.. Le-matériel-biologique-les-moustiques, 65 A, p.66

.. Analyse-de-l-'expression-des-gènes, 72 1. Transcription inverse (RT) et PCR semi-quantitative, 72 2. PCR quantitative selon la méthode des gammes étalons, p.73

L. Outils-pour-l-'analyse-fonctionnelle and .. , 74 A. Inactivation génique par ARN interférence transitoire, p.74

P. Test-de-l-'effet-bloquant-des-anticorps-anti-cpbag-sur-le-développement-de and P. , 76 VI. Les procédures de l'analyse fonctionnelle, 76 B. L'observation du, p.77

L. Optimisation-de, 85 a. Chromatographie d'affinité (N i ) en batch, Chromatographies sur colonne, vol.88, p.89

.. Caractérisation-biochimique-des-cpbagr, 96 a. Caractérisation des paramètres enzymatiques 96 b. Caractérisation des sensibilités à la chaleur, 99 c. Alignements structuraux et conformations tridimensionnelles de CPBAg1 et, p.102

M. Cinétique-le, 107 a. Evaluation de la spécificité des anticorps de souris, 108 b. Cinétique d'apparition des CPBAg au cours de la digestion du repas sanguin ... 109 c. Corrélation avec l'expression génique, p.110

.. Caractérisation-fonctionnelle-des-cpbag, 111 1. Validation de l'ARN interférence 112 a. Optimisation de l'inactivation de cpbAg2, ., p.113

I. Chapitre, 127 A. Validation d'anticorps pour l'analyse fonctionnelle des, p.127

P. Le-développement-de and A. Falciparum-chez, gambiae dépend des acides aminés basiques ou seulement de la lysine ?, p.139

. Concernant-la-lysine, encore trop parcellaire dans la littérature, ne pouvant conduire à une analyse analogue, ne seront pas abordées ici

. Morris, Il interfère dans de nombreuses voies métaboliques, aussi disparates qu'importantes pour leur cycle biologique. L'arginine peut constituer un réservoir énergétique dans la synthèse d'arginine phosphate, source de l'énergie musculaire nécessaire au vol de l'insecte L'arginine peut également interagir avec les polyamines en activant la différenciation neuronale des insectes Cet acide aminé est également impliqué dans la vitellogénèse en activant la voie TOR) de part son intégration (en plus de la lysine et de l'histidine) de l'hémolymphe vers les cellules du corps gras, grâce à des récepteurs SLC7 de type CAT (Carpenter et al., 2012). L'arginine est également l'un des éléments centraux du système immunitaire des insectes, qui sous l'action de NOS libère du NO et de la citrulline, Chez les moustiques, comme chez les mammifères, 1989.

P. Falciparum-possède-une-ornithine and . Bitonti, 1987) qui engendre des polyamines (avec de la glutamine et de la proline) à partir d'ornithine. Les polyamines, nécessaires à la translation de l'ADN polymérase parasitaire, 1990.

. La-quantité-d, (qui étudie l'interaction de trypanosome chez l'homme), pourraient à la fois convertir l'arginine en ornithine et en urée et convertir l'ornithine en glutamate et en proline. Ce type d'enzymes, non documentées dans la littérature pour A. gambiae et P. falciparum, sont lWorld Malaria Report, 2011.

A. Ahier, P. Rondard, N. Gouignard, N. Khayath, S. Huang et al., A New Family of Receptor Tyrosine Kinases with a Venus Flytrap Binding Domain in Insects and Other Invertebrates Activated by Aminoacids, PLoS ONE, vol.4, issue.5, p.5651, 2009.
DOI : 10.1371/journal.pone.0005651.s001

A. M. Ahmed and H. Hurd, Immune stimulation and malaria infection impose reproductive costs in Anopheles gambiae via follicular apoptosis, Microbes and Infection, vol.8, issue.2, pp.308-315, 2006.
DOI : 10.1016/j.micinf.2005.06.026

S. Akov, A qualitative and quantitative study of the nutritional requirements of Aedes aegypti L. larvae, Journal of Insect Physiology, vol.8, issue.3, pp.319-335, 1962.
DOI : 10.1016/0022-1910(62)90035-5

T. S. Alioto and J. Ngai, The odorant receptor repertoire of teleost fish, BMC Genomics, vol.173, 2005.

M. Allary, J. Schrevel, and I. Florent, Properties, stage-dependent expression and localization of Plasmodium falciparum M1 family zinc-aminopeptidase, Parasitology, vol.125, issue.01, pp.1-10, 2002.
DOI : 10.1017/S0031182002001828

S. Antinori, L. Galimberti, L. Milazzo, and M. Corbellino, BIOLOGY OF HUMAN MALARIA PLASMODIA INCLUDING PLASMODIUM KNOWLESI, Mediterranean Journal of Hematology and Infectious Diseases, vol.4, issue.1, 2012.
DOI : 10.4084/mjhid.2012.013

U. Bachrach and L. Abu-elheiga, Effect of polyamines on the activity of malarial alphalike DNA polymerase, Eur J Biochem, pp.633-637, 1990.

K. Baer, C. Klotz, S. H. Kappe, T. Schnieder, and U. Frevert, Release of Hepatic Plasmodium yoelii Merozoites into the Pulmonary Microvasculature, PLoS Pathogens, vol.153, issue.11, p.171, 2007.
DOI : 10.1371/journal.ppat.0030171.sv010

C. V. Barillas-mury, F. G. Noriega, and M. A. Wells, Early trypsin activity is part of the signal transduction system that activates transcription of the late trypsin gene in the midgut of the mosquito, Aedes aegypti, Insect Biochemistry and Molecular Biology, vol.25, issue.2, pp.241-246, 1995.
DOI : 10.1016/0965-1748(94)00061-L

A. J. Barrett, N. D. Rawlings, and J. F. Woessner, Handbook of Proteolytic Enzymes, 1998.

A. J. Barrett, N. D. Rawlings, and J. F. Woessner, Handbook of Proteolytic Enzymes, 2004.

L. A. Baton and L. C. Ranford-cartwright, Spreading the seeds of million-murdering death: metamorphoses of malaria in the mosquito, Trends Parasitol, pp.573-580, 2005.

