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ABSTRACT

In this dissertation, we establish a two-scale model both for one-dimensional
and two-dimensional Cantilever Arrays in elastodynamic operating regime with
possible applications to Atomic Force Microscope (AFM) Arrays. Its derivation
is based on an asymptotic analysis for thin elastic structures, a two-scale approx-
imation and a scaling used for strongly heterogeneous media homogenization. We
complete the theory of two-scale approximation for fourth order boundary value
problems posed in thin periodic domains connected in some directions only. Our
model reproduces the global dynamics as well as each of the cantilever motion. For
the sake of simplicity, we present a simpli�ed model of mechanical behavior of large
cantilever arrays with decoupled rows in the dynamic operating regime. Since the
supporting bases are assumed to be elastic, cross-talk e�ect between cantilevers
is taken into account. The veri�cation of the model is carefully conducted. We
explain not only how each eigenmode is decomposed into products of a base mode
with a cantilever mode but also the method used for its discretization, and report
results of its numerical validation with full three-dimensional Finite Element sim-
ulations. We show new tools developed for Arrays of Microsystems and especially
for AFM array design. A robust optimization toolbox is interfaced to aid for de-
sign before the microfabrication process. A model based algorithm of static state
estimation using measurement of mechanical displacements by interferometry is
presented. We also synthesize a controller based on Linear Quadratic Regulator
(LQR) methodology for a one-dimensional cantilever array with regularly spaced
actuators and sensors. With the purpose of implementing the control in real time,
we propose a semi-decentralized approximation that may be realized by an analog
distributed electronic circuit. More precisely, our analog processor is made by Pe-
riodic Network of Resistances (PNR). The control approximation method is based
on two general concepts, namely on functions of operators and on the Dunford-
Schwartz representation formula. This approximation method is extended to solve
a robust H1 �ltering problem of the coupled cantilevers for time-invariant system
with random noise e�ects.

Keywords: Cantilever arrays, Two-scale modeling, Homogenization, Model ver-
i�cation, Optimization design, Interferometry measurements, Semi-decentralized
control, Functional calculus, Cauchy integral formula
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Résumé

Dans cette thèse, nous établissons un modèle à deux échelles à la fois pour des
matrices de cantilevers unidimensionnels et bidimensionnels en régime de fonc-
tionnement élastodynamique avec des applications possibles aux réseaux de mi-
croscopes à force atomique (AFM). Son élaboration est basée sur une analyse
asymptotique pour les structures minces élastiques, une approximation à deux
échelles et une mise à l'échelle utilisée pour l'homogénéisation des milieux forte-
ment hétérogènes. Nous complétons la théorie de l'approximation à deux échelles
pour les problèmes aux limites du quatrième ordre posés dans des domaines minces
périodiques connexes seulement dans certaines directions. Notre modèle reproduit
la dynamique globale du support ainsi que les mouvements locaux des cantilevers.
Pour simpli�er la suite du travail, nous concentrons nos travaux à l'étude de ma-
trices de leviers constituées de lignes découplées en régime dynamique. Comme le
support des leviers est élastique, l'e�et du couplage entre levier est pris en compte.
La véri�cation du modèle est soigneusement réalisée. Nous montrons que chaque
mode propre peut être décomposé en produits d'un mode de base avec un mode
de levier. Nous présentons une méthode de discrétisation du modèle et e�ectuons
sa véri�cation numérique en la comparant avec des résultats de simulation par
éléments �nis du problème d'élasticité tridimensionnel. Par ailleurs, nous avons
élaboré de nouveaux outils d'aide à la conception de réseaux d'AFM. Une boîte à
outils d'optimisation robuste est interfacée avec le modèle permettant d'optimiser
un design avant micro-fabrication. Un algorithme d'estimation de l'état statique
combinant la mesure de déplacements mécaniques par interférométrie et le mod-
èle a été introduit. Nous avons également synthétisé un régulateur quadratique
linéaire (LQR) pour un réseau de cantilevers en mode dynamique comprenant ac-
tionneurs et capteurs régulièrement espacées. Dans le but de mettre en ÷uvre le
contrôle en temps réel, nous proposons une approximation semi-décentralisée qui
peut être réalisé par un circuit électronique distribué analogique. Plus précisé-
ment, notre processeur analogique peut être réalisé par un réseau périodique de
résistances (PNR). La méthode d'approximation de commande est basée sur deux
concepts généraux, à savoir sur un calcul fonctionnel (c'est-à-dire des fonctions
d'opérateurs) et sur la formule de représentation d'une fonction d'opérateur de
Dunford-Schwartz. Cette méthode d'approximation est étendue pour la résolution
d'un problème de �ltrage optimal robuste de typeH1 de la dynamique d'un réseau
de leviers couplés avec sources aléatoires de bruit.

Mots-clés: Matrice de levier, modélisation à deux échelles, homogénéisation, véri-
�cation de modèle, conception par optimisation robuste, mesures d'interférométrie,
contrôle semi-décentralisé, calcul fonctionnel, formule intégrale de Cauchy.
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INTRODUCTION

Since its invention by [1], the Atomic Force Microscope (AFM) has opened new
directions for a number of operations at the nanoscale with an impact in various
sciences and technologies. A number of research laboratories are now developing
large Arrays of AFM [2], [3] that can achieve imaging resolution similar to a single
standalone AFM in parallel, (see Figure1).

Figure 1: (a) optical image of a 4� 17 probe array with SiN cantilevers anchored
on parallel-beam base. The dark square at the end of each cantilever corresponds
to the pyramidal shaped tip. (b) SEM images of a probe arrays with SiN can-
tilevers anchored on a gridlike base. Courtesy of Centre Suisse d'Electronique et
de Microtechnique (CSEM), Neuchâtel Switzerland.

The state-of-the art system that employs an array of cantilever probes is the
Millipede device from IBM [4],[5],[6] designed for data-storage, but again, a number
of new architectures are emerging, see [7], [8], [9], [10], [11], [12], [13], [14], [15].
For nanolithography applications, a two-dimensional probe array is utilized for dip
pen nanolithography [16] and nanoprobe maskless lithography is reported in [17].

The main limitation of AFM devices is their low speed of operation and their
low reliability. Thus, modeling and model based control of AFM employing a single
cantilever probe has found extensive attention, (see M. Napoli [18], S.M. Salapaka
et al. [19], M. Sitti [ 20] for instance). To improve the performance of AFM, an
H1 controller was employed in [21] and for AFM scanner in [22]. G. Schitter et al.
[23] present a control strategy employing a model-based two-degrees-of freedom
controller for high-speed topographical imaging. Regarding arrays, the group of
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B. Bamieh, see [24] and the reference therein, has published a model of coupled
cantilever arrays. It takes into account electrostatic coupling of cantilevers, and
its derivation is phenomenological. In [25], both mechanical and electrostatic cou-
pling neighboring cantilevers are modeled for an array of electrostatically actuated
microcantilevers. In an array of cantilever probes, it is important to address the
issue of cross-talk between cantilevers. Such cross-talk may have mechanical, ther-
mal or electromagnetic origins and is an important e�ect to be considered while
designing the array.

We propose a simpli�ed model for the elastic behavior of large cantilever two-
dimensional arrays. It extends results in [26] by taking into account the dynamical
regime instead of the static regime, and is applicable to two-dimensional arrays
instead of to one-dimensional arrays. Moreover, it takes into account the possible
interaction between AFM tips and sample being interrogated. A similar analysis
for one dimensional array ignoring the interaction between the tip and the sample
is reported in [27]. The detailed derivation of the results in [28], not yet reported,
follows from the results in this thesis.

Our method is mainly based on a homogenization technique applicable to
strongly heterogeneous materials or systems expressed in the framework of two-
scale convergence (or approximation) as introduced in works of M. Lenczner [29],
[30] or in D. Cioranesco, A. Damlamian and G. Griso [31]. In a preliminary step,
its derivation also uses the asymptotic method for thin structures developed by
P.G. Ciarlet [32] and of P. Destuynder [33]. We remark that the choice of a method
for the modeling of the periodic array is not straightforward. Here, a standard ho-
mogenization method is not applicable, where the local mechanical displacements
of the moving parts may be of the same order as the displacements of the common
support. Another aspect is that the lowest local eigenfrequencies of the moving
parts are also in the same range of magnitude as those of the common support-
ing base. These features are usual in many microsystems arrays. However, the
homogenization method was developed for typical continuum mechanics applica-
tions where the usual methods even with introduction of additional techniques has
proven inadequate for modeling an array of micro-cantilever.

We review the main features of our simpli�ed model. The array is comprised
of cantilevers clamped in a common base, each possibly interacting with an object
through its tip. We assume that the base is much sti�er than the cantilevers. This
is expressed by saying that their sti�ness have di�erent asymptotic behaviors. The
resulting model is composed of two evolution equations, one for the macroscopic
behavior, related to the supporting base, and the other, at the microscopic level,
which takes into account the cantilever dynamics. As required, their time scales
are in the same range of magnitude and so are their mechanical displacements.
We further assume that the tip is perfectly rigid, which is a commonly accepted
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assumption. Then, we consider that the rigid objects interacting with tips have
their own dynamics where the interaction is modeled via a friction law. All these
assumptions yield the general model. As an introduction, we also present a slightly
simpler model, referred to as the Simple Model, for which we have carried numerical
simulations and validations. It does not include possible interaction with objects
and it neglects the width e�ect in cantilevers.

For real-time control for arrays of microsystems like arrays of atomic force
microscopes, micro-mirrors, or micro-membranes, we present a new approximation
method based on the Simple Model. The microsystems are comprised of a very
large number of units subjected to wanted or unwanted interactions (cross-talk
e�ect). Achieving global control of such a system remains a challenging task. Here,
we propose a computational strategy with very �ne-grained computing processors
allowing semi-decentralized exchanges, i.e. between neighbors only. We refer to
this concept by using the term semi-decentralized architecture or computing.

In the past decade, a number of articles have focused on semi-decentralized
distributed optimal control for systems with distributed actuators and sensors.
Most of them deal with in�nite length systems, see [34] and [35] for systems gov-
erned by partial di�erential equations, and [36] for discrete systems. In articles
[37] and [38] authors have introduced an approximation, for optimal control de-
sign purposes, optimal control to a �nite length beam endowed with a periodic
distribution of piezoelectric sensors and actuators. Even-though here satisfactory
results are obtained, it su�ers from limitations of applying simple optimal control
strategy, namely LQR, with simple control objective.

In [39] and [40], a comprehensive framework is introduced applicable to cover
a large range of systems, with increased precision and robustness. The method is
based on a general theory of optimal control for linear in�nite dimensional systems.
It does not require that all operators involved are functions of a same operator in
the system. They only need to be functions of this operator up to some change of
variables. Regarding precision of our method, the Taylor series approximating a
function of an operator has been replaced using the integral Cauchy formula from
functional calculus followed by a quadrature rule for the contour integral.

A �rst investigation for real-time vibration control of a one-dimensional can-
tilever array has been carried out in the LQR framework. In view of real-time
control applications, we have derived a Semi-Decentralized Approximation of the
controller based on the two mathematical concepts of functional calculus and
Dunford-Schwartz representation formula, and formulated its realization through
PNR, see [41]. This Semi-Decentralized approximation method can be extended
to other linear control theories, such as Linear Quadratic Gaussian (LQG) and
H1 control.

For real-time control of the cantilever arrays, one of the most important part
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is the sensing system. Regarding sensing, in some cantilever arrays, the de�ec-
tion of cantilever is measured by piezoresistive sensor integrated in the cantilever.
In [42], a cantilever arrays equipped with piezoresistive sensors was employed in
liquid environment. However, this approach su�ers from the complexity of the mi-
crofabrication process of implementing the sensor in the cantilever. Additionally,
the signal to noise ratio of piezoresistive arrays is limited due to the sensor noise.
An interferometric readout method with imaging optics is provided in [43]. This
approach does not su�er from optical cross-talk since the laser light re�ected from
one point on the cantilever is collected by only one pixel of the detector, and is in-
dependent of the direction the re�ected laser beam. However, interferometric data
processing requires heavy computation due to the large number of cantilevers,
which represents a barrier to rapid operation. Thanks to a new approach for
de�ection estimation of cantilever arrays through interferometry measurement in
quasi-static regime, it is turning into reality for real-time estimation and control
of cantilever arrays in the dynamic regime.

