P. J. Winzer, G. Raybon, C. R. Doerr, M. Duelk, and C. Dorrer, 107-gb/s optical signal generation using electronic time-division multiplexing, Journal of Lightwave Technology, vol.24, issue.8, 2006.
DOI : 10.1109/JLT.2006.878016

K. Schuh, E. Lach, B. Junginger, G. Veith, J. Renaudier et al., “8 Tbit/s (80×107 gbit/s) DWDM ASK-NRZ VSB transmission over 510 km NZDSF with 1 bit/s/hz spectral ef!ciency, presented at the Proc. ECOC’07, PD1.8, 2007.

M. Daikoku, I. Morita, H. Taga, H. Tanaka, T. Kawanishi et al., “10-Gbit/s DQPSK transmission experiment without OTDM for 100 G ethernet transport, presented at the Proc.OFC’06, PDP36, 2006.

S. J. Savory, G. Gavioli, R. I. Killey, and P. Bayvel, Electronic compensation of chromatic dispersion using a digital coherent receiver, Optics Express, vol.15, issue.5, pp.2120-2126, 2007.
DOI : 10.1364/OE.15.002120

H. Bao and W. Shieh, Transmission simulation of coherent optical OFDM signals in WDM systems, Optics Express, vol.15, issue.8, pp.4410-4418, 2007.
DOI : 10.1364/OE.15.004410

S. L. Jansen, I. Morita, T. C. Schenk, D. Van-den-borne, and H. Tanaka, Optical OFDM - A Candidate for Future Long-Haul Optical Transmission Systems, OFC/NFOEC 2008, 2008 Conference on Optical Fiber Communication/National Fiber Optic Engineers Conference, pp.1-3, 2008.
DOI : 10.1109/OFC.2008.4528411

W. Shieh, X. Yi, Y. Ma, and Q. Yang, Coherent optical OFDM: has its time come? [Invited], Journal of Optical Networking, vol.7, issue.3, pp.234-255, 2008.
DOI : 10.1364/JON.7.000234

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.330.8006

B. J. Schmidt, A. J. Lowery, and J. Armstrong, Experimental Demonstrations of Electronic Dispersion Compensation for Long-Haul Transmission Using Direct-Detection Optical OFDM, Journal of Lightwave Technology, vol.26, issue.1, pp.196-203, 2008.
DOI : 10.1109/JLT.2007.913017

A. Lowery, L. Du, and ;. J. Armstrong, “Orthogonal Frequency Division Multiplexing for Adaptive Dispersion Compensation in Long Haul WDM Systems,” Optical Fiber Communication Conference, 2006 and the 2006 National Fiber Optic Engineers Conference, pp.1-3, 2006.

E. Ip, A. P. , T. Lau, D. J. Barros, and J. M. Kahn, Coherent detection in optical fiber systems, Optics Express, vol.16, issue.2, pp.753-791, 2008.
DOI : 10.1364/OE.16.000753

W. Shieh and C. Athaudage, Coherent optical orthogonal frequency division multiplexing, Electronics Letters, vol.42, issue.10, pp.587-589, 2006.
DOI : 10.1049/el:20060561

G. Charlet, N. Maaref, J. Renaudier, H. Mardoyan, P. Tran et al., “Transmission of 40Gb/s QPSK with coherent detection over ultra long haul distance improved by nonlinearity mitigation, European Conference on Optical Communications, 2006.

Q. Yang, Y. Ma, and W. Shieh, “107 Gb/s Coherent Optical OFDM Reception Using Orthogonal Band Multiplexing, National Fiber Optic Engineers Conference, PDP7. OSA Technical Digest, 2008.

K. Ho, “Phase-Modulated Optical Communication Systems, 2005.

C. Xu, L. Xiang, and W. Xing, “Differential phase-shift keying for high spectral efficiency optical transmissions,” Selected Topics in Quantum Electronics, IEEE Journal, vol.10, issue.2, pp.281-293, 2004.

