K. J. Rosengren and D. J. Craik, How Bugs Make Lassos, Chemistry & Biology, vol.16, issue.12, pp.1211-1212, 2009.
DOI : 10.1016/j.chembiol.2009.12.004

URL : http://doi.org/10.1016/j.chembiol.2009.12.004

T. A. Knappe, F. Manzenrieder, C. Mas-moruno, U. Linne, F. Sasse et al., Introducing Lasso Peptides as Molecular Scaffolds for Drug Design: Engineering of an Integrin Antagonist, Angewandte Chemie, vol.36, issue.37, pp.8873-8876, 2011.
DOI : 10.1002/ange.201102190

). S. Rebuffat, A. Blond, D. Destoumieux-garzón, C. Goulard, J. Peduzzi et al., Microcin J25, from the Macrocyclic to the Lasso Structure: Implications for Biosynthetic, Evolutionary and Biotechnological Perspectives, Current Protein & Peptide Science, vol.5, issue.5, pp.383-391, 1992.
DOI : 10.2174/1389203043379611

URL : https://hal.archives-ouvertes.fr/hal-00016002

M. J. Bayro, J. Mukhopadhyay, G. V. Swapna, J. Y. Huang, L. C. Ma et al., Structure of Antibacterial Peptide Microcin J25:?? A 21-Residue Lariat Protoknot, Journal of the American Chemical Society, vol.125, issue.41, pp.12382-12383, 2003.
DOI : 10.1021/ja036677e

S. Zirah, C. Afonso, U. Linne, T. A. Knappe, M. A. Marahiel et al., Topoisomer Differentiation of Molecular Knots by FTICR MS: Lessons from Class II Lasso Peptides, Journal of The American Society for Mass Spectrometry, vol.19, issue.3, pp.467-479, 2004.
DOI : 10.1007/s13361-010-0028-1

URL : https://hal.archives-ouvertes.fr/hal-00578442

D. Destoumieux-garzón, S. Duquesne, J. Peduzzi, C. Goulard, M. Desmadril et al., ??-hairpin region in the recognition mechanism, Biochemical Journal, vol.389, issue.3, pp.869-876, 2005.
DOI : 10.1042/BJ20042107

R. E. De-cristóbal, J. O. Solbiati, A. M. Zenoff, P. A. Vincent, R. A. Salomón et al., Microcin J25 Uptake: His5 of the MccJ25 Lariat Ring Is Involved in Interaction with the Inner Membrane MccJ25 Transporter Protein SbmA, Journal of Bacteriology, vol.188, issue.9, pp.3324-3328, 1995.
DOI : 10.1128/JB.188.9.3324-3328.2006

K. Adelman, J. Yuzenkova, A. L. Porta, N. Zenkin, J. Lee et al., Molecular Mechanism of Transcription Inhibition by Peptide Antibiotic Microcin J25, Molecular Cell, vol.14, issue.6, pp.753-762, 2004.
DOI : 10.1016/j.molcel.2004.05.017

E. Semenova, Y. Yuzenkova, J. Peduzzi, S. Rebuffat, and K. Severinov, Structure-Activity Analysis of Microcin J25: Distinct Parts of the Threaded Lasso Molecule Are Responsible for Interaction with Bacterial RNA Polymerase, Journal of Bacteriology, vol.187, issue.11, pp.3859-3863, 2005.
DOI : 10.1128/JB.187.11.3859-3863.2005

O. Pavlova, J. Mukhopadhyay, E. Sineva, R. H. Ebright, and K. Severinov, Systematic Structure-Activity Analysis of Microcin J25, Journal of Biological Chemistry, vol.283, issue.37, pp.25589-25595, 2008.
DOI : 10.1074/jbc.M803995200

P. A. Vincent, A. Bellomio, B. F. De-arcuri, R. N. Farías, and R. D. Morero, MccJ25 C-terminal is involved in RNA-polymerase inhibition but not in respiration inhibition, Biochemical and Biophysical Research Communications, vol.331, issue.2, pp.549-551, 2005.
DOI : 10.1016/j.bbrc.2005.03.220

A. Bellomio, P. A. Vincent, B. F. De-arcuri, R. N. Farías, and R. D. Morero, Microcin J25 Has Dual and Independent Mechanisms of Action in Escherichia coli: RNA Polymerase Inhibition and Increased Superoxide Production, Journal of Bacteriology, vol.189, issue.11, pp.4180-4186, 2007.
DOI : 10.1128/JB.00206-07

S. Duquesne, D. Destoumieux-garzón, S. Zirah, C. Goulard, J. Peduzzi et al., Two Enzymes Catalyze the Maturation of a Lasso Peptide in Escherichia coli, Chemistry & Biology, vol.14, issue.7, pp.793-803, 2007.
DOI : 10.1016/j.chembiol.2007.06.004

URL : https://hal.archives-ouvertes.fr/hal-00152101

T. A. Knappe, U. Linne, S. Zirah, S. Rebuffat, X. Xie et al., Isolation and Structural Characterization of Capistruin, a Lasso Peptide Predicted from the Genome Sequence of Burkholderia thailandensis E264, Journal of the American Chemical Society, vol.130, issue.34, pp.11446-11454, 2008.
DOI : 10.1021/ja802966g

URL : https://hal.archives-ouvertes.fr/hal-00393592

S. J. Pan, W. L. Cheung, H. K. Fung, C. A. Floudas, A. J. Link-b-)-s et al., Computational design of the lasso peptide antibiotic microcin J25, Protein Engineering Design and Selection, vol.24, issue.3, pp.275-282, 2011.
DOI : 10.1093/protein/gzq108

T. A. Knappe, U. Linne, L. Robbel, and M. A. , Insights into the Biosynthesis and Stability of the Lasso Peptide Capistruin, Chemistry & Biology, vol.16, issue.12, pp.1290-1298, 2009.
DOI : 10.1016/j.chembiol.2009.11.009

A. Bellomio, M. R. Rintoul, and R. D. Morero, Chemical modification of microcin J25 with diethylpyrocarbonate and carbodiimide: evidence for essential histidyl and carboxyl residues, Biochemical and Biophysical Research Communications, vol.303, issue.2, pp.458-462, 2003.
DOI : 10.1016/S0006-291X(03)00373-5

M. Iwatsuki, H. Tomoda, R. Uchida, H. Gouda, S. Hirono et al., sp. K01???B0171, Have a Lasso Structure, Journal of the American Chemical Society, vol.128, issue.23, pp.7486-7491, 2006.
DOI : 10.1021/ja056780z

K. Kuznedelov, E. Semenova, T. A. Knappe, D. Mukhamedyarov, A. Srivastava et al., The Antibacterial Threaded-lasso Peptide Capistruin Inhibits Bacterial RNA Polymerase, Journal of Molecular Biology, vol.412, issue.5, pp.842-848, 2011.
DOI : 10.1016/j.jmb.2011.02.060

K. Kimura, M. Yamazaki, N. Sasaki, T. Yamashita, S. Negishi et al., Novel Propeptin Analog, Propeptin-2, Missing Two Amino Acid Residues from the Propeptin C-Terminus Loses Antibiotic Potency, The Journal of Antibiotics, vol.54, issue.8, pp.519-523, 2007.
DOI : 10.1038/ja.2007.66

D. J. Clarke, D. J. Campopiano-vranken, W. Boucher, T. J. Stevens, R. H. Fogh et al., Maturation of McjA precursor peptide into active microcin MccJ25, Organic & Biomolecular Chemistry, vol.178, issue.16, pp.2564-2566, 2005.
DOI : 10.1039/b708478a

B. Mishra, V. Tiwari, P. Arnison, M. Bibb, G. Bierbaum et al., Natural products: An evolving role in future drug discovery, European Journal of Medicinal Chemistry, vol.46, issue.10, pp.4769-4807, 2010.
DOI : 10.1016/j.ejmech.2011.07.057

H. Sahl, E. Schmidt, M. Selsted, K. Severinov, B. Shen et al., Ribosomally synthesized and post-translationally modified peptide natural products. en rédaction. (4) Ganz, T. Defensins: antimicrobial peptides of innate immunity, Nat. Rev. Immunol, vol.3, issue.5, pp.710-720, 2003.

C. Wang, A. Kinghorn, E. Robbrecht, N. Daly, J. Rosengren et al., Discovery, structure and biological activities of cyclotides Conus venoms: a rich source of novel ion channel-targeted peptides Bacteriocins: developing innate immunity for food Structural and functional diversity of microcins, gene-encoded antibacterial peptides from enterobacteria Lasso peptides: structure, function, biosynthesis, and engineering Thematic minireview series on circular proteins Chemical synthesis of circular proteins Biological synthesis of circular polypeptides ?-defensins: cyclic peptides with endless potential Isolation, characterization, cDNA cloning, and antimicrobial properties of two distinct subfamilies of ?-defensins from rhesus macaque leukocytes, Plant Cell Adv. Drug Deliv. Rev. Physiol. Rev. Nat. Rev. Microbiol. J. Mol. Microbiol. Biotechnol. Nat. Prod. Rep. J. Biol. Chem. J. Biol. Chem. J. Biol. Chem. J. Biol. Chem. Infect. Immun. C J, vol.20, issue.28617, pp.2471-2483, 1999.

