H. A. Abutaleb, Automatic thresholding of gray-level pictures using two-dimensional entropy, Computer Vision, Graphics, and Image Processing, 1989.
DOI : 10.1016/0734-189X(89)90051-0

G. N. Alenya, A comparison of three methods for measure of Time to Contact, 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2009.
DOI : 10.1109/IROS.2009.5354024

URL : https://hal.archives-ouvertes.fr/inria-00426748

S. R. Anton and D. J. Inman, Vibration energy harvesting for unmanned aerial vehicles, Active and Passive Smart Structures and Integrated Systems 2008, 2008.
DOI : 10.1117/12.774990

G. Aviña-cervantes, M. Devy, and A. Marín, Lane Extraction and Tracking for Robot Navigation in Agricultural Applications, Proceedings of the International Conference on Advanced Robotics, 2003.

T. Bakker, H. Wouters, K. V. Asselt, J. Bontsema, L. Tang et al., A vision based row detection system for sugar beet, Computers and Electronics in Agriculture, vol.60, issue.1, pp.87-95, 2008.
DOI : 10.1016/j.compag.2007.07.006

D. Ballard, Generalized Hough transform to detect arbitrary shapes, IEEE Trans. Pattern Anal, 1981.

S. Beauchemin, The computation of optical flow, ACM Computing Surveys, vol.27, issue.3, pp.433-467, 1995.
DOI : 10.1145/212094.212141

L. B. Benini, A survey of design techniques for system-level dynamic power management, IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol.8, issue.3, 2000.
DOI : 10.1109/92.845896

T. Berlin, Spirit of Berlin: An Autonomous Car for the DARPA Urban Challenge Hardware and Software Architecture, 2007.

M. A. Bertozzi, GOLD: a parallel real-time stereo vision system for generic obstacle and lane detection, IEEE Transactions on Image Processing, vol.7, issue.1, pp.62-81, 1998.
DOI : 10.1109/83.650851

M. B. Bertozzi, Stereo inverse perspective mapping: theory and applications, Image and Vision Computing, vol.16, issue.8, pp.585-590, 1998.
DOI : 10.1016/S0262-8856(97)00093-0

M. B. Bertozzi, Vision-based intelligent vehicles: State of the art and perspectives, Robotics and Autonomous Systems, vol.32, issue.1, pp.1-16, 2000.
DOI : 10.1016/S0921-8890(99)00125-6

A. Z. Beyeler, Vision-based control of near-obstacle flight, Autonomous Robots, vol.21, issue.14, pp.201-219, 2009.
DOI : 10.1007/s10514-009-9139-6

F. Bonin-font, A. Ortiz, and G. Oliver, Visual Navigation for Mobile Robots: A Survey, Journal of Intelligent and Robotic Systems, vol.27, issue.1, pp.263-296, 2008.
DOI : 10.1007/s10846-008-9235-4

P. E. Bouyer, Quantitative analysis of real-time systems, Journal Communications of the ACM, 2010.
URL : https://hal.archives-ouvertes.fr/hal-01088030

J. F. Canny, A computational approach to edge detection, IEEE Trans. Pattern Anal. Machine Intell, vol.6, pp.679-698, 1986.

R. Chatila, Dual research: Issues in robotics. Oral presentation, Mission for Research and Innovation Scientific 2010, French Armament Procurement Agency (DGA), 2010.

J. Chetan, K. Madhava, and C. V. Jawahar, An adaptive outdoor terrain classification methodology using monocular camera, 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2010.
DOI : 10.1109/IROS.2010.5651067

E. M. Dagan, Forward collision warning with a single camera, IEEE Intelligent Vehicles Symposium, 2004, pp.37-42, 2004.
DOI : 10.1109/IVS.2004.1336352

H. Dahlkamp, A. Kaehler, D. Stavens, S. Thrun, and G. Bradski, Self-supervised Monocular Road Detection in Desert Terrain, Robotics: Science and Systems II, 2006.
DOI : 10.15607/RSS.2006.II.005

D. Deshmukh and A. V. , Energetically Autonomous Tactical Robot, DARPA Contract W31P4Q-08-C-0292 from EATR at Robotic Technology: http://www.robotictechnologyinc.com/index Towards Socially Constrained Power Management for Long-Term Operation of Mobile Robots, 2009.

F. Diego, J. M. Álvarez, J. Serrat, and A. M. López, Vision-based road detection via on-line video registration, 13th International IEEE Conference on Intelligent Transportation Systems, 2010.
DOI : 10.1109/ITSC.2010.5624998

J. O. Entzinger, Modeling of the visual approach to landing using neural networks and fuzzy supervisory control, Proceedings of the 26th International Congress of the Aeronautical Sciences, 2008.
DOI : 10.1016/j.ast.2009.10.002

S. Ettinger, M. Nechyba, P. Ifju, and M. Waszak, Vision-guided flight stability and control for micro air vehicles, IEEE/RSJ International Conference on Intelligent Robots and System, pp.617-640, 2003.
DOI : 10.1109/IRDS.2002.1041582

Y. K. Eugene, The Ineffectiveness of the Correlation Coefficient for Image Comparisons Radio Spectrum Committee, RSCOM10-35, jps.anl.gov, 1996.