A. Bayes, M. Comellas-bigler, M. Rodriguez-de-la-vega, K. Maskos, W. Bode et al., Structural basis of the resistance of an insect carboxypeptidase to plant protease inhibitors, Proceedings of the National Academy of Sciences, vol.102, issue.46, pp.16602-16607, 2005.
DOI : 10.1073/pnas.0505489102

J. C. Beier, MALARIA PARASITE DEVELOPMENT IN MOSQUITOES, Annual Review of Entomology, vol.43, issue.1, pp.519-543, 1998.
DOI : 10.1146/annurev.ento.43.1.519

R. Berner, W. Rudin, and H. Hecker, Peritrophic membranes and protease activity in the midgut of the malaria mosquito, Anopheles stephensi (Liston) (Insecta: Diptera) under normal and experimental conditions, Journal of Ultrastructure Research, vol.83, issue.2, pp.195-204, 1983.
DOI : 10.1016/S0022-5320(83)90077-1

R. K. Bhatnagar, N. Arora, S. Sachidanand, M. Shahabuddin, D. Keister et al., Synthetic propeptide inhibits mosquito midgut chitinase and blocks sporogonic development of malaria parasite, Biochemical and Biophysical Research Communications, vol.304, issue.4, pp.783-787, 2003.
DOI : 10.1016/S0006-291X(03)00682-X

P. F. Billingsley and H. Hecker, Blood Digestion in the Mosquito, Anopheles stephensi Liston (Diptera: Culicidae): Activity and Distribution of Trypsin, Aminopeptidase, and ??-Glucosidase in the Midgut, Journal of Medical Entomology, vol.28, issue.6, pp.865-871, 1991.
DOI : 10.1093/jmedent/28.6.865

P. F. Billingsley and W. Rudin, The Role of the Mosquito Peritrophic Membrane in Bloodmeal Digestion and Infectivity of Plasmodium Species, The Journal of Parasitology, vol.78, issue.3, pp.430-440, 1992.
DOI : 10.2307/3283640

O. Billker, V. Lindo, M. Panico, A. E. Etienne, T. Paxton et al., Identification of xanthurenic acid as the putative inducer of malaria development in the mosquito, Nature, pp.289-292, 1998.

O. Billker, A. J. Miller, and R. E. Sinden, Determination of mosquito bloodmeal pH in situ by ion-selective microelectrode measurement: implications for the regulation of malarial gametogenesis, Parasitology, vol.120, issue.6, pp.547-551, 2000.
DOI : 10.1017/S0031182099005946

O. Billker, M. K. Shaw, G. Margos, and R. E. Sinden, The roles of temperature, pH and mosquito factors as triggers of male and female gametogenesis of Plasmodium berghei in vitro, Parasitology, vol.115, issue.1, pp.1-7, 1997.
DOI : 10.1017/S0031182097008895

E. Bischoff, Etude de deux membres de la superfamille multigénique Pf60/VAR de Plasmodium falciparum, exprimés par recodage traductionnel programmé, 2001.

A. J. Bitonti, P. P. Mccann, and A. Sjoerdsma, Plasmodium falciparum and Plasmodium berghei: Effects of ornithine decarboxylase inhibitors on erythrocytic schizogony, Experimental Parasitology, vol.64, issue.2, pp.237-243, 1987.
DOI : 10.1016/0014-4894(87)90148-2

S. Blanford, W. Shi, R. Christian, J. H. Marden, L. L. Koekemoer et al., Lethal and Pre-Lethal Effects of a Fungal Biopesticide Contribute to Substantial and Rapid Control of Malaria Vectors, PLoS ONE, vol.25, issue.8, 2011.
DOI : 10.1371/journal.pone.0023591.s001

C. Boete and J. C. Koella, Evolutionary ideas about genetically manipulated mosquitoes and malaria control, Trends in Parasitology, vol.19, issue.1, pp.32-38, 2003.
DOI : 10.1016/S1471-4922(02)00003-X

A. Boissiere, M. T. Tchioffo, D. Bachar, L. Abate, A. Marie et al., Midgut Microbiota of the Malaria Mosquito Vector Anopheles gambiae and Interactions with Plasmodium falciparum Infection, PLoS Pathogens, vol.1, issue.5, 2012.
DOI : 10.1371/journal.ppat.1002742.s005

R. Bolognesi, W. R. Terra, and C. Ferreira, Peritrophic membrane role in enhancing digestive efficiency. Theoretical and experimental models, J Insect Physiol, pp.1413-1422, 2008.

S. Bonnet, G. Prevot, J. C. Jacques, C. Boudin, and C. Bourgouin, Transcripts of the malaria vector Anopheles gambiae that are differentially regulated in the midgut upon exposure to invasive stages of Plasmodium falciparum, Cellular Microbiology, vol.203, issue.7, pp.449-458, 2001.
DOI : 10.1093/emboj/16.20.6114

D. Y. Boudko, Molecular basis of essential amino acid transport from studies of insect nutrient amino acid transporters of the SLC6 family (NAT-SLC6), Journal of Insect Physiology, vol.58, issue.4, pp.433-449, 2012.
DOI : 10.1016/j.jinsphys.2011.12.018

D. P. Bown and J. A. Gatehouse, Characterization of a digestive carboxypeptidase from the insect pest corn earworm (Helicoverpa armigera) with novel specificity towards C-terminal glutamate residues, European Journal of Biochemistry, vol.707, issue.10, 2000.
DOI : 10.1002/arch.10134

