power diagram with an affine subspace is itself a

power diagram which is, in some sense, the key to our work about a coordinate system on surfaces.

2. The third chapter generalizes the concept of natural neighbor coordinates from Voronoi diagrams

to power diagrams. After a state of art about natural neighbor coordinates in Voronoi diagrams and

the definition of the generalized coordinate system, the continuity properties and the gradient of the

coordinate function are proven. Furthermore, a new coordinate system is presented that is based on

natural neighbor coordinates but which has additional properties. It has been proposed by Clarkson

in [35].

3. A survey about scattered data interpolation methods thatare based on natural neighbor coordinate

systems is presented in the fourth chapter.

4. The fifth chapter introduces the necessary topological and geometric notations concerning the sam-

pled manifold. Then, it defines how a Voronoi diagram can be restricted to a manifold, and it spec-

ifies a sampling condition that we suppose to be satisfied in the sequel. At last, it re-calls several

results about local properties of a sampled manifold and about the estimation of certain quantities

from the sample points supposing the sampling condition is met.

5. The heart of this work is presented in the sixth and in the seventh chapter. Given a set of points

issued from a manifold, the sixth chapter contains the definition of a neighborhood as well as a

coordinate system for each point on the manifold. It is shownunder which conditions both notions

are local on the manifold. Furthermore, the continuity properties of the coordinate functions as well

as their gradients are examined (the latter for surfaces only).

6. The seventh chapter defines theT -restricted Voronoi atlas of a point cloud on a manifold. Some

properties of the Voronoi atlas and its dual are proven. For(d� 1)-manifolds, we present a different

definition which allows to connect the Voronoi cells betweenthe tangent spaces. A coordinate

system with respect to the Voronoi atlas is specified and someof its properties are shown.

7. The applications of these concepts are presented in Chapter 8. The three applications that are in-

vestigated in detail are scattered data interpolation of functions on general surfaces, surface and

curve reconstruction and re-meshing with centroidal Voronoi diagrams. This chapter presents also

experimental results.

8. Finally, the last chapter treats some implementation issues to demonstrate the practical feasibility of

this work.
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Contributions

The main contribution of this thesis is the definition of a neighborhood as well as a coordinate system on

a manifold associated with a point cloud scattered over the manifold in Chapter 6 and the assembly of

the local neighborhoods to the Voronoi atlas described in Chapter 7. These chapters contain exclusively

original work. The proof of Lemma 6.3 is inspired from [9]. The content of Chapter 6 is the subject of two

publications [24] [25].

In Chapter 6, it is shown under which conditions the neighborhood and the coordinate system are

local on the manifold. Furthermore, the continuity properties of the coordinate functions as well as their

gradients are examined (the latter for surfaces only). The approximation of a Voronoi diagram restricted to

a manifold by aT -restricted Voronoi atlas is defined as well as its dual collection of Delaunay simplices.

The alternative definition of the Voronoi atlas in Section 7.2 is inspired from the work of Nullans [83]. A

coordinate system is determined with respect to the Voronoiatlas.

Three applications of the coordinate system and the atlas are presented. For scattered data interpolation

of functions defined on surfaces, I adopted the existing methods of natural neighbor interpolation. The

methods are implemented and some experimental results are presented.

The second application is surface and curve reconstruction. It appears that this work is very close to

the work of Dey et al. on theCOCONE- algorithm (e.g. [7]). The reconstruction algorithm for surfaces is

only partially implemented.

The third application is remeshing with centroidal Voronoidiagrams. I realized a prototype that pro-

duces convincing results. Implementation issues are also discussed in the practical part of the thesis,

namely in Chapter 9.

Another important contribution of this thesis consists of the generalization of the concept of natural

neighbor coordinates from Voronoi diagrams to power diagrams. The definition of this generalized co-

ordinate system is known from [12], however, to my knowledge, there exists no further analysis of its

properties. Chapter 3 contains, notably, a proof of the continuity properties (Lemma 3.6 and Lemma 3.7)

and a proof of the gradient of the coordinate function (Lemma3.8 and Lemma 3.11). Also, the behavior

of the coordinate function close to a data point is examined in detail in Lemma 3.14 and Lemma 3.15.

At last, this thesis provides a synthesis about scattered data interpolation methods that are based on

natural neighbor coordinate systems. It completes omissions of the original papers, notably, the proof

of theC1 continuity of Sibson’s interpolant was not contained in theoriginal paper. A new interpolant

is defined that is designed specifically for interpolation ofquadratic functions. Clarkson’s interpolation

method that is described in section 4.3 is so far unpublished. Clarkson mentioned it in a talk [35].



Chapter 2

Voronoi and power diagrams

One of the main topics of this thesis are Voronoi and power diagrams. In this section, we give a short

introduction and the necessary definitions concerning bothconcepts.

2.1 Voronoi diagrams

We define ak-polytopeto be the intersection of a finite number of closed halfspacesin Rd of dimensionk.

It can be bounded or unbounded. A boundedk-polytope can equivalently be defined as the convex hull of

a finite set of points inRd . A cell complexC is a set of polytopes such that any face of a polytope is itself

a polytope inC and such that the intersection of two polytopes ofC is either empty or it is a polytope

of smaller dimension which is their common face of maximal dimension. If a boundedk-polytope is the

convex hull ofk+ 1 (affinely independent) points it is called ak-simplex. A cell complex containing only

simplices is called asimplicial complex.

LetP = fp1; : : : ;png be a set of points inRd . Without real loss of generality, we can assume that nod+ 2 points lie on the same sphere. The Voronoi cell ofpi is the locus of points that are closer topi than

to any other point ofP:V (pi) = fx 2 Rd : kx� pik � kx� pjk 8j = 1; : : : ; ng
wherekx � yk denotes the Euclidean distance between pointsx;y 2 Rd . Let the bisector hyperplane of

two pointspi andpj be calledHij, andHiij be the halfspace limited byHij that containspi. Then,V (pi)
is the intersection of the halfspacesHiij; j 6= i. It is a non-empty convex polytope that containspi and that

is unbounded ifpi is a vertex of the convex hull
onv(P) of P.

One can show that the Voronoi cells and their faces form a cellcomplex, see e.g. [26, chapter 17]. This

leads to the following definition:

Definition 2.1 The cell complex of Voronoi cellsV (pi); i = 1; : : : ; n; is called theVoronoi diagramofP
or Vor(P).

13
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Let P 0 be a subset of points ofP whose Voronoi cells have a non-empty intersection. The convex hull
onv(P 0) is called a Delaunay face. The Delaunay faces form a cell complex called the Delaunay triangu-

lation ofP, denotedDel(P). The Delaunay triangulation isdual to the Voronoi diagram which means that

for anyk-face ofDel(P), k � d, there exists a dual(d� k)-face inVor(P) that is exactly the intersection

of the Voronoi cells of thek + 1 generators of the Delaunay face. In other words, if two Voronoi cells

share a common(d� 1)-face then the points generating the Voronoi cells are connected by an edge in the

Delaunay triangulation, and vice versa. If three cells share a common(d � 2)-face then their generators

are connected by a triangle, etc. See also Figure 2.1.

Figure 2.1: (left) a Voronoi diagram, (right) the dual Delaunay triangulation.

Each point on a(d � k)-dimensional Voronoi face is equidistant from thek + 1 vertices of the dual

Delaunay face and is further away from all other vertices (since it is on the boundary of each of their

Voronoi cells). Consequently, there exist an open ball centered at the point that has thek+1 generators on

its boundary and that is empty of other points fromP. We call such a ball anempty sphere. In the dual, this

means that for each Delaunay face there is an empty sphere passing through its generators that is centered

on the dual Voronoi face. This property is called theempty-sphereproperty of the Delaunay triangulation.

Under the general position assumption, thed-dimensional faces ofDel(P) are simplices andDel(P) is a

simplicial complex. Hence the name triangulation.

Each vertex of the Voronoi diagram is generated by the intersection of(d + 1)-Voronoi cells. Its dual

is a d-dimensional face ofDel(P). The Voronoi vertex is therefore the center of the circumsphere of

the Delaunay simplex. These empty spheres, that are centered on Voronoi vertices and circumscribe a

Delaunay face, are calledDelaunay spheres.

Thearrangement of Delaunay spheresis the partition ofRd into cells such that all points of one cell

lie inside the same set of Delaunay spheres. The points of onecell have the following in common: if

they were added toP, all Voronoi vertices ofVor(P) whose Delaunay spheres cover the cell would be
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destroyed and so would their dual Delaunay faces. We say thata pointx is inserted intoVor(P) if Vor(P)
is replaced byVor(P [ fxg) (resp. forDel(P)). A point is in conflict with a Delaunay sphere if it lies

inside the sphere. It is alsoin conflictwith the Voronoi vertex that is the center of the Delaunay sphere and

that disappears at its insertion intoVor(P). After its insertion intoDel(P), the new point is incident to the

vertices belonging to the destroyed Delaunay faces.v1v2p1 p2p3p0 v1v2p1 p2p3p0 p4 v1v2p1 p2p3p0 p4
p1 p2p3p0 p1 p2p3p0 p4 p1 p2p3p0 p4

(a) (b) (c)

Figure 2.2: The arrangement of Delaunay spheres (top (a)) with the Voronoi diagram, (bottom (a)) with the

Delaunay triangulation. Insertion ofp4 (b) two Delaunay spheres are in conflict withp4, (c) one Delaunay

sphere is in conflict withp4.

Figure 2.2 shows an arrangement of two Delaunay spheres. Thefigures in the middle show that two

Voronoi vertices (top figure) and resp. two Delaunay triangles (bottom figure) are destroyed after the

insertion ofp4 into the dark grey cell of the arrangement. At its insertion onto the light grey cell, only one

vertex and resp. one triangle is destroyed (right figures).

2.2 Power diagrams

Next, we generalize the definitions of the previous section to power diagrams, i.e. weighted Voronoi di-

agrams. These diagrams are also calledLaguerre diagrams. Let B = fB1; B2; : : : ; Bng be a set of

weighted points (or sites) inRd , Bi = (pi; wi) 2 Rd � R. A weighted pointBi can also be considered

as a sphere with centerpi and radius
pwi. Notice, thatwi might be negative and the associated sphere
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imaginary. Thepower distanceor Laguerre distance�(Bi; Bj) between two weighted points is defined as�(Bi; Bj) := kpi � pjk2 � wi � wj :
A point x 2 Rd has power distance�i(x) with respect toBi, where�i(x) := kpi � xk2 �wi:
A weighted pointBi (or the corresponding sphere) isorthogonalto another weighted pointBj (or sphere)

if their power distance is zero. Without real loss of generality, we can assume that the weighted points are

in general position. This means that nod+ 2 weighted points are orthogonal to the same sphere.

The power cell ofBi is the locus of points whose power distance wrt.Bi is less than its power distance

wrt. any other siteBj 2 B:P (Bi) = fp 2 Rd : �i(p) � �j(p) 8j = 1; : : : ; ng:
Let the bisector hyperplane of two weighted pointsBi andBj be the hyperplaneHij = fp 2 Rd :�i(p) = �j(p)g, andHiij be the halfspace limited byHij such that for allp 2 Hiij : �i(p) � �j(p).
Again,P (Bi) is the intersection of the halfspacesHiij; j 6= i, but, in the weighted case,P (Bi) might be

empty and must not necessarily containpi. However, if it is not empty, it is a convex polytope and one can

show that the power cells and their faces form a cell complex.

Definition 2.2 The cell complex of power cellsP (Bi); i = 1; : : : ; n; is called thepower diagramof B orPow(B).
The dual of the power diagram is called theregular triangulationor Reg(B). The vertices ofReg(B)
belong tofp1; : : : ;png and, under the general position assumption, thed-dimensional faces ofReg(B)
are simplices andReg(B) is a simplicial complex. Fork � d, eachk-faceF (Bi0 ; : : : ; Bik) of Reg(B)
(with verticespi0 ; : : : ;pik) is dual to a(d � k)-face ofPow(B) that is exactly the intersection of the

power cells of thek+1 corresponding sites, and, consequently, the intersectionof the bisector hyperplanesHij ; i; j 2 fi0; : : : ; ikg. We defineP (Bi0 ; : : : ; Bik) = \j=0:::kP (Bij ); 0 � k � d;
and we say thatBi0 ; : : : ; Bik are thegeneratorsof P (Bi0 ; : : : ; Bik). In particular, the(d�1)-dimensional

power face dual to an edge ofReg(B) is contained in the bisector hyperplane of its generators.

A sphere that is orthogonal tok + 1 weighted points is called theorthosphereof the k + 1 sites. It

is emptyif it has positive or zero power distance to all sites ofB. For anyk-face ofReg(B) there exist

an empty orthosphere of itsk + 1 generators. Its center lies on the dual power face. This property is

equivalent to the empty-sphere property of the Delaunay triangulation. We say that a weighted point isin

conflict with an orthosphereif its power distance to the orthosphere is negative.
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The regular orthosphereof a d-face ofReg(B) is the empty orthosphere of itsd + 1 generators. Its

center is a vertex ofPow(B). If a weighted pointX is in conflict with a regular orthosphere, we may also

say that it isin conflict with the vertexof Pow(B) that is its center.

The set of regular orthospheres is calledO. Thearrangement of regular orthospheresis the generalized

concept of the arrangement of Delaunay spheres. We say that aweighted pointX lies in a cell of the

arrangement if it is in conflict with the regular orthospheres that cover the cell. Thus, at the insertion ofX, i.e. whenX is added toB, all faces ofReg(B) whose regular orthospheres are in conflict withX are

destroyed and also all vertices ofPow(B) that are the centers of these regular orthospheres. However, the

arrangement of regular orthospheres is better defined by itsequivalent in a dual transform called the space

of spheres which is introduced in the next section. See e.g. [26] for further properties of power diagrams

and regular triangulations.

2.3 Space of spheres

It is well known that a power diagram can be obtained as a projection of the facets of a(d+1)-dimensional

polytope ontoRd . See e.g. [26, chapter 17] and [39]. This polytope is defined by the well known transform

from spheres ofRd to hyperplanes inRd+1 . In the sequel, the(d + 1)th coordinate axis is calledvertical

axis, and a point is above (or below) another point if its(d+1)th coordinate is bigger (or smaller) than the

other’s. Thevertical projectionis the projection onto the hyperplanexd+1 = 0.

LetBi = (pi; wi) be the sphere (or the weighted point as described in the preceding section) of equation(pi � x)t(pi � x)� wi = 0:
Its power distance to the origin0 is�i(0) = pitpi�wi. The lifting ofBi to the space of spheres is defined

by the bijection � : Bi = (pi; wi) 2 Rd � R �! �(Bi) = (pi;�i(0)) 2 Rd+1 :
We consider the image by� of all spheres orthogonal toBi. LetX = (x; wx) be such a sphere and�x the

power distance wrt.X. The centerx and the squared radiuswx must satisfy the following equation:(x�pi)t(x�pi)�wx�wi = 0() xtx�wx = 2 xtpi� (pitpi�wi) () �x(0) = 2 xtpi��i(0):
Since the(d+1)th coordinate of�(X) is�x(0), we deduce that the spheres orthogonal toBi are mapped

by � to the(d+ 1)-dimensional hyperplaneHi of equationxd+1 = 2 xtpi � �i(0):
We argue in the sequel thatHi is the hyperplanedual to �(Bi) in the space of spheres. Thus, it is also

called�(Bi)�. By H+i (equiv. �(Bi)�+) we refer to the positive halfspace delimited byHi, xd+1 �2 pitx� �i(0). Respectively, byH�i (equiv.�(Bi)��), we refer to the negative halfspace.
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A duality is any bijection that reverses inclusion relationships. The bijection from�(Bi) to Hi is,

indeed, a duality because�(Bi) 2 H+j () �i(0) � 2pitpj � �j(0) () �j(0) � 2pjtpi � �i(0) () �(Bj) 2 H+i�(Bi) 2 H�j () �i(0) � 2pitpj � �j(0) () �j(0) � 2pjtpi � �i(0) () �(Bj) 2 H�i
Notice that, unlesswi = 0, Bi is not orthogonal to itself, hence,�(Bi) =2 �(Bi)�. Instead, the conjugate

weighted point (or sphere)Bi := (pi;�wi) is orthogonal toBi and�(Bi) lies in�(Bi)�.
An unweighted point or sphere with zero radius is mapped by� to the unitd-paraboloid	 with axisxd+1: �((x; 0)) = (x;xtx). Its dual is the tangent plane to	 at (x;xtx). In general, the image by� of

weighted points with the same weightw is the paraboloid	(w). 	(w) is the vertical translation of	 such

that	(w) has the same axis than	 but is centered on a point(0;�w).1 Indeed,�((x; w)) = (x;xtx�w).
The dual hyperplane��(X) is tangent to	(�w) at�((x;�w)). The normal of��(X) is independent of

the weight: it is the normal of	 at (x;xtx).	
Bi
�(Bi)� 	

BiBj
�(Bi)��(Bj)�

(a) (b)

Figure 2.3: (a)�(Bi)� \ 	 projects onto the sphereBi (b) �(Bi)� \ �(Bj)� projects onto the bisector

hyperplaneHij .
The intersection of�(Bi)� with the paraboloid	 vertically projects onto the sphereBi:(pi � x)t(pi � x)� wi = 0 () xtx = 2xtpi � �i(0) () �((x; 0)) 2 �(Bi)�:

See Figure 2.3 (a). A pointx is inside the sphereBi if �((x; 0)) is below�(Bi)� and outsideBi if�((x; 0)) lies above�(Bi)�. The analogue works for the power distance: a weighted pointX has negative

power distance toBi if �(X) lies below�(Bi)� and it has positive power distance toBi if �(X) is above

10 denotes the origin inRd



2.3. Space of spheres 19�(Bi)�. More precisely, the signed vertical distance of�(X) to �(Bi)� is, in fact, the power distance�(Bi;X): since the(d + 1)th coordinate of�(X) is �x(0) and the vertical line throughx intersects�(Bi)� atxd+1 = 2 xtpi � �i(0), we get�x(0)� (2 xtpi � �i(0)) = xtx�wx � 2 xtpi + pitpi � wi= (pi � x)t(pi � x)� wi � wx = �(Bi;X):
Consequently, if a pointx has less power wrt.Bi than wrt.Bj then the vertical line throughx inter-

sects�(Bi)� above�(Bj)�. The (d � 1)-dimensional bisector hyperplaneHij is, therefore, the vertical

projection of the intersection of�(Bi)� and�(Bj)�. See Figure 2.3(b).

We define the following polytope: P(B) := H+1 \ : : : \H+n (2.1)

whereH+i is the positive halfspace delimited by�(Bi)�. One can see that the faces ofP(B) vertically

project ontoPow(B): a point of the facetFi of P(B) carried by the hyperplane�(Bi)� lies above all other

hyperplanes�(Bj)�, so, its vertical projection has less power wrt.Bi than wrt. any other siteBj. See

Figure 2.4.

Figure 2.4:Pow(B) is the vertical projection of the faces ofP(B).
The empty-sphere property of the regular triangulation translates as follows in the space of spheres: the

regular orthosphere of a simplex of the triangulation is orthogonal to the sites of the simplex and has

positive power distance to all other sites ofB. This means that its dual hyperplane in the space of spheres
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contains the image by� of its generators and is below the image by� of all other sites. More precisely,

let O = (o; wo) be orthogonal toB1; : : : ; Bd+1, Ho be the dual of�(O), and,H+o the positive halfspace

defined byHo. F (B1; : : : ; Bd+1) is a face ofReg(B) if and only if�(Bi) 2 Ho; i = 1; : : : ; d+ 1; and�(Bj) 2 H+o ; j = d+ 2; : : : ; n:
We deduce that the lower convex hull off�(Bi); i = 1; : : : ; ng projects vertically ontoReg(B). Refer

to Figure 2.5. The general position assumption is satisfied if no d + 2 points of�(B) lie in the samed-dimensional hyperplane.

	
p1

�(B1)
p2p3�(B3) �(B2)

Figure 2.5: The lower convex hull of�(B) projects ontoReg(B).
The arrangement of regular orthospheres corresponds, in the space of spheres, to the arrangement of

hyperplanes that are dual to the image of the regular orthospheresO 2 O. We call it arr(�(O)�). Of

course, the hyperplanes ofarr(�(O)�) are equivalently defined by the simplices ofReg(B): for each

simplex there exist a hyperplane in the arrangement that contains the image of the simplex’s generators. IfO is the simplex’s regular orthosphere, the hyperplane is��(O). All points within a cell of this arrangement

of hyperplanes have in common that their preimage by� is in conflict with the same regular orthospheres,

and the same simplices ofReg(B) are destroyed at their insertion intoReg(B).
Expression for a vertex of the power diagram

A vertex of the power diagram is a rational functions of its generators. Re-call thatP (Bi1 ; : : : ; Bid+1) is the

vertex of the power diagram dual to the faceF (Bi1 ; : : : ; Bid+1) ofReg(B). It is the center of the regular or-

thosphereO of this face. If��(O) is the dual hyperplane of�(O), it must contain�(Bi1); �(Bi2); : : : �(Bid+1).
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Thus, we know the equation of��(O) and we can determine the coordinates of�(O) from it. The vertex

of the power diagram is the projection of�(O) onxd+1 = 0. We develop the expression only ford = 2
because this facilitates the exposition. The same approachapplies in any dimension.

In the two-dimensional case withB1 = ((x1; y1); w1); B2 = ((x2; y2); w2); B3 = ((x3; y3); w3), and(Bi)2 := x2i + y2i � wi, the equation of��(O) is����������� 1 1 1 1x1 x2 x3 xy1 y2 y3 y(B1)2 (B2)2 (B3)2 z
����������� = 0 (2.2)

On the other hand, taking�(O) = (xo; yo; zo), we know that��(O) has the equationz = 2(xxo + yyo)� zo () xxo + yyo � 12z � 12zo = 0:
We develop Equation (2.2) and identify the terms. In particular, we need to obtain the factor12 for thez-coordinate in Equation (2.3), thus, we divide Equation (2.2) by2D withD := �������� 1 1 1x1 x2 x3y1 y2 y3 �������� :
Identifying the factors of thex- and they- coordinate, we findP (B1; B2; B3) = (xo; yo) = 12D 0BB�� �������� 1 1 1y1 y2 y3(B1)2 (B2)2 (B3)2 �������� ; �������� 1 1 1x1 x2 x3(B1)2 (B2)2 (B3)2 ��������1CCA : (2.3)

2.4 Power diagrams and sections of Voronoi diagrams

The following lemma proves that the intersection of ad-dimensional power diagram with ak-flatH of Rd
with k < d is a power diagram of dimensionk. A k-flat of Rd is ak-dimensional affine subspace ofRd .

We say thatH is in general positionif the intersection of an(d � l)-dimensional face of the power

diagram,l � k, withH is either empty or has dimensionk� l, and if the intersection ofH with a (d� l)-
dimensional face of the power diagram withl > k is always empty. Notice, that a small perturbation ofH
always removes a degenerate position. Without loss of generality, we suppose the general position ofH
in order to ensure that the general position assumption for the resultingk-dimensional power diagram is

satisfied.
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Lemma 2.3 The intersection of the power diagramPow(B) with ak-flatH of Rd in general position is ak-dimensional power diagramPow(B) defined inH whereB = fBi = (pi; wi); i = 1; : : : ; ng such thatpi is the orthogonal projection ofpi ontoH andwi = wi � kpi � pik2 for eachBi 2 B.

Proof: Becausepi is the orthogonal projection ofpi ontoH, we know that8 x 2 H : kx� pik2 = kx� pik2 + kpi � pik2:
Consequently, if�i(x) is the power ofx wrt. the siteBi = (pi; wi � kpi � pik2)2,8 x 2 H : �i(x) � �j(x) () kx� pik2 + kpi � pik2 � wi � kx� pjk2 + kpj � pjk2 � wj() �i(x) � �j(x): �

The preceding lemma implies in particular that the intersection of a Voronoi diagram withH is a power

diagram. Let the Voronoi diagramVor(P) be defined as before andV or(P) be the intersection of the

Voronoi diagram withH, V or(P) := Vor(P) \H. For allpi 2 P, V (pi) := V (pi) \H.

Observation 2.4 V or(P) is the power diagram of the pointspi that are the projection of the sample

pointspi 2 P ontoH weighted withwi = �kpi � pik2.

2The notation is the same as for conjugate spheres. However, we always mention specifically when the conjugate sphere is

referred to.



Chapter 3

Natural neighbor coordinates in power

diagrams

3.1 Introduction

Natural neighbor interpolation has been introduced by Sibson [91] to interpolate multivariate scattered

data. Given a set of pointsP = fp1; : : : ;png, the natural neighbor coordinate system associated toP is

defined from the Voronoi diagram ofP. Various papers ([90], [56], [84], [29],[71]) show that it satisfies

the following definition by Brown [29].

Definition 3.1 ([29]) A system of coordinates overU � Rd associated withP is a set of continuous

functionssi : U ! R; i = 1; : : : ; n, such that for allx 2 U ,

(i) x =Pni=1 si(x)pi (barycentric coordinate property or BCP).

(ii) For any i � n; si(pj) = Æij , whereÆij is the Kronecker symbol.

(iii)
Pni=1 si(x) = 1 (partition of unity property).

In our context, it is useful to enlarge this definition. We saythat the coordinate system isconvex ifsi(x) � 0 for all x 2 U , otherwise it is not convex. Let theweighted barycenterof a pointx 2 U beb(x) = nXi=1 si(x)pi:
With the barycentric coordinate property,x = b(x). If the barycentric coordinate property is not satisfied

but e(x) = kx � b(x)k is small, we say that we are concerned with a coordinate system that isalmost

barycentric. e(x) is the error concerning the barycentric coordinate property.

The coordinate system islocal if the support of each coordinate functionsi is contained in a small

topological ball centered onpi.1 We will see in this chapter that the natural neighbor coordinate system
1See Section 5.1 for the definition of a topological ball.

23
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defined in a power diagram is a convex barycentric coordinatesystem. It is local whenever the weights of

the points are bounded.

Related Work

Sibson introduces the natural neighbor coordinate system in [90] and proves the barycentric coordinate

property in a generalized manner. (He calls this property the local coordinate property.) In a second

paper, he describes its application to scattered data interpolation over a two-dimensional domain [91]. He

claims that the coordinate function is continuously differentiable except on the data sites but the proof is

omitted. He gives an algorithm to compute the natural neighbor coordinates in two dimensions. In 1988,

Aurenhammer enlarges the definition of natural neighbor coordinates to power diagrams and subsets of

several points in order to define various linear combinations among points of the defining setP [12]. Later,

he shows the relationship between natural neighbor coordinates and the Gale transform [13]. Notably,

he proves that the so-calledpower matrixrepresents a Gale transform ofP. This matrix contains the

coordinatesi(pj) of the diagram forP n fpjg for each pointpj in the interior of the convex hull ofP.

Farin [56] discusses the question of support, differentiability and other properties of the natural neigh-

bor coordinate function in more detail than Sibson. Farin’spaper refers also only to the two-dimensional

case.

The smoothness properties of the coordinate function in arbitrary dimension have been properly proven

by Piper [84]. It is shown that the coordinate function is continuous on the convex hull
onv(P) of P
and continuously differentiable on
onv(P) except at the data pointsP themselves. Fixing the pointx,

the coordinate functionsi(x) is also continuously differentiable with respect to a data point pj 2 P.

Furthermore, Piper shows a formula for the gradient of the coordinate function on
onv(P) n P. The

gradient formula gives rise to another proof of the barycentric coordinate property.

Brown [29] pursues a more algebraic than geometric approach: a general method to produce barycentric

coordinate systems is defined which is based on the weighted combination of barycentric coordinates with

respect to a triangle. The proofs of the major properties of Definition 3.1 become immediate. As an

example, he gives the weight function leading to Sibson’s coordinates. The work is written for the two-

dimensional case but generalizable to higher dimensions.

The most recent work on natural neighbor coordinates by Hiyoshi and Sugihara [71] spent some effort

to smoothen the coordinate function not on the data points but on the Delaunay spheres. In fact, as observed

by Farin, the coordinate function isC1 in 
onv(P) except on the Delaunay spheres where it is onlyC1.
In [71], a generalized coordinate systems is defined with arbitrary smoothness on the Delaunay spheres

except on the data points. This work leads to yet another proof of the barycentric coordinate property. The

same idea would be generalizable to natural neighbor coordinates in power diagrams, however, we do not

further pursue this direction.

Last but not least, Clarkson proposes the construction of a new system of coordinates that is based on
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natural neighbor coordinates. It is an unpublished idea that he describes in a talk [35]. The new coordinate

system fulfills the barycentric coordinate property, i.e. apoint is the linear combination of its neighbors, but

in addition, the squares of the point is the linear combination of the square of its neighbors. This property

is interesting in scattered data interpolation. However, Clarkson’s coordinate system is not convex which

means that the coordinate functions may have negative values.

Outline of the chapter

In the sequel, we define a natural neighbor coordinate systemfrom power diagrams. Of course, the def-

inition also applies to Voronoi diagrams which are special power diagrams – namely, when all sites have

equal weight. After the definition of the natural neighbor coordinates, we prove some of their basic prop-

erties, notably, the properties of Definition 3.1, the continuity properties and the gradient of the coordinate

function.

Aurenhammer has defined the generalized natural neighbor coordinates in [12] and he gives a proof for

the barycentric coordinate property. The contribution of this thesis is to develop further properties of the

coordinate functions by generalizing notably the work of Piper [84]. We also present a new proof of the

barycentric coordinate property.

3.2 Definition of the coordinate function and basic properties

LetB be a set ofn weighted points. The natural neighbor coordinate functionof a weighted pointX with

respect to a siteBi 2 B is defined as the proportion of the power cell ofX that has been ’stolen’ from

the siteBi at the insertion ofX into the power diagramPow(B). The natural neighbors are the sites that

have passed a part of their cells to the cell ofX. For this to be well defined, the cell ofX has to be neither

empty nor infinite. Figure 3.1 shows an example of natural neighbors in a Voronoi diagram: the cell ofX
is highlighted, and its partition with respect to the Voronoi diagram withoutX is indicated by dotted lines.

The major difference between the coordinates in Voronoi diagrams and in power diagrams is due to the

fact that a site of a power diagram might have an empty cell. This cannot happen in Voronoi diagrams.

It implies that the cell of some sites may disappear when inserting a new siteX. However, this does

not change the definition of the coordinate function. Simply, X ’stole’ the entire cell of the siteBi at

its insertion. In the sequel, we give a more formal definition. Let X = (x; wx) 2 Rd � R. We definePow+(B) := Pow(B [ fXg) andReg+(B) := Reg(B [ fXg). (Pow(B andReg(B are defined in

Section 2.2.)P+(X) is the power cell ofX in Pow+(B) and the subcellPi(X) := P+(X) \ P (Bi)
is the part of the power cellP+(X) that has been ’stolen’ fromP (Bi) at the insertion ofX. Remark

that the cell ofBi can be entirely contained in the cell ofX, so thatPi(X) = P (Bi). The volume ofPi(X) is denoted by�i(X) and the volume ofP (X) is denoted by�(X). The(d � k)-faces ofP+(X)
are calledP+(X;Bi1 ; : : : ; Bik). The definition domain of the natural coordinate functions is the subset
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xp1p5 p2 p3p4
Figure 3.1:x has five natural neighborsp1; : : : ;p5.U = fX 2 Rd �R j �(X) 6=1^�(X) 6= 0g of Rd �R. Further in this section, we explain its geometric

interpretation in the space of spheres.

We define the natural neighbor coordinate functions formally and prove later in this section that they

fulfill Definition 3.1.

Definition 3.2 In the natural neighbor coordinate system associated to a set of weighed pointsB, the

(natural neighbor) coordinate function�i(X); i = 1; : : : ; n; of a pointX 2 U n B is �i(X) = �i(X)�(X) and�i(Bj) = Æij for all Bj 2 B, whereÆij is the Kronecker symbol.

Definition 3.3 Given a set of weighted pointsB, the natural neighbors of a pointX 2 U are the sitesBi 2 B with �i(X) 6= 0; i = 1; : : : ; n:
In Voronoi diagrams, the natural neighbors ofx are exactly the neighbors ofx in Del+(P), i.e. vertices

connected tox by an edge ofDel+(P). In power diagrams, the natural neighbors ofX include not only

the neighbors ofX in Reg+(B) but also the vertices that disappear fromReg(B) when insertingX.

The support of the natural neighbor coordinate�i is�i = fX 2 U j �i(X) 6= 0g. It is the set of points

that are in conflict with at least one vertex of the cellP (Bi). Remember that this means that the power

distance betweenX and the regular orthosphere centered on the vertex is negative. In this case,�i(X) 6= 0
because the vertex is ’stolen’ fromP (Bi) at the insertion ofX.

With respect to the space of spheres, the insertion of the point X 2 U into Pow(B) corresponds

to inserting the hyperplaneHx = �(X)� into the space of spheres. The corresponding halfspaceH+x
intersects the polytopeP(B) “cutting off “ the polytopePx which is the intersection of the halfspacesH+i
with the halfspaceH�x described byxd+1 � 2 � xt � x� �x(0). See Figure 3.2. Precisely,Px := \i=1;:::;nH+i \H�x : (3.1)

The polytopePx projects vertically ontoP+(X) and its lower facetsFi(X) project ontoPi(X). The

volume ofFi(X) in the projection is�i(X) and the volume of the projection of the upper facet is�(X).
Hence,�i(X) can alternatively be defined in the space of spheres. The cellof X is empty if and only if
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Hi	Hj
Bj Bi
P(B)

HxXPx
	

Bj�(Bj) Bi �(Bi)
�(X)X

(a) (b)

Figure 3.2: (a vertical cut) (a) The polytopePx 6= ;. () (b)X is in conflict with a cell ofarr(�(O)�).�(X) is above the lower convex hull of�(B). In this case,X is in conflict with no regular orthosphere.

It is infinite if and only if the centerx lies outside the convex hull of the centerspi of the sitesBi 2 B.

This is independent of the weight ofX. Thus,X has a finite and non-empty cell iff�(X) lies in the

(unbounded) polytope whose upper facets are the lower convex hull of �(Bi) and whose remaining facets

are delimited by vertical rays from the lower convex hull toxd+1 = �1. This region is called�(U) sinceU is its preimage by�. Refer to Figure 3.3 (a). The support�i corresponds to the set of points�(�i) that	
�(Bj) �(Bi) �(U)�(Bk) 	

�(Bj) �(Bi) �(�i)�(Bk)
(a) (b)

Figure 3.3: (a vertical cut) (a)�(U) is unbounded in directionxd+1 = �1. (b) The support�(�i) is

highlighted.

lie outside
onv(�(B)), the convex hull of the points�(B), and that “see”�(Bi) (in the sense that the line

from the point to�(Bi) does not intersect
onv(�(B))). In other words, the points of�(�i) lie below at

least one hyperplane that supports a facet of the lower convex hull of �(B) incident to�(Bi). The dual

of such a hyperplaneHo is the image by� of a regular orthosphere whose center is a vertex ofP (Bi). If�(X) lies belowHo,X is in conflict with this vertex. See Figure 3.3(b).
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To be more precise, we define the cone at�(Bi) to be the intersection of the positive halfspaces defined

by the hyperplanes that support the facets of the lower convex hull of �(B) incident to�(Bi),
one(�(Bi)) := \fH+o jHo 2 �(O)� and�(Bi) 2 Hog: (3.2)

With this definition, �(�i) = U n 
one(�(Bi)):
An edge of
one(�(Bi)) is the line through�(Bi) and�(Bj) whereBj is a neighbor ofBi in Reg(B).

The cell ofBi disappears at the insertion ofX if �(Bi) is not a vertex of the convex hull
onv(�(B) [�(X)). In this case,�(X) lies below all hyperplanes of�(O)� containing�(Bi). This part of�(�i) is

indicated by the darkest region in Figure 3.3(b).

Notice what happens asX changes: Changing the weight ofX induces a vertical movement of�(X)
and of the hyperplaneHx: if the weight grows,�(X) moves downwards whileHx moves upwards (and the

opposite if the weight diminishes). The normal ofHx is independent of the weight. Translating the centerx by some horizontal vector�!v , �(X) stays on the paraboloid	(wx) while the horizontal component of

the movement is�!v . See Figure 3.4.Hx 	
XBi

Hi
X 0

H 0x 	
Bi

Hi
X 0X
H 0x

Hx
(a) (b)

Figure 3.4: Changing (a) the weight and (b) the center ofX.

A finite cell P (X) can never become infinite only by raising the weightwx because the centerx stays

in the interior of the convex hull of the centers of the other sites. Consequently, the cell is finite.

The interpretation in the space of spheres makes it easy to see that the volume function�i is continuous

as long asX 6= Bi. Indeed, the facetFi(X) is contained inHi and delimited byHx and some hyperplanesHj; j = 1; : : : ; n; j 6= i, Fi(X) = Hi \j 6=i H+j \H�x :
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As Hx changes continuously withX, the volume ofFi(X) (and, thus,�i(X)) changes continuously as

long asHx 6= Hi, i.e. as long asX 6= Bi. With �i(X) = �i(X)Pni=1 �i(X) , we see that�i is continuous inU as

long asX 6= Bi 2 B. Before we show that�i is continuous even atBi 2 B, we consider what happens asX approaches the boundary ofU and asx! pi with wx > wi.
Behavior of �i at the border of the definition domain

AsX approaches the boundary ofU , two situations might occur: either�(X)! 0 or �(X)!1.

Hi
	HjP(B)
HxBj BiX

	
Bj�(Bj) Bi�(Bi)�(X)X

Px = ;

(a) (b)

Figure 3.5: (a vertical cut)�(X) = 0: (a)Hx does not intersectP(B), (b)�(X) is on
onv(�(B)).