This dissertation is organized as follows. In chapter1, we start by shortly in-
troducing the Simple Model. We then formulate the general model precisely. The
model implementation is detailed both for two-dimensional and one-dimensional
cantilever arrays. The Base/Cantilever displacement decomposition of theSim-
ple Model is also discussed. Chapter2 addresses the veri�cation of the simple
model. The eigenvalues and eigenmodes of the simple model are compared to
those obtained by a direct three-dimensional Finite Element Method (FEM) both
for one-dimensional and two-dimensional cantilever arrays. The veri�cation of the
model in static and dynamic regime is also presented. To meet the design re-
quirements of AFM arrays, an optimization tool is introduced with an illustrative
example. The interferometry measurement for AFM arrays is presented in chapter
3. The least square algorithm for phase computation is provided. In chapter4, we
present the semi-decentralized approximation method which is used LQR control
and H1 �ltering problem.

We draw our conclusion in chapter5 with some remarks on future research
work. A new software, AFMALab, for performing simulations for an array of
cantilevers is presented in appendixB.
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Chapter 1

TWO-SCALE MODEL FOR
ARRAY OF CANTILEVERS

Contents
1.1 Model Description . . . . . . . . . . . . . . . . . . . . . . 6

1.1.1 The Simple Two-Scale Model . . . . . . . . . . . . . . . 10

1.1.2 The General Two-Scale Model. . . . . . . . . . . . . . . 11

1.2 Model Implementation . . . . . . . . . . . . . . . . . . . 17

1.2.1 The Two-dimensional Case . . . . . . . . . . . . . . . . 18

1.2.2 The One-dimensional Case. . . . . . . . . . . . . . . . . 21

1.3 Base/Cantilever Displacement Decomposition of the
Simple Model . . . . . . . . . . . . . . . . . . . . . . . . . 23

1.3.1 FEM discretization in Base . . . . . . . . . . . . . . . . 25

1.3.2 Modal decomposition in Cantilevers . . . . . . . . . . . 26

1.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

This chapter is devoted to the derivation of simple two-scale model in section1.1.1,
and general two-scale model in section1.1.2 for a two-dimensional array of can-
tilevers. Each cantilever may be equipped with a rigid tip which can interact with
the sample. For the simple model, we assume that there is no tip-sample inter-
action and the variation of the displacement in the width direction of cantilevers
is negligible. All these assumptions are not present in the general model. Here,
cantilevers can be modeled by a classical Euler-Bernoulli beam equation and the
motion of the base is governed by a Kirchho�-Love plate equation. The mathemat-
ical proofs of the two-scale approximation technique are detailed in a submitted
paper [28].
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Chapter 1. TWO-SCALE MODEL FOR ARRAY OF CANTILEVERS

In section 1.2, we show the model implementation both for two-dimensional
and one-dimensional array of cantilevers. At the end of this chapter, we propose
a Base/Cantilever displacement decomposition of the simple model.

1.1 Model Description

We consider a two-dimensional array of cantilevers, (see Figure1.1). It is com-

Figure 1.1: Array of Atomic Force Microscopes

prised of bases crossing the array in which cantilever are clamped. The bases are
connected both in thex1-direction and in the x2-direction (see Figure1.3 (a)),
so they constitute a single common support clamped on its external boundary.
Cantilevers may be equipped with a rigid tip, as in Atomic Force Microscopes.

The two-scale model derivation steps are illustrated in Figure1.2. First, (a)
the two-scale transform (also called the unfolding operator) and the two-scale
approximation are successively applied to map a thin plate model in bending from
the physical domain to a two-scale domain comprised of a reference cell and the
macroscopic domains. Then, (b) the displacement variation in the width direction
of cantilevers is neglected. In (c), base displacements in the reference cell are
explicitly calculated and eliminated to yield the model in the so-calledtwo-scale
domain where the optimal control is implemented. Finally, (d) an inverse two-
scale transform technique is applied to map the solutions in the two-scale domain
back to the physical domain.

The whole array can be viewed as a periodic repetition of a same cell, in the
two directions x1 and x2, (see Figure1.3 (a)).
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1.1. Model Description

Figure 1.2: Two-scale transform and inverse two-scale transform in two-scale do-
main

Figure 1.3: A two-dimensional view of (a) an array and (b) a cell

We suppose that the numbers of rows and columns of the array are su�ciently
large, namely larger or equal to 10. The simpli�ed model will be an approximation
of the full model in the sense of small values of" � ; the ratio of the cell size", to
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Chapter 1. TWO-SCALE MODEL FOR ARRAY OF CANTILEVERS

array size� , i.e.

" � = "=�: (1.1)

To build it, we shall make use of the two-scale approximation that we brie�y
introduce. Consider any pointx = ( x1; x2; x3) of the three-dimensional space is
decomposed as

x = xc + �y;

wherexc represents the coordinates of the center of the cell ofx, � =

0

@
" � 0 0
0 " � 0
0 0 1

1

A ,

and y = � � 1(x� xc) is the dilated relative location ofx with respect toxc: In current
cell, the points are identi�ed by determining the cell in which the points(x1; x2) lie
(see Figure1.3 (a)). Then, points with coordinatesy vary in the unique so-called
reference cell, that is obtained through a translation and the dilatation � � 1 of any
current cell, (see Figure1.3 (b)) for a two-dimensional view of the reference cell.

Now, considering a distributed �eldu(x), we introduce its two-scale transform

bu� (ex; y) = u(xc + �y );

de�ned for any ex = ( x1; x2) belonging to the two-dimensional �lled section of
the cell, centered atxc = ( xc

1; xc
2; xc

3), and for any y = ( y1; y2; y3) varying over the
reference cell. We emphasize that through this constructionex varies in a �lled
rectangle covering the full array, which we refer to as! . By construction, the
two-scale transform is constant, with respect to its �rst variableex, over each cell.
Since it depends on the ratio" � ; it may be approximated by the asymptotic �eld,
denoted byuA , obtained when" � approaches (mathematically) 0:

bu� = uA + O(" � ):

The approximation uA is called thetwo-scale approximationof u: We mention
that as a consequence of the asymptotic process, the partial functionex 7! uA (ex; :)
is continuous unlike the mapex 7! bu� (ex; :).

Now, we observe thatuA (ex; y) is a two-scale �eld, and therefore cannot be
directly used as an approximation of the �eldu(x) in the real array of cantilevers.
So, an inverse two-scale transform must be applied touA . However, sinceex 7!
uA (ex; y) is continuous,uA does not belong to the range of the two-scale transform.
Hence we introduce an approximated inverse for the two-scale transform,

v(ex; y) 7! v(x);
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1.1. Model Description

in the sense

bu = u + O(" � ) and bv = v + O(" � );

for su�ciently regular functions u(x) and v(ex; y). We are led to make two
di�erent choices for x 7! v(x), when x belongs to a cell centered atxc: The �rst
one applies tox belonging to a cantilever,

v(x) =


v(:; � � 1(x � xc))

�
ex

;

it is a mean in ex over the cell. The other is forx in the base,

v(x) = v(:; � � 1(x � xc)) :

Once an approximate inverse two-scale transform is de�ned, we retainuA as
our approximation of u in the physical system. In the dissertation, we apply
this technique to the mechanical displacements in the array, and we derive the
equations governing the resulting two-scale �elduA :

Notations The reference cell is divided into the mechanical deviceYS and the
object YO. Furthermore, the deviceYS is divided into the baseYB , the cantilever
�exible part YC , and the cantilever rigid part YR , (see Figure1.4). The �lled
reference cellY is a rectangle parallelepiped inR3:

Figure 1.4: Reference cell of AFM array

We will use thetilde notation on variablesx or y to refer to their two �rst com-
ponents, ex = ( x1; x2) and ey = ( y1; y2) where x = ( x1; x2; x3) and y = ( y1; y2; y3):
Accordingly, we will use the in-plane gradientr ey = ( @y1 ; @y2 ), the in-plane Laplace
operator � ey = @2

y1y1
+ @2

y2y2
, the in-plane unit outward external normal components

nex = ( nx1 ; nx2 ) and ney = ( ny1 ; ny2 ) to the boundary of ! and of the reference cell.
The in-plane section of the reference cellY is refereed aseY when the sections of
its subdomains are denoted byeYS; eYB and eYC for instance. Similar notations are
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Chapter 1. TWO-SCALE MODEL FOR ARRAY OF CANTILEVERS

used for their interfaces and for boundaries. The inverse of the cell section surface
is constantly used, so it is referred to as

e� =
1

j eY j
: (1.2)

The jump of a �eld v at an interface 
 is written as [[v]]
 : Finally, we use the
operation " : " for the inner product between two matricesA and B of same
dimensions,A : B =

P
i;j A ij B ij :

1.1.1 The Simple Two-Scale Model

Our models are formulated from the Kirchho�-Love thin plate model of the whole
structure, and we will always assume that the ratio of cantilever thicknesshC to
base thicknesshB is small, namely

hC

hB
� " � 4=3: (1.3)

Applying the two-scale approximation technique to the third component of
the vector of mechanical displacement �elds yieldsuA

3 (t; ex; y) where t represents
the time variable and is treated as a parameter. In the following, we detail the
equations governinguA

3 , all parameters of its model being stated in section1.1.2.
From the analysis, it appears thatuA

3 is independent ofy3 everywhere. In
the Simple Model, we consider cantilevers made of an isotropic material and there
variations of y1 7! uA

3 (t; ex; y) are neglected. So their motions are governed by a
classical Euler-Bernoulli beam equation in the microscopic space variabley2;

mC0@2
tt u

A
3 + r C0@4

y2 :::y2
uA

3 = F C0; (1.4)

with mC0 their linear mass density,r C0 their linear sti�ness coe�cient, and
F C0 their load per unit length, see (1.17), (1.13), (1.21).] This model holds for all
ex = ( x1; x2), and therefore represents motions of an in�nite number of cantilevers
parameterized byex and y capture the relative motion with respect to this.

For y varying along the base,y 7! uA
3 (t; ex; y) is constant and there the dis-

placementuA
3 (t; ex) is governed by a Kirchho�-Love plate equation

� B @2
tt u

A
3 + divex (divex (RB : r ex r T

ex uA
3 )) + `0

C r C (@3
y2y2y2

uA
3 ) j junction = f B , (1.5)

where� B ; RB ; RB and `0
C are respectively its e�ective surface mass, its homog-

enized sti�ness tensor, its e�ective load per unit surface, and the cantilever width
in the reference cell, see (1.15), (1.14), (1.18). The term r C (@3

y2y2y2
uA

3 ) j junction is a
distributed load originating from shear forces exerted by cantilevers on the base
at base-cantilever junctions.
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1.1. Model Description

At base-cantilever junctions, a cantilever is clamped in the base, so

uA
3jcantilever = uA

3jbase and ((@y1 ; @y2 )uA
3 :(n1; n2)T ) jcantilever = 0; (1.6)

becauser yuA
3 = 0 in the base. Other cantilever ends may be free with equations,

@2
y2y2

uA
3 = 0 and @3

y2y2y2
uA

3 = 0; (1.7)

or may be equipped with a rigid part (usually a tip in Atomic Force Microscopes),
then

J R@tt

�
uA

3
@y2 uA

3

�
+ r C0

�
� @3

y2y2y2
uA

3

@2
y2y2

uA
3

�
= F R0 (1.8)

at a junction between an elastic part and a rigid part. Here,J R is a matrix of
moments andF R0 is comprised of e�ective forces and moments stated in (1.32).
Last, the external base boundary being clamped in a �xed support

uA
3 = 0 and r exuA

3 :nex = 0 (1.9)

on its boundary.

1.1.2 The General Two-Scale Model

In section 1.1.1, the model was introduced assuming that the base and cantilevers
are rectangle parallelepiped, and that their deformations in they1 direction are
negligible. Now, we relax these assumptions, and we present in detail a more gen-
eral two-scale model that may also take into account possible interactions between
tips and rigid objects. We restrict the presentation to the situation where the
bodies are in contact with friction. This is applicable to contact mode microscopy
with atomic force microscopes. In addition to approximation of displacements,
we provide approximations of elastic strains and stresses. The approximations are
still posed in the Kirchho�-Love thin plate model where we still neglect mean (in
the thickness direction) in-plane displacements.

Model Parameters The model parameters result from two-scale approxima-
tions of the physical data, namely coe�cients, loads and initial conditions.