H. Briegel, Fecundity, Metabolism, and Body Size in Anopheles (Diptera: Culicidae), Vectors of Malaria, Journal of Medical Entomology, vol.27, issue.5, pp.839-850, 1990.
DOI : 10.1093/jmedent/27.5.839

H. Briegel and A. O. Lea, Relationship between protein and proteolytic activity in the midgut of mosquitoes, Journal of Insect Physiology, vol.21, issue.9, pp.1597-1604, 1975.
DOI : 10.1016/0022-1910(75)90197-3

B. Bryant and A. S. Raikhel, Programmed Autophagy in the Fat Body of Aedes aegypti Is Required to Maintain Egg Maturation Cycles, PLoS ONE, vol.30, issue.11, 2011.
DOI : 10.1371/journal.pone.0025502.s012

A. S. Caroci and F. G. Noriega, Free amino acids are important for the retention of protein and non-protein meals by the midgut of Aedes aegypti females, Journal of Insect Physiology, vol.49, issue.9, pp.839-844, 2003.
DOI : 10.1016/S0022-1910(03)00134-3

V. K. Carpenter, L. L. Drake, S. E. Aguirre, D. P. Price, S. D. Rodriguez et al., SLC7 amino acid transporters of the yellow fever mosquito Aedes aegypti and their role in fat body TOR signaling and reproduction, Journal of Insect Physiology, vol.58, issue.4, pp.513-522, 2012.
DOI : 10.1016/j.jinsphys.2012.01.005

R. Carter and R. W. Gwadz, Infectiousness and Gamete Immunization in Malaria, 1980.
DOI : 10.1016/B978-0-12-426103-7.50013-6

F. Catteruccia, Malaria vector control in the third millennium: progress and perspectives of molecular approaches, Pest Management Science, vol.34, issue.7, pp.634-640, 2007.
DOI : 10.1002/ps.1324

M. Cayre, J. Malaterre, C. Strambi, P. Charpin, J. P. Ternaux et al., Shortand long-chain natural polyamines play specific roles in adult cricket neuroblast proliferation and neuron differentiation in vitro, J Neurobiol, pp.315-324, 2001.

G. K. Christophides, Transgenic mosquitoes and malaria transmission, Cellular Microbiology, vol.41, issue.3, pp.325-333, 2005.
DOI : 10.1126/science.276.5311.425

J. D. Chulay, I. Schneider, T. M. Cosgriff, S. L. Hoffman, W. R. Ballou et al., Malaria transmitted to humans by mosquitoes infected from cultured Plasmodium falciparum, Am J Trop Med Hyg, pp.66-68, 1986.

A. Clements, In The Biology of Mosquitoes : Development, nutrition and reproduction, 1992.

A. Clements, In The biology of mosquitoes : Sensory reception and behaviour, 1999.

J. Cox-singh, J. Hiu, S. B. Lucas, P. C. Divis, M. Zulkarnaen et al., Severe malaria - a case of fatal Plasmodium knowlesi infection with post-mortem findings: a case report, Malaria Journal, vol.9, issue.1, 2010.
DOI : 10.1186/1475-2875-9-10

J. M. Cregg, J. L. Cereghino, J. Shi, and D. R. Higgins, Recombinant Protein Expression in Pichia pastoris, Molecular Biotechnology, vol.16, issue.1, pp.23-52, 2000.
DOI : 10.1385/MB:16:1:23

R. H. Dadd, Amino acid requirements of the mosquito Culex pipiens: Asparagine essential, Journal of Insect Physiology, vol.24, issue.1, pp.25-30, 1978.
DOI : 10.1016/0022-1910(78)90007-0

M. C. Delano and Y. Cao, High b-value diffusion imaging, Neuroimaging Clinics of North America, vol.12, issue.1, pp.21-34, 2002.
DOI : 10.1016/S1052-5149(03)00068-6

W. L. Delano, Unraveling hot spots in binding interfaces: progress and challenges, Current Opinion in Structural Biology, vol.12, issue.1, pp.14-20, 2002.
DOI : 10.1016/S0959-440X(02)00283-X

H. A. Delemarre-van-de-waal and F. C. De-waal, [A 2d patient with tropical malaria contracted in a natural way in the Netherlands], Ned Tijdschr Geneeskd, pp.375-377, 1981.

M. Devenport, H. Fujioka, and M. Jacobs-lorena, Storage and secretion of the peritrophic matrix protein Ag-Aper1 and trypsin in the midgut of Anopheles gambiae, Insect Molecular Biology, vol.73, issue.7, pp.349-358, 2004.
DOI : 10.1111/j.0962-1075.2004.00488.x

A. Diabate, A. S. Yaro, A. Dao, M. Diallo, D. L. Huestis et al., Spatial distribution and male mating success of Anopheles gambiae swarms, BMC Evol Biol, vol.184, 2011.

R. R. Dinglasan, M. Devenport, L. Florens, J. R. Johnson, C. A. Mchugh et al., The Anopheles gambiae adult midgut peritrophic matrix proteome, Insect Biochemistry and Molecular Biology, vol.39, issue.2, pp.125-134, 2009.
DOI : 10.1016/j.ibmb.2008.10.010

R. R. Dinglasan, D. E. Kalume, S. M. Kanzok, A. K. Ghosh, O. Muratova et al., Disruption of Plasmodium falciparum development by antibodies against a conserved mosquito midgut antigen, Proceedings of the National Academy of Sciences, vol.104, issue.33, pp.13461-13466, 2007.
DOI : 10.1073/pnas.0702239104

A. A. Divo, T. G. Geary, N. L. Davis, and J. B. Jensen, Nutritional requirements of Plasmodium falciparum in culture. I. Exogenously supplied dialyzable components necessary for continuous growth, J Protozool, pp.59-64, 1985.

