M. S. Linet, Cancer risks associated with external radiation from diagnostic imaging procedures CA: a cancer journal for clinicians, 2012.

K. Ito, Encyclopedic dictionary of mathematics, p.1397, 1993.

J. Pawley, Handbook of biological confocal microscopy, Journal of Biomedical Optics, 2008.

H. Ra and W. Piyawattanametha, Three-dimensional in vivo imaging by a handheld dual-axes confocal microscope, Optics Express, vol.16, issue.10, 2008.
DOI : 10.1364/OE.16.007224.m002

A. French, S. Mills, and R. Swarup, Colocalization of fluorescent markers in confocal microscope images of plant cells, Nature Protocols, vol.30, issue.4, 2008.
DOI : 10.3183/NPPRJ-2007-22-04-p441-446

M. Egeblad and A. Ewald, Visualizing stromal cell dynamics in different tumor microenvironments by spinning disk confocal microscopy Disease models &amp, 2008.

B. D. Bennett, T. L. Jetton, G. Ying, M. A. Magnuson, and D. W. Piston, Quantitative subcellular imaging of glucose metabolism within intact pancreatic islets, The Journal of biological chemistry, vol.271, issue.7, pp.3647-51, 1996.

S. Huang, A. A. Heikal, and W. W. Webb, Two-Photon Fluorescence Spectroscopy and Microscopy of NAD(P)H and Flavoprotein, Biophysical Journal, vol.82, issue.5, pp.2811-2836, 2002.
DOI : 10.1016/S0006-3495(02)75621-X

G. H. Patterson, S. M. Knobel, P. Arkhammar, O. Thastrup, and D. W. Piston, Separation of the glucose-stimulated cytoplasmic and mitochondrial NAD(P)H responses in pancreatic islet beta cells, Proceedings of the National Academy of Sciences, vol.97, issue.10, pp.5203-5210, 2000.
DOI : 10.1073/pnas.090098797

M. Han, G. Giese, and J. Bille, Second harmonic generation imaging of collagen fibrils in cornea and sclera, Optics Express, vol.13, issue.15, pp.5791-5798, 2005.
DOI : 10.1364/OPEX.13.005791

K. König, K. Schenke-layland, I. Riemann, and U. A. Stock, Multiphoton autofluorescence imaging of intratissue elastic fibers, Biomaterials, vol.26, issue.5, pp.495-500, 2005.
DOI : 10.1016/j.biomaterials.2004.02.059

S. Teng, Multiphoton Autofluorescence and Second-Harmonic Generation Imaging of the Ex Vivo Porcine Eye, Investigative Opthalmology & Visual Science, vol.47, issue.3, pp.1216-1240, 2006.
DOI : 10.1167/iovs.04-1520

J. K. Karen, D. S. Gareau, S. W. Dusza, M. Tudisco, M. Rajadhyaksha et al., Detection of basal cell carcinomas in Mohs excisions with fluorescence confocal mosaicing microscopy, Seminars in Cutaneous Medicine and Surgery, pp.1242-1250, 2008.
DOI : 10.1111/j.1365-2133.2009.09141.x

V. Campo-ruiz, E. R. Ochoa, and G. Y. Lauwers, Evaluation of hepatic histology by near-infrared confocal microscopy: A pilot study, Human Pathology, vol.33, issue.10, pp.975-982, 2002.
DOI : 10.1053/hupa.2002.127445

A. Parrish, E. Halama, M. T. Tilli, M. Freedman, and P. A. Furth, Reflectance confocal microscopy for characterization of mammary ductal structures and development of neoplasia in genetically engineered mouse models of breast cancer, Journal of Biomedical Optics, vol.10, issue.5, p.51602, 2005.
DOI : 10.1117/1.2065827

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, Optical coherence tomography - principles and applications, Reports on Progress in Physics, vol.66, issue.2, pp.239-303, 2003.
DOI : 10.1088/0034-4885/66/2/204

P. H. Tomlins and R. K. Wang, Theory, developments and applications of optical coherence tomography, Journal of Physics D: Applied Physics, vol.38, issue.15, pp.2519-2535, 2005.
DOI : 10.1088/0022-3727/38/15/002

R. Leitgeb, C. Hitzenberger, and A. Fercher, Performance of fourier domain vs time domain optical coherence tomography, Optics Express, vol.11, issue.8, pp.889-894, 2003.
DOI : 10.1364/OE.11.000889

A. M. Zysk, F. T. Nguyen, A. L. Oldenburg, D. L. Marks, and S. A. Boppart, Optical coherence tomography: a review of clinical development from bench to bedside, Journal of Biomedical Optics, vol.12, issue.5, pp.51403-51424, 2007.
DOI : 10.1117/1.2793736

B. Karamata, P. Fédérale, and . Lausanne, Multiple Scattering in Wide-field Optical Coherence Tomography, 2004.

B. Liu and M. E. Brezinski, Theoretical and practical considerations on detection performance of time domain, Fourier domain, and swept source optical coherence tomography, Journal of Biomedical Optics, vol.12, issue.4, pp.44007-44019, 2007.
DOI : 10.1117/1.2753410

J. F. De-boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney et al., Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography, Optics Letters, vol.28, issue.21, pp.2067-2069, 2003.
DOI : 10.1364/OL.28.002067

M. Szkulmowski, A. Szkulmowska, T. Bajraszewski, A. Kowalczyk, and M. Wojtkowski, Flow velocity estimation using joint Spectral and Time domain Optical Coherence Tomography, Optics Express, vol.16, issue.9, pp.6008-6025, 2008.
DOI : 10.1364/OE.16.006008

D. Huang, Optical coherence tomography, Science, vol.254, issue.5035, pp.1178-1181, 1991.
DOI : 10.1126/science.1957169

C. M. Eigenwillig, T. Klein, W. Wieser, B. R. Biedermann, and R. Huber, Wavelength swept amplified spontaneous emission source for high speed retinal optical coherence tomography at 1060 nm, Journal of Biophotonics, vol.15, issue.7-8, 2011.
DOI : 10.1002/jbio.201000104

J. M. Schmitt, Methods and Apparatus for Swept-Source Optical Coherence Tomography, Google Patents, vol.886, 2011.

M. V. Sarunic, M. A. Choma, C. Yang, and J. A. Izatt, Instantaneous complex conjugate resolved spectral domain and swept-source OCT using 3x3 fiber couplers, Optics Express, vol.13, issue.3, p.957, 2005.
DOI : 10.1364/OPEX.13.000957

M. A. Choma, M. V. Sarunic, C. Yang, and J. A. Izatt, Sensitivity advantage of swept source and Fourier domain optical coherence tomography, Optics Express, vol.11, issue.18, 2003.
DOI : 10.1364/OE.11.002183

R. Leitgeb, C. Hitzenberger, and A. Fercher, Performance of fourier domain vs time domain optical coherence tomography, Optics Express, vol.11, issue.8, p.889, 2003.
DOI : 10.1364/OE.11.000889

M. Choma, M. Sarunic, C. Yang, and J. Izatt, Sensitivity advantage of swept source and Fourier domain optical coherence tomography, Optics Express, vol.11, issue.18, p.2183, 2003.
DOI : 10.1364/OE.11.002183

B. Potsaid, Ultrahigh speed Spectral / Fourier domain OCT ophthalmic imaging at 70,000 to 312,500 axial scans per second, Optics Express, vol.16, issue.19, pp.15149-15169, 2008.
DOI : 10.1364/OE.16.015149.m003

R. A. Leitgeb, Ultrahigh resolution Fourier domain optical coherence tomography, Optics Express, vol.12, issue.10, pp.2156-2165, 2004.
DOI : 10.1364/OPEX.12.002156

E. A. Swanson, In vivo retinal imaging by optical coherence tomography, Optics Letters, vol.18, issue.21, p.1864, 1993.
DOI : 10.1364/OL.18.001864

R. B. Rosen, Multidimensional en-Face OCT imaging of the retina, Optics Express, vol.17, issue.5, pp.4112-4133, 2009.
DOI : 10.1364/OE.17.004112

N. Nassif, In vivo high-resolution video-rate spectral-domain optical coherence tomography of the human retina and optic nerve, Optics Express, vol.12, issue.3, pp.367-376, 2004.
DOI : 10.1364/OPEX.12.000367.m005

Y. Wang, A. Fawzi, O. Tan, J. Gil-flamer, and D. Huang, Retinal blood flow detection in diabetic patients by Doppler Fourier domain optical coherence tomography, Optics Express, vol.17, issue.5, pp.4061-4073, 2009.
DOI : 10.1364/OE.17.004061

B. Cense, Volumetric retinal imaging with ultrahigh-resolution spectral-domain optical coherence tomography and adaptive optics using two broadband light sources, Optics Express, vol.17, issue.5, pp.4095-4111, 2009.
DOI : 10.1364/OE.17.004095.m001

T. P. Goderie, Combined optical coherence tomography and intravascular ultrasound radio frequency data analysis for plaque characterization. Classification accuracy of human coronary plaques in vitro The international journal of cardiovascular imaging, 2010.