A. Ali, J. Leibrich, and W. Rosenkranz, Impact of nonlinearities on optical OFDM with direct detection, 33rd European Conference and Exhibition on Optical Communication, ECOC 2007, pp.1-2, 2007.
DOI : 10.1049/ic:20070485

Y. Tang, W. Chen, and W. Shieh, Study of Nonlinearity and Dynamic Range of Coherent Optical OFDM Receivers, OFC/NFOEC 2008, 2008 Conference on Optical Fiber Communication/National Fiber Optic Engineers Conference, pp.1-3, 2008.
DOI : 10.1109/OFC.2008.4528221

W. Shieh and X. Chen, Information Spectral Efficiency and Launch Power Density Limits Due to Fiber Nonlinearity for Coherent Optical OFDM Systems, IEEE Photonics Journal, vol.3, issue.2, pp.158-173, 2011.
DOI : 10.1109/JPHOT.2011.2112342

H. Carrère, Large optical bandwidth and polarization insensitive semiconductor optical amplifiers using strained InGaAsP quantum wells, Applied Physics Letters, vol.97, issue.12, pp.121101-121104, 2010.
DOI : 10.1063/1.3484151

T. Akiyama, An ultrawide-band semiconductor optical amplifier having an extremely high penalty-free output power of 23 dBm achieved with quantum dots, IEEE Photonics Technology Letters, vol.17, issue.8, pp.1614-1616, 2005.
DOI : 10.1109/LPT.2005.851884

K. Morito, High-output-power polarization-insensitive semiconductor optical amplifier, Journal of Lightwave Technology, vol.21, issue.1, pp.176-181, 2003.
DOI : 10.1109/JLT.2003.808643

S. Tanaka, “A high saturation output power (22dBm) polarization insensitive semiconductor optical amplifier,” LEOS’05, paper ThK5, 2005.

P. W. Juodawlkis, High-power 1.5-/spl mu/m InGaAsP-InP slab-coupled optical waveguide amplifier, IEEE Photonics Technology Letters, vol.17, issue.2, pp.279-281, 2005.
DOI : 10.1109/LPT.2004.839770

K. Morito, A broad-band MQW semiconductor optical amplifier with high saturation output power and low noise figure, IEEE Photonics Technology Letters, vol.17, issue.5, pp.974-976, 2005.
DOI : 10.1109/LPT.2005.845733

P. Morel, P. Chanclou, R. Brenot, T. Motaweh, M. Guégan et al., Experimental demonstration of SOAs optical bandwidth widening based on selective filtering, 22nd IEEE International Semiconductor Laser Conference, pp.10-1109, 2010.
DOI : 10.1109/ISLC.2010.5642730

R. Brenot, “Quantum dots Semiconductor Optical Amplifier with a -3dB Bandwidth of up to 120 nm in Semi-Cooled Operation,” in Optical Fiber Communication Conference, p.1, 2008.

B. Dagens, A. Labrousse, R. Brenot, B. Lavigne, and M. Renaud, SOA-based devices for all-optical signal processing, OFC 2003 Optical Fiber Communications Conference, 2003., pp.582-583, 2003.
DOI : 10.1109/OFC.2003.316006

C. Schubert, R. Ludwig, and H. Weber, High-speed optical signal processing using semiconductor optical amplifiers, Journal of Optical and Fiber Communications Reports, vol.11, issue.2, pp.171-208, 2004.
DOI : 10.1007/s10297-005-0036-2

W. Shieh and I. Djordjevic, “OFDM for optical communication, 2009.

R. Bonk, “Impact of Alfa-factor on SOA dynamic range for 20 GBd BPSK, QPSK and 16-QAM signals,” Optical Fiber Communication Conference, p.4, 2011.

J. Vu-!-i-",, “White light wireless transmission at 200+ Mb/s net data rate by use of discrete-multitone modulation,” Photonics Technology Letters, IEEE, vol.21, issue.20, pp.1511-1513, 2009.