O. Yang and R. Lehrer, Retrocyclin: a primate peptide that protects cells from infection by T-and M-tropic strains of HIV-1 Orientation of a ?-hairpin antimicrobial peptide in lipid bilayers from two-dimensional dipolar chemical-shift correlation NMR, Proc. Natl. Acad. Sci. U.S.A. Biophys. J, vol.99, issue.90, pp.1813-1818, 2002.

R. Lehrer, D. Craik, W. Wang, S. Owen, D. Rudolph et al., Activity of ?-and ?-defensins against primary isolates of HIV-1 Retrocyclin 2: a new therapy against avian influenza H5N1 virus in vivo and vitro, Biochemistry J. Immunol. Biotechnol. Lett, vol.46, issue.3223, pp.9920-9928, 2004.

E. Wagar, R. Lehrer, U. Göransson, R. Burman, S. Gunasekera et al., Circular proteins from plants and fungi Plant cyclotides: a unique family of cyclic and knotted proteins that defines the cyclic cystine knot structural motif Discovery and structures of the cyclotides: novel macrocyclic peptides from plants Isolation of oxytocic peptides from Oldenlandia affinis by solvent extraction of tetraphenylborate complexes and chromatography on sephadex LH-20, J. Virol. J. Biol. Chem. J. Mol. Biol. Lett. Pept. Sci. Lloydia, vol.78, issue.36, pp.5147-5156, 1973.

L. Gran, O. Saether, D. Craik, I. Campbell, K. Sletten et al., Elucidation of the primary and three-dimensional structure of the uterotonic polypeptide kalata B1 Bioactive cystine knot proteins Troeira Henriques, S.; Craik, D. NMR and protein structure in drug design: application to cyclotides and conotoxins Isolation, solution structure, and insecticidal activity of kalata B2, a circular protein with a twist: do Möbius strips exist in nature? Biochemistry Divalent cation coordination and mode of membrane interaction in cyclotides: NMR spatial structure of ternary complex kalata B7/Mn 2+ /DPC micelle Combined X-Ray and NMR analysis of the stability of the cyclotide cystine knot fold that underpins its insecticidal activity and potential use as a drug scaffold, 35) Ireland, D.; Colgrave, M.; Craik, D. A novel suite of cyclotides from Viola odorata: sequence variation and the implications for structure, function and stability36) Daly, N.; Clark, R.; Plan, M.; Craik, D. Kalata B8, a novel antiviral circular protein, exhibits conformational flexibility in the cystine knot motif, pp.400-408, 1973.

J. Mulvenna, L. Sando, and D. Craik, Processing of a 22 kDa precursor protein to produce the circular protein tricyclon A Twists, knots, and rings in proteins. Structural definition of the cyclotide framework, Structure J. Biol. Chem, vol.13, issue.278, pp.691-701, 2003.

P. Claeson, B. Chen, M. Colgrave, N. Daly, J. Rosengren et al., Tissue-specific expression of head-to-tail cyclized miniproteins in Violaceae and structure determination of the root cyclotide Viola hederacea root cyclotide 1 Solution structure by NMR of circulin A: a macrocyclic knotted peptide having anti-HIV activity Structure of circulin B and implications for antimicrobial activity of the cyclotides Solution structure of the cyclotide palicourein: implications for the development of a pharmaceutical framework (45) Felizmenio-Quimio, M.; Daly, N.; Craik, D. Circular proteins in plants: solution structure of a novel macrocyclic trypsin inhibitor from Momordica cochinchinensis New circulin macrocyclic polypeptides from Chassalia parvifolia An unusual structural motif of antimicrobial peptides containing end-to-end macrocycle and cystine-knot disulfides Biosynthesis and insecticidal properties of plant cyclotides: the cyclic knotted proteins from Oldenlandia affinis (49) Plan, M.; Saska, I.; Cagauan, A.; Craik, D. Backbone cyclised peptides from plants show molluscicidal activity against the rice pest Pomacea canaliculata (golden apple snail) Cyclotides: natural, circular plant peptides that possess significant activity against gastrointestinal nematode parasites of sheep Anthelmintic activity of cyclotides: in vitro studies with canine and human hookworms Plant cyclotides disrupt epithelial cells in the midgut of lepidopteran larvae Engineering stabilized vascular endothelial growth factor-A antagonists: synthesis, structural characterization, and bioactivity of grafted analogues of cyclotides Conus peptides targeted to specific nicotinic acetylcholine receptor subtypes Drugs from slugs. Past, present and future perspectives of ?-conotoxin research A nicotinic acetylcholine receptor ligand of unique specificity, ?-conotoxin ImI Interactions between a pore-blocking peptide and the voltage sensor of the sodium channel: an electrostatic approach to channel geometry, 53) Colgrave, M.; Craik, D. Thermal, chemical, and enzymatic stability of the cyclotide kalata B1: the importance of the cyclic cystine knot, pp.135-142, 1994.

J. Ramachandran, D. Structure-doyle, J. Morais-cabral, R. Pfuetzner, A. Kuo et al., The structure of the potassium channel: molecular basis of K + conduction and selectivity The block of Shaker K + channels by ?conotoxin PVIIA is state dependent Ziconotide: neuronal calcium channel blocker for treating severe chronic pain A new ?conotoxin which targets ? 3 ? 2 nicotinic acetylcholine receptors ?? RgIA, a novel conotoxin that blocks the ? 9 ? 10 nAchR: structure and identification of key receptor binding residues The synthesis, structural characterization, and receptor specificity of the ?-conotoxin Vc1.1, Biochemistry Science J. Gen. Physiol. Curr. Med. Chem. J. Biol. Chem. J. Mol. Biol. J. Biol. Chem, vol.34, issue.28166, pp.8076-8081, 1995.

E. López-vera, P. Bandyopadhyay, B. Olivera, D. Hillyard, B. Olivera et al., A novel conotoxin inhibitor of Kv1.6 channel and nAchR subtypes defines a new superfamily of conotoxins A molluscivorous Conus toxin: conserved frameworks in conotoxins, Biochemistry Biochemistry C, vol.45, issue.2868, pp.8331-8340, 1989.

M. Watkins, D. Hillyard, W. Gray, B. Olivera, S. Sato et al., ?-Conotoxin PVIIA is a peptide inhibiting the shaker K + channel The amino acid sequences of homologous hydroxyproline-containing myotoxins from the marine snail Conus geographus venom, J. Biol. Chem. FEBS Lett. C, vol.273, issue.15570, pp.33-38, 1983.

D. Hillyard, A. Brink, H. Terlau, D. Yoshikami, M. Nakao et al., µ-conotoxin PIIIA, a new peptide for discriminating among tetrodotoxin-sensitive Na channel subtypes Synthesis and disulfide structure determination of conotoxin GS, a ?-carboxyglutamic acid-containing neurotoxic peptide A new family of conotoxins that blocks voltage-gated sodium channels Purification and sequence of a presynaptic peptide toxin from Conus geographus venom, J. Neurosci. Lett. Pept. Sci. J. Biol. Chem. Biochemistry, vol.18, issue.23, pp.4473-4481, 1984.

B. Olivera, L. C. Cruz, D. Hillyard, V. Monje, I. Mintz et al., Three-dimensional solution structure of the sodium channel agonist/antagonist ?-conotoxin TxVIA Solution structure and proposed binding mechanism of a novel potassium channel toxin ?conotoxin PVIIA Three-dimensional solution structure of µ-conotoxin GIIIB, a specific blocker of skeletal muscle sodium channels Structures of µO-conotoxins from Conus marmoreus Inhibitors of tetrodotoxin (TTX)sensitive and TTX-resistant sodium channels in mammalian sensory neurons Solution structure of ?-conotoxin MVIIC, a high affinity ligand of P-type calcium channels, using 1 H NMR spectroscopy and complete relaxation matrix analysis Bacteriocins of Gram-positive bacteria Bacteriocin diversity: ecological and evolutionary perspectives Prepeptide sequence of epidermin, a ribosomally synthesized antibiotic with four sulphide-rings Biosynthesis and mode of action of lantibiotics Lantibiotics: peptides of diverse structure and function (86) Rogers, L. The inhibiting effect of Streptococcus lactis on Lactobacillus bulgaricus Lacticin 481 synthetase phosphorylates its substrate during lantibiotic production Posttranslational conversion of L-serines to D-alanines is vital for optimal production and activity of the lantibiotic lacticin 3147 The dehydratase activity of lacticin 481 synthetase is highly processive, 89) Miller, L.; Chatterjee, C.; van der Donk; van der Donk, W.; Nair, S. Structure and mechanism of the lantibiotic cyclase involved in nisin biosynthesis.; Entian, K.-D. Function of Lactococcus lactis nisin immunity genes nisI and nisFEG after coordinated expression in the surrogate host Bacillus subtilis, pp.7-14, 1928.

A. Hoffmann, T. Schneider, U. Pag, H. Sahl, E. Gross et al., Localization and functional analysis of PepI, the immunity peptide of Pep5-producing Staphylococcus epidermidis strain 5 Structure of nisin The structure of subtilin. Hoppe-Seyler's Elucidation of the structure of epidermin, a ribosomally synthesized, tetracyclic heterodetic polypeptide antibiotic Pep5: strukturaufklärung eines großen lantibioticums, The structure of the polycyclic nonadecapeptide RO-09-0198, pp.3263-3271, 1971.