Remark 1 It is natural to consider that the problem geometry and equation coef-
�cients are parameterized by" � ; but it is arti�cial to say the same thing regarding
other data as loads or initial conditions. However, to follow the common use we
proceed as if they were also known sequences of" � ; with a known two-scale approx-
imation. For some of them, we do not require their direct two-scale approximation
but this of their product by a power of" � : This provide a measure of the asymptotic
behavior required so that the model be well justi�ed. Remark that for actual model
computations, we do not use the two-scale approximation of parameters but only
their two-scale transform.
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Chapter 1. TWO-SCALE MODEL FOR ARRAY OF CANTILEVERS

Let RP be the thin plate sti�ness per unit area, for instance for a plate with
thicknessh made of an isotropic material

RP
��
� =

Eh3

12(1 + � )
(

�
1 � �

� �� � 
� + � �
 � �� ); (1.10)

the assumption (1.3) on ratio thicknesses may be restated with respect to sti�-
ness as

RP
j
 C

RP
j
 B

s " � 4: (1.11)

Posing the order of magnitude of base sti�ness in the range of1 with respect to
" � ; the two-scale sti�ness tensorsr B (respectively r C ) per unit area in ! and per
unit area in the base eYB (respect. in cantilever eYC ) is de�ned as the two-scale
approximation of e�R P (respect. of" �� 4e�R P ); that we write simply as,

r B � e� bRP in ! � eYB (respect. r C � " �� 4e� bRP ): (1.12)

The sti�ness per unit area in ! and per unit length in cantilever of theSimple
Model is therefore r C0 = `0

C (1 � � 2)r C , where we recall that `0
C is the scaled

cantilever width `C="� in the reference cell. In case of an isotropic material,

r C0 � " �� 4e�` 0
CE C I C = " �� 4e�

ECh3
C `0

C

12
; (1.13)

E C being the cantilever elastic modulus andI C = h3
C=12 the second moment

of cantilever section. We introduce the e�ective sti�ness tensorRB per unit area
in the base,

RB
��
� =

Z

eYB

r B
��
� + r B

���� L B
��
� dey; (1.14)

where the tensorL B is de�ned in (A.6) below. Then,� representing the volume
mass density, the e�ective mass density� B per unit area in the base is

� B � e�
Z

YB

b� dy in !: (1.15)

The other mass densities appearing in the model are two-scale densities: in
cantilever mC is per unit area times area when in the rigid tips and in objects� R

and � O are per unit area times volume. Indeed,

mC � e�
Z hC =2

� hC =2
b� dy 3 in ! � eYC ; � R � e� b� in ! � YR and � O � e� b� in ! � YO: (1.16)
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1.1. Model Description

The two-scale mass densitymC0 per unit area in ! and per unit length in
cantilevers follows,

mC0 = `0
CmC : (1.17)

The base e�ective loadf B per unit area, the base e�ective momentsgB
� about

the plate section per unit area are derived from the two-scale approximations of
the vector of loadsf = ( f 1; f 2; f 3) per unit volume,

f B � e�
Z

YB

bf 3 dy, and gB
� � e�

Z

YB

y3
bf � dy in !: (1.18)

The cantilever two-scale loadF C and the momentGC per unit area times area
in ! � eYC ; the tip two-scale load F R and the moment GR per unit area times
volume, and the object two-scale loadF O per unit area times volume are de�ned
similarly from f

F C � e�
Z hC =2

� hC =2

bf 3 dy3 and GC
� �

e�
" �

Z hC =2

� hC =2
y3

bf � dy3 in ! � eYC , (1.19)

F R � e� bf 3; GR
� �

e�
" �

y3
bf � in ! � YR and F O � " � e� bf in ! � YO: (1.20)

The cantilever two-scale load of theSimple Modelfollows

F C0 = `0
CF C : (1.21)

The two-scale load and moment corresponding to a periodic distribution of con-
centrated load(

P
c f ci � zc (x)) i =1 ::3 applied at points zc = xc + �y 0 is

F D =
1

(" � )d

X

c

� eY " (xc )(z)f c� y0 (y) � j eY j
X

c

� exc (z)f c� y0 (y) (1.22)

and GD =
1

(" � )d+1

X

c

� eY " (xc )(z)f cy0
3� y0 (y) �

j eY j
" �

X

c

� exc (z)f cy0
3� y0 (y):

The two-scale friction coe�cient at the two-scale tip-object interface! � 
 R;O

is an approximation built from the tip-object friction coe�cient � ,

zF r � e�
b�

" � 2
: (1.23)

For given initial transverse displacementu0
3 and velocity u1

3 in the whole system
together with lateral displacementsu0

� and velocity u1
� in objects, the two-scale

initial displacements and velocities are de�ned by the approximations

uA0
3 � bu0

3, uA1
3 � bu1

3 in ! � (YS [ YO);

and uA0
� � " � bu0

� ; uA1
� � " � bu1

� in ! � YO:

13



Chapter 1. TWO-SCALE MODEL FOR ARRAY OF CANTILEVERS

Moreover,uA0 and uA1 are assumed to ful�l the forthcoming kinematics (1.24-
1.28).

Admissible kinematics The two-scale �eldsuA satis�es a kinematics inher-
ited from the Kirchho�-Love kinematics and from the two-scale approximation of
derivatives. In the whole mechanical structure comprised of a base and of can-
tilevers,

uA
3 and uB are independent ofy3: (1.24)

We neglect mean in-plane displacements, and we assume that the surfacey3 = 0
corresponds to the mean section of the cantilevers and of the base. So,

uA
� = � y3@x � uA

3 in ! � YB and uA
� = � y3@y� uA

3 in ! � (YC [ YR). (1.25)

In the base,uA
3 is independent of(y1; y2); that is

r eyuA
3 = 0. (1.26)

The conditions of rigidity for tips and for objects are formulated as

r eyr T
ey uA

3 = 0 in tips and sy(uA ) = 0 in objects; (1.27)

wheresy(u) = 1
2(r yu + ( r yu)T ) is the usual strain tensor in they variables. The

contact condition between tips and rigid objects results in normal displacement
continuity through their interface 
 R;O ;

[[uA ]]
 R;O
:ny = 0; (1.28)

where ny denotes the unit outward normal vector to boundaries in the reference
cell.

Equations of motion In cantilevers, the transverse displacementuA
3 is gov-

erned by a Love-Kirchho� thin plate equation in the y variables,

mC@2
tt u

A
3 + divey(divey(M C (uA

3 ))) = F C in ! � eYC ; (1.29)

and the shear force matrix in cantilevers isM C (uA
3 ) = r C : r eyr T

ey uA
3 . In

the base, the transverse displacementuA
3 is also governed by a thin plate Love-

Kirchho� model in the macroscopic variables, with a contribution of the bending
moment exerted by the cantilever distribution. This coupling with cantilevers
appears under the form of an integral along the interface linee
 B;C between eYB

and eYC ,

� B @2
tt u

A
3 + @2

x � x �
M B

�� (uA
3 ) �

Z

e
 B;C

divey(M C (uA
3 )) :ney des = f B in ! � eYB ; (1.30)

14



1.1. Model Description

where the shear forces in the base are given by

M B
�� (uA

3 ) = RB
��
� @2

x 
 x �
uA

3 .

For the sake of shortness, we write the motion equations in tips and in objects under
their variational formulation. This avoids formulating in detail their dynamics
together with the interface condition. The admissible displacement set is built
from the above admissible conditions,

W A = f uA de�ned in YR [ YO satisfying (1.24, 1.25, 1.27, and 1.28)}.

For a given vector �eld v 2 WA ; we introduce its tangent componentvT on the
interface 
 R;O de�ned as,

vT = v � (v:ny)ny;

and e
 C;R the interface betweeneYC and eYR : The linear form of the right hand side
is

lR(v) =
Z

YR

F R
3 v3 � GR :r eyv3 dy +

Z

YO

F O:v dy �
Z

e
 C;R

GC :ney v3 des;

and the bilinear forms are

cR(uA ; v) =
Z

YR

� RuA
3 v3 dy +

Z

YO

� OuA :v dy;

bR(uA ; v) =
Z


 R;O

zF r [[uA
T ]]
 R;O

:[[vT ]]
 R;O
ds

aR(uA
3 ; v3) =

Z

e
 C;R

(M C (uA
3 )ney):r eyv3 � divey(M C (uA

3 )) :ney v3 des:

The variational formulation states asuA (t; x; : ) 2 W A and

@2
tt c

R(uA ; v) + @tbR(uA ; v) + aR(uA
3 ; v3) = lR(v) for all v 2 W A : (1.31)

For the Simple Model, this equation was restated as a boundary condition (1.8) at
e
 C;R where

J R =
�

J0 J1

J1 J2

�
and F R0 =

 R
YR

F R
3 dy � `0

CGC
je
 C;RR

YR
F R

3 (y2 � y2je
 C;R
) dy � GR

2

!

; (1.32)

with Jk =
R

YR
(y2 � y2je
 C;R

)k dy2 being akth moment of the rigid part YR about the
junction e
 C;R in the direction y2.

Interface and boundary conditions Cantilevers being clamped in a base,
the de�ection uA

3 and its derivatives are continuous through the base-cantilever
interface e
 B;C ,

uA
3j! � eYC

= uA
3j! � eYB

and (r eyuA
3 ) j! � eYC

= 0 at e
 B;C : (1.33)
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Chapter 1. TWO-SCALE MODEL FOR ARRAY OF CANTILEVERS

At free cantilever boundaries,

nT
ey M C (uA

3 )ney = 0; r ey(nT
ey M C (uA

3 )� ey):� ey + divey(M C (uA
3 )) :ney = 0 (1.34)

where� ey is the tangent vector to the reference cell's boundary. Along the complete
boundaries of! where base is clamped, the two-scale transverse displacement ful�ls
clamping like conditions,

uA
3 = r exuA

3 :nex = 0 at @!� eYB : (1.35)

Initial conditions The two-scale transverse displacement and its velocity are
initialized in the whole system! � (YS [ YO) by

uA
3 = uA0

3 , @tuA
3 = uA1

3 :

In-plane displacements and their time derivatives are initialized, in objects! � YO

only, by
uA

� = uA0
� and @tuA

� = uA1
� . (1.36)

Eigenvalue Problem We consider the model without object, and we state the
associated eigenvalue problem as well as a property of factorization of eigenvectors.
An eigenvalue� A and an eigenvector A (ex; ey) satisfy the constraints

r ey A = 0 in eYB ; r eyr T
ey  A = 0 in YR ; (1.37)

an equation in the base

divex (divex (M B ( A ))) �
Z

e
 B;C

divey(M C ( A )) j eYC
:ney ds = � B � A  A in ! � eYB ; (1.38)

an equation in cantilevers

divey(divey(M C ( A ))) = � A mC  A in eYC ; (1.39)

and a variational formulation in the rigid part,

 A
jYR

2 W A ; aR( A ; v) = � A cR( A ; v) for all v 2 W A ; (1.40)

endowed with the reduced de�nition

W A = f v de�ned in YR j @y3 v = 0 and r eyr T
ey v = 0g:

The boundary and interface conditions for A are not detailed since they are the
same as foruA

3 in (1.33-1.35).
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1.2. Model Implementation

Factorization of the Eigenvectors Now, we state that each eigenvector A

can be written as the product of amacroscopic eigenvectorde�ned in ! only by
a microscopic (or local) eigenvectorde�ned in eYC [ YR only. We �rst introduce
the macroscopic eigenvalue problemwhere � B and ' B (ex) denote respectively an
eigenvalue and an eigenvector,

divex (divex (M B (' B ))) = � B � B ' B in !;

' B = r ex ' B :nex = 0 on @!:

Then, for each� B we de�ne the microscopic eigenvalue problemin cantilevers
where� C and ' C represent an eigenvalue and an eigenvector,

divey(divey(M C (' C ))) = � CmC ' C in eYC ;

� B � B ' C � diveyM C (' C )ney = � C � B ' C and r ey ' C = 0 at e
 B;C ;

and nT
ey M C (' C )ney = 0;

r ey(nT
ey M C (' C )� ey):� ey + divey(M C (' C )) :ney = 0 at free boundaries,

together with the variational formulation in rigid parts,

' C
jYR

2 W A ; aR(' C ; v) = � CcR(' C ; v) for all v 2 W A :

Finally, we state the decomposition property. For the sake of brevity its proof
is omitted.

Proposition 2 For each pair(� A ;  A ) solution to (1.37-1.40), there exists a unique
pair (� B ; ' B ) and a unique pair(� C ; ' C ) such that  A (ex; ey) = ' B (ex)' C (ey) and
� A = � C : Reciprocally, for any pair (� B ; ' B ) and any pair (� C ; ' C ), its combi-
nation (' B (ex)' C (ey); � C ) determines the pair( A (ex; ey); � A ) which is solution to
(1.37-1.40).