I. Jang, In Vivo Characterization of Coronary Atherosclerotic Plaque by Use of Optical Coherence Tomography, Circulation, vol.111, issue.12, pp.1551-1555, 2005.
DOI : 10.1161/01.CIR.0000159354.43778.69

D. Levitz, Determination of optical scattering properties of highly-scattering media in optical coherence tomography images, Optics Express, vol.12, issue.2, p.249, 2004.
DOI : 10.1364/OPEX.12.000249

A. S. Paranjape, Depth resolved photothermal OCT detection of macrophages in tissue using nanorose, Biomedical Optics Express, vol.1, issue.1, 2010.
DOI : 10.1364/BOE.1.000002

I. Jang, Visualization of coronary atherosclerotic plaques in patients using optical coherence tomography: comparison with intravascular ultrasound, Journal of the American College of Cardiology, vol.39, issue.4, pp.604-609, 2002.
DOI : 10.1016/S0735-1097(01)01799-5

G. Isenberg, Accuracy of endoscopic optical coherence tomography in the detection of dysplasia in Barrett's esophagus: a prospective, double-blinded study, Gastrointestinal Endoscopy, vol.62, issue.6, pp.825-831, 2005.
DOI : 10.1016/j.gie.2005.07.048

A. P. Weston, A. S. Badr, and R. S. Hassanein, Prospective multivariate analysis of factors predictive of complete regression of Barrett's esophagus, The American Journal of Gastroenterology, vol.108, issue.12, pp.3420-3426, 1999.
DOI : 10.1111/j.1572-0241.1998.00276.x

X. D. Li, Optical Coherence Tomography: Advanced Technology for the Endoscopic Imaging of Barrett's Esophagus, Endoscopy, vol.32, issue.12, pp.921-930, 2000.
DOI : 10.1055/s-2000-9626

J. A. Evans, Optical Coherence Tomography to Identify Intramucosal Carcinoma and High-Grade Dysplasia in Barrett's Esophagus Clinical gastroenterology and hepatology : the official clinical practice journal of the, American Gastroenterological Association, vol.4, issue.1, pp.38-43, 2006.

G. Zuccaro, Optical coherence tomography of the esophagus and proximal stomach in health and disease, The American Journal of Gastroenterology, vol.6, issue.9, pp.2633-2639, 2001.
DOI : 10.1055/s-2000-9626

J. M. Poneros and N. S. Nishioka, Diagnosis of Barrett's esophagus using optical coherence tomography, Gastrointestinal Endoscopy Clinics of North America, vol.13, issue.2, pp.309-323, 2003.
DOI : 10.1016/S1052-5157(03)00012-6

Y. Chen, Ultrahigh resolution optical coherence tomography of Barrett???s esophagus: preliminary descriptive clinical study correlating images with histology, Endoscopy, vol.39, issue.7, pp.599-605, 2007.
DOI : 10.1055/s-2007-966648

T. M. Bydlon, Performance metrics of an optical spectral imaging system for intra-operative assessment of breast tumor margins, Optics Express, vol.18, issue.8, p.8058, 2010.
DOI : 10.1364/OE.18.008058

F. T. Nguyen, Intraoperative Evaluation of Breast Tumor Margins with Optical Coherence Tomography, Cancer Research, vol.69, issue.22, pp.8790-8796, 2009.
DOI : 10.1158/0008-5472.CAN-08-4340

A. M. Zysk and S. A. Boppart, Computational methods for analysis of human breast tumor tissue in optical coherence tomography images, Journal of Biomedical Optics, vol.11, issue.5, p.54015
DOI : 10.1117/1.2358964

R. Mclaughlin, L. Scolaro, P. Robbins, S. Hamza, C. Saunders et al., Imaging of Human Lymph Nodes Using Optical Coherence Tomography: Potential for Staging Cancer, Cancer Research, vol.70, issue.7, pp.2579-84, 2010.
DOI : 10.1158/0008-5472.CAN-09-4062

N. V. Iftimia, M. Mujat, T. Ustun, R. D. Ferguson, V. Danthu et al., Spectral-domain low coherence interferometry/optical coherence tomography system for fine needle breast biopsy guidance, Review of Scientific Instruments, vol.80, issue.2, p.24302, 2009.
DOI : 10.1063/1.3076409

W. Luo, Optical Biopsy of Lymph Node Morphology using Optical Coherence Tomography, Technology in Cancer Research & Treatment, vol.111, issue.5, pp.539-548, 2005.
DOI : 10.1126/science.1957169

A. M. Zysk, E. J. Chaney, and S. A. Boppart, Refractive index of carcinogen-induced rat mammary tumours, Physics in Medicine and Biology, vol.51, issue.9, pp.2165-2177, 2006.
DOI : 10.1088/0031-9155/51/9/003

B. J. Vakoc, Three-dimensional microscopy of the tumor microenvironment in vivo using optical frequency domain imaging, Nature Medicine, vol.54, issue.10, pp.1219-1242, 2009.
DOI : 10.1038/nm.1971

Y. Zhao, Integrated multimodal optical microscopy for structural and functional imaging of engineered and natural skin, Journal of Biophotonics, vol.107, issue.5-6, 2012.
DOI : 10.1002/jbio.201200003

C. Li, G. Guan, X. Cheng, Z. Huang, and R. K. Wang, Quantitative elastography provided by surface acoustic waves measured by phase-sensitive optical coherence tomography, Optics Letters, vol.37, issue.4, p.722, 2012.
DOI : 10.1364/OL.37.000722

B. F. Kennedy, In vivo three-dimensional optical coherence elastography, Optics Express, vol.19, issue.7, p.6623, 2011.
DOI : 10.1364/OE.19.006623

E. Auksorius, Dual-modality fluorescence and full-field optical coherence microscopy for biomedical imaging applications, Biomedical Optics Express, vol.3, issue.3, pp.661-667, 2012.
DOI : 10.1364/BOE.3.000661.m002

M. Hagen-eggert, D. Hillmann, P. Koch, and G. Hüttmann, Diffusion-sensitive Fourier-domain optical coherence tomography, Optical Coherence Tomography and Coherence Domain Optical Methods in Biomedicine XV, pp.78892-78892, 2011.
DOI : 10.1117/12.873815

D. C. Adler, Comparison of three-dimensional optical coherence tomography and high resolution photography for art conservation studies, Optics Express, vol.15, issue.24, p.15972, 2007.
DOI : 10.1364/OE.15.015972.m001

T. Arecchi, A new tool for painting diagnostics: Optical coherence tomography, Optics and Spectroscopy, vol.101, issue.1, pp.23-26, 2006.
DOI : 10.1134/S0030400X06070058

M. Hughes, M. Spring, and A. Podoleanu, Speckle noise reduction in optical coherence tomography of paint layers, Applied Optics, vol.49, issue.1, pp.99-107, 2010.
DOI : 10.1364/AO.49.000099

G. Latour, J. Echard, B. Soulier, I. Emond, S. Vaiedelich et al., Structural and optical properties of wood and wood finishes studied using optical coherence tomography: application to an 18th century Italian violin, Applied Optics, vol.48, issue.33, pp.6485-6491, 2009.
DOI : 10.1364/AO.48.006485

URL : https://hal.archives-ouvertes.fr/hal-01236836

H. Liang, En-face optical coherence tomography - a novel application of non-invasive imaging to art conservation, Optics Express, vol.13, issue.16, pp.6133-6144, 2005.
DOI : 10.1364/OPEX.13.006133.m001

H. Liang, B. Peric, M. Hughes, A. Podoleanu, M. Spring et al., Optical coherence tomography for art conservation and archaeology, O3A: Optics for Arts, Architecture, and Archaeology, pp.661805-661805, 2007.
DOI : 10.1117/12.726032

M. Targowski, P. Iwanicka, L. Tymi?ska-widmer, M. Sylwestrzak, and E. A. Kwiatkowska, Structural Examination of Easel Paintings with Optical Coherence Tomography, Accounts of Chemical Research, vol.43, issue.6, pp.826-862, 2010.
DOI : 10.1021/ar900195d

P. Targowski, B. Rouba, M. Góra, L. Tymi?ska-widmer, J. Marczak et al., Optical coherence tomography in art diagnostics and restoration, Applied Physics A, vol.5857, issue.1, pp.1-9, 2008.
DOI : 10.1007/s00339-008-4446-x

W. F. Cheong, S. A. Prahl, and A. J. Welch, A review of the optical properties of biological tissues, IEEE Journal of Quantum Electronics, vol.26, issue.12, pp.2166-2185, 1990.
DOI : 10.1109/3.64354