(a) (b) (c)

Figure 3.6:X approachesBi whilewx < wi. (a)X \Bi 6= ;, (b)X is contained inBi, (c)�(X) = 0.

In the first case,�(X)! 0, this means in the space of spheres that�(X) approaches the lower convex

hull of �(B) (Figure 3.5). InRd � R, this means thatwx diminishes and/or that the center ofX moves

towards the center of a siteBi that has bigger weight thanX.

Figures 3.6, 3.7 and 3.8 depict the different power diagramsasX changes.X corresponds to the black

circle and the cell ofX is indicated by the dark (blue) lines.
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In Figure 3.6, we show what happens in the power diagram as thecenterx approaches the center ofBi with bigger weight thanX: the bisector hyperplane ofBi andX approaches the centerpi as long asBi does not completely containX (Figure 3.6(a)). WhenX is contained inBi, the bisector hyperplane

moves away frompi (while x ! pi) until the cell ofX disappears,�(X) = 0. At x = pi, the bisector

hyperplane ofX andBi is at infinity. However, the volume functions�(X) as well as�i(X) change

continuously withX as long as�(X) 6= 0.

They are also continuous as�(X) ! 1. Figure 3.7 shows how the cell ofX becomes unbounded asx approaches the convex hull offpijBi 2 Bg.
Figure 3.7: The cell ofX becomes unbounded.

Behavior of �i and �i asx! pi with wx > wi
In a similar way�i(X) is well defined and continuous when the center ofX approaches the center ofBi while the weight ofX is bigger than the weight ofBi. This situation is depicted in Figure 3.8. At

some point, the cell ofBi is entirely contained in the cell ofX, Pi(X) = P (Bi). In this case,�i(X) is

constant with respect toX and the coordinate function�i(X) = �i(X)�(X) varies with�(X). Although�i(X)
is constant,�i(X) is continuous with�(X) =Pj �j(X) as long asX 6= Bi and�(X) > 0. Remember

that, if Pi(X) = P (Bi), in the space of spheres,�(X) lies below lies below all hyperplanes of�(O)�
containing�(Bi) as indicated by the darkest part in Figure 3.3(b).

(a) (b) (c)

Figure 3.8:X approachesBi whilewx > wi. (a)�i(X) < �(Bi), (b)�i(X) = �(Bi), (c)x = pi.
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Verifying the conditions of Definition 3.1

As already mentioned, the natural neighbor coordinates satisfy the conditions of Definition 3.1.

Property 3.1(ii), namely�i(Bj) = Æij is satisfied by definition. Property 3.1(iii), namely
Pi �i(X) =1, follows immediately from the definition of the coordinate functions. Indeed, since the coordinate func-

tion is normalized by the total volume of the power cell, it naturally sums to one. Before we overview the

different proofs of the barycentric coordinate property 3.1(i), we show that the coordinate functions are

continuous. This is also a condition of Definition 3.1.

We argued before that the natural neighbor coordinate function is continuous inU n B since, elsewhere

than onB, the volume functions�i(X) are continuous. It remains to show the continuity of�i atX = Bj,
i.e. limX!Bj �i(X) = Æij .

As shown in Figure 3.9 and Figure 3.10, the volume�(X) is not continuous atBi unlessx = pi
asX ! Bi. Nevertheless, we can use an argument of extension by continuity: limX!Bi �j(X) = Æij
becauselimX!Bi �j(X) = 0 for all j 6= i and

Pi �i(X) =Pi �i(X)�(X) = 1 while�(X) is finite. It follows

that limX!Bi �i(X) = 1 andlimX!Bi �j(X) = 0 for all j 6= i.
XB1B0 B2 B3B4B5 B1B0 B2 B3B4x = p5
(a) (b)

Figure 3.9: The limit asX approachesB5 (in the power diagram), (a) the general case, (b)x = p5.

Furthermore, the coordinate system is convex, i.e.8X 2 U ; �i(X) � 0; i = 1; : : : ; n, because the

coordinate functions are defined by the ratio of two volumes.It is local whenever there is an upper bound

for the weight. Otherwise,�(�i) is unbounded (recall Figure 3.3).

Proofs for the barycentric coordinate property

The proof of Property 3.1(i), also called the barycentric coordinate property or BCP, requires more insight,

and there exist several different proofs in the literature –most of them written for the unweighted case. We

sketch the different approaches in this section –for the unweighted case. Then, we give, in detail, a proof

of the BCP for the natural neighbor coordinate system definedin power diagrams. This proof is related

to the space of spheres. (For Voronoi diagrams, we adopt the same notations as for power diagrams. The

superscript+ indicates that we refer to the Voronoi diagram (resp. the Delaunay triangulation) ofP[fxg.)
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H5	
B5

P(B)
Hx X Px H5

	
x = p5

P(B)
Hx

Px
(a) (b)

Figure 3.10: (vertical cut) The limit asX approachesB5 (in the space of spheres), (a) the general case, (b)x = p5.

The original proof by Sibson [90] is valid for a generalization of Voronoi diagrams, namely, a higher

dimensional space is considered that embeds thed-dimensional space. The generalizedd-dimensional

Voronoi diagram is the intersection of an ordinary Voronoi diagram in the higher-dimensional space by

the d-dimensional space. From Observation 2.4, we know that thisgeneralized diagram is a power dia-

gram. Sibson proves the cased = 1, and by an integration argument, the barycentric coordinate property

for natural neighbor coordinates in this generalized diagram is shown. A very similar proof is given by

Aurenhammer [12].

Piper proves the BCP by showing that the functionH(X) =Pi �i(X)(pi � x) is constantly zero. He

deduces from the expression for the gradient that the derivative ofH is zero. Then, he shows that the limitlimx!piH(X) = 0 and concludes the BCP.

Brown shows how to define Sibson’s coordinate as weighted average of barycentric coordinates over

some Delaunay triangles. The proof of the BCP becomes trivial.

xp1p0 p2 p3p4 v3x�!xp2
Figure 3.11: The Laplace coordinate function�0i (x).

In [71], the proof of the BCP by Hiyoshi and Sugihara is based on a proof of the BCP for the Laplace
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coordinate function defined as follows:

Definition 3.4 In the Laplace coordinate system associated toP, the (Laplace) coordinate function�0i (x)
of a pointx 2 
onv(P) is defined as�0i (x) = vixkpi�xkPi vixkpi�xk ; i = 1; : : : ; n:
wherevix denotes the volume of the(d� 1)-dimensional Voronoi face dual to the edgeF+(pi;x).
The BCP for Laplace coordinates is easily shown with the helpof a theorem by Minkowski stated as

follows (a proof can be found in [66, chapter 15.3]):

Theorem 3.5 The sum of the normal vectors of the facets of a convex polytope, where the length of the

vector is the area of the corresponding facet, is zero.

In our case, consider the Voronoi cellV +(x) which is always convex. The facet ofV +(x) that is dual

to F+(pi;x) is part of the bisectorHix betweenx andpi. Of course, the unit normal of the facet is the

vector 1kpi�xk�!xpi, and the volume of the facet isvix. See also Figure 3.11. We getXi vixkpi � xk�!xpi = 0 =Xi �0i (x)�!xpi:
The authors observe that Sibson’s coordinate function can be obtained as some integration of the Laplace

coordinate. Since the BCP is valid during the process of integration, it is also valid for the result.

A proof of the BCP using Minkowski’s theorem in the lifting map

There exists a direct proof of the BCP for power diagrams based on Minkowski’s theorem applied to the

polytopePx that is defined in the space of spheres. See also the beginningof the chapter and, in particular

Equation (3.1).

Let fi(X) denote the volume of the faceFi(X) of Px that is contained inHi = �(Bi)� andfx denotes

the volume of the upper facet ofPx (that is contained inHx). �!ni = (�2pi; 1) is the normal vector ofHi directed to the negative halfspaceH�i and�!nx = (�2x; 1) is defined in the same manner forHx.

Minkowski’s theorem applied toPx writesXi fi(X) �!nik�!nik � fx �!nxk�!nxk = 0: (3.3)

Since the polytopePx projects vertically ontoP+(X) and its lower facetsFi(X) project ontoPi(X), we

deduce that �i(X) = fi(X) �!nik�!nik � ��!id+1 = fi(X)k�!nik ;
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where
��!id+1 denotes the unit vector(0; 1) along the vertical axis.2 Similarly, �(X) = fx �!nxk�!nxk � ��!id+1 =fx 1k�!nxk . Equation 3.3 becomes Xi �i(X)�!ni � �(X)�!nx = 0:

Finally, by using the expression for the normals and by projecting ontoxd+1 = 0, this yields the BCP:Xi ��i(X)pi + �(X)x = 0:
3.3 Further continuity properties of the coordinate function

The following two sections treat essentially the generalization of Piper’s work [84] about natural neighbor

coordinates in Voronoi diagrams to natural neighbor coordinates in power diagrams. We assumeB to be

given. We recall thatU = fX 2 Rd � R j�(X) 6=1^ �(X) 6= 0g.
Continuity properties with respect to X
Lemma 3.6 The natural neighbor coordinate�i(X) of X is C0 continuous overU andC1 continuous

overU except at a finite set of lines inU .

Proof: As Farin noticed in [56], the natural neighbor coordinate ina Voronoi diagram is a piecewise

rational function ofx as long as the set of natural neighbors ofx does not change. This is also the case

in power diagrams. The coordinates of the vertices of the sub-cell Pi(X) are rational functions ofX.

In the two-dimensional case, the coordinates of a vertex aregiven by Equation (2.3) withB1 = X andB2 andB3 are natural neighbors ofX. Therefore,�i(X), which is the volume ofPi(X), is a piecewise

rational function ofX. Since by assumption, the volume function�(X) =P�i(X) does not vanish, the

differentiability of the normalized coordinate�i follows from the differentiability of the�i.
In the space of spheres, the natural neighbors ofX are the same as long as�(X) remains in one cell ofarr(�(O)�), the arrangement of hyperplanes which are dual to the image by � of the regular orthospheresO. This is explained in Section 2.3. The rational function�i(X) changes when�(X) traverses the

boundary of a cell ofarr(�(O)�) – because eitherX has a new natural neighbor or it looses a neighbor.

We consider the function�i Æ ��1 defined in the space of spheres. Because�(X) is differentiable and

bijective,�i is differentiable if�i Æ ��1 is differentiable.

In order to show the differentiability of�i Æ��1 on the boundary of the cells, it is sufficient to show, for

each point on a hyperplaneHo 2 �(O)�, the differentiability of�i Æ ��1 restricted to a (one-dimensional)

curve that crossesHo transversally. Inside each cell of the arrangement,�i Æ ��1 is C1 continuous.

2We denote the scalar product of two vectors by�!p � �!q .
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Hence, by showing the existence of some cross boundary derivative, we establish the differentiability on

the boundary.

In the unweighted case, Piper restricted�i to rays emanating frompi because, on such a ray,�i has a

particularly simple form. The same approach works in power diagrams if the center ofX is constrained

to such a ray. With respect to the space of spheres, we may restrict �i Æ ��1 to an ascending ray whose

source is on the vertical line through�(Bi) below all hyperplanes of�(O)�. Hence, the ray intersects any

hyperplane transversally, and the derivative of the restriction of�iÆ��1 to the ray is a valid cross boundary

derivative. Refer to Figure 3.12. Observe that the source ofthe ray lies in the support�(�i) of �i Æ ��1

Bi Bj BkO�(Bi) �(Bj)�(Bk)Ho LL(t)
X(t)L(0)

	(wo)

Figure 3.12: A ray with sourceL(0) intersects any hyperplaneHo transversally. It is parameterized by

distance topi in the vertical projection.

because it lies below�(Bi). (Re-call from Figure 3.3(b) that the support�(�i) = U n 
one(�(Bi)).) For

the sake of the proof, the ray should leave the support�(�i) before it leaves the support�(U). Notice that

the source can be chosen as low as necessary for the rays to still intersect any hyperplane of�(O)�.
Consider such a rayL in Rd+1 and suppose, at first, thatL is not vertical. (This case is treated later.)

We parameterizeL by the distance topi in the vertical projection, so thatL(t) projects vertically onto

some pointl(t) with kpi � l(t)k = t andL(0) projects vertically ontopi. LetX(t) = ��1(L(t)). In the

sequel, we consider the pointX = X(t) to be fixed.

Let L� be the set of hyperplanes dual to the points ofL. By duality, they intersect in a(d � 2)-flat A.

The hyperplaneHi = �(Bi)� is a vertical translation ofL(0)� because the dual points�(Bi) andL(0)
differ only by their height. (Their centers project vertically onto pi (Fig. 3.12); refer also to Section 2.3.)
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The intersection ofHi with any hyperplane ofL�(u); u > 0; is, therefore, parallel to the(d � 2) flat A.

As u varies from0 to1, a part of the hyperplaneHi is swept byL(u)� \Hi. Refer to Figure 3.13.

L(0)� L(u1)�A(u1)A(u2)
L(u2)�

Hi A
L(1)�

A(1)
Figure 3.13: LetA(u) = L(u)� \Hi. As u ! 1, L(u)� approaches the vertical hyperplane containingA normal to the vertical projection ofL (cf. Section 2.3 and Section 3.2).

Recall thatFi is the facet of the polytopeP(B) (defined in Equation (2.1)) carried by the hyperplaneHi.Fi(X) is the part ofFi that is “cut off” by the negative halfspaceH�x delimited byHx = �(X)�. Thus,Fi(X) is the facet of the polytopePx carried byHi. (Px is defined in Equation (3.1). It is highlighted in

Figure 3.14.)Fi(X) projects vertically ontoPi(X), thus, the volume�i(X) is alternatively defined by the

volume of the projection ofFi(X). Let fi(X) be the (d-dimensional) volume ofFi(X). It is clear that the

differentiability offi implies the differentiability of�i.
Consider Figure 3.14. By definition, withX = X(t), Fi(X) = Fi \ L(t)��. With the hyperplanesL�, we can sweep the facetFi(X). Consider the(d � 1)-dimensional volumevi(u) of Fi \ L(u)�. We

obtain the volume ofFi(X) by integratingvi(u) from u = t to1. There exists an interval(
0; 
1) onL
such thatvi(u) 6= 0 for all u 2 (
0; 
1) andvi(u) = 0 outside this interval, i.e. for allu 2 ℄
0; 
1[. Of

course, ift � 
0, the volume is zero at the beginning of the sweep untilu = 
0. (The bounds
0 and
1 are

characterized in more detail later.)

The volume functionfi atX(t) with X(t) 2 U n B isfi(X(t)) = ( R 
1max(t;
0) vi(u)du if t 2 (0; 
1);0 otherwise.
(3.4)

By the fundamental theorem of calculus, the differentiability of fi Æ ��1 restricted toL follows from the

continuity ofvi in (
0; 
1). If vi was continuous in(
0; 
1) but discontinuous at a bound
 of the interval

(
 = 
0 or 
 = 
1), fi Æ ��1 would be differentiable onL except att = 
.
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Fi(X)
L(
0) L(
1)�(Bi)L(0)

L
�(X)

Px
P(B)

�(X)�
L(
0)�

L(
1)�

Figure 3.14: With�(X) = L(t): sweepingFi(X) by the hyperplanes dual toL(u) for u 2 (t; 
1).
If L contains no point of discontinuity ofvi, the derivative isdfi(X(t))dt = ( �vi(t) if t 2 (
0; 
1);0 if 0 < t � 
0 or t � 
1: (3.5)

We will now determine the interval bounds
0 and
1 and we show thatvi is continuous onL except at

some isolated points that correspond to a bound
 of the interval(
0; 
1).
The two bounds
0 and
1 correspond to the first and the last intersection ofL with the hyperplanes

of �(O)� incident to�(Bi). The intersections are ordered by increasing value ofu. The upper bound
1 corresponds to the parameter at whichL leaves the support�(�i) of �i Æ ��1. For all u > 
1, L(u)
lies in 
one(�(Bi)). In Section 3.2, we explained that, in this case,��1(L(u)) =2 �i. For all u smaller

than the lower bound
0, L(u) is sufficiently low so that�(Bi) is no longer on the lower convex hull of�(B) [ L(u). This means, with respect to the dual hyperplanes, that the halfspaceL(u)�� contains the

entire facetFi. Consequently,L(u)� does not intersectFi. (Refer again to Figure 3.14.)vi is, indeed, a continuous function in(
0; 
1) because the boundary ofFi are portions of hyperplanes

andvi(u) is the volume ofL(u)� \ Fi. It is discontinuous at
 (
 = 
0 or 
 = 
1) only if L(
)� contains

a (d � 1)-dimensional facet ofFi. This (d � 1)-dimensional facet is the intersection ofHi with some

hyperplaneHj = �(Bj)� whereBj is a neighbor ofBi in Reg(B).
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It is easier to explain this situation in the power diagram. The intersection ofHi andL(u)� projects

onto the ((d� 1) dimensional) bisector hyperplane of the two weighted pointsBi andX(u), calledH(u).
As u varies,H(u) sweeps the sub-cellPi(X). vi(u) is discontinuous at
 only if H(
) coincides with the

bisector hyperplaneHij as depicted in Figure 3.15.3 If the vertical projection ofL contains the center

of some siteBj that is a neighbor ofBi in Reg(B), there must be a pointL(u) such thatH(u) = Hij
(because the hyperplanesH(u) are parallel toHij and they sweep the entire facet). This must be eitherL(
0) or L(
1) becauseHij contains the boundary of the cellFi.

l X(t)X(
1)H(
1)H(t)
�i(X(t))Bi l X(t)H(
1)H(t)

Bi
Bj

�i(X(t))
X(
1)

(a) (b)

Figure 3.15:Pi(X(t)) is swept by parallel hyperplanes asu varies fromt to 
1. (a) The volume functionv(u) is continuous over[t; 
1℄. (b) v(u) is discontinuous at
1 becauseH(
1) = Hij .
From duality, we can derive that ifvi is discontinuous at
, thenL(
) lies on the line through�(Bi) and�(Bj): the hyperplanes�(Bi)�; �(Bj)� andL(
)� have a common(d� 1)-dimensional intersection, thus,

by duality,�(Bi); �(Bj) andL(
) must lie on one line. The lines through�(Bi) and�(Bj) whereBj is a

neighbor ofBi in Reg(B) are exactly the edges of
one(�(Bi)).
The differentiability offi implies the differentiability of�i. We conclude that�i restricted to��1(L)

is differentiable as long as the pointL(t) does not lie on an edge of
one(�(Bi)). So far, we excluded the

case thatL is a vertical ray. However, the proof works in the same mannersince the facetFi(X) can also

be swept by the hyperplanesL� which are, this time, parallel. In Lemma 3.10, we determine the gradient

of �i in this direction. This will complete the proof.

We can now conclude. LetEi be the setX 2 �i such that�(X) lies on an edge of
one(�(Bi)).
Obviously,Ei is a subset ofRd � R with measure0. TheC1 continuity of the restriction of�i to ��1(L)
implies the differentiability of�i in all U n Ei as we argued in the beginning. The differentiability of�i

3Both drawings are schematic so there no coherence between the distances.
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follows from the differentiability of�i. TheC0 continuity of�i has been shown in the preceding section.

At the pointsEi n B it is obvious because�i is defined by volume functions which areC0 continuous. AtBj 2 B, theC0 continuity of�i(X) is extended by continuity. �
Continuity properties with respect to a data siteBj
In Chapter 6, we make use of the partial derivative of�i(X) with respect to a sample pointBj assumingX to be fixed. The proof of the following lemma about the continuity properties of�i(X) with respect

to a sample pointBj is useful to understand the formula for the gradient. The result is the same as in

unweighted Voronoi diagrams.

Lemma 3.7 The natural neighbor coordinate�i(X) of X 2 U is aC0 continuous function ofBj 2 B
and aC1 continuous function ofBj 2 B except at a finite set of lines inU .

pj pix pj pix pj pix
(a) (b) (c)

Figure 3.16: (a)P�ji (X) with Pow(B�j) (dotted lines) andPow(B�j+) (slashed lines) (b)P�ji (Bj)
withPow(B�j)(dotted) andPow(B)(solid) (c)P�j+i (Bj)withPow(B�j+) (slashed) andPow+(B)(small

slashed lines).

pj pix pj pix
(a) (b)

Figure 3.17: (a)Pi(X) (b) dark grey:P�j+i (Bj), middle grey:P�ji (Bj) nP�j+i (Bj), light grey:Pi(X).
Proof: Piper’s proof [84, section 3] generalizes directly to powerdiagrams: LetB�j = B n fBjg andB�j+ = B n fBjg [ fXg. In the sequel, the superscript�j (resp.�j+) indicates thatPow(B�j) (resp.



40 Chapter 3. Natural neighbor coordinates in power diagramsPow(B�j+)) is referred to. Similar to Piper [84], the sub-cellPi(X) is obtained as a composition of

several power cells fromPow(B�j) andPow(B�j+):Pi(X) = P�ji (X) n [P�ji (Bj) n P�j+i (Bj)℄; i 6= j (3.6)

See Figures 3.16 and 3.17 for a geometric proof of the formulain two dimensions. In the sequel we give a

formal proof that is valid in any dimension. It consists of writing the equations of each power cell as done

in [84].

The subcellsP�ji (Bj) andP�j+i (Bj) consists of the points with less power distance toBi than to any

site exceptBj . In P�j+i (Bj), the points have also less power toX than toBi. The power distance of a

pointp with respect toX is denoted�x(p). Its power distance with respect toBj is �j(p).P�ji (Bj) = fp 2 Rd : �i(p) � �k(p); i 6= k; j; �j(p) � �i(p)g:P�j+i (Bj) = fp 2 Rd : �i(p) � �k(p); i 6= k; j; �i(p) � �x(p); �j(p) � �i(p)g:P�ji (Bj) without its subcellP�j+i (Bj) isP�ji (Bj) n P�j+i (Bj) = fp 2 Rd : �i(p) � �k(p); i 6= k; j; �i(p) > �x(p); �j(p) � �i(p)g:
In the power diagram withoutBj , the subcellP�ji (X) has the equationP�ji (X) = fp 2 Rd : �i(p) � �k(p); i 6= k; j; �x(p) � �i(p)g:
We gather the equations to obtainP�ji (X) n [P�ji (Bj) n P�j+i (Bj)℄ = fp 2 Rd : �i(p) � �k(p); i 6= k; j; �x(p) � �i(p); �j(p) > �i(p)g= fp 2 Rd : �i(p) � �k(p); i 6= k; �x(p) � �i(p)g= Pi(X):
This is exactly the subcellPi(X) which proves Equation 3.6.

With Equation 3.6 and sinceP�j+i (Bj) is included inP�ji (Bj) while P�ji (Bj) n P�j+i (Bj) is included

in P�ji (X), the volume�i(X) can be re-written�i(X) = ��ji (X) � [��ji (Bj)� ��j+i (Bj)℄; i 6= j: (3.7)

A similar re-writing is possible for the casei = j. See also [84].i = j : �i(X) =Xk 6=i ��ik (Bi)� [Xk 6=i ��i+k (Bi) + ��i+x (Bi)℄: (3.8)

It follows that the continuity and differentiability of�i(X) = �i(X)Pi �i(X) wrt.Bj depends on the continu-

ity properties of��ji (Bj) and��j+i (Bj). For both functions, Lemma 3.6 applies as long as the cell ofBj
is not empty inPow(B)+, i.e.��j+(Bj) = 0. However, as the cell ofBj disappears, i.e.��j+(Bj)! 0,

also its subcells disappear, so that�i(X)! ��ji (X). The latter function is constant wrt.Bj. �
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3.4 Gradient of the coordinate function

In this section, we derive the formula for the gradient of thevolume function�i. With �i(X) = �i(X)Pni=1 �i(X) ,
the gradient of the coordinate function can easily be determined fromr�i(X). We first state the lemma.

The proof is given in two parts because we compute the partialderivatives with respect tox andwx
separately. The one-dimensional case is proven apart. Notice thatr�i(X) = 0 if Pi(X) = ; or Pi(X) =P (Bi) because, in both cases,�i(X) is constant with respect toX. The gradient of�i is well defined and

different from zero only inside the setUi withUi := fX 2 U n Ei j Pi(X) 6= ; andPi(X) 6= P (Bi)g:
Lemma 3.8 LetX 2 U n Ei. The gradient of the volume function�i(X) which is the volume ofPi(X) inPow+(B) is r�i(X) = 8>><>>: vixkpi�xk  
ix � x12 !

if X 2 Ui;0 otherwise,

wherevix is the(d � 1)-dimensional volume of the facePi(X) of Pow+(B), for d > 1, and
ix is the

centroid ofPi(X), 
ix = 1vix Zq2Pi(X) qdq:
For d = 1, vix = 1.

The gradient in the one-dimensional case

We prove at first the one-dimensional case. Assume thatX 2 Ui. Otherwiser�i(X) = 0 because�i(X)
is constant. Ford = 1, 
ix is the vertexP+(X;Bi) of Pow+(B) and�i(X) = kP+(X;Bi)� P (Bj ; Bi)k:
See Figure 3.18. Solving�i(P+(X;Bi)) = �x(P+(X;Bi)), we obtain the equation of the vertexP+(X;Bi): P+(X;Bi) = x+ pi2 + wx � wi2(pi � x) :
Let Y = (y;wy). The volume�i(Y ) and the vertexP+(Y;Bi) are defined in the same way as forX. IfY is close enough toX (so thatP+(X;Bi) lies on the same side ofP (Bj ; Bi) asP+(Y;Bi)), the sign ofP+(X;Bi) � P (Bj ; Bi) andP+(Y;Bi) � P (Bj ; Bi) is the same. It is determined by the sign ofpi � x
(cf. Figure 3.18). We obtaink�i(X)� �i(Y )k = kP+(X;Bi)� P+(Y;Bi)k = kx� y2 + wx � wi2(pi � x) � wy � wi2(pi � y)k:
We compute the two directional derivatives with respect tox and towx. In order to obtain the derivative



42 Chapter 3. Natural neighbor coordinates in power diagrams

BiBj P (Bj ; Bi) XP+(X;Bi)Pi(X)P+(X;Bj)
Figure 3.18:Pi(X) is delimited byP (Bj ; Bi) andP (X;Bi).

wrt. x, we takeY = (x+ h;wx) and get��(X)�x = limh!0 kP+(X;Bi)� P+(Y;Bi)kh (pi � x)kpi � xk = k12+ wx � wi2(pi � x)2 k (pi � x)kpi � xk = 1kpi � xk (
ix�x);
because
ix = P+(X;Bi) andP+(X;Bi)� x = pi�x2 + wx�wi2(pi�x) .
To compute the derivative with respect to the weightwx, we takeY = (x;wx + h):��(X)�wx = limh!0 �i(X)� �i(Y )h = 12kpi � xk :
This proves Lemma 3.8 ford = 1 andX 2 Ui:d = 1 : r�i(X) = 1kpi � xk  
ix � x12 ! :
Partial derivative with respect to x
Piper derived a formula for the gradient of the volume function�i(X) in the unweighted Voronoi diagram.

His proof can be adapted to the weighted case. For dimensionsd > 2, however, we show a simpler proof

by induction over the dimension. We consider thed-dimensional derivative of the volume function�i(X)
as a function of the point locationx while the weightwx is constant,��x�i(X) := (��i(X)�x1 ; ��i(X)�x2 ; : : : ; ��i(X)�xd ):
Lemma 3.9 Let X 2 U n Ei. The gradient of the volume function�i(X) as a function ofx with fixed

weightwx is ��x�i(X) = ( vixkpi�xk��!x
ix if X 2 Ui;0 otherwise,

wherevix and
ix are defined as in Lemma 3.8.

Proof: Suppose thatX 2 Ui. Otherwiser�i(X) = 0 because�i(X) is constant. First, we consider the

two-dimensional case,d = 2. The proof follows all steps of Piper’s proof with some smalldifferences.

Let the vertices of the edgeP+(X;Bi) be calledai1 andai2. We suppose that the vertexai1 is dual to the

triangleF+(Bi; X;Bj) 2 Reg+(B). The gradient is determined asx moves on a circle centered on the
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r(t)
ai1 x pi ai2ai2(t)pj

Figure 3.19: Replacingx by r(t) changesai2 but notai1.

vertexai1 (thus, we compute the scalar product of the gradient with thevector��!xai1? that is orthogonal

to��!xai1). Contrary to the unweighted case, this circle does not necessarily pass through the centers of the

two other generators ofai1. However, asx moves on this circle,ai1 remains the vertex dual to the triangleF+(Bi;X;Bj). Only the second vertexai2 changes as shown in Figure 3.19. We proceed as Piper and

t
�(t)r(t)x ai1 pi�(t)

ai2 ai2(t)vix vix(t)
Figure 3.20: The area of the highlighted triangle isg(t)� g(0).

assume the circle to be parameterized counterclockwise byr(t) such thatr(0) = x and t is the angle\xai1r(t). DefineX(t) = (r(t); wx) andg(t) = �i(X(t)). We want to compute the derivativeg0(0)
given byg0(0) = limt!0 g(t)�g(0)t . Letai2(t) be the vertex of the edgeP+(X(t); Bi) other thanai1 – see

Figure 3.20. For small enought, the difference between the power cells att0 = 0 andt is a triangle with

area12 sin(�(t))vixvix(t) where�(t) is the angle\xpir(t) and,vix(t) is the volume of the face between



44 Chapter 3. Natural neighbor coordinates in power diagramsX(t) andBi. (The triangle is highlighted in Figure 3.20.) We determinelimt!0 sin(�(t))t : Let � be the

tr(t)x ai1 pi�(t)m�
Figure 3.21: Ast! 0, r(t) lies on the tangent line.

angle atx in the triangle(xr(t)pi). With law of sines, we can rewritesin(�(t)):sin(�(t))kx� r(t)k = sin�kpi � r(t)k ) sin(�(t)) = sin� kx� r(t)kkpi � r(t)k : (3.9)

For lim t! 0, r(t) lies on the line perpendicular to the line(ai1x) containingx. Therefore, we approxi-

mate limt!0 kx� r(t)k = limt!0 tan(t)kx� ai1k = limt!0 t kx� ai1k: (3.10)

Furthermore, limt!0 kpi � r(t)k = kpi � xk: (3.11)

With Equations (3.9), (3.10), and (3.11), we obtain:limt!0 sin(�(t))t = sin(�) kx� r(t)ktkpi � r(t)k = sin(�) kx� ai1kkx� pik = kx�mkkx� pik :
wherem is the orthogonal projection ofai1 onto the line(xpi). The last equality is due to the fact that��!xm is the orthogonal projection of��!xai1 onto�!xpi (thus,kx�mk = 
os(�2 � �)kx � ai1k).
We have shown that ��x�i(X)��!xai1? = g0(0) = v2ixkx�mk2kx � pik (3.12)

By a similar argument, the gradient can be determined in a second direction��!xai2? whereai2 denotes the

second vertex ofP+(X;Bi). We get ��x�i(X)��!xai2? = �v2ixkx�mk2kx�pik :
Hence, we only need to verify that the two directional derivatives correspond to the formula in the lemma.

Notice that��!x
ix = 12(��!xai1 +��!xai2).��x�i(X)��!xai1? = vix2kpi � xk (��!xai1 +��!xai2)��!xai1? = vix2kpi � xk��!xai2��!xai1?
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Piper remarks that��!xai2��!xai1? is twice the area of the triangle(xai1ai2). The same quantity can be

written asvixkx �mk sincekx �mk is the triangle’s height andvix = kai1 � ai2k. Hence, replacing��!xai2��!xai1? = vixkx �mk, we obtain the directional derivative of Equation (3.12). Similar arguments

hold for the second direction.

The generalization to higher dimensions is obtained by an inductive argument over the dimension. The

volume�i(X) in ad-dimensional power diagram can be obtained by sweeping the cell Pi(X) with parallel

hyperplanes and by integrating the volume of the intersection of Pi(X) with the sweeping plane. We

denote the sweeping hyperplane byH(t) wheret 2 [t0; t1℄ such thatH(t) \ P (Bi;X) 6= ; 8 t 2 [t0; t1℄ and H(t) \ P (Bi;X) = ;; otherwise.

From Lemma 2.3, we know that the intersectionH(t) \ Pow(B) is a(d� 1)-dimensional power diagram

– assuming thatH(t) is in general position. However, it is sufficient to prove thegradient ind linearly

independent directions so that this is no constraint. Although the sweeping plane depends on the direction

for which we compute the gradient, degenerate positions canbe avoided.

Letpi(t) be the projection ofpi ontoH(t) andwi(t) = wi�kpi�pi(t)k2. We use the same notation as

in Lemma 2.3 and, for eachBi 2 B, we denote the site corresponding toBi inH(t)\Pow(B) byBi(t) =(pi(t); wi(t)) (the same forX(t)). Of course,�i(X(t)) is the volume ofPi(X(t)) = H(t) \ Pi(X).
The gradient of�i(X) is the integral of the gradients��x(t)�i(X(t)) over the interval[t0; t1℄:�i(X) = Z t1t0 �i(X(t)) dt =) ��x�i(X) = Z t1t0 ��x�i(X(t)) dt:

It is computed in a fixed, arbitrary direction�!v other than�!xpi. We choose the sweeping plane to be parallel

to�!v and to�!xpi. Thus, during the sweep, we maintainkpi � xk = kpi(t)� x(t)k. Observe that for any

vector�!xy: �����!x(t)y(t) � �!v = �!xy � �!v
because�!v is in the sweeping planeH(t) onto which we project.

For d = 2, we know the gradient from the first part of the proof. In direction �!v , by replacing the

expression for the centroid, it writes as follows:d = 2 : ��x�i(X) � �!v = 1kpi � xk Zq2Pi(X)�!xq � �!v dq:
By inductive hypothesis, we suppose that we know the gradient for dimensiond�1, d > 2, in the diagramH(t) \ Pow(B): ��x�i(X(t)) � �!v = 1kpi(t)� x(t)k Zq2Pi(X(t)) ���!x(t)q � �!v dq: (3.13)
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We show that��x�i(X) � �!v = (Z t1t0 ��x�i(X(t)) dt ) � �!v = Z t1t0 ( 1kpi(t)� x(t)k Zq2Pi(X(t))���!x(t)q � �!v dq) dt= 1kpi � xk Z t1t0 Zq2Pi(X(t))�!xq � �!v dq dt= ( 1kpi � xk Zq2Pi(X)�!xq dq) � �!v : �
Derivative as function ofwx
Lemma 3.10 The partial derivative of the volume function�i(X), X 2 U n Ei, with respect towx is��wx�i(X) = ( vix2kpi�xk if X 2 Ui;0 otherwise,

wherevix is defined as in Lemma 3.8.

Proof: Suppose thatX 2 Ui. Otherwiser�i(X) = 0 because�i(X) is constant. The volume ofPi(X)
can be obtained by sweeping the cell with a hyperplaneH(t) parallel to the bisector hyperplaneHix =H(0) of Bi andX. Leth be the maximum distance of a vertex ofPi(X) toH(0), andH(t) be at distancet fromH(0); t 2 [0 : : : h℄. Furthermore,li(t) is the volumeH(t) \ Pi(X). We write�i(X) = Z h0 li(t)dt: (3.14)

Another way to obtain this sweep is to decrease the weightwx until the cellPi(X) disappears and to

consider the volumevi((x; w)) of the intersection of the bisector hyperplane of(x; w) andBi with P (Bi).
Refer to Figure 3.22(a). We can writet as a function ofw with li(t) = vi((x; w)) for t = f(w). Changing

the variable in Equation 3.14, we obtain�i(X) = Z f�1(h)f�1(0) �li(f(w))f 0(w)dw:
We need to determine the functionf(w), its derivatef 0(w) and the new boundariesf�1(0) andf�1(h).
From the formula for the power distance from Chapter 2, we deduce the distance fromx to the closest

pointy 2 Hix by solving�i(y) = �x(y):kx� yk = 12kpi � xk+ wx � wi2kpi � xk :
The distance fromx to the closest pointy(t) 2 H(t) (see Figure 3.22) iskx� y(t)k = 12kpi � xk+ w � wi2kpi � xk :
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(pi; 0)
(x; wx(t))

P (Bi) \Hix
P (Bi) \Hix(t)

(x; wx)
(pi; 0)

(x; wx)P (Bi) \H(t)
P (Bi) \Hixy y(t)

Figure 3.22: (a) SweepingPi(x) by changingwx. (b) The distance between betweeny and y(t) ist = wx�w2kpi�xk .

Hence,t, the distance betweenHix andH(t), ist = f(w) = kx� yk � kx� y(t)k = wx � w2kpi � xk with derivativef 0(w) = � 12kpi � xk :
Let w; = f�1(h) so thath = wx�w;2kpi�xk . w; is the largest weight withvi((x; w;)) = 0. With these results

(and replacingli(f(w)) = vi((x; w))), Equation 3.4 writes�i(X) = Z wxw; vi((x; w))2kpi � xkdw:
Notice thatf is continuous over the intervalw; towx andli(t) is continuous overf(w;) to f(wx) –except

whenHix contains a bisector hyperplane ofpi and one of its neighbors. This is excluded onU n Ei as

explained in the proof of Lemma 3.6. The result follows:��wx�i(X) = ��wx  Z wxw; vi((x; w))2kpi � xkdw! = vi((x; wx))2kpi � xk = vix2kpi � xk : �
With Lemma 3.9 and the preceding lemma, we complete the proofof Lemma 3.8.

Remark: It is important to notice that, except ifX 2 Ei, the volumevix of the faceP+(X;Bi)
approaches zero asPi(X)! ; orPi(X)! P (Bi). Consequently, the gradient is continuous inU n Ei. IfX ! Y 2 Ei, the bisector ofX andBi contains a ((d� 1)-dimensional) face ofP (Bi), solimX!Y vix >0. This is explained in the proof of Lemma 3.6. Refer to Figure 3.15.