1.2 Model Implementation

In this section, we provide further details in view of the model implementation
for a two-dimensional array and then for a one-dimensional array without object.
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Chapter 1. TWO-SCALE MODEL FOR ARRAY OF CANTILEVERS

First, we summarize the coe�cient expressions in case of constant coe�cients

`0
C =

`C

" �
; L0

C =
LC

" �
; e� =

1

j eY j
; RP

��
� =
Eh3

12(1 + � )
(

�
1 � �

� �� � 
� + � �
 � �� );

r B � e�R P in ! � eYB , r C = (1 � � 2)r C
1111 = " �� 4 e�Eh 3

12
;

RB
��
� =

Z

eYB

r B
��
� + r B

���� L B
��
� dey;

� B � e� jYB j� jYB
; mC � e�h C � jYC

; � R � e�� jYR
;

Q = N
�

J0 J1

J1 J2

�
N; with N =

�
1 0
0 1=L0

C

�
and Jk =

Z

YR

(y2 � L0
C )k dy;

f B � e�
Z

YB

bf 3 dy, and gB
� � e�

Z

YB

y3
bf � dy in !; F C � e�

Z hC =2

� hC =2

bf 3 dy3

and GC
2 �

e�
" �

Z hC =2

� hC =2
y3

bf 2 dy3 in ! � eYC , F R � e� bf 3; GR
� �

e�
" �

y3
bf � in ! � YR :

1.2.1 The Two-dimensional Case

We detail the formulation of the model when variations of displacements in can-
tilever width are ignored. We recall that uA

3 is solution of the problem: Find
uA

3 2 V A
3 such that

@2
tt c

A (uA
3 ; vA

3 ) + eaA (uA
3 ; vA

3 ) = lA (vA
3 ) for all vA

3 2 V A
3 (1.41)

accompanied with initial conditions

uA
3 = uA0

3 and @tuA
3 = uA1

3 at t = 0;

where
eaA (uA

3 ; vA
3 ) =

R
! [

��
RB : r ex r T

ex uA
3

�
: r ex r T

ex vA
3

�
j eYB

+ `0
C

RL 0
C

0 r C@2
y2y2

uA
3 @2

y2y2
vA

3 dyC
2 ]dex;

(1.42)

cA (uA
3 ; vA

3 ) =
R

! [(� B uA
3 vA

3 ) j eYB
+ `0

C

RL 0
C

0 mCuA
3 vA

3 dyC
2

+
R

YR
� RuA

3 vA
3 dy]dex;

(1.43)

and

lA (vA
3 ) =

R
! [(f B vA

3 � gB :r exvA
3 ) j eYB

+
R

eYC
F C vA

3 � GC
2 @y2 vA

3 dey
+

R
YR

F RvA
3 � GR

2 @y2 vA
3 dy]dex + ( F D � GD )vA

3 :
(1.44)

The eigenmodes A 2 V A
3 are solution of

eaA ( A ; vA
3 ) = � A cA ( A ; vA

3 ) for all vA
3 2 V A

3 (1.45)
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1.2. Model Implementation

with the normalization condition cA ( A ;  A ) = 1 :
For a rectangle domain! = (0 ; L1) � (0; L2), we introduce the factorization of

 A (ex; y2) = ' B ( x1
L 1

; x2
L 2

)' C ( yC
2

L 0
C

) where' B and ' C are solution to the two following

eigenvalue problems whereyC
2 is the translation of y2 equal to zero at the clamping

point of the cantilever to the base. First,' B 2 H 2
0 ((0; 1)2) with � B are solution

to the weak formulation

aB (' B ; vB ) = � B cB (' B ; vB ) for all vB 2 H 2
0 ((0; 1)2)

normalized by the conditioncB (' B ; ' B ) = 1 ;
(1.46)

where the bilinear forms are de�ned on the scaled domain(0; 1)2 by

aB (' B ; vB ) =
R

(0;1)2

h
RB 0 : r � r T

�
' B

i
: r � r T

�
vB d�

and cB (' B ; vB ) =
R

(0;1)2 ' B vB d�;
(1.47)

and RB 0 is the scaled homogenized sti�ness tensor

RB 0
��
� =

RB
��
�

RB
max L 0

� L 0
� L 0


 L 0
�

with L0
� = L �

� ,

� = L 1+ L 2
2 and RB

max = max �;�;
;� (RB
��
� ):

(1.48)

Next, ' C 2 V C = f v 2 H 4(0; 1) j @� v(0) = 0 g with � C are solution to the weak
formulation

aC (' C ; vC ) = � CcC (' C ; vC ) for all vC 2 V C

normalized bycC (' C ; ' C ) = r C

(L 0
C )4mC ;

(1.49)

where

aC (' C ; vC ) =
j! jRB

max

� 4
� B �

' C vC
�

j � =0
+

j! j`0
C

(L0
C )3

Z 1

0
r C@2

�� ' C@2
�� vC d�; (1.50)

and

cC (' C ; vC ) = j! jr C

(L 0
C )4mC [(� B ' CvC ) j � =0 + `0

CL0
C

R1
0 mC ' CvC d�

+ � R
R

YR
' CvC dy]:

(1.51)

So, the normalization condition reads as

j! j[� B (' C
j� =0 )2 + `0

CL0
C

Z 1

0
mC (' C )2 d� + � R(' C ; @� ' C ) j � =1 Q

�
' C

@� ' C

�

j � =1

] = 1:

The boundary value problem satis�ed by' C states therefore as

@4
���� ' C = � C ' C in (0; 1) (1.52)
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Chapter 1. TWO-SCALE MODEL FOR ARRAY OF CANTILEVERS

with the boundary conditions

@� ' C = 0 and
RB

max (L0
C )4mC

r C � 4� B
� B ' C +

mC `0
CL0

C

� B
@3

��� ' C = � C ' C at � = 0; (1.53)

and �
� @3

��� ' C

@2
�� ' C

�
=

� C � R

`0
CL0

CmC
Q

�
' C

@� ' C

�
at � = 1: (1.54)

Then

� A = � C r C

(L0
C )4mC

:

Finally, the weak formulation of the cell problem is: FindwB 2 V B such that,
Z

eYB

M B 0 : r eyr T
ey vB dey = �

Z

eYB

F B : r eyr T
ey vB dey for all vB 2 V B , (1.55)

whereM B 0 = r B : r eyr T
ey wB , F B = r B : �; � being a symmetric2 � 2 matrix.

The evolution problem (1.41) is solved using the modal decomposition

uA
3 (t; ex; y2) =

X

k

Uk(t) A
k (ex; y2);

where the modal coe�cientsUk are solution to the ordinary di�erential equation

@2
tt Uk + � A

k Uk = lA ( A
k ). (1.56)

In view of insuring fast computations, we further assume (it is a strong assump-
tion that may be relaxed) that the loads are products of functions of microscale,
macroscale or time variable. Precisely, we consider loadsf i as

bf 3(t; ex; y) = f 0
3 (ex; y)f B 2(t);

bf � (t; ex; y) = f 0
� (ex; y)gB 2

� (t) in YB ;
bf 3(t; ex; y2; y3) = F C0(ex)f C1

3 (y2; y3)F C2(t);
bf 2(t; ex; y2; y3) = GC0(ex)f C1

2 (y2; y3)GC2(t) in YC ;
bf 3(t; ex; y) = F R0(ex)f R1

3 (y)F R2(t);
bf 2(t; ex; y) = GR0(ex)f R1

2 (y)GR2(t) in YR ;

(1.57)

plus a concentrated load at the tips with microscale coordinateytip ;

bf tip
i (t; ex; y) =

X

c

f tip
i;c (t)� exc (ex)� ytip (y): (1.58)

20



1.2. Model Implementation

Posing

f B 0(ex) �
1

jYB j

Z

YB

bf 3 dy, f B 1 = e� jYB j; gB 0
� (ex) �

1
jYB j

Z

YB

y3
bf � dy, gB 1

� = e� jYB j;

F C1(y2) = e�
Z hC =2

� hC =2
f C1

3 dy3; GC1(y2) =
e�
" �

Z hC =2

� hC =2
y3f C1

2 dy3;

F R1 = e�f R1
3 ; GR1 =

e�
" �

y3f R1
2 ; F D

c = j eYjf tip
3c , GD

c =
j eYj
" �

y3f tip
2c ;

we derive the two-scale loads,

f B (t; ex) = f B 0(ex)f B 1f B 2(t); gB
� (t; ex) = gB 0

� (ex)gB 1
� gB 2

� (t) in YB ;

F C (t; ex; y2) = F C0(ex)F C1(y2)F C2(t); GC
2 (t; ex; y2) = GC0(ex)GC1(y2)GC2(t) in YC ;

F R(t; ex; y) = F R0(ex)F R1(y)F R2(t); GR
2 (t; ex; y) = GR0(ex)GR1(y)GR2(t) in YR ;

F D (t; ex; y) =
X

c

F D
c (t)� exc (ex)� ytip (y); GD (t; ex; y) =

X

c

GD
c (t)� exc (ex)� ytip (y):

Inserting these expression in the right hand side of the modal equation (1.56), we
can rewrite it as

lA ( A ) =
R

! f B 0' B dex ' C (0)f B 1f B 2(t)

�
P

�

R
! gB 0

�
@� � ' B

L �
dex ' C (0)gB 1

� gB 2
� (t)

+
R

! F C0' B dex
RL 0

C
0 F C1' C dyC

2 F C2

�
R

! GC0' B dex
RL 0

C
0 GC1 @� ' C

L 0
C

dyC
2 GC2

+
R

! F R0' B dex
R

YR
F R1' C dyFR2

�
R

! GR0' B dex
R

YR
GR1 @� ' C

L 0
C

dyC
2 GR2

+
P

c F D
c  A (xc; ytip ) � GD

c @y2  A (xc; ytip ):

(1.59)

1.2.2 The One-dimensional Case

The one-dimensional model can be formulated in a manner which is very close to
the two-dimensional model. Here, we present its formulation and we mainly quote
the di�erences with the two-dimensional one. The rectangle! is replaced by a
single row ! = (0 ; L1) � (0; " � `2), so j! j = " � `2L1: The weak formulation (1.41)
remains the same but with other bilinear forms,

eaA (uA
3 ; vA

3 ) = " � `2
RL 1

0 [
�
RB @2

x1x1
uA

3 @2
x1x1

vA
3

�
j eYB

+ `0
C

RL 0
C

0 r C@2
y2y2

uA
3 @2

y2y2
vA

3 dyC
2 ]dx1:

(1.60)

cA (uA
3 ; vA

3 ) = " � `2
RL 1

0 [(� B uA
3 vA

3 ) j eYB
+ `0

C

RL 0
C

0 mCuA
3 vA

3 dyC
2

+
R

YR
� RuA

3 vA
3 dy]dx1;

(1.61)
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and

lA (vA
3 ) = " � `2

RL 1

0 [(f B vA
3 � gB r exvA

3 ) j eYB
+

R
eYC

F C vA
3 � GC

2 @y2 vA
3 dey

+
R

YR
F RvA

3 � GR
2 @y2 vA

3 dy]dx1 + ( F D � GD )vA
3 :

(1.62)

The eigenvalue problem in A and � A keeps the same expression, and the resulting
decomposition of the solution, which is a function of(t; x 1; y2) only, states as

uA
3 (t; x 1; y2) =

X

k

uA
3k(t) A (x1; y2):

Here,  A (ex; ey) = ' B ( x1
L 1

)' C ( yC
2

L 0
C

) where' B and � B are solution to the macroscopic

eigenvalue problem (1.46) in H 2
0 (0; 1) with the bilinear forms

aB (' B ; vB ) =
Z 1

0
@2

�� ' B @2
�� vB d� and cB (' B ; vB ) =

Z 1

0
' B vB d�: (1.63)

Next, ' C 2 V C with � C are solution to the eigenvalue problem (1.49) with RB
max

replaced byRB in the expression ofaC (:; :): The associated normalization condition
and the boundary value problem are formally unchanged, excepted thatRB

max and
� are replaced byRB

1111 and L1 respectively in the second boundary conditions at
� = 0 :

RB
1111(L

0
C )4mC

r CL4
1� B

� B ' C +
mC `0

CL0
C

� B
@3

��� ' C = � C ' C at � = 0: (1.64)

The cell problem is kept the same excepted that the matrix� in the right hand
side has a vanishing� 22 component. WheneYB is a rectangle, the exact expression
of wB ; L B and of RB

1111 can be derived. Precisely, the solution to the cell problem
is

wB (y1; y2) = �
�� 11

2
y2

2 and M B = �
e�E B h3

B �� 11

12(1� � 2)

�
� 0
0 1

�
:

The linear operatorL B
��
� = � �� � 2� � 2� 
 1� � 1, which implies the expression ofRB =R

eYB
r B + r B L B dey;

