Skip to Main content Skip to Navigation
Theses

Distributed Coding for Wireless Cooperative Networks.

Abstract : With the rapid growth of wireless technologies, devices and mobile applications, the quest of high throughput and ubiquitous connectivity in wireless communications increases rapidly as well. Relaying is undoubtedly a key concept to provide coverage extension and capacity increase in wireless networks. Network coding, which allows the intermediate nodes to share their computation capabilities in addition to their resource and their power, has grabbed a significant research attention since its inception in information theory. It has become an attractive candidate to bring promising performance improvement, especially in terms of throughput, in relay-based cellular networks. Substantial research efforts are currently focused on theoretical analysis, implementation and evaluation of network coding from a physical layer perspective. The question is, what is the most efficient and practical way to use network coding in wireless relay-based networks, and whether it is beneficial to exploit the broadcast and multiple-access properties of the wireless medium to perform network coding. It is in such a context, that this thesis proceeds. In the first part of the thesis, the problem of Joint Network-Channel Coding (JNCC) for a Multiple Access Relay Channel (MARC) is investigated in the presence of multiple access interferences and for both of the relay operating modes, namely, half-duplex and full-duplex. To this end, three new classes of MARC, referred to as Half-Duplex Semi-Orthogonal MARC (HD-SOMARC), Half-Duplex Non-Orthogonal MARC (HD-NOMARC), and Full-Duplex Non-Orthogonal MARC (FD-NOMARC) have been introduced and studied. The relaying function in all of the classes is based on a Selective Decode-and-Forward (SDF) strategy, which is individually implemented for each source, i.e, the relay forwards only a deterministic function of the error-free decoded messages. For each class, an information-theoretic analysis is conducted, and practical coding and decoding techniques are proposed. The proposed coding schemes, perform very close to the outage limit for both cases of HD-SOMARC and HD-NOMARC. Besides, in the case of HD-NOMARC, the optimal allocation of the transmission time to the relay is considered. It is also verified that exploiting multiple access interferences, either partially or totally, results in considerable gains for MARC compared to the existing interference-avoiding structures, even in the case of single receive antenna. In the second part of the thesis, the network model is extended by considering multiple relays which help multiple sources to communicate with a destination. A new class of Multiple Access Multiple Relay Channel (MAMRC), referred to as Half-Duplex Semi-Orthogonal MAMRC (HD-SOMAMRC) is then proposed and analyzed from both information theoretic and code design perspective. New practical JNCC schemes are proposed, in which binary channel coding and non binary network coding are combined, and they are shown to perform very close to the outage limit. Moreover, the optimal allocation of the transmission time to the sources and relays is considered. Finally, in the third part of the thesis, different ways of implementing cooperation, including practical relaying protocols are investigated for the half-duplex MARC with semi-orthogonal transmission protocol and in the case of JNCC. The hard SDF approach is compared with two Soft Decode and Forward (SoDF) relaying functions: one based on log a posterior probability ratios (LAPPRs) and the other based on Mean Square Error (MSE) estimate. It is then shown that SDF works well in most of the configurations and just in some extreme cases, soft relaying functions (based on LAPPR or MSE estimate) can slightly outperform the hard selective one.
Document type :
Theses
Complete list of metadatas

Cited literature [132 references]  Display  Hide  Download

https://tel.archives-ouvertes.fr/tel-00829100
Contributor : Abes Star :  Contact
Submitted on : Sunday, June 2, 2013 - 1:12:52 AM
Last modification on : Monday, December 14, 2020 - 12:38:04 PM
Long-term archiving on: : Tuesday, September 3, 2013 - 4:06:04 AM

File

Hatefi_Atoosa_PhD_thesis_VF.pd...
Version validated by the jury (STAR)

Identifiers

  • HAL Id : tel-00829100, version 1

Collections

Citation

Atoosa Hatefi. Distributed Coding for Wireless Cooperative Networks.. Other. Supélec, 2012. English. ⟨NNT : 2012SUPL0015⟩. ⟨tel-00829100⟩

Share

Metrics

Record views

588

Files downloads

737