R. Finkelstein, Patent No, 2010.

A. Geiger, Institute of Measurement and Control Systems, Karlsruhe Institute of Technology, 2011.

O. J. Gietelink, Development of a driver information and warning system with vehicle hardware-in-the-loop simulations, Mechatronics, vol.19, issue.7, pp.1091-1104, 2009.
DOI : 10.1016/j.mechatronics.2009.04.012

O. J. Gietelink, Development of advanced driver assistance systems with vehicle hardware-intheloop simulations, Vehicle System Dynamics, pp.569-590, 2006.

C. R. Gonzalez, Digital Image Processing, 1991.

C. R. Greco, Real-Time Forward Urban Environment Perception for an Autonomous Ground Vehicle Using Computer Vision And Lidar, 2008.

B. K. Horn, Robot Vision, 1986.

M. Hwangbo, Robust monocular vision-based navigation for a miniature fixed-wing aircraft, 2009.

R. Kalman, A New Approach to Linear Filtering and Prediction Problems, Journal of Basic Engineering, vol.82, issue.1, pp.35-45, 1960.
DOI : 10.1115/1.3662552

B. Kim, P. Hubbard, and D. Necsulescu, Swarming Unmanned Aerial Vehicles: Concept Development and Experimentation, A State of the Art Review on Flight and Mission Control Retrieved from http Solar-Powered Aircraft: Energy-Optimal Path Planning and Perpetual Endurance, P. T. Journal of Guidance, Control, and Dynamics, pp.1320-1329, 2003.

P. Laplant, Real-Time System Design and Analysis, 2004.

U. C. Lee, A comparative performance study of several global thresholding techniques for segmentation, Computer Vision, Graphics, and Image Processing, pp.171-190, 1990.
DOI : 10.1016/0734-189X(90)90053-X

K. H. Lim, Vision-based Lane-Vehicle Detection and Tracking, AIP Conference Proceedings, pp.157-171, 2009.
DOI : 10.1063/1.3256243

H. A. Mallot, Inverse perspective mapping simplifies optical flow computation and obstacle detection, Biological Cybernetics, vol.13, issue.3, pp.177-185, 1991.
DOI : 10.1007/BF00201978

URL : http://hdl.handle.net/11858/00-001M-0000-0013-EE51-1

M. Mesbah, Gradient-based optical flow: a critical review, ISSPA '99. Proceedings of the Fifth International Symposium on Signal Processing and its Applications (IEEE Cat. No.99EX359), pp.467-470, 1999.
DOI : 10.1109/ISSPA.1999.818213

M. Neto, A. Rittner, and L. , A simple and efficient Road Detection Algorithm for Real Time Autonomous Navigation based on Monocular Vision, 2006 IEEE 3rd Latin American Robotics Symposium, 2006.
DOI : 10.1109/LARS.2006.334325

M. Neto, A. Rittner, L. Leite, N. Zampieri, D. E. Victorino et al., Nondeterministic Criteria to Discard Redundant Information in Real Time Autonomous Navigation Systems based on Monocular Vision, 2008 IEEE International Symposium on Intelligent Control, pp.420-425, 2008.
DOI : 10.1109/ISIC.2008.4635955

M. Neto, A. Rittner, L. Leite, N. Zampieri, D. E. Lotufo et al., Pearson's Correlation Coefficient for Discarding Redundant Information in Real Time Autonomous Navigation System, 2007 IEEE International Conference on Control Applications, pp.426-431, 2007.
DOI : 10.1109/CCA.2007.4389268

M. Neto, A. Victorino, A. C. Fantoni, I. Zampieri, and D. E. , Real-time dynamic power management based on Pearson's Correlation Coefficient, 2011 15th International Conference on Advanced Robotics (ICAR), 2011.
DOI : 10.1109/ICAR.2011.6088627

M. Neto, A. Victorino, A. C. Fantoni, I. Zampieri, and D. E. , Robust horizon finding algorithm for real-time autonomous navigation based on monocular vision, 2011 14th International IEEE Conference on Intelligent Transportation Systems (ITSC), 2011.
DOI : 10.1109/ITSC.2011.6082835

URL : https://hal.archives-ouvertes.fr/hal-00657425

K. Morita, Examination of the Evaluation Methods for Hybrid Electric Vehicles, Japan Automobile Research Institute Research Journal, vol.25, issue.11, pp.437-440, 2003.