RB
��
� =

e� j eYB jEB h3
B

12(1 + � )
(

�
1 � �

� �� � 
� + � �
 � �� �
� 2

1 � �
� �� � 
 1� 1� + �� � 2� 2� � 
 1� 1� );

then

RB
1111 =

`0
B EB h3

B

12̀ 2

where`0
B is the width of eYB .
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In the load expressions (1.57) ex is replaced byx1; so

bf 3(t; x 1; y) = f 0
3 (x1; y)f B 2(t);

bf � (t; x 1; y) = f 0
� (x1; y)gB 2

� (t) in YB ;
bf 3(t; x 1; y2; y3) = F C0(x1)f C1

3 (y2; y3)F C2(t);
bf 2(t; x 1; y2; y3) = GC0(x1)f C1

2 (y2; y3)GC2(t) in YC ;
bf 3(t; x 1; y) = F R0(x1)f R1

3 (y)F R2(t);
bf 2(t; x 1; y) = GR0(x1)f R1

2 (y)GR2(t) in YR ;
bf tip
i (t; x 1; y) =

X

c

f tip
ic (t)� xc

1
(x1)� ytip (y):

Thus, the right hand side of the modal equation (1.56) is

lA ( A ) = " � `2
RL 1

0 f B 0' B dx1 ' C (0)f B 1f B 2(t)

�
P

� " � `2
RL 1

0 gB 0
�

@� � ' B

L �
dx1 ' C (0)gB 1

� gB 2
� (t)

+ " � `2
RL 1

0 F C0' B dx1
RL 0

C
0 F C1' C dyC

2 F C2

� " � `2
RL 1

0 GC0' B dx1
RL 0

C
0 GC1 @� ' C

L 0
C

dyC
2 GC2

+ " � `2
RL 1

0 F R0' B dx1
R

YR
F R1' C dyFR2

� " � `2
RL 1

0 GR0' B dx1
R

YR
GR1 @� ' C

L 0
C

dyC
2 GR2

+
P

c F D
c  A (xc; ytip ) � GD

c @y2  A (xc; ytip ):

(1.65)

1.3 Base/Cantilever Displacement Decomposition
of the Simple Model

In this section, we propose a new approach based on base and cantilever displace-
ment decomposition instead of global modal decomposition for theSimple Model
of one-dimensional cantilever array. We recall that the global modal decomposition

uA
3 (t; x 1; y2) =

X

k

Uk(t) A
k (x1; y2);

where the global eigenvector

 A (ex; ey) = ' B (
x1

L1
)' C (

yC
2

L0
C

);

as introduced in section1.2.2. We have observed that the global approximation
with  A for the number of base modesnB = 10 and the number of cantilever
modesnC = 3 is not very good, as shown in Figure1.5.
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Figure 1.5: Static displacements comparison between FEM model and two-scale
model with global modal decomposition.

We remark that the approximation based on global modal decomposition gets
worse with increasingnB and nC . This is due to the coupling in A of the micro
and macro modes. We note that the eigenvector of cantilever' C depends on the
eigenvalue of base� B , see the boundary condition (1.64). Thus, ' C is not a pure
cantilever mode. It seems that a solution with discoupled modes works better.

We introduce the extensiony2 7! u(:; y2) of the restriction y2 7! uA
3jbase(:; y2)

the displacement in base (which is in fact independent ofy2) to the values taken
by y2 in cantilevers. So,u is de�ned in the whole two-scale domain and we can
de�ne its di�erence with uA

3 , eu = uA
3 � u; also de�ned in the whole domain. In

the base, it is obvious thateu = 0 and r yu = 0 sinceuA
3 is independent ofy2. We

reformulate the equations (1.5) and (1.4) for one-dimensional cantilever arrays,
satis�ed by the couple(u; eu),

�
� B @2

tt �u + RB @4
x1 ��� x1

�u + `0
C r C (@3

y2y2y2
eu) j junction = f B , in base

mC0@2
tt eu + mC0@2

tt �u + r C0@4
y2 :::y2

eu = F C ; in cantilever
(1.66)

In practice, we will work on a model reduced at the microscopic scale through
modal decompositions on cantilever modesf � k(y2)gk=1 ::n C in L2(0; L0

C ), wherenC

is the number of cantilever modes and the parameterL0
C represent the cantilever

length in the microscale domain. We have

eu(t; x 1; y2) �
nCX

k=1

euk(t; x 1)� k(y2) and F C (t; x 1; y2) �
nCX

k=1

f C
k (t; x 1)� k(y2): (1.67)
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In this approximation, equations (1.66) yields,

(
� B @2

tt u + RB @4
x1 ��� x1

u + `0
C r C (@3

y2y2y2
eu) j junction = f B in base,

mC0@2
tt euk + mC0@2

tt �u�� k + r C0 � C
k

(L 0
C )4 euk = f C

k for eachk,
(1.68)

where �� k =
RL 0

C
0 � k dy2 and � k(y2) = ' k( y2

L 0
C

): The eigenelements(� k ,' k)k2 N are
solutions to the eigenvalue problem, posed in(0; 1);

8
>><

>>:

' 0000
k = � C

k ' k in (0; 1)
' k(0) = ' 0

k(0) = 0 ; at 0�
� ' 000

k
' 00

k

�
= � kQ

�
' k

' 0
k

�
at 1:

(1.69)

whereQ = N
�

J0 J1

J1 J2

�
N with N =

�
1 0
0 1=L0

C

�
and Ji =

R
YR

(y2 � L0
C ) i dy,

i = f 0; 1; 2g.
The weak formulation associated to (1.68) states as,

" � `2
RL 1

0 [(
�
� B + `0

CL0
CmC0

�
@2

tt �u�v + RB @2
x1x1

�u@2
x1x1

�v)j � + `0
C

RL 0
C

0 mC0@2
tt (~u�v + �u~v + ~u~v)

+ r C0@2
y2y2

~u@2
y2y2

~v dy2]dx1 = " � `2
RL 1

0 [(f B �v)j � + `0
C

RL 0
C

0 f C (�v + ~v) dy2]dx1 + F D (�v + ~v);
(1.70)

which is satis�ed by the couple(�u; ~u). In the following, we show that the displace-
ments in base�u are solved by a classical FEM, and the displacements in cantilevers
~u are solved by using the modal decomposition introduced in (1.67).

1.3.1 FEM discretization in Base

We use a FEM to approximate,�u, the solutions in base. The normalized interval
[0; 1] is discretized by elementsei = [ � i

1; � i +1
1 ] with i 2 f 1; � � � N eg; and the ends of

the nodes are0 < � 1
1 < � 2

1 < � � � < � N +1
1 = 1. We approximate the solution by a

function of the classC1(0; 1) and third order polynomials on each elements,�uh 2
P3(0; 1): The global degree of freedoms are the displacements and the derivatives
at each nodes,�u2n� 1 = uh(� n ) and �u2n = u0

h(� n ) for n = 1; � � � ; N e + 1; and in
total there are 2(N e + 1) degree of freedoms.

The local degrees of freedom are the displacements and derivatives at nodes

�uei
1 = �uh(� ei

1 ); �uei
2 = �u0

h(� ei
1 ), �uei

3 = �uh(� ei
2 ); �uei

4 = �u0
h(� ei

2 ),

where� ei
1 = � i

1; � ei
2 = � i +1

1 . The shape functions areNk(� ) :
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N1(� ) =
� (� � � 2)2(� h + 2( � 1 � � ))

h3
, N2(� ) =

(� � � 1)( � � � 2)2

h2
;

N3(� ) =
(� � � 1)2(h + 2( � 2 � � ))

h3
; N4(� ) =

(� � � 1)2(� � � 2)
h2

The local and global approximations are represented,

�uei (t; � 1) = N T (� 1)Uei (t) in ei whereUei = (�uei
1 ; �uei

2 ; �uei
3 ; �uei

4 )T (1.71)

and

�uh(t; � 1) =
2(N e+1)X

n=1

�un (t)� n (� 1):

1.3.2 Modal decomposition in Cantilevers

As indicated at the beginning of section1.3, the solutions in the cantilevers are
decomposed~u by

eu(t; x 1; y2) �
nCX

k=1

euk(t; x 1)� k(y2) (1.72)

with � k(y2) = ' k( y2
L 0

C
). Here, the basis' k is the solution of eigenvalue problem

with �xed-free boundary condition (1.69) instead of the boundary condition (1.53)
for ' C based on global modal decomposition.

The approximation of the integrals by Galerkin method for (1.70):

2

6
6
6
4

M sys@2
tt

0

B
B
B
@

U
eU1
...

eUnC

1

C
C
C
A

+ K sys

0

B
B
B
@

U
eU1
...

eUnC

1

C
C
C
A

3

7
7
7
5

= Fsys; (1.73)

where the vectors of the coe�cientsU =
�

0 0 �u3 �u4 � � � �u2N e � 1 �u2N e 0 0
� T

and eUk =
�

0 0 ~uk;2 ~uk;2 � � � ~uk;2N e � 1 ~uk;2N e 0 0
� T

for k varying from 1
to nC : The matrices

M sys = j! j
� �

� B + `0
CL0

CmC0
�

MB (�' k)k=1 ;:::;n C `0
CL0

CmCMB

(�' k)T
k=1 ;:::;n C `0

CL0
CmC0MB `0

CL0
CmC0Id

�
; and

K sys = j! j

 K B
L 4

1
0

0 `0
C r C 0

(L 0
C )3 (� C

k )k=1 ;��� ;nC

!

:
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where the rectangle domain! = (0 ; L1)� (0; " � `2), the matricesMB =
N eP

i =1

R
ei

N (� )N T (� )

d� ; K B =
N eP

i =1

R
ei

N 00(� )N 00T (� ) d�; and Id is identity matrix with size of nC � 2(N e+

1):

1.4 Conclusion

In this chapter, we have presented a two-scale model for two-dimensional arrays
of cantilevers in dynamic regime based on a theory of strongly heterogeneous ho-
mogenization. We have also considered the dynamics of the possible interaction
between the rigid tips and the objects in theGeneral Model. The model imple-
mentation has been reported both for one-dimensional and two-dimensional arrays
of cantilevers. We have proposed a new approach of base/cantilever displacement
decomposition which is di�erent from the approach based on the decomposition
on the global modes A .

In the next chapter, we shall focus on the model veri�cation and it will be
followed by a presentation of design optimization for arrays of AFMs.
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DESIGN OPTIMIZATION FOR

AFM ARRAYS
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In chapter 1, we presented theSimple Modeland the General Model for two-
dimensional cantilever arrays. We also detailed the model implementation and
the model decomposition of theSimple Model. In this chapter, we conduct the
veri�cation of the two-scale model. It includes the following contents.

1. Eigenvalue and eigenmode shape comparison between the two-scale model
and a direct Finite Element Model both for one-dimensional and two-dimensional
cantilever arrays.
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2. Veri�cations in static and dynamic regime for one-dimensional array of can-
tilevers.

Additionally, an optimization tool is presented. It has been used for designing
arrays of cantilevers satisfying all the design requirements.

2.1 Simple Model Veri�cation

2.1.1 Qualitative Properties of the Modal Structure of Can-
tilever Arrays

An in�nite number of eigenvalues� A and eigenvectors' A (ex; y2) are solutions to the
eigenvalue problem (1.45), which are associated to the model of two-dimensional
array of cantilevers. For convenience, we parameterize them by two independent
indices, i 2 N and j 2 N, both varying in an in�nite countable set. The �rst
index i refers to an in�nite set of eigenvalues� B

i and eigenvectors' B
i (ex) of a

problem posed in the base. The eigenvalues(� B
i ) i 2 N constitutes a sequence of

positive number increasing towards in�nity. At each such eigenvalue, another
eigenvalue problem is posed for a cantilever, which also has a countable in�nity of
solutions denoted by� C

ij and ' C
ij (y2). The index i of � B

i being �xed, the sequence
(� C

ij ) j 2 N is a positive sequence increasing towards in�nity. On the other hand, when
the index j is �xed, the sequence(� C

ij ; ' C
ij ) i 2 N is an in�nite sequence converging

to an eigenelement associated to a clamped-free cantilever. We can show that
the eigenvectors' A

ij (ex; y2) are the product of a mode in the base by a mode in
a cantilever ' B

i (ex)' C
ij (y2): Note that ex is replaced byx1 for the model of one-

dimensional array of cantilevers. Now we report observations made on eigenmode
computations.