Gradient as function of a data siteBj
Let Pij(X) be the part of the faceP (Bi; Bj) that is “stolen” from it at the insertion ofX into Pow(B),Pij(X) := P (Bi; Bj) \ P+(X):
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We are interested in the gradient of the volume�i(X) of the subcellPi(X) as a function of a data siteBj.Pi(X) depends onBj wheneverPij(X) 6= ;. We defineUij := fX 2 U n Eij Pij(X) 6= ;g:
Only if X 2 Uij, the subcellPi(X) exists and is influenced byBj . OutsideUij , Pi(X) is constant asBj
changes. The gradient of the volume function�i(X) is therefore zero.

Lemma 3.11 The gradient of the volume function�i(X), X 2 U n Ei, with respect toBj 2 B is

(i) for j 6= i: ��Bj �i(X) = 8>><>>: �vij(X)kpi�pjk  
ij(X)� pj12 !
if X 2 Uij ;0 otherwise,

(ii) else, ��Bi�i(X) = 8>><>>: Pk 6=i vik(X)kpi�pkk  
ik(X) � pi12 !� vixkpi�xk  
ix � pi12 !
if X 2 Ui;0 otherwise,

wherevij(X) is the volume of the facePij(X) = Pi(X) \ Pj(X) and
ij(X) is its centroid.vix and
ix
are defined as in Lemma 3.9.

Proof: ForX =2 Uij, �i(X) is constant with respect toBj, so the gradient is0.

SupposeX 2 Uij. The proof follows from Lemma 3.7 and Lemma 3.8. For the casei 6= j:��Bj �i(X) = ��Bj ���ji (X) � [��ji (Bj)� ��j+i (Bj)℄� = ��Bj ����ji (Bj) + ��j+i (Bj)� ;
because��ji (X) is constant wrt.Bj.

Lemma 3.8 applied toBj in the power diagramPow�j(B) yields the gradient ��Bj ��ji (Bj). We write

the partial derivatives with respect topj andwj separately and replace the expression for the centroid.vij
denotes the volume of the faceP (Bi; Bj).��pj��ji (Bj) = 1kpi � pjk Zq2P (Bi;Bj)��!pjq dq (3.15)��wj ��ji (Bj) = vij2kpi � pjk : (3.16)

The gradient ��Bj ��j+i (Bj) is very similar. InPow�j+(B), the face betweenBi andBj is P+(Bi; Bj)
and notP (Bi; Bj). To obtain ��Bj ��j+i (Bj), we replace, in the preceding equations,P (Bi; Bj) byP+(Bi; Bj) andvij by the volumev+ij of P+(Bi; Bj).
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pj pixPij(X)P (Bi; Bj) P+(Bi; Bj)
Figure 3.23: The simplification of the gradient formula.

From Figure 3.23, it is easy to tell thatP (Bi; Bj) n P+(Bi; Bj) = Pij(X). This simplifies the expres-

sion of the gradient. The partial derivatives with respect to pj andwj reduce to��pj�i(X) = � 1kpi � pjk Zq2P (Bi;Bj)��!pjq dq+ 1kpi � pjk Zq2P+(Bi;Bj)��!pjq dq= � 1kpi � pjk Zq2P (Bi;Bj)nP+(Bi;Bj)��!pjq dq= � 1kpi � pjk Zq2Pij(X)��!pjq dq = �vij(X)kpi � pjk������!pj
ij(X); and��wj �i(X) = �vij + v+ij2kpi � pjk = �vij(X)2kpi � pjk :
For the casej = i, we simplify Equation 3.8 in the same way.��Bi�i(X) = ��Bi 0�Xk 6=i ��ik (Bi)�Xk 6=i ��i+k (Bi)� ��i+X (Bi)1A= Xk 6=i ��Bi ���ik (Bi)� ��i+k (Bi)�� ��Bi��i+X (Bi)= Xk 6=i vik(X)kpi � pkk  
ik(X)� pi12 !� vixkpi � xk  
ix � pi12 !�

Limit behavior of �i(X) andr �i(X) at Bj
Since the coordinate function is not differentiable on the sites ofB, it is particularly interesting to look

at the behavior of�i asX approaches a siteBj . Remember that only ifwx � wj, X is in the definition

domainU asx ! pj. The critical case occurs if the weights approach faster than the point positions, i.e.wx�wjkx�pjk ! 0 asX ! Bj. Otherwise,r�i(X) = 0 (asX ! Bj). We show that the coordinate function

is Lipschitz atBj and that the norm of the gradient is bounded. BykBj �Xk, we denote the Euclidean

distance betweenX andBj in Rd � R.
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At first, we show two corollaries concerning the volume function �i.
Corollary 3.12 There exist some real constants
1 and
2 such that for any unit vector�!u 2 Rd � R andX 2 U ,

1. if kX �Bjk sufficiently small and withi 6= j, jr �i(X) � �!u j � 
1;
2. jr �j(X) � �!u j � 
2kx�pjk :

Proof: From Lemma 3.9, we know the gradient of�i(X).
Casei 6= j: if kX�Bjk is sufficiently small,r�i(X) has a bounded norm for alli 6= j becausekpi�xk
andk
ix � xk are bounded andvix is bounded or approaches zero. Thus,jr �i(X) � �!u j = j vixkpi � xk  
ix � x12 ! � �!u j � 
1; if i 6= j:
In fact, vix becomes0 as the cellPi(X) disappears and�i(X) ! 0 or asPi(X) is completely contained

in P+(X) and�i(X)! �(Bi). The exception to this behavior occurs ifX ! Y 2 Ei.
Casei = j: Sincevjx andk
jx � xk are bounded,jr �j(X) � �!u j = j vjxkpj � xk  
jx � x12 ! � �!u j � 
2kpj � xk :�
Corollary 3.13 There exists some real constant
3, such that fori 6= j,�i(X) � 
3 kX �Bjk with kX �Bjk small enough.

Proof: We write the Taylor expansion of�i(Bj) atX:�i(Bj) = �i(X) +r�i(X) (Bj �X) +O(kX �Bjk2):
Since�i(Bj) = 0, we can bound�(X) by�i(X) = r�i(X) (X �Bj) +O(kX �Bjk2) � 
3 kX �Bjk;
with Corollary 3.12 (1) sincei 6= j andkX �Bjk is small. �
Lemma 3.14 The coordinate function�i(X) is Lipschitz atX = Bj , i.e. there exists a constant
4 2 R
such that j�i(X)� �i(Bj)j � 
4 kX �Bjk with kX �Bjk small enough.:
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Proof: Let 
6 and
7 denote real constants.

Casei 6= j: Because�i(X) = �i(X)�(X) andlimX!Bj �(X) = 
6, the lemma is proven with Corollary 3.13.

Indeed, limX!Bj j�i(X) � �i(Bj)j = limX!Bj j�i(X)j = limX!Bj 1
6 �i(X) � 
7 kX �Bjk; (3.17)

Casei = j: With �j(X) = 1�Pk 6=j �k(X), we have shown the lemma becauselimX!Bj j�j(X)� �j(Bj)j = limX!Bj j1�Xk 6=j �k(X)� 1j = limX!Bj j �Xk 6=j �k(X)j� Xk 6=j 
7 kX �Bjk � 
4 kX �Bjk:�
Lemma 3.15 The norm of the gradientr �i(X) is bounded, i.e. there exists a constant real value
5 such

that for any unit vector�!u in Rd � R jr �i(X) � �!u j � 
5:
Proof: Again, let
k, k = 1; : : : denote real constants.

With �(X) =Pk �k(X), the gradient of the coordinate function�i(X) = �i(X)�(X) can be written asr �i(X) = r �i(X) �(X)� �i(X)r �(X)�(X)2 = 1�(X)  r �i(X)� �i(X)Xk r �k(X)!
At first, we suppose thatkX � Bjk is sufficiently small and consider the casei 6= j. We make three

observations:

1. Fori 6= j, we know from Lemma 3.14 that�i(X) � 
4kX �Bjk.
2. Fork 6= j, we know from Corollary 3.12 thatjr�k(X) � �!u j � 
1. Therefore,�i(X)jr�k(X) � �!u j � 
8kX �Bjk:
3. Fork = j, Corollary 3.12 yieldsjr�j(X) � �!u j � 
2kx�pjk . Consequently, with Lemma 3.14,�i(X)jr�j(X) � �!u j � 
2
4 kX �Bjkkx� pjk � 
2
4 (kx� pjk+ jwx � wj j)kx� pjk � 
9;
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because eitherjwx � wjj � kx� pjk, or�i(X)jr�j(X) � �!u j = 0 asx! pj.
Using again Corollary 3.12 (to confirm thatjr �i(X) � �!u j � 
1), we obtainjr �i(X) � �!u j � 1�(X) 0�jr �i(X) � �!u j+ �i(X)jr �j(X) � �!u j+Xk 6=j �i(X)jr �k(X) � �!u j1A� 
10: (3.18)

For the casei = j, we exploit the following relation which is true for every normalized coordinate system:nXi=1 �i(X) = 1 =) nXi=1 r�i(X) = 0:
With the right equation, we can expressr �j(X) = �Pni=1r �i(X) and the result follows immediately

from the bound of Equation (3.18):jr �j(X) � �!u j = j � nXi=1 r �i(X) � �!u j � n 
10 � 
5: �
3.5 Non-convex natural neighbor coordinates

In this section, we define a system of coordinates that is not convex, i.e. the coordinate functions may be

negative, but it has an interesting additional property. Itis an unpublished idea of Clarkson that is described

in [35]. By combining natural neighbor coordinates, a coordinate function is constructed such thatx is a

linear combination of its natural neighbors, and, at the same time,x2 = xtx, the square of the norm ofx,

is a linear combination of the square norms of the neighbor points. However, to obtain this goal, we give

up the convexity condition and allow negative coordinates.

As in the original work, our exposition uses natural neighbor coordinates for Voronoi diagrams. Re-call

thatP = fp1; : : : ;png is a set ofn points inRd andVor(P) its Voronoi diagram. Since the weight is

constantly zero, we denote the coordinate function by�i(x) and the volume function by�i(x).
Definition of the coordinate function 
ij
We now describe how to define the coordinate function
ij that has the above properties. Let�+x (pi) be the

natural coordinate ofpi with respect tox in the power diagramVor(P [ fxg n fpig), and�+j (pi) be the

natural coordinate ofpi with respect topj in the same diagram. They are defined by the corresponding

volume functions�+x (pi), �+j (pi), and�+(pi), the volume of the cell ofpi in Vor+(P). See also Figure

3.24(a). We state precisely that�+x (pi) = �+x (pi)�+(pi) and �+j (pi) = �+j (pi)�+(pi) :
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We denote byI1(x) the set of indices of the natural neighbors ofx and byJi(x) the set of indices of

the Delaunay neighbors ofpi in Del+(P) other thanx. Let I2(x) = I1(x) [i2I1(x) Ji(x) be the natural

neighbors ofx as well as the neighbors inDel+(P) of the natural neighbors ofx (other thanx). Notice,I1(x) � I2(x). See Figure 3.24(b). The first observation is that the barycentric coordinate property is also

xpi pj
�+x (pi)

�+j (pi) xpiI2(x)
I1(x)

Figure 3.24: (a) The volume functions�+j (pi) and�+x (pi) defined fromVor(P [ fxg n fpig). �+(pi) is

the total volume of the highlighted zones. (b) The first and second ring neighbors ofx.

true for any natural neighborpi of x wrt. �+j , i.e.pi = �+x (pi) x +Pj �+j (pi) pj. The equation for the

barycentric coordinate property ofpi can be re-arranged in order to expressx as a linear combination ofpi and its neighbors:pi = �+x (pi) x+ Xj2Ji(x) �+j (pi) pj () x = 1�+x (pi) (pi � Xj2Ji(x) �+j (pi) pj): (3.19)

We also know that x = Xi2I1(x) �i(x) pi: (3.20)

Sincef(x) = x2 is a convex function, we obtain from Equations 3.19 and 3.20 the following two inequal-

ities when taking the square of the points:4pi2 � �+x (pi) x2 + Xj2Ji(x) �+j (pi) pj2 () x2 � 1�+x (pi)(pi2 � Xj2Ji(x) �+j (pi) pj2)x2 = 0� Xi2I1(x) �i(x) pi1A2 � Xi2I1(x) �i(x) pi2: (3.21)

4Jensen’s inequality about the convex combination of a convex functionf says thatf(Pi sixi) �Pi sif(xi) wheresi are

positive real numbers with
Pi si = 1.
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The errors of both inequalities with respect tox2 areex = Xi2I1(x) �i(x)pi2 � x2; () x2 = Xi2I1(x) �i(x)pi2 � exei = x2 � 1�+x (pi)(pi2 � Xj2Ji(x) �+j (pi) pj2) () x2 = 1�+x (pi)(pi2 � Xj2Ji(x) �+j (pi)pj2) + ei:
From Inequalities 3.21, we know thatex andei are positive. We combine the equalities forx2 to obtainx2 = eiei + ex ( Xi2I1(x) �i(x) pi2)+ exei + ex ( 1�+x (pi) (pi2� Xj2Ji(x) �+j (pi) pj2)) =: Xj2I1(x)[Ji(x) 
ij(x) pj2:

(3.22)

The coordinate function
ij, i 2 I1(x); j 2 Ji(x)[ I1(x), is obtained by re-arranging all terms concerning

the same sample pointpj: 
ii(x) = eiei + ex�i(x) + exei + ex 1�+x (pi) (3.23)
ij(x) = eiei + ex�j(x)� exei + ex �+j (pi)�+x (pi) ; i 6= j: (3.24)

Notice that�j(x) = 0 if pj is not a natural neighbor ofx, in particular ifj 2 Ji(x)nI1(x), and�+j (pi) = 0
if pj is not a Delaunay neighbor ofpi in Del+(P), hence forj 2 I1(x) n Ji(x).

The sum of the coordinate functions is one because, it is a convex combination of two systems of

coordinates (which satisfy Definition 3.1):Xj2Ji(x)[I1(x) 
ij(x) = eiei + ex 0� Xj2I1(x) �j(x)1A+ exei + ex 1�+x (pi)(1� Xj2Ji(x) �+j (pi))= eiei + ex + exei + ex 1�+x (pi)(1� (1� �+x (pi))) = 1:
For the same reason, the barycentric coordinate property isrespected. It is a convex combination of

Equations 3.19 and 3.20:Xj2I1(x)[Ji(x) 
ij(x) pj = eiei + ex ( Xj2I1(x) �j(x) pj) + exei + ex ( 1�+x (pi) (pi � Xj2Ji(x) �+j (pi) pj)) = x:
We show that, atx = pk 2 P, the coordinate function evaluates to
ij(pk) = Æjk 8 i 2 I1(x); j 2 Ji(x) [ I1(x) :
Sincelimx!pk ex = 0 while limx!pk ei > 0 for i 6= k and with�j(pk) = 0 and�k(pk) = 1, we confirm

the result fori 6= k.

For i = k = j, �k(pk) = 1 andlimx!pk 1�+x (pk) = 1, so
kk(pk) = 1. For i = k andj 6= k, �j(pk) = 0
andlimx!pk �+j (pk)�+x (pk) = 0, so
kj (pk) = 0.
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For the final result, we combine the coordinate functions
ij for every natural neighborpi of x, i 2I1(x), weighted with�i(x). The following equalities are satisied:Xi2I1(x);j2I2(x) �i(x) 
ij(x) = Xi2I1(x) �i(x) 0� Xj2I2(x) 
ij(x)1A = Xi2I1(x) �i(x) = 1Xi2I1(x);j2I2(x) �i(x) 
ij(x) pj = xXi2I1(x);j2I2(x) �i(x) 
ij(x) pjtpj = xtx: (3.25)

The definition of the non-convex natual neighbor coordinates depends only on the local coordinate

property of the natural neighbor coordinates. The same techniques can be applied to natural neighbor

coordinates in power diagrams because they also satisfy this property as shown in Section 3.2.
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Chapter 4

Scattered data interpolation with natural

neighbor coordinates

In this chapter, we describe several methods for scattered data interpolation that are based on natural

neighbor coordinates. The methods are originally defined using natural neighbor coordinates from Voronoi

diagrams. They are based on the fact that natural neighbor coordinates are local and constitute a coordinate

system as described in Definition 3.1. Again, our expositionuses natural neighbor coordinates for Voronoi

diagrams as in the original works. The same techniques can beapplied to natural neighbor coordinates in

power diagrams since we will see in the sequel that the methods are based on the barycentric coordinate

property (Definition 3.1 (i)) and on the continuity and differential properties of the coordinate function.

In Section 3.2 and in Lemma 3.6, we have shown that these properties are equally satisfied by the natural

neighbor coordinate system defined in power diagrams.

We re-call thatP = fp1; : : : ;png is a set ofn point in Rd andVor(P) its Voronoi diagram. Since

the weight is constantly zero, we denote the coordinate function by�i(x), the volume function by�i(x),
and the gradient from Lemma 3.9 byr�(x) = ��x�((x; 0)). Let � be a scalar function defined on the

convex hull ofP. We assume that the function values are known at the points ofP, i.e. to eachpi 2 P,

we associatezi = �(pi). Sometimes, the gradient of� is also known atpi. We denote itgi = r�(pi).
The interpolation is carried out for a pointx in the convex hull ofP.

We overview the results presented in this chapter. We define two linear interpolants, Sibson’sZ0
interpolant (in Section 4.1) and Clarkson’sK0 interpolant (in Section 4.3). For all other interpolants, the

gradientsgi are assumed to be part of the input. Two interpolants, notably Sibson’sZ1 interpolant and

Farin’s interpolant, areC1 continuous. Sibson’sZ1 interpolant is described in Section 4.1. It re-produces

exactly spherical quadrics.1 The interpolant isC1 continuous by definition everywhere except at the data

pointsP (because all of its components including the natural coordinate functions areC1 continuous). The

first terms of the Taylor expansion ofZ1 at a data pointpj yield the proof of theC1 continuity atpj 2 P.

1A spherical quadric has the form�(x) = a+ btx+ 
 xtx.

57
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Farin’s interpolant is summarized in Section 4.2. It is based on Bernstein-Bézier techniques. In op-

position to Sibson’s interpolant, it re-produces general quadratic functions. Again, theC1 continuity is

obvious everywhere apart from the data points. There, it is obtained by a careful choice of the control net

of the Bézier simplex. At last, we present an interpolant called I1 that is designed to re-produce quadratic

functions. We bound its error with respect to the interpolation of general functions by looking at the first

terms of the Taylor expansion ofI1 around the pointx.

Figure 4.1: The example data set used in this chapter.

Throughout this chapter, we use the same data set to illustrate the results of the different interpolation

methods. It contains four non-zero function values and ninezero function values. The data set is depicted

in Figure 4.1. All methods are applied with gradient0 at the data points. In the function graph, the data

points correspond to the highest and the lowest points. We donot indicate them further because we want

to show theC1 continuity or discontinuity of the interpolant at these points. A second example is depicted

if an interpolation method relies on the gradient. We apply the same data set given the gradients that are

indicated by the horizontal lines in Figure 4.1. In this case, the data points are indicated in the graph.

4.1 Sibson’s natural neighbor interpolants

Sibson’s natural neighbor interpolants have found applications in a variety of areas such as geology, geo-

physics [89], and partial differential equations [27]. Dave Watson implemented Sibson’s interpolants [99],

[100] and his code has, for example, been integrated into theNCAR Graphics Software package for scien-

tific visualization and contouring.2

Linear precision interpolation

Sibson [91] defines a very simple interpolant that re-produces linear functions exactly. The interpolation

of �(x) is given as the linear combination of the function values at the natural neighbors weighted by the

2http://ngwww.ucar.edu/ng4.3/index.html
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coordinates: Z0(x) =Xi �i(x)zi:
Indeed, ifzi = a+ btpi for all natural neighbors ofx, we haveZ0(x) =Xi �i(x)(a + btpi) = a+ btx
by the barycentric coordinate property.

Sibson’sZ1 interpolant

The so-calledZ1 interpolant proposed by Sibson [91] isC1 continuous with gradientgi at pi. It re-

produces spherical quadrics of the form�(x) = a + btx + 
 xtx exactly. The proof relies on the

barycentric coordinate property of the natural neighbor coordinates and assumes that the gradient of� at

the data points is known or approximated from the function values as described in [91]. However, in this

context, we suppose that the function valuezi as well as the gradientgi of � is known atpi 2 P.

Sibson’sZ1 interpolant is a combination of the linear interpolantZ0 and an interpolant�. The inter-

polant� is the weighted sum of the first degree functions�i(x) = zi + git(x� pi); �(x) = Pi �i(x)kx�pik�i(x)Pi �i(x)kx�pik :
Sibson observed that the combination ofZ0 and� reconstructs exactly a spherical quadric if they are mixed

as follows:Z1(x) = �(x)Z0(x) + �(x)�(x)�(x) + �(x) where�(x) = Pi �i(x)kx � pikPi �i(x)kx�pik and�(x) =Xi �i(x)kx � pik2:
Indeed, suppose�(x) = a+btx+ 
 xtx andzi = a+ btpi + 
 pitpi. Each ofZ0 and� yields an error

with respect to�. We will show thatZ0(x)� �(x) = 
 �(x) and �(x)� �(x) = 
 �(x) (4.1)

In Z1, by the combination ofZ0 and�, the error terms cancel out andZ1(X) = �(X).
Using the barycentric coordinate property, the error ofZ0 with respect to� evaluates toZ0(x)� �(x) = Xi �i(x)zi � �(x) =Xi �i(x)(a+ btpi + 
 pitpi)� (a+ btx+ 
 xtx)= Xi �i(x)
pitpi � 
xtx = 
 Xi �i(x)pitpi!+ 
 �xtx� 2 xtx�= 
Xi �i(x)(pitpi + xtx� 2 xtpi) = 
Xi �i(x)(x � pi)t(x� pi) = 
 �(x):



60 Chapter 4. Scattered data interpolation with natural neighbor coordinates

The error�(x) with respect to�(x) depends on the error of�i(x) with respect to�(x),�i(x) = a+ btpi + 
 pitpi + (b+ 2 
 pi)t(x� pi) = a+ btx� 
 pitpi + 2 
 pitx= �(x)� 
 xtx� 
 pitpi + 2 
 pitx = �(x)� 
 (x� pi)t(x� pi):
For each�i(x), we obtain�(x) � �i(x) = 
 kpi � xk2, thus the error of�(x) with respect to�(x) is�(x)� �(x) = 
 �(x). Equations (4.1) are henceforth proven.

Rote [87] pointed out that other weighting factors are possible in order to mix the first degree functions�i. Instead of �i(x)kpi�xk , one might choose any smooth positive functionf with f(0) = 0 to weight the func-

tions�i with �i(x)f(kpi�xk) . The slope off around the origin determines how fast the interpolant approaches�i asx! pi.
In the general case,�(x) becomes �(x) = Pi �i(x) kx�pik2f(kx�pik)Pi �i(x)f(kx�pik) :

Figure 4.3 depicts the result of Sibson’s interpolants on a data-set with only four non-zero values and

gradient0. These data points correspond to the highest points of each graph. In Figure 4.2, the gradient is

directed from the data-point to the origin (the center of theinterpolated zone) as shown in Figure 4.1. The

data points correspond to the dark points indicated in the graph.

The gradient of Sibson’s interpolant

In the sequel, we show that theZ1 interpolant is indeedC1 continuous. This has been stated in Sibson’s

original paper but the proof was omitted. We develop the proof following a suggestion of Rote [87]. Except

on the data points themselves, the interpolant is differentiable since all ingredients, namely the coordinate

function, the distance function, and�i are differentiable. Therefore, we need to consider the gradient ofZ1 at a data pointpj.
We determine the first two terms of the Taylor expansion ofZ1 at pj. The first order term yields the

gradient ofZ1 atpj. In fact, we compute the Taylor expansions ofZ0 and� atpj and we bound�(x) and�(x). Putting the approximations that we obtain in Equations (4.2), (4.3) and (4.4) together will yield the

result.

In the Taylor expansion of� atpj, we writezi = zj + gjt(pi � pj) +O(kpi � pjk2) andZ0(x) = Xi �i(x)zi =Xi �i(x)(zj + gjt(pi � pj) +O(kpi � pjk2))= zj + gjt(x� pj) +Xi �i(x)O(kpi � pjk2):
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As x approachespj, the last term behaves as follows: from Lemma 3.14, we know that�i(x) = O(kx �pjk) while the factorO(kpi � pjk2) is constant. We deduce thatZ0(x) = zj +O(kx� pjk); asx! pj: (4.2)

Concerning the interpolant�, we observe that it is continuous and differentiable atpj because of following

two statements.

1. �(pj) = �j(pj) = zj,
because8i 6= j : limx!pj �i(x)kx�pik = 0; therefore,limx!pj �j(x)kx�pjk=Pi �i(x)kx�pik = 1.

2. r�(pj) = gj:
we use Lemma 3.14 to show that the partial derivative of� atpj with respect to thekth coordinate

corresponds to thekth coordinate ofgj. This proves the claim.

Let ik; k = 1; : : : ; d; be the unit vector along thekth coordinate axis, and letx(h) = pj + h ik. By

definition,h = kx(h) � pjk.���xk (pj) = limh!0 �(x(h)) � �(pj)h = limh!0 �(x(h)) � zjh= limh!0Pi �i(x(h))f(h) �i(x(h)) � �Pi �i(x(h))f(h) � zjhPi �i(x(h))f(h)= limh!0Pi 6=j �i(x(h))f(h) �i(x(h)) + �j (x(h))f(h) �j(x(h)) � �j (x(h))f(h) (1 + f(h)�j (x(h))Pi 6=j �i(x(h))f(h) )zjh�j(x(h))f(h) (1 + f(h)�j(x(h))Pi 6=j �i(x(h))f(h) )= limh!0 f(h)�j(x(h))Pi 6=j �i(x(h))f(h) �i(x(h)) + zj + gjt(x(h) � pj)� zj (1 + f(h)�j(x(h))Pi 6=j �i(x(h))f(h) )h (1 + f(h)�j(x(h))Pi 6=j �i(x(h))f(h) )= limh!0 gjt(x(h) � pj) + f(h) O(h)h (1 +O(h)) = limh!0gjt ik + f(h)O(1) = gjt ik:
We write the Taylor expansion of� atpj:�(x) = zj + gjt (x� pj) +O(kx� pjk2): (4.3)

For�(x), we obtain the following result by factorising the denominator and applying Lemma 3.14:�(x) = �j(x)f(kx�pjk)kx� pjk2 +Pi 6=j �i(x)f(kx�pik)kx� pik2�j(x)f(kx�pjk) (1 + f(kx�pjk)�j(x) Pi 6=j �i(x)f(kx�pik))= kx� pjk21 + f(kx� pjk) O(kx� pjk) + f(kx� pjk) O(kx� pjk)1 +O(kx� pjk)= O(kx� pjk2) + f(kx� pjk) O(kx� pjk):
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If we assume thatf is at least linear, then�(x) = O(kx�pjk2). With Lemma 3.14,�(x) isO(kx�pjk).
We get �(x)�(x) + �(x) = O(kx� pjk) and

�(x)�(x) + �(x) = 11 +O(kx� pjk) = 1 +O(kx� pjk): (4.4)

Putting the approximations of Equations (4.2), (4.3) and (4.4) together yieldsZ1(x) = �(x)�(x) + �(x)Z0(x) + �(x)�(x) + �(x)�(x)= �(x)�(x) + �(x) (zj +O(kx� pjk)) + �(x)�(x) + �(x) (zj + gjt (x� pj) +O(kx� pjk)2)= zj + gj(x� pj) +O(kx� pjk)2; asx! pj:
We deduce the gradient atpj, rZ1(pj) = gj:

(a) (b)

(c) (d)

Figure 4.2: The result of Sibson’sZ1 interpolants on 4 non-zero values with gradient directed tothe

center of the figure. From top left to bottom right:Z1 interpolants with (a)f(kx � pik) = pkpi � xk,
(b)f(kx�pik) = kx�pik, the “classical”Z1 interpolant, (c)f(kx�pik) = kx�pik2, (d)f(kx�pik) =kx� pik4.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.3: The result of Sibson’s interpolants on 4 non-zero values with gradient0. From top left to

bottom right: (a)Z0 interpolant,Z1 interpolants with (b)f(kx � pik) = pkpi � xk, (c)f(kx � pik) =kx � pik, the “classical”Z1 interpolant, (d)f(kx� pik) = kpi � xk1:5, (e)f(kx� pik) = kpi � xk2,
(f) f(kx� pik) = kpi � xk4.
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4.2 Farin’s C1 interpolant

Farin [56] extended Sibson’s work and realizes aC1 continuous interpolant by embedding natural neigh-

bor coordinates in the Bernstein-Bézier representation of a cubic simplex. Bernstein-Bézier patches and

related concepts are widely used in the area of computer-aided geometric design and surface approxima-

tion. An introduction to this theory can, for instance, be found in [57] or [38]. Farin’s interpolant has found

applications for example in partial differential equations [92] and in free form deformations [81] used for

hand simulation. Farin defines it only for the two-dimensional case.

In Section 3, we noticed that all points within a cell of the arrangement of Delaunay spheres have the

same natural neighbors. Farin shows that such a set of natural neighbors can be used as a support for a

multivariate Bézier simplex of arbitrary degree. Multivariate Bézier polynomials over higher-dimensional

simplices were formally defined by de Boor [37]. According tothe degree of the polynomial, a Bézier

control net must be built from the vertices of the simplex, i.e. from the natural neighbors in our case. Any

location inside the convex hull of the natural neighbors canbe expressed in terms of multivariate Bézier

polynomials, and the interpolant over a cell of the arrangement of Delaunay spheres is constructed based

on these polynomials.

Assume thatx 2 
onv(P) hasl + 1 natural neighbors,Nx = fp0; : : : ;plg, and the associated natural

coordinatesu = (�0(x); �1(x); : : : ; �l(x)). We consider the points ofNx as the projection of the vertices

of anl-simplex� onto the plane. Each pointx in the plane which hasNx as natural neighbors corresponds

to a unique pointu in Rl because it can be written as a unique linear combination of the l + 1 natural

neighborsNx. Therefore, we can define a Bernstein-Bézier polynomial over this simplex ofRl .
We first define the multivariate Bernstein polynomials (after [37]) which are the basic elements of

this interpolation method. LetI = (i0; i2; : : : ; il) be amulti-index, i.e. an(l + 1)-tuplet of indices.jIj = i0 + i1 + : : : + il denotes its norm, andI=m = ( i0m ; : : : ; ilm ). The multi-index withij = m and

all other entriesii = 0; i 6= j is denotedIj. Given the barycentric coordinatesu over anl-dimensional

simplex� (notably, defined byNx), theBernstein polynomialsof degreem are defined as:BmI (u) = �mI ��i00 �i11 : : : �ill ; where

�mI � = m!i0!i1! : : : il! :
They are monomials of degreem. They have the property

PjIj=mBmI (u) = (�0 + �2 + : : :+ �l)m = 1.

Moreover,BmIj (u) = �mj .

An l-variateBézier simplex(also called aBernstein-B́ezier polynomial) interpolates a scalar function

(defined inRl ) that is known at the vertices of thel-dimensional simplex�. It is determined by the

Bernstein polynomials and by itsBézier control net. This is a network of ((l + 1)-dimensional)control

pointseach composed of a(Bézier) base point(also calledabscissain the relevant literature) – that is its

projection inRl – as well as of a(Bézier) height(also calledordinate) – which is a real value determining
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its height overRl . Thecornersof the control net are the vertices of the simplex� lifted by their function

value toRl+1 :
A Bézier simplex of degree one is the linear interpolation of the corners of the control net. For a

simplex of higher degree, there are additional control points whose base points are linear combinations of

the vertices of the simplex.

For each multi-indexI with norm jIj = m, there exist exactly one control pointI=m = (qI; bI) in the

control net. If the vertex set of� is fp0; : : : ;plg, the Bézier base pointqI is the weighted barycenterqI = lXj=1 ijmpj: (4.5)

For a quadratic polynomial (m = 2), the Bézier base points are the vertices plus the midpoints of the

edges formed by all pairs of vertices. A cubic polynomial (m = 3) has three type of base points which

are the weighted barycenter of one, two or three vertices. The base points of a Bézier tetrahedron includeq(3000) = p1, q(1200) = 13p1+ 23p2 andq(1110) = 13p1+ 13p2+ 13p3. The other base points are obtained

by permuting the indices (and replacing the corresponding data points). Figure 4.4 depicts the projection

of the control net of a quadratic(m = 2) and a cubic(m = 3) Bézier tetrahedron onto the plane.q0020
q0002 q2000

q0011
q1001 q1100q1010 q0110q0101 q0200

q0003
q0030 q0300

q3000
q0012q0021 q0120 q0210q1020q0111q1011q0102 q1110q1101q1002 q2001 q2100q1200

q0201q2010
Figure 4.4: l = 4 and (a)m = 2: projection of the control net of a quadratic Bézier tetrahedron, (b)m = 3: projection of the control net of a cubic Bézier tetrahedron (Farin [56]).

The corner that corresponds to the data pointpj is Ij=m = (pj; zj), thus, its height isbIj = zj . The

way that the heights of the remaining control points are chosen is not fixed a priori. It depends on the

properties that are expected from the interpolant, e.g. itscontinuity properties.

The interpolant of the function� for which we know the function valueszi = �(pi) for all pi 2 P is
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the l-variate Bézier simplexfm constructed overNx of degreem. It is defined byfm(u) = XjIj=m bIBmI (u);
whereBmI are the Bernstein polynomials of degreem andbI is the Bézier height of the control pointI=m.

The one-variate Bézier simplexf1 corresponds to Sibson’sZ0 interpolant,f1(u) = nXi=1 �i(x)zi;
becauseB1Ij (u) = �j(x) andbIj = zj for j = 1; : : : ; n.

The interpolantfm is continuously differentiable except on the data points because the natural neighbor

coordinates are not differentiable there. However, Farin remarks in [56] that the directional derivatives offm at (pi; zi) are linear combinations of the control points that are directly connected to(pi; zi) in the

control net. Thus,fm is differentiable at(pi; zi) iff all these control points are coplanar.

Them control points connected to(pi; zi) have theith entryji = m � 1 and one other entry1. They

form the1-ring neighbors of(pi; zi). See also Figure 4.4.

Assume we know the gradientgi of � atpi. We might choose the Bézier height of the 1-ring neighbors

of (pi; zi) such that they lie in the tangent plane of� atpi (which is determined bygi). The derivative of

the Bézier simplex then yields that the gradient offm atpi is gi. The interpolant is overallC1 continuous,

whatever the Bézier heights of the remaining control points are.

For a cubic polynomial (m = 3), Farin [56] determines the heights of the remaining control points in

order to obtain an interpolant that re-produces quadratic functions. The same idea has been used before

by the same author [55] for interpolation over triangular B´ezier patches. It is based on so-calleddegree

elevation(see also [67, chapter 4.4.6]) which means that a polynomialof degreem � 1 is re-written as a

polynomial of degreem such thatXjIj=m 
IBmI (u) = XjJj=m�1 bJBm�1J (u): (4.6)

By multiplying the right hand side of Equation 4.6 with(�0 + �1 + : : : + �l) = 1 and by gathering the

appropriate terms, we find the new Bézier heights
I = 1m(i1bI�ei1 + i2bI�ei2 + : : :+ inbI�ein); (4.7)

whereI � eij = (i0; : : : ; ij�1; ij � 1; ij+1; : : : ; il) is then-tuple of indicesI except thatij is replaced byij � 1.

For each triplet of sites inNx, nine control points of the cubic polynomial are fixed by the data points

and their 1-ring neighbors. The height of one control point (whose base point is the barycenter of the
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three sites) is not determined. It will be fixed such thatf3 is the re-writing of a quadratic polynomial as

in equation 4.6. To do so, Equations (4.7) can be transformedto express the coefficientsbJ , jJ j = 2, of a

quadratic polynomial in dependence of the coefficients
I , jIj = 3, of the cubic. The undetermined Bézier

height is then, in turn, given by Equation (4.7).

Precisely, the solution is as follows. LetIijk be the subscript of a control point with undefined Bézier

height. Its base point is the barycenter ofpi, pj andpk. Iijk has the three1-entriesii = ij = ik = 1
and all other entries are0. There are nine subscripts with the same0 entries asIijk: Ii, Ij andIk which

correspond to data points (with one3 entry and all others0) and six other indices which correspond to the1-ring neighbors ofpi, pj andpk (with one2 and one1 entry and all other entries0). Leta be the average

of the heights corresponding to the data points,a = 13(bIi + bIj + bIk), andb be the average of the heights

corresponding to their1-ring neighbors. If we choose the Bézier heightbIijk = 32b� 12a;f3 reproduces quadratic functions of the form�(x) = a+ btx+ xtQx with Q =  
 d0 f !.

The cubic polynomialf3 is actually quadratic, it interpolates the function valuesand the gradients on the

data points, and is globallyC1 continuous. Since the six parameters of� are determined by three function

values and three gradients, the quadratic functionf3 is unique.

Two examples are depicted in Figure 4.5.

Figure 4.5: The result of Farin’s interpolants on 4 non-zerovalues with (a) gradient0, (b) gradient directed

to the center of the image. In the left picture, the non-zero data points correspond to the four peaks.
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4.3 Clarkson’sK0 interpolant

Another way to construct aC1 smooth interpolant using natural neighbor coordinates is based on an

unpublished idea of Clarkson that is described in [35]. In this thesis, they are introduced in Section 3.5.

The interpolant defined by this new coordinate system isK0(x) = Xi2I1(x);j2I2(x) �i(x) 
ij(x) zj :
It reproduces spherical quadrics of the form�(x) = a+btx+ 
xtx – without knowing the gradient of�
at the data points as it was the case in the preceding sections. Indeed, if� is a spherical quadric, we writezj = a+ btpj + 
pjtpj. With equations 3.25, we obtainK0(x) = Xi2I1(x);j2I2(x) �i(x) 
ij(x) (a+ btpj + 
pjtpj) = a+ btx+ 
xtx = �(x):

Figure 4.6 shows the result of theK0 interpolant on the example data set (see Figure 4.1). With this

interpolant, the gradient is not known.