V. Peters, Optical properties of normal and diseased human breast tissues in the visible and near infrared, Physics in Medicine and Biology, vol.35, issue.9, p.1317, 1990.
DOI : 10.1088/0031-9155/35/9/010

F. Kiessling, Small Animal Imaging, p.597, 2010.
DOI : 10.1007/978-3-642-12945-2

M. Bartlett, G. Huang, L. Larcom, and H. Jiang, Measurement of particle size distribution in mammalian cells in vitro by use of polarized light spectroscopy, Applied Optics, vol.43, issue.6, p.1296, 2004.
DOI : 10.1364/AO.43.001296

J. R. Mourant, Light scattering from cells: the contribution of the nucleus and the effects of proliferative status, Journal of Biomedical Optics, vol.5, issue.2, pp.131-138, 2000.
DOI : 10.1117/1.429979

A. M. Nilsson, C. Sturesson, D. L. Liu, and S. Andersson-engels, Changes in spectral shape of tissue optical properties in conjunction with laser-induced thermotherapy, Applied Optics, vol.37, issue.7, p.1256, 1998.
DOI : 10.1364/AO.37.001256

F. P. Bolin, L. E. Preuss, R. C. Taylor, and R. J. Ference, Refractive index of some mammalian tissues using a fiber optic cladding method, Applied Optics, vol.28, issue.12, p.2297, 1989.
DOI : 10.1364/AO.28.002297

G. J. Tearney, M. E. Brezinski, J. F. Southern, B. E. Bouma, M. R. Hee et al., Determination of the refractive index of highly scattering human tissue by optical coherence tomography, Optics Letters, vol.20, issue.21, p.2258, 1995.
DOI : 10.1364/OL.20.002258

N. Graf, Optical Coherence Tomography, 2010.

A. Dubois, G. Moneron, K. Grieve, and A. C. Boccara, Three-dimensional cellular-level imaging using full-field optical coherence tomography, Physics in Medicine and Biology, vol.49, issue.7, pp.1227-1234, 2004.
DOI : 10.1088/0031-9155/49/7/010

URL : https://hal.archives-ouvertes.fr/hal-00627958

L. Vabre, A. Dubois, and A. C. Boccara, Thermal-light full-field optical coherence tomography, Optics Letters, vol.27, issue.7, pp.530-532, 2002.
DOI : 10.1364/OL.27.000530

URL : https://hal.archives-ouvertes.fr/hal-00627979

M. Jain, N. Shukla, M. Manzoor, S. Nadolny, and S. Mukherjee, Modified full-field optical coherence tomography: A novel tool for rapid histology of tissues, Journal of pathology informatics, vol.2, issue.1, p.28, 2011.

E. Dalimier and D. Salomon, Full-Field Optical Coherence Tomography: A New Technology for 3D High-Resolution Skin Imaging, Dermatology, vol.224, issue.1, 2012.
DOI : 10.1159/000337423

A. Dubois, L. Vabre, A. Boccara, and E. Beaurepaire, High-resolution full-field optical coherence tomography with a Linnik microscope, Applied Optics, vol.41, issue.4, pp.805-817, 2002.
DOI : 10.1364/AO.41.000805

URL : https://hal.archives-ouvertes.fr/hal-00627977

G. S. Kino and S. S. Chim, Mirau correlation microscope, Applied Optics, vol.29, issue.26, p.3775, 1990.
DOI : 10.1364/AO.29.003775

A. Dubois, G. Moneron, and A. C. Boccara, Thermal-light full-field optical coherence tomography in the 1.2??m wavelength region, Optics Communications, vol.266, issue.2, pp.738-743, 2006.
DOI : 10.1016/j.optcom.2006.05.016

URL : https://hal.archives-ouvertes.fr/hal-00520541

J. Na, W. J. Choi, E. S. Choi, S. Y. Ryu, and B. H. Lee, Image restoration method based on Hilbert transform for full-field optical coherence tomography, Applied Optics, vol.47, issue.3, p.459, 2008.
DOI : 10.1364/AO.47.000459

E. Bordenave, Wide-field optical coherence tomography: imaging of biological tissues, Applied Optics, vol.41, issue.10, p.2059, 2002.
DOI : 10.1364/AO.41.002059

G. J. Tearney, M. E. Brezinski, J. F. Southern, B. E. Bouma, M. R. Hee et al., Determination of the refractive index of highly scattering human tissue by optical coherence tomography, Optics Letters, vol.20, issue.21, p.2258, 1995.
DOI : 10.1364/OL.20.002258

S. Labiau, G. David, S. Gigan, and A. C. Boccara, Defocus test and defocus correction in full-field optical coherence tomography, Optics Letters, vol.34, issue.10, pp.1576-1578, 2009.
DOI : 10.1364/OL.34.001576

URL : https://hal.archives-ouvertes.fr/hal-00448239

J. Schmitt, Speckle in Optical Coherence Tomography, Journal of Biomedical Optics, vol.4, issue.1, 1999.
DOI : 10.1117/1.429925

R. Bernstein, Adaptive nonlinear filters for simultaneous removal of different kinds of noise in images, IEEE Transactions on Circuits and Systems, vol.34, issue.11, pp.1275-1291, 1987.
DOI : 10.1109/TCS.1987.1086066

G. Franceschetti, V. Pascazio, and G. Schirinzi, Iterative homomorphic technique for speckle reduction in synthetic-aperture radar imaging, Journal of the Optical Society of America A, vol.12, issue.4, p.686, 1995.
DOI : 10.1364/JOSAA.12.000686

D. Sacchet, Tomographie par cohérence optique plein champ linéaire et non linéaire, 2010.

A. Latrive and A. C. Boccara, In vivo and in situ cellular imaging full-field optical coherence tomography with a rigid endoscopic probe, Biomedical Optics Express, vol.2, issue.10, pp.2897-904, 2011.
DOI : 10.1364/BOE.2.002897

H. D. Ford and R. P. Tatam, Fibre imaging bundles for full-field optical coherence tomography, Measurement Science and Technology, vol.18, issue.9, pp.2949-2957, 2007.
DOI : 10.1088/0957-0233/18/9/027

W. Oh, B. E. Bouma, N. Iftimia, R. Yelin, and G. J. Tearney, Spectrally-modulated full-field optical coherence microscopy for ultrahigh-resolution endoscopic imaging, Optics Express, vol.14, issue.19, pp.8675-84, 2006.
DOI : 10.1364/OE.14.008675.m008

C. Zhou, Integrated Optical Coherence Tomography and Microscopy for Ex Vivo Multiscale Evaluation of Human Breast Tissues, Cancer Research, vol.70, issue.24, 2010.
DOI : 10.1158/0008-5472.CAN-10-2968

A. Dubois, K. Grieve, G. Moneron, R. Lecaque, L. Vabre et al., Ultrahigh-resolution full-field optical coherence tomography, Applied Optics, vol.43, issue.14, p.2874, 2004.
DOI : 10.1364/AO.43.002874

URL : https://hal.archives-ouvertes.fr/hal-00533151

P. Hsiung, D. R. Phatak, Y. Chen, A. D. Aguirre, J. G. Fujimoto et al., Benign and Malignant Lesions in the Human Breast Depicted with Ultrahigh Resolution and Three-dimensional Optical Coherence Tomography, Radiology, vol.244, issue.3, pp.865-874, 2007.
DOI : 10.1148/radiol.2443061536

P. Herz, Ultrahigh resolution optical biopsy with endoscopic optical coherence tomography, Optics Express, vol.12, issue.15, pp.3532-3542, 2004.
DOI : 10.1364/OPEX.12.003532

A. Jemal, R. Siegel, J. Xu, and E. Ward, CA: a cancer journal for clinicians, p. caac, Cancer Statistics, 2010.

F. J. Fleming, A. D. Hill, E. W. Mc-dermott, A. O. Doherty, N. J. Higgins et al., Intraoperative margin assessment and re-excision rate in breast conserving surgery, European Journal of Surgical Oncology (EJSO), vol.30, issue.3, pp.233-240, 2004.
DOI : 10.1016/j.ejso.2003.11.008

G. P. Swanson, K. Rynearson, and R. Symmonds, Significance of Margins of Excision on Breast Cancer Recurrence, American Journal of Clinical Oncology, vol.25, issue.5, pp.438-479, 2002.
DOI : 10.1097/00000421-200210000-00002

C. Kunos, Breast Conservation Surgery Achieving >= 2 mm Tumor-Free Margins Results in Decreased Local-Regional Recurrence Rates, The Breast Journal, vol.88, issue.1, pp.28-36
DOI : 10.1016/S0360-3016(98)00365-4

A. M. Gonzalez-angulo, F. Morales-vasquez, and G. N. Hortobagyi, Overview of resistance to systemic therapy in patients with breast cancer Advances in experimental medicine and biology, pp.1-22, 2007.