Veri�cation for Eigenvalues of One-dimensional Array of Cantilevers

We consider an array ofN = 10 cantilevers, with base dimensions500�m �
16:7�m � 10�m; and cantilever dimensions41:7�m � 12:5�m � 1:25�m , (see Fig-
ure 2.1) for the two possible geometries, with or without tips. We have carried
out our numerical study on both cases, with or without tips. But we limit the
following comparisons to cantilevers without tips, because con�guration including
tips yields similar results.

We restrict our attention to a �nite number of eigenvalues� B
i with i varying

from 1 to nB . Computing the eigenvalues� A , we observe that they are grouped
in bunches of sizenB accumulated around a clamped-free cantilever eigenvalues.
A number of eigenvalues are isolated far from the bunch. It is remarkable that
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2.1. Simple Model Veri�cation

(a) (b)

Figure 2.1: Cantilever array without tips (a) and with tips (b)

the eigenelements in a same bunch share a same cantilever mode shape, (close
to a clamped-free cantilever mode) even if they correspond to di�erent indicesj:
That is why, these modes will be called"cantilever modes", (see Figure2.2 (a)).
Isolated eigenelements share also a common cantilever shape, which looks like a
�rst clamped-free cantilever mode shape except that the clamped side is shifted far
from zero. The induced global mode' A is then dominated by base deformations
and therefore will be called"base modes", see Figure2.2 (b).

(a) (b)

Figure 2.2: Cantilever mode (a) and Base mode (b)

Then, for arrays of15and 20cantilevers, only the cantilever width is changed so
that to keep the same characteristic values of� A

ij . The densities of square roots of
eigenvalues in logarithm scale are presented in the sub-�gures2; 4 and 61 of Figure
2.3 for the number of base modesnB = 10; 15 and 20 respectively. These �gures
show three bunches with sizenB and isolated modes that remain unchanged.

1Sub-�gures are counted from top to bottom.
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Figure 2.3: Distributions of log(
p

� A ) of the FEM model and of the two-scale
model

Veri�cation for Eigenvalues of a Two-dimensional Array of Cantilevers

In this section, we show our preliminary work on the eigenmode and eigenvalue
veri�cations for a two-dimensional array ofN � N cantilevers without tips, (see
Figure 1.1). We have carried our computation with small numberN = 3; 4 and 5
due to long computing time of FEM simulations on a personal computer. Thanks
to super computer facilities of theMésocentre de calcul de Franche-Comté, we
have performed a simulation forN = 10. We consider an array of cantilever with
base dimensions of left base30�m � 10�m � 10�m , right base 30�m � 10�m �
10�m , top base50�m � 10�m � 10�m , bottom base50�m � 10�m � 10�m and of
cantilever dimensions25�m � 10�m � 1:25�m for one cell. Here, we still focus on
the comparisons where cantilevers are without tips as for one-dimensional arrays
of cantilevers.

Densities of square roots of eigenvalues in logarithm are reported in sub-�gures
2; 4 and 6 of Figure 2.4 for N = 3; 4 and 5 respectively. These �gures show two
bunches with size of the number of base modenB and the isolated modes that
remains unchanged.
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Figure 2.4: Eigenvalue density comparison forN = 3; 4 and 5

We report the eigenmode density comparison forN = 10 in Figure 2.5.
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Figure 2.5: Eigenvalue density comparison forN = 10

The �rst bunch with size N � N and the isolated modes that remains un-
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changed. We remark that a number of eigenvalues in the FEM spectrum do not
have their counterparts in the two-scale model spectrum forlog(

p
� A ) > 18. We

have checked that these missing elements correspond to modes which have mem-
brane displacement in some local cells and torsion in the cantilevers. These cases
are not modeled in the current simple two-scale model.

We also compare the eigenmodes and especially those belonging to bunches of
eigenvalues, (see Figure2.6 for N = 10). We have found that the mode shapes of
the FEM model and of our model are similar for identical eigenvalues.

(a) (b)

(c) (d)

Figure 2.6: The �rst basemode of (a) FEM model and (b) Two-scale model. The
�rst cantilever mode of (c) FEM model (d) Two-scale model

In order to compare the distribution of the spectrum for a100-cantilever array,
we operate a truncation of mode list. It corresponds to the range[0 17:46] of
log(

p
� A ) in Figure 2.5. We have reported the eigenvalue distribution both in our

model and in the FEM model, see Figure2.7 (a). The relative errors between both
eigenvalues sequences are represented in Figure2.7 (b). Note that errors are far
from being uniform among eigenvalues. In fact, the main error source resides in
a poor precision of the beam model for representing base deformations in some
particular deformation modes.
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Figure 2.7: (a) Eigenvalue density distributions and (b) its relative errors for the
FEM model and for the two-scale model

Veri�cation for eigenmodes

We discuss the comparison with the modal structure of the three-dimensional linear
elasticity system for the cantilever array discretized by a standard FEM analysis
both for two-dimensional and one-dimensional arrays of cantilevers. The eigen-
values of the three-dimensional elasticity equations constitute also an increasing
positive sequence that accumulates at in�nity. As for the two-scale model, its
density distribution exhibits a number of concentration points and also some iso-
lated values. Here bunch sizes equal the number of cantilevers, see sub-�gures
1, 3 and 5 in Figure 2.3, Figure 2.4 (a) and sub-�gure 1 in Figure 2.4 (b) repre-
senting eigenmode distributions. Extrapolating this observation shows that when
the number of cantilevers increases to in�nity bunch size increases proportion-
ally. Since the two-scale model is an approximation in the sense of an in�nitely
large number of cantilevers, this explains why the two-scale model spectrum ex-
hibit mode concentration with in�nite number of elements. This remark provides
guidelines for operating mode selection in the two-scale model. In order to deter-
mine an approximation of the spectrum for an array of cantilevers, we suggest to
operate a truncation in the mode list so that to retain a simple in�nity of eigen-
values(� A

ij ) i =1 ;::;N and j 2 N: It is remarked that a number of eigenvalues in the FEM
spectrum have not their counterparts in the two-scale model spectrum. We found
that the missing eigenmodes in the two-scale model correspond to physical e�ects
not taken into account in the two Euler-Bernoulli models for the base and the
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cantilevers.

2.1.2 Quantitative Veri�cation

The quantitative veri�cation is focused on the case of a one-dimensional array with
10-cantilevers, i.e. forN = 10. The results relate to the �rst 40modes in the FEM
model and to the eigenelements(� A

ij ; ' A
ij ) for i 2 f 1; :::; 10g and j 2 f 1; 2; 3g; the

latter being listed in Table 2.1. Note that the computation time is 0:76s for the

Table 2.1: List of log(
q

� A
ij ) of the two-scale model

�� i 1 2 3 4 5 6 7 8 9 10
1 14.44 15.38 15.51 15.51 15.51 15.51 15.51 15.51 15.51 15.51
2 15.54 15.61 16.16 16.65 17.05 17.31 17.34 17.35 17.35 17.35
3 17.36 17.36 17.36 17.36 17.37 17.43 17.69 17.93 18.15 18.33

modes of the two-scale model implemented in a non optimized MATLABR
 code
versus88:14s for the �nite element modes using COMSOLR
 with 20; 859quadratic
elements with a regular laptop. We stress the fact that theN � eigenvalue bunches
are not corresponding to a single row in Table2.1 i.e. not corresponding to a single
j . This is because the modes dominated by the deformation of base are interposed
between the clusters of modes dominated by the deformations of cantilevers. The
counterpart in terms of base modes is that they follow each other on consecutive
columns but with possible line breaks.

To conduct a quantitative comparison of eigenvalues, it is required to match the
modes of the two-scale model with those of the FEM model. Because of the prox-
imity of many eigenvalues, a tool like the conventional Modal Assurance Criterion
(MAC) is necessary to discriminate them, see [44]. For any couple of an eigenvec-
tor ' A from the two-scale model and the transverse displacement component' ref

of an eigenvector from the FEM model,

MAC ' =
j
D

' ref T
; ' A

E
)j2

j


' ref T ; ' ref

�
j j



' A T ; ' A

�
j
;

it is equal to one if the shapes are identical and to zero when they are orthogonal
in the sense of the inner producth:; :i . Each subspace of eigenvectors' ref cor-
responding to a quasi-multiple eigenvalue is rotated so as to optimize the MAC
matrix. The results are shown in Figure2.8 where the modes' A are arranged in
the order such that the indexi varies faster than the indexj . The inner product
is based on a sum over300 points distributed along six parallel lines in the base
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Figure 2.8: MAC matrix between the two-scale model modes and the FEM modes

and over6� 10� N points along six lines in each cantilever. In both cases the six
lines are along the four edges and along the central axes of the upper and lower
faces and the points are regularly spaced. The FEM computation has been carried
out with 20; 859 elements. All modes' ref from the FEM model which are not
su�ciently correlated with a mode ' A i.e. with a MAC lower than 0:5 are not
considered for comparison because they correspond to physical e�ects not modeled
by the Euler-Bernoulli models. Some modes' A seem to correlate well with several
modes' ref ; like the eigenmodes2, 11 and 12 so an additional criterion for selec-
tion should be applied. The most general method would be to add more points
in the inner product, but here it was enough to eliminate the unwanted modes by
comparing the magnitudes of eigenvalues. Figures2.9 (a) and (b) and 2.9 (c) and
(d) are two examples of paired modes using this strategy. In Figure2.10(a) paired
eigenvalues are represented and relative errors are plotted on Figure2.10(b). Note
that errors are far from being uniform among eigenvalues. In fact, the main error
source resides in a poor precision of the Euler-Bernoulli model for representing
base deformations in few particular cases. A careful observation of Finite Element
modes shows that base torsion can be predominant for some modes, such as in the
�rst mode of the �rst cantilever mode bunch.
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(a) (b)

(c) (d)

Figure 2.9: Eigenmode shapes of (a)' A
1;1; (b) ' ref

1 ; (c) ' A
2;2, (d) ' ref
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In Figure 2.10(a), the distinction between the base modes and the cantilever
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modes is also marked. Their distinction could be done from the ratio of the
amplitudes of deformation in the base and in the cantilevers. An equivalent way
is to use the sensitivities with respect to characteristic parameters of the two
modes of deformations. To �nd the in�uential parameters, the sensitivities of
the model through parameter variations is established using a �rst-order �nite
di�erence method applied to the eigenvalues. The results are presented in Figure
2.11where all parameters have been tested, i.e. the Young's modulus, the volume
mass, the thicknesses, the lengths and the widths.

Figure 2.11: First-order �nite di�erence sensitivity analysis

Their values are denoted byE, � , hB , LB , lB , hC , LC , and lC where the
superscriptsB and C stand for base and cantilevers. The eigenvalues are mainly
sensitive to the thicknesshB of the base, to the lengthLC of the cantilevers, and for
a lesser extent to the thicknesshC of the cantilevers. Most of the eigenvalues are
sensitive to only one of the two parametershB or LC then they can be identi�ed as
a base mode or as a cantilever mode. The cantilever modes are clearly organized
in clusters of N = 10 modes separated by base modes. At their interfaces some
modes are almost equally sensitive to base and to cantilever parameters, they are
referred as mixed mode in Figure2.12. However, for simplicity they are considered
as base modes in Figure2.10.
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(a) First eigenmode (b) Second eigenmode

(c) Eleventh eigenmode (d) Twelfth eigenmode

Figure 2.12: Eigenmodes of the two-scale model

To illustrate the distinction between the three kind of modes, the sub-�gures
2.12 (a) and (c) present a base mode and a cantilever mode when the sub-�gures
2.12(b) and (d) show two mixed modes.

2.2 Model Veri�cation in Static and Dynamic Regime

We recall that we have introduced the base/cantilever displacement decomposition
in section 1.3. In this section, we compare the reformulated two-scale model (a
simpli�ed model) to a FEM build from the system of elasticity equations in the
three-dimensional domain. Here, we re�ne su�ciently the discretization of both
models so that to evaluate the two-scale model itself but not its discretization. The
solution of the FEM model is denoted byuF EM: : Excepted when it is explicitly
said, all computations are carried out for a10-cantilever array.