W. Shieh, H. Bao, and Y. Tang, Coherent optical OFDM: theory and design, Optics Express, vol.16, issue.2, pp.841-859, 2008.
DOI : 10.1364/OE.16.000841

C. Kazmierski, Electro-Absorption-Based Fast Photonic Integrated Circuit Sources for Next Network Capacity Scaling [Invited], Journal of Optical Communications and Networking, vol.4, issue.9, pp.8-16, 2012.
DOI : 10.1364/JOCN.4.0000A8

A. Royset, L. Bjerkan, D. Myhre, and L. Hafskjaer, Use of dispersive optical fibre for characterisation of chirp in semiconductor lasers, Electronics Letters, vol.30, issue.9, pp.710-712, 1994.
DOI : 10.1049/el:19940505

A. Gharba, “OFDM et allocation des ressources dans les nouvelles générations des réseaux d’accès optiques pour des systèmes mono et multi-utilisateurs,” Mémoire de thèse, 2012.

L. E. Nelson, H. Kogelnik, and K. J. Winzer, “Polarization mode dispersion and its impact on high bit-rate, fiber-optic communication systems,” Lasers and Electro- Optics, Conference on, pp.16-21, 2004.

D. A. Nolan and C. , Xin and L. Ming-Jun, “Fibers with low polarization-mode dispersion,” Lightwave Technology, Journal, vol.22, issue.4, pp.1066-1077, 2004.

A. Sharaiha, “Amplificateurs optiques à sémi-conducteurs, ” Cours Master PHOT, pp.2009-2010

K. Hoin, “A gain-clamped SOA with distributed Bragg reflectors fabricated under both ends of active waveguide with different lengths,” Photonics Technology Letters, pp.999-1001, 2004.

W. Jin, A. Maitra, C. G. Poulton, W. Freude, and J. Leuthold, “Temporal Dynamics of the Alpha Factor in Semiconductor Optical Amplifiers,” Lightwave Technology, Journal, vol.25, issue.3, pp.891-900, 2007.

M. L. Nielsen, SOA-Booster Integrated Mach–Zehnder Modulator: Investigation of SOA Position, Journal of Lightwave Technology, vol.28, issue.5, pp.837-846, 2010.
DOI : 10.1109/JLT.2009.2034987

C. Caillaud, “Monolithic Integration of a Semiconductor Optical Amplifier and a High-Speed Photodiode With Low Polarization Dependence Loss,” Photonics Technology Letters, pp.897-899, 2012.

T. Fjelde, D. Wolfson, A. Kloch, M. L. Nielsen, and H. Wessing, “SOA-based Functional Devices, Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, pp.114-126, 2001.

C. Bohémond, A. Sharaiha, T. Rampone, and H. Khaleghi, Electro-optical radiofrequency mixer based on semiconductor optical amplifier, Electronics Letters, vol.47, issue.5, pp.331-333, 2011.
DOI : 10.1049/el.2010.3613

E. Säckinger, “Broadband Circuits for Optical Fiber Communication, 2005.
DOI : 10.1002/0471726400

L. Zimmermann, G. B. Preve, T. Tekin, and T. , Packaging and Assembly for Integrated Photonics—A Review of the ePIXpack Photonics Packaging Platform, IEEE Journal of Selected Topics in Quantum Electronics, vol.17, issue.3, pp.645-651, 2011.
DOI : 10.1109/JSTQE.2010.2084992

D. M. Baney, P. Gallion, and R. S. Tucker, Theory and Measurement Techniques for the Noise Figure of Optical Amplifiers, Optical Fiber Technology, vol.6, issue.2, pp.122-154, 2000.
DOI : 10.1006/ofte.2000.0327

R. Schmogrow, Error Vector Magnitude as a Performance Measure for Advanced Modulation Formats, IEEE Photonics Technology Letters, vol.24, issue.1, pp.61-63, 2012.
DOI : 10.1109/LPT.2011.2172405

G. Amouzad and A. Fauzi, Advanced Modulation Formats and Multiplexing Techniques for Optical Telecommunication Systems, Trends in Telecommunications Technologies, édité par Christos J. InTech, 2010.
DOI : 10.5772/8494