Figure 4.6: The result of Clarkson’s interpolants on 4 non-zero values.

Even though the graph appears smooth at the data points, we were not able to show the globalC1
continuity of this interpolant.

4.4 Quadratic precision interpolant

In this section, we define an interpolant that re-produces quadratic functions, i.e. functions of the form�(x) = a + btx + xtQx. If the interpolated function has higher order terms, say� is aCk continuous

function,k � 2, it is interpolated up to its second order terms when the distance between he sample point

tends to zero,i.e. the density of the sampling tends to infinity. As additional input, we assume the gradients



4.4. Quadratic precision interpolant 69gi = r(�(pi)) of � at all sample pointspi 2 P to be known. The interpolant is defined as follows:I1(x) =Xi �i(x)(zi + 12git(x� pi))
We estimate the error of the interpolation by looking at the Taylor expansion of� atx up to the second

order terms. LetH(�(x)) denote the Hessian of� atx. We writezi = �(x) +r(�(x))t(pi � x) + 12(pi � x)tH(�(x))(pi � x) +O(kx� pik3)
andgi = r(�(x)) +H(�(x))(pi � x) +O(kx� pik2)1:

Applying the barycentric property toI1, we obtainI1(x) = Xi �i(x)(�(x) + 12r(�(x))t(pi � x) + 12(pi � x)tH(�(x))(pi � x)+12(pi � x)tH(�(x))(x � pi) +O(kx� pik3) +O(kx� pik2)1t(x� pi))= �(x) + 12r(�(x))t(x� x) +Xi �i(x)O(kx0 � pik3)= �(x) +Xi �i(x)O(kpi � xk3):
From the above calculations, we deduce that, firstly, a quadratic function is exactly interpolated since

the remainders of the Taylor expansion are zero. Secondly, as the sampling density tends to infinity, the

second order terms of a general function� are exactly interpolated because the distance fromx to its

neighborspi vanishes while�i(x) is finite. The interpolant is notC1 continuous onP because of theC1
discontinuity of the coordinate functions�i onP.

Figure 4.7 depicts the result of theI1 interpolant on a data-set with only4 non-zero values. The

gradient of� at these points is directed from the data-point to the origin(the center of the interpolated

zone). Notice, that we obtain respectively Sibson’sZ0 interpolant if the gradient is0.

Figure 4.7: The result of the quadratic precision interpolant I1 on four non-zero values with gradient

directed to the center.
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The gradient of theI1 interpolant

In this section, we compute the gradient of theI1 interpolant, in order to examine its value atpj. Lethi(x) = zi + 12git(x� pi). The gradient ofI1 is as follows:rI1(x) = nXi=1(r�i(x)hi(x) + �i(x)rhi(x)) = T1 + T2;
whereT1 = nXi=1 r�i(x)hi(x); andT2 = nXi=1 �i(x)12gi; sincerhi(x) = 12gi:

From
Pni=1 �i(x) = 1 and from

Pni=0 �i(x)pi = x, we derive the two following equations concerning

the gradientsr�j(x) (0 denotes the origin ofRd):nXi=0 r�i(x) = 0; nXi=0 r�i(x)tpi = 1: (4.8)

We use the equations to re-arrange the writing ofT1:T1 = nXi=1;i 6=jr�i(x)(hi(x)� hj(x));
and to notice thatXi 6=j r�i(x)t(pi � pj) = 1�r�j(x)tpj +r�j(x)tpj) = 1 ( with

Xi 6=j r�i(x) = �r�j(x)):
We consider now the casex! pj: from limx!pj �j(x) = 1 andlimx!pj �i(x) = 0; i 6= j, it follows

thatlimx!pj T2 = 12gj. The analysis of theT1 term is a bit more involved. We inject the Taylor expansion

of zi, zj, andgi aboutx shown in the preceding section:limx!pj T1 = limx!pj nXi=1;i 6=jr�i(x)(zi � zj + 12git(x� pi))) (with limx!pj(x� pj) = 0:)= limx!pj nXi=1;i 6=jr�i(x)(r�(x)t(12pi + 12x� pj) + (pi � x)tH(�(x))(pi � x)+O(kpi � xk3)):
With Equations 4.8, we simplifylimx!pjPni=1;i 6=jr�i(x)(12pi+12x�pj) = 12(1�r�j(x))�12r�j(x)+r�j(x) = 12 . Thus,limx!pj T1 = 12gj + limx!pj nXi=1;i 6=jr�i(x)((pi � x)tH(�(x)(pi � x) +O(kpi � xk3)):
Because we know from Lemma 3.14 thatlimx!pj kr�i(x)k is of orderO(1), we deduce thatlimx!pjrI1(x) = gj +O(kpi � xk2) �!e
wherepi is the furthest natural neighbor ofx and�!e is a unit vector ofRd .



Chapter 5

Sampled manifolds: definitions and results

In this chapter, we consider the case where the sample pointsP are taken from a smooth, closedk-manifoldM. In the first section, we introduce some notations concerning the definition of the manifold and the

assumptions we make. Then, we define the restriction of a Voronoi diagram to a manifold, and finally we

are concerned with the sampling density ofM, and recall several results about the local behavior of the

manifold samples. Apart from very few lemmas that we have adapted or derived, this chapter contains no

proofs as it recalls known concepts and results. The reader may refer to the original literature for further

details.

5.1 Topological notions, medial axis and local feature size

Two topological spaces are calledhomeomorphicif there exists a bijective map from one space to the

other that is continuous in both directions. Aneighborhoodof x in a setM is an open sub-set ofM that

containsx. A topologicalk-ball is a subset ofRd that is homeomorphic toRk .

A homotopybetween two functionsf and g from a spaceU to a spaceV is a continuous maph :U � [0; 1℄ ! V such thath(x; 0) = f(x) andh(x; 1) = g(x). Two functionsf andg arehomotopic,

if there exists a homotopyh between them, i.e. if they can be continuously transformed from one to the

other. Two topological spacesU andV arehomotopy equivalent(or of the samehomotopy type) if one can

find two continuous mapsf : U ! V andg : V ! U such thatg Æ f : U ! U is homotopic to the

identity map inU andf Æ g : V ! V is homotopic to the identity map inV. U is contractible if it is

homotopy equivalent to a point.M � Rd is aclosedk-manifoldof Rd if the neighborhood of each pointx 2 M is homeomorphic toRk . It is a k-manifold ofRd with boundaryif the neighborhood of each pointx 2 M is either homeo-

morphic toRk (an interior point) or homeomorphic to a closed half-space ofRk (a boundarypoint). The

boundaryof ak-manifoldF , i.e. the set of boundary points ofF , is either empty or it is a(k�1)-manifold.

Let a(d� 1)-manifold be called ahypersurface.

71
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The tangent spaceof M at x is calledTx. We define it via a parameterization ofM: Suppose thatfx = (fx1 ; : : : ; fxk) : U � Rk ! Rd is a local parameterization of aM. At the pointx = fx(0), the

tangent spaceTx is the image of the Jacobian offx as a linear transformation fromRk to Rd .

We callNx the normal spaceof M at x, i.e. the affine sub-space ofRd that is spanned by the unit

normalsf�!nxigi=1;:::;d�k, at x and that is orthogonal toTx. SinceM is a k-manifold of Rd , Tx is of

dimensionk andNx of dimensiond� k.

At last, we need to introduce the notion ofsubanalyticsets. This theory allows for example to define

precisely what is usually referred to as piecewise analyticsets. Some important properties of subanalytic

sets will be used in Chapter 6 (and notably in Lemma 6.2). Chazal and Soufflet [32] claim that most

general manifolds belong to this setting and consider it as ageneralization of real semialgebraic geometry.

The definition is as follows (omitting some technical details). If a function isanalytic in a regionR,

it is infinitely differentiable inR. A setX � Rd is semianalyticif, for all x 2 X , there is an open

neighborhoodU of x such thatX \ U is a finite Boolean combination of setsfx 2 Ujf(x) = 0g andfx 2 Ujg(x) > 0g, wheref; g : U ! R are analytic. Thus, such a set is locally defined by analytic

equalities and inequalities.X � Rd is subanalyticif, for all x 2 X , there is an open setU and a bounded

semianalytic setY � Rn+m such thatX \U is the projection ofY intoU . (We omit the exact definition of

the properties of this projection.) This is a generalization of semianalytic sets (and it is, unlike the further,

stable under linear projections). See [32] for a short description of the properties of subanalytic geometry.

We suppose in the sequel thatM is closed, compact and sufficiently smooth, i.e. three timesdifferen-

tiable. We suppose further thatM is subanalytic. This property is used in the proof of Lemma 6.2. LetP �M be a set of sample points fromM. We denoteB(x; r) an open ball centered atx with radiusr.

The following definitions allow to characterize some features of a manifold. See [101] and [9] for basic

results on properties of the medial axis.

Definition 5.1 1. (Medial axis) The medial axis of a manifoldM in Rd is the closure of the set of

points with more than one closest point onM.

2. (Medial ball) A ball that is centered on the medial axis, tangent to the manifold, and whose interior

does not intersect the manifold is called a medial ball.

3. (Local feature size)The local feature sizelfs(x) of a pointx 2 M is the distance fromx to the

medial axis ofM.

We show that the local feature size is Lipschitz. The lemma has been first stated in [9, lemma 1].

Lemma 5.2 For any two pointsx;y 2M, lfs(x) � lfs(y) + kx� yk.
Proof: Since the ballB(y; lfs(x)� kx� yk) is contained in the ballB(x; lfs(x)), it does not contain any

point of the medial axis. Thus, its radius must be smaller than lfs(y), i.e. lfs(x)� kx� yk � lfs(y). �
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The following two propositions will be useful in Section 6.2.2 and Section 8.2. They have been stated

by Boissonnat and Cazals [19] for the casek = d� 1.

Lemma 5.3 [19, Proposition 13]

LetB = B(x; r) be a ball that intersectsM. If B \M is not a topological ball, thenB contains a point

of the medial axis ofM.

Of course, the dimension of the topological ball is the dimension of thek-manifoldM. This observation

generalizes [19, Proposition 14].

Lemma 5.4 For anyx 2M and anyr < lfs(x),M\B(x; r) is a topologicalk-ball.

Proof: By definition oflfs(x), B(x; r) cannot contain a point of the medial axis ofM. Lemma 5.3 implies

thatM\B(x; r) is a topologicalk-ball. �
At last in this section, we show a lemma that is needed for the proof of Lemma 6.2. It is topological

result based on the work of Milnor [79]. The proof follows a suggestion of Chazal [33].

Lemma 5.5 LetM be a compactk-manifold ofRd andNx the normal space toM at a pointx 2 M.

There always exists a second pointx0 2M\Nx other thanx.

Proof: Consider the orthogonal projectionf : M! Tx fromM ontoTx. BecauseM is compact, there

must exist an open subset ofTx that is not in the image off . Consequently, there exists a regular valuey
of f without pre-image inM, thus,℄f�1(y) = 0 where℄f�1(y) denotes the number of (distinct)p such

thatf(p) = y. Milnor [79, x4] shows that the residue class modulo2 of ℄f�1(y) is independent of the

regular valuey. It is called thedegreemod 2 of f . We deduce thatf has degree0 mod 2.

SinceTx andNx are orthogonal andx = Tx\Nx, the pre-imagef�1(x) of x are the intersection points

of M with Nx. We prove by contradiction: Supposex were the only point inNx \M. In this case, it is

a regular value off sinceM intersectsNx transversally inx. However, by [79,x4], ℄f�1(x) mod 2 = 0,

thus, there must be an even number of points inNx \M. This contradicts the assumption. �
5.2 Voronoi diagram restricted to ak-manifold

We first define the Voronoi diagram of a set of points restricted to ak-manifold ofRd , following previous

work by Chew [34] (for the cased = 3; k = 1; 2) and Edelsbrunner and Shah [54].

Definition 5.6 LetP be a set of points. The Voronoi diagram ofP restricted toM is the (curved) cell

complex obtained by intersecting each face ofVor(P) withM. We denote it byVorM(P).
We denote byVM(pi) the Voronoi cell ofVorM(P) consisting of the points ofM that are closer topi 2 P (for the Euclidean distance) than to anypj 2 P, j 6= i. A vertex ofVM(pi) is the intersection of a(d � k) dimensional face ofV (pi) with M. Hence, it is the center of a ball passing throughk + 1 points

of P and not enclosing other points ofP. The dual of the restricted Voronoi diagram is defined as follows:
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Definition 5.7 LetP be a set of points. The Delaunay triangulation ofP restricted toM is the subcomplex

of Del(P) consisting of the faces ofDel(P) whose dual Voronoi faces intersectM. We denote it byDelM(P).
Boissonnat and Cazals [19] define the natural neighbors of a point x 2 M with respect to the Voronoi

diagram ofP restricted toM.

Definition 5.8 Given a set of pointsP �M,

(a) theM-(natural) neighbors of a pointx ofM are the vertices of the facets ofDelM(P [ fxg) that

are incident tox.

(b) Two sample points areM-neighbors if they are adjacent inDelM(P).
The topological concepts and the lemma that are introduced next are employed by Edelsbrunner and

Shah [54] to show a sufficient condition under whichDelM(P) is homeomorphic toM. If E is a collection

of sets, we denote the union of all sets inE by [E and their intersection by\E .

A subspaceF � Rd is triangulableif there exist a simplicial complexK such that[K is homeomorphic

to F . A finite coveringof F is a finite collectionE of subsets ofF such thatF = [E . Thenerveof a

finite coveringE of F is a set of collections of sets that consists of all subcollections ofE with non-empty

intersection. Nrv(E) := fE � Ej \E 6= ;g:
We observe thatE2 � E1 andE1 2 E implies thatE2 2 E which is the property of a cell complex as it

was introduced in Chapter 2. Ageometric realizationof Nrv(E) is a simplicial complexK together with

a bijection� from E to the vertices ofK so thatE 2 Nrv(E) iff �(E) spans a simplex inK.

The following theorem by Leray is known under the namenerve theorem.

Theorem 5.9 [75]Let E be a finite closed covering of a triangulable spaceF � Rd so that for everyE � E , \E is either empty or contractible. LetK be a geometric realization ofNrv(E), thenF and[K
are homotopy equivalent.

In particular, the nerve of a Voronoi diagram of a set of points in general position is its dual Delau-

nay triangulation, and the nerve of the restricted Voronoi diagramVorM(P) is the restricted Delaunay

triangulationDelM(P). From Theorem 5.9, we can deduce sufficient conditions underwhichDelM(P)
is homeomorphic to the closedk-manifoldM. We deduce directly that they are of the same homotopy

type if the intersection of a set of cells ofVorM(P) is either empty or contractible. If, in addition, any

non-empty intersection of a face ofVor(P) VorP with M has the “right” dimension, i.e. the intersection

of a (d � l)-dimensional face withM has dimensionk � l, then,DelM(P) andM are homeomorphic.

For details, see [54].
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5.3 Properties of well sampled manifolds

In this section, we are concerned with sample point setsP that fulfill some sampling condition with respect

to the underlying manifold. The sampling condition allows to deduce some properties of the sample points,

and, notably, to estimate the normal space. Most results areinspired from Amenta and Bern [9] where they

were originally written for2-manifolds inR3 . The work of Dey et al. [46] performs the generalization tok-manifolds in order to define an algorithm that detects the dimension of a manifold from a sample set by

looking at the shape of the Voronoi cells. Notably, the concept of apole vectorwhich has been introduced

in [9] is enlarged to the general case.

Definition 5.10 LetP be a set of sample points of a smoothk-manifoldM.

1. (�-sample)For � < 1, P is an�-sample ofM if every pointx 2 M has a sample point at distance

at most� lfs(x).
2. ((�,Æ)-sample)Let � andÆ such that�2 � Æ < � < 1. P is an(�; Æ)-sample ofM if it is an �-sample

ofM and if each sample pointpi 2 P is at least at distanceÆ lfs(x) from any other sample point.

The definition of (�,Æ)-sample is necessary if the dimension of the manifoldM is not known in advance

[46]: without the requirement of a minimum distance betweensample points, the sample points of a surface

could, for example, trace a curve on the surface and the two cases,k = 1 or k = 2, are not distinguishable

even if� is small.

Because the local feature sizelfs() is Lipschitz, given an�-sampleP, it follows that the maximum

distance betweenx 2M and the closest sample pointpi 2 P is �1�� lfs(pi):kx� pik � � lfs(x) � � (lfs(pi) + kx� pik) () kx� pik � �1� � lfs(pi): (5.1)

The next lemma by Boissonnat and Cazals bounds the maximum distance betweenx and itsM-neighbors.

It is the same as the maximum distance between two adjacent vertices ofDelM(P).
Lemma 5.11 [19, Lemma 9 (2)]

LetP be an�-sample ofM with � < 12 . If pi andpj areM-neighbors, i.e. they are adjacent inDelM(P),
thenkpi � pjk � 2 �1�� lfs(pi) andkpi � pjk � 2 �1�� lfs(pj)
Proof: If pi andpj are connected by an edge inDelM(P), there exist a pointv 2 M that is part of the

Voronoi faceV (pi;pj). The ball centered onv havingpi andpj on its boundary is empty of other sample

points. Consequently,pi andpj are the closest sample points fromv. With r = kv � pik = kv � pjk,
we deduce from Equation (5.1) thatr � �1� � lfs(pi) andr � �1� � lfs(pj):
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The distancekpi � pjk at most twice the distancer betweenv andpi or pj. �
Amenta and Bern were the first to apply Theorem 5.9 to show that, if the sampling is sufficiently dense,

the three-dimensional Delaunay triangulation of the sample points contains a subset of triangles that is

homeomorphic to the sampled surfaceM.

Theorem 5.12 [9, Theorem 2] LetM be a 2-manifold inR3 . For � < 0:1, the restricted Delaunay

triangulation of an�-sampleP ofM is homeomorphic toM.

Location of Voronoi vertices

If the underlying manifoldM is a curve (k = 1), we can show with Lemma 5.3 that no Voronoi vertex ofVor(P) is close toM with respect to the local feature size.

Lemma 5.13 The minimum distance fromx 2 M to a Voronoi vertexv of V (x) is an upper bound for12 lfs(x), 12 lfs(x) � minv2V (x) kx� vk.
Proof: A Voronoi vertexv is the center of an empty Delaunay ball and it intersects the curve at itsd + 1
generators. Either its intersection with the curve is a1-ball which means that it is or it contains a medial

ball. In this case, its radius is greater or equal than the local feature size of each of the generators. Or it is

not a1-ball and Lemma 5.3 implies that it must contain a point of thecurve’s medial axis, thus, the radius

of the Delaunay ball must be greater or equal than half the local feature size of each of the generators.�
T1
T2 v T4T3 v

Figure 5.1: Which side of the sliver tetrahedron is closer toM: (a) the outer side withT1 andT2 or (b)

the inner side withT3 andT4?

The same does not work for higher dimensional manifolds due to so-calledsliver tetrahedra. A sliver

is a very flat simplex of the Delaunay triangulation whose vertices lie almost on a(d� 1)-ball. The center

of its Delaunay sphere (of dimensiond) might be arbitrary close to the manifold, and, consequently, far

from the medial axis ofM. Figure 5.1 shows a sliver in3D seen from the exterior of the surfaceM.

Without further input, it is not possible to determineDelM(P) even if the sampling is very dense:M
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might intersect the Voronoi edges dual to the “outer” triangles T1 andT2, or those dual to the “inner”

triangles,T3 andT4. Knowing only the sample points, the information is not present.

Even though not all Voronoi vertices of an�-sample are close to the medial axis of the manifold, at

least some of them are. The definitions and results that are described below are based on this observation.

Normal estimation via poles

The Voronoi diagram of an�-sample consists of cells that are long and skinny in the normal directions

at a pointx 2 M. Therefore, the normal directions can be estimated from theVoronoi cell V (x) ofVor(P [ fxg).1 For hypersurfaces, i.e.(d � 1) manifolds, this observation led to the definition of a pole

by Amenta et at. [9]. The authors show that the vector from thesurface point to the furthest point in its

Voronoi cell is a good estimate for the normal to the hypersurface at this point. In the general case, the

concept of poles has been defined in [46]. To be more specific, we recall the exact definition.

Definition 5.14 ([46]) The Voronoi subpolytopes for a pointx 2 M are subsetsV i(x) � V (x); i =1; : : : ; d � k; (of dimensiond � i + 1) defined recursively as follows: letV 1(x) = V (x) and assumeV i(x) to be defined. Thepolevix is the Voronoi vertex ofV i(x) which is furthest fromx, and theith pole

vector�!vxi of x is the unit vector with direction��!xvxi. If V i(x) is unbounded,vix is taken at infinity and

the direction of�!vxi is the average of all directions of unbounded edges ofV i(x). The Voronoi subpolytopeV i+1(x) is the minimal polytope containing all pointsfy 2 V i(x)j\�!xy�!vxi = �2 g.
As stated in the next lemma, the pole vectors provide a good approximation of the (non-oriented)

direction of the normals toM at x. Therefore, we refer toeNx as the affine space with originx spanned

by the pole vectors�!vxi; i = 1; : : : ; d � k. The affine spaceeTx that containsx and is orthogonal toeNx
approximates well the tangent space toM atx.

Lemma 5.15 [9, lemma 5], [46, lemma 3.1]There exist a normal vector�!nxi 2 Nx for each pole vector�!vxi; 1 � i � d� k; such that the smaller angle between�!nxi and�!vxi is at most2 ar
sin( �1��).
The next lemma from [46] shows that for any unit vector�!nx 2 Nx, there exists a corresponding vector

in the approximated normal spaceeNx which makes a small angle with�!nx.

Lemma 5.16 [46, lemma 3.3]For any unit vector�!nx 2 Nx, there exists a corresponding vector�!vx 2 eNx
such that the angle� between both vectors is bounded by� � 4pd� k ar
sin( �1��).
Normal estimation via closest neighbors

The following lemma from [9] justifies another method to estimate the normal. It has the advantage of

being independent from the Voronoi diagramVor(P). This is important for very large sets of sample

1All results are written with respect to an arbitrary pointx 2M. Notice, that they hold equally for a sample pointpi 2 P.
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points and, even more, for manifolds embedded in higher dimensional spaces (d > 3). In both cases, it

may be too costly to computeVor(P). The lemma generalizes directly tok-manifolds inRd .

Lemma 5.17 Generalization of [9, lemma 2]

For any two pointsx andy onM with kx � yk � � lfs(x), the smaller angle between the line segment[xy℄ and any vector�!n x from the normal spaceNx toM at x is at least�2 � ar
sin(�2 ).
Proof: The proof of [9] is independent of the dimensionsd andk: The manifoldM is exterior to the

tangent balls toM atx, soy 2M cannot lie inside any tangent ball. The angle� between a vector inNx
and the segment[xy℄ is minimized wheny lies on one of the tangent balls. Since the radius of the tangent

balls is at leastlfs(x) andkx� yk � � lfs(x), we obtain� � ar
sin(�2 ). �
For curves,k = 1, we apply this lemma in Section 8.2 in order to estimate the tangent lineTx atx by

the line throughx and its closest neighbor inP.

For surfaces in3D, Dey, Funke and Ramos proposed a normal estimation method in[44] and in [60]

based on this lemma: Choosep to be the nearest neighbor ofx 2M in P andq to be the nearest neighbor

of x among all points ofP such that the angle\pxq is between45o and135o. The normal to the triangle(pxq) approximates the normal�!nx. Since the distances fromx to p and toq are small, Lemma 5.17

applies. They claim

Lemma 5.18 [60, lemma 8.2] [44, lemma 2]

For x 2 M, let p andq be determined as above. The angle between�!nx and the normal to the triangle(p x q) isO(�).
However, this method is very sensitive to the sampling density and does not work in undersampled

zones. Other methods are more stable since they estimate thenormal from thek-nearest neighbors of a

point for some greaterk. For example, Hoppe et al. [72] approximate�!nx by the normal to the least-square

fitting plane of thek-nearest neighbors ofx. This method is also justified with 5.17 as long as thek-nearest

neighbors are sufficiently close tox. Gopi et al. [65] propose to estimate�!nx by the vector that minimizes

the variance of the dot product between itself and the vectorfromx to itsk-nearest neighbors. The authors

of [65] affirm that both methods are equivalent.

Normal variation

In the remainder of this section, we restrict ourselves to hypersurfaces, i.e.k = d � 1. Considering two

points on the hypersurface that are close, Amenta and Bern show that the angle between the normals at

the sample points is small. The proof is again based on the argument that the medial balls tangent toM
at a pointx are not intersected byM. From this lemma, we derive other properties that are usefulfor

some issues in Chapter 6. The generalization tok-manifolds seems possible, however, it would require to

introduce additional notations and concepts.
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Lemma 5.19 [9, lemma 3]

For any two pointsx andy onM with kx � yk � � lfs(x), � < 13 , the angle between the normals toM
at x and aty is at most �1�3� .

From the preceding lemmas, we can deduce that the angle between the tangent plane toM at a pointx and the bisector hyperplane of any two sample points that areclose tox cannot be too small. This is

shown in the next lemma.

Lemma 5.20 The angle between the tangent planeTx toM at x 2 M and the bisector of two sample

pointspi andpj that are at distance at most� lfs(x) fromx, � � 13 , is at least�=2�ar
sin( �1��)� �1�3� .

pi pj��!ni �!nx TiTx�
Figure 5.2: Bounding the angle between the normalnx and the segment[pipj℄.

Proof: See Figure 5.2 for notations. We derive a lower bound for the angle� between the vector��!pipj and

the surface normal�!ni at pi and an upper bound for the angle� between the normals atpi andx. The

angle between�!nx and��!pipj is at least�� �.

In order to bound�, we apply Lemma 5.17. The distance between the sample pointsis bounded bykpi � pjk � kpi � xk + kpj � xk � 2� lfs(x). Using Lemma 5.2, we getlfs(x) � lfs(pi) + � lfs(x)
andlfs(x) � 11�� lfs(pi). Hence,kpi � pjk � 2�1�� lfs(pi). It follows from Lemma 5.17 that� is at least�=2�ar
sin( �1�� ). The angle� between the normals atpi andx is at most �1�3� if � < 13 (Lemma 5.19).

Concluding, we get�� � � �=2� ar
sin( �1�� )� �1�3� , provided that� < 13 . �
From this lemma, we deduce the corollary.

Corollary 5.21 The tangent planeTx toM at a pointx 2 M cannot be parallel to the bisector of two

sample points that are at distance at most�lfs(x) fromx, for � < 13 .

Lemma 5.22 For any� < �2+3� , the parallel projection ontoTx of the intersection of the ballB(x; � lfs(x))
withM is 1-1.

Proof: By Lemma 5.19, for any pointy at distance at most� lfs(x) fromx, the angle between the normals

toM atx and aty is at most �1�3� . The projection is 1-1 if �1�3� < �2 () � < �2+3� � 0:27. �
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Bounding the local feature size

If the underlying manifoldM is a curve (k = 1), we saw in Lemma 5.13 that the minimum distance fromx 2 M to a Voronoi vertexv of V (x) is an upper bound for12 lfs(x). For hypersurface,k = d � 1, the

local feature sizelfs(x) can be upper bounded by the distance to the furthest Voronoi vertices ofV (x).
There is only one pole vector, so we omit the superscript and denote it�!vx+. It is thepositivepole vector

in opposition to thenegativepole vector�!v �x : thenegative polev�x be the furthest Voronoi vertex ofV (x)
such that the angle between the positive and the negative pole vector,�!v �x = �!xv�x , is bigger than�2 .

We show in the sequel that the distance from the poles toxmust be greater thanlfs(x). Intuitively, one

can say that the Delaunay spheres centered at the positive and the negative pole approximate the medial

balls atx. Sincelfs(x) is smaller than the smallest radius of the medial balls tangent toM atx, the smaller

distance fromx to its poles is an estimate for the local feature size. For theproof, we need the following

lemma from Amenta and Bern [9].

Lemma 5.23 [9, lemma 5]Letx 2 M andv be any point inV (x) with kv � xk � �lfs(x) for � > 0.

The angle atx between the vector tov and the normal�!nx (oriented in the same direction) is at mostar
sin ��(1��) + ar
sin �(1��) .
We can state the lemma. The proof is part of the proof of Theorem 1 from [41].

Lemma 5.24 (after [41])Letk = d� 1 and� < 0:27. The polesv+x andv�x of x are at distance at leastlfs(x) fromx.

Proof: It is sufficient to prove the lemma for the negative pole because the positive pole is, by definition,

further fromx than the negative pole. We choose the medial ball atxwith centerm such thatv+x andm lie

x Bv = v�xm
v+x �+���

Figure 5.3: The angle� = � � �+ � �� must be bigger than�2 .
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on different sides ofM, i.e.��!xmmakes a large angle greater than�2 with the positive pole vector�!vx+. See

Figure 5.3. We know thatkx�mk � lfs(x) andm 2 V (x). By convexity ofV (x), there exists a Voronoi

vertexv that is the furthest Voronoi vertex in direction��!xm andkx � vk � lfs(x). Thus, with Lemma

5.23, the angle�� between��!xm and�!xv is smaller that2 ar
sin �(1��) . This is also the case for the angle�+ between�!vx+ and�!nx but in the opposite direction (Lemma 5.15). For� < 0:27, the angle between�!vx+ and�!xv is greater than�2 : � � (�+ + ��) = � � 4 ar
sin �(1��) > �2 for � < p2�p22+p2�p2 < 0:27.

Thus, eitherv = v�x , orv�x is further away fromx thanv. �
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Chapter 6

A coordinate system on ak-manifold of R d
6.1 Introduction

Surfaces and generalk-manifolds represented by a set of unordered sample points are encountered in

many application areas such as computer graphics, computeraided design (CAD) and reverse engineering,

image processing, and scientific computation. Many algorithms that are applied to sampled manifolds

rely on the definition of a local neighborhood on the manifold. Reconstructing the manifold from the

sample points is one way to respond to this demand. However, it might be unnecessary and also too costly

to establish a global approximation of the manifold. Differently, by adapting the definition of natural

neighbor coordinates to the manifold case, our method defines, for any point on a sampled manifold,

a set of neighboring sample points as well as a set of coordinates associated to them. If the sampling

is sufficiently dense, this coordinate system is provably local on the manifold and has good continuity

properties. Unless the manifold is locally flat, it is not barycentric but the distance between a point of

the manifold and its weighted barycenter is bounded with respect to the sampling density. Moreover, the

set of neighbors and the coordinate functions can be computed efficiently because locality allows efficient

filtering methods. We do not impose any restriction on the genus of the manifold, the number of connected

components, nor any other global features of the manifold. Uniform sampling is neither required, and we

allow the sampling density to be related to the local curvature of the manifold.1

Related Work

The interest in the definition of an easy-to-compute coordinate system on general manifolds is for example

witnessed by [82]. The major drawback to applying the natural neighbor coordinate system as they are

defined in thed-dimensional Voronoi diagram to points issued from a manifold comes from the fact that

its definition is limited to the convex hull of the sample points. To avoid this problem, a common solution

consists of adding a box enclosing the object. Obviously, this solution causes problems, e.g. the choice

1This chapter is the subject of two publications [24] [25].
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of the size of the bounding box, the number of sample points taken from it, artifacts arising from the

bounding box points, and the augmented computation cost. In[29], Brown has enlarged the coordinate

definition outside the convex hull to cover the union of the Delaunay balls, which is still too restrictive in

many applications.

A second drawback is that a point is likely to have neighbors that are far away from the point. Boisson-

nat and Cazals show that the sum of the coordinates associated to those neighbors that are far away tends

to zero when the sampling density increases [19]. However, even though the influence of the far neighbors

is small, the fact that Sibson’s coordinates are not local affects not only the beauty and rigor of the result,

but the time required to compute the coordinates and the exactness of an interpolation scheme.

For points issued from a sphere, Brown proposes a solution in[28]. Instead of referring to thed-

dimensional Voronoi diagram, Brown defines natural neighbor coordinates with respect to the geodesic

Voronoi diagram on the sphere. This definition generalizes Sibson’s coordinates in a straightforward man-

ner. Therefore, the basic properties of definition 3.1 are fulfilled, except the barycentric coordinate property

(i) which cannot be fulfilled since points on the sphere do not belong to the convex hull of their neighbors.

The obvious difficulty in enlarging Brown’s approach to general manifolds is that geodesic Voronoi dia-

grams are much more complicated than Euclidean diagrams anddifficult to compute [74]. Moreover, in

many applications the manifold is not known and neither is the geodesic Voronoi diagram.

In this thesis, we suggest another system of coordinates forpoints on a manifold. It is closely related

to natural neighbor coordinates, yet instead of considering the geodesic Voronoi diagram on the manifold,

as Brown, or the Euclideand-dimensional Voronoi diagram of the sample points, as Sibson, it is defined

in the intersection of the tangent space of each manifold point with the Euclidean Voronoi diagram of the

sample set. If the tangent spaces are not given as part of the input, they can be easily estimated from the

sample points. The resulting coordinate system is local andit is inherentlyk-dimensional.

Outline of the chapter

After this introduction, we define in section 6.2 theTx-neighbors of a manifold pointx with respect to a

sample of the manifold. We show that allTx-neighbors ofx lie in a small neighborhood aroundx if the

manifold is well sampled. In section 6.3, we define theTx-coordinate system on the manifold associated to

the sample. We show the main properties of theTx-coordinates; in particular, we show that the coordinate

functions have compact supports and are continuously differentiable almost everywhere on the manifold.

Although a point on a manifold cannot, in general, be expressed as a convex combination of other points

on the manifold, we show in subsection 6.3.3, that the barycentric coordinate property is approximately

satisfied, with an error that depends on the local curvature of the manifold and on the sampling density.

For surfaces in3D, we determine the gradient of the coordinate function. At last, we define a non-convex

coordinate function for surfaces that fulfills the barycentric coordinate property.
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6.2 Manifold neighbors

With this section begins the core part of the thesis in which we define a local neighborhood of a pointx of

a smooth, compactk-manifoldM without boundary with respect to an�-sampleP of M. For the proof

of Lemma 6.2, we suppose further thatM is subanalytic, see also Section 5.1. In order not to compute

the geodesic Voronoi diagram onM, we approximateM locally by the tangent spaceTx of x toM. We

determine the natural neighbors ofx in the Voronoi diagramVor(P) restricted toTx, and we call themTx-neighbors ofx.

x TxN
Figure 6.1: Natural neighborsN andTx-neighborsTx of x

In Figure 6.1, a schematic drawing illustrates that some of the natural neighbors ofx which are high-

lighted in the picture can be far away fromxwith respect to the geodesic distance onM. TheTx-neighbors

are the subset of the natural neighbors that are close tox onM. In the remainder of this section, we for-

mally define theTx-neighbors of a pointx 2M and prove that they are close tox.

6.2.1 Definition ofTx-neighbors

At first , we assume that for each pointx 2 M, the set of normalsf�!nxigi=1;:::;d�k toM at x is known,

and therefore, the tangent spaceTx atx. LetVor(P) be the intersection ofVor(P) with the tangent spaceTx. The Delaunay triangulation restricted toTx that consists of the faces ofDel(P) whose dual Voronoi

faces intersectTx is calledDel(P). Alternatively, by Observation 2.4,Vor(P) is thek-dimensional power

diagram of the weighted pointsBi = (pi; wi) wherepi is the projection of the sample pointpi 2 P
onto Tx andwi = �kpi � pik2. The (k � l)-faces ofVor(P), l � k, areV (pi0 ; : : : ;pil) = Tx \�Tj=0;:::;l V (pij);pij 2 P�. The superscript+ indicates that we refer toVor+(P) = Vor+(P [ x). We

defineV (x) = V +(x) \ Tx.

Let Reg(P) be the regular triangulation dual toVor(P). Since two cells ofVor(P) are adjacent iff

their corresponding cells inVor(P) are adjacent and intersectTx, Reg(P) is the projection ofDel(P)
ontoTx.
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Definition 6.1 (Tx-neighbor of x) Given a set of sample pointsP � M TheTx-neighbors of a pointx 2M are the sample pointspi 2 P such that their projectionpi is a natural neighbor ofx in Vor(P).

To see that the concept ofTx-neighbors is well-defined, we make two observations: First, the definitions

of Section 2.2 assume general position of the point sites. The case that two sites have the same position

and the same weight must be excluded. In our context, this occurs if the bisector of twoTx-neighborspk
andpj of x coincides withTx: pk andpj are projected at the same position, and they have the same weight

because they are at the same distance to the tangent space buton opposite sides.

For k = d � 1, we can easily show that the angle betweenTx and the bisector hyperplane ofpk andpj is strictly positive, if� � 19 : In the remainder of this chapter, we show thatpk andpj are at distance at

most 2�p1�2� lfs(x) to x (Lemma 6.3), thus, Corollary 5.21 applies with� = 2�p1�2� .
In any case, we can assume without real loss of generality that no bisector hyperplane of two sample

points is tangent toM because any small perturbation ofP would remove this situation.

Second, we need the following lemma to show thatx lies in the convex hull of the projection of itsTx-neighbors. It is equivalent to show thatx lies in the convex hull of its natural neighbors inVor(P) or

to show thatV (x) is bounded.

Lemma 6.2 x 2M belongs to the convex hull of the projection of itsTx-neighbors onTx.

Proof: For a contradiction, assume thatV (x) is unbounded. Then the interior ofV (x) contains a pointp1 at infinity. Among the points ofP [ fxg, x is the closest top1 sincep1 lies in the Voronoi cell

of x. Therefore, there is no point ofP in the halfspaceH+ that containsp1 and that is limited by the

hyperplaneH passing throughx and normal to the line(xp1). See Figure 6.2.


x p1Tx H+
y

H
Figure 6.2:H+ must contain sample points.