2.2.1 Veri�cation in Static Regime

The vertical displacement shown on Figure2.13 are obtained after applying a
10�N concentrated force at the middle point of the free end of the �fth and sixth
cantilevers. To better estimate the model quality, four loading conditions have
been tested: A- Same load on all cantilevers, B- Only the �fth cantilever is loaded,
C- The �fth and the sixth cantilevers are equally loaded, and D- Opposite loads
on even and odd cantilevers. In table2.2, the relative L2-norm errors,

E =
� R

! ju � uF EM j2 dx
R

! juF EM j2 dx

� 1=2

;
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(a) (b)

Figure 2.13: Displacement of a 10-cantilever array under a static load of (a) Two-
scale Model (b) FEM model

are reported. The errors of the model are small enough to use it in a model based

Table 2.2: L2-norm error for di�erent loads
Loads A B C D

Errors (%) 5.12 4.49 2.42 1.36

control loop. Deeper investigations show that the largest errors come when all
loads are operating in the same direction and therefore when the base is subjected
to a large deformation. Then, Figure2.14 represents displacements in a single
cantilever, namely the �fth cantilever, in the loading case A. We noticed that the
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Figure 2.14: Displacement comparison of static analysis of 10-cantilever array at
�fth cantilever

error originate from the clamping zone, and after a careful inspection we have
concluded that it could have been corrected if torsion e�ects have been taken into
account in the base.
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Next, we report results of a study on static cross-talk e�ect. The load is this of
case C. The ten ratios of the displacements at the free end of cantilevers to this of
loaded cantilevers are reported in Table2.3, they show a good agreement between
the two models in terms of static cross-talk.

Table 2.3: Ratios of the displacements at the free end of cantilevers to this of a
loaded one in static regime

Free ends Two-scale FEM Absolute
model (%) model (%) errors

1 0.6 0.9 0.3
2 4.9 5.9 1
3 11.3 13 1.7
4 17.7 20 2.3
5 100 100 0
6 100 100 0
7 17.7 20.1 2.4
8 11.3 13 1.7
9 4.9 5.9 1
10 0.6 0.9 0.3

2.2.2 Veri�cation in Dynamic Regime

To study the dynamic regime, the �fth cantilever free end is excited with a load
oscillating to the �rst base eigenfrequency (303kHz). Figure 2.15shows the sixth
and ninth cantilever end motion for both models.
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Figure 2.15:Displacement at (a) sixth cantilever end, and (b) ninth cantilever end
in dynamic regime
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We conclude to a good �t between the models in terms of phase shift but
a noticeable di�erence regarding amplitudes. In the same experiment, dynamic
cross-talk is characterized through the ratios of maximum displacements at the
cantilever free ends to this of a loaded one. They are reported in Table2.4 where
the maximum displacements are taken over the time interval[0; 15�s ]. In that

Table 2.4: Ratios of maximum displacements at the free end of cantilevers to this
of a loaded one under �rst base eigenfrequency excitation

Free ends
Two-scale FEM Absolute
model (%) model (%) errors

1 3.1 2.4 0.7
2 23.2 21.5 1.7
3 51.6 47.9 3.7
4 77.2 71.5 5.7
5 100 100 0
6 92.5 86.8 5.7
7 77.5 73.7 3.8
8 51.6 49.9 1.7
9 23.3 22.5 0.8
10 3.1 2.5 0.6

case, the observations show that the energy originating from an excited cantilever
propagates more than in the static operating regime. Finally, Table2.5 reports
results of dynamic cross-talk e�ect when the �fth cantilever is excited at the �rst
cantilever frequency (2:34MHz ). In this case, the simulation have been carried
out in the time interval [0; 2�s ]. As expected, the dynamic cross-talk e�ect, at this
frequency, is smaller than this at the �rst base frequency. However, the absolute
errors is increasing due to the poor precision of the beam model when exciting the
cantilever at high frequency.
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Table 2.5: Ratios of maximum displacements at the free end of cantilevers to this
of a loaded one under �rst cantilever eigenfrequency excitation

Free ends
Two-scale FEM Absolute
model (%) model (%) errors

1 1.2 3.6 2.4
2 4.9 9.3 4.4
3 2.6 18.3 15.7
4 5.4 31.2 25.8
5 100 100 0
6 12.6 24.5 11.9
7 6.2 18.3 12.1
8 6.0 22.8 16.8
9 10.4 21.1 10.7
10 2.5 5.7 3.2

2.3 Robust Design Optimization

Parameters of an array, such as the cantilever length, width and thickness, spring
constant and de�ection angle of the cantilevers for a given force, footprint of the
array and lateral pitch between two adjacent cantilever, must satisfy initial re-
quirements for good operation. Thanks to SIMBAD a decision making tool for
development design, which we introduced in [45], we perform various optimization
analyzes for the design of AFM probe arrays:

1. Sensitivity analysis: selection of the subset of model design variables with
the greatest impact on system performance

2. Deterministic design optimization: searching the design space for solutions
which optimize system behavior while satisfying design constraints

3. Uncertainty quanti�cation: quantifying the impact of manufacturing uncer-
tainties on the optimized system performance.

In this section, we introduce these tools through a static design optimization
application for a one-dimensional array of cantilevers which is a collaboration
with CSEM. Two dimensional arrays with unconnected rows are made by aligning
several one-dimensional arrays. A parameter can be used to de�ne the geometry
of the array of levers and it may be a:

� �xed variable: a variable that its value is �xed (assessed value)
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2.3. Robust Design Optimization

� free variable: a variable that can be freely chosen between two limits, or from
a known list of values

� dependent variable: a variable that is depended to another free variable

� variable to be optimized: a variable that we seek to de�ne the nearest possible
to a target value which is included into two limitations

� variable to be minimized: a variable has to be minimized, which has a max-
imum threshold

� variable to be maximized: a variable has to be maximized, which has a
minimum threshold

A constraint limits the choice of parameter values. It can be a:

� variable to be optimized: a variable that we seek to de�ne the nearest possible
to a target value which is included into two limitations

� variable to be minimized: a variable has to be minimized, which has a max-
imum threshold

� variable to be maximized: a variable has to be maximized, which has a
minimum threshold

� threshold: a variable depends on other values or variables, which should not
exceed a critical threshold, but what we seek is neither to be optimized nor
to be minimized and nor to be maximized.

After de�nition of the boundary conditions, such as minimal and maximal val-
ues of the parameters to be optimized and material properties, SIMBAD computes
the optimal design of the probe arrays.

2.3.1 Design Problem

We consider an one-dimensional array of cantilevers, (see Figure2.16). It is com-
prised of bases crossing the array in which cantilever are clamped. The support
is clamped on its external boundary. Cantilevers may be equipped with a rigid
tip, as in AFMs, (see Figure2.17). The whole array can be viewed as a periodic
repetition of a same cell, referred as reference cell shown in Figure2.18, in the
two directions or in one direction. We suppose that the number of cells in each
direction is su�ciently large, namely larger or equal to10:
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Figure 2.16: A one-dimensional view of (a) an Array and (b) a Cell

Figure 2.17: One-dimensional arrays of AFM. Courtesy of André Meister and of
Thomas Overstolz, CSEM Neuchâtel Switzerland.

(a) (b)

Figure 2.18: (a) Side view and (b) Top view of a reference cell
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Design Variables

The design variable space is,X = [ x1; x2; � � � ; xd] 2 R: We list the design variables
for this application in Table 2.6.

Table 2.6: List of design parameters
Label X Description Initial value Bound Uncertainty

LC x1 Lever length 200 � m [60 400]� m � 4 � m
lC x2 Lever width 40 � m [40 80]� m � 1 � m
hC x3 Lever thickness 0:5 � m [0:25 0:70] � m � 2%
EC x4 Young modulus of lever 335Gpa �xed � 10%

rhoC x5 Mass density of lever 3100kg/m 3 �xed � 3%
activtip x6 Tip presence 1 (or 0) �xed

hB x7 Base thickness 30 � m [30 60]� m � 10 � m
lB x8 Base width 40 � m [10 200]� m � 1 � m
EB x9 Young modulus of Base 169Gpa �xed � 10%

rhoB x10 Mass density of Base 2330kg/m 3 �xed � 3%
L1 x11Array size in x-direction 1000� m �xed
nx x12No. levers inx-direction 10 [2 20]
ny x13No. levers iny-direction 1 �xed
ltip x14 Tip beam width x2 � 10 � m dependent � 1 � m
ytip x15 position of tip apex x2=2 dependent � 4 � m
Sarray x16 Array size 1 � 1 mm2 �xed
Dim x17 Array dimension 1 (or 2) �xed
LB x18 x-direction pitch f loor ( x11

x12� 50) � 50 � m proportional to 50 � m
Lcell2 x19 y-direction pitch (f loor ( x1+ x8

5� 10� 5 ) + 1) � 50 � mproportional to 50 � m

Design Features

The design feature space is,

S = [ s1; s2; � � � ; sns ] 2 R:

For a static design problem of AFM arrays, we list the design response features in
Table 2.7.
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Table 2.7: Design features
Label S Description Equation

S_Spring s1 Spring constant of lever x4x2x3
3

4x3
1

S_Tapex1 s2 Static displacement at the tip apex solved by AFMALab
S_Base s3 Static displacement at the base solved by AFMALab

Gap s4 Gap between two levers x18 � x2

Gapcell s5 Gap percentage of each cell 1 � x1x2+ x18 x8
x18 x19

S_MTn s6 Mechanical�thermal noise not used
S_FP s7 Footprint size x11(x1 + x8)
S_hB s8 Base thickness x7

1 maximum de�ection at tip when the lever is bent by a known static point
force in the x3-direction Fmax .

Design Objectives

The design objective functions are de�ned as

Fi (x); with i = 1; � � � ; nF

which depend on the design variables. An aggregated mono-objective minimization
with nonlinear constraints standard form is considered to solve the optimization
problem,

min
x

(
nFX

i =1

! i Fi (x))

where ! i is the weight for i th design objective. The standard form of design
objectives are presented in Table2.8.

Table 2.8: Design objectives
Label F (x) Description Equation
F_Gap F1(x) Gap between two levers s4

F_Gapcell F2(x) Gap percentage of each cell s5

F_hB F3(x) Base thickness s8

Nonlinear Design Constraints

We have certain number of nonlinear constraints, transformed into standard form,
presented in Table2.9.
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Table 2.9: Nonlinear design constraints
Label Description Equation Tolerance

C_Base Maximum displacement at base must smaller than s3 � 50 nm� 0
50 nm for small array and80 nm for large array or s3 � 80 nm� 0

C_Gap Minimum gap between two levers larger thanlC=2 x2
2 � s4 � 0 � 1 � m

C_Gapcell Minimum gap percentage
of each cell greater than 40% 0:4 � s5 � 0

C_Angle Maximum de�ection angle at tip end less than 3�
180 arctan( 3S2

2(x1 � x2=2) ) � 3�
180 � 0

C_Spring Spring constant equals to 0.03 withFmax = 2 nN s1 � 0:03 = 0 � 50%
C_FP Maximum footprint size of s7 � 1 � 1 mm2 � 0

small and large array or s7 � 2 � 2 mm2 � 0

2.3.2 Phases of the Design Optimization Process

Design Sensitivity and E�ects Analysis

� First-order sensitivity analysis

We perform a �rst-order sensitivity analysis to select the most in�uential
design variables by a steepest descent algorithm. The result of the �rst-
order sensitivity analysis plot is shown in Figure2.19.

Figure 2.19: First-order �nite di�erence sensitivities

The analysis result shows that the length and width of cantilever arrays are
most critical parameters.

� Parametric analysis
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We perform a parametric analysis to see the relationships between design
variables. A parametric analysis of AFM array is represented in Figure2.20.

(a) (b)

Figure 2.20: Parametric analysis of active design parameters and features (a)
S_Tapex (b) S_Spring

� Monte-Carlo analysis

Monte-Carlo analysis generates random points in the design space consistent
with the uncertainty distributions for the di�erent design parameters (eg.
Gaussian, uniform, etc). Strati�ed random search algorithms such as Latin
Hypercube Sampling can also be used to guarantee a better coverage of the
design space of a given number of evaluations. These methods can be used
in view of either a global sensitivity analysis or for the quanti�cation of
uncertainty. We perform a Monte-Carlo analysis to see the changes of design
variables. Plot the results of the Monte-Carlo analysis. Scatter plots with
Monte-Carlo sampling are shown in Figure2.21.
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(a) (b)

Figure 2.21: Scatter plots of Monte Carlo sampling

� Principal component analysis

Principal component analysis (PCA) is a way of identifying patterns in data,
and expressing the data in such a way as to highlight their similarities and
di�erences. Since patterns in data can be hard to �nd in data of high dimen-
sion, where the luxury of graphical representation is not available, PCA is a
powerful tool for analyzing data. We perform a Principal component analy-
sis to �nd the patterns of design variables. A principal component analysis
based on Monte Carlo sampling is shown in Figure2.22.

Figure 2.22: Principal component analysis
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Design Optimization

An optimal design is the best feasible design according to a preselected quantita-
tive measure of e�ectiveness. In current application, aggregated mono-objective
optimization with design constraints and multi-objective optimization with design
constraints problems are written in standard forms.