O. Doumbo, [Erythrocyte polymorphism in Mali: epidemiology and resistance mechanisms against severe Plasmodium falciparum malaria], Bull Acad Natl Med, pp.783-784, 2007.

M. J. Edwards, F. J. Lemos, M. Donnelly-doman, and M. Jacobs-lorena, Rapid Induction by a Blood Meal of a Carboxypeptidase Gene in the Gut of the Mosquito Anopheles gambiae, Insect Biochemistry and Molecular Biology, vol.27, issue.12, pp.1063-1072, 1997.
DOI : 10.1016/S0965-1748(97)00093-3

M. Farenhorst, J. C. Mouatcho, C. K. Kikankie, B. D. Brooke, R. H. Hunt et al., Fungal infection counters insecticide resistance in African malaria mosquitoes, Proceedings of the National Academy of Sciences, vol.106, issue.41, pp.17443-17447, 2009.
DOI : 10.1073/pnas.0908530106

L. Florens, M. P. Washburn, J. D. Raine, R. M. Anthony, M. Grainger et al., A proteomic view of the Plasmodium falciparum life cycle, Nature, vol.21, issue.6906, pp.520-526, 2002.
DOI : 10.1093/protein/10.1.1

J. E. Folk and B. Carboxypeptidases, The enzymes, Hydrolysis : Peptide Bonds, pp.57-79, 1971.

A. Fougere, Caratérisation des rôles respectifs des carboxypeptidases B d'Anopheles gambiae : CPBAg1 et CPBAg2 dans le développement de Plasmodium falciparumThe Formation of the Peritrophic Membrane in Culicidae, Paris. Master II Freyvogel Acta Trop, pp.118-147, 1965.

D. E. Goldberg, Hemoglobin degradation in Plasmodium-infected red blood cells, Seminars in Cell Biology, vol.4, issue.5, pp.355-361, 1993.
DOI : 10.1006/scel.1993.1042

L. Goldberg and B. Demeillon, The nutrition of the larva of Aedes aegypti linnaeus. 4. protein and amino acid requirements, Biochemical Journal, pp.379-387, 1948.

M. A. Goldstein and W. J. Burdette, Striated visceral muscle of drosophila melanogaster, J Morphol, pp.315-334, 1971.

N. Gouignard and J. F. Tschopp, Caractérisation moléculaire des Récepteurs Venus Kinase : étude fonctionnelle chez le parasite Schistosoma mansoniSize distribution and general structural features of Nlinked oligosaccharides from the methylotrophic yeast, Pichia pastoris, Lille. Doctorat Grinna, L. S, pp.107-115, 1989.

P. Gueirard, J. Tavares, S. Thiberge, F. Bernex, T. Ishino et al., Development of the malaria parasite in the skin of the mammalian host, Proceedings of the National Academy of Sciences, vol.107, issue.43, pp.18640-18645, 2010.
DOI : 10.1073/pnas.1009346107

I. A. Hansen, G. M. Attardo, J. H. Park, Q. Peng, and A. S. Raikhel, Target of rapamycin-mediated amino acid signaling in mosquito anautogeny, Proceedings of the National Academy of Sciences, vol.101, issue.29, pp.10626-10631, 2004.
DOI : 10.1073/pnas.0403460101

I. A. Hansen, G. M. Attardo, S. G. Roy, and A. S. Raikhel, Target of rapamycindependent activation of S6 kinase is a central step in the transduction of nutritional signals during egg development in a mosquito, J Biol Chem, pp.20565-20572, 2005.

I. A. Hansen, D. H. Sieglaff, J. B. Munro, S. H. Shiao, J. Cruz et al., Forkhead transcription factors regulate mosquito reproduction, Insect Biochemistry and Molecular Biology, vol.37, issue.9, pp.985-997, 2007.
DOI : 10.1016/j.ibmb.2007.05.008

J. F. Hillyer, C. Barreau, and K. D. Vernick, Efficiency of salivary gland invasion by malaria sporozoites is controlled by rapid sporozoite destruction in the mosquito haemocoel, International Journal for Parasitology, vol.37, issue.6, pp.673-681, 2007.
DOI : 10.1016/j.ijpara.2006.12.007

R. A. Holt, G. M. Subramanian, A. Halpern, G. G. Sutton, R. Charlab et al., The Genome Sequence of the Malaria Mosquito Anopheles gambiae, Science, vol.298, issue.5591, pp.129-149, 2002.
DOI : 10.1126/science.1076181

R. Idro, K. Marsh, C. C. John, and C. R. Newton, Cerebral Malaria: Mechanisms of Brain Injury and Strategies for Improved Neurocognitive Outcome, Pediatric Research, vol.30, issue.4, pp.267-274, 2010.
DOI : 10.1203/PDR.0b013e3181eee738

K. Igarashi and K. Kashiwagi, Polyamines: Mysterious Modulators of Cellular Functions, Biochemical and Biophysical Research Communications, vol.271, issue.3, pp.559-564, 2000.
DOI : 10.1006/bbrc.2000.2601

A. A. James, Gene drive systems in mosquitoes: rules of the road, Trends in Parasitology, vol.21, issue.2, pp.64-67, 2005.
DOI : 10.1016/j.pt.2004.11.004

A. Kiszewski, A. Mellinger, A. Spielman, P. Malaney, S. E. Sachs et al., A global index representing the stability of malaria transmission, Am J Trop Med Hyg, pp.486-498, 2004.

B. G. Knols, T. Bukhari, and M. Farenhorst, Entomopathogenic fungi as the nextgeneration control agents against malaria mosquitoes, Future Microbiol, pp.339-341, 2010.