The proof is easier fork = d�1. In this case, since the hypersurfaceM is closed, it delimits a bounded

region inRd . There is exactly one medial ball tangent toM atx that lies inside this region. Suppose its

center is
. Let y be the intersection point ofM with the ray issued from
 that is orthogonal toH and
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contained inH+. Such a point must always exist since the region delimited byM is closed. Figure 6.2

shows a view onto the plane containingx;p1;y, and
.

By definition, 
 is a point of the medial axis ofM. We haveky � 
k � lfs(y) and for anypi 2P; ky � pik > ky � 
k becauseH+ is empty of sample points. This contradicts the fact thatP is an�-sample with� < 1.

Fork < d� 1, the proof is slightly more complicated because it is more difficult to construct the pointy that lies inH+ and whose orthogonal projection ontoH is the center
 of a medial ball passing throughx. If such a pointy is found, the proof is completed because the arguments from above apply.

By construction, the vector��!xp1 is orthogonal toH and contained inH+. Also, it lies in the tangent

spaceTx becausep1 2 V (x). Consequently,H must contain the normal spaceNx. Consider the set of

medial ballsB tangent toM atx. Their centersC lie in Nx. More precisely, they lie in the intersection ofNx with the medial axis ofM (see Def. 5.1).

We distinguish two cases: Ifx lies in the interior of the convex hull ofM, any rayr in Nx emanating

from x contains exactly one center
r 2 C at finite distance fromx: A growing sphere tangent toM atx
with center onr must intersectM before degenerating to a halfspace because any hyperplane containingx must intersectM. The medial ball center
r is the first intersection point ofr with the medial axis ofM. Notice that this intersection is in isolated points because a contact pointy of the medial ballBr other

thanx is contained in any ball centered onr tangent toM atx with larger radius, thus, these balls cannot

be empty. See figure 6.3.

y x
r

rBr B0r
0r

Figure 6.3: The contact pointy of the medial ballBr (with center
r) is necessarily contained in the ballB0r (with center
0r).
Let A be the union of segments[x
r℄ for all r, A := Sr[x
r℄. Assuming some generic condition,

the boundary�A has dimension(d � k � 1) and it separatesNx into two disconnected components. In

particular, this is true if the medial axis ofM is subanalytic. (In this case,�A is a(d�k�1)-dimensional
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subanalytic set.) Following Chazal and Soufflet [32], this is ensured ifM is subanalytic.2

In the second case,x lies on the convex hull ofM. Any ray in thenormal coneof the convex hull ofM, i.e. the cone spanned by the normals to the convex hull ofM, defines a halfspace tangent toM atx
that does not intersectM and that is normal to the ray. Such halfspaces correspond to degenerate maximal

balls with center at infinity. We consider them to be part of the set of medial ballsB. Any rayr emanating

from x in Nx that lies outside the normal cone intersects the medial axisof M at finite distance. Each

such rayr contains, therefore, exactly one center
r 2 C corresponding to the first intersection ofr with

the medial axis ofM. SinceM is compact, there must exist some
 2 C at finite distance and, with the

same arguments as above,Nx n C has two disconnected components.


 x p1Txy JH+H
Figure 6.4: The construction ofy for a curve inR3 .

We determine a set�J by adding an affine translation of the tangent spaceTx to each
 2 C, �J =C � Tx. By construction,�J separatesRd into two components. LetJ be the region determined by�J
that containsx. In J 0 = J n B , the interior of the medial ballsB is excluded fromJ . At x, J 0 has

no thickness because the medial ballsB are tangent to each other (and toM). Moreover,J 0 \ H = x
because the normal spaceNx is contained inH, the tangent spaceTx is contained inJ 0 andNx \Tx = x.

Figure 6.4 indicates the intersection ofH with the medial ballsB as well as the regionJ (enclosed by the

horizontal rays) in the case of a curve inR3 .

In the neighborhood ofx, M must lie in the interior ofJ 0 becausex 2 J 0 andM is exterior to all

medial ballsB. By Lemma 5.5, there exists a second pointx0 in the intersection ofM andNx � H.

However,x0 cannot lie insideJ 0 becauseJ 0 \ H = x andx0 6= x. Consequently,M must leaveJ 0 inH+, thus, it must intersect�J .

Lety be any intersection point ofM and�J . Its orthogonal projection ontoH is the center of a medial

ball 
 2 C becausey lies in�J = C � Tx andH is orthogonal toTx. With the arguments from above, the

2 [32, Theorem 2.1] shows that the medial axis of a subanalytichypersurface is subanalytic. This work can be extended to

general subanalytick-manifolds [33].
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lemma follows. �
If the normals atx are not known (this may be the case when the manifold is only known at a finite

set of points), we can approximate the tangent spaceTx by the spaceeTx that passes throughx and is

orthogonal to thek pole vectors ofx (see Definition 5.14). We can defineeTx-neighbors in very much the

same way asTx-neighbors: The only difference is thatTx is replaced byeTx.

6.2.2 Locality of theTx-neighbors

We now derive a bound on the distance between a pointx 2 M and itsTx-neighbors with respect to the

local feature sizelfs(x). The proof of the lemma is closely inspired from [9, lemma 5].

Lemma 6.3 LetP be an�-sample ofM andx 2M.

(a) TheTx-neighbors ofx are all contained in a ball of radius 2�p1�2� lfs(x) centered atx.

(b) TheeTx-neighbors ofx are contained in a ball of radius2�1� � se
(ar
sin( �1� �)(1 + 4pd� k)) lfs(x)
(c) In both cases, theTx-neighbors andeTx-neighbors ofx are contained in a ball of radius2�(1 +O(�)) lfs(x).
Proof: (a) Letv be a vertex ofV (x). We derive an upper bound on the distance betweenx andv. BecauseV (x) is bounded by the (intersection withTx of the) bisector hyperplanes ofx and itsTx-neighbors, the

distance betweenx and itsTx-neighbors is at most twice the distance betweenx andv.

LetB1 be a ball with radiuslfs(x) that is tangent toM atx with centerm1 such that the line segment[vm1℄ intersectsM at the pointq. (B1 is uniquely defined only fork = 1 or k = d � 1.) Let � be the

angle\vm1x. We find the same angle� = \vxq0 whereq0 is the orthogonal projection ofx onto[vm1℄.
See Figure 6.5. The ballB(v; kx�vk) is empty of sample points becausev 2 V +(x). BecauseB1 is also

empty of sample points,x is the point ofP [fxg that is closest toq. It follows thatkx�qk � �1�� lfs(x).
On the other hand,kx� qk � kx� q0k = sin� lfs(x). Hence,� � ar
sin( �1��).
Since the triangle(v x m1) has a right angle atx and since the radius ofB1 is lfs(x), we obtainkx� vk = tan(�) lfs(x) � tan(ar
sin( �1� �))lfs(x) = �p1� 2� lfs(x)
with tan(ar
sin( �1��)) = �p1�2� .

(b) We consider a vertexev of eV (x) = V +(x) \ eTx(x). This time, we defineB1 to be a ball tangent toM atx with centerm1 such that[ev;m1℄ intersectsM in q, and the angle� is defined by� = \evm1x.

As in part (a),B(ev; kx � evk) andB1 are empty of sample points, so we can apply the same argumentsto

obtain the boundskx� qk � �1�� lfs(x) and� � ar
sin( �1��). See Figure 6.6 for notations.



90 Chapter 6. A coordinate system on ak-manifold ofRd
v

m1q0q x� B1
Bv

Figure 6.5: For the proof of Lemma 6.3(a)

m1 B1x�
y
 � Bv
q q0ev �!vx�!nx �

Figure 6.6: For the proof of Lemma 6.3(b)

BecauseB1 is tangent toM atx, the unit vector�!nx with direction��!m1x lies in the normal spaceNx.

From Lemma 5.16, we know that there exists a corresponding vector �!vx 2 eNx such that the angle�
between�!nx and�!vx is bounded. Either,�!vx lies in the same plane withev;x, andm1 (and, consequently,

with �!nx), or we project it orthogonally onto this plane. This does not change the upper bound on the angle� (� = \�!vx�!nx).

Let y be the intersection point of the line(ev;m1) with the hyperplane perpendicular to�!nx containingx. (Fork = d� 1, this hyperplane isTx, soy 2 V (x). But this is not true in general.) The angle� is also

the angle\yxq0 and� is the angle\evxy. Refer to Figure 6.6.
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With the upper bound for� and�, we can conclude: Let
 = \m1evx = �2 � � � �. From triangleevxq0, we know thatkx� evk = kq0 � xksin 
 � kx� qksin(�2 � �� �) � �(1� �) 
os(�+ �) :
In the casek = d� 1, we know from Lemma 5.15 that� � 2 ar
sin( �1��), thus,kx� evk � �1� � se
(3 ar
sin( �1� �)) lfs(x) = �(1 +O(�)) lfs(x):
In the general case, Corollary 5.16 shows that� � 4pd� k ar
sin( �1��) which yieldskx� evk � �1� � se
(ar
sin( �1� �)(1 + 4pd� k)) lfs(x) = �(1 +O(�)) lfs(x): �

The following lemma states thatx and all itsTx-neighbors are contained in a small topological ball, if� < 0:3. It is a direct consequence of Lemma 6.3.

Lemma 6.4 LetB(x; r) be a ball centered atx with radiusr = 2�p1�2� lfs(x) . If � < p5�14 , B(x; r)\M
is a topologicalk-ball that contains allTx-neighbors ofx.

Proof: By Lemma 6.3, allTx-neighbors ofx are contained in a ballB(x; r) centered atx of radiusr = 2�p1�2� lfs(x). With Lemma 5.4,M\ B(x; r) is a topologicalk-ball if r < lfs(x), which is true for� < p5�14 � 0:3. �
6.3 Manifold coordinate system

We can now define a coordinate system onM associated with a set of sample pointsP. Similarly to

the Tx-neighbors, it is defined in the tangent space of each manifold point and consequently calledTx-

coordinate system. In the rest of the section, we show some properties of theTx-coordinate system:

we show that the support of theTx-coordinates is local in Subsection 6.3.1, we study their continuity

properties in Subsection 6.3.2, and we prove in Subsection 6.3.3 that the barycentric coordinate property

is approximately satisfied, with an error that depends on thelocal curvature of the surface and on the

sampling density.

In this section, we suppose given a query pointx 2 M together with the tangent spaceTx toM atx.

Thus, the manifold including the first derivatives are knownor at least query points with this information

are provided. This corresponds to the setting in the application of the coordinate system to interpolation

on surfaces that is described in Section 8.1.
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6.3.1 Definition of theTx-coordinate function

The same definitions as in Section 6.2 apply.

Definition 6.5 (Tx-coordinate system associated withP ) In theTx-coordinate system associated with a

set of sample pointsP �M, theTx-coordinate�i(x) of a pointx ofM is the natural neighbor coordinate�i(x) of x in the power diagramVor(P), i = 1; : : : ; n.

By construction, theTx-coordinates�i fulfill properties(ii) and(iii) of a system of coordinates overM associated withP as they are listed in Definition 3.1. The barycentric coordinate property 3.1(i) is

satisfied for the projected sample pointspi. With respect toP, the barycentric coordinate property is only

true if the manifold is locally planar so that allTx-neighbors ofx lie in the tangent spaceTx.

Locally bounded support

Let�i denote the support of�i, i.e. the subset of the pointsx 2M such that�i(x) 6= 0. In order to show

the locality of�i onM, we apply the bound on the distance between a pointx 2M and itsTx-neighbors.

Corollary 6.6 The support�i of �i is contained in a ballB(pi; r) of radiusr = 2�p1�2 ��� lfs(pi) centered

at pi. For � < 0:19, B(pi; r) \M is a topologicalk-ball that contains�i.
Proof: Applying Lemma 6.3 and Lemma 5.2, we obtain thatkx � pik � Æ lfs(x) � Æ1�Æ lfs(pi) withÆ = 2�p1�2� for anyx 2 �i. Consequently,B(pi; r) with r = Æ1�Æ lfs(pi) = 2�p1�2��2� lfs(pi) contains�i.
With Lemma 5.4,M\B(pi; r) is a topologicalk-ball if r < lfs(x), thus, for� < p17�116 � 0:195. �
6.3.2 Continuity properties of the coordinate function

In this section, we study the continuity of the function�i whenxmoves onM. Let us first state the lemma:

Lemma 6.7 TheTx-coordinate�i; i = 1; : : : ; n; associated withP is continuous everywhere onM.

Proof: Assume thatM is parameterized byu = (u1; : : : ; uk). The coordinate function�i(x(u)) is, by

definition, equal to the natural neighbor coordinate�i((x(u); 0)) in the power diagramVor(P). Whenx moves onM, the projected sample points change their position and their weight in the power diagram

continuously. Indeed, sinceM is smooth, the projection onto the tangent space is a smooth mapping:x(u) is differentiable, and the normals�!nuj 2 Nx(u) are continuous. The position ofpi(u) is given bypi(u) = pi � X�!nuj2Nx(u)(����!x(u)pi � �!nuj) �!nuj :
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The weight ofpi is wi(u) = �kpi � pi(u)k2 = � X�!nuj2Nx(u)(x(u)�!pi � �!nuj)2:
Recall also from Lemma 6.2, thatx is always in the convex hull of the projected sample points. Con-

sequently, theTx-coordinates are continuous on all ofM because the natural neighbor coordinates are

continuous as proven in Lemma 3.6. �
Lemma 6.8 TheTx-coordinate�i; i = 1; : : : ; n; associated withP is continuously differentiable every-

where onM except atP and at the pointsx 2 M such that the intersection ofTx with a (d � 2)-
dimensional Voronoi face of the Voronoi cellV +(x) in Vor(P [ fxg) has dimensionk � 1.

Proof: Consider the power diagramVor(P). By Lemma 3.6,�i is C1 continuous onM n P except at a

finite number of other points. We want to characterize these points ofC1 discontinuity with respect to thed-dimensional Voronoi diagramVor(P).
The natural neighbor coordinate�i is not continuously differentiable at a pointx such that the bisector

hyperplane ofx andpi contains a(k�1) face ofVor(P) sayV (pi;pj). (See also the proof of Lemma 3.6.)

This means that a pointv of the face has equal power with respect tox, Bi, andBj . But, by definition

of Vor+(P), this means also thatv is at equal distance frompi, pj, andx. Consequently, the(k � 1)
dimensional power face ofV (x) is part of the intersection of a(d� 2) dimensional face ofVor+(P) withTx. �
6.3.3 Bounding the distance to the weighted barycenter

In this section, we bound the distance fromx 2 M to its weighted barycenterb(x), that ise(x) =x�Pi �i(x)pi. This is the error committed with respect to the barycentriccoordinate property atx 2M.

Boundinge(x) corresponds to bounding the distance of aTx-neighbor ofx to the tangent spaceTx,

since x =Xi �i(x)pi =Xi �i(x)(pi + d�kXj=1(�!xpi � �!nxj) �!nxj):
We show the following corollary which is more general.

Corollary 6.9 Consider two pointsx and y on M with kx � yk � � lfs(x). If y is the orthogonal

projection ofy onto the tangent spaceTx ofM at x, thenky � yk � ky � xk22lfs(x) = �22 lfs(x):
Proof: Because the projection is orthogonal,ky � yk = ky � xk sin � where� = \yxy. Sincey does

not belong to any ball of radiuslfs(x) tangent toM atx, sin � � ky�xk2lfs(x) . �
It is now straightforward to show the next proposition.
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Proposition 6.10 x =Xi �i(x)pi + d�kXj=1O(�2)lfs(x) �!nxj:
Proof: It is sufficient to prove that the distance between aTx-neighborpi 2 P of x 2M and its orthogonal

projectionpi on the tangent spaceTx, is bounded bykpi � pik � 2�21� 2� lfs(x) = O(�2)lfs(x):
With Lemma 6.3, we havekpi � xk � 2�p1�2� lfs(x) which implies, together with Corollary 6.9, the

inequality above and the proposition. �
Bounding kpi � pik with respect to the curvature

Using differential geometry, we can express the distance ofaTx-neighbor to the tangent plane in terms of

the curvature of the manifold. We restrict our attention to surfaces inR3 .

Thenormal curvature�v at a pointx 2M in a given direction�!v in the tangent planeTx is defined as

the curvature of the intersection curve of the surface with the plane formed by�!v and�!nx. In the sequel,

we relate the distancekpi � pik to the normal curvature�vi at x 2 M where�!vi is the direction ofpi,
i.e. �!vi = �!xpi. The minimum and the maximum normal curvature are called theprincipal curvatures. Its

associated directions are theprincipal directions. See for example [48].

Define a local coordinate frame with originx, the tangent planeTx as planez = 0, and the two principal

directions ofM at x asx- andy-axis. It is well known that, locally, any smooth surface is the graph of

a differentiable function in such a coordinate system. It follows that, in a neighborhood ofx, S can be

represented in the formz = h(x; y). In our case,z is the distance of a point to the tangent planeTx, i.e.zi = kpi � pik for pi = (xi; yi; zi) in the barycentric coordinate system – see [48, pp. 163-165].

Corollary 6.11 Letpi 2 P be aTx-neighbor ofx 2M andpi = (xi; yi; 0) in the coordinate frame with

origin x, the two principal directions asx- andy-axis, and the normal�!nx aligned with thez axis. Then,kpi � pik = h(xi; yi) = �vir2i2 +R(xi; yi); with limri!0 R(xi; yi)r2i = 0;
whereri =qx2i + y2i is the distance ofpi to x and�vi is defined as above.

Proof: A Taylor’s expansion about(0; 0) shows thath(x; y) = 12(�1x2+�2y2)+R(x; y) whereR(x; y) is

the sum of the higher order terms. This is due to the fact that,in the tangent plane,h(0; 0) = 0; hx(0; 0) =0, andhy(0; 0) = 0. hxy(0; 0) = 0 because the coordinate system is aligned with the principaldirections.

It follows that �1(x) = hxx(0; 0) and�2(x) = hyy(0; 0). Using polar coordinates with respect to the

same coordinate system, we geth(x; y) = r2(�1 
os2 �+�2 sin2 �)2 + R(x; y) wherer = px2 + y2 and� is

the angle of the vector(x; y) with thex-axis. With�v = �1 
os2 � + �2 sin2 �, we get the result. �
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6.3.4 Visualization of the coordinate function

In order to demonstrate the locality and the smoothness of the T -coordinate, we visualize the coordinate

function �i with respect to a sample pointpi on a parameterized surface. Figure 6.7 shows an example

of the cylinder from two different viewpoints and of the torus. �i is computed on a (perturbed) regular

grid of 40000 points with respect to a subset of 100 randomly chosen sample points. Each grid point is

translated by the value of the coordinate�i in direction of the surface normal at that point. Of course,pi
itself has the highest value for�i (�i(pi) = 1). Note the locality of the coordinate function, as well as theC1 discontinuity on the sample pointpi itself.

Figure 6.7: The coordinate function�i on the cylinder and the torus.

6.4 Gradient of theT -coordinate function defined on a surface inR3
In this section, we derive the formula for the gradient of theT -coordinate function�i for the case of a

surface inR3 . Theoretically, this restriction is not necessary, but it simplifies the exposition. To make it

clear, we change notations and callS the2-manifoldM. In fact, we compute the gradient of the volume

function�i which is the volume of the cellVi(x) = V (pi) \ V +(x). It defines the coordinate function as�i(X) = �i(X)Pi �i(X) .
In order to compute the gradient of�i as the pointx moves on the surface, we express the sample

points in a canonical coordinate frame centered onx, we translate the entire frame to the origin, and then

we compute�i(0) as a function of the sample points which move in dependence ofx and as a function of

the weights which also depend onx. Without loss of generality, we suppose thatx moves on a geodesic

curve
 parameterized by arc lengths. We need to evaluate the differential of the position of the sample

points as well as their weights in the power diagram as a function of the curve parameters. Furthermore,

we determine the differential of�i(0) as a function of the positions as well as the weights of the sample

points. LetF be the function fromR toR3n �Rn that maps the curve parameters to the positions and the

weights of the sample points in the canonical coordinate frame centered onx.
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The position and the weight of the sample points as a functionof s
Let x 2 S and

�!t0 be a unit vector tangent toS atx. Let the geodesic
 be parameterized by the arc lengths such that
(0) = x and d
ds (0) = �!t0 . For all s, we define a canonical frame(�!e1(s);�!e2(s);�!e3(s)) with

origin 
(s) such that�!e1(s) = �!t (s) where
�!t (s) denotes the tangent vector to
 at 
(s), �!e3(s) = �!n (s)

where�!n (s) denotes the normal vector toS at 
(s), and�!e2(s) = �!u (s) where�!u (s) denotes the vector

tangent toS at
(s) such that(�!t (s);�!u (s);�!n (s)) forms a direct orthonormal frame.

We can express any sample pointpj in the frame(�!t (s);�!u (s);�!n (s)):pj = �j(s)�!t (s) + �j(s)�!u (s) + !j(s)�!n (s):
In the sequel, we omit application(s) and write for example� instead of�(s) knowing that all quantities

depend ons.
As s varies (x moves along
), the position ofpj does not change. In particular,dpjds = 0= �0j�!t + �j d�!tds + �0j�!u + �j d�!uds + !j�!n + !j d�!nds= �0j�!t + �jh(�!t ;�!t )�!n + �0j�!u + �jh(�!t ;�!u )�!n + !0j�!n�!j(h(�!t ;�!t )�!t + h(�!t ;�!u )�!u );

whereh is the second fundamental form ofS at
(s).
Projectingpj onto

�!t ;�!u and�!n , we obtain the following three equations which determine�0j; �0j and!0j:�0j � !jh(�!t ;�!t ) = 0�0j � !jh(�!t ;�!u ) = 0�jh(�!t ;�!t ) + �jh(�!t ;�!u )� !0j = 0:
Since the projection ofpj onto the tangent plane ispj = �j�!t +�j�!u , we obtain the tangential componentdpjds (tan) of

dpjds as dpjds (tan) = �0j�!t + �0j�!u = !jh(�!t ;�!t )�!t + !jh(�!t ;�!u )�!u :
Still we need to move this coordinate frame, so far centered on 
(s), to the origin:d(pj � 
(s))(tan)ds = (!jh(�!t ;�!t )� 1)�!t + !jh(�!t ;�!u )�!u ;
with d
ds (s) = �!t . The weight ofpj is, by definition,wj = �!2j . It is invariant by translation parallel to

the tangent plane. We get dwjds = �2 !j(�jh(�!t ;�!t ) + �jh(�!t ;�!u )):
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The gradient of �i as a function ofs
In this section, we put together the ingredients developed in Section 3.4 and in the preceding paragraphs in

order to obtain a formula for the differential of�i(x) in the direction
�!t0 of the tangent plane. By varying�!t0 aroundx, the differential can be obtained in all directions of the tangent plane. We use the notations

as in the previous section but all functions ons will be evaluated on0. In particular,h denotes the second

fundamental form ofS atx,
�!t = �!t0 ,�!u = �!u (0), �j = �j(0); �j = �j(0), and!j = !j(0). We obtainD(�i Æ F )(0)= D�i(0)(f(pj � 
(0); wj)g)(d(pj � 
(0))ds (tan)(0); dwjds (0)) (Matrices of size3n� 1 and1� 3n:)= Xj ��pj�i(0)(pj � 
(0))d(pj � 
(0))ds (tan)(0) + ��i(0)�wj dwjds (0)= Xj 6=i ���i(x)�pj (pj)dpjds (tan)(0) + ��i(x)�wj dwjds (0)�+ ��i(x)�pi (pi)dpids (tan)(0) + ��i(x)�wi dwids (0)= �Xj 6=i � vij(x)kpi � pjk2 (
ij(x)� pj)((!jh(�!t ;�!t )� 1)�!t + !jh(�!t ;�!u )�!u )��Xj 6=i � vij(x)kpi � pjk!j(�jh(�!t ;�!t ) + �jh(�!t ;�!u ))�+0�Xj 6=i( vij(x)kpi � pjk2 (
ij(x)� pi))� vixkpi � xk2 (
ixpi)1A�(!i h(�!t ;�!t )� 1)�!t + !i h(�!t ;�!u )�!u�+0�Xj 6=i( vij(x)kpi � pjk ) + vixkpi � xk1A !i ��ih(�!t ;�!t ) + �i h(�!t ;�!u )� :

Notice, that the gradient is invariant by translation of theentire coordinate frame and, therefore,��pj�i(0)(pj�x) = ��pj�i(x)(pj).
As expected, in the caseh(�!t ;�!t ) = h(�!t ;�!u ) = 0 when the surface is locally flat, we obtain the same

gradient as in the plane: From Minkowski’s theorem applied to the cellVi(x) (see Figure 6.8,Vi(x) =V (pi) \ V +(x)), we know thatXi 6=j vij(x)kpi � pjk(pj � pi)� vixkpi � xk (x� pi) = 0: (6.1)
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Figure 6.8: Minkowski’s theorem applies to the cellVi(x).

Because the weights are 0, the gradient expression simplifies, and with Equation 6.1, we get:D(�i Æ F )(0) = 0�Xj 6=i( vij(x)kpi � pjk ((
ij(x)� pj)� (
ij(x))� pi)) + vixkpi � xk (
ix � pi)1A�!t= 0�Xj 6=i vij(x)kpi � pjk (pi � pj) + vixkpi � xk(
ix � pi)1A�!t= vixkpi � xk ((pi � x) + (
ix � pi))�!t= vixkpi � xk (
ix � x)�!t :
Summarizing, we put the lemma that follows from this sectionusing the notations from above.

Lemma 6.12 The directional derivative of the volume function�i(x); i = 1; : : : ; n, at a pointx 2 S
which is the volume ofV (x;pi) in the power diagramVor(x) in direction

�!t0 isr�i(x) � �!t0 =Xj 6=i( ��pj�i(x)(pj)dpjds (tan)(0) + d�i(x)dwj dwjds (0)) + ��pi�i(x)(pi)dpids (tan)(0) + d�i(x)dwi dwids (0):
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6.5 Non-convex coordinate system for convex surfaces with barycentric

property

In this section, we show how to construct a coordinate systemon a convex(d� 1)-manifold that meets the

barycentric property, i.e. we construct a coordinate function �ij such thatx =Pj �ij(x)pj. P is supposed

to be an�-sample with� < 0:1. Because of the restriction to hypersurfaces, we denote themanifold byS
(instead ofM).

As explained in Section 6.3.3, theTx-coordinate system does not necessarily verify the barycentric

property unless allTx-neighbors ofx lie in the tangent (hyper-)planeTx of S at x. Of course, to obtain

the barycentric property, we cannot avoid to give up the convexity condition and we must allow negative

coordinates. Otherwise, eitherx would have to lie in the convex hull of its neighbors or the partition of

unity property of Definition 3.1 would be violated.

Inspired from Clarkson’s idea to construct smoother coordinate functions (see Section 3.5), we combine

the coordinate functions forx with those for itsT -neighborpi in the Voronoi diagramVor+(P n fpig)
restricted to the tangent planeTx. It is denotedVor+(P n fpig). In the tangent plane, with respect to the

projected data pointspj, the barycentric coordinate property is satisfied, i.e.x =Xi �i(x)pi: (6.2)

Similarly, we can express a neighborpi of x as the weighted barycenter ofx and its other neighborspj inVor+(Pnfpig). As in Section 3.5, we arrange the equation forpi as to writex as a convex combination of

the pointspj andpi. Together with equation 6.2, we obtain two independent waysto writex as a convex

combination of the projected data pointspj. (We explain this in detail later.) Re-placing the projected

data pointspj by the original pointspj yields in both cases an error in direction of the normal�!nx becausepj is the projection ofpj along�!nx. SinceS is convex, we show later that the error is always in opposite

directions, so a convex combination of both equations allows to cancel the error out and to establish the

barycentric coordinate property.

The definition is restricted to hypersurfaces because in this case the normal space is one-dimensional

and so is the error concerning the barycentric coordinate property. For manifolds with higher co-dimension,

one has to be careful about the number of (linearly independent) equations needed to cancel out the error.

Definition of the non-convexTx-coordinate function �ij
We define the new coordinate function�ij. Let �+x (pi) be the natural neighbor coordinate ofBi =(pi;�kpi � pik2) with respect tox in the power diagramVor+(P n fpig) defined inTx. Let �+j (pi)
be the natural neighbor coordinate ofBi with respect toBj = (pj;�kpj � pjk2) in the same diagram.

We noticed that the barycentric coordinate property is satisfied in the tangent space, so thatpi can

be written as convex combination of its neighborspj weighted by�+j (pi). We denote byI(x) the set
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of indices of theTx-neighbors ofx and byJi(x) the set of indices of the natural neighbors ofBi inVor+(P n fpig) exceptx.pi = �+x (pi) x+ Xj2Ji(x) �+j (pi) pj () x = 1�+x (pi) 0�pi � Xj2Ji(x) �+j (pi) pj1A : (6.3)

Replacing the projected data pointspi by the original pointspi, we getbi = 1�+x (pi) 0�pi � Xj2Ji(x) �+j (pi) pj1A :
Let the signed distance ofpi to the tangent hyperplaneTx be denoted byhi = (pi � pi) � �!nx. SinceS is

convex, we can suppose thathi > 0; i = 1; :::; n. (Otherwise, the orientation of�!nx can be reversed.) With

Equation (6.3) andpi = pi + hi � �!nx, the (signed) distance betweenbi andx in direction�!nx isei = (bi � x) � �!nx = 0� 1�+x (pi) 0�pi � Xj2Ji(x) �+j (pi) pj1A� 1�+x (pi) 0�pi � Xj2Ji(x) �+j (pi)pj1A1A � �!nx= 1�+x (pi) 0��hi + Xj2Ji(x) �+j (pi) hj1A : (6.4)

From Section 6.3.3, we re-call the errorex concerning the barycentric coordinate property of theTx-

coordinates:ex = (x� b(x)) � �!nx = 0� Xi2I(x) �i(x) pi � Xi2I(x) �i(x) pi1A � �!nx =Xi �i(x) hi
We need to show thatei andex have the same sign, thus, supposingex > 0, we need to showei > 0.

Lemma 6.13 Lethi > 0; i = 1; : : : ; n. If S is convex and� < 0:1, thenei > 0.

Proof: From Equation 6.4, it follows thatei > 0 () hi < Xj2Ji(x) �+j (pi) hj :
Lemma 5.19 and Lemma 6.3 (about the locality of theTx-neighbors) allow to show that the angle between�!nx and the normal toS at any pointp inside the ballBx containing allTx-neighbors ofx is smaller than�2
if � < 0:1. Thus, insideBx, S is locally the graph of the height function overTx. In the coordinate frame

with Tx as hyperplanexd = 0, we getpi = (pi; hi) andx = (x; 0). The convexity ofS implies thatpi
lies outside
onv(P n fpig), thus,pi lies below the convex hull of its neighbors, i.e. it has a smaller xd�1
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coordinate in this coordinate frame than the convex hull points. Sincepi is the convex combination of its

neighbors, i. e. pi = �+x (pi) x+ Xj2Ji(x) �+j (pi) pj;
it follows that hi < �+x (pi) 0 + Xj2Ji(x) �+j (pi) hj : �
Both errorsei andex are in direction�!nx and we havex = bi � ei � �!nx and x = b(x) + ex � �!nx:
The convex combination of both expressions yieldsx = exei + exbi + eiei + exb(x)= exei + ex 0� 1�+x (pi)(pi � Xj2Ji(x) �+j (pi) pj)1A+ eiei + ex 0� Xi2I(x) �i(x) pi1A=: Xj2I(x)[Ji(x)�ij(x) pj: (6.5)

The coordinate function�ij(x) is obtained by re-grouping all terms forpj.�ii(x) = eiei + ex �i(x) + exei + ex 1�+x (pi) (6.6)�ij(x) = eiei + ex �j(x)� exei + ex �+j (pi)�+x (pi) ; i 6= j: (6.7)

Finally, for all i 2 I(x), we mix Equation (6.5) weighted by�i(x):x = Xi2I(x) Xj2Ji(x) �i(x) �ij(x) pj:
If ex = 0, we obtainx =Pi2I(x) �i(x) pi.
Locality of the non-convexTx-coordinate function �ij
In the next lemma, we bound the maximum distance fromx to a sample pointpj with �ij(x) 6= 0. The

normal�!nx to M at x is supposed to be known or estimated in a way that the angle between�!nx and the

estimated normal isO(�).
Lemma 6.14 LetP be an�-sample ofM andx 2M. All sample pointspj with�ij(x) 6= 0 are contained

in a ball of radius6 � (1 +O(�)) lfs(x) centered atx.
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Proof: Letpi be aTx-neighbor ofx. If pj is a sample point with�ij(x) 6= 0 thenpi andpj have a common

face in the Voronoi diagramVor+(P) that is restricted toTx. With Lemma 5.11 we can easily bound the

distance betweenx and anM-neighborpk of pi. We see this in detail later. However, the neighbors

of pi in the Voronoi diagram restricted toTx must not necessarily be the same as theM-neighbors (in

the Voronoi diagram restricted toM). As explained in Chapter 5, vertices of thed-dimensional Voronoi

diagram might be close toM so that the faceV (pi;pj) that intersectsTx does not intersectM .

v xpi
Hik

v0
pk

Hiik
pj

pl
Hil

HiilI
TxV (pi)

Figure 6.9: The regionI includesV (pi) and thereforev. (This situation is not realistic.)

LetHiik be the halfspace that is delimited by the bisector hyperplaneHik of pi and anM-neighborpk
of pi and that containspi. Consider the intersectionI of halfspacesHiik,I =\H 2 fHiik j pk isM-neighbor ofpig:
Refer to the schematic drawing in Figure 6.9. By definition, the Voronoi cellV (pi) is contained inI
because it is the intersection of the halfspacesHiij of all Delaunay neighbors ofpi. A line throughx and

a vertexv 2 V (pi) must intersect the boundary ofI in a pointv0 that lies on a bisector hyperplaneHik
of pi and anM-neighborpk of pi. Eitherv0 is further fromx or v = v0. In the sequel, we determine an

upper bound forkx� v0k.
Becausepi is aTx-neighbor ofx, Lemma 6.3 implies that the distance betweenx andpi iskx� pik � 2� (1 +O(�)) lfs(x) (6.8)

From Lemma 5.11 and the Lipschitz property oflfs(), we know that the distance frompi to pk is at mostkpi � pkk � 2 �1� � lfs(pi) � 2� (1 +O(�)) lfs(x): (6.9)
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We deduce that kx� pkk � kx� pik+ kpi � pkk � 4 � (1 +O(�))lfs(x): (6.10)

Becausepi andpk areM-neighbors, there exists a pointvm of the Voronoi faceVM(pi;pk) andpk
andpi are the closest sample points tovm. Refer to Figure 6.10. Therefore,kpi � vmk � �1� � lfs(pi) � � (1 +O(�))lfs(x):

vm x� � pi
Hik

v0 vm
pk

Hiik

Figure 6.10: The pointv0 cannot be far fromx.

To boundkx�v0k, we compute a bound on (1)kx�vmk and (2)kvm�vmk (wherevm is the orthogonal

projection ofvm ontoTx). Then, (3), we bound the distance fromvm to v0, in order to obtainkx� v0k � kx� vmk+ kvm � v0k � kx� vmk+ kvm � vmk+ kvm � v0k: (6.11)

(1) By the triangle inequality, we know thatkx� vmk � kx� pik+ kpi � vmk � 3 � (1 +O(�))lfs(x): (6.12)

(2) With Equation 6.12 and Corollary 6.9, we obtainkvm � vmk = kx� vmk22 lfs(x) � 92 �2(1 +O(�))2 lfs(x) = O(�2) lfs(x): (6.13)

(3) Now we can boundkvm � v0k. With Lemma 5.20, we know a lower bound on the angle� between

the bisector hyperplaneHik andTx, and, consequently, an upper bound on the angle� atvm between the

line (vm;v0) and(vm;vm). See also Figure 6.10. Notably,� � ar
sin( �1� �) + �1� 3 � with � = kx� pkklfs(x) � 4 � (1 +O(�)); thus, tan � = O(�):
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With Equations 6.12, 6.13 and 6.14, Equation 6.11 becomeskx� vk � kx� v0k � �3 � (1 +O(�)) +O(�2) +O(�3)� lfs(x)= 3 �1� 3� (1 +O(�))lfs(x):
Suppose thatv is the furthest vertexv 2 V (pi) from x. A sample pointpj so thatv 2 V (pi;pj) is at

most twice as far fromx thanv sincev 2 V (pj) implies thatkv � pjk � kv � xk. With kx � pjk �2 kx� vk, we obtain the result. �
The support�j of the all coordinate functions�ij; i = 1; : : : ; n; is�j := fx 2 U j �ij(x) 6= 0; i = 1; : : : ; ng:
It includes the support�j of �j, i.e.�j � �j . Additionally, it includes all pointsx that have aTx-neighborBi which is a neighbor ofBj in the Voronoi diagramVor+(P n fpig) restricted to the tangent space ofx.

Corollary 6.15 The support�j of [i�ij is contained in a ball of radius6� (1 +O(�)) lfs(pj) centered atpj.
Proof: Applying Lemma 6.14 and Lemma 5.2, we obtainkx � pjk � Æ lfs(x) � Æ1�Æ lfs(pj) = 6� (1 +O(�)) with Æ = 6� (1 +O(�)). �
Continuity properties of the non-convexTx-coordinate function �ij
The continuity properties of�ij depend on the continuity properties of theTx-coordinate functions. We

suppose without real loss of generality that the intersection of a tangent planeTi; i = 1; : : : ; n with a(d � 2)-dimensional Voronoi face of the Voronoi cellV (pi) is either empty or it has dimensionk � 2. If

it has dimensionk � 1, a small perturbation ofTi removes this situation.