M. Z. Papa, D. Zippel, M. Koller, E. Klein, A. Chetrit et al., Positive margins of breast biopsy: Is reexcision always necessary?, Journal of Surgical Oncology, vol.2, issue.3, pp.167-71, 1999.
DOI : 10.1002/(SICI)1096-9098(199903)70:3<167::AID-JSO4>3.0.CO;2-7

J. Willner, I. C. Kiricuta, and O. Kölbl, Locoregional recurrence of breast cancer following mastectomy: Always a fatal event? Results of univariate and multivariate analysis, International Journal of Radiation Oncology*Biology*Physics, vol.37, issue.4, pp.853-63, 1997.
DOI : 10.1016/S0360-3016(96)00556-1

N. Cabioglu, Role for Intraoperative Margin Assessment in Patients Undergoing Breast-Conserving Surgery, Annals of Surgical Oncology, vol.19, issue.4, pp.1458-71, 2007.
DOI : 10.1245/s10434-006-9236-0

J. C. Cendán, D. Coco, and E. M. Copeland, Accuracy of Intraoperative Frozen-Section Analysis of Breast Cancer Lumpectomy-Bed Margins, Journal of the American College of Surgeons, vol.201, issue.2, pp.194-202, 2005.
DOI : 10.1016/j.jamcollsurg.2005.03.014

R. Scheiden, Accuracy of frozen section diagnoses of breast lesions after introduction of a national programme in mammographic screening, Histopathology, vol.4, issue.1, pp.74-84, 2001.
DOI : 10.1002/(SICI)1097-0142(19961201)78:11<2340::AID-CNCR11>3.0.CO;2-0

T. P. Olson, J. Harter, A. Muñoz, D. M. Mahvi, and T. Breslin, Frozen Section Analysis for Intraoperative Margin Assessment During Breast-Conserving Surgery Results in Low Rates of Re-excision and Local Recurrence, Annals of Surgical Oncology, vol.201, issue.10, pp.2953-60, 2007.
DOI : 10.1245/s10434-007-9437-1

S. Weber, F. K. Storm, J. Stitt, and D. M. Mahvi, The role of frozen section analysis of margins during breast conservation surgery, The cancer journal from Scientific American, vol.3, issue.5, pp.273-280

C. Dener, A. Inan, M. Sen, and S. Demirci, Interoperative frozen section for margin assessment in breast conserving energy, Scandinavian Journal of Surgery: SJS: Official Organ for the Finnish Surgical Society and the Scandinavian Surgical Society, vol.98, issue.1, pp.34-40, 2009.

S. E. Singletary, Surgical margins in patients with early-stage breast cancer treated with breast conservation therapy, The American Journal of Surgery, vol.184, issue.5, pp.383-393, 2002.
DOI : 10.1016/S0002-9610(02)01012-7

L. Jacobs, Positive Margins: The Challenge Continues for Breast Surgeons, Annals of Surgical Oncology, vol.23, issue.5, pp.1271-1272, 2008.
DOI : 10.1245/s10434-007-9766-0

J. Q. Brown, Optical assessment of tumor resection margins in the breast IEEE journal of selected topics in quantum electronics : a publication of the IEEE Lasers and Electrooptics Society, pp.530-544, 2010.

N. Ozawa, Y. Sumi, K. Shimozato, C. Chong, and T. Kurabayashi, In vivo imaging of human labial glands using advanced optical coherence tomography, Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and Endodontology, vol.108, issue.3, pp.425-429, 2009.
DOI : 10.1016/j.tripleo.2009.05.035

S. G. Adie and S. A. Boppart, Optical Coherence Tomography for Cancer Detection, pp.209-250, 2009.
DOI : 10.1007/978-0-387-93874-5_11

W. Jerjes, Oral leukoplakia and erythroplakia subjected to optical coherence tomography: preliminary results, British Journal of Oral and Maxillofacial Surgery, vol.46, issue.7, pp.7-7, 2008.
DOI : 10.1016/j.bjoms.2008.07.108

C. S. Betz, A set of optical techniques for improving the diagnosis of early upper aerodigestive tract cancer, Medical Laser Application, vol.23, issue.4, pp.175-185, 2008.
DOI : 10.1016/j.mla.2008.07.003

G. J. Tearney, M. E. Brezinski, J. F. Southern, B. E. Bouma, S. A. Boppart et al., Optical biopsy in human pancreatobiliary tissue using optical coherence tomography, Digestive diseases and sciences, pp.1193-1202, 1998.

]. Y. Chen, Ultrahigh resolution optical coherence tomography of Barrett???s esophagus: preliminary descriptive clinical study correlating images with histology, Endoscopy, vol.39, issue.7, pp.599-605, 2007.
DOI : 10.1055/s-2007-966648

A. M. Zysk and S. A. Boppart, Computational methods for analysis of human breast tumor tissue in optical coherence tomography images, Journal of Biomedical Optics, vol.11, issue.5, p.54015
DOI : 10.1117/1.2358964

N. V. Iftimia, M. Mujat, T. Ustun, R. D. Ferguson, V. Danthu et al., Spectral-domain low coherence interferometry/optical coherence tomography system for fine needle breast biopsy guidance, Review of Scientific Instruments, vol.80, issue.2, p.24302, 2009.
DOI : 10.1063/1.3076409

W. Luo, Optical Biopsy of Lymph Node Morphology using Optical Coherence Tomography, Technology in Cancer Research & Treatment, vol.111, issue.5, pp.539-548, 2005.
DOI : 10.1126/science.1957169

A. M. Zysk, E. J. Chaney, and S. A. Boppart, Refractive index of carcinogen-induced rat mammary tumours, Physics in Medicine and Biology, vol.51, issue.9, pp.2165-2177, 2006.
DOI : 10.1088/0031-9155/51/9/003

F. T. Nguyen, Intraoperative Evaluation of Breast Tumor Margins with Optical Coherence Tomography, Cancer Research, vol.69, issue.22, pp.8790-8796, 2009.
DOI : 10.1158/0008-5472.CAN-08-4340

S. Boppart, W. Luo, D. Marks, and K. Singletary, Optical Coherence Tomography: Feasibility for Basic Research and Image-guided Surgery of Breast Cancer, Breast Cancer Research and Treatment, vol.115, issue.2, pp.85-97, 2004.
DOI : 10.1023/B:BREA.0000018401.13609.54

A. Scope, In vivo reflectance confocal microscopy of shave biopsy wounds: feasibility of intra-operative mapping of cancer margins, The British journal of dermatology, 2010.

D. S. Gareau, Confocal mosaicing microscopy in skin excisions: a demonstration of rapid surgical pathology, Journal of Microscopy, vol.12, issue.1, pp.149-159, 2009.
DOI : 10.1111/j.1365-2818.2008.03105.x

W. A. Berg, When is core breast biopsy or fine-needle aspiration not enough?, Radiology, vol.198, issue.2, pp.313-318, 1996.
DOI : 10.1148/radiology.198.2.8596822

A. Vega-bolivar, E. Ortega, F. García, . Garijo, and . Ayensa, Stereotaxic core needle aspiration biopsy with multiple passes in nonpalpable breast lesions, Acta Radiologica, vol.39, issue.4, pp.389-94, 1987.
DOI : 10.3109/02841859809172451

C. Wiratkapun, B. Wibulpholprasert, S. Wongwaisayawan, and K. Pulpinyo, Nondiagnostic core needle biopsy of the breast under imaging guidance: result of rebiopsy, Journal of the Medical Association of Thailand = Chotmaihet thangphaet, vol.88, issue.3, pp.350-357, 2005.