W. A. Krotoski, D. M. Krotoski, P. C. Garnham, R. S. Bray, R. Killick-kendrick et al., Relapses in primate malaria: discovery of two populations of exoerythrocytic stages. Preliminary note., BMJ, vol.280, issue.6208, pp.153-154, 1980.
DOI : 10.1136/bmj.280.6208.153-a

S. Kumar, L. Gupta, Y. S. Han, and C. Barillas-mury, Inducible Peroxidases Mediate Nitration of Anopheles Midgut Cells Undergoing Apoptosis in Response to Plasmodium Invasion, Journal of Biological Chemistry, vol.279, issue.51, pp.53475-53482, 2004.
DOI : 10.1074/jbc.M409905200

C. Lahondere and C. R. Lazzari, Mosquitoes Cool Down during Blood Feeding to Avoid Overheating, Current Biology, vol.22, issue.1, pp.40-45, 2012.
DOI : 10.1016/j.cub.2011.11.029

URL : https://hal.archives-ouvertes.fr/hal-01320477

L. Lambrechts, J. Halbert, P. Durand, L. C. Gouagna, and J. C. Koella, Host genotype by parasite genotype interactions underlying the resistance of anopheline mosquitoes to Plasmodium falciparum, Malar J, vol.3, 2005.

N. Lang-unnasch and A. D. Murphy, METABOLIC CHANGES OF THE MALARIA PARASITE DURING THE TRANSITION FROM THE HUMAN TO THE MOSQUITO HOST, Annual Review of Microbiology, vol.52, issue.1, pp.561-590, 1998.
DOI : 10.1146/annurev.micro.52.1.561

C. Lavazec, . Paris, C. Doctorat-lavazec, S. Bonnet, I. Thiery et al., Les carboxypeptidases B d'Anopheles gambiae impliquées dans le développement de Plasmodium falciparumcpbAg1 encodes an active carboxypeptidase B expressed in the midgut of Anopheles gambiae, Insect Mol Biol, pp.163-174, 2004.

C. Lavazec, C. Boudin, R. Lacroix, S. Bonnet, A. Diop et al., Carboxypeptidases B of Anopheles gambiae as Targets for a Plasmodium falciparum Transmission-Blocking Vaccine, Infection and Immunity, vol.75, issue.4, pp.1635-1642, 2007.
DOI : 10.1128/IAI.00864-06

C. Lavazec and C. Bourgouin, Mosquito-based transmission blocking vaccines for interrupting Plasmodium development, Microbes and Infection, vol.10, issue.8, pp.845-849, 2008.
DOI : 10.1016/j.micinf.2008.05.004

M. J. Lehane, PERITROPHIC MATRIX STRUCTURE AND FUNCTION, Annual Review of Entomology, vol.42, issue.1, pp.525-550, 1997.
DOI : 10.1146/annurev.ento.42.1.525

T. Lehmann, A. Dao, A. S. Yaro, A. Adamou, Y. Kassogue et al., Aestivation of the African Malaria Mosquito, Anopheles gambiae in the Sahel, American Journal of Tropical Medicine and Hygiene, vol.83, issue.3, pp.601-606, 2010.
DOI : 10.4269/ajtmh.2010.09-0779

F. J. Lemos, A. J. Cornel, and M. Jacobs-lorena, Trypsin and aminopeptidase gene expression is affected by age and food composition in Anopheles gambiae, Insect Biochemistry and Molecular Biology, vol.26, issue.7, pp.651-658, 1996.
DOI : 10.1016/S0965-1748(96)00014-8

S. Luckhart, Y. Vodovotz, L. Cui, and R. Rosenberg, The mosquito Anopheles stephensi limits malaria parasite development with inducible synthesis of nitric oxide, Proceedings of the National Academy of Sciences, vol.95, issue.10, pp.5700-5705, 1998.
DOI : 10.1073/pnas.95.10.5700

A. Lynd and G. J. Lycett, Development of the Bi-Partite Gal4-UAS System in the African Malaria Mosquito, Anopheles gambiae, PLoS ONE, vol.56, issue.2, 2012.
DOI : 10.1371/journal.pone.0031552.s006

S. R. Mack, S. Samuels, and J. P. Vanderberg, Hemolymph of Anopheles stephensi from Uninfected and Plasmodium berghei-Infected Mosquitoes. 2. Free Amino Acids, The Journal of Parasitology, vol.65, issue.1, pp.130-136, 1979.
DOI : 10.2307/3280217

M. T. Marrelli, C. Li, J. L. Rasgon, and M. Jacobs-lorena, Transgenic malaria-resistant mosquitoes have a fitness advantage when feeding on Plasmodium-infected blood, Proceedings of the National Academy of Sciences, vol.104, issue.13, pp.5580-5583, 2007.
DOI : 10.1073/pnas.0609809104

R. E. Martin, H. Ginsburg, and K. Kirk, Membrane transport proteins of the malaria parasite, Molecular Microbiology, vol.277, issue.3, pp.519-528, 2009.
DOI : 10.1111/j.1365-2958.2009.06863.x

J. M. Meredith, S. Basu, D. D. Nimmo, I. Larget-thiery, E. L. Warr et al., Site-Specific Integration and Expression of an Anti-Malarial Gene in Transgenic Anopheles gambiae Significantly Reduces Plasmodium Infections, PLoS ONE, vol.6, issue.1, 2011.
DOI : 10.1371/journal.pone.0014587.s004

R. W. Merritt, R. H. Dadd, and E. D. Walker, Feeding Behavior, Natural Food, and Nutritional Relationships of Larval Mosquitoes, Annual Review of Entomology, vol.37, issue.1, pp.349-376, 1992.
DOI : 10.1146/annurev.en.37.010192.002025

D. Metselaar, V. Thiel, and P. H. , Classification of malaria, Trop Geogr Med, pp.157-161, 1959.

L. H. Miller and B. Greenwood, Malaria--a Shadow over Africa, Science, vol.298, issue.5591, pp.121-122, 2002.
DOI : 10.1126/science.1078048