H. Hooven, F. Lagerwerf, W. Heerma, J. Haverkamp, J. Piard et al., : location of the thioether bridges, FEBS Letters, vol.219, issue.3, pp.317-322, 1996.
DOI : 10.1016/0014-5793(96)00771-5

S. Chatterjee, M. Phansalkar, R. Rupp, B. Ganguli, H. Fehlhaber et al., Mersacidin, a new antibiotic from Bacillus Fermentation, isolation, purification and chemical characterization., The Journal of Antibiotics, vol.45, issue.6, pp.832-838, 1992.
DOI : 10.7164/antibiotics.45.832

M. Abildgaard and I. Nes, In vivo conversion of L-serine to D-alanine in a ribosomally synthesized polypeptide, J. Biol. Chem, vol.269, pp.27183-27185, 1994.

S. Paik, A. Chakicherla, and N. Hansen, Identification and Characterization of the Structural and Transporter Genes for, and the Chemical and Biological Properties of, Sublancin 168, a Novel Lantibiotic Produced by Bacillus subtilis 168, Journal of Biological Chemistry, vol.273, issue.36, pp.23134-23142, 1998.
DOI : 10.1074/jbc.273.36.23134

A. Mcclerren, L. Cooper, C. Quan, P. Thomas, and N. Kelleher, Discovery and in vitro biosynthesis of haloduracin, a two-component lantibiotic, Proceedings of the National Academy of Sciences, vol.103, issue.46, pp.17243-17248, 2006.
DOI : 10.1073/pnas.0606088103

S. Kodani, M. Hudson, M. Durrant, M. Buttner, J. Nodwell et al., From The Cover: The SapB morphogen is a lantibiotic-like peptide derived from the product of the developmental gene ramS in Streptomyces coelicolor, Proceedings of the National Academy of Sciences, vol.101, issue.31, pp.11448-11453, 2004.
DOI : 10.1073/pnas.0404220101

S. Kodani, M. Lodato, M. Durrant, F. Picart, and J. Willey, SapT, a lanthionine-containing peptide involved in aerial hyphae formation in the streptomycetes, Molecular Microbiology, vol.216, issue.5, pp.1368-1380, 2005.
DOI : 10.1111/j.1365-2958.2005.04921.x

S. Hsu, E. Breukink, E. Tischenko, M. Lutters, B. De-kruijff et al., The nisin???lipid II complex reveals a pyrophosphate cage that provides a blueprint for novel antibiotics, Nature Structural & Molecular Biology, vol.267, issue.10, pp.963-967, 2004.
DOI : 10.1002/prot.10299

S. Hsu, E. Breukink, G. Bierbaum, H. Sahl, B. De-kruijff et al., NMR Study of Mersacidin and Lipid II Interaction in Dodecylphosphocholine Micelles: CONFORMATIONAL CHANGES ARE A KEY TO ANTIMICROBIAL ACTIVITY, Journal of Biological Chemistry, vol.278, issue.15, pp.13110-13117, 2003.
DOI : 10.1074/jbc.M211144200

E. Breukink, I. Wiedemann, C. Van-kraaij, O. Kuipers, H. Sahl et al., Use of the Cell Wall Precursor Lipid II by a Pore-Forming Peptide Antibiotic, Science, vol.286, issue.5448, pp.2361-2364, 1999.
DOI : 10.1126/science.286.5448.2361

I. Wiedemann, R. Benz, and H. Sahl, Lipid II-Mediated Pore Formation by the Peptide Antibiotic Nisin: a Black Lipid Membrane Study, Journal of Bacteriology, vol.186, issue.10, pp.3259-3261, 2004.
DOI : 10.1128/JB.186.10.3259-3261.2004

H. Hasper, N. Kramer, J. Smith, J. Hillman, C. Zachariah et al., An Alternative Bactericidal Mechanism of Action for Lantibiotic Peptides That Target Lipid II, Science, vol.313, issue.5793, pp.1636-1637, 2006.
DOI : 10.1126/science.1129818

A. Dufour, T. Hindré, D. Haras, and J. Le-pennec, The biology of lantibiotics from the lacticin 481 group is coming of age, FEMS Microbiology Reviews, vol.31, issue.2, pp.31-134, 2007.
DOI : 10.1111/j.1574-6976.2006.00045.x

URL : https://hal.archives-ouvertes.fr/hal-00801239

H. Brötz, G. Bierbaum, P. Reynolds, and H. Sahl, The Lantibiotic Mersacidin Inhibits Peptidoglycan Biosynthesis at the Level of Transglycosylation, European Journal of Biochemistry, vol.228, issue.1, pp.193-199, 1997.
DOI : 10.1016/0006-3002(61)90698-9

A. Makino, T. Baba, K. Fujimoto, K. Iwamoto, Y. Yano et al., Cinnamycin (Ro 09-0198) Promotes Cell Binding and Toxicity by Inducing Transbilayer Lipid Movement, Journal of Biological Chemistry, vol.278, issue.5, pp.3204-3209, 2003.
DOI : 10.1074/jbc.M210347200

K. Ueda, K. Oinuma, G. Ikeda, K. Hosono, Y. Ohnishi et al., AmfS, an Extracellular Peptidic Morphogen in Streptomyces griseus, Journal of Bacteriology, vol.184, issue.5, pp.1488-1492, 2002.
DOI : 10.1128/JB.184.5.1488-1492.2002

J. Willey, A. Willems, S. Kodani, and J. Nodwell, Morphogenetic surfactants and their role in the formation of aerial hyphae in Streptomyces coelicolor, Molecular Microbiology, vol.38, issue.3, pp.731-742, 2006.
DOI : 10.1046/j.1365-2958.2003.03760.x

R. Kemperman, A. Kuipers, H. Karsens, A. Nauta, O. Kuipers et al., Identification and Characterization of Two Novel Clostridial Bacteriocins, Circularin A and Closticin 574, Applied and Environmental Microbiology, vol.69, issue.3, pp.1589-1597, 2003.
DOI : 10.1128/AEM.69.3.1589-1597.2003

M. Montalbán-lópez, M. Sánchez-hidalgo, R. Cebrián, and M. Maqueda, Discovering the Bacterial Circular Proteins: Bacteriocins, Cyanobactins, and Pilins, Journal of Biological Chemistry, vol.287, issue.32, pp.27007-27013, 2012.
DOI : 10.1074/jbc.R112.354688

M. Maqueda, M. Sánchez-hidalgo, M. Fernández, M. Montalbán?lópez, E. Valdivia et al., Genetic features of circular bacteriocins produced by Gram-positive bacteria, FEMS Microbiology Reviews, vol.32, issue.1, pp.2-22, 2008.
DOI : 10.1111/j.1574-6976.2007.00087.x

M. Martínez-bueno, M. Maqueda, A. Gálvez, B. Samyn, J. Van-beeumen et al., Determination of the gene sequence and the molecular structure of the enterococcal peptide antibiotic AS-48., Journal of Bacteriology, vol.176, issue.20, pp.6334-6339, 1994.
DOI : 10.1128/jb.176.20.6334-6339.1994

Y. Kawai, T. Saito, H. Kitazawa, and T. Itoh, -Terminal Ends, Bioscience, Biotechnology, and Biochemistry, vol.141, issue.20, pp.2438-2440, 1998.
DOI : 10.1016/0378-1097(94)90056-6

URL : https://hal.archives-ouvertes.fr/hal-01059018

T. Toba, S. Samant, E. Yoshioka, and T. Itoh, Reutericin 6, a new bacteriocin produced by Lactobacillus reuteri LA 6, Letters in Applied Microbiology, vol.12, issue.6, pp.281-286, 1991.
DOI : 10.1111/j.1574-6968.1990.tb04885.x

R. Leer, J. Van-der-vossen, M. Van-giezen, J. Van-noort, and P. Pouwels, Genetic analysis of acidocin B, a novel bacteriocin produced by Lactobacillus acidophilus, Microbiology, vol.141, issue.7, pp.1629-1635, 1995.
DOI : 10.1099/13500872-141-7-1629

M. Kalmokoff and R. Teather, Isolation and characterization of a bacteriocin (butyrivibriocin AR10) from the ruminal anaerobe Butyrivibrio fibrisolvens AR10: evidence in support of the widespread occurrence of bacteriocin-like activity among ruminal isolates of B. fibrisolvens, Appl. Environ. Microbiol, vol.63, pp.394-402, 1997.

R. Wirawan, K. Swanson, T. Kleffmann, R. Jack, and J. Tagg, Uberolysin: a novel cyclic bacteriocin produced by Streptococcus uberis, Microbiology, vol.153, issue.5, pp.1619-1630, 2007.
DOI : 10.1099/mic.0.2006/005967-0

L. Martin-visscher, M. Van-belkum, S. Garneau-tsodikova, R. Whittal, J. Zheng et al., Isolation and Characterization of Carnocyclin A, a Novel Circular Bacteriocin Produced by Carnobacterium maltaromaticum UAL307, Applied and Environmental Microbiology, vol.74, issue.15, pp.4756-4763, 2008.
DOI : 10.1128/AEM.00817-08

N. Sawa, T. Zendo, J. Kiyofuji, K. Fujita, K. Himeno et al., Identification and Characterization of Lactocyclicin Q, a Novel Cyclic Bacteriocin Produced by Lactococcus sp. Strain QU 12, Applied and Environmental Microbiology, vol.75, issue.6, pp.1552-1558, 2009.
DOI : 10.1128/AEM.02299-08

L. Martin-visscher, X. Gong, M. Duszyk, and J. Vederas, The Three-dimensional Structure of Carnocyclin A Reveals That Many Circular Bacteriocins Share a Common Structural Motif, Journal of Biological Chemistry, vol.284, issue.42, pp.28674-28681, 2009.
DOI : 10.1074/jbc.M109.036459

V. Cruz and A. Albert, Structure of bacteriocin AS-48: from soluble state to membrane bound state, J. Mol. Biol, vol.334, pp.541-549, 2003.