D. D. Dershaw, E. A. Morris, L. Liberman, and A. F. Abramson, Nondiagnostic stereotaxic core breast biopsy: results of rebiopsy., Radiology, vol.198, issue.2, pp.323-328, 1996.
DOI : 10.1148/radiology.198.2.8596825

A. Parrish, E. Halama, M. T. Tilli, M. Freedman, and P. A. Furth, Reflectance confocal microscopy for characterization of mammary ductal structures and development of neoplasia in genetically engineered mouse models of breast cancer, Journal of Biomedical Optics, vol.10, issue.5, p.51602, 2005.
DOI : 10.1117/1.2065827

M. T. Tilli, Real-time imaging and characterization of human breast tissue by reflectance confocal microscopy, Journal of Biomedical Optics, vol.12, issue.5, p.51901
DOI : 10.1117/1.2799187

M. T. Tilli, Real-time imaging and characterization of human breast tissue by reflectance confocal microscopy, Journal of Biomedical Optics, vol.12, issue.5, p.51901, 2007.
DOI : 10.1117/1.2799187

L. Schiffhauer, J. N. Boger, T. Bonfiglio, J. Zavislan, M. Zuley et al., Confocal Microscopy of Unfixed Breast Needle Core Biopsies: A Comparison to Fixed and Stained Sections, BMC Cancer, vol.13, issue.5, p.265, 2009.
DOI : 10.1117/1.2981828

M. T. Tilli, A. R. Parrish, I. Cotarla, L. P. Jones, M. D. Johnson et al., Comparison of mouse mammary gland imaging techniques and applications: Reflectance confocal microscopy, GFP Imaging, and ultrasound, BMC Cancer, vol.11, issue.1, p.21, 2008.
DOI : 10.1111/j.0022-202X.2005.23786.x

C. Compton, Getting to personalized cancer medicine, Cancer, vol.110, issue.8, pp.1641-1644, 2007.
DOI : 10.1002/cncr.22966

J. C. Denny, Identification of Genomic Predictors of Atrioventricular Conduction: Using Electronic Medical Records as a Tool for Genome Science, Circulation, vol.122, issue.20, pp.2016-2037, 2010.
DOI : 10.1161/CIRCULATIONAHA.110.948828

D. M. Roden, Development of a Large-Scale De-Identified DNA Biobank to Enable Personalized Medicine, Clinical Pharmacology & Therapeutics, vol.308, issue.3, pp.362-371, 2008.
DOI : 10.1038/clpt.2008.89

M. S. Patterson, B. C. Wilson, and D. R. Wyman, The propagation of optical radiation in tissue I. Models of radiation transport and their application, Lasers in Medical Science, vol.8, issue.2, pp.155-168, 1991.
DOI : 10.1007/BF02032543

A. Ishimaru, Diffusion of light in turbid material, Applied Optics, vol.28, issue.12, p.2210, 1989.
DOI : 10.1364/AO.28.002210

S. G. Demos, A. J. Vogel, and A. H. Gandjbakhche, Advances in Optical Spectroscopy and Imaging of Breast Lesions, Journal of Mammary Gland Biology and Neoplasia, vol.5326, issue.4, pp.165-81, 2006.
DOI : 10.1007/s10911-006-9022-4

V. V. Tuchin, Tissue optics: light scattering methods and instruments for medical diagnosis, p.840, 2007.
DOI : 10.1117/3.1003040

S. A. Prahl, M. J. Van-gemert, and A. J. Welch, Determining the optical properties of turbid media by using the adding???doubling method, Applied Optics, vol.32, issue.4, p.559, 1993.
DOI : 10.1364/AO.32.000559

S. L. Jacques, Time resolved propagation of ultrashort laser pulses within turbid tissues, Applied Optics, vol.28, issue.12, p.2223, 1989.
DOI : 10.1364/AO.28.002223

V. Peters, Optical properties of normal and diseased human breast tissues in the visible and near infrared, Physics in Medicine and Biology, vol.35, issue.9, p.1317, 1990.
DOI : 10.1088/0031-9155/35/9/010

J. Qu, C. Macaulay, S. Lam, and B. Palcic, Optical properties of normal and carcinomatous bronchial tissue, Applied Optics, vol.33, issue.31, p.7397, 1994.
DOI : 10.1364/AO.33.007397

D. Levitz, Determination of optical scattering properties of highly-scattering media in optical coherence tomography images, Optics Express, vol.12, issue.2, p.249, 2004.
DOI : 10.1364/OPEX.12.000249

A. L. Clark, A. Gillenwater, R. Alizadeh-naderi, A. K. El-naggar, and R. Richards-kortum, Detection and diagnosis of oral neoplasia with an optical coherence microscope, Journal of Biomedical Optics, vol.9, issue.6, pp.1271-1280, 2004.
DOI : 10.1117/1.1805558

R. A. Mclaughlin, L. Scolaro, P. Robbins, S. Hamza, C. Saunders et al., Imaging of Human Lymph Nodes Using Optical Coherence Tomography: Potential for Staging Cancer, Cancer Research, vol.70, issue.7, pp.2579-2584, 2010.
DOI : 10.1158/0008-5472.CAN-09-4062

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, Optical coherence tomography ??? development, principles, applications, Zeitschrift f??r Medizinische Physik, vol.20, issue.4, pp.239-303, 2003.
DOI : 10.1016/j.zemedi.2009.11.002

K. Bizheva, A. Siegel, and D. Boas, Path-length-resolved dynamic light scattering in highly scattering random media: The transition to diffusing wave spectroscopy, Physical Review E, vol.58, issue.6, pp.7664-7667, 1998.
DOI : 10.1103/PhysRevE.58.7664

A. Miyazawa, Tissue discrimination in anterior eye using three optical parameters obtained by polarization sensitive optical coherence tomography, Optics Express, vol.17, issue.20, pp.17426-17466, 2009.
DOI : 10.1364/OE.17.017426.m004

C. Xu, J. M. Schmitt, S. G. Carlier, and R. Virmani, Characterization of atherosclerosis plaques by measuring both backscattering and attenuation coefficients in optical coherence tomography, Journal of Biomedical Optics, vol.13, issue.3, p.34003
DOI : 10.1117/1.2927464

J. M. Schmitt, A. Knüttel, M. Yadlowsky, and M. A. Eckhaus, Optical-coherence tomography of a dense tissue: statistics of attenuation and backscattering, Physics in Medicine and Biology, vol.39, issue.10, pp.1705-1725, 1994.
DOI : 10.1088/0031-9155/39/10/013

F. J. Van-der-meer, D. J. Faber, D. M. Baraznji-sassoon, M. C. Aalders, G. Pasterkamp et al., Localized measurement of optical attenuation coefficients of atherosclerotic plaque constituents by quantitative optical coherence tomography, IEEE Transactions on Medical Imaging, vol.24, issue.10, pp.1369-76, 2005.
DOI : 10.1109/TMI.2005.854297

E. Cauberg, D. De-bruin, and D. Faber, Quantitative measurement of attenuation coefficients of bladder biopsies using optical coherence tomography for grading urothelial carcinoma of the bladder, Journal of Biomedical Optics, vol.15, issue.6
DOI : 10.1117/1.3512206

G. Van-soest, Atherosclerotic tissue characterization in vivo by optical coherence tomography attenuation imaging, Journal of Biomedical Optics, vol.15, issue.1, p.11105
DOI : 10.1117/1.3280271

A. I. Kholodnykh, I. Y. Petrova, M. Motamedi, and R. O. Esenaliev, Accurate measurement of total attenuation coefficient of thin tissue with optical coherence tomography, IEEE Journal of Selected Topics in Quantum Electronics, vol.9, issue.2, pp.210-221, 2003.
DOI : 10.1109/JSTQE.2003.814194

L. Meng, B. Lv, S. Zhang, and B. Yv, In vivo optical coherence tomography of experimental thrombosis in a rabbit carotid model, Heart, vol.94, issue.6, pp.777-80, 2008.
DOI : 10.1136/hrt.2007.117382

H. Key, E. R. Davies, P. C. Jackson, and P. N. Wells, Optical attenuation characteristics of breast tissues at visible and near-infrared wavelengths, Physics in Medicine and Biology, vol.36, issue.5, pp.579-590, 1991.
DOI : 10.1088/0031-9155/36/5/002

E. R. Frykberg, Lobular Carcinoma In Situ of the Breast, The Breast Journal, vol.127, issue.5, pp.296-303, 1999.
DOI : 10.1002/(SICI)1097-0142(19960901)78:5<1024::AID-CNCR12>3.3.CO;2-R

T. Collier, M. Follen, A. Malpica, and R. Richards-kortum, Sources of scattering in cervical tissue: determination of the scattering coefficient by confocal microscopy, Applied Optics, vol.44, issue.11, p.2072, 2005.
DOI : 10.1364/AO.44.002072

E. Cauberg and D. De-bruin, Quantitative measurement of attenuation coefficients of bladder biopsies using optical coherence tomography for grading urothelial carcinoma of the bladder, Journal of Biomedical Optics, vol.15, issue.6, 2010.
DOI : 10.1117/1.3512206

L. Thrane, H. T. Yura, and P. E. Andersen, Analysis of optical coherence tomography systems based on the extended Huygens???Fresnel principle, Journal of the Optical Society of America A, vol.17, issue.3, p.484, 2000.
DOI : 10.1364/JOSAA.17.000484

J. M. Schmitt, A. Knüttel-]-l, and . Scolaro, Model of optical coherence tomography of heterogeneous tissue, Journal of the Optical Society of America A, vol.14, issue.6, pp.1231-366, 1997.
DOI : 10.1364/JOSAA.14.001231

G. Sadigh, R. C. Carlos, C. H. Neal, and B. A. Dwamena, Accuracy of quantitative ultrasound elastography for differentiation of malignant and benign breast abnormalities: a meta-analysis, Breast cancer research and treatment, pp.1-9, 2012.
DOI : 10.1007/s10549-012-2020-x