E. Torrengo, Influence of Pulse Shape in 112-Gb/s WDM PDM-QPSK Transmission, IEEE Photonics Technology Letters, vol.22, issue.23, pp.1714-1716, 2010.
DOI : 10.1109/LPT.2010.2082520

M. Salsi, “155×100 Gb/s coherent PDM-QPSK transmission over 7200 km, 2009.

G. Charlet, Transmission of 16.4-bit/s Capacity Over 2550 km Using PDM QPSK Modulation Format and Coherent Receiver, Journal of Lightwave Technology, vol.27, issue.3, pp.153-157, 2009.
DOI : 10.1109/JLT.2008.2005506

E. Pincemin, J. Karaki, Y. Loussouarn, H. Poignant, C. Betoule et al., Challenges of 40/100Gbps and higher-rate deployments over long-haul transport networks, Optical Fiber Technology, vol.17, issue.5, pp.335-362, 2011.
DOI : 10.1016/j.yofte.2011.07.011

URL : https://hal.archives-ouvertes.fr/hal-00632768

E. Lach and W. , Idler, “Modulation formats for 100G and beyond,” Optical Fiber Technology, pp.377-386, 2011.

A. Sano, “69.1-Tb/s (432×171-Gb/s) C-and Extended L-Band Transmission over 240 km Using PDM-16-QAM Modulation and Digital Coherent Detection, p.7, 2010.

G. Bosco, Performance Limits of Nyquist-WDM and CO-OFDM in High-Speed PM-QPSK Systems, IEEE Photonics Technology Letters, vol.22, issue.15, pp.1129-1131, 2010.
DOI : 10.1109/LPT.2010.2050581

J. X. Cai, “20 Tbit/s capacity transmission over 6860 km, Proceedings OFC, p.4, 2011.

A. J. Lowery, L. Du, and J. Armstrong, “Orthogonal frequency division multiplexing for adaptive dispersion compensation in long haul WDM systems,” Optical Fiber Commun, Conf, p.39, 2006.

D. Barros and J. M. Kahn, Optimized Dispersion Compensation Using Orthogonal Frequency-Division Multiplexing, Journal of Lightwave Technology, vol.26, issue.16, pp.2889-2898, 2008.
DOI : 10.1109/JLT.2008.925051

E. Hugues-salas, R. P. Giddings, X. Q. Jin, J. L. Wei, X. Zheng et al., Real-time experimental demonstration of???low-cost VCSEL intensity-modulated 1125Gb/s optical OFDM signal transmission over 25km PON systems, Optics Express, vol.19, issue.4, pp.2979-2988, 2011.
DOI : 10.1364/OE.19.002979

J. L. Wei, A. Hamié, R. P. Giddings, and J. M. , Semiconductor Optical Amplifier-Enabled Intensity Modulation of Adaptively Modulated Optical OFDM Signals in SMF-Based IMDD Systems, Journal of Lightwave Technology, vol.27, issue.16, pp.3678-3688, 2009.
DOI : 10.1109/JLT.2009.2021164

L. , A. Neto, G. Beninca-de-farias, N. Genay, S. Menezo et al., Chanclou and C. Aupetit-Berthelemot, “On the Limitations of IM/DD WDM-FDMA- OFDM PON with Single Photodiode for Upstream Transmission, Optical Fiber Communication Conference and Exposition, p.2012

E. Hugues-salas, N. Courjault, X. Q. Jin, R. P. Giddings, C. Aupetit-berthelemot et al., Tang, “Real-time 11.25Gb/s optical OFDM transmission over 2000m legacy MMFs utilizing directly modulated VCSELs,” Optical Fiber Communication Conference and Exposition, 2012 and the National Fiber Optic Engineers Conference, pp.1-3, 2012.