J. Rosengren and D. Craik, How Bugs Make Lassos, Chemistry & Biology, vol.16, issue.12, pp.1211-1212, 2009.
DOI : 10.1016/j.chembiol.2009.12.004

URL : http://doi.org/10.1016/j.chembiol.2009.12.004

W. Weber, W. Fischli, E. Hochuli, E. Kupfer, and E. Weibel, Anantin-A peptide antagonist of the atrial natriuretic factor(ANF). I. Producing organism, fermentation, isolation and biological activity., The Journal of Antibiotics, vol.44, issue.2, pp.164-171, 1991.
DOI : 10.7164/antibiotics.44.164

M. Maksimov, I. Pelczer, and J. Link, Precursor-centric genome-mining approach for lasso peptide discovery, Proceedings of the National Academy of Sciences, vol.109, issue.38, 2012.
DOI : 10.1073/pnas.1208978109

R. Salomón and R. Farías, Microcin 25, a novel antimicrobial peptide produced by Escherichia coli., Journal of Bacteriology, vol.174, issue.22, pp.7428-7435, 1992.
DOI : 10.1128/jb.174.22.7428-7435.1992

G. Helynck, C. Dubertret, J. Mayaux, and J. Leboul, Isolation of RP 71955, a new anti-HIV-1 peptide secondary metabolite., The Journal of Antibiotics, vol.46, issue.11, pp.1756-1757, 1993.
DOI : 10.7164/antibiotics.46.1756

G. Helynck, M. Tsunakawa, S. Hu, Y. Hoshino, D. Detlefson et al., Nouveaux polypeptides biologiquement actifs, préparation et utilisation 1994 Yamamoto, S. Siamycins I and II, new anti-HIV peptides. I - Fermentation, isolation, biological activity and initial characterization, J. Antibiot, vol.48, pp.433-434, 1995.

Y. Morishita, S. Chiba, E. Tsukuda, T. Tanaka, T. Ogawa et al., RES-701-1,a novel and selective endothelin type B receptor antagonist produced by Streptomyces sp. RE-701. I. Characterization of producing strain, fermentation, isolation, physico-chemical and biological properties., The Journal of Antibiotics, vol.47, issue.3, pp.269-275, 1994.
DOI : 10.7164/antibiotics.47.269

T. Ogawa, K. Ochiai, T. Tanaka, E. Tsukuda, S. Chiba et al., RES-701-2, -3 and -4, Novel and Selective Endothelin Type B Receptor Antagonists Produced by Streptomyces sp. I. Taxonomy of Producing Strains, Fermentation, Isolation, and Biochemical Properties., The Journal of Antibiotics, vol.48, issue.11, pp.1213-1220, 1995.
DOI : 10.7164/antibiotics.48.1213

K. Kimura, F. Kanou, H. Takahashi, and Y. Esumi, Propeptin, a New Inhibitor of Prolyl Endopeptidase Produced by Microbispora. I. Fermentation, Isolation and Biological Properties., The Journal of Antibiotics, vol.50, issue.5, pp.373-378, 1997.
DOI : 10.7164/antibiotics.50.373

A. Blond, J. Péduzzi, C. Goulard, M. Chiuchiolo, M. Barthélémy et al., The cyclic structure of microcin J25, a 21-residue peptide antibiotic from Escherichia coli, European Journal of Biochemistry, vol.132, issue.3, pp.747-756, 1999.
DOI : 10.1046/j.1432-1327.1999.00085.x

I. Ségalas-milazzo, J. Péduzzi, M. Barthélémy, C. Goulard, R. Salomón et al., Solution structure of microcin J25, the single macrocyclic antimicrobial peptide from Escherichia coli, Eur. J. Biochem, vol.268, issue.144, pp.2124-2133, 2001.

J. Rosengren, R. Clark, N. Daly, U. Göransson, A. Jones et al., Microcin J25 Has a Threaded Sidechain-to-Backbone Ring Structure and Not a Head-to-Tail Cyclized Backbone, Journal of the American Chemical Society, vol.125, issue.41, pp.12464-12474, 2003.
DOI : 10.1021/ja0367703

M. Bayro, J. Mukhopadhyay, G. Swapna, J. Huang, L. Ma et al., Structure of Antibacterial Peptide Microcin J25:?? A 21-Residue Lariat Protoknot, Journal of the American Chemical Society, vol.125, issue.41, pp.12382-12383, 2003.
DOI : 10.1021/ja036677e

K. Wilson, M. Kalkum, J. Ottesen, J. Yuzenkova, B. Chait et al., Structure of Microcin J25, a Peptide Inhibitor of Bacterial RNA Polymerase, is a Lassoed Tail, Journal of the American Chemical Society, vol.125, issue.41, pp.12475-12483, 2003.
DOI : 10.1021/ja036756q

D. Frechet, J. Guitton, F. Herman, D. Faucher, G. Helynck et al., Solution structure of RP 71955, a new 21 amino acid tricyclic peptide active against HIV-1 virus, Biochemistry, vol.33, issue.1, pp.42-50, 1994.
DOI : 10.1021/bi00167a006

R. Katahira, M. Yamasaki, Y. Matsuda, and M. Yoshida, MS-271, A novel inhibitor of calmodulin-activated myosin light chain kinase from Streptomyces sp.???II. Solution structure of MS-271: Characteristic features of the ???lasso??? structure, Bioorganic & Medicinal Chemistry, vol.4, issue.1, pp.121-129, 1996.
DOI : 10.1016/0968-0896(95)00176-X

R. Katahira, K. Shibata, M. Yamasaki, Y. Matsuda, and M. Yoshida, Solution structure of endothelin B receptor selective antagonist RES-701-1 determined by 1H NMR spectroscopy, Bioorganic & Medicinal Chemistry, vol.3, issue.9, pp.1273-1280, 1995.
DOI : 10.1016/0968-0896(95)00122-W

O. Potterat, K. Wagner, G. Gemmecker, J. Mack, C. Puder et al., sp., Journal of Natural Products, vol.67, issue.9, pp.1528-1531, 2004.
DOI : 10.1021/np040093o

URL : https://hal.archives-ouvertes.fr/in2p3-00948597

T. Knappe, U. Linne, X. Xie, and M. Marahiel, The glucagon receptor antagonist BI-32169 constitutes a new class of lasso peptides, FEBS Letters, vol.181, issue.4, pp.785-789, 2010.
DOI : 10.1016/j.febslet.2009.12.046

M. Iwatsuki, H. Tomoda, R. Uchida, H. Gouda, S. Hirono et al., sp. K01???B0171, Have a Lasso Structure, Journal of the American Chemical Society, vol.128, issue.23, pp.7486-7491, 2006.
DOI : 10.1021/ja056780z

T. Knappe, U. Linne, S. Zirah, S. Rebuffat, X. Xie et al., Isolation and Structural Characterization of Capistruin, a Lasso Peptide Predicted from the Genome Sequence of Burkholderia thailandensis E264, Journal of the American Chemical Society, vol.130, issue.34, pp.11446-11454, 2008.
DOI : 10.1021/ja802966g

URL : https://hal.archives-ouvertes.fr/hal-00393592

R. Kersten, Y. Yang, Y. Xu, P. Cimermancic, S. Nam et al., A mass spectrometry???guided genome mining approach for natural product peptidogenomics, Nature Chemical Biology, vol.458, issue.11, pp.794-802, 2011.
DOI : 10.1093/nar/gkn785

S. Rebuffat, A. Blond, D. Destoumieux-garzón, C. Goulard, and J. Peduzzi, Microcin J25, from the Macrocyclic to the Lasso Structure: Implications for Biosynthetic, Evolutionary and Biotechnological Perspectives, Current Protein & Peptide Science, vol.5, issue.5, pp.383-391, 2004.
DOI : 10.2174/1389203043379611

URL : https://hal.archives-ouvertes.fr/hal-00016002

P. Vincent and R. Morero, The Structure and Biological Aspects of Peptide Antibiotic Microcin J25, Current Medicinal Chemistry, vol.16, issue.5, pp.538-549, 2009.
DOI : 10.2174/092986709787458461

V. Portrait, S. Gendron-gaillard, G. Cottenceau, and A. Pons, Inhibition of pathogenic <i>Salmonella</i> <i>enteritidis</i> growth mediated by <i>Escherichia coli</i> microcin J25 producing strains, Canadian Journal of Microbiology, vol.45, issue.12, pp.988-994, 1999.
DOI : 10.1139/cjm-45-12-988

P. Vincent, M. Delgado, R. Farías, and R. Salomón, serovars by microcin J25, FEMS Microbiology Letters, vol.236, issue.1, pp.103-107, 2004.
DOI : 10.1111/j.1574-6968.2004.tb09634.x