J. Ophir, I. Céspedes, H. Ponnekanti, Y. Yazdi, and X. Li, Elastography: A Quantitative Method for Imaging the Elasticity of Biological Tissues, Ultrasonic Imaging, vol.13, issue.2, pp.111-145, 1991.
DOI : 10.1177/016173469101300201

K. J. Parker, L. S. Taylor, S. Gracewski, and D. J. Rubens, A unified view of imaging the elastic properties of tissue, The Journal of the Acoustical Society of America, vol.117, issue.5, p.2705, 2005.
DOI : 10.1121/1.1880772

K. J. Parker, M. M. Doyley, and D. J. Rubens, Imaging the elastic properties of tissue: the 20 year perspective, Physics in Medicine and Biology, vol.56, issue.1, pp.1-29, 2011.
DOI : 10.1088/0031-9155/56/1/R01

J. Schmitt, OCT elastography: imaging microscopic deformation and strain of tissue, Optics Express, vol.3, issue.6, p.199, 1998.
DOI : 10.1364/OE.3.000199.m002

R. K. Wang, Z. Ma, and S. J. Kirkpatrick, Tissue Doppler optical coherence elastography for real time strain rate and strain mapping of soft tissue, Applied Physics Letters, vol.89, issue.14, p.144103, 2006.
DOI : 10.1063/1.2357854

S. J. Kirkpatrick, R. K. Wang, and D. D. Duncan, OCT-based elastography for large and small deformations, Optics Express, vol.14, issue.24, p.11585, 2006.
DOI : 10.1364/OE.14.011585.m006

Y. P. Zheng, High resolution ultrasound elastomicroscopy imaging of soft tissues: system development and feasibility, Physics in Medicine and Biology, vol.49, issue.17, pp.3925-3938, 2004.
DOI : 10.1088/0031-9155/49/17/007

URL : https://hal.archives-ouvertes.fr/hal-00109666

S. G. Adie, B. F. Kennedy, J. J. Armstrong, S. A. Alexandrov, and D. D. Sampson, optical coherence elastography, Physics in Medicine and Biology, vol.54, issue.10, pp.3129-3168, 2009.
DOI : 10.1088/0031-9155/54/10/011

X. Liang, A. L. Oldenburg, V. Crecea, E. J. Chaney, and S. A. Boppart, Optical micro-scale mapping of dynamic biomechanical tissue properties, Optics Express, vol.16, issue.15, p.11052, 2008.
DOI : 10.1364/OE.16.011052

B. F. Kennedy, In vivo three-dimensional optical coherence elastography, Optics Express, vol.19, issue.7, p.6623, 2011.
DOI : 10.1364/OE.19.006623

R. Karimi, T. Zhu, B. E. Bouma, and M. R. Mofrad, Estimation of Nonlinear Mechanical Properties of Vascular Tissues via Elastography, Cardiovascular Engineering, vol.12, issue.4, pp.191-202, 2008.
DOI : 10.1007/s10558-008-9061-0

R. C. Chan, OCT-based arterial elastography: robust estimation exploiting tissue biomechanics, Optics Express, vol.12, issue.19, p.4558, 2004.
DOI : 10.1364/OPEX.12.004558.m003

J. Rogowska, Optical coherence tomographic elastography technique for measuring deformation and strain of atherosclerotic tissues, Heart, vol.90, issue.5, pp.556-562, 2004.
DOI : 10.1136/hrt.2003.016956

X. Liang, S. G. Adie, R. John, and S. A. Boppart, Dynamic spectral-domain optical coherence elastography for tissue characterization, Optics Express, vol.18, issue.13, p.14183, 2010.
DOI : 10.1364/OE.18.014183

A. Oberai, Towards the Early Detection of Breast Cancer in Young Women, 2005.

C. Sun, Optical coherence elastography: current status and future applications, Journal of Biomedical Optics, vol.16, issue.4, 2011.
DOI : 10.1117/1.3560294

W. Thielicke, PIVlab -time-resolved particle image velocimetry (PIV) tool. Code covered by the BSD License, 2011.

J. Guck, Optical Deformability as an Inherent Cell Marker for Testing Malignant Transformation and Metastatic Competence, Biophysical Journal, vol.88, issue.5, pp.3689-98, 2005.
DOI : 10.1529/biophysj.104.045476

S. Suresh, Biomechanics and biophysics of cancer cells???, Acta Materialia, vol.55, issue.12, pp.3989-4014, 2007.
DOI : 10.1016/j.actamat.2007.04.022

P. H. Tomlins, O. Adegun, E. Hagi-pavli, K. Piper, D. Bader et al., Scattering attenuation microscopy of oral epithelial dysplasia, Journal of Biomedical Optics, vol.15, issue.6, p.66003, 2010.
DOI : 10.1117/1.3505019

S. W. Hell, Far-Field Optical Nanoscopy, Science, vol.316, issue.5828, pp.1153-1161, 2007.
DOI : 10.1126/science.1137395

URL : http://hdl.handle.net/11858/00-001M-0000-0012-E11B-3

J. Huisken and D. Y. Stainier, Selective plane illumination microscopy techniques in developmental biology, Development, vol.136, issue.12, pp.1963-75, 2009.
DOI : 10.1242/dev.022426

C. Vinegoni, D. Razansky, C. Pitsouli, N. Perrimon, V. Ntziachristos et al., Mesoscopic fluorescence tomography for in-vivo imaging of developing Drosophila, Journal of visualized experiments JoVE, issue.30, 2009.

C. Vinegoni, C. Pitsouli, D. Razansky, N. Perrimon, and V. Ntziachristos, In vivo imaging of Drosophila melanogaster pupae with mesoscopic fluorescence tomography, Nature Methods, vol.126, issue.1, pp.45-52, 2008.
DOI : 10.1242/dev.02728

J. Sharpe, Optical Projection Tomography as a Tool for 3D Microscopy and Gene Expression Studies, Science, vol.296, issue.5567, pp.541-546, 2002.
DOI : 10.1126/science.1068206

H. Dodt, Ultramicroscopy: three-dimensional visualization of neuronal networks in the whole mouse brain, Nature Methods, vol.35, issue.4, pp.331-337, 2007.
DOI : 10.1126/science.286.5437.110

A. E. Petiet, M. H. Kaufman, M. M. Goddeeris, J. Brandenburg, S. A. Elmore et al., High-resolution magnetic resonance histology of the embryonic and neonatal mouse: A 4D atlas and morphologic database, Proceedings of the National Academy of Sciences, vol.105, issue.34, pp.12331-12337, 2008.
DOI : 10.1073/pnas.0805747105

G. A. Johnson, G. P. Cofer, S. L. Gewalt, and L. W. Hedlund, Morphologic Phenotyping with MR Microscopy: The Visible Mouse, Radiology, vol.222, issue.3, pp.789-793, 2002.
DOI : 10.1148/radiol.2223010531

B. Driehuys, Small Animal Imaging with Magnetic Resonance Microscopy, ILAR Journal, vol.49, issue.1, pp.35-53, 2008.
DOI : 10.1093/ilar.49.1.35

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2770253

M. J. Paulus, S. S. Gleason, S. J. Kennel, P. R. Hunsicker, and D. K. Johnson, High Resolution X-ray Computed Tomography: An Emerging Tool for Small Animal Cancer Research, Neoplasia, vol.2, issue.1-2, pp.62-70
DOI : 10.1038/sj.neo.7900069

D. W. Holdsworth and M. M. Thornton, Micro-CT in small animal and specimen imaging, Trends in Biotechnology, vol.20, issue.8, pp.34-39, 2002.
DOI : 10.1016/S0167-7799(02)02004-8

B. Null, C. W. Liu, M. Hedehus, S. Conolly, and R. W. Davis, High-Resolution, In Vivo Magnetic Resonance Imaging of Drosophila at 18.8 Tesla, PLoS ONE, vol.7, issue.15, p.2817, 2008.
DOI : 10.1371/journal.pone.0002817.s001

V. Hartenstein and J. A. Campos-ortega, Fate-mapping in wild-typeDrosophila melanogaster, Development Genes and Evolution, vol.194, issue.4, pp.181-195, 1985.