X. Q. Jin, E. Hugues-salas, R. P. Giddings, J. L. Wei, J. Groenewald et al., First real-time experimental demonstrations of 1125Gb/s optical OFDMA PONs with adaptive dynamic bandwidth allocation, Optics Express, vol.19, issue.21, pp.20557-20570, 2011.
DOI : 10.1364/OE.19.020557

H. Li, “A 60 GHz Wireless Home Area Network With Radio Over Fiber Repeaters,” Lightwave Technology, Journal, vol.29, issue.16, pp.2482-2488, 2011.

W. Shieh, X. Yi, and Y. Tang, Transmission experiment of multi-gigabit coherent optical OFDM systems over 1000???km SSMF fibre, Electronics Letters, vol.43, issue.3, pp.183-185, 2007.
DOI : 10.1049/el:20073496

R. Dischler and F. Buchali, “Transmission of 1.2 Tb/s Continuous Waveband PDM-OFDM-FDM Signal with Spectral Efficiency of 3.3 bit/s/Hz over 400 km of SSMF,” Optical fiber communication conference, paper PDP C2, 2009.

R. Bonk, Linear semiconductor optical amplifiers for amplification of advanced modulation formats, Optics Express, vol.20, issue.9, pp.9657-9672, 2012.
DOI : 10.1364/OE.20.009657

H. Khaleghi, A. Sharaiha, T. Rampone, P. Morel, and M. Guégan, Semiconductor Optical Amplifiers in Coherent Optical-OFDM Systems, IEEE Photonics Technology Letters, vol.24, issue.7, pp.560-562, 2012.
DOI : 10.1109/LPT.2012.2183346

URL : https://hal.archives-ouvertes.fr/hal-00660687

H. Khaleghi, P. Morel, A. Sharaiha, T. Rampone, and M. Guégan, Numerical analysis of SOA performance over a wide optical bandwidth in a CO-OFDM transmission system, Optical and Quantum Electronics, vol.59, issue.3-5, pp.3-5, 2012.
DOI : 10.1007/s11082-011-9520-5

URL : https://hal.archives-ouvertes.fr/hal-00660685

T. M. Schmidl and D. C. Cox, Robust frequency and timing synchronization for OFDM, IEEE Transactions on Communications, vol.45, issue.12, pp.1613-1621, 1997.
DOI : 10.1109/26.650240

D. K. Kim, S. H. Do, H. Cho, H. J. Chol, and K. B. Kim, “A new joint algorithm of symbol timing recovery and sampling clock adjustment for OFDM systems, IEEE Trans. on Consumer Electronics, vol.44, issue.3, pp.1142-1149, 1998.

B. Goebel, S. Hellerbrand, N. Haufe, and N. Hanik, PAPR reduction techniques for coherent optical OFDM transmission, 2009 11th International Conference on Transparent Optical Networks, pp.1-4, 2009.
DOI : 10.1109/ICTON.2009.5184979

C. H. Lu and K. M. Feng, Reduction of high PAPR effect with FEC enhanced deep data clipping ratio in an optical OFDM system, LEOS 2007, IEEE Lasers and Electro-Optics Society Annual Meeting Conference Proceedings, pp.941-942, 2007.
DOI : 10.1109/LEOS.2007.4382721

X. Liu and S. Chandrasekhar, “Impact of fiber nonlinearity on Tb/s PDM-OFDM transmission,” Photonics Society Summer Topical Meeting Series, IEEE, pp.34-35, 2010.

A. Ali, J. Leibrich, and W. , Rosenkranz, “Impact of Nonlinearities on Optical OFDM with Direct Detection,” Optical Communication (ECOC), 33rd European Conference and Ehxibition of, pp.1-2, 2007.

B. Goebel, B. Fesl, L. D. Coelho, and N. Hanik, “On the Effect of FWM in Coherent Optical OFDM Systems,” Optical Fiber communication/National Fiber Optic Engineers Conference, pp.1-3, 2008.