S. Chokekijchai, E. Kojima, S. Anderson, M. Nomizu, M. Tanaka et al., NP-06: a novel anti-human immunodeficiency virus polypeptide produced by a Streptomyces species, Antimicrobial Agents and Chemotherapy, vol.39, issue.10, pp.2345-2347, 1995.
DOI : 10.1128/AAC.39.10.2345

D. Detlefsen, S. Hill, K. Volk, S. Klohr, M. Tsunakawa et al., Siamycins I and II, New Anti-HIV-1 Peptides: II. Sequence Analysis and Structure Determination of Siamycin I., The Journal of Antibiotics, vol.48, issue.12, pp.1515-1517, 1995.
DOI : 10.7164/antibiotics.48.1515

K. Yano, S. Toki, S. Nakanishi, K. Ochiai, K. Ando et al., MS-271, a novel inhibitor of calmodulin-activated myosin light chain kinase from Streptomyces sp.???I. isolation, structural determination and biological properties of MS-271, Bioorganic & Medicinal Chemistry, vol.4, issue.1, pp.115-120, 1996.
DOI : 10.1016/0968-0896(95)00175-1

K. Constantine, M. Friedrichs, D. Detlefsen, M. Nishio, M. Tsunakawa et al., High-resolution solution structure of siamycin II: Novel amphipathic character of a 21-residue peptide that inhibits HIV fusion, Journal of Biomolecular NMR, vol.5, issue.3, pp.271-286, 1995.
DOI : 10.1007/BF00211754

. Lariatins, novel antimycobacterial peptides with a lasso structure, produced by Rhodococcus jostii K01-B0171, J. Antibiot, vol.60, pp.357-363, 2007.

J. Solbiati, M. Ciaccio, R. Farías, and R. Salomón, Genetic analysis of plasmid determinants for microcin J25 production and immunity., Journal of Bacteriology, vol.178, issue.12, pp.3661-3663, 1996.
DOI : 10.1128/jb.178.12.3661-3663.1996

J. Solbiati, M. Ciaccio, R. Farías, J. González-pastor, F. Moreno et al., Sequence analysis of the four plasmid genes required to produce the circular peptide antibiotic microcin J25, J. Bacteriol, vol.181, pp.2659-2662, 1999.

S. Duquesne, D. Destoumieux-garzón, S. Zirah, C. Goulard, J. Peduzzi et al., Two Enzymes Catalyze the Maturation of a Lasso Peptide in Escherichia coli, Chemistry & Biology, vol.14, issue.7, pp.793-803, 2007.
DOI : 10.1016/j.chembiol.2007.06.004

URL : https://hal.archives-ouvertes.fr/hal-00152101

D. Clarke and D. Campopiano, Maturation of McjA precursor peptide into active microcin MccJ25, Organic & Biomolecular Chemistry, vol.178, issue.16, pp.2564-2566, 2007.
DOI : 10.1039/b708478a

W. Cheung, S. Pan, and J. Link, Much of the Microcin J25 Leader Peptide is Dispensable, Journal of the American Chemical Society, vol.132, issue.8, pp.2514-2155, 2010.
DOI : 10.1021/ja910191u

S. Pan, J. Rajniak, W. Cheung, and J. Link, Construction of a Single Polypeptide that Matures and Exports the Lasso Peptide Microcin J25, ChemBioChem, vol.187, issue.3, pp.367-370, 2012.
DOI : 10.1002/cbic.201100596

K. Yan, Y. Li, S. Zirah, C. Goulard, T. Knappe et al., Dissecting the Maturation Steps of the Lasso Peptide Microcin J25 in vitro, ChemBioChem, vol.22, issue.7, pp.1046-1052, 2012.
DOI : 10.1002/cbic.201200016

R. Farías and R. Salomón, Growth-phase-dependent expression of the cyclopeptide antibiotic microcin J25, J. Bacteriol, vol.183, pp.1755-1764, 2001.

R. Salomón and R. Farías, Influence of iron on microcin 25 production, FEMS Microbiology Letters, vol.121, issue.3, pp.275-279, 1994.
DOI : 10.1016/0378-1097(94)90303-4

S. Pan, W. Cheung, and J. Link, Engineered gene clusters for the production of the antimicrobial peptide microcin J25, Protein Expression and Purification, vol.71, issue.2, pp.200-206, 2010.
DOI : 10.1016/j.pep.2009.12.010

M. A. Delgado, J. O. Solbiati, M. J. Chiuchiolo, R. N. Farías, and R. A. Salomón, Escherichia coli outer membrane protein TolC is involved in production of the peptide antibiotic microcin J25, J. Bacteriol, vol.181, 1968.

V. Koronakis, A. Sharff, E. Koronakis, B. Luisi, and C. Hughes, Crystal structure of the bacterial membrane protein TolC central to multidrug efflux and protein export, Nature, vol.405, issue.6789, pp.914-919, 2000.
DOI : 10.1038/35016007

M. Delgado, P. Vincent, R. Farías, and R. Salomón, YojI of Escherichia coli Functions as a Microcin J25 Efflux Pump, Journal of Bacteriology, vol.187, issue.10, pp.3465-3470, 2005.
DOI : 10.1128/JB.187.10.3465-3470.2005

D. Destoumieux-garzón, I. Ségalas-milazzo, J. Peduzzi, C. Goulard, and S. Rebuffat, Thermolysin-linearized microcin J25 retains the structured core of the native macrocyclic peptide and displays antimicrobial activity, Eur. J. Biochem, vol.269, issue.178, pp.6212-6222, 2002.

R. Salomón and R. Farías, The FhuA protein is involved in microcin 25 uptake., Journal of Bacteriology, vol.175, issue.23, pp.7741-7742, 1993.
DOI : 10.1128/jb.175.23.7741-7742.1993

R. Wayne, K. Frick, and J. Neilands, Siderophore protection against colicins M, B, V, and Ia in Escherichia coli, J. Bacteriol, vol.126, pp.7-12, 1976.

K. Locher, B. Rees, R. Koebnkik, A. Mitschler, L. Moulinier et al., Transmembrane Signaling across the Ligand-Gated FhuA Receptor, Cell, vol.95, issue.6, pp.771-778, 1998.
DOI : 10.1016/S0092-8674(00)81700-6

R. Salomón and R. Farías, The peptide antibiotic microcin 25 is imported through the TonB pathway and the SbmA protein., Journal of Bacteriology, vol.177, issue.11, pp.3323-3325, 1995.
DOI : 10.1128/jb.177.11.3323-3325.1995

M. Laviña, A. Pugsley, and F. Moreno, Identification, Mapping, Cloning and Characterization of a Gene (sbmA) Required for Microcin B17 Action on Escherichia coli K12, Microbiology, vol.132, issue.6, pp.1685-1693, 1986.
DOI : 10.1099/00221287-132-6-1685

M. Mattiuzzo, A. Bandiera, R. Gennaro, M. Benincasa, S. Pacor et al., Role of the Escherichia coli SbmA in the antimicrobial activity of proline-rich peptides, Molecular Microbiology, vol.58, issue.1, pp.151-163, 2007.
DOI : 10.1073/pnas.91.10.4519

M. Yeaman and N. Yount, Mechanisms of Antimicrobial Peptide Action and Resistance, Pharmacological Reviews, vol.55, issue.1, pp.27-55, 2003.
DOI : 10.1124/pr.55.1.2

M. Rintoul, B. De-arcuri, and R. Morero, Effects of the antibiotic peptide microcin J25 on liposomes: role of acyl chain length and negatively charged phospholipid, Biochimica et Biophysica Acta (BBA) - Biomembranes, vol.1509, issue.1-2, pp.65-72, 2000.
DOI : 10.1016/S0005-2736(00)00249-2

M. Rintoul, B. De-arcuri, R. Salomón, R. Farías, and R. Morero, The antibacterial action of microcin J25: evidence for disruption of cytoplasmic membrane energization in Salmonella newport, FEMS Microbiology Letters, vol.204, issue.2, pp.265-270, 2001.
DOI : 10.1111/j.1574-6968.2001.tb10895.x

M. Delgado, M. Rintoul, R. Farías, and R. Salomón, Escherichia coli RNA Polymerase Is the Target of the Cyclopeptide Antibiotic Microcin J25, Journal of Bacteriology, vol.183, issue.15, pp.4543-4550, 2001.
DOI : 10.1128/JB.183.15.4543-4550.2001

A. Bellomio, P. Vincent, B. De-arcuri, R. Farías, and R. Morero, Microcin J25 Has Dual and Independent Mechanisms of Action in Escherichia coli: RNA Polymerase Inhibition and Increased Superoxide Production, Journal of Bacteriology, vol.189, issue.11, pp.4180-4186, 2007.
DOI : 10.1128/JB.00206-07

M. Niklison-chirou, A. Bellomio, F. Dupuy, B. Arcuri, C. Minahk et al., Microcin J25 induces the opening of the mitochondrial transition pore and cytochrome c release through superoxide generation, FEBS Journal, vol.348, issue.Pt 2, pp.4088-4096, 2008.
DOI : 10.1111/j.1742-4658.2008.06550.x

M. Niklison-chirou, F. Dupuy, L. Pena, S. Gallego, M. Barreiro-arcos et al., Microcin J25 triggers cytochrome c release through irreversible damage of mitochondrial proteins and lipids, The International Journal of Biochemistry & Cell Biology, vol.42, issue.2, pp.273-281, 2010.
DOI : 10.1016/j.biocel.2009.11.002