A. Martinez-arias and P. A. Lawrence, Parasegments and compartments in the Drosophila embryo, Nature, vol.52, issue.6004, pp.639-681
DOI : 10.1038/313639a0

G. S. Watson and J. A. Watson, Natural nano-structures on insects???possible functions of ordered arrays characterized by atomic force microscopy, Applied Surface Science, vol.235, issue.1-2, pp.139-144, 2004.
DOI : 10.1016/j.apsusc.2004.05.129

M. Pryor, On the Hardening of the Cuticle of Insects, Proceedings of the Royal Society B: Biological Sciences, vol.128, issue.852, pp.393-407, 1940.
DOI : 10.1098/rspb.1940.0018

I. B. Sollas, On the Identification of Chitin by Its Physical Constants, Proceedings of the Royal Society of London. Series B, Containing Papers of a Biological Character, pp.474-481, 1907.
DOI : 10.1098/rspb.1907.0042

S. O. Andersen, P. Hojrup, and P. Roepstorff, Insect cuticular proteins, Insect Biochemistry and Molecular Biology, vol.25, issue.2, pp.153-176, 1995.
DOI : 10.1016/0965-1748(94)00052-J

D. A. Paranjpe, D. Anitha, M. K. Chandrashekaran, A. Joshi, and V. K. Sharma, Possible role of eclosion rhythm in mediating the effects of light-dark environments on pre-adult development in Drosophila melanogaster, BMC Developmental Biology, vol.5, issue.1, p.5, 2005.
DOI : 10.1186/1471-213X-5-5

D. Fristrom, Cellular degeneration in the production of some mutant phenotypes in Drosophila melanogaster, MGG Molecular & General Genetics, vol.153, issue.4, pp.363-379, 1969.
DOI : 10.1007/BF00383486

M. S. Tyler, Pupal stages | devbio.net Available: http://www.devbio.net/node, 2011.

K. Weigmann, FlyMove ??? a new way to look at development of Drosophila, Trends in Genetics, vol.19, issue.6, pp.310-311, 2003.
DOI : 10.1016/S0168-9525(03)00050-7

F. Scott and . Gilbert, Developmental Biology, Sinauer Associates, 2000.

J. A. Curcio and C. C. Petty, The Near Infrared Absorption Spectrum of Liquid Water, Journal of the Optical Society of America, vol.41, issue.5, p.302, 1951.
DOI : 10.1364/JOSA.41.000302

T. R. Hillman and D. D. Sampson, The effect of water dispersion and absorption on axial resolution in ultrahigh-resolution optical coherence tomography, Optics Express, vol.13, issue.6, p.1860, 2005.
DOI : 10.1364/OPEX.13.001860

M. E. Brezinski, Optical Coherence Tomography for Optical Biopsy : Properties and Demonstration of Vascular Pathology, Circulation, vol.93, issue.6, pp.1206-1213, 1996.
DOI : 10.1161/01.CIR.93.6.1206

K. Bizheva, Compact, broad-bandwidth fiber laser for sub-2-??m axial resolution optical coherence tomography in the 1300-nm wavelength region, Optics Letters, vol.28, issue.9, p.707, 2003.
DOI : 10.1364/OL.28.000707

D. Sacchet, J. Moreau, P. Georges, and A. Dubois, Simultaneous dual-band ultra-high resolution full-field optical coherence tomography, Optics Express, vol.16, issue.24, p.19434, 2008.
DOI : 10.1364/OE.16.019434

URL : https://hal.archives-ouvertes.fr/hal-00673791/file/Optics_Express_2008_Dual_Band_FF-OCT_.pdf

W. Drexler, Optical Coherence Tomography: Technology and Applications (Google eBook), p.1346, 2008.

L. Thrane, Optical Coherence Tomography : Modeling and Applications, 2001.

A. Aguirre and J. Fujimoto, Advances in optical coherence tomography and microscopy for endoscopic applications and functional neuroimaging, pp.182-183, 2008.

U. Dirnagl and M. Lauritzen, Fighting Publication Bias: Introducing the Negative Results Section, Journal of Cerebral Blood Flow & Metabolism, vol.320, issue.7, pp.1263-1267, 2010.
DOI : 10.1371/journal.pbio.1000344

J. P. Ioannidis, Why Most Published Research Findings Are False, PLoS Medicine, vol.13, issue.8, p.124, 2005.
DOI : 10.1371/journal.pmed.0020124.t004

URL : http://doi.org/10.1371/journal.pmed.0020124

K. Dwan, Systematic Review of the Empirical Evidence of Study Publication Bias and Outcome Reporting Bias, PLoS ONE, vol.8, issue.8, p.3081, 2008.
DOI : 10.1371/journal.pone.0003081.s002

A. Latrive and A. C. Boccara, In vivo and in situ cellular imaging full-field optical coherence tomography with a rigid endoscopic probe, Biomedical Optics Express, vol.2, issue.10, pp.2897-904, 2011.
DOI : 10.1364/BOE.2.002897

D. Huang, Optical coherence tomography, Science, vol.254, issue.5035, pp.1178-1181, 1991.
DOI : 10.1126/science.1957169

J. A. Izatt, M. D. Kulkarni, S. Yazdanfar, J. K. Barton, and A. J. Welch, In vivo bidirectional color Doppler flow imaging of picoliter blood volumes using optical coherence tomography, Optics Letters, vol.22, issue.18, pp.1439-1441, 1997.
DOI : 10.1364/OL.22.001439

S. Yazdanfar, M. Kulkarni, and J. Izatt, High resolution imaging of in vivo cardiac dynamics using color Doppler optical coherence tomography, Optics Express, vol.1, issue.13, pp.424-431, 1997.
DOI : 10.1364/OE.1.000424.m002

J. Paul and . Tadrous, Methods for imaging the structure and function of living tissues and cells: 1. Optical coherence tomography, The Journal of Pathology, vol.191, issue.2, pp.115-119, 2000.

I. Jang, Visualization of coronary atherosclerotic plaques in patients using optical coherence tomography: comparison with intravascular ultrasound, Journal of the American College of Cardiology, vol.39, issue.4, pp.604-609, 2002.
DOI : 10.1016/S0735-1097(01)01799-5

R. Leitgeb, C. Hitzenberger, and A. Fercher, Performance of fourier domain vs time domain optical coherence tomography, Optics Express, vol.11, issue.8, p.889, 2003.
DOI : 10.1364/OE.11.000889

M. Choma, M. Sarunic, C. Yang, and J. Izatt, Sensitivity advantage of swept source and Fourier domain optical coherence tomography, Optics Express, vol.11, issue.18, pp.2183-2189, 2003.
DOI : 10.1364/OE.11.002183

B. E. Bouma, S. Yun, B. J. Vakoc, M. J. Suter, and G. J. Tearney, Fourier-domain optical coherence tomography: recent advances toward clinical utility, Current Opinion in Biotechnology, vol.20, issue.1, pp.111-119, 2009.
DOI : 10.1016/j.copbio.2009.02.007

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2754185

C. Zhou, Ex vivo imaging of human thyroid pathology using integrated optical coherence tomography and optical coherence microscopy, Journal of Biomedical Optics, vol.15, issue.1, p.16001, 2010.
DOI : 10.1117/1.3306696.3

H. Lee, Integrated Optical Coherence Tomography and Optical Coherence Microscopy Imaging of Ex Vivo Human Renal Tissues, The Journal of Urology, vol.187, issue.2, 2011.
DOI : 10.1016/j.juro.2011.09.149

R. Lee, Cellular resolution optical coherence microscopy with high acquisition speed for in-vivo human skin volumetric imaging, Optics Letters, vol.36, issue.12, 2011.
DOI : 10.1364/OL.36.002221

P. Onlinefirst, Title: Integrated Optical Coherence Tomography and Microscopy for, Cancer Research, 2010.

D. Sacchet, J. Moreau, P. Georges, and A. Dubois, Simultaneous dual-band ultra-high resolution full-field optical coherence tomography, Optics Express, vol.16, issue.24, p.19434, 2008.
DOI : 10.1364/OE.16.019434

B. J. Wong, In Vivo Optical Coherence Tomography of the Human Larynx: Normative and Benign Pathology in 82 Patients, The Laryngoscope, vol.30, issue.11, pp.1904-1911, 2005.
DOI : 10.1097/01.MLG.0000181465.17744.BE

B. C. Quirk, R. A. Mclaughlin, A. Curatolo, R. W. Kirk, P. B. Noble et al., In situ imaging of lung alveoli with an optical coherence tomography needle probe, Journal of Biomedical Optics, vol.16, issue.3, p.36009, 2011.
DOI : 10.1117/1.3556719.1

J. M. Ridgway, In Vivo Optical Coherence Tomography of the Human Oral Cavity and Oropharynx, Archives of Otolaryngology???Head & Neck Surgery, vol.132, issue.10, pp.1074-1081, 2006.
DOI : 10.1001/archotol.132.10.1074

J. M. Ridgway, Imaging of the Pediatric Airway Using Optical Coherence Tomography, The Laryngoscope, vol.52, issue.12, pp.2206-2212, 2007.
DOI : 10.1097/MLG.0b013e318145b306

J. M. Ridgway, Optical coherence tomography of the newborn airway, Annals of Otology, Rhinology and Laryngology, vol.117, issue.5, pp.327-334, 2008.