Lemma 6.16 The coordinate function�ij ; i = 1; : : : ; n; j 2 I(x), is continuous and continuously dif-

ferentiable everywhere onS except at the pointsx 2 S such that the intersection ofTx with a (d � 2)-
dimensional Voronoi face of the Voronoi cellV +(x) in Vor(P [ fxg) has dimensionk � 1.

Proof: �ij(x) is built from the functions�i(x), �+j (pi) and�+x (pi). Lemma 6.7 and Lemma 6.8 show the

continuity properties of�i. With the same approach as in the proof of Lemma 3.7, we show that �+j (pi)
and�+x (pi) have the same properties as�i(x). �
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Figure 6.11: The coordinate function
Pi2I1(x) �i(x)�ij(x) on the cylinder.

Visualization of the coordinate function

We demonstrate the locality and the smoothness of the non-convexT -coordinate as we did for the convexTx-coordinates. We visualize the coordinate function
Pi2I1(x) �i(x)�ij(x) with respect to a sample pointpj on a parameterized surface. Figure 6.11 shows an example of the cylinder from two different view-

points.
Pi2I1(x) �i(x)�ij(x) is computed on a (perturbed) regular grid of 40000 points with respect to a

subset of 100 regularly placed sample points. Each grid point is translated by the value of the coordinate

sum
Pj �i(x)�ij(x) in direction of the surface normal at that point. Of course,pj itself has the biggest

coordinate value,
Pi2I1(x) �i(pj)�ij(pj) = 1. Notice the locality of the coordinate function and the zone

where the function values are negative. TheC1 discontinuity at the sample pointpj is less obvious than

for the convex coordinate function�j.
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Chapter 7

The Voronoi atlas of a point cloud on ak-manifold of R d
Suppose (again) thatM is a smooth and boundedk-manifold without boundary embedded inRd andP � M is a set of sample point that fulfills the�-sampling condition. In the preceding chapter, we

examined the local restriction of the Euclidean Voronoi diagram ofP to the tangent space of a pointx 2 P. We showed that, in this restriction, the Voronoi cell ofx has good properties, namely, it is well

defined everywhere onM, it has a small, bounded diameter and it is homeomorphic to a neighborhood ofx inM. The results apply equivalently ifx is a sample pointpi 2 P whose Voronoi cellV (pi) is restricted

to its tangent spaceTi. In this chapter, we define the (T -restricted) Voronoi atlas ofP. This collection of

piTi

(a) (b)

Figure 7.1: (a) The (T -restricted) Voronoi atlas of a point setP and (b) its dual.

cells contains the restriction of each Voronoi cell of the Euclidean Voronoi diagram to the tangent space

of the point that defines the cell. Note that it is not a partition of a domain, as this is usually the case of a

107
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Voronoi diagram because the so-calledT -restricted Voronoi cells have, in general, no common boundary.

Refer to Figure 7.1(a). However, for each Voronoi cell on themanifold, there exist a bijection between this

cell and the corresponding Voronoi cell in the tangent space, hence, the name “Voronoi atlas”.

EachT -restricted Voronoi cell reveals the properties that were shown in the preceding chapter. In

particular, it is homeomorphic to the corresponding cell inthe Voronoi diagram restricted toM – if the

sampling condition is satisfied. Furthermore, both cells are close one to each other because they are

contained in small balls centered on the sample point. The dimension of aT -restricted Voronoi cell is the

dimension of the manifold. We define also the dual of theT -restricted Voronoi atlas. It is a collection of

simplices that are part of the Delaunay triangulation ofP. For each sample point, a subset of the simplices

incident to the point forms ak-manifold. In Chapter 8, we will show that this dual is an important tool to

compute piecewise linear approximations ofM. Figure 7.1 depicts a Voronoi atlas as well as its dual.

For hypersurfaces (k = d � 1), the definition domain of the Voronoi atlas can be enlarged to connect

the cells such that we obtain a Voronoi diagram that is, indeed, the covering of a hypersurface.1 The

nerve theorem can be applied to show that the dual Delaunay complex is homotopy equivalent to the

hypersurface.2

In Section 7.3, we define a system of coordinates in the Voronoi atlas which has the advantage to be

defined in the neighborhood of the manifold without exact knowledge of it.

7.1 Definition and basic properties

In this section, we define formally theT -restricted Voronoi atlas associated with a set of points scattered

on ak-manifold. Fork = d � 1, there is an alternative definition of the Voronoi atlas which allows to

enlarge the cells of the atlas such that it is actually a Voronoi diagram. This is presented in Section 7.2.

7.1.1 The Voronoi atlas

In the general case, letM be a smoothk-manifold ofRd ; k < d; andP � M be an�-sample ofM.Vor(P) is the Voronoi diagram ofP andV (pi) is the Voronoi cell ofpi. Let Ti be the tangent space ofM atpi 2 P. The normal spaceNi is spanned by the normal vectorsf�!ni lgl=1;::;d�k: We suppose that the

normal space is known. In the contrary case, it can be estimated with the techniques defined in Chapter 5.

Definition 7.1 (Voronoi atlas)The (T -restricted) Voronoi atlas ofP isA(P) := n[i=1 (Ti \ V (pi)) :
1 Re-call from Chapter 5 that a covering ofF � Rd is a finite collectionE of subsets ofF such thatF = [E .
2 See Theorem 5.9.
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In Observation 2.4, we showed that the intersection ofVor(P) with a hypersurface ofRd is a power

diagram. TheT -restricted Voronoi atlas is therefore a collection of cells of different power diagrams

because each cell is defined in the intersection of a tangent space withVor(P). The Voronoi cell ofpi
restricted toTi is V (pi) = V (pi) \ Ti:
The(d� l)-dimensional faceV (pj0 ; :::;pjl), l � k, intersectsTi in the(k � l)-dimensional faceV i(pj0 ; :::;pjl) = V (pj0 ; :::;pjl) \ Ti:
The sample pointspj0; :::;pjl are thegeneratorsof the face. Each vertexvt = V i(pj0 ; :::;pjk) of A(P)
is the center of an empty ball passing through thek + 1 generators ofvt. We call them theA-Delaunay

balls.

The orthogonal projection of a pointx ontoTi is calledxi. Similarly, the sample pointpj 2 P projects

orthogonally ontopji. LetVori(P) be the power diagram of the weighted pointsBj = (pji;�kpj�pjik2)
andBi = (pi; 0) defined in the tangent spaceTi.
A homeomorphism between the Voronoi cellsVM(pi) and V (pi)
If P is an�-sample,V (pi) intersectsM in a topologicalk-ball: The Voronoi cellVM(pi) is contained

in a small ballB(pi; � lfs(pi)) centered onpi with radius� lfs(pi) � �1�� lfs(pi) (see also the proof of

Lemma 5.11). With Lemma 5.4,M\ B(pi; � lfs(pi)) is a topologicalk-ball if � < 1. In fact, �1�� < 1
if � < 12 . SinceVM(pi) is the intersection of thed-dimensional convex polytopeV (pi) with M and it is

contained inB(pi; � lfs(pi)), it is a topologicalk-ball.

Similarly, the cellV (pi) is homeomorphic to a topologicalk-ball because it is a (non-empty) cell in ak-dimensional power diagram. It is always non-empty and it containspi becausepi 2 V (pi) andpi 2 Ti,
thus,pi 2 V (pi) = V (pi) \ Ti. Furthermore,V (pi) is close toVM(pi) if the sampling is sufficiently

dense. If the tangent spaceTi is known, the proof of Lemma 6.3 yields that the ballB(pi; � lfs(pi))
containsV (pi) if � = �p1�2� . With � < 1() � < p2�1 < 0:41; B(pi; � lfs(pi))\M is a topologicalk-ball. These remarks lead to the next lemma.

Lemma 7.2 For � < p2� 1 < 0:41, the Voronoi cellVM(pi) and the Voronoi cellV (pi) are homeomor-

phic.

Proof: As argued before, in this case, both Voronoi cells,VM(pi) andV (pi), are topologicalk-balls and

therefore homeomorphic one to another. �
We deduce that there exist a bijection betweenVM(pi) andV (pi).

For curves (k = 1), the separate cells can be easily connected in order to obtain a global homeomor-

phism between the curve and a Voronoi atlas. Recall from Lemma 5.13 that, fork = 1, all Voronoi vertices
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are far from the curve. Therefore, one can show that, for� < 0:31, a Voronoi edgeV (pi;pj) which is

intersected byTi is also intersected byTj. This will be proven in Theorem 8.1.

pi
pjV (pj)pk � V (pi; pj)

� V (pk; pj)
Ti

TjTk

Figure 7.2: The Voronoi faceV (pi;pj) intersectsTi but notTj. A top view on the cellV (pi) and some of

its neighboring cells.

In general, it is not as easy to join a faceV i(pi;pj) to a corresponding face inTj because this face

might not exist. Indeed, fork > 1, thed-dimensional Voronoi diagram might have Voronoi vertices that

are close toM (and, consequently, close to the tangent spacesTi andTj) so that a Voronoi faceV (pi;pj)
might intersectTi but notTj. This is indicated in Figure 7.2.

7.1.2 The dual of the Voronoi atlas

The dual ofA(P) is a collection ofk-simplicesG(P) that are part of the Delaunay triangulationDel(P).
It is defined in the sequel. At first, we define a subset of simplices ofG(P) that is adjacent to a pointpi 2 P and that is homeomorphic to the neighborhood ofpi in M.

Definition 7.3 (Umbrella) The (local) umbrellaUi ofpi 2 P is the set ofk-faces ofDel(P) that are dual

to the vertices ofV i(pi).
It is called the umbrella ofpi because it is a set ofk-simplices incident topi that forms ak-manifold.3

In three-dimensions, this resembles an umbrella because itis the set of triangles incident to one point that

forms a surface around it.Ui forms ak-manifold because it is the dual of thek-dimensional Voronoi cellV (pi).
3 This name has been used for the three-dimensional case by Adamy et al. [1].
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Definition 7.4 (Ti-neighbors)TheTi-neighbors ofpi 2 P are the vertices adjacent topi in its umbrellaUi.
TheT -neighbors are all pairs of pointspi andpj such thatpj is aTi-neighbors ofpi or pi is aTj-

neighbors ofpj. They will be connected by an edge in the dual of theT -restricted Voronoi atlasA(P).
pi

pjV (pj)pk
Ti

TjTk v
pl

Figure 7.3:G(P) contains the entire sliver tetrahedra(pi;pj;pl;pk) whose dual Voronoi vertex isv.

It is important to notice that this neighborhood relation isnot necessarily symmetric. Ifpi has aTi-
neighborpj, this does not necessarily mean thatpi is aTj-neighborpj. This reflects the fact that a Voronoi

faceV (pi;pj) might intersectTi but notTj if pi andpi are vertices of a sliver, i.e. a very flat simplex of

the Delaunay triangulation whose vertices lie almost on a(d � 1)-ball. The dual Voronoi vertex of this

sliver lies betweenTi andTj. Figure 7.1 depicts a Voronoi atlas as well as its dual in the two-dimensional

case. In Figure 7.3, we indicate the atlas as well as the dual in 3D.

Definition 7.5 (Dual of the Voronoi atlas)The dual of theT -restricted Voronoi atlasA(P) is the set of

simplices G(P) := n[i=1 Ui;
whereUi is the local umbrella ofpi 2 P, i.e. the set ofk-faces ofDel(P) that are dual to a vertex ofV i(pi).
In G(P), a (k � 1)-dimensional simplex dual toV (pi;pj) might be incident to only onek-dimensional

simplex. Similarly, it might be incident to more than twok-dimensional simplices. In other words,G(P),
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the collection of all umbrellasUi; i = 1; :::; n; is not combinatorially ak-dimensional triangulation nor

homeomorphic to ak-manifold. A simplex that is generated by theT -restricted Voronoi cellV (pi) with

vertexpj is not necessarily part of the umbrellaUj . Figure 7.4 shows a reducedG(P) for two different

data sets. Only those triangles are depicted that are part ofat leastl umbrellas withl = 2 in Figure 7.4(a)

andl = 3 in Figure 7.4(b).

(a) (b)

Figure 7.4: Reduced version ofG(P) containing all triagles present in at leastl umbrellas. (a) Model

“Schale” withjPj = 2714, l = 2, running time: 7,2s forDel(P) + 2s forG(P), (b) Model “Octopus” withjPj = 16; 944, l = 3, running time: 60s forDel(P) + 15s forG(P)
7.2 Enlargement for hypersurfaces

For hypersurfaces,k = d � 1, there is an alternative definition of theT -restricted Voronoi atlas which

allows to enlarge the cells of the atlas such that the collection of cells is actually a Voronoi diagram. The

resultingT -restricted Voronoi diagram is defined by a subset of faces ofad-dimensional Voronoi diagram

which form a(d� 1)-manifold. The basic idea has been introduced by Nullans [83] for the reconstruction

of geographic data.

In this section, we suppose thatS is a closed orientable hypersurface andF be the region enclosed byS. The point setP is now an�-sample ofS and we suppose that the normal�!ni of S at a pointpi 2 P
is known and oriented to the exterior ofF . In the contrary case, it can be estimated with the techniques

defined in Chapter 5 and a consistent orientation can be obtained by propagation (see e.g. [8]). LetTi
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be the tangent (hyper-)plane ofpi. The positive halfspace defined byTi and�!ni is calledT +i and the

corresponding negative halfspace is calledT �i .

7.2.1 TheT -restricted Voronoi diagram

We construct a point setP 0 in which each pointpi 2 P is replaced by two pointspi� andpi+ that are

slightly perturbed in each direction of the normal�!ni. Let Æ be an arbitrarily small positive real value.P 0 := n[i=1fpi+;pi�g; wherepi� = pi � Æ�!ni andpi+ = pi + Æ�!ni:
The perturbation ofpi is asymbolic perturbation. Conceptually, each geometric coordinate is replaced

with a symbolically perturbed coordinate which means thatÆ is, in fact, a polynomial rather than a constant.

When evaluating geometric tests, the substitution of the symbolically perturbed coordinates in the test

results in a polynomial whose coefficients are determined bythe original geometric coordinates.

p+ip�iV (p�l ) p�j p+j
V (p+l ) p+ip�iV (p�j ; p�i ) V (p+j ; p�i )V (p+j ; p+i )p�j p+j

V (p+i ; p�i )

(a) (b)

Figure 7.5: (a) Duplicating the points separates all faces that are intersected by the tangent plane in two

parts. (b) The faceV (pi;pj) is partitioned inV (pi�;pj�), V (pi+;pj�) andV (pi+;pj+).
The bisector hyperplane ofpi� andpi+ is the tangent hyperplaneTi to S atpi. Duplicating the pointpi in this manner, splits the Voronoi cellV (pi) in two parts,V (pi�) = V (pi) \ T �i andV (pi+) =V (pi) \ T +i . Refer to figure 7.5(a). The Voronoi faceV (pi�;pi+) between both cells is exactly the cellV (pi) (with V (pi) = V (pi) \ Ti). This is proven in the next lemma. The lower-dimensional faces ofV (pi) that are intersected byTi are likewise divided. See figure 7.5(b).

All faces ofVor(P) that are not intersected by the bisector hyperplanes of their generators exist also

in Vor(P 0). An empty sphere that is centered on a point of a face ofVor(P) and that has the generators
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of this face on its boundary, remains empty if each generatorpi is replaced bypi� andpi+ because the

latter points are at an infinitely small distance topi. The Voronoi face has either the generatorpi� or pi+.

It cannot have bothpi� andpi+ as generators unless it is intersected by their bisector hyperplane, the

tangent planeTi. This is indicated in Figure 7.6(a).

Lemma 7.6 The Voronoi diagramVor(P 0) contains all faces ofA(P).
Proof: Any pointv 2 V (pi) = V (pi)\Ti is at equal distance topi� andpi+ and further away from any

other point ofP 0. Consequently,V (pi) is the(d� 1)-faceV (pi+;pi�) of Vor(P 0).
A (d � l)-dimensional faceF of V (pi), 0 < l � d, is generated by the intersection of a(d � l + 1)-

dimensional face ofVor(P) with Ti (see Section 2.4). A pointv 2 F is the center of an empty ballB with

the l generators ofF on its boundary. WhenP is replaced byP 0, the same ballB is still empty. Sincev
lies in Ti, thus, on the bisector hyperplane ofpi� andpi+, it must contain both points,pi� andpi+, on

its boundary.v is, therefore, the center of an empty ball withl + 1 points ofP 0 on its boundary. Notice

thatB cannot contain both duplicates of any other generatorpj 6= pi of F unless the tangent spacesTj
andTi intersect inv. This is a degenerate situation that is removed by a small displacement ofpi or pj.
Generically,v lies in a(d� l)-face ofVor(P 0). See figure 7.6 (b). �

p+ip�i p�j p+j
p+k

v1 v2
B1

B2 p+ip�i p�j p+j
p+kp�k v3

v4
B3

V (p+i ; p�i )B4
(a) (b)

Figure 7.6: (a) The ballsB1 andB2 must be empty of sample points ifpi andpj are duplicated. (b)v3 2 Ti is the center of the empty ballB3 with pi� andpi+ on its boundary. The tangent planes ofpi andpk intersect inv4. The empty ballB4 passes through the duplicates of both sample pointspi andpj.
If the sampling is sufficiently dense, except in the neighborhood of Ti, V (pi�) lies insideF andV (pi+) lies outsideF . This idea will be used to approximateF by the union of Voronoi cellsV (pi�).

The boundary of thisd-volume is a hypersurface which should approximate the surfaceS.

Definition 7.7 (T -restricted Voronoi diagram) Let S be a hypersurface andP � S. The normal toS
at pi 2 P is �!ni andpi� = pi � Æ�!ni for some arbitrary small real valueÆ. P 0 = Sni=1fpi+;pi�g. A
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“bipolar” facet of Vor(P 0) is a facetV (pi�;pj+). TheT -restricted Voronoi diagram ofP is the cell

complex of bipolar facets of the Voronoi diagramVor(P 0) and their sub-faces,VorT (P) := [1�i;j�nV (pi�;pj+):
p+ip�i p+ip�iV (p+k ; p�i )

V (p+j ; p�i )p�j p+j
V (p+i ; p�i )p+k

(a) (b)

Figure 7.7: (a)VorT (P) contains all bipolar facets. (b) A zoom on the cellVT (pi). Its annulus isV (pi�;pj+) andV (pi�;pk+).
We can show that the union of the faces ofVorT (P) is a hypersurface: The facets that constituteVorT (P) are the boundary of the union of the Voronoi cellsV (pi�);pi 2 P. The cells are convex solids

which may share common(d� 1)-dimensional faces. Any lower dimensional face shared by two cells ofVor(P 0) is necessarily part of their common(d � 1)-dimensional face because, in the dual triangulation,

the existence of a simplex with verticesp andq implies the existence of the edge betweenp andq which

implies the existence of the dual(d� 1)-dimensional Voronoi face. Thus, the boundary of the union of the

cells is a hypersurface and, furthermore,VorT (P) is a covering of it (refer to Section 5.2).

Figure 7.7(a) depicts a two-dimensionalT -restricted Voronoi diagramVorT (P). The cell ofpi inVorT (P) is the union of the facets ofVorT (P) that are incident toV (pi�) as shown in figure 7.7(b).

Definition 7.8 The cell ofpi 2 P in VorT (P) isVT (pi) := [1�j�nV (pi�;pj+):
Thecoreof the cellVT (pi) is V (pi�;pi+). Theannulusof VT (pi) are the facetsV (pi�;pj+); 1 � j �n; i 6= j; together with their faces and subfaces.

An annulus facetVT (pi;pj) is either the facetV (pi�;pj+) or V (pi+;pj�) of Vor(P 0) depending on

which one exists. Both exist only ifTi = Tj because in this case, the facetsV (pi�;pj+) andV (pi+;pj�)
coincide and their dimension isd� 2. In the general case,VT (pi;pj) is (d� 1)-dimensional.
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The definition ofVorT (P) should be coupled with a condition on the Voronoi diagramVor(P 0) in

order to impose that its cells are connected and contractible. If the condition is fulfilled, theT -restricted

Voronoi diagram and, in particular, its dual triangulation(defined in the next section) have nice properties

because we will show in the sequel that the nerve theorem applies.

Definition 7.9 TheT -restricted Voronoi diagramVorT (P) is valid if the union of the bipolar facets of

each cellV (pi�), pi 2 P, is a topological(d� 1)-ball.

For small dimensions,d � 3, this condition is easily checked. It suffices to compute thebipolar facets ofVor(P 0) incident topi� while controlling that they build a connected component without holes.

The T -restricted Voronoi diagram for an �-sampleP
In this section, we consider the case thatP is an�-sample ofS. This is not imposed in Definition 7.7 but

it allows to show some additional properties ofVorT (P).
From the proof of Lemma 6.3, we know that the cellV (pi) is contained in a small ball centered atpi.

The following lemma shows that any intersection of a VoronoifacetV (pi;pj) with Tj is also contained

in a small ball centered onpi. Consequently, no tangent planeTj intersects a faceV (pi;pj) of V (pi) far

from pi.
Lemma 7.10 A point v of the intersection of the tangent planeTj of S at pj with the Voronoi facetV (pi;pj) of Vor(P), i.e.v 2 V (pi;pj) \ Tj, is at distancekv � pik � �p1� 2�� 2� lfs(pi):
Proof: From the proof of Lemma 6.3, we know thatkv � pkk = kv � pik � �p1� 2� lfs(pk):
Due to the Lipschitz property oflfs, we obtainkv � pik � �p1� 2�(lfs(pi) + kpi � pkk) � �p1� 2�(lfs(pi) + 2 kv � pik)() (1� 2 �p1� 2�)kv � pik � �p1� 2� lfs(pi)() kv � pik � �p1� 2�� 2 � lfs(pi):�
Recall thatF is the region enclosed byS.

Lemma 7.11 Consider a pointv 2 V (pi;pj) withkv � pik = �lfs(pi) � � (1� �)2p1� 2 � lfs(pi):
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(a) If v 2 F , thenv 2 V (pi�;pj�), i.e.v 2 V (pi;pj) \ T �i \ T �j .

(b) If v =2 F , thenv 2 V (pi+;pj+), i.e.v 2 V (pi;pj) \ T +i \ T +j .

Proof: With Lemma 5.23, we know that the vector frompi to v makes a small angle with the normal�!ni
that is oriented in the same direction,\(�!ni;��!piv) � ar
sin ��(1��) + ar
sin �(1��) . Thus, ifv =2 F and the

normal is oriented to the exterior ofF , we obtain (using maple) that\(�!ni;��!piv) � ar
sin ��(1� �) + ar
sin �(1� �) � �2 if � � � (1� �)2p1� 2 � :
The same arguments works ifv 2 F except that the normal is oriented to the opposite direction. �

At last in this section, we state an open question which we believe to be true but which we could not

yet prove.

Open question 7.12There exists a positive real constant
 such thatVorT (P)V (pi) is valid in the sense

of Definition 7.9 ifP is an�-sample ofS with � < 
.
7.2.2 TheT -restricted Delaunay triangulation

In the preceding section, we defined theT -restricted Voronoi diagram and we argued that it is a covering

of a hypersurface. In this section, we define the dual Delaunay triangulation of this Voronoi diagram. We

show that, ifVorT (P) is valid, the nerve theorem (Theorem 5.9) can be applied which guarantees that

the dual triangulation is homotopy equivalent to the domaincovered by the Voronoi diagram, thus, to a

hypersurface.

Definition 7.13 (T -restricted Delaunay triangulation) With the notations of Definition 7.7, theT -restricted

Delaunay triangulationDelT (P) contains all faces ofDel(P) that are dual to faces inVorT (P). It con-

sists of the edges that are dual to bipolar facets ofVor(P 0).
Lemma 7.14 If the T -restricted Voronoi diagramVorT (P) is valid, then theT -restricted Delaunay tri-

angulationDelT (P) is homotopy equivalent to the hypersurface defined by the union of cells ofVorT (P).
Proof: LetX be the hypersurface that consists of the union of faces ofVorT (P). It is indeed a hypersurface

because it is the boundary of the union of Voronoi cellsV (pi�); i = 1; : : : ; n. We apply the nerve theorem,

Theorem 5.9, to the restriction ofV or(P) to X . The restriction ofVor(P) to a hypersurface is a finite

closed covering of the latter (cf. [54]). In our case, it isVorT (pi).
We need to show that the conditions of the nerve theorem are satisfied, notably, the intersection of

every set of Voronoi cellsVT (pi), VT (pj),... must be empty or contractible. Already, a cellVT (pi) is

contractible becauseVorT (P) is valid. The faces ofVorT (P) are faces ofVor(P 0). By definition, they

are convex and contractible. �
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7.3 Natural-neighbor coordinates defined in the Voronoi atlas

Let P be an�-sample of ak-manifoldM embedded inRd . The natural neighbor coordinates in theT -

restricted Voronoi atlas ofP can be defined in the usual manner. The difference between theTx-coordinate

functions defined in the preceding chapter is quite subtle. While theTx-coordinate function�i(x) (of the

preceding chapter) is defined for a pointx 2 M in the tangent spaceTx of x, the natural neighbor

coordinates in the Voronoi atlas are defined in the tangent spaceTi of each sample point. Its definition

domain� is restricted to the neighborhood ofM. Precisely,� is the union ofA-Delaunay balls, i.e. the

union of (open) balls that are centered on vertices of theT -restricted Voronoi atlas and empty of sample

points. We show that� encloses the manifoldM if P is an�-sample ofM.

7.3.1 Definition of the coordinate function�i
Before we define the coordinate function more formally, we explain the intuition behind it. At the insertion

of a pointx 2 � into thed-dimensional Voronoi diagramVor(P), we considerV +(x), the cell ofx inVor(P [ fxg, and its subcellsVi(x) = V +(x) \ V (pi). If the tangent spaceTi intersectsVi(x), x has a

non-zero coordinate with respect topi. This intersection is, in fact, the cellVi(x) in the power diagramVori(P) (defined by the intersection ofVor(P) with Ti). In this power diagram,x corresponds to the

weighted pointXi = (xi;�kxi � xk2). The volume of the cellVi(x) is denoted�i(Xi). (Of course,Xi
is a function ofx.)

The natural coordinate function in theT -restricted Voronoi atlas is defined as follows:

Definition 7.15 (Atlas-coordinate system associated withP ) In the Atlas-coordinate system associated

with a set of sample pointsP �M, theA-coordinate function�i(x) of a pointx 2 � is defined by�i(x) := �i(Xi)Pj �j(Xj) :
The sample points with non-zero coordinate functions are called the neighbors of the pointx in the

Voronoi atlas.

Definition 7.16 (Atlas-neighbors ofx) Given a set of sample pointsP � M, the Atlas-neighbors of a

pointx 2 � are the sample pointspi 2 P such that�i(x) 6= 0:
Verifying the conditions of Definition 3.1

In Chapter 3, we have analyzed the function�i(Xi) in detail. The coordinate function�i(x) inherits the

continuity properties of�i(Xi) because it is simply the ratio of several functions�i(Xi) – even if they

are not defined in the same power diagram. SinceXi changes smoothly withx, the results hold. We can

deduce that�i is C0 continuous and that it isC1 continuous except in a set of measure zero. We can
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determine its gradient because Lemma 3.8 defines the gradient of �i(Xi). We establish these results in

more detail in the next section.

The Atlas-coordinate system fulfills two properties of Definition 3.1: �i(x) = Æij because�j(pi) = 0
for j 6= i and�i(pi) > 0. Also,

Pi �i(x) = 1 by definition.

It does not satisfy the barycentric coordinate property of Definition 3.1. If the tangent spaces of all sam-

ple pointspi with �i(x) 6= 0 coincide, i.e. the manifold is locally flat, the barycenterb(x) =Pi �i(x)pi
is the projection ofx onto the (flat) manifold. Notice thatx is not necessarily on the manifold, so that even

in this caseb(x) 6= x is possible.

The distance betweenx and the barycenterb(x) is bounded, nevertheless, by the simple fact that the

distance ofx and its Atlas-neighbors is bounded.b(x) must lie in the convex hull of these neighbors.

Corollary 7.17 The distance betweenx and the barycenterb(x) defined by theA-coordinate system iskx� b(x)k � 2 �p1� 2 �� 2 � lfs(x):
Proof: Corollary 6.6 bounds the distance betweenpi 2M and a pointx 2M such thatx is aTi-neighbor

of pi. This yields the result becauseb(x) cannot be further fromx than the furthest neighborpi. �
The support of the coordinate function

The support�i of �i is the union ofA-Delaunay balls that are centered on vertices ofV (pi). Inside�i,
the cellV +(x) has a non-empty intersection withV (pi). The radiusr of such anA-Delaunay ball is

bounded by the upper distance betweenpi and a vertex ofV (pi),r � �p1� 2 � lfs(pi):
Lemma 7.18 LetP be an�-sample ofMwith � < 0:31. The support�i contains the Voronoi cellVM(pi)
of pi restricted toM. Consequently, the support� of theA-coordinate system containsM.

Proof: A point q 2 VM(pi) lies inside�i if a part ofV (pi) would be “stolen” byq at its insertion intoVor(P). This means that there exists a pointy 2 V (pi) with kq � yk � kpi � yk: We say that, in this

case,q is in conflictwith y. Assume, at first, that the orthogonal projectionq of q ontoTi lies inV (pi).
We show that, in this case,q is in conflict withq.

Let � = \qpiq andkpi � qk = �lfs(pi). (Becauseq 2 VM(pi), � < �1�� with Equation 5.1.) Thus,kpi � qk = kpi � qk 
os(�) and kq� qk = kpi � qk sin(�):
(See Figure 7.8(a)) From Lemma 5.17, we know that� � ar
sin(�2 ). It follows thatkq� qk � kpi � qk
if � < �4 () � < p2. With � < �1�� , we deduce thatq is in conflict withq if � � 12 .
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Ti pi qq� Ti pi qq� v

Hiij �Hij�
(a) (b)

Figure 7.8:q 2 VM(pi) must be in conflict with the cellV (pi).
However,qmay not lie inV (pi). Letv be the intersection point of the line[pi;q℄ and a faceV (pi;pj)

of V (pi). We show thatq is in conflict withv. From Lemma 5.17, we deduce that the angle� between any

normalni ofM atpi and the bisector hyperplaneHij that containsV (pi;pj) is small becausekpi�pjk �2�p1�2� lfs(pi) by Lemma 6.3. In fact,� � ar
sin( �p1�2�). The pointq does not necessarily lie onHij but

it must lie inside the halfspaceHiij induced byHij that containspi. Otherwiseq could not be inV (pi)
because it would be closer topj than topi.
In order to obtainkq�vk � kpi�vk; the angle� = \vqpi must be larger than�. Refer to figure 7.8(b).

We obtain� � �2 � � � � > � () �2 > �+ 2 � (= ar
sin( �p1� 2�) + 2 ar
sin( �2(1 � �))(= � < 0:31: �
v piv0pk pj

V (pi)x
V (pj)

Figure 7.9: The coordinate�i(x) = 1 becausex is only in conflict withv 2 V (pi) but with no otherT -restricted Voronoi cell.
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Notice that the cellV (pi) can never be entirely contained inV +(x): As we noticed before,Bi must

have a non-empty cell in the power diagramVori(P [ x) because the weight ofBi is zero while the

weight of all other sites, includingXi, is negative or zero. Also, it might occur that the coordinate function�i(x) = 1 while x 6= pi. This is the case whenx lies in the support�i but outside any support�j. x is

in conflict with a vertex ofV (pi) but not with the corresponding vertices in other tangent spaces (if they

exist). Refer also to figure 7.9.

7.3.2 Continuity properties and gradient of the coordinatefunction �i
Lemma 7.19 TheA-coordinate�i; i = 1; :::; n; associated withP is continuous everywhere in�.

Proof: The volume functions�i(Xi) are continuous everywhere inTi. The tangent spaceTi is fixed andXi = (xi; kxi � xk) is a smooth function ofx. The ratio�i(x) := �i(Xi)Pi �i(Xi) is continuous ifXi and�i is

continuous, for alli. �
Lemma 7.20 TheA-coordinate�i; i = 1; :::; n; associated withP is continuously differentiable every-

where in� except atP and at the pointsx 2 � such that the intersection ofTi; i = 1; : : : ; n; with a(d� 2)-dimensional Voronoi face of the Voronoi subcellVi(x) has dimensionk � 1.

Proof: The same arguments as for the proof of Lemma 6.8 apply. The coordinate function�i is differ-

entiable iff the volume functions�i(Xi); i = 1; : : : ; n; are differentiable. They are defined in (different)

power diagramsVori(P). Lemma 3.6 about the differentiability of the volume function �i(X) shows

that�i(Xi) is differentiable unless the bisector hyperplane ofx andpi contains a(k � 1)-dimensional

face of the power diagram dual topi and another pointpj. As we noticed in the proof of Lemma 6.8,

this means thatx;pi andpj define a(d � 2)-dimensional Voronoi face ofV +(x) that intersectsTi in a(k � 1)-dimensional face. �
The gradient of the coordinate function

We determine the gradientr�i(Xi) as a function ofx. With �i(x) = �i(Xi)Pi �i(Xi) , this yields the gradientr�i.
The volume function�i(Xi) is a composite function becauseXi is a function ofx. All other elements

defining�i(Xi) are constant, namely, the tangent spaceTi and the weighted pointsBj = (pji;�kpj �pjik) that define the power diagram.Xi = (fi(x); wi(x)) is defined byfi(x) = xi = x� d�kXl=1(�!pix � �!ni l) �!ni l (7.1)
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and wi(x) = �kxi � xk2 = �k d�kXl=1(�!pix � �!nil) �!ni lk2: (7.2)

Since an orthogonal projection is always a linear transformation, the Jacobian matrixrfi and the gradientrwi are constant. Denote byrXi = (rfi;rwi) the Jacobian ofXi.
The gradient of�i(Xi) is determined by Lemma 3.8. We need the following definitions:

1. vix is the(k�1)-dimensional volume of the face betweenXi andBi in Vi(x) if k > 1, andviix = 1,

if k = 1,

2. 
ix is the centroid of this facet,r�i(Xi) = 8>><>>: vixkpi�xik  
ix � xi12 !
if x 2 �i;0 otherwise,

The composition ofXi and�i is summarized as follows:Rn Xi�! Rn � R �i�! Rx Xi7�! Xi = (fi(x); wi(x)) �i7�! �i(Xi):
Notice that the gradientr�i(x) 6= 0 only if x lies in the support of at least one other coordinate function,x 2 Sj 6=i(�i \�j). Otherwise,�i(x) is constant,�i(x) = 1.

By the chain rule, we obtainr�i(Xi(x)) = ( rXi(x) � r�i(Xi) if x 2 Sj 6=i(�i \�j);0 otherwise,
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Applications

In this chapter, we present three different applications ofthe concepts defined in this thesis. In section 8.1,

theTx-coordinates is applied to interpolation on surfaces. The following section deals with reconstruction

of surfaces and curves from point clouds. Finally, in Section 8.3, we present a re-meshing technique that

is based on centroidal Voronoi diagrams.

8.1 Interpolating a function on a surfaceS
In this section, theTx-coordinate system defined in Chapter 6 is used for scattereddata interpolation on

smooth surfaces. This means that we interpolate a function that is defined on the surface and that is known

on discrete sample points. We will apply four interpolationmethods described in Chapter 4 by replacing

the natural neighbor coordinates by theTx-coordinates defined on the surface. The reader may recall that

these methods depend only on the barycentric coordinate property (Definition 3.1 (i)) and on the continuity

and differential properties of the coordinate function. Even though the barycentric coordinate property is

not satisfied by theTx-coordinate, the interpolation methods can be applied. We restrict the experiments

presented in this section to surfaces, i.e.2-manifolds inR3 .

More precisely, the problem is stated as follows. We want to approximate� : S ! Rl whereS � R3
corresponds to a manifoldM defined as before andl = f1; 2; : : :g. We assume that an�-sampleP of S
with function valuesf(pi; zi) : pi 2 P; zi = �(pi)g is given. The interpolation is carried out for a pointx 2 S (and�!nx is its normal toS).

The section gives a short overview about previous work on this problem, then, it defines the different

interpolation functions that are proposed and, finally, it presents some experimental results.

8.1.1 Introduction and related work

This problem, which is also called the ’surface on surface’ problem or ’scattered data fitting on surfaces’,

arises in a variety of settings. In geodesy, geophysics, andmeteorology,S is some model of the earth,

123
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and the function to interpolate from a number of discrete measurements represents temperature, rainfall,

pressure, etc. In other contexts,S might be a complicated surface, e.g., the surface of some mechanical

piece inCAD, a molecular surface or the wing of an airplane [17]. The interpolation of vector fields

defined on surfaces has applications in fluid dynamics and in so-called moving boundary problems from

partial differential equations. For example, the surfaceS might represent the interface between solid and

liquid phases of a material substance, e.g. ice and water, and it varies in time. The interpolated data consists

of the normal vectors toS, the mean curvature, or the velocity of the moving boundary.See [82] for an

introduction to the “surface on surface” interpolation problem and notably to splines on surfaces.

Several methods exist to solve this problem. One of the most popular is to enlarge the definition of

splines to treat the case of a non-planar parameter domain. This was first done for the spherical case in

[3]. With this achievement, it suffices to partition a general surfaceS into a collection of non-overlapping

surface patches, for instance geodesic triangles, and to define a globally smooth interpolation function

as piecewise polynomials on the patches that are carefully accorded at the boundaries. However, as

Neamtu concludes in [82], the definition of spline spaces on general surfaces depends upon the existence

of barycentric coordinates. For some special surfaces, smooth coordinate functions with good properties

exists, but, to my knowledge, there exist no general way to define them.