A. Bellomio, M. Rintoul, and R. Morero, Chemical modification of microcin J25 with diethylpyrocarbonate and carbodiimide: evidence for essential histidyl and carboxyl residues, Biochemical and Biophysical Research Communications, vol.303, issue.2, pp.458-462, 2003.
DOI : 10.1016/S0006-291X(03)00373-5

E. Semenova, Y. Yuzenkova, J. Peduzzi, S. Rebuffat, and K. Severinov, Structure-Activity Analysis of Microcin J25: Distinct Parts of the Threaded Lasso Molecule Are Responsible for Interaction with Bacterial RNA Polymerase, Journal of Bacteriology, vol.187, issue.11, pp.3859-3863, 2005.
DOI : 10.1128/JB.187.11.3859-3863.2005

P. Vincent, A. Bellomio, B. De-arcuri, R. Farías, and R. Morero, MccJ25 C-terminal is involved in RNA-polymerase inhibition but not in respiration inhibition, Biochemical and Biophysical Research Communications, vol.331, issue.2, pp.549-551, 2005.
DOI : 10.1016/j.bbrc.2005.03.220

D. Cristóbal, R. Solbiati, J. Zenoff, A. Vincent, P. Salomón et al., Microcin J25 Uptake: His5 of the MccJ25 Lariat Ring Is Involved in Interaction with the Inner Membrane MccJ25 Transporter Protein SbmA, Journal of Bacteriology, vol.188, issue.9, pp.3324-3328, 2006.
DOI : 10.1128/JB.188.9.3324-3328.2006

O. Pavlova, J. Mukhopadhyay, E. Sineva, R. Ebright, and K. Severinov, Systematic Structure-Activity Analysis of Microcin J25, Journal of Biological Chemistry, vol.283, issue.37, pp.25589-25595, 2008.
DOI : 10.1074/jbc.M803995200

M. Chalon, A. Bellomio, J. Solbiati, R. Morero, R. Farias et al., Tyrosine 9 is the key amino acid in microcin J25 superoxide overproduction, FEMS Microbiology Letters, vol.300, issue.1, pp.90-96, 2009.
DOI : 10.1111/j.1574-6968.2009.01770.x

F. Dupuy, B. De-arcuri, C. Minahk, and R. Morero, Proton motive force dissipation precludes interaction of microcin J25 with RNA polymerase, but enhances reactive oxygen species overproduction, Biochimica et Biophysica Acta (BBA) - General Subjects, vol.1790, issue.10, pp.1307-1313, 2009.
DOI : 10.1016/j.bbagen.2009.07.006

S. Socias, K. Severinov, and R. Salomon, residue of microcin J25 is essential for recognition by the receptor FhuA, but not by the inner membrane transporter SbmA, FEMS Microbiology Letters, vol.301, issue.1, pp.124-129, 2009.
DOI : 10.1111/j.1574-6968.2009.01805.x

M. Chalon, N. Wilke, J. Pedersen, S. Rufini, R. Morero et al., Redox-active tyrosine residue in the microcin J25 molecule, Biochemical and Biophysical Research Communications, vol.406, issue.3, pp.366-370, 2011.
DOI : 10.1016/j.bbrc.2011.02.047

F. Dupuy and R. Morero, Microcin J25 membrane interaction: Selectivity toward gel phase, Biochimica et Biophysica Acta (BBA) - Biomembranes, vol.1808, issue.6, pp.1764-1771, 2011.
DOI : 10.1016/j.bbamem.2011.02.018

URL : http://doi.org/10.1016/j.bbamem.2011.02.018

S. Pan and J. Link, Sequence Diversity in the Lasso Peptide Framework: Discovery of Functional Microcin J25 Variants with Multiple Amino Acid Substitutions, Journal of the American Chemical Society, vol.133, issue.13, pp.5016-5023, 2011.
DOI : 10.1021/ja1109634

M. Niklison-chirou, F. Dupuy, L. Saavedra, E. Hebert, C. Banchio et al., Microcin J25-Ga induces apoptosis in mammalian cells by inhibiting mitochondrial RNA-polymerase, Peptides, vol.32, issue.4, pp.832-834, 2011.
DOI : 10.1016/j.peptides.2011.01.003

A. Bellomio, P. Vincent, B. De-arcuri, R. Salomón, R. Morero et al., The microcin J25 ??-hairpin region is important for antibiotic uptake but not for RNA polymerase and respiration inhibition, Biochemical and Biophysical Research Communications, vol.325, issue.4, pp.1454-1458, 2004.
DOI : 10.1016/j.bbrc.2004.10.186

D. Destoumieux-garzón, S. Duquesne, J. Peduzzi, C. Goulard, M. Desmadril et al., The iron?siderophore transporter FhuA is the receptor for the antimicrobial peptide microcin J25: role of the microcin Val11?Pro16 ?-hairpin region in the recognition mechanism Antibacterial peptide microcin J25 inhibits transcription by binding within and obstructing the RNA polymerase secondary channel, Biochem. J. Mol. Cell, vol.389, issue.14, pp.869-207, 2004.

K. Adelman, J. Yuzenkova, A. Porta, N. Zenkin, J. Lee et al., Molecular Mechanism of Transcription Inhibition by Peptide Antibiotic Microcin J25, Molecular Cell, vol.14, issue.6, pp.753-762, 2004.
DOI : 10.1016/j.molcel.2004.05.017

J. Yuzenkova, M. Delgado, S. Nechaev, D. Savalia, V. Epshtein et al., Mutations of Bacterial RNA Polymerase Leading to Resistance to Microcin J25, Journal of Biological Chemistry, vol.277, issue.52, pp.50867-50875, 2002.
DOI : 10.1074/jbc.M209425200

D. Vassylyev, S. Sekine, O. Laptenko, J. Lee, M. Vassylyeva et al., Crystal structure of a bacterial RNA polymerase holoenzyme at 2.6????? resolution, Nature, vol.277, issue.6890, pp.712-719, 2002.
DOI : 10.1107/S0907444998017363

S. Sable, A. Pons, S. Gendron-gaillard, and G. Cottenceau, Antibacterial Activity Evaluation of Microcin J25 against Diarrheagenic Escherichia coli, Applied and Environmental Microbiology, vol.66, issue.10, pp.4595-4597, 2000.
DOI : 10.1128/AEM.66.10.4595-4597.2000

M. F. Pomares, M. A. Delgado, N. S. Corbalan, R. N. Farias, and P. A. Vincent, Sensitization of Microcin J25-Resistant Strains by a Membrane-Permeabilizing Peptide, Applied and Environmental Microbiology, vol.76, issue.20, pp.6837-6842, 2010.
DOI : 10.1128/AEM.00307-10

F. Lopez, P. Vincent, A. Zenoff, R. Salomón, and R. Farías, Efficacy of microcin J25 in biomatrices and in a mouse model of Salmonella infection, Journal of Antimicrobial Chemotherapy, vol.59, issue.4, pp.676-680, 2007.
DOI : 10.1093/jac/dkm009

T. Knappe, F. Manzenrieder, C. Mas-moruno, U. Linne, F. Sasse et al., Introducing Lasso Peptides as Molecular Scaffolds for Drug Design: Engineering of an Integrin Antagonist, Angewandte Chemie International Edition, vol.36, issue.37, pp.8714-8717, 2011.
DOI : 10.1002/anie.201102190

R. Soudy, L. Wang, and K. Kaur, Synthetic peptides derived from the sequence of a lasso peptide microcin J25 show antibacterial activity, Bioorganic & Medicinal Chemistry, vol.20, issue.5, pp.1794-1800, 2012.
DOI : 10.1016/j.bmc.2011.12.061

T. Knappe, U. Linne, L. Robbel, and M. Marahiel, Insights into the Biosynthesis and Stability of the Lasso Peptide Capistruin, Chemistry & Biology, vol.16, issue.12, pp.1290-1298, 2009.
DOI : 10.1016/j.chembiol.2009.11.009

T. Tanaka, E. Tsukuda, M. Nozawa, H. Nonaka, T. Ohno et al., RES-701-1, a novel, potent, endothelin type B receptor-selective antagonist of microbial origin, Mol. Pharmacol, vol.45, pp.724-730, 1994.