Y. Chen, Effects of axial resolution improvement on optical coherence tomography (OCT) imaging of gastrointestinal tissues, Optics Express, vol.16, issue.4, pp.2469-2485, 2008.
DOI : 10.1364/OE.16.002469

A. Latrive and A. C. Boccara, In vivo and in situ cellular imaging full-field optical coherence tomography with a rigid endoscopic probe, Biomedical Optics Express, vol.2, issue.10, pp.2897-904, 2011.
DOI : 10.1364/BOE.2.002897

J. A. Evans, Identifying intestinal metaplasia at the squamocolumnar junction by using optical coherence tomography, Gastrointestinal Endoscopy, vol.65, issue.1, pp.50-56, 2007.
DOI : 10.1016/j.gie.2006.04.027

B. J. Vakoc, Comprehensive esophageal microscopy by using optical frequency???domain imaging (with video), Gastrointestinal Endoscopy, vol.65, issue.6, pp.898-905, 2007.
DOI : 10.1016/j.gie.2006.08.009

A. M. Zysk, Clinical Feasibility of Microscopically-Guided Breast Needle Biopsy Using a Fiber-Optic Probe with Computer-Aided Detection, Technology in Cancer Research & Treatment, vol.233, issue.93, pp.315-321, 2009.
DOI : 10.1177/153303460900800501

C. Zhou, Ex vivo imaging of human thyroid pathology using integrated optical coherence tomography and optical coherence microscopy, Journal of Biomedical Optics, vol.15, issue.1, p.16001, 2010.
DOI : 10.1117/1.3306696.3

E. Koch, J. Walther, and M. Cuevas, Limits of Fourier domain Doppler-OCT at high velocities, Sensors and Actuators A: Physical, vol.156, issue.1
DOI : 10.1016/j.sna.2009.01.022

A. H. Bachmann, M. L. Villiger, C. Blatter, T. Lasser, and R. A. Leitgeb, Resonant Doppler flow imaging and optical vivisection of retinal blood vessels, Optics Express, vol.15, issue.2, pp.408-422, 2007.
DOI : 10.1364/OE.15.000408.m007

]. V. Westphal, S. Yazdanfar, A. M. Rollins, and J. A. Izatt, Real-time, high velocity-resolution color Doppler optical coherence tomography, Optics Letters, vol.27, issue.1, pp.34-36, 2002.
DOI : 10.1364/OL.27.000034

S. Farahi, G. Montemezzani, A. Grabar, J. Huignard, and F. Ramaz, Photorefractive acousto-optic imaging in thick scattering media at 790 nm with a Sn_2P_2S_6:Te crystal, Optics Letters, vol.35, issue.11, pp.1798-800, 2010.
DOI : 10.1364/OL.35.001798

URL : https://hal.archives-ouvertes.fr/hal-00515637

S. G. Resink, W. Steenbergen, and A. C. Boccara, State-of-the art of acousto-optic sensing and imaging of turbid media, Journal of Biomedical Optics, vol.17, issue.4, p.40901, 2012.
DOI : 10.1117/1.JBO.17.4.040901

R. John, In vivo magnetomotive optical molecular imaging using targeted magnetic nanoprobes, Proceedings of the National Academy of Sciences, vol.107, issue.18, pp.8085-90, 2010.
DOI : 10.1073/pnas.0913679107

X. Liang, M. Orescanin, K. S. Toohey, M. F. Insana, and S. A. Boppart, Acoustomotive optical coherence elastography for measuring material mechanical properties, Optics Letters, vol.34, issue.19, pp.2894-2896, 2009.
DOI : 10.1364/OL.34.002894

A. L. Oldenburg, V. Crecea, S. A. Rinne, and S. A. Boppart, Phase-resolved magnetomotive OCT for imaging nanomolar concentrations of magnetic nanoparticles in tissues, Optics Express, vol.16, issue.15, pp.11525-11539, 2008.

W. A. Berg, Shear-wave Elastography Improves the Specificity of Breast US: The BE1 Multinational Study of 939 Masses, Radiology, vol.262, issue.2, pp.435-484, 2012.
DOI : 10.1148/radiol.11110640

Y. Zhao, Integrated multimodal optical microscopy for structural and functional imaging of engineered and natural skin, Journal of Biophotonics, vol.107, issue.5-6, 2012.
DOI : 10.1002/jbio.201200003

B. F. Kennedy, In vivo three-dimensional optical coherence elastography, Optics Express, vol.19, issue.7, p.6623, 2011.
DOI : 10.1364/OE.19.006623

C. Sun, Optical coherence elastography: current status and future applications, Journal of Biomedical Optics, vol.16, issue.4, 2011.
DOI : 10.1117/1.3560294

S. G. Adie, B. F. Kennedy, J. J. Armstrong, S. A. Alexandrov, and D. D. Sampson, optical coherence elastography, Physics in Medicine and Biology, vol.54, issue.10, pp.3129-3168, 2009.
DOI : 10.1088/0031-9155/54/10/011

L. Scolaro, Parametric imaging of the local attenuation coefficient in human axillary lymph nodes assessed using optical coherence tomography, Biomedical Optics Express, vol.3, issue.2, pp.366-79, 2012.
DOI : 10.1364/BOE.3.000366

E. Cauberg and D. De-bruin, Quantitative measurement of attenuation coefficients of bladder biopsies using optical coherence tomography for grading urothelial carcinoma of the bladder, Journal of Biomedical Optics, vol.15, issue.6, 2010.
DOI : 10.1117/1.3512206

P. H. Tomlins, O. Adegun, E. Hagi-pavli, K. Piper, D. Bader et al., Scattering attenuation microscopy of oral epithelial dysplasia, Journal of Biomedical Optics, vol.15, issue.6, p.66003, 2010.
DOI : 10.1117/1.3505019

R. Mclaughlin, L. Scolaro, P. Robbins, C. Saunders, S. L. Jacques et al., Mapping tissue optical attenuation to identify cancer using optical coherence tomography., " Medical image computing and computer-assisted intervention : MICCAI, International Conference on Medical Image Computing and Computer-Assisted Intervention, pp.657-64, 2009.

A. M. Zysk and S. A. Boppart, Computational methods for analysis of human breast tumor tissue in optical coherence tomography images, Journal of Biomedical Optics, vol.11, issue.5, p.54015
DOI : 10.1117/1.2358964

A. L. Clark, A. Gillenwater, R. Alizadeh-naderi, A. K. El-naggar, and R. Richards-kortum, Detection and diagnosis of oral neoplasia with an optical coherence microscope, Journal of Biomedical Optics, vol.9, issue.6, pp.1271-1280, 2004.
DOI : 10.1117/1.1805558

X. Liang, S. G. Adie, R. John, and S. A. Boppart, Dynamic spectral-domain optical coherence elastography for tissue characterization, Optics Express, vol.18, issue.13, pp.14183-14190, 2010.
DOI : 10.1364/OE.18.014183

B. F. Kennedy, *. , T. R. Hillman, R. A. Mclaughlin, B. C. Quirk et al., In vivo dynamic optical coherence elastography using a ring actuator, Optics Express, vol.17, issue.24, p.21762, 2009.
DOI : 10.1364/OE.17.021762

X. Liang, A. L. Oldenburg, V. Crecea, E. J. Chaney, and S. A. Boppart, Optical micro-scale mapping of dynamic biomechanical tissue properties, Optics Express, vol.16, issue.15, p.11052, 2008.
DOI : 10.1364/OE.16.011052

X. Liang, S. G. Adie, R. John, and S. A. Boppart, Dynamic spectral-domain optical coherence elastography for tissue characterization, Optics Express, vol.18, issue.13, p.14183, 2010.
DOI : 10.1364/OE.18.014183

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3310369

C. Sun, B. Standish, and V. X. Yang, Optical coherence elastography: current status and future applications, Journal of Biomedical Optics, vol.16, issue.4, p.43001, 2011.
DOI : 10.1117/1.3560294

S. Suresh, Biomechanics and biophysics of cancer cells???, Acta Materialia, vol.55, issue.12, pp.3989-4014, 2007.
DOI : 10.1016/j.actamat.2007.04.022

J. Guck, Optical Deformability as an Inherent Cell Marker for Testing Malignant Transformation and Metastatic Competence, Biophysical Journal, vol.88, issue.5, pp.3689-98, 2005.
DOI : 10.1529/biophysj.104.045476

C. Vinegoni, C. Pitsouli, D. Razansky, N. Perrimon, and V. Ntziachristos, In vivo imaging of Drosophila melanogaster pupae with mesoscopic fluorescence tomography, Nature Methods, vol.126, issue.1, pp.45-52, 2008.
DOI : 10.1242/dev.02728

B. Null, C. W. Liu, M. Hedehus, S. Conolly, R. W. Davis et al., High-resolution, in vivo magnetic resonance imaging of Drosophila at 18.8 Tesla Mesoscopic fluorescence tomography for in-vivo imaging of developing Drosophila, PloS one Journal of visualized experiments JoVE, vol.3, issue.7 30, p.2817, 2008.

L. Thrane, Optical Coherence Tomography : Modeling and Applications, 2001.