Implicit Bernstein-Bézier patches are used by Bajaj et al.in [15] to reconstruct the surfaceS from a

sample set but also to approximate a scalar function defined at the sample points. A user-defined parameter

bounds the approximation tolerance, i.e. the maximum distance between the approximated and the input

data on the sample points. The surface is represented as the zero-contour of an implicit function which

approximates the signed distance toS. In a first step, the surface is approximated by so-called�-solids

which are subsets of the Delaunay triangulation ofP. The distance function (defined by the distance to

the�-solid) is approximated by piecewise polynomial functionsobtained from least-square fitting with

barycentric Bernstein-Bézier patches and incrementallyrefined until the approximation tolerance is re-

spected. In the same way, a piecewise polynomial is constructed by least squares fitting that approximates

the scalar function defined on the sample points. At last, smoothing is necessary to obtain globallyC1
smooth surfaces.

Radial basis functions (RBF) is another popular method usedfor interpolation. Lodha and Franke [77]

give a recent introduction to the field (for interpolation inR2 andR3 ). For a long time, the practical use

of RBF was prohibited by the large computation cost. According to the authors, new progress has made

the RBF approach feasible even for very large data sets. In contrast to spline based methods, they have the

advantage to bemeshless, i.e. independent of a partition of the definition space. Themain ingredient for

RBFs is the radial function which is a function that is symmetric around a center point as it depends only

on the distance to the center. Its support might be unboundedor compact. The solution to the interpolation

problem is a linear combination of translates of radial functions plus, in some cases, a polynomial term.

It is subject to a system of linear equations that impose the interpolation of the function data at the data
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points. Only recently, methods have been developed that allow to compute the solution to this –often poor

conditioned – linear system efficiently. For interpolationof functions on surfaces,Hardy multiquadrics

were the first type of RBFs which have been used with applications in geophysics [69]. Applications of

RBFs for scattered data interpolation on the sphere are summarized by Fasshauer and Schumaker in [58].

Other interpolation methods are variational methods, distance weighted methods, transfinite methods

or multi-resolution methods. Most methods are defined for the spherical case. See [58] for a survey of

the principal methods for scattered data fitting on the sphere. To our knowledge, there exist only few

methods for interpolation on general surfaces. For instance, multiresolution techniques are widely used

for constructing surfaces. Apart from a work by Sweldens [93] where wavelets are defined for arbitrary

surfaces, there seems to be few activity wrt. the surface-on-surface problem.

Pottman [85] defines a transfinite method for arbitrary at least twice-differentiable surfaces. Transfinite

methods are based on a partition of the function domain and the definition of smooth functions on the

edges of the partition which are themselves interpolated over each cell.

In this context, our method has several advantages: It is meshless, i.e. it applies directly to the point

samples without need of a prior subdivision or triangulation of the surface. The quality of the result

depends on the curvature of the surface and on the sampling density. If the surface is locally planar,

the interpolant has linear precision. If, additionally, the gradientr(�(pi)) of � at the sample pointspi; i = 1; : : : ; n; is known, we define an interpolant that reproduces exactly a quadratic function – again

if the surface is locally planar. Our method generalizes easily to interpolation of vector-valued functions,

i.e. functions� : S ! Rl ; l = 2; 3 : : :. Each coordinate of the result vector is interpolated independently

as if it were a scalar function. The only draw-back lies in thelimited differentiability on the data points

themselves. With Sibson’s and Farin’s methods (see Sections 4.2 and 4.1), the interpolant is globallyC1
smooth but it seems difficult to increase the smoothness on the data points. The interpolants are tested in

different settings. Examples are shown in Section 8.1.3.

8.1.2 Definition and properties of interpolants

In the sequel, the interpolation methods described in Chapter 4 are applied to interpolation on surfaces.

The natural neighbor coordinate system defined in the entireEuclideand-space is simply replaced by theTx-coordinate system whose definition domain is limited to thesurface. For a pointx 2 S, we compute itsTx-coordinates and we replace�i by theTx-coordinate function�i in the interpolation scheme. The result

of the interpolation is the same whenever allTx-neighbors ofx lie in the tangent planeTx. If this is not

the case, theTx-coordinates may not satisfy the barycentric coordinate property which causes an error in

the interpolation scheme. However, this error can be bounded with respect to the local feature sizelfs(x)
(we refer to Section 6.3.3). We tested the interpolation of scalar functions using Sibson’s interpolants (Z0
andZ1), Farin’s interpolant and the quadratic precision interpolant (I0). We did not compute Clarkson’s

coordinate function but we tested Sibson’sZ0 interpolant with the non-convex coordinate system described
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in Section 6.5. The experiments were run on a Bi-processor Pentium III computer, 1 GHz, 1024 MB RAM

8.1.3 Experimental results

Functions in 3D
We assume that we are given a real-valued functionf(x) that can be evaluated at all pointsx 2 S. For

example, we interpolated the following three functions on the sphere:� f1(x; y; z) = 4x2 + y4 + 6z4,� f2(x; y; z) = e�2((x�1)2+y2+z2) + 0:5 e�4(x2+(y�0:7)2+(z�0:7)2) � 0:25 e�4(x2+(y+0:7)2+(z+0:7)2);� f3(x; y; z) = 1 + x8 + e2y3 + e2z2 + 10xyz.

The functionsf2 andf3 are test functions from [59] and [2].

To visualize the result, we deformed the sphere at each pointalong its normal by the amount of the

corresponding interpolation result. Figures 8.2, 8.3, and8.4 depict the result of the interpolation off1,f2, andf3 resp. knowing50 and 250 pseudo-random sample points. In Figures 8.5, 8.6, and 8.7, the

error statistics are depicted together with the exact result of the function application where the function

is evaluated at the6000 points of the sphere model and the sphere is deformed correspondingly. For

each interpolant, mean and maximum errors are given with respect to the absolute difference between the

actual and the interpolated function value on the 6000 evaluation points. The linear interpolantZ0 with

convex coordinates is the least accurate concerning mean aswell as maximum error followed by the same

interpolant using the non-convex coordinate system and theI1 interpolant. Farin’s interpolant and Sibson’sZ1 interpolant achieve comparable results, yet, theZ1 interpolant yields to be slightly better than Farin’s

interpolant if few sample points are known. The running timefor computing the interpolants on the6000
points on the sphere is depicted in Table 8.1.jPj 100 200 500 1000 2000

convex coordinates 15.14 s 16.84 s 18.25 s 18.48 s 19.19 s

non-convex coordinates62.14 s 67.1 s 80.61 s 82.64 s 99.29 s

Figure 8.1: Running time (in seconds) for interpolation at6000 points on the sphere.
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(a) (b)

Figure 8.2: Interpolation off1 with (a) 50 and (b) 250 sample points.

(a) (b)

Figure 8.3: Interpolation off2 with (a) 50, (b) 250 sample points.

(a) (b)

Figure 8.4: Interpolation off3 with (a) 50, (b) 250 sample points.
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Figure 8.5: Error statistics for the interpolation off1: (top) exact model and mean error statistic, (bottom)

maximum error statistic.Z0 interpolant: dotted curve with points,Z0 interpolant with non-convex coordi-

nates: dotted curve with circles,I1 interpolant: dark solid curve with diamonds, Farin’s interpolant: grey

solid curve with crosses,Z1 interpolant: slashed curve with boxes.
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Figure 8.6: Error statistics for the interpolation off2: (top) exact model and mean error statistic, (bottom)

maximum error statistic. Interpretation of curves cf. Figure 8.5.
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Figure 8.7: Error statistics for the interpolation off3: (top) exact model and mean error statistic, (bottom)

maximum error statistic. Interpretation of curves cf. Figure 8.5.
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Functions on parameterized surfaces

In this section, we suppose that we are given a parameterizedsurfaceS defined bys : R2 ! R3 ; such thats(u; v) = (x(u; v); y(u; v); z(u; v)) 2 S
and a functionh(u; v) : S ! R defined onS. We evaluateS on a regular grid of 40000 points (which

is for numerical reasons slightly perturbed). The functionh is evaluated on a random set of points uni-

formly distributed in parametric space. The gradient needsto be expressed with respect to the Cartesian

coordinates gi = 0BB� ��x��y��z 1CCAh Æ s�1(pi) = 0BB� �u�x �h�u(ui; vi) + �v�x �h�v (ui; vi)�u�y �h�u(ui; vi) + �v�y �h�v (ui; vi)�u�z �h�u(ui; vi) + �v�z �h�v (ui; vi) 1CCA
We use Sibson’sZ0 andZ1 interpolants, the quadratic precision interpolantI1 and Farin’s interpolantf3
to estimate the function value on the grid points. The surface is deformed by the value of the interpolant

in direction of the surface normal. An exact model is obtained by evaluating the function on the grid

points and by deforming the surface accordingly. Figure 8.11 depicts an example of Farin’s interpolant

on the torus. The corresponding error statistics as well as the exact model are shown in Figures 8.10 and

8.9. The error statistics show that Sibson’sZ1 and Farin’sf3 interpolants yield the best results. Farin’sf3 interpolant has a smaller maximum error and a smaller mean error if the sampling of the function is

dense. For sparser samples, Sibson’sZ1 interpolant is better with respect to the average error. ThelinearZ0 interpolant with convex coordinates produces the largest errors, followed byZ0 interpolant with non-

convex coordinates and theI1 interpolant. Notice that the non-convex coordinate systemcannot be applied

on the torus (since it is not a convex surface).jPj 100 200 500 750 1000 2000

convex coordinates 155.44 s 179.26 s 219.71 s 241.47 s 260.13 s 302.34 s

Figure 8.8: Running time (in seconds) for interpolation at40:000 points.
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Figure 8.9: Exact model and mean error statistic for the interpolation ofh(u; v) = 0:6 
os(6v) on the

torus. Z0 interpolant: dotted curve with points,I1 interpolant: dark solid curve with diamonds, Farin’s

interpolant: grey solid curve with crosses,Z1 interpolant: slashed curve with boxes.
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Figure 8.10: Maximum error statistic for the interpolationof h(u; v) = 0:6 
os(6v) on the torus. Interpre-

tation of curves cf. Figure 8.9.
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Figure 8.11: Interpolation ofh(u; v) = 0:6 
os(6v) on the torus with 100, 200, and 400 random sample

points (from left to right). Top row: sample points. Bottom row: result of interpolation.

Vector fields on parameterized surfaces

The interpolation of vector fields, i.e. functions that are defined from the surface to a higher dimensional

space, can be treated in the same way as scalar functions by interpolating each coordinate of the result

separately with one of the interpolants presented in this chapter. For example, letv : S ! R3 withv(u; v) = (vx(u; v); vy(u; v); vz(u; v)), then,vx, vy, andvz are interpolated independently. The error

of the interpolation is measured by the squared distance between the vector obtained by applying the

function on a pointx and the interpolation result atx. Figure 8.12 shows the interpolation ofv(u; v) withvx(u; v) = � 
os(u) 
os(v), vy(u; v) = � 
os(u) sin(v), andvz(u; v) = � sin(u) on the cylinder. The

function as well as the function gradient is known at a small number of random points, and the interpolants

are evaluated on40; 000 grid points. For surfaces with boundary, all boundary grid points are part of the

sample points. To visualize, we translate each point by the vector resulting from the interpolation or the

function application. We tested Sibson’sZ0 andZ1 interpolants and theI1 interpolant. Concerning the

error statistics, Figure 8.13, this time the mean error of the Z0 interpolant is worse than the maximum

error of I1 andZ1. TheZ1 interpolant produces less error than theI1 interpolant. The third and the

fourth highest curves correspond to the maximum error in theI1 and theZ1 interpolant (in this order).
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The lowest curves depict the mean error of theI1 and theZ1 interpolant.

(a) (b) (c) (d)

Figure 8.12: Interpolation ofv(u; v) on the cylinder with (a) 100 regularly spaced sample points (shown

in red), (b) 500, (c) 1000 and (d) 4000 random sample points.
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Figure 8.13: Exact model and error statistic for Figure 8.12. Interpretation of curves (in descending order).Z0 interpolant maximum error: dotted curve with crosses,Z0 mean error: dotted curve with points,I1
interpolant maximum error: dark solid curve with diamonds,Z1 interpolant maximum error: slashed curve

with circles,I1 mean error: dark solid curve with crosses,Z1 mean error: slashed curve with boxes.



8.2. Delaunay-based surface and curve reconstruction 135

8.2 Delaunay-based surface and curve reconstruction

In this section, we describe how the concept ofT -neighbors can be applied to curve and surface recon-

struction inR3 . The problem of reconstructing a surface or a curve from a setof scattered points has

received a lot of attention in the last twenty years. One class of algorithms to solve this problem is based

on the Delaunay triangulation of the input points. It has been shown that – under some sampling condition

– the surface and the restriction of the Delaunay triangulation to this surface are homeomorphic (Lemma

5.12). Therefore, the approach chosen in this class of algorithms is to extract the restricted Delaunay trian-

gulation (or a plausible estimation) from the Delaunay triangulation. In the sequel, we precisely define the

problem and we overview several curve and surface reconstruction methods which are based on the Delau-

nay triangulation, and we situate our approach with respectto the existing methods. Then, we introduce

theT -neighbor based approach and discuss the relation to existing methods.

Problem statement

The reconstruction problem for a surface and resp. a curve isstated as follows:

Given a set of pointsP sampled from a closed surfaceS (resp. from a closed curveC) embedded inR3
as well as the corresponding normal vectors toS (resp.C), construct a polygonal surface (resp. curve)R
such that the points ofP lie onR and such thatR approximatesS (resp.C).

We suppose that it is known whether the points are issued froma curve or a surface. If this is not the

case, the dimension of the manifold can be determined following the work of Dey et al. [46]. Similarly,

if the normals are not part of the input, they can be estimatedby one of the methods described in Chapter

5. Furthermore, we suppose that the sample setP is an �-sample of the manifold, i. e. it satisfies the�-sampling condition for some� < 12 .

An algorithm for the reconstruction problem istopologically correctif the polygonal approximationR
is homeomorphic to the underlying manifoldS (resp.C). In addition, one would like that the Hausdorff

distance betweenR andS (resp.C) is small.

8.2.1 Previous work

Even though there exist significant contributions to this problem that are not based on the Delaunay tri-

angulation, we restrict our attention to Delaunay based methods in order to compare and classify our

algorithm with respect to them.
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Sculpture, wrapping, flow and convection

The first method for three-dimensional surface reconstruction based on the Delaunay triangulation is de-

fined by Boissonnat [20] and is calledSCULPTURE. Starting from the convex hull of the sample points

(the exterior facets of the Delaunay triangulation), tetrahedra are removed one-by-one from the Delaunay

triangulation following some priority criteria (based on local geometric properties) and ensuring topolog-

ical correctness. During this process, the boundary of the remaining tetrahedra contains more and more

sample points, and the algorithm stops when all sample points lie on it. Due to the topological rules,

SCULPTUREworks only for surfaces with genus zero. A major drawback is the sensibility to the order of

removal: The algorithm might in some cases be blocked beforefinishing because the topological rules do

not allow any further removal of simplices.

This “sculpturing” process can also be interpreted as the evolution of a surface to best fit the sample

points. Evolution (or flow) based approaches have been recently published in [51], [62] and [31]. The new

approaches are different in the sense that they compute a global ordering of the Delaunay simplices rather

than depending on local criteria. The acyclic relation between the simplices is motivated from Morse

theory in [51], from flow complexes in [62] or from a physical convection model in [31]. The resulting

surface is some stable configuration of the evolution process. The result of these algorithms is manifold

by construction.

Surface-based or advancing front methods

A second method by Boissonnat [20] constructs the surface directly from the point cloud. It is called

surface-basedapproach in opposition to the volume-based nature of theSCULPTUREalgorithm. Another

common classification isadvancing frontmethod.

Starting from the shortest edge, a contour is propagated by adding triangles one by one. Given an edge

of the contour, the sample points in the neighborhood are projected onto the (estimated) tangent plane of

one of the endpoints. The next triangle is built from the contour edge and the point that maximizes the

angle when its projected counterpart is connected to the edge. The process is repeated until the surface is

closed, and all sample points are included. A priori, this isnot a Delaunay based method, however, the

author remarks that the candidate triangles may be chosen from the Delaunay triangulation [20].

A new method in which the surface is propagated or spread overthe point cloud has been defined

recently by Cohen-Steiner and Da [36]. The criterion to extend an edge is, this time, based on distance

and angle measures. The surface is guaranteed to be manifoldby the topological rules imposed during the

propagation.

All algorithms presented so far ensure by construction thatthe reconstructed surface is manifold. There

exist another category of algorithms that collect a subset of faces of the Delaunay triangulation without

considering global topological criteria. For most curve reconstruction algorithms, the right topology is
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guaranteed, nevertheless, by the sampling condition (refer to Section 5.3). In surface reconstruction, it can

often be established in a post-treatment. Most algorithms presented in the sequel are of this type.

Alpha shapes

Alpha shapesby Edelsbrunner et al. were first defined for the two-dimensional curve reconstruction prob-

lem [52] and then enlarged to three-dimensions [53]. From the Delaunay triangulation of the input points,

the simplices are removed whose radius of the smallest circumsphere is smaller than the parameter�. For

the two dimensional case, it has been proven in [18] that there exist values of� for which the alpha shapes

reconstructs the curve, provided that the sampling densityis uniform. Several algorithms are based on�-shapes, notably, Teichmann et al. introduce anisotropy inorder to improve the results, the Ball Pivoting

Algorithm by Bernadini et al. [16] is very close to�-shape as it removes triangles with circumradius less

than the radius of the pivoting ball.

Crust

TheCRUSTalgorithm by Amenta et al. [10] is the first algorithm with theoretical guarantees for the three-

dimensional surface reconstruction problem. The authors introduce a sampling condition based on the

local feature size, i.e. the smallest distance of a surface point to the medial axis. In Definition 5.10, we call

it �-sampling condition.

First developed for the two-dimensional case only, theCRUSTis based on the fact that the Voronoi ver-

tices of the2D Voronoi diagram of the sample points approximate the medialaxis of the curve. Therefore,

all edges of the dual Delaunay triangulation that traverse the medial axis are destroyed if the Voronoi ver-

tices are inserted into the Delaunay triangulation of the sample points. Those Delaunay edges that connect

two sample points in the enlarged Delaunay triangulation (sample points plus the Voronoi vertices) do not

traverse the medial axis and are likely to belong to the Delaunay triangulation restricted to the curve. The

collection of such edges is called theCRUST. For � < 0:26, theCRUSTconnects exactly all neighboring

curve points and no others.

This idea does not extend directly to surface reconstruction in R3 , since in the three-dimensional case,

Voronoi vertices might be far from the medial axis of the surface due to so-called sliver tetrahedra (refer to

Chapter 5). We re-call that a sliver is generated by four roughly co-circular points so that its circumcenter

may be arbitrary close to the surface independently from thesampling density.

It was the notion of poles that allowed to generalize theCRUST: the pole of a sample point (which is its

furthest Voronoi vertex) is close to the medial axis, and thepole vector that is the vector from the sample

point to the pole, is a good approximation of the normal to thesurface at the sample point [9]. The second

pole is the furthest Voronoi vertex such that the angle between the two pole vectors (the vectors from the

sample point to the first and to the second pole) is bigger than�2 .
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The 3D CRUSTbuilds the Delaunay triangulation of the sample points plusthe first and the second

poles and extracts the triangles in which all three verticesare sample points. A second filtering step re-

moves the triangles that exceed a bound on the angle between the triangle’s normal and the vertices’ pole

vectors. Thirdly, poles and triangles are oriented, and themanifold is extracted from the collection of

triangles. If the sampling is sufficiently dense (an�-sample with� < 0:1), it is proven that the restricted

Delaunay triangulationDelS(P) is homeomorphic to the surface (Lemma 5.12) and that theCRUSTin-

cludes all triangles of the restricted Delaunay triangulation. However, it is not shown that the result of the

manifold extraction step is homeomorphic to the surface.

Cocone

TheCOCONE- algorithm [7] presents a different Voronoi filtering criterion that has the same goal: to ex-

tract the Delaunay triangulation restrictedDelS(P) to the surface. The result of the algorithm is (provably)

homeomorphic to the surface given an�-sample with� < 0:006. We present this algorithm in detail, since

it is very close to theT -neighbor based approach that we will describe in the sequelof this chapter.

The global approach consists of computing a collection of candidate triangles and to extract a manifold

from the triangle set. A candidate triangle is chosen from the Delaunay triangulation if its dual Voronoi

edge intersects theco-conesof its three vertices. The co-cone of a sample pointpi is the set of pointsx
that are close to the tangent plane atpi, in the sense that the vector�!xpi forms an angle close to�2 with the

normal atpi (which can be estimated by the pole vector).

The collection of candidate trianglesT selected by theCOCONEalgorithm meets the following three

criteria [7]:

I. T includes all triangles of the restricted Delaunay triangulationDelS(P),
II. each triangle inT is small (the radius of its circumcircle is much smaller thatthe distance to the

medial axis), and

III. for each triangle, the angles between the triangle’s normals and the surface normals at the vertices

are small.

Under this conditions, a piecewise-linear manifold can be extracted fromT that is homeomorphic to the

surface. The manifold extraction algorithm is based on two principles: first, every two adjacent triangles

should form an angle greater than�2 at their common vertex, and, second, every sample point should be

adjacent to at least one triangle. To meet the first property,so-calledsharp edgesare removed from the

candidate set. An edge is sharp if the angle between two incident triangles is greater than3�2 or if the edge

has only one incident triangle. The authors show that no triangle of the restricted Delaunay triangulationDelS(P) is sharp if� � 0:006. After the removal of sharp edges, a manifold is constructedby a depth-

first search along the outer boundary of each of its components. If the sampling condition is met, such a

manifold must exist, and the success of the algorithm is proven.
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This first version of theCOCONEalgorithm is very sensitive to the sampling condition, which is, in

practice, met by very few point sets. Several papers revisittheCOCONEalgorithm to make it valuable in

practice. We call them theCOCONE-based algorithms since the basic idea stays the same.

Most of these ideas apply directly to theT -neighbor based reconstruction method that we describe in

the sequel of this section. Both methods are very close. Instead of restricting the Voronoi cells to the

co-cone of the sample point, inT -neighbor based reconstruction, they are restricted to thetangent space

(which is a subspace of the co-cone).

The COCONEhas been adopted to work for large sets of data in [95]. It has been used to detect

undersampled zones and boundaries in [45] and [41]. The algorithm to detect oversampled zones as well

as undersampled zones ([40]) served to describe a sample decimation algorithm in [94] and a decimation

and re-sampling algorithm that deletes sample points in [96]. Robustness issues of the implementation are

discussed in [97]. An algorithm usingCOCONEto find out the dimension of a manifold from the set of

sample points is defined in [46].

Dey, Funke and Ramos [44] elaborated an algorithm that computes theCOCONEtriangles without

constructing the entire Delaunay triangulation of the sample point and that is therefore more efficient. The

authors suppose that the sampling is locally uniform. This implies that any sphere centered on a sample

point and including all its neighbors in the restricted Delaunay triangulationDelS(P) contains a constant

number of points ofP. This assumption makes it efficient to collect all co-cone neighbors of a point from

a data-structure fork-nearest neighbors search.

Notice that the normals to the surface at the sample points cannot be estimated from the poles without

computing the three-dimensional Delaunay triangulation.The authors suggest to estimate the normals

from the triangle formed by a sample point and its two nearestneighbors which form a sufficiently big

angle. Refer to Lemma 5.18. In [60], Funke and Ramos describea method to decimate sample points in

order to meet the local uniformity. However, the implementation of this algorithm seems quite involved

and to our knowledge, there exist no implementation so far which could prove the practical impact of the

method.

We describe in more detail the ideas behind the boundary and dimension detection from [41] and [46].

In a second time, we give a sketch of the manifold extraction methods used forCOCONE.

The special shape of the Voronoi cells, namely their long andskinny shape in the normal direction while

being of small diameter in the tangent space, allows to detect boundaries as well as the dimension of the

underlying manifold. With the help of a lemma equivalent to Lemma 6.3, the diameter of a Voronoi cell

restricted to theco-coneof its generator sample point is upper bounded with respect to the local feature

size. Also, the distance of the sample point to its pole is a lower bound for the local feature size. If the

ratio of the diameter of the restricted Voronoi cell and the distance to the first pole as well as the second

pole is greater than a certain constant, the sample point must be on the boundary ofS. This is shown in

[41].
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The dimension detection algorithm [46] exploits the same fact for manifolds with higher co-dimension.

It detects the dimension of the normal space by checking if the Voronoi cell is long and skinny in the

direction of a potential normal while having small diameterin its orthogonal space. The normals are

approximated by pole vectors (see Definition 5.14). The Voronoi cell is successively restricted to the

estimated tangent space until the ratio of the diameter of the restricted Voronoi cell and the distance to the

poles is sufficiently small. The dimension of the manifold isthe dimension of the first restricted Voronoi

cell that meets the ratio bound. It is necessary for this algorithm that sample points cannot be arbitrary

close to each other, soP is supposed to be an(�; Æ) sample withÆ > �2 . The algorithmSHAPE COCONE

computes a polygonal approximation of the manifold.

Two types of manifold extraction strategies are proposed for theCOCONE-based algorithms: In [47],

theTIGHT COCONEreconstructs closed surfaces by a volume-based approach that produces watertight

polygonal reconstructions. In [41], a surface-based approach allows to reconstruct surfaces with bound-

aries. Starting from one triangle, the surface is developedlike an advancing oriented front while choosing

new triangles from the candidate set of theCOCONE. Boundary edges were detected prior to the manifold

extraction using the boundary detection algorithm. Both strategies can be applied almost directly to the

candidate set computed by theT -neighbor based approach. Details are given Section 8.2.2.

Power Crust

ThePower Crustalgorithm by Amenta et al. [8] is also based on the fact that the medial axis is approxi-

mated by the poles but it makes a very different use of this idea. Remember that the medial axis is the locus

of the centers of medial balls, i.e. the largest empty spheres touching any point on the surface (Definition

5.10). Any surface point lies on the boundary of two medial balls: the outer medial ball that is outside

the solid whose boundary isS and the inner ball that is included in the solid. The medial balls can be

approximated by the Delaunay balls that are centered on a pole. This yields a good approximation because

the poles are close to the medial axis and the Delaunay balls are the largest balls that are empty of sample

points. They are calledpolar balls.

Amenta et al. develop some heuristics to distinguish outer and inner polar balls. Of course this resumes

to decide whether a pole lies inside or outside the solid. Then, thepower crustcomputes the power diagram

of the polar balls, and the reconstructed surface are the facets of the power diagram that are dual to edges

between inner and outer polar balls. The result is guaranteed to constitute a manifold.

In contrary to the other Delaunay based methods, thepower crustis quite robust against noise. In [8],

the authors conjecture that the power crust is the three-dimensional equivalent of the following method by

Attali.
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Attali [11] introduces the notion ofnormalized meshwhich corresponds to the restricted Delaunay triangu-

lation (Section 5). The algorithm, valid only in2D, relies again on the observation that the circumspheres

to Delaunay triangles approximate the medial ball. The filter criterion is related to another property of

medial balls: since the medial balls are tangent to the curve, the angle at a curve point between the center

of the inner and the outer medial ball is�. Consequently, if an edge is part of the reconstruction, theangle

formed at one of the sample points by the vectors to the two Voronoi vertices dual to the two triangles

adjacent to the edge should also be close to�. Attali filters the Delaunay triangulation with respect to this

angle criterion. Anr-regular shape is a shape whose curvature is bounded byr. If the underlying curve isr-regular, then a minimum sampling density exists such that the algorithm by Attali produces a polygonal

curve with the same topology as the original curve. This ideawas difficult to extend to3D due to the

presence of slivers.

Localized Delaunay approach

This approach by Gopi et al. [65] is very similar to theT -neighbor based approach in the sense that the

surface is approximated locally around each sample point bya two-dimensional local triangulation. In

contrast to most other methods presented so far, it does not construct the3D Delaunay triangulation. The

surface normals are approximated from thek-nearest neighbors of each point. For each sample pointpi,
potential neighbors are collected in some sphere of influence aroundpi whose radius is a multiple of the

distance frompi to its nearest neighbor inP. This candidate point set is further pruned with respect to the

distance of the candidate points to the (estimated) tangentplane. At last, the candidate points are mapped

(or projected) onto the tangent plane in a way that the distance betweenpi and its potential neighbor is

not changed by the mapping. The local Delaunay triangulation of pi and the projected candidate points

is computed and the “umbrella” of triangles aroundpi with their original 3D geometry are potential

triangles of the polygonal reconstruction. The authors categorize their approach within the advancing

front approaches since the manifold is extracted in this way, by propagating a contour. Of course, the local

triangulations are not always coherent with one another andsimple heuristics are proposed to disambiguate

these cases.

Natural neighbor interpolation

Boissonnat and Cazals [22] define an implicit function whosezero-set approximates the surfaceS. Fol-

lowing an idea of Hoppe et al. [72], they associate, to each sample point, the signed distance function

representing the distance to its tangent plane. The implicit function is defined by natural neighbor inter-

polation of the signed distance functions. They show that the zero-level of the implicit function cannot be

far from the underlying surface and that, on a surface point,the implicit function has a small value. As
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the point set restricted to the implicit function is a polygonal approximation homeomorphic toS. Further-

more, the quality of the polygonal approximation can be evaluated by looking at the distance of its facets

to the implicit surface. It can be refined by adding points on the zero-level of the implicit surface wherever

the quality of the polygonal reconstruction is poor. Moreover, the implicit function can be used to simplify

the polygonal surface by deleting points while guaranteeing that the reconstruction stays correct [21].

Umbrella Check

Last but no least, we present an original method to re-enforce the manifold property with the help of a

system of linear constraints. TheGabriel complex is a subset of the Delaunay triangulation that contains

all faces whose smallest circumsphere is empty of sample points. Adamy et al. define in [1] an order on

the Gabriel simplices which is related to the largest empty ball passing through the vertices of the simplex

and being empty of sample points. The simplex has higher priority and it is more likely to belong to the

reconstruction if there is at least one side on which all other sample points are far away.

Secondly, they formulate a topological condition for the result, calledumbrella condition: Because

on a closed surface, the neighborhood of each sample point ishomeomorphic to a disk, this should also

be the case in the polygonal reconstruction. For each samplepoint, there must exist a local “umbrella”

of triangles, i.e. a set of triangles that forms a disk aroundit. The algorithm chooses such an umbrella

for each sample point from the ordered set of Gabriel simplices. The existence of local patches that are

homeomorphic to the surface does not yet guarantee global coherence. Therefore, it is necessary to do

a topological clean-up. First, all triangles are deleted that are either incident to a vertex but none of

its incident triangles are or two umbrellas are in conflict ata triangle’s vertex. This way, some holes

might have been created which must be filled while respectingthe topological constraints. The idea is

to formulate topological surface conditions as a system of linear constraints such that an integer value

solution specifies a topological correct solution to fill thehole.

Curve reconstruction methods

There exists several methods that are designed specially for curve reconstruction. An experimental study

by Althaus et al. described in [6] compares five approaches for curve reconstruction in2D with respect

to the reconstruction quality as well as the running time. Amenta and Bern’sCrust, a Delaunay approach

by Gold [64] and theConservative Crustby Dey, Mehlhorn and Ramos [43] were reported to be quite

sensible concerning the sampling density. The two remaining methods, notably the TSP-algorithm by

Giesen [61] (later improved by [5]) and theNN-Crustby Dey and Kumar [42], seem to work best. The

TSP-algorithm computes the Traveling Salesmen Path ofP. Giesen showed that there exists a sampling

density for which the TSP is a correct reconstruction of the curve. It is notable that this algorithm does

also work for non-smooth, open curves and in arbitrary dimensions. The extension in [5] is written for the
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two-dimensional case only.

The NN-Crust[42] is easily generalized to curves in higher dimensions. The method is very simple:

Each each sample point is connected to its nearest neighbors. Then, vertices that are not incident to two

edges are further connected to the closest point that makes an angle greater that�2 with the first edge. The

authors show that theNN-Crustyields a correct polygonal reconstruction of the curve ifP is an�-sample

with � < 13 .

8.2.2 Reconstruction withT -neighbors: the basic idea

In this section, we explain the basic idea behind reconstruction withT -neighbors. The main ingredients are

explained in Section 7.1.2. Roughly speaking, our approachconsists of approximating the manifold, in a

first time, by the dualG(P) of theT -restricted Voronoi atlas (Definition 7.5) or by a subset of it. We obtain

a local approximation of the manifold around each sample point. Fork > 1, the local approximations do

not match consistently. Thus, the reconstruction algorithm needs a post-processing step that establishes a

closed manifold by adding faces ofDel(P) to G(P) and by deleting some faces. Other algorithms which

are based on a similar approach suffer from the same problem and propose manifold extraction methods.

See for example the co-cone algorithm [7] and the�-complex [1].

We refer to the computation ofG(P) as theT -neighbor computation becauseG(P) connects all pairs

of T -neighbors by an edge.

Outline: theT -neighbor based reconstruction algorithm performs the following steps:

(S1) Normal estimation (e.g. via poles)

(S2) T -neighbor computation

(S3) Manifold composition

TheT -neighbor based reconstruction algorithm is very close to theCOCONE-based algorithms,CO-

CONE [7] for surfaces in3D andCOCONE-SHAPEalgorithm for general manifolds embedded inRd
[46]. TheCOCONE-based algorithms collect all Delaunayk-simplices such that the dual Voronoi face

intersects the co-cones of its vertices. They are called thecandidate simplicesT . Our algorithm is more

strict and collects all Delaunay faces such that the dual Voronoi face intersect the tangent spaces of the

vertices. Of course, since the tangent planes are included in the co-cones, a Voronoi edge intersects the

tangent planes only if it intersects the co-cones. We deducethatG(P) � T .
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This observation makes it possible to use several approaches that have been proposed forCOCONE-

based algorithms. Notably, the shape dimension algorithm and the boundary detection algorithm apply

directly to our approach.

One important difference between both methods lies in the fact that, provided the sampling condition

is satisfied, the set of candidate simplicesT computed by aCOCONE-based algorithm must contain the

simplices of the Delaunay triangulationDelM(P) restricted to the manifoldM. This is not always the

case for the Delaunay complexG(P). Consequently, the manifold extraction algorithms proposed by Dey

et al. may not be applied directly to our approach becauseG(P) may not contain a subset of simplices

homeomorphic to ak-manifold.

For closed surface reconstruction in3D, theTIGHT-COCONEalgorithm can be adapted to our algo-

rithm. Also other methods could be applied to establish a closed manifold fromG(P). For example, the

LP-based approach by Adamy et al. [1] seems particularly adequate because it is specially designed to fix

local holes by extending the surface through them. Its disadvantage is the running time which is very de-

pendent on the particular model and the size and nature of theholes. Advancing-front approaches such as

the algorithm of Cohen-Steiner and Da [36] could be run locally in order to propagate the surface through

the holes.

In the sequel, we consider in more detail the case of curves in3D. For curves, we show the correctness

of the algorithm independently of the dimension of the embedding space.

8.2.3 T -neighbor based curve reconstruction

In this section, we prove that the collection of edgesG(P) reconstructs the smooth curveC if it is well

sampled. Figure 8.14 shows an example of a reconstructed curve.

Figure 8.14: The example of a reconstructed curve given 60 sample points (two different viewpoints).
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Topological correctness

Let CR be the polygonal approximation ofC obtained by connecting each pair of sample points that is

adjacent onC. If P is an�-sample (� < 1), the curveC is homeomorphic to its polygonal approximationCR because any arc between two adjacent sample point onC can be straightened out to a segment without

traversing the medial axis. Consequently, the segment cannot intersect any other component ofC. We

show under which sampling conditionG(P) = CR which proves thatG(P) is homeomorphic toC. We

state this result formally.

Theorem 8.1 The collection of edgesG(P) is homeomorphic to the curveC
(a) if � < 0:31 and the normals and bi-normals toC are known at each sample point,

(b) if � < 0:135, if the normals are estimated by pole vectors.

(c) if � < 0:26, if the normals are estimated from the nearest neighbor.

Proof: Suppose that the distance from a sample pointpi 2 P to a Voronoi vertexv of V (pi) (the Voronoi

cell restricted to the tangent lineTi) is smaller thanlfs(pi). We show that under this conditionG(P) = CR,

i.e. (1) G(P) � CR and(2) CR � G(P). The same arguments apply if the tangent lines are estimated(by

either method) and if the distance from a sample pointpi 2 P to a Voronoi vertexev of eV (pi) (the Voronoi

cell restricted to the estimated tangent lineeTi) is smaller thanlfs(pi).
Part 1: Let e = (pi;pj) be an edge ofCR. We show thate is part of the restricted Delaunay triangulation

if � < 1. Then, we show under which sampling conditione is part ofG(P). Letq be the intersection point

of the bisector planeHij with the arc ofC formed bypi andpj that is empty of other sample points. Refer

to Figure 8.15.

pi pjqv
CeTi

Figure 8.15: (a) If the sphere centered onq is empty of sample points,e 2 DelC(P). If the sphere centered

onv is empty of sample points,e 2 DelTi(P).
By Lemma 5.4, we know that the ball centered onq that passes through the sample point closest toq intersectsC in a topological disk. Otherwise its radius would be greaterthan lfs(q) which contradicts



146 Chapter 8. Applications

the sampling condition. Sinceq lies in the arc ofC covered bypi andpj and since this arc is empty of

other sample points,pi andpj must be the sample points closest toq (and, by definition ofq, both are at

the same distance toq). Consequently,q lies on the Voronoi face dual toe ande is part of the restricted

Delaunay triangulationDelC(P). We need to show under which sampling condition the intersection ofHij
with the tangent lineTi lies also on the Voronoi face dual toe. If this is the case,e is an edge ofDelTi(P)
and, therefore, ofG(P).