J. He, W. Cody, M. Flynn, K. Welch, E. Reynolds et al., Res-701-1, synthesis and a reevaluation of its effects on the endothelin receptors, Bioorganic & Medicinal Chemistry Letters, vol.5, issue.6, pp.621-626, 1995.
DOI : 10.1016/0960-894X(95)00084-7

R. Katahira, K. Shibata, M. Yamasaki, Y. Matsuda, and M. Yoshida, RES-701-1, comparative study of the synthetic and the microbial-origin compounds, Bioorganic & Medicinal Chemistry Letters, vol.5, issue.15, pp.1595-1600, 1995.
DOI : 10.1016/0960-894X(95)00264-T

K. Shibata, K. Yano, T. Tanaka, Y. Matsuda, and M. Yamasaki, Analogs of an endothelin antagonist RES-701-1: substitutions of C-terminal amino acid, Bioorganic & Medicinal Chemistry Letters, vol.6, issue.7, pp.775-778, 1996.
DOI : 10.1016/0960-894X(96)00127-8

K. Shibata, K. Yano, T. Tanaka, Y. Matsuda, and M. Yamasaki, C-terminal modifications of an endothelin antagonist RES-701-1: Production of ETA/ETB dual selective analogs, Letters in Peptide Science, vol.268, issue.3, pp.167-170, 1997.
DOI : 10.1007/BF02443529

T. Suzawa, K. Shibata, T. Tanaka, Y. Matsuda, and M. Yamasaki, RES-701-1/endothelin-1 hybrid peptide having a potent binding activity for type B receptor, Bioorganic & Medicinal Chemistry Letters, vol.7, issue.13, pp.1715-1720, 1997.
DOI : 10.1016/S0960-894X(97)00296-5

K. Shibata, T. Suzawa, T. Ohno, K. Yamada, T. Tanaka et al., Hybrid peptides constructed from RES-701-1, an endothelin B receptor antagonist, and endothelin; binding selectivity for endothelin receptors and their pharmacological activity, Bioorganic & Medicinal Chemistry, vol.6, issue.12, pp.2459-2467, 1998.
DOI : 10.1016/S0968-0896(98)80020-5

K. Sasaki, S. Dockerill, and D. Adamiak, X-ray analysis of glucagon and its relationship to receptor binding, Nature, vol.18, issue.5529, pp.751-757, 1975.
DOI : 10.1038/257751a0

M. Iwatsuki, Y. Koizumi, H. Gouda, S. Hirono, and H. Tomoda, Lys17 in the ???lasso??? peptide lariatin A is responsible for anti-mycobacterial activity, Bioorganic & Medicinal Chemistry Letters, vol.19, issue.10, pp.2888-2890, 2009.
DOI : 10.1016/j.bmcl.2009.03.033

P. Lin, H. Samanta, C. Bechtold, C. Deminie, A. Patick et al., Characterization of siamycin I, a human immunodeficiency virus fusion inhibitor, Antimicrob. Agents Chemother, vol.40, pp.133-138, 1996.

P. Ma, K. Nishiguchi, H. Yuille, L. Davis, J. Nakayama et al., Anti-HIV siamycin I directly inhibits autophosphorylation activity of the bacterial FsrC quorum sensor and other ATP-dependent enzyme activities, FEBS Letters, vol.580, issue.17, pp.2660-2664, 2011.
DOI : 10.1016/j.febslet.2011.07.026

K. Kimura, M. Yamazaki, N. Sasaki, T. Yamashita, S. Negishi et al., Novel Propeptin Analog, Propeptin-2, Missing Two Amino Acid Residues from the Propeptin C-Terminus Loses Antibiotic Potency, The Journal of Antibiotics, vol.54, issue.8, pp.519-523, 2007.
DOI : 10.1038/ja.2007.66

H. Nar, A. Schmid, C. Puder, and O. Potterat, High-Resolution Crystal Structure of a Lasso Peptide, ChemMedChem, vol.58, issue.10, pp.1689-1692, 2010.
DOI : 10.1002/cmdc.201000264

D. Wyss, H. Lahm, M. Manneberg, and A. Labhardt, Anantin-A peptide antagonist of the atrial natriuretic factor(ANF). II. Determination of the primary sequence by NMR on the basis of proton assignments., The Journal of Antibiotics, vol.44, issue.2, pp.172-180, 1991.
DOI : 10.7164/antibiotics.44.172

R. Vos and Y. Engelborghs, A FLUORESCENCE STUDY OF TRYPTOPHAN-HISTIDINE INTERACTIONS IN THE PEPTIDE ANANTIN AND IN SOLUTION, Photochemistry and Photobiology, vol.53, issue.1, pp.24-32, 1994.
DOI : 10.1111/j.1751-1097.1994.tb03938.x

M. Yamasaki, K. Yano, M. Yoshida, Y. Matsuda, and K. Yamaguchi, RES-701-1, a novel and selective endothelin type B receptor antagonist produced by Streptomyces sp. RE-701. II. Determination of the primary sequence., The Journal of Antibiotics, vol.47, issue.3, pp.276-280, 1994.
DOI : 10.7164/antibiotics.47.276

Y. Esumi, Y. Suzuki, Y. Itoh, M. Uramoto, K. Kimura et al., Propeptin, a New Inhibitor of Prolyl Endopeptidase Produced by Microbispora. II. Determination of Chemical Structure., The Journal of Antibiotics, vol.55, issue.3, pp.296-300, 2002.
DOI : 10.7164/antibiotics.55.296

X. Xie and M. Marahiel, NMR as an Effective Tool for the Structure Determination of Lasso Peptides, ChemBioChem, vol.283, issue.5, pp.621-625
DOI : 10.1002/cbic.201100754

S. Zirah, C. Afonso, U. Linne, T. Knappe, M. Marahiel et al., Topoisomer Differentiation of Molecular Knots by FTICR MS: Lessons from Class II Lasso Peptides, Journal of The American Society for Mass Spectrometry, vol.19, issue.3, pp.467-479, 2011.
DOI : 10.1007/s13361-010-0028-1

URL : https://hal.archives-ouvertes.fr/hal-00578442

N. Curtis, R. Eisenstadt, S. East, R. Cornford, L. Walker et al., Iron-regulated outer membrane proteins of Escherichia coli K-12 and mechanism of action of catechol-substituted cephalosporins., Antimicrobial Agents and Chemotherapy, vol.32, issue.12, pp.1879-1886, 1988.
DOI : 10.1128/AAC.32.12.1879

J. Gomez-escribano and M. Bibb, Engineering Streptomyces coelicolor for heterologous expression of secondary metabolite gene clusters. Microbial Biot, pp.207-215, 2011.

K. Yan, Molecular mechanisms governing the biosynthesis of lasso peptides, bioactive peptides produced by bacteria: the example of microcin J25, 2011.

A. S. Mak and B. L. Jones, Application of S-pyridylethylation of cysteine to the sequence analysis of proteins, Analytical Biochemistry, vol.84, issue.2, pp.432-440, 1978.
DOI : 10.1016/0003-2697(78)90061-1

S. Kelly, T. Jess, and N. Price, How to study proteins by circular dichroism, Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics, vol.1751, issue.2, pp.1751-119, 2005.
DOI : 10.1016/j.bbapap.2005.06.005

M. Piotto, V. Saudek, and V. Sklená?, Gradient-tailored excitation for single-quantum NMR spectroscopy of aqueous solutions, Journal of Biomolecular NMR, vol.87, issue.6, pp.661-665, 1992.
DOI : 10.1007/BF02192855

T. Hwang and A. Shaka, Water Suppression That Works. Excitation Sculpting Using Arbitrary Wave-Forms and Pulsed-Field Gradients, Journal of Magnetic Resonance, Series A, vol.112, issue.2, pp.275-279, 1995.
DOI : 10.1006/jmra.1995.1047

W. Aue, E. Bartholdi, and R. Ernst, Two???dimensional spectroscopy. Application to nuclear magnetic resonance, The Journal of Chemical Physics, vol.64, issue.5, pp.2229-2246, 1976.
DOI : 10.1063/1.432450

D. Marion and K. Wüthrich, Application of phase sensitive two-dimensional correlated spectroscopy (COSY) for measurements of 1H-1H spin-spin coupling constants in proteins, Biochemical and Biophysical Research Communications, vol.113, issue.3, pp.967-974, 1983.
DOI : 10.1016/0006-291X(83)91093-8

M. Rance, O. Sørensen, G. Bodenhausen, G. Wagner, R. Ernst et al., Improved spectral resolution in COSY 1H NMR spectra of proteins via double quantum filtering, Biochemical and Biophysical Research Communications, vol.117, issue.2, pp.479-485, 1983.
DOI : 10.1016/0006-291X(83)91225-1

URL : https://hal.archives-ouvertes.fr/hal-00813137

L. Braunschweiler and R. Ernst, Coherence transfer by isotropic mixing: Application to proton correlation spectroscopy, Journal of Magnetic Resonance (1969), vol.53, issue.3, pp.521-528, 1983.
DOI : 10.1016/0022-2364(83)90226-3

A. Bax and D. Davis, MLEV-17-based two-dimensional homonuclear magnetization transfer spectroscopy, Journal of Magnetic Resonance (1969), vol.65, issue.2, pp.355-360, 1985.
DOI : 10.1016/0022-2364(85)90018-6

M. Rance, Improved techniques for homonuclear rotating-frame and isotropic mixing experiments, Journal of Magnetic Resonance (1969), vol.74, issue.3, pp.557-564, 1987.
DOI : 10.1016/0022-2364(87)90277-0

A. Kumar, R. Ernst, and K. Wüthrich, A two-dimensional nuclear Overhauser enhancement (2D NOE) experiment for the elucidation of complete proton-proton cross-relaxation networks in biological macromolecules, Biochemical and Biophysical Research Communications, vol.95, issue.1, pp.1-6, 1980.
DOI : 10.1016/0006-291X(80)90695-6

A. Bothner-by, R. Stephens, J. Lee, C. Warren, and R. Jeanloz, Structure determination of a tetrasaccharide: transient nuclear Overhauser effects in the rotating frame, Journal of the American Chemical Society, vol.106, issue.3, pp.811-813, 1984.
DOI : 10.1021/ja00315a069

G. Bodenhausen and D. Ruben, Natural abundance nitrogen-15 NMR by enhanced heteronuclear spectroscopy, Chemical Physics Letters, vol.69, issue.1, pp.185-189, 1980.
DOI : 10.1016/0009-2614(80)80041-8

URL : https://zenodo.org/record/45375

A. Bax and D. Marion, Improved resolution and sensitivity in 1H-detected heteronuclear multiple-bond correlation spectroscopy, Journal of Magnetic Resonance (1969), vol.78, issue.1, pp.186-191, 1988.
DOI : 10.1016/0022-2364(88)90172-2

W. Vranken, W. Boucher, T. Stevens, R. Fogh, A. Pajon et al., The CCPN data model for NMR spectroscopy: Development of a software pipeline, Proteins: Structure, Function, and Bioinformatics, vol.58, issue.4, pp.687-696, 2005.
DOI : 10.1002/prot.20449

K. Wüthrich, A. Brünger, G. Clore, A. Gronenborn, and M. Karplus, Solution conformations of human growth hormone releasing factor. Comparison of the restrained molecular dynamics and distance geometry methods for a system without long-range distance data, Protein Eng, vol.1, issue.255, pp.399-406, 1986.