M. Miron, P. Lasko, and N. Sonenberg, Signaling from Akt to FRAP/TOR Targets both 4E-BP and S6K in Drosophila melanogaster, Molecular and Cellular Biology, vol.23, issue.24, pp.9117-9126, 2003.
DOI : 10.1128/MCB.23.24.9117-9126.2003

C. Mitri, J. C. Jacques, I. Thiery, M. M. Riehle, J. Xu et al., Fine Pathogen Discrimination within the APL1 Gene Family Protects Anopheles gambiae against Human and Rodent Malaria Species, PLoS Pathogens, vol.137, issue.9, 2009.
DOI : 10.1371/journal.ppat.1000576.s004

C. Mitri, I. Thiery, C. Bourgouin, and R. E. Paul, Density-dependent impact of the human malaria parasite Plasmodium falciparum gametocyte sex ratio on mosquito infection rates, Proceedings of the Royal Society B: Biological Sciences, vol.88, issue.2, pp.3721-3726, 2009.
DOI : 10.2307/3285571

C. Mitri and K. D. Vernick, Anopheles gambiae pathogen susceptibility: the intersection of genetics, immunity and ecology, Current Opinion in Microbiology, vol.15, issue.3, pp.285-291, 2012.
DOI : 10.1016/j.mib.2012.04.001

P. K. Mittal, Biolarvicides in vector control: challenges and prospects, J Vector Borne Dis, pp.20-32, 2003.

L. L. Mnyone, C. J. Koenraadt, I. N. Lyimo, M. W. Mpingwa, W. Takken et al., Anopheline and culicine mosquitoes are not repelled by surfaces treated with the entomopathogenic fungi Metarhizium anisopliae and Beauveria bassiana, Parasites & Vectors, vol.3, issue.1, 2010.
DOI : 10.1186/1756-3305-3-80

S. M. Morris and . Jr, Arginine: Master and Commander in Innate Immune Responses, Science Signaling, vol.3, issue.135, p.27, 2010.
DOI : 10.1126/scisignal.3135pe27

G. C. Muller, J. C. Beier, S. F. Traore, M. B. Toure, M. M. Traore et al., Successful field trial of attractive toxic sugar bait (ATSB) plant-spraying methods against malaria vectors in the Anopheles gambiae complex in Mali, West Africa, Malaria Journal, vol.9, issue.1, p.210, 2010.
DOI : 10.1186/1475-2875-9-210

H. M. Muller, F. Catteruccia, J. Vizioli, A. Della-torre, and A. Crisanti, Constitutive and Blood Meal-Induced Trypsin Genes in Anopheles gambiae, Experimental Parasitology, vol.81, issue.3, pp.371-385, 1995.
DOI : 10.1006/expr.1995.1128

H. M. Muller, J. M. Crampton, A. Della-torre, R. Sinden, and A. Crisanti, Members of a trypsin gene family in Anopheles gambiae are induced in the gut by blood meal, EMBO J, pp.2891-2900, 1993.

A. J. Nappi, E. Vass, F. Frey, and Y. Carton, Nitric Oxide Involvement in Drosophila Immunity, Nitric Oxide, vol.4, issue.4, pp.423-430, 2000.
DOI : 10.1006/niox.2000.0294

M. O. Ndiath, A. Cohuet, A. Gaye, L. Konate, C. Mazenot et al., Comparative susceptibility to Plasmodium falciparum of the molecular forms M and S of Anopheles gambiae and Anopheles arabiensis, Malaria Journal, vol.10, issue.1, 2011.
DOI : 10.1073/pnas.1013648108

H. Neurath and K. A. Walsh, Role of proteolytic enzymes in biological regulation (a review)., Proceedings of the National Academy of Sciences, vol.73, issue.11, pp.3825-3832, 1976.
DOI : 10.1073/pnas.73.11.3825

O. Niare, K. Markianos, J. Volz, F. Oduol, A. Toure et al., Genetic Loci Affecting Resistance to Human Malaria Parasites in a West African Mosquito Vector Population, Science, vol.298, issue.5591, pp.213-216, 2002.
DOI : 10.1126/science.1073420

M. M. Nijhout and R. Carter, Gamete development in malaria parasites: bicarbonate-dependent stimulation by pH in vitro, Parasitology, vol.76, issue.01, pp.39-53, 1978.
DOI : 10.1017/S0031182000047375

F. G. Noriega, A. E. Colonna, and M. A. Wells, Increase in the size of the amino acid pool is sufficient to activate translation of early trypsin mRNA in Aedes aegypti midgut, Insect Biochemistry and Molecular Biology, vol.29, issue.3, pp.243-247, 1999.
DOI : 10.1016/S0965-1748(98)00132-5

F. G. Noriega, D. K. Shah, and M. A. Wells, Juvenile hormone controls early trypsin gene transcription in the midgut of Aedes aegypti, Insect Molecular Biology, vol.6, issue.1, pp.63-66, 1997.
DOI : 10.1046/j.1365-2583.1997.00154.x

F. G. Noriega and M. A. Wells, A molecular view of trypsin synthesis in the midgut of Aedes aegypti, Journal of Insect Physiology, vol.45, issue.7, pp.613-620, 1999.
DOI : 10.1016/S0022-1910(99)00052-9

S. E. Nsango, L. Abate, M. Thoma, J. Pompon, M. Fraiture et al., Genetic clonality of Plasmodium falciparum affects the outcome of infection in Anopheles gambiae, International Journal for Parasitology, vol.42, issue.6, pp.589-595, 2012.
DOI : 10.1016/j.ijpara.2012.03.008