Let v be this intersection point,v := Hij \ Ti. If kpi � vk < 12 lfs(pi), the ball with centerv passing

throughpi intersectsC in a topological disk (to be exact, its intersection withC is the arc covered bypi andpj). Thus, by the same argument as above, it contains no other sample points, and we found a necessary

and sufficient condition fore to be inG(P).
(a) From the proof of Lemma 6.3(a), we know that the distance between the Voronoi vertexv of the

restricted Voronoi cellV (pi) andpi is at mostkpi � vk � �p1�2� lfs(pi). In consequence, if �p1�2� <1 () � < p2� 1 � 0:31, e is an edge ofG(P).
(b) The same argumentation holds if the normals are estimated via poles: from the proof of Lemma

6.3(b), we know that the distance between the Voronoi vertexev of the restricted Voronoi celleV (pi) andpi at most is kpi � evk � 12 �1� � se
(ar
sin( �1� �) + �) lfs(pi);
where� is the error bound between the normals toC at pi and the estimated normals (in the sense of

Lemma 5.15). Thus,kpi � evk � lfs(pi) () � � �1 + sin(�) +p2� 2 sin(�)1 + sin� :
In the general case,� � 4pd� k ar
sin( �1��) and ford = 3 andk = 1, the bound evaluates to� < 0:135:

(c) If the normal space is estimated to be orthogonal to the edge with the nearest neighbor ofx, we

know from Lemma 5.17 that the angle� � ar
sin �1�� . We obtainkpi � evk � 12lfs(pi) () � � 0:26:
Part 2: Now, lete = (pi;pj) be an edge ofG(P) andv be the vertex dual toe in V (pi) (resp. ineV (pi)).
We show thate 2 CR if kpi � vk � lfs(pi). (In the first part of the proof, we showed under which

condition on�, this bound must be true.) In this case, the ball centered onv passing throughpi andpj
intersectsC in a topological disk (again by Lemma 5.4). Sincev is a Voronoi vertex, it is empty of sample

points, and in particular the arc ofC inside the ball contains no sample points. Yet,pi andpj bound the

arc on the each side, so thatpi andpj are adjacent onC. Consequently,e is an edge ofCR if the sampling

condition holds.�
Notice that, for the cases (a) and (c), this proof is independent of the dimension of the embedding space

since it is based on Lemma 6.3(a) and Lemma 5.4 which are independent of the dimension. However, the



8.3. Centroidal Voronoi diagrams on a surface 147

normal estimation via poles is less exact if the dimension ofthe embedding space is higher than3. In the

two-dimensional space, the result is� < 0:4.

8.3 Centroidal Voronoi diagrams on a surface

Surfaces represented by a set of unordered sample points or by surface meshes are encountered in many

application areas such as computer graphics, computer aided design (CAD) and reverse engineering, image

processing, and scientific computation. Rarely, these point clouds are evenly distributed over the surface,

nor do they follow any adaptive distribution depending on local curvatures or similar criteria that allow to

optimize between the number of sample points and the information they carry. Rather, the point clouds

are issued from laser scanners or similar acquisition devices and the sampling density is far from optimal.

Also, it is often suitable to have regular meshes where the triangles’ angles are maximized. This is, for

example, very crucial for finite element computations on themesh. In this section, we restrict ourselves

to the three-dimensional case which has the most practical impact. However, the idea should apply to any

dimension.

8.3.1 Introduction and previous work

In this section, we define a centroidal Voronoi diagram in general. Then, we introduce previous work on

the enlargement of this concept to sample points issued froma surface and we present a definition of the

centroidal Voronoi diagram on surfaces in detail. In the next section, we present our solution that is an

approximation of the centroidal Voronoi diagrams on surfaces. Experimental results are shown in the last

section.

Centroidal Voronoi diagrams

The mass centroidzi of the Voronoi cellV (pi) is defined byzi = RV (pi) xdxRV (pi) dx for i = 1; : : : ; n: (8.1)

A centroidal Voronoi tesselation (CVT)is a Voronoi diagram such thatzi = pi; i = 1; : : : ; n. See [49]

for a recent overview about centroidal Voronoi diagram, including a proof of existence, applications, and

algorithms to compute CVTs.

Constrained centroidal Voronoi diagrams and related work

Recently, Du, Gunzburger and Ju [50] define a centroidal Voronoi diagram for the case that the point set

is constrained to lie on a (hyper-)surface ofRd . This problem has been motivated in the beginning of

this section. The so-calledconstrained centroidal Voronoi tesselation (CCVT)is defined with respect to
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the (Euclidean) Voronoi diagramVorS restricted to the surface. The definition of the centroidal Voronoi

diagram needs to be modified because, in general, the mass centroid of a Voronoi cell inVorS does not lie

on the surface. The generalized definition proposed in [50] is as follows.

Theconstrained mass centroidz
i of a Voronoi cellVS(pi) is the solution to the following minimization

problem: z
i = argminz2S Fi(z); with Fi(z) = ZVS(pi) kx� zk2dx: (8.2)

The authors show that there exists always a solution for thisminimization problem and, furthermore, that

this solution is the projection ontoS of the (unconstrained) centroid ofVS(pi) defined by Equation 8.1

(with V (pi) = VS(pi)) along the normal toS at z
i . This yields the following algorithm to compute the

CCVT by a Lloyd’s relaxation [76].

1. Build the Voronoi diagramVS(P).
2. Compute the centroids of then Voronoi cells and project them onto the surfaceS.

3. ReplaceP by the set of projected centroids and repeat Steps 1 and 2 until satisfactory convergence

is achieved.

In the traditional setting without restriction to a surface, Du, Faber and Gunzburger [49] report a signifi-

cantly faster convergence of Lloyd’s relaxation algorithmin comparison with other methods. In the surface

setting, the major drawback is the computation of the Voronoi diagram restricted to the surface. According

to the authors, there is no software available, except for Voronoi diagrams on the sphere [86]. There-

fore, probabilistic methods have been developed for its computation that do not need the computation ofVorS(P). The reader may refer to [50] for further reading.

For isotropic surface remeshing, Alliez et al. [4] employ centroidal Voronoi diagrams that are defined

in the parameter space of the surface. The results are very convincing as to the regularity of the mesh, etc.

Nevertheless, this approach has several disadvantages. Inparticular, in order to compute the parameteriza-

tion, it is necessary to flatten the surface which means to cutit in the case of closed surfaces. This might

lead to artifacts along the cut edges. Also, it is necessary to add a density function when computing the

centroidal Voronoi diagram in order to compensate the flattening of the surface.

In this thesis, we propose a method to approximate the constrained centroidal Voronoi diagram defined

by Du et al. Instead of computing the CCVT in the surface restricted Voronoi diagram, we rely on the

restriction of each Voronoi cell to the tangent plane of its generator. In Chapter 7, we showed that, if the

sampling of the surface is sufficiently dense, the cell of a sample point in the so-called Voronoi atlas is

very close to the corresponding cell in the Voronoi diagram restricted toS. This encouraged us to test

Lloyd’s method in the Voronoi atlas. Our method is very efficient since it is based on the computation of

very small power cells which determine the Voronoi cells in the atlas. It can be applied on closed smooth



8.3. Centroidal Voronoi diagrams on a surface 149

surfaces, as well as on triangle meshes. No restriction is made about the genus, or the number of connected

components of the surface.

8.3.2 T -restricted centroidal Voronoi diagrams

To avoid the computation ofVorS(P), we propose to approximate it by the Voronoi atlasA(P) that is

defined in Chapter 7. Because every cell inA(P) is very close to the corresponding cell inVorS(P)
(by Lemma 6.3, both are contained in a small ball centered on the generator), it seems reasonable that

both solutions converge –up to the approximation error– to acomparable solution. We tested this method

experimentally but we cannot yet present formal proofs.

The experimental results showed that the energy of each iteration, in terms of distance between the cen-

troid and the generator of each cell, decreases rapidly and continuously. The dual Delaunay triangulation

becomes very regular with respect to the distribution of edge lengths and angles. Almost all angles in the

triangulation are sixty degrees. Some charts are shown in Section 8.3.3.

8.3.3 Experimental results of re-meshing with Centroidal Voronoi diagrams

The presented examples are computed starting from a triangulated surface. For each vertexpi of the

triangular mesh, we compute its Voronoi cellV (pi) and the centroid of this cell. The latter is projected

onto the triangular surface. In the next Lloyd iteration,pi is replaced by the projected centroid of its cell

and the process is repeated.
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Figure 8.16: A surface representing the Connolly surface ofan alanine molecule and its re-meshed version

(after 40 iterations). Running time:v 80s per iteration. (The original is courtesy from Steve Oudot)

Figure 8.17: A zoom on the Connolly surface (a) the original (b) after 40 iterations.
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Figure 8.18: Histograms of angles depicting the differencebetween the original and each re-meshed

version (a) after10 iterations, (b) after40 iterations.

Figure 8.19: Histograms of edge lengths depicting the difference between the original and each re-meshed

version (a) after10 iterations, (b) after40 iterations.
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Figure 8.20: A zoom on another triangulated surface and its re-meshed version (100 iterations). (The

original is courtesy from Steve Oudot)

Figure 8.21: Histograms of angles and edge lengths depicting the difference between the original and the

re-meshed version of Figure 8.20.



Chapter 9

Implementation of T -coordinates inCGAL

9.1 Introduction

This chapter describes the implementation of the coordinate computation and the interpolation application

for three-dimensional data taken from curves or surfaces. The implementation is based on CGAL (Com-

putational Geometric Algorithms Library)[30], aC++ library of geometric algorithms that is developed

by a consortium of eight research teams in Europe and Israel.CGAL started as a research program in

the framework of two successive European projects. From nowon, CGAL is commercialized by a private

company but it remains free for academic use. The goal of CGAL is to provide robust, efficient, flexible

and easy to use implementations of geometric algorithms anddata-structures. The benefits are particularly

interesting as geometric algorithms are known to be hard to implement because they are highly sensitive

to arithmetic errors and because they include a lot of special case treatment. The programs described in

the sequel make use of the3D Delaunay triangulation as well as the2D regular triangulation of CGAL.

See e.g. [23] for an introduction to triangulations in CGAL and [70] for the general concepts. The manual

pages of CGAL are available at http://www.cgal.org.

Design overview and specifications

The implementation of the coordinate computation as well asits application to interpolation on surfaces

is designed in order to achieve a maximum of robustness and flexibility. All predicates are based on the

computation of low degree determinants which allows fast filtering to avoid robustness problems. At a

higher level, the template mechanism is used to assure flexibility for example in the nature of the function

values to interpolate, e.g. the same software interpolatesreal value and vector functions.

The classes can be divided in several levels of dependency. The lowest level contains the computation

of the1D and2D power diagrams that describe the intersection of a3D Voronoi diagram with a line or

a plane. For the2D case, this means to compute a regular triangulation by usingspecially designed geo-

153
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metric tests applied on the the3D points. This module is calledVoronoi Sections. A thorough description

is given in Section 9.2.1.

The second level models the point cloud itself and contains the functions to compute theT -neighborhood

andT -coordinates. It is a Delaunay triangulation of the point cloud that contains additional data, added

to the vertices of the Delaunay triangulation, like the normals of the surface at the points. The additional

functionalities are the computation of the Voronoi cellV (x) of a given pointx 2 S, the computation of

theT -coordinates ofx, and the computation of the pole ofx in order to approximate the normal ofS atx.

This class is calledSurface neighbors. It is described in Section 9.2.2.

At the highest level, the concept ofT -coordinates is applied to function interpolation on a surface.

There are two different settings: either the surface is defined by a parameterized surface (the function of

the surface is known) or it is just known from the sample points. In either case, the sample points are

associated to a function value and, if known, to the gradientof this function at the sample point. The

function might be a real or a vector value function. There arefour different types of interpolants: the

linear interpolant, a quadratic interpolant, Farin’s interpolant and Sibson’sZ1 interpolant. For the last

three interpolants, it is necessary to know the gradient of the function. See Section 9.2.3 for the details.

9.2 Main classes and their functionalities

The design of CGAL is based on a strict separation between the combinatorial part of an algorithm and the

geometric primitives necessary for the algorithm to deducethe combinatorial information. The geometric

primitives and the arithmetic used for the computations aredefined in the so-calledtraits class. For a given

algorithm, like the computation of a regular triangulation, the traits class can be easily replaced using the

template mechanism ofC++. As long as the combinatorial part of the algorithm remains the same, the

implementation of the algorithm is unchanged – apart from the geometric tests. The software described in

the sequel uses this technique at a large extend.

9.2.1 Voronoi sections

In this section, we describe the details of the implementation of Voronoi sections in3D. In other words,

we compute the power diagram that describes the intersection of a3D Voronoi diagram with a planeH
(2D Voronoi intersection), or the partition of a linel into intervals that correspond to the3D Voronoi cells

intersected byl (1D Voronoi intersection). As usual, we proceed by computing the dual of the Voronoi

intersection diagram, that is a regular triangulation for the 2D intersection and a sequence of points for1D.

The planeH (resp. the linel) is a member of the traits class that is used in the regular triangulation.

(The traits class is instantiated each time a Voronoi intersection diagram is computed.) The points ofP are

inserted incrementally, and the natural neighbors as well as the natural coordinates of a point with respect
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to the Voronoi intersection diagram might then be computed.2D Voronoi intersection

In Chapter 6, we showed that the Voronoi intersection diagram is the power diagram of the projected

sample points weighted by the negated squared distance between the projected and the original point.

Consequently, a straightforward implementation constructs this power diagram via its dual regular trian-

gulation using CGAL. However, it should be avoided to explicitly construct the projected points and to run

the algorithm on the derived data because this increases numerical rounding errors. Also, CGAL provides

efficient filtering methods which allow to do certified exact computation. These techniques cannot be used

on derived data.

We explain how the classical incremental algorithm works, in order to show that a simple change in the

traits class of the regular triangulation is sufficient in order to compute the dual of the Voronoi intersection

diagram. The vertexv exists in the power diagram iff there is an empty sphere centered onv that is

orthogonal to three sites. In the dual regular triangulation, this means that the power distance between

the triangle’s orthosphere and all sites ofB is positive or zero. During the incremental construction ofa

regular triangulation, a triangle(Bj ; Bk; Bl) of the current triangulation is destroyed at the insertion of a

new siteBi iff the power distance betweenBi and the triangle’s orthosphere is negative. In this case, the

vertexv that is dual to the triangle does no longer exist. After collecting all triangles that are in conflict

with Bi, the second part of the algorithm, namely, the creation of the new triangles incident toBi, is purely

combinatoric.

We callpower testthe predicate that computes the sign of the power distance between a siteBi and the

orthosphere of three sitesBj, Bk andBl, and say thatBi is in conflictwith the triangle(Bj ; Bk; Bl) if the

power test is negative. The incremental algorithm to construct the regular triangulation depends only on

two predicates: the predicatepower testand the predicateorientation that determines the orientation of a

triangle in the plane (i.e. whether the triangle’s verticesare given in clockwise or counterclockwise order).

The following observation makes it possible to compute the Voronoi intersection diagram without con-

structing the projected points: When computing the intersection of a3D Voronoi diagram with a plane,

a Voronoi vertex is generated by the intersection of a Voronoi edge of the3D-Voronoi diagram with the

plane. The existence of a pointv on the Voronoi edgee is witnessed by an empty sphere centered onv
having the three generating points ofe on its boundary (namely,pj;pk;pl if e = V (pj)\V (pk)\V (pl)).
In particular, this must be the case forv = e \ H, and a vertexv exists in the2D Voronoi intersection

diagram iff there exists a sphere centered onv 2 H that has three sample points on its boundary and is

empty of sample points. Concerning the dual, this means thata triangle(Bj ; Bk; Bl) exists in the regular

triangulation iff there is an empty sphere centered onH havingpk;pl;pm on its boundary.

It follows that the dual of the Voronoi intersection diagramfor H can be computed by simply replac-

ing thepower testpredicate in the2D incremental construction algorithm by aplane centered in
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sphere-test that tests whether the pointpi to insert is inside the sphere centered onH and passing through

three points forming a triangle. In fact, theplane centered in sphere-test resumes to computing

the sign of a4 � 4 and a3 � 3 determinant as described in detail below. Theorientation predicate is

replaced by a three-dimensional orientation test that determines the orientation of the triangle(pjpkpl)
seen from a pointpk + �!n where�!n is the normal toH. With help of Figure 9.1, it is quite easy to see

that the orientation of(pjpkpl) seen from the positive halfspace determined byH (e.g. from the pointpk +1�!n ) must be the same as the orientation of(pjpkpl) seen frompk +�!n .

pj
pj pkpk

plpl pk +�!n
Figure 9.1: The orientation of(pjpkpl).

CGAL provides a very convenient way to replace predicates: the regular triangulation class is tem-

plated by the traits classes which defines all predicates. Therefore, we only need to define our proper

traits class that defines the weighted points to be3D points and that callspower testwhat is, in fact, the

plane centered in sphere-test. The planeH for which we compute the Voronoi intersection dia-

gram is a member of the traits class. It is defined by a point andthe normal vector�!n toH and needs to be

known at the creation of an instance of the traits class.

The2D Voronoi intersection diagram has the same functionalitiesas CGAL’s Regular neighbors

2.h class including the incremental construction of the regular triangulation, the dual functionalities and

the computation ofT -coordinates. In addition, there exist access functions toobtain the planeH defining

the intersection.1D Voronoi intersections

The1D case is not available in its full functionality. In fact, we compute only the cellV (x) of a pointx.

We assume, furthermore, thatl is defined byx and by two orthonormal vectors toM atx, the normal and

the bi normal. (This corresponds to our setting.) We computeV +(x) \ l as well as the decomposition

of V +(x) \ l into subcellsV (x;pi); i = 1; : : : ; n; (see Section 3). TheT -neighbors ofx are the sample
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pointspi with V (x;pi) 6= ;, and theT -coordinates are defined by the ratio of the lengths ofV (x;pi) andV +(x). The reasoning that allows to avoid the explicit projectionof the sample points onto the linel is the

same as in the2D case: a vertexv = V (pj) \ V (pk) \ l exists in the Voronoi intersection diagram iff the

sphere centered onl with pj andpk on its boundary is empty. The predicate that tests for a pointpi if it is

inside the sphere centered onl with pj andpk on its boundary is calledline centered in sphere

test. We say thatpi is in conflict with the edge(pk;pl) if the line centered in sphere test is

positive. The algorithm is based on a second predicate,smaller along line 3, that compares the

position of the projections of two points on the oriented line l. The incremental algorithm is very simple:p1 p2 p3
v1x vx3 v23

v12p4 p3xv23 p1 p4 p3xv1x v14 v43 vx3
Figure 9.2: Insertion ofp4: (a) p4 is in conflict with (p1;p2). p2 is not in conflict withp4 andp3. (b)V (x) after the insertion.

we maintain the list ofT -neighbors ofx ordered by their projections alongl (smaller along line 3).

The extremal points,pmin andpmax are the leftmost and the rightmost points of this list. A new point pi
is located in theT -neighbor list (i.e. its projection is located on the linel), and we test if it is in conflict

with its neighbors in the list. If the test is negative,pi is not aT -neighbor ofx. Otherwise,pi is inserted

into theT -neighbor list. (If its projection is left ofpmin on l, we test ifpi is in conflict with(pmin;x). It

the test is positive,pi is inserted into the list, and all points with projection left of pi are removed. If the

projection is right ofpmax, we proceed similarly.) Theline centered in sphere test determines

recursively whether a neighborpj of pi is in conflict withpi and the second neighbor on the other side ofpj. If not, pj is removed becauseV (x;pj) no longer intersectsl. See also Figure 9.2.

Predicates for Voronoi intersection diagrams

In this section, we give the details of theplane centered in sphere predicate. The parameters of

the predicate areH, determined by a pointa and the normal�!n , as well as four pointsp, q, r andt. The

predicate decides whethert lies inside the sphere centered onH with p, q, r on its boundary.

First, all points are translated such thatp becomes the origin (p := 0, a := a � p, q := q � p,



158 Chapter 9. Implementation ofT -coordinates in CGALr := r � p,t := t� p). Whethert lies inside the sphere centered onH with p, q, andr on its boundary

is determined by the sign of the following expression:����������� rx ry rz r2qx qy qz q2nx ny nz 2 n � atx ty tz t2
����������� = �������� nx ny nzqx qy qzrx ry rz �������� (9.1)

The line centered in sphere predicate with parametersl, determined by a pointa and the

normals�!n and
�!b , as well as three pointsp, q, andr is determined by the sign of the following expression:����������� rx ry rz r2qx qy qz q2nx ny nz 2 n � abx by bz 2 b � a

����������� = �������� qx qy qznx ny nzbx by bz �������� (9.2)

9.2.2 Surface and curve neighbors

The next level of the software models the point cloudP and provides a way to compute the Voronoi cellV (x) of a pointx 2 M as well as itsT -coordinates. Of course, this class could simply be a container

for the points ofP, and, given a manifold pointx with its normal(s), the Voronoi intersection diagram forx can be computed using all points ofP. However, from the preceding chapters, it follows that onlyfew

points ofP areT -neighbors ofx, and it is, in fact, too costly to consider all ofP when computing the

Voronoi cellV (x). So, we do not compute the entire Voronoi intersection diagram with the planeTx but

we insert only the sample points relevant to computeV (x) and its partition into subcellsV (x;pj). There

are different ways to filterP such that we get allT -neighbors ofx but as few points ofP as possible.

We chose the following: we know that theT -neighbors ofx are a subset of the Delaunay neighbors ofx in Vor+(P). By maintaining the three-dimensional Delaunay triangulation of P, we can efficiently

determine the neighbors ofx and insert only these into the Voronoi intersection diagram. It is sometimes

necessary to computeDel(P), anyway, if the normal ofx needs to be determined by its pole vector.

The classesSurface neighbors 3.h andCurve neighbors 3.h inherit from the3D Delau-

nay triangulation. In addition to the insert, remove, and dual functionalities inherited fromDelaunay

triangulation 3.h, they allow to compute theT -neighbors of a surface (curve) point supplied with

its normal(s). The traits class ofSurface neighbors 3.h (Curve neighbors 3.h) has no spe-

cial requirements other than to follow the model for the Delaunay triangulation traits class. However, if

one wants to compute theT -coordinates for a sample point itself or if the reconstruction functionalities de-

scribed in Section 8.2.2 and 8.2.3 are used, a specialTriangulation vertex base with id and

normal.h is needed in order to associate each sample point with a normal and an id. The vertex id is

only necessary for visualization purposes and might be omitted.
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The T -coordinates can be computed for a pointx 2 M that is not a sample point or for a sample

point pi 2 P with respect to the Voronoi diagram ofP n fpig. In both cases, the normal(s) to the

manifold needs to be supplied. The result of the coordinate computation is an instance of the class

Voronoi intersection coordinates.h that contains a vector of pairs associating a sample point

(via avertex handle) to the corresponding coordinate function value.

In the casex =2 P, thefind conflicts function of the Delaunay triangulation allows to simulate

the insertion ofx into the Delaunay triangulation. The sample points in conflict with x are the Delaunay

neighbors ofx in Vor+(P). Similarly, forpi 2 P, we insert only the Delaunay neighbors ofpi into the

Voronoi intersection diagram with the planeTi which is sufficient to compute the cellV (pi) \ Ti and its

partition into subcellsV (pi;pj).
Reconstruction

The reconstruction function allows to dump an unordered setof triangles that approximate the surface. It

is the dualG(P) of the Voronoi atlas ofP defined in Section 7.1.2 or its subsetsGi(P); i � 3. For this, we

need to compute the local umbrellaUi for each sample pointpi 2 P. The theoretical properties ofG(P)
andG3(P) are described in Section 7.1.2 and 8.2.2. The manifold extraction procedure is not implemented,

thus, the collection of triangles does not constitute a manifold. In the class, there exists also a function

to compute the umbrella of a sample point separately. This isof interest if a local approximation of the

surface around a specific sample point is needed. The next section describes a fast method to compute the

local umbrellaUi of pi 2 P.

Local umbrella computation

The following method allows to compute all triangles incident to a samplepi in a two-dimensional tri-

angulation – without computing the entire triangulation. It is inspired from [65] who proposes a similar

approach to compute a local Delaunay triangulation.

Let ni = jNij denote the number of sample points that remain after the filtering step as potential

neighbors ofpi. In our case,Ni is the set of neighbors ofpi in the Delaunay triangulation. To compute

the umbrellaUi of pi 2 P, i.e. the triangles ofDelTi(P) that are incident topi, we propose a local method

with O(ni log ni) running time. This complexity is theoretically the same as for the computation of the

regular triangulation ofNi, yet, in practice, it is a lot faster. The output is a sorted list of theTi-neighbors ofpi. If the filtering is efficient, so thatni is small compared to the total number of points, this method is very

efficient. If the surface is well sampled, the number neighbors of pi in the three-dimensional Delaunay

triangulation is constant in average. A local umbrella can then be computed in constant time.

The major steps are as follows: starting with the edge to the closest neighborpmin of x in P, the points
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The sorting takesO(ni log ni) time. The predicate necessary for the sorting consists of atmost three3D
orientation tests.

Then, theTi-neighbors are computed in the following loop inspired fromthe Graham scan algorithm

for convex hull. We iterate over the ordered set of points (contained in an array calledadjacent) and

eliminate points until all triplets of consecutive points fulfill the empty-sphere property (refer to Section

2.2).

//compute local umbrella of p:

//neighbors: the array containing the result

//adjacent: the array containing the candidate points,

// sorted by angle around p

//the outer loop:

for(int i=0; i < adjacent.size(); ++i){

//the inner loop:

while (k > 0 &&

traits.power_test(neighbors[k-1]->point(), neighbors[k]->point(),

p, adjacent[i]->point()) == ON_POSITIVE_SIDE){

--k;

neighbors.pop_back();

}

k++;

neighbors.push_back(adjacent[i]);

}

The entire loop takes linear time which we can see by the following argument: each time the test in the

inner loop evaluates true, a point is erased fromNi, thus, there is at most a linear number of negative tests.

For each sample point passed in the outer loop, there is at most one positive evaluation of the test.

Normal estimation

If the normal is not supplied by the user, it is estimated by the pole vector which is the vector from the

data point to its furthest Voronoi vertex. The functionset poles() computes the pole vector for all

sample points and updates the appropriate field in the vertexbase instance. If this functionality is used, it

is recommended to use theTriangulation cell base with lazy info.h such that the dual of
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each cell can be kept in memory and repeated computations of the same Voronoi vertex are avoided. In the

case of curves, we compute a second pole vector as described in Section 5.3 and in [46].

An alternative method is implemented that estimates the normals from the nearest neighbors of a point.

The theoretical justification is described in Section 5.3. For curves, this method works very well. The

normals are orthogonal to the line segment that connects thesample pointpi to its nearest neighbor. For

surfaces, two nearest neighbors are chosen such that the triangle ofpi and its two neighbors has a large

angle atpi. This method appears to be very unstable in practice.

9.2.3 Function interpolation on a surface

The application that we developed based onSurface neighbors 3 is function interpolation on a

surface. To each sample point, a function value of any suitable user-defined type is given. The value type is

specified by a template parameter of the classInterpolation. In addition, the gradient value, a vector

containing the directional derivatives of the function at the sample point inx, y, andz direction might be

given for each sample point. The four different interpolants I0, I1, f3 andZ1 described in Chapter 4 are

implemented. The result of the interpolation is of the user-defined value type. The interpolation functions

are called with a surface pointx 2 S =2 P together with the surface normal�!nx as parameter. For testing, it

is possible to pass the interpolated function to the classInterpolation (via a functor) and to compute

some error statistics concerning the mean and the maximum error between the interpolated function value

and the real one.

Visualization is possible by moving each surface point by the interpolated function value in direction

of the normal at the point. The reconstruction functions ofSurface neighbors 3 allow to visual-

ize the result in order to evaluate the smoothness and exactness of the method. Another possibility for

visualization is to color the points according to the function value. This has not been implemented.

Interpolation over parametric surfaces

The knowledge of the surface, e.g. in form of a parameterization, allows to interpolate the function on a

grid of surface points. The sample points may either be distributed at random or on a grid. We implemented

an extension to theInterpolation class which takes, in addition to sample points and functionvalues,

the parameter function in form of a function. It evaluates the interpolant over a grid. The size of the

grid is specified by the number of grid points inu and in v direction. In this setting, the surface is

easily approximated by a quadrilateral grid over the grid points. Visualization is done as before by the

deformation approach.
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Conclusion

For a point cloud issued from a manifold, this thesis presents an efficient and practical approach to ap-

proximate the so-called manifold restricted Voronoi diagram. This is the intersection of thed-dimensional

Voronoi diagram of a point setP � M with the manifoldM. It represents an important way to define

a Voronoi diagram on a manifold. However, without knowing the manifold, this diagram cannot be com-

puted and even in the contrary case, it is very costly to compute. By linearly approximating the manifold in

each Voronoi cell with the tangent space toM at the generator of the cell, we present an approximation of

this Voronoi diagram that is provably close to the exact solution if the sample points are sufficiently dense.

This Voronoi diagram defines in a natural way a neighborhood relation between points that are close on

the manifold as well as a local coordinate system. We described, at first, the local neighborhood and the

coordinate system for one point that lies on the manifold. Then, the Voronoi atlas is considered which

is the collection of local neighborhoods for each sample point. It is shown to be useful in the context of

manifold reconstruction and re-meshing.

Furthermore, this thesis develops the basic properties of natural neighbor coordinates in power dia-

grams. Even if this concept was defined by Aurenhammer in [12], the properties were not yet elaborated

in detail. A survey over interpolation methods based on natural neighbor coordinates is as well presented.

This survey completes some missing details of the original papers and presents a method by Clarkson [35]

that has been, so far, unpublished.

A few open questions remain to be solved. First, we could not yet show wether Clarkson’s coordinates

areC1 continuous or not and second, question 7.12 is not yet proven.

There are several important directions for future research. I will present some of the ideas in more

detail.

Manifolds embedded in high dimensions

It seems straightforward to apply the presented concepts topoint clouds issued from low dimensional

manifolds that are embedded in higher dimensional Euclidean space. This topic attracts the attention of

several research groups as well in computational geometry,e.g. Giesen and Wagner [63], as in other fields
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such as cognitive science and image processing, see for instance [88], [98] and [78].

In the theoretical part of this thesis, the generalization has already been taken into account. However,

further research is necessary to elaborate practical solutions. The approximation of tangent spaces seems

possible based on the work of Har-Peled and Varadarajan [68]. They propose a method to compute a linear

subspace of a fixed dimension that best fits a given point set. The complexity is linear with respect to

the dimension of the embedding space. If the dimension of themanifold is small (k < 3), we presented

in this thesis an efficient algorithm to compute, locally, the Voronoi cell restricted to the tangent spaceTi (Chapter 9). For higher dimensions, similar local methods should be possible but this question needs

further investigation.

Estimation of geodesic quantities and enlargement of the Voronoi atlas on generalk-manifolds

If the sampling condition holds, it should be possible to bound the maximum distance between the length

of a geodesic on the manifold and the corresponding shortestpaths in the Voronoi atlas. In the same

context, one can determine the maximum error when approximating the area of an�-sampled manifold by

the area of the Voronoi cells in the atlas. Both achievementsshould enable the theoretical analysis of the

approximation of the centroidal Voronoi diagram presentedin Section 8.3 because they allow to bound the

distance between a centroid in the surface restricted Voronoi diagram and its corresponding centroid in the

Voronoi atlas.

In addition, it would be nice to define a natural enlargement of the Voronoi atlas in order to connect the

Voronoi cells. For hypersurfaces, this is achieved in Section 7.2. Some ideas for general manifolds came

up but they remain to be formalized in detail.

Noisy sampling

Another important enlargement is the treatment of noisy sample sets. In practice, data is always noisy – at

least due to the fact that it is discretized. It seems quite possible that the methods presented in this thesis

adapt to noisy samples. In [80], Mitra and Nguyen describe how normals can be estimated from noisy data.

Also, it should be possible to detect outliers in a pre-treatment of the data. Of course, the Voronoi cells do

not have the same properties for noisy data. In particular, it is no longer guaranteed that each Voronoi cell

is long and skinny which is a major argument of most Voronoi-based surface reconstruction algorithms.

However, it should nevertheless be possible to show that therestriction of a Voronoi cell to the tangent

space of the manifold at the generator has a small diameter. Also, there is a subset of points for which

the Voronoi cell is long and skinny – if not in every directionof the normal space, so at least in a subset

of normal directions. A formalization of the properties should be worthwhile. The use of higher-order

Voronoi diagrams in the context of noise also deserves further investigation.



Conclusion

Nous avons introduit dans cette thèse une approche pratique des diagrammes de Voronoı̈ restreints à une

variétéM qui consiste, à partir d’un ensemble de pointsP échantillonnantM, à approximer la restriction

d’une cellule de Voronoı̈ à la variété par sa restrictionà l’espace tangent à la variété au point définissant la

cellule. Une telle cellule de Voronoı̈ restreinte à l’espace tangent permets de définir une relation de voisi-

nage entre le point de la variété définissant la cellule etles points de l’échantillon qui possède une bonne

propriété de localité ainsi qu’un système de coordonn´ees associés à cette notion de voisinage dont nous

avons démontré les propriétés fondamentales: localité du support, continuité et différentiabilité des fonc-

tions de coordonnées, etc. Ensuite, nous avons présentéla notion d’atlas de Voronoı̈ et montré son utilité

dans le contexte de reconstruction de variété et du remaillage. L’effectivité de l’ensemble des méthodes

élaborées nous a permis de proposer des solutions efficaces pour les problèmes d’interpolation de fonc-

tions, de reconstruction de surfaces et de remaillage.

Deux questions ouvertes restent pourtant à aborder: la question ouverte 7.12 et la preuve de la differen-

tiabilité ou non-differentiabilité des fonctions de coordonnées de Clarkson définit dans le paragraphe 3.5.

Nous présentons dans la suite quelques directions de recherche intéressantes qui se sont présentées

durant nos travaux.

Reconstruction de varíetés plonǵees dans des grandes dimensions

Le thème de la reconstruction d’une variété (de petite dimension) plongée dans un espace euclidien de

grande dimension attire l’attention des chercheurs aussi bien dans le domaine de la géométrie algorith-

mique (cf. Giesen et Wagner [63]), que dans celui de la science cognitive et du traitement d’images (voir

[88], [98] et [78]).

La plupart des résultats théoriques de cette thèse sont indépendants de la dimension de la variété et

de l’espace ambiant et s’applique donc directement à ce problème. Des recherches restent cependant

nécessaires afin d’obtenir des solutions pratiques. Har-Peled et Varadarajan [68] ont proposé une méthode

permettant le calcul d’un sous-espace linéaire de dimension fixée qui s’adapte le mieux à un ensemble

de points donné et qui semble rendre possible l’approximation d’espaces tangents. La complexité de leur
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méthode est linéaire en la dimension de l’espace dans lequel la variété est plongée. Cette thèse propose un

algorithme efficace pour le calcul local de cellules de Voronoı̈ restreintes à l’espace tangentTi lorsque la

dimension de la variété est petite (k < 3) (cf. chapitre 9), il serait intéressant d’étudier la généralisation de

cette algorithme à de plus grandes dimensions.

Estimation de quantités ǵeod́esiques et ǵenéralisation de l’atlas de Voronöı à desk-vari étés

Si la condition d’échantillonnage est satisfaite, le calcul d’une borne supérieure sur la distance maxi-

male entre une géodésique sur la variété et le plus courtchemin correspondant dans l’atlas de Voronoı̈

ainsi que le calucl majoration de l’erreur d’approximationcommise en approchant l’aire d’une variété�-échantillonnée par l’aire des cellules de l’atlas de Voronoı̈ semble possible. Ce type de résultat permet-

trait l’obtention de garanties théoriques sur la convergence de l’approximation du diagramme de Voronoı̈

centroı̈dal présentée à la section 8.3.

Il serait de plus intéressant de définir un élargissementde l’atlas de Voronoı̈ qui connecterait les cel-

lules de Voronoı̈. Cette thèse propose une solution pour lecas des hypersurfaces (cf. section 7.2), la

généralisation au cas des variétés générales sembleenvisageable et reste à traiter.

Données bruit́es

En pratique les points de données sont toujours bruités dufait de leur discrétisation, le traitement de ce type

de données s’avère donc être particulièrement crucial. Les méthodes présentées dans cette thèse semblent

pouvoir s’adapter à ce problème. L’estimation des normales à partir d’un échantillon bruité est possible par

des méthodes telles que celle proposée par Mitra et Nguyen[80]. De plus, une grande parties desoutliers

peuvent être détecter lors d’un phase de pré-traitementdes points de l’échantillon. Malheureusement,

certaines propriétés du diagramme de Voronoı̈ ne sont plus vérifiées dans le cas de données bruitées: on ne

garantit désormais plus, par exemple, que chaque cellule est longue et fine, propriété utilisée par la plupart

des algorithmes de reconstruction basée sur le diagramme de Voronoı̈. Il semble cependant envisageable

de montrer que la restriction d’une cellule de Voronoı̈ à l’espace tangent de la variété au point définissant

la cellule a alors un petit diamètre et qu’il existe un sous-ensemble de points de données pour lequel

les cellules de Voronoı̈ sont longues et fines au moins pour unsous-ensemble des directions de l’espace

normal. Une formalisation de ces propriétés serait digned’intérêt. L’utilisation de diagrammes de Voronoı̈

d’ordre supérieur semble aussi constituer une piste prometteuse pour ce type de problème.
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Schumaker, editors,Wavelets, Images, and Surface Fitting, pages 67–74. A. K. Peters, Wellesley

MA, 1994.

[29] J. L. Brown. Systems of coordinates associated with points scattered in the plane.Comput. Aided

Design, 14:547–559, 1997.

[30] The CGAL Manual, 2002. Release 2.4.
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