J. Mørk and A. Mecozzi, Theory of the ultrafast optical response of active semiconductor waveguides, Journal of the Optical Society of America B, vol.13, issue.8, pp.1803-1816, 1996.
DOI : 10.1364/JOSAB.13.001803

A. Bogoni, L. Poti, C. Porzi, M. Scaffardi, P. Ghelfi et al., Modeling and Measurement of Noisy SOA Dynamics for Ultrafast Applications, IEEE Journal of Selected Topics in Quantum Electronics, vol.10, issue.1, pp.197-205, 2004.
DOI : 10.1109/JSTQE.2003.822919

W. Li, G. X. Chen, P. Huang, and X. Li, An advanced quasi-3D model for semiconductor optical amplifiers, Canadian Conference on Electrical and Computer Engineering 2004 (IEEE Cat. No.04CH37513), pp.2131-2134, 2004.
DOI : 10.1109/CCECE.2004.1347664

W. Mathlouthi, P. Lemieux, M. Salsi, A. Vannucci, A. Bononi et al., Fast and Efficient Dynamic WDM Semiconductor Optical Amplifier Model, Journal of Lightwave Technology, vol.24, issue.11, pp.4353-4365, 2006.
DOI : 10.1109/JLT.2006.884217

J. W. Chi, L. Chao, and M. K. Rao, Time-domain large-signal investigation on nonlinear interactions between an optical pulse and semiconductor waveguides, IEEE Journal of Quantum Electronics, vol.37, issue.10, pp.1329-1336, 2001.
DOI : 10.1109/3.952545

M. J. Connelly, Wideband dynamic numerical model of a tapered buried ridge stripe semiconductor optical amplifier gate, Proc. IEE—Circuits, Devices and Systems, pp.173-178, 2002.
DOI : 10.1049/ip-cds:20020323

R. Gutiérrez-castrejón and M. Duelk, Uni-Directional Time-Domain Bulk SOA Simulator Considering Carrier Depletion by Amplified Spontaneous Emission, IEEE Journal of Quantum Electronics, vol.42, issue.6, pp.581-588, 2006.
DOI : 10.1109/JQE.2006.874063

P. Morel and A. Sharaiha, Wideband Time-Domain Transfer Matrix Model Equivalent Circuit for Short Pulse Propagation in Semiconductor Optical Amplifiers, IEEE Journal of Quantum Electronics, vol.45, issue.2, pp.103-116, 2009.
DOI : 10.1109/JQE.2008.2001935

L. Occhi, L. Schares, and G. Guekos, Phase modeling based on the ??-factor in bulk semiconductor optical amplifiers, IEEE Journal of Selected Topics in Quantum Electronics, vol.9, issue.3, pp.788-797, 2003.
DOI : 10.1109/JSTQE.2003.818346

F. Devaux, Y. Sorel, and J. F. Kerdiles, Simple measurement of fiber dispersion and of chirp parameter of intensity modulated light emitter, Journal of Lightwave Technology, vol.11, issue.12, 1993.
DOI : 10.1109/50.257953

C. Bohémond, “Mélangeur de signaux hyperfréquences basé sur la modulation croisée du gain d’un amplificateur optique à semi-conducteurs, 2010.

M. Amaya, “Amélioration des performances d’un amplificateur optique à semiconducteurs par injection optique à la transparence du gain pour les réseaux de télécommunication optiques,” Mémoire de thèse, Laboratoire RESO ENIB, 2006.

M. Summer, !. Eld, and R. Tucker, “Frequency domain model of multiwave mixing in bulk semiconductor optical ampli!ers, IEEE J. Sel. Topics Quantum Electron, vol.5, issue.3, pp.839-850, 1999.

C. T. Politi, D. Klonidis, and M. J. , Waveband converters based on four-wave mixing in SOAs, Journal of Lightwave Technology, vol.24, issue.3, pp.1203-1217, 2006.
DOI : 10.1109/JLT.2005.863289

M. J. Connelly, L. P. Barry, B. F. Kennedy, and D. A. Reid, Numerical analysis of four-wave mixing between picosecond mode-locked laser pulses in a tensile-strained bulk SOA, Optical and Quantum Electronics, vol.24, issue.5-6, pp.411-418, 2008.
DOI : 10.1007/s11082-008-9201-1

H. Ishikawa, “Wavelength conversion technologies for photonic network systems, ” FUJITSU Scientific Technology Journal, vol.35, issue.1, pp.126-138, 1999.