K. L. Olszewski, J. M. Morrisey, D. Wilinski, J. M. Burns, A. B. Vaidya et al., Host-Parasite Interactions Revealed by Plasmodium falciparum Metabolomics, Cell Host & Microbe, vol.5, issue.2, pp.191-199, 2009.
DOI : 10.1016/j.chom.2009.01.004

S. S. Park and M. Shahabuddin, Structural Organization of Posterior Midgut Muscles in Mosquitoes, Aedes aegypti and Anopheles gambiae, Journal of Structural Biology, vol.129, issue.1, pp.30-37, 2000.
DOI : 10.1006/jsbi.1999.4208

S. H. Payne and W. F. Loomis, Retention and Loss of Amino Acid Biosynthetic Pathways Based on Analysis of Whole-Genome Sequences, Eukaryotic Cell, vol.5, issue.2, pp.272-276, 2006.
DOI : 10.1128/EC.5.2.272-276.2006

F. B. Piel, A. P. Patil, R. E. Howes, O. A. Nyangiri, P. W. Gething et al., Global distribution of the sickle cell gene and geographical confirmation of the malaria hypothesis, Nature Communications, vol.7, issue.8, 2010.
DOI : 10.1038/ncomms1104

A. S. Raikhel, M. R. Brown, and X. Belles, Hormonal control of reproductive process, 2005.

A. S. Raikhel, V. A. Kokoza, J. Zhu, D. Martin, S. F. Wang et al., Molecular biology of mosquito vitellogenesis: from basic studies to genetic engineering of antipathogen immunity, Insect Biochemistry and Molecular Biology, vol.32, issue.10, pp.1275-1286, 2002.
DOI : 10.1016/S0965-1748(02)00090-5

A. G. Richards and P. A. Richards, The Peritrophic Membranes of Insects, Annual Review of Entomology, vol.22, issue.1, pp.219-240, 1977.
DOI : 10.1146/annurev.en.22.010177.001251

M. M. Riehle, K. Markianos, O. Niare, J. Xu, J. Li et al., Natural Malaria Infection in Anopheles gambiae Is Regulated by a Single Genomic Control Region, Science, vol.312, issue.5773, pp.577-579, 2006.
DOI : 10.1126/science.1124153

V. Robert, A. F. Read, J. Essong, T. Tchuinkam, B. Mulder et al., Effect of gametocyte sex ratio on infectivity of Plasmodium falciparum to Anopheles gambiae, Transactions of the Royal Society of Tropical Medicine and Hygiene, vol.90, issue.6, pp.621-624, 1996.
DOI : 10.1016/S0035-9203(96)90408-3

W. S. Romoser and E. Cody, The Formation and Fate of the Peritrophic Membrane in Adult Culex Nigripalpus (Diptera: Culicidae), Journal of Medical Entomology, vol.12, issue.3, pp.371-378, 1975.
DOI : 10.1093/jmedent/12.3.371

S. G. Roy and A. S. Raikhel, The small GTPase Rheb is a key component linking amino acid signaling and TOR in the nutritional pathway that controls mosquito egg development, Insect Biochemistry and Molecular Biology, vol.41, issue.1, pp.62-69, 2011.
DOI : 10.1016/j.ibmb.2010.10.001

W. Rudin, P. F. Billingsley, and S. Saladin, The fate of Plasmodium gallinaceum in Anopheles stephensi Liston and possible barriers to transmission, Ann Soc Belg Med Trop, pp.167-177, 1991.

A. Schneider, R. J. Wiesner, and M. K. Grieshaber, On the role of arginine kinase in insect flight muscle, Insect Biochemistry, vol.19, issue.5, pp.471-480, 1989.
DOI : 10.1016/0020-1790(89)90029-2

E. J. Scholte, B. G. Knols, and W. Takken, Infection of the malaria mosquito Anopheles gambiae with the entomopathogenic fungus Metarhizium anisopliae reduces blood feeding and fecundity, Journal of Invertebrate Pathology, vol.91, issue.1, pp.43-49, 2006.
DOI : 10.1016/j.jip.2005.10.006

E. J. Scholte, K. Ng-'habi, J. Kihonda, W. Takken, K. Paaijmans et al., An Entomopathogenic Fungus for Control of Adult African Malaria Mosquitoes, Science, vol.308, issue.5728, pp.1641-1642, 2005.
DOI : 10.1126/science.1108639

T. W. Scott and W. Takken, Feeding strategies of anthropophilic mosquitoes result in increased risk of pathogen transmission, Trends in Parasitology, vol.28, issue.3, pp.114-121, 2012.
DOI : 10.1016/j.pt.2012.01.001

M. W. Service and H. Townson, The Anopheles vector, Essential Malariology, 2002.

M. Shahabuddin and D. C. Kaslow, Plasmodium: Parasite Chitinase and Its Role in Malaria Transmission, Experimental Parasitology, vol.79, issue.1, pp.85-88, 1994.
DOI : 10.1006/expr.1994.1066

L. Shao, M. Devenport, and M. Jacobs-lorena, The peritrophic matrix of hematophagous insects, Arch Insect Biochem Physiol, pp.119-125, 2001.

Z. Shen, M. J. Edwards, and M. Jacobs-lorena, A gut-specific serine protease from the malaria vector Aanopheles gambiae is downregulated after blood ingestion, Insect Mol Biol, pp.223-229, 2000.

Z. Shen and M. Jacobs-lorena, A type I peritrophic matrix protein from the malaria vector Anopheles gambiae binds to chitin. Cloning, expression, and characterization, J Biol Chem, pp.17665-17670, 1998.

I. W. Sherman, Amino acid metabolism and protein synthesis in malarial parasites, Bull World Health Organ, pp.265-276, 1977.