D. P. Müller, Time to contact estimation using interest points, 2009 12th International IEEE Conference on Intelligent Transportation Systems, 2009.
DOI : 10.1109/ITSC.2009.5309851

A. B. Negre, Real-time Time-To-Collision from variation of Intrinsic Scale. INRIA base, Proc. of the Int. Symp. on Experimental Robotics, 2006.
URL : https://hal.archives-ouvertes.fr/inria-00182028

K. Obayashi, Concept of Vehicle Electric Power Flow Management System (VEF), SAE Technical Paper Series, 2004.
DOI : 10.4271/2004-01-0361

N. Otsu, A Threshold Selection Method from Gray-Level Histograms, IEEE Transactions on Systems, Man, and Cybernetics, vol.9, issue.1, pp.62-66, 1978.
DOI : 10.1109/TSMC.1979.4310076

F. W. Rauskolb, Caroline: An autonomously driving vehicle for urban environments, 2008.

P. Rives and J. R. Azinheira, Linear structures following by an airship using vanishing point and horizon line in a visual servoing scheme, IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004, pp.255-260, 2004.
DOI : 10.1109/ROBOT.2004.1307160

J. L. Rodgers, Thirteen Ways to Look at the Correlation Coefficient, The American Statistician, vol.42, issue.1, 1988.
DOI : 10.2307/2685263

R. Flórez and S. A. , Contributions by Vision Systems to Multi-sensor Object Localization and Tracking for Intelligent Vehicles, 2010.

J. Rojo, R. Rojas, K. Gunnarsson, M. Simon, F. Wiesel et al., Spirit of Berlin: An Autonomous Car for the DARPA Urban Challenge Hardware and Software Architecture, 2007.

F. Ruffier, Optic flow regulation: the key to aircraft automatic guidance, Robotics and Autonomous Systems, vol.50, issue.4, pp.177-194, 2005.
DOI : 10.1016/j.robot.2004.09.016

P. K. Sahoo, A survey of thresholding techniques, Computer Vision, Graphics, and Image Processing, vol.41, issue.2, pp.233-260, 1988.
DOI : 10.1016/0734-189X(88)90022-9

M. A. Sezgin, Survey over image thresholding techniques and quantitative performance evaluation, 2004.

. Stanfordstanford, V. Pdf-subramanian, T. F. Burks, and A. Arroyo, Stanford Racing Team's Entry In The 2005 DARPA Grand Challenge Development of machine vision and laser radar based autonomous vehicle guidance systems for citrus grove navigation, pp.130-143, 2006.

S. D. Tan, Inverse perspective mapping and optic flow: A calibration method and a quantitative analysis, Image and Vision Computing, vol.24, issue.2, pp.153-165, 2006.
DOI : 10.1016/j.imavis.2005.09.023

T. Oshkosh, Terramax -Darpa Urban Challenge, 2011.

S. Thrun, M. Montemerlo, H. Dahlkamp, D. Stavens, A. Aron et al., Stanley: The robot that won the DARPA Grand Challenge, Journal of Field Robotics, vol.11, issue.9, pp.741-2223, 2006.
DOI : 10.1002/rob.20147

I. Ulrich and I. Nourbakhsh, Appearance-Based Obstacle Detection with Monocular Color Vision, Proceedings of the AAAI National Conference on Artificial Intelligence, 2000.

V. Project, Department of Science and Technology (DCT), Brazilian Army, 2011.

F. M. White, Fluid Mechanics, p.133, 1986.

S. D. Wu, Collision sensing by stereo vision and radar sensor fusion, IEEE Transactions on Intelligent Transportation Systems, vol.10, issue.4, 2009.

K. Yamaguchi, A. Watanabe, T. Naito, and Y. Ninomiya, Road region estimation using a sequence of monocular images, 2008 19th International Conference on Pattern Recognition, 2008.
DOI : 10.1109/ICPR.2008.4761571

W. D. Yanqing, Vision-Based Road Detection by Monte Carlo Method, Information Technology Journal, vol.9, issue.3, pp.481-487, 2010.
DOI : 10.3923/itj.2010.481.487

Y. Mei, H. Y. , and -. , A case study of mobile robot's energy consumption and conservation techniques, Proceedings of the IEEE International Conference on Advanced Robotics, ICAR 2005, pp.492-497, 2005.

N. Otsu, A Threshold Selection Method from Gray-Level Histograms, IEEE Transactions on Systems, Man, and Cybernetics, vol.9, issue.1, pp.62-66, 1978.
DOI : 10.1109/TSMC.1979.4310076

W. 57-yanqing, C. Deyun, S. Chaoxia, and W. Peidong, Vision-Based Road Detection by Monte Carlo Method, Information Technology Journal, vol.9, issue.3, pp.481-487, 2010.
DOI : 10.3923/itj.2010.481.487

P. K. Sahoo, S. Soltani, and A. K. Wong, A survey of thresholding techniques, Computer Vision, Graphics, and Image Processing, vol.41, issue.2, pp.233-260, 1988.
DOI : 10.1016/0734-189X(88)90022-9

U. S. Lee, Y. S. Chung, and H. Park, A comparative performance study of several global thresholding techniques for segmentation, Computer Vision, Graphics, and Image Processing, pp.171-190, 1990.
DOI : 10.1016/0734-189X(90)90053-X

M. Sezgin and B. Sankur, Survey over image thresholding techniques and quantitative performance evaluation, Journal of Electronic Imaging, pp.146-165, 2004.

M. Bertozzi, A. Broggi, and A. Fascioli, Vision-based intelligent vehicles: State of the art and perspectives, Robotics and Autonomous Systems, vol.32, issue.1, pp.1-16, 2000.
DOI : 10.1016/S0921-8890(99)00125-6