N. Hatori, “Design of a wide-range arbitrary wavelength conversion module using four-wave mixing in a quantum dot semiconductor optical amplifier,” Phys, Stat. Sol. (c), vol.0, issue.4, 2003.

F. Ohman, S. Bischoff, B. Tromborg, and J. Mørk, Noise and Regeneration in Semiconductor Waveguides With Saturable Gain and Absorption, IEEE Journal of Quantum Electronics, vol.40, issue.3, pp.245-255, 2004.
DOI : 10.1109/JQE.2003.823035

M. Amaya, A. Sharaiha, and F. Ginovart, Comparison between co- and counter-propagative optical injection near the transparency wavelength on SOA static and dynamic performances, Optics Communications, vol.246, issue.1-3, pp.67-71, 2005.
DOI : 10.1016/j.optcom.2004.10.058

L. F. Tiemeijer, H. Khaleghi, P. Morel, A. Sharaiha, and T. Rampone, Effects of nonlinear gain on four???wave mixing and asymmetric gain saturation in a semiconductor laser amplifier, Applied Physics Letters, vol.59, issue.5, pp.499-501, 1991.
DOI : 10.1063/1.105419

H. Khaleghi, A. Sharaiha, T. Rampone, P. Morel, and M. Guégan, Semiconductor Optical Amplifiers in Coherent Optical-OFDM Systems, IEEE Photonics Technology Letters, vol.24, issue.7, pp.560-562, 2012.
DOI : 10.1109/LPT.2012.2183346

URL : https://hal.archives-ouvertes.fr/hal-00660687

H. Khaleghi, P. Morel, A. Sharaiha, T. Rampone, and M. Guégan, Numerical analysis of SOA performance over a wide optical bandwidth in a CO-OFDM transmission system, Optical and Quantum Electronics, vol.59, issue.3-5, pp.3-5, 2012.
DOI : 10.1007/s11082-011-9520-5

URL : https://hal.archives-ouvertes.fr/hal-00660685

C. Bohémond, A. Sharaiha, T. Rampone, and H. Khaleghi, Electro-optical radiofrequency mixer based on semiconductor optical amplifier, Electronics Letters, vol.47, issue.5, pp.331-333, 2011.
DOI : 10.1049/el.2010.3613

H. Khaleghi, P. Morel, T. Rampone, A. Sharaiha, and M. Guégan, SOA modeling for advanced optical modulation formats, 2011 Numerical Simulation of Optoelectronic Devices, 2011.
DOI : 10.1109/NUSOD.2011.6041157

URL : https://hal.archives-ouvertes.fr/hal-00660682

H. Khaleghi, P. Morel, A. Sharaiha, and T. Rampone, “ Simulation et mesure d’un système de transmission CO-OFDM employant des amplificateurs optiques à semi-conducteurs ”, nationales avec comité de lecture et actes 2, 2012.

H. Khaleghi, P. Morel, T. Rampone, A. Sharaiha, and M. Guégan, “Performances des SOA sur une large bande passante optique dans un système de transmission optique CO-OFDM”, 2011.

H. Khaleghi, P. Morel, T. Rampone, A. Sharaiha, and M. Guégan, “Simulation d’une chaîne de transmission de signaux optiques OFDM amplifiés par des SOA pour des systèmes à réception cohérente”, p.156

/. Gb and .. , Variation d’EVM normalisée d'un signal QPSK CO-OFDM simulé en fonction du nombre de sous-porteuses à la longueur d'onde de 1540 nm. La puissance d'entrée est de -15 dBm et le débit de données 10, pp.4-34

Q. Co-ofdm-simulé and M. , ligne continue) et mesuré (points) en fonction de la longueur d'onde pour une puissance d’entrée dans le SOA de -30 dBm. Le courant de polarisation est de, p.122