R. E. Sinden, Y. Alavi, and J. D. Raine, Mosquito???malaria interactions: a reappraisal of the concepts of susceptibility and refractoriness, Insect Biochemistry and Molecular Biology, vol.34, issue.7, pp.625-629, 2004.
DOI : 10.1016/j.ibmb.2004.03.015

R. E. Sinden and N. A. Croll, Cytology and Kinetics of microgametogenesis and fertilization in Plasmodium yoelii nigeriensis, Parasitology, vol.70, issue.01, pp.53-65, 1975.
DOI : 10.1017/S0031182000048861

K. Singh and A. Brown, Nutritional requirements of Aedes aegypti L., Journal of Insect Physiology, vol.1, issue.3, pp.199-220, 1957.
DOI : 10.1016/0022-1910(57)90036-7

M. E. Sinka, M. J. Bangs, S. Manguin, Y. Rubio-palis, T. Chareonviriyaphap et al., A global map of dominant malaria vectors, Parasites & Vectors, vol.5, issue.1, p.69, 2012.
DOI : 10.1017/S0007485300047945

W. Staubli, T. A. Freyvogel, and J. Suter, Structural modifications of the endoplasmatic reticulum of midgut epithelial cells of mosquitoes in relation to blood intake, J Microscopie, pp.189-204, 1966.

L. Swevers, E. Morou, N. Balatsos, K. Iatrou, and Z. Georgoussi, Functional expression of mammalian opioid receptors in insect cells and high-throughput screening platforms for receptor ligand mimetics, CMLS Cellular and Molecular Life Sciences, vol.62, issue.7-8, pp.919-930, 2005.
DOI : 10.1007/s00018-005-4537-1

R. Tahar, C. Boudin, I. Thiery, and C. Bourgouin, Immune response of Anopheles gambiae to the early sporogonic stages of the human malaria parasite Plasmodium falciparum, The EMBO Journal, vol.21, issue.24, pp.6673-6680, 2002.
DOI : 10.1093/emboj/cdf664

T. Tchuinkam, B. Mulder, K. Dechering, H. Stoffels, J. P. Verhave et al., Experimental infections of Anopheles gambiae with Plasmodium falciparum of naturally infected gametocyte carriers in Cameroon: factors influencing the infectivity to mosquitoes, Trop Med Parasitol, pp.271-276, 1993.

R. L. Tellam, G. Wijffels, and P. Willadsen, Peritrophic matrix proteins, Insect Biochemistry and Molecular Biology, vol.29, issue.2, pp.87-101, 1999.
DOI : 10.1016/S0965-1748(98)00123-4

M. B. Thomas, H. C. Godfray, A. F. Read, H. Van-den-berg, B. E. Tabashnik et al., Lessons from Agriculture for the Sustainable Management of Malaria Vectors, PLoS Medicine, vol.35, issue.7, 2012.
DOI : 10.1371/journal.pmed.1001262.g001

M. Tiburcio, M. Niang, G. Deplaine, S. Perrot, E. Bischoff et al., A switch in infected erythrocyte deformability at the maturation and blood circulation of Plasmodium falciparum transmission stages, Blood, vol.119, issue.24, pp.172-180, 2012.
DOI : 10.1182/blood-2012-03-414557

T. Fryxell, R. T. Nieman, C. C. Fofana, A. Lee, Y. Traore et al., Differential Plasmodium falciparum infection of Anopheles gambiae s.s. molecular and chromosomal forms in Mali, Malaria Journal, vol.11, issue.1, 2012.
DOI : 10.1016/0035-9203(94)90204-6

Z. Valnickova, I. B. Thogersen, S. Christensen, C. T. Chu, S. V. Pizzo et al., Activated human plasma carboxypeptidase B is retained in the blood by binding to alpha2-macroglobulin and pregnancy zone protein, J Biol Chem, pp.12937-12943, 1996.

J. Vizioli, F. Catteruccia, A. Della-torre, I. Reckmann, and H. M. Muller, Blood digestion in the malaria mosquito Anopheles gambiae: molecular cloning and biochemical characterization of two inducible chymotrypsins, Eur J Biochem, pp.4027-4035, 2001.

D. Vlachou, T. Schlegelmilch, E. Runn, A. Mendes, and F. C. Kafatos, The developmental migration of Plasmodium in mosquitoes, Current Opinion in Genetics & Development, vol.16, issue.4, pp.384-391, 2006.
DOI : 10.1016/j.gde.2006.06.012

H. Osborne, Deorphanization of GPRC6A: a promiscuous L-alpha-amino acid receptor with preference for basic amino acids, Mol Pharmacol, pp.589-597, 2005.

J. Wolinska and K. C. King, Environment can alter selection in host???parasite interactions, Trends in Parasitology, vol.25, issue.5, pp.236-244, 2009.
DOI : 10.1016/j.pt.2009.02.004

B. Yuval, MATING SYSTEMS OF BLOOD-FEEDING FLIES, Annual Review of Entomology, vol.51, issue.1, pp.413-440, 2006.
DOI : 10.1146/annurev.ento.51.110104.151058

H. Zhang, J. P. Stallock, J. C. Ng, C. Reinhard, and T. P. Neufeld, Regulation of cellular growth by the Drosophila target of rapamycin dTOR, Genes & Development, vol.14, issue.21, pp.2712-2724, 2000.
DOI : 10.1101/gad.835000

R. Zhang, G. Hua, T. M. Andacht, and M. J. Adang, A 106-kDa aminopeptidase is a putative receptor for Bacillus thuringiensis Cry11Ba toxin in the mosquito Anopheles gambiae, Biochemistry, pp.11263-11272, 2008.

G. Zhou, J. E. Pennington, and M. A. Wells, Utilization of pre-existing energy stores of female Aedes aegypti mosquitoes during the first gonotrophic cycle, Insect Biochemistry and Molecular Biology, vol.34, issue.9, pp.919-925, 2004.
DOI : 10.1016/j.ibmb.2004.05.009