A. Brünger, J. Kuriyan, and M. Karplus, Crystallographic R Factor Refinement by Molecular Dynamics, Science, vol.235, issue.4787, pp.458-460, 1987.
DOI : 10.1126/science.235.4787.458

A. Brünger, X-PLOR version 3.1: a system for X-ray crystallography and NMR, 1993.

B. Brooks, R. Bruccoleri, B. Olafson, D. States, S. Swaminathan et al., CHARMM: A program for macromolecular energy, minimization, and dynamics calculations, Journal of Computational Chemistry, vol.I, issue.2, pp.187-217, 1983.
DOI : 10.1002/jcc.540040211

M. Karplus, Contact Electron???Spin Coupling of Nuclear Magnetic Moments, The Journal of Chemical Physics, vol.30, issue.1, pp.11-15, 1959.
DOI : 10.1063/1.1729860

G. Ramachandran and R. Chandrasekaran, Conformational energy map of a dipeptide unit in relation to infrared and nuclear magnetic resonance data, Biopolymers, vol.I, issue.5, pp.935-939, 1971.
DOI : 10.1002/bip.360100515

V. Bystrov, Spin???spin coupling and the conformational states of peptide systems, Progress in Nuclear Magnetic Resonance Spectroscopy, vol.10, issue.2, pp.41-82, 1976.
DOI : 10.1016/0079-6565(76)80001-5

A. Pardi, M. Billeter, and K. Wüthrich, Calibration of the angular dependence of the amide proton-C?? proton coupling constants, 3JHN??, in a globular protein, Journal of Molecular Biology, vol.180, issue.3, pp.741-751, 1984.
DOI : 10.1016/0022-2836(84)90035-4

G. Vuister and A. Bax, Quantitative J correlation: a new approach for measuring homonuclear three-bond J(HNH.alpha.) coupling constants in 15N-enriched proteins, Journal of the American Chemical Society, vol.115, issue.17, pp.7772-7777, 1993.
DOI : 10.1021/ja00070a024

M. Minch, Orientational dependence of vicinal proton-proton NMR coupling constants: the Karplus relationship. Concept Magnetic Res, pp.41-56, 1994.

O. Martin, M. Villegas, J. Vila, and H. Scheraga, Analysis of $$ {}^{13}{\text{C}}^{{{\upalpha}}} $$ and $$ {}^{13}{\text{C}}^{{{\upbeta}}} $$ chemical shifts of cysteine and cystine residues in proteins: a quantum chemical approach, Journal of Biomolecular NMR, vol.21, issue.5, pp.217-225, 2010.
DOI : 10.1007/s10858-010-9396-x

M. Nilges, A. Gronenborn, A. Brünger, and G. Clore, Determination of three-dimensional structures of proteins by simulated annealing with interproton distance restraints. Application to crambin, potato carboxypeptidase inhibitor and barley serine proteinase inhibitor 2, "Protein Engineering, Design and Selection", vol.2, issue.1, pp.27-38, 1988.
DOI : 10.1093/protein/2.1.27

R. Koradi, M. Billeter, and K. Wüthrich, MOLMOL: A program for display and analysis of macromolecular structures, Journal of Molecular Graphics, vol.14, issue.1, pp.51-55, 1996.
DOI : 10.1016/0263-7855(96)00009-4

A. Morris, M. Macarthur, G. Hutchinson, and J. Thornton, Stereochemical quality of protein structure coordinates, Proteins: Structure, Function, and Genetics, vol.12, issue.4, pp.345-364, 1992.
DOI : 10.1002/prot.340120407

R. Laskowski, J. Rullmann, M. Mcarthur, R. Kaptein, and J. Thornton, AQUA and PROCHECK-NMR: Programs for checking the quality of protein structures solved by NMR, Journal of Biomolecular NMR, vol.8, issue.4, pp.477-486, 1996.
DOI : 10.1007/BF00228148

V. Jarymowycz and M. Stone, Fast Time Scale Dynamics of Protein Backbones:?? NMR Relaxation Methods, Applications, and Functional Consequences, Chemical Reviews, vol.106, issue.5, pp.1624-1671, 2006.
DOI : 10.1021/cr040421p

S. Morin, A practical guide to protein dynamics from 15N spin relaxation in solution, Progress in Nuclear Magnetic Resonance Spectroscopy, vol.59, issue.3, pp.245-262, 2011.
DOI : 10.1016/j.pnmrs.2010.12.003

E. Lescop, Etude par résonance magnétique nucléaire de macromolécules biologiques#: structure, dynamique et interactions. Application à une protéine de liaison aux odeurs, 2003.

G. Lipari and A. Szabo, Model-free approach to the interpretation of nuclear magnetic resonance relaxation in macromolecules. 1. Theory and range of validity, Journal of the American Chemical Society, vol.104, issue.17, pp.4546-4559, 1982.
DOI : 10.1021/ja00381a009

G. Lipari and A. Szabo, Model-free approach to the interpretation of nuclear magnetic resonance relaxation in macromolecules. 2. Analysis of experimental results, Journal of the American Chemical Society, vol.104, issue.17, pp.4559-4570, 1982.
DOI : 10.1021/ja00381a010

G. Clore, P. Driscoll, P. Wingfield, and A. Gronenborn, Analysis of the backbone dynamics of interleukin-1.beta. using two-dimensional inverse detected heteronuclear nitrogen-15-proton NMR spectroscopy, Biochemistry, vol.29, issue.32, pp.7387-7401, 1990.
DOI : 10.1021/bi00484a006

B. Johnson, R. Blevins, and . View, NMR View: A computer program for the visualization and analysis of NMR data, Journal of Biomolecular NMR, vol.88, issue.5, pp.603-614, 1994.
DOI : 10.1007/BF00404272

D. Fushman, S. Cahill, and D. Cowburn, The main-chain dynamics of the dynamin pleckstrin homology (PH) domain in solution: analysis of 15N relaxation with monomer/dimer equilibration 1 1 Edited by P.E.Wright, Journal of Molecular Biology, vol.266, issue.1, pp.173-194, 1997.
DOI : 10.1006/jmbi.1996.0771

J. Hall and D. Fushman, Characterization of the overall and local dynamics of a protein with intermediate rotational anisotropy: differentiating between conformational exchange and anisotropic diffusion in the B3 domain of protein G, Journal of Biomolecular NMR, vol.27, issue.3, pp.261-275, 2003.
DOI : 10.1023/A:1025467918856

B. Stapley and T. Creamer, A survey of left-handed polyproline II helices, Protein Science, vol.117, issue.3, pp.587-595, 1999.
DOI : 10.1110/ps.8.3.587

S. Pan, J. Rajniak, M. Maksimov, and J. Link, The role of a conserved threonine residue in the leader peptide of lasso peptide precursors, Chemical Communications, vol.133, issue.13, pp.2012-1880
DOI : 10.1039/c2cc17211a

K. Severinov, E. Semenova, A. Kazakov, T. Kazakov, and M. Gelfand, Low-molecular-weight post-translationally modified microcins, Molecular Microbiology, vol.44, issue.6, pp.1380-1394, 2007.
DOI : 10.1016/S0092-8674(00)81515-9

J. Velásquez and W. Van-der-donk, Genome mining for ribosomally synthesized natural products, Current Opinion in Chemical Biology, vol.15, issue.1, pp.11-21, 2011.
DOI : 10.1016/j.cbpa.2010.10.027

M. Pérot-taillandier, S. Zirah, S. Rebuffat, U. Linne, M. Marahiel et al., Determination of Peptide Topology through Time-Resolved Double-Resonance under Electron Capture Dissociation Conditions, Analytical Chemistry, vol.84, issue.11, pp.4957-4964, 2012.
DOI : 10.1021/ac300607y

R. Ducasse, K. Yan, C. Goulard, A. Blond, Y. Li et al., Sequence Determinants Governing the Topology and Biological Activity of a Lasso Peptide, Microcin J25, ChemBioChem, vol.59, issue.3, pp.371-380, 2012.
DOI : 10.1002/cbic.201100702

URL : https://hal.archives-ouvertes.fr/hal-00678535

K. Kuznedelov, E. Semenova, T. Knappe, D. Mukhamedyarov, A. Srivastava et al., The Antibacterial Threaded-lasso Peptide Capistruin Inhibits Bacterial RNA Polymerase, Journal of Molecular Biology, vol.412, issue.5, pp.842-848, 2011.
DOI : 10.1016/j.jmb.2011.02.060