� Aggregated Mono-objective optimization with design constraints

The mono-objective optimization is the standard optimization problem, see
[46] for an introduction. Given the function F that depends on the design
variablesx = [ x1; x2; � � � ; xd] 2 R, the optimization problem is to �nd:

min
x2 X

 
nFX

i =1

! i Fi (x)

!

subject to the constraints:

x 2 X

gj (x) � 0; j = 1; � � � ; ng

hk(x) = 0 ; k = 1; � � � ; nh

where ! i are weighting coe�cients taking into account the relative impor-
tance of each objective. We perform a mono-objective optimization analysis
to �nd the best solution of the designs. The results of a mono-objective op-
timization with nonlinear constraints are shown in Figure2.23. The results

Figure 2.23: Evolution plot by solving mono-objective optimization problem

indicate that some of the objectives, for instanceF _ Gap and F _ Gapcell,
are decreased when all the nonlinear constrains are satis�ed.
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� Multi-objective optimization with design constraints

Multi-objective optimization, also known as multi-criteria or multi-attribute
optimization, is the process of simultaneously optimizing two or more con-
�icting objectives subject to certain constraints. Given the functionf i (x)
that depends on the design variablesx 2 X = [ x1; x2; � � � ; xd] 2 Rd, the
optimization problem is to �nd:

min
x

f f 1(x); � � � ; f n f (x)g

subject to:

xL � x � xU

gj (x) � 0; j = 1; � � � ; ng

hk(x) = 0 ; k = 1; � � � ; nh

The solution to the above problem is a set of Pareto points. We perform a
multi-objective optimization analysis to �nd the best solution of the designs.
The results of a multi-objective optimization with nonlinear constraints are
shown in Figure2.24.

(a) (b)

Figure 2.24: Pareto plot of Monte Carlo sampling between (a) F_Gapcell and
C_FP and (b) F_Gap and C_base

Uncertainty Quanti�cation

Uncertainty quanti�cation (UQ) is the science of quantitative characterization and
reduction of uncertainties in applications. It tries to determine how likely certain
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outcomes are if some aspects of the system are not exactly known. We perform an
uncertainty quanti�cation analysis with Monte-Carlo samples. The results of an
uncertainty quali�cation analysis with uniform probability density function (PDF)
are represented in Figure2.25.

(a) (b)

Figure 2.25: Uncertainty quali�cation analysis

Application of Robust Design Optimization for Arrays of AFMs

In this application, we consider designing six types of array of AFMs on a single
wafer. The six types of arrays correspond to three di�erent cantilever spring
constants, and to two di�erent cantilever pitch conditions. For some applications,
the pitch between cantilevers cannot be freely chosen. The three spring constants
correspond to 0.03, 0.3 and 3 N/m, and the two pitch conditions de�ne the lateral
and longitudinal cantilever pitches as a multiple of 10�m , respectively 100�m .
Table 2.10summarizes the results of the optimization computation.
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Table 2.10: Designs of probe arrays de�ned using the design decision making tool
SIMBAD. The values in italic correspond to the initial conditions, and the values
in bold to the optimized design parameters.

Array design 1 2 3 4 5 6
Pitch condition [�m ] 10 10 10 100 100 100

Spring constant [N=m] 0.03 0.3 3 0.03 0.3 3
No. lever in x-direction 16 16 11 10 10 10
No. lever in y-direction 2 4 5 2 3 5

Pitch in x-direction [�m ] 60 60 90 100 100 100
Pitch in y-direction [�m ] 500 250 200 500 300 200
Length of cantilever [�m ] 300 150 100 300 150 100
With of cantilever [�m ] 40 40 56 40 40 56

Optimized spring constant 0.033 0.33 2.7 0.033 0.33 2.7

A microfabrication run to produce cantilever arrays with the optimized design
was launched. An example of a computed optimized design and of a produced
cantilever array are shown in Figure2.26.

Figure 2.26:Example of an optimized design geometry. The larger cantilevers with
larger and higher tip situated in the corner of the probe array are used to land
and adjust the probe array onto the sample surface. Courtesy of André Meister
and Thomas Overstolz, CSEM Neuchâtel Switzerland.

Normally, the optimal design is not unique. A compromise between the design
objectives should be made with the consideration of meeting the requirements for
microfabrication.

2.4 Conclusion

In this chapter, we have carried out the model veri�cation by comparing the eigen-
value density distribution and eigenmodes to a direct FEM simulations. The veri�-
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cations for an array of cantilevers, without tips both in static and dynamic regimes,
have been reported. The results shown a globally good agreement with the three-
dimensional elasticity model. We have also reported results of design optimization
for an array of AFMs. It opens the way for future works on model calibration,
other design problems, such as for dynamical problem, and for control synthesis.

In the next chapter, we shall present a global phase computation algorithm
of interferometry measurement of cantilever displacements in quasi-static regime,
which is an improvement to an algorithm introduced in [47].
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In this chapter we focus on a method based on interferometry for cantilever dis-
placement measurement in quasi-static regime. Cantilevers are illuminated by an
optical source. Interferometry produces fringes enabling cantilever displacement
measurement. A high speed camera is used to analyze the fringes. In view of real
time applications, images need to be processed quickly and then a fast estimation
method is required to determine the displacement of cantilevers. In [43], an al-
gorithm based on splines has been introduced for cantilever position estimation.
The overall process gives accurate results where computations are performed on
a standard computer using LabViewr . Consequently, the main drawback of this
implementation is that bandwidth o�ered by the computer is a limitation. In pa-
per [47], authors have proposed a new algorithm based on the least square method
which achieves the better precision with less operations than the algorithm based
on a spline method. However, this algorithm is limited since it assumes that the
cantilevers are uncoupled. Here we relax this assumption in a global computation
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Chapter 3. INTERFEROMETRY MEASUREMENT FOR AFM ARRAYS

of the phases based on our two-scale model presented in section1.3. A topographic
scan application for an array of AFMs in quasi-static regime is reported.

3.1 Measurement of Displacement in a Cantilever
Array

In this section, we detail our global phase computation algorithm of interferometry
measurement for array of AFMs in quasi-static regime. Section3.1.1 describes
the experimental set-up at CSEM, and Section3.1.2 presents the global phase
computation algorithm.

3.1.1 The Experimental Set-up

An illustrative picture of the experimental set-up [43], developed by CSEM, is
shown in Figure3.1.

Figure 3.1: AFM experimental setup

In contrast to other optical based systems using a laser beam de�ection scheme,
which is sensitive to the angular displacement of the cantilever, interferometry is
sensitive to the optical path di�erence induced by the vertical displacement of the
cantilever. The interferometric system is based on a Linnik interferometer [48]. A
laser diode is �rst split into a reference beam and a sample beam both reaching the
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3.1. Measurement of Displacement in a Cantilever Array

cantilever array. The complete system including a cantilever array and the optical
system can be moved thanks to a translation and rotational hexapod stage with
six degrees of freedom. Thus, the cantilever array is centered in the optical system
which can be adjusted accurately. The beam illuminates the array by a microscope
objective and the light re�ects on the cantilevers. Likewise the reference beam
re�ects on a movable mirror. A CMOS camera chip records the reference and
sample beams which are recombined in the beam splitter and the interferogram.
Then, cantilever motion in the transverse direction produces movements in the
fringes. They are detected with the CMOS camera where images are analyzed by
a LabViewr program to recover the cantilever de�ections.

3.1.2 Cantilever Displacement Estimation

We consider an array made with uncoupled rows of AFM cantilevers, see Figure
3.2.

Figure 3.2: A one-dimensional view of array of AFMs.

In [43], as shown in Figure3.3, the cantilever is covered by interferometric
fringes. They distort when cantilevers de�ect. For each cantilever, the displace-
ment is derived from phase shift of the light intensity. A phase shift corresponds
to the lateral shift of the intensity pro�le along a segment of pixels induced by
the cantilever bending. Three segments of pixels, parallel to its width, are used.
The �rst one is located just above the AFM tip (tip pro�le), it provides the phase
shift modulo 2� . The second one is close to the base junction (base pro�le) and
is used to determine the exact multiple of2� through an operation called un-
wrapping where it is assumed that the displacements along the two measurement
segments are linearly dependent. The third one is on the base (reference pro�le)
and provides a reference for cancelling the e�ect of base motion.

Each pro�le is expressed in a normalized interval(0; M � 1) where M is the
number of pixels of the pro�le. The gray-level light intensity is under the form

I (xp) = axp + bAcos(2�fx p + � ). (3.1)

wherexp 2 (0; M � 1), f and � are the frequency and the phase of the inter-
ferometric signal, and the a�ne function axp + b corresponds to cantilever surface
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Figure 3.3: Intensity pro�les: close to base-cantilever junction� �
1 and above the

tip of cantilevers � �
2.

tilt with respect to the light source. The phase computation is done either using
a spline method or a least square method detailed in [47]. For a given phase� , we
denote by� � 2 [0; 2� ) its value modulo2� i.e.

� = � � + 2n� and n = [
�

2�
]; (3.2)

where[� ] represents the integer part of� . The relation between the phase and the
displacement is

� = 2�f c(b� 2u) (3.3)

whereb, c are constants related to the tilt of the beam splitter and are determined
in a calibration phase. Moreover, the constantb corresponds to a constant phase
shift that is ignored in the following, so we use only the proportionality relation

� = � mu. (3.4)

As u is decomposed intou + eu, the phase� is also decomposed as� = � + e� . The
base and tip pro�les are taken at positionsy2 = y2;1 and y2;2 and all corresponding
notations are indexed by1 and 2, as for instance� 1 and � 2. In the setup [43], the
reference pro�le is used to determine� . The displacements of the base are assumed
to be su�ciently small so that �

�
= � . The base pro�le is su�ciently close from

the base so that� 1 = � �
1 also. And, the linear relation betweeneu1 and eu2, or e� 1

and e� 2, is used to determine the integern2. In total, u, eu1 and eu2 are determine
from three measurements and the tip force can be deduced.

In the following, we introduce an alternate method to avoid the reference mea-
surement, based on the two-scale model.
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3.1. Measurement of Displacement in a Cantilever Array

For an array of N cantilevers, we refer thei th cantilever with the subscript
i 2 f 1; :::; Ng, and we use the relation (3.4) applied to each of them,

�
� 1;i = � �

1;i = � m(�ui + ~u1;i );
� 2;i = � m(�ui + ~u2;i ).

The above equation written in vector form is
�

� 1 = � �
1 = � m( �U + ~U1);

� 2 = � m( �U + ~U2):
(3.5)

The two-scale model is discretized, and theN -dimensional vectors�U, ~U1 and ~U2

represent the displacements in the base and in cantilevers aty2 = y2;1 and y2;2

respectively at the coordinatesx1 of the cantilever centers. Neglecting all external
forces excepted the tip forcesf tip = ( f tip

i ) i =1 ;::;N and considering the system in the
quasi-static regime, there exists threeN � N sti�ness matrices �K , ~K 1 and ~K 2 such
that

�U = [ �K ]� 1f tip , ~K 1
~U1 = f tip and ~K 2

~U2 = f tip . (3.6)

Eliminating f tip in the two last relations using the �rst one,
� �U = [ �K ]� 1 ~K 1

~U1;
~U2 = [ ~K 2]� 1 ~K 1

~U1:
(3.7)

By (3.5) and (3.7), we derive the relation between the phases of two pro�le lines,

� 2 = K � 1 (3.8)

where the matrix K = ([ �K ]� 1 + [ ~K 2]� 1) ~K 1([ �K ]� 1 ~K 1 + Id)� 1 and Id being the
identity matrix. Using this relation and the fact that � 1 = � �

1 we deducen2 in
the phase decomposition (3.2) and � 2,

n2 = [
K � �

1

2�
] and � 2 = � �

2 + 2n2�: (3.9)

Thus, combining the relations (3.5), (3.6) and (3.9) we can establish that

� �
1 = D1f tip or � �

2 + 2n2� = D2f tip

with D1 = � m([ �K ]� 1 + [ ~K 1]� 1) and D2 = � m([ �K ]� 1 + [ ~K 2]� 1): In conclusion, we
estimate the tip forces from (3.6) and we deduce�U the base displacement andU2

the total tip displacement, all being expressed with the measurements� �
1 and � �

2,

f tip = D � 1
1 � �

1 or f tip = D � 1
2 (� �

2 + 2n2� ), (3.10)

�U = [ �K ]� 1f tip , U2 = �
1
m

(� �
2 + 2n2� ) with ( 3.9). (3.11)
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Chapter 3. INTERFEROMETRY MEASUREMENT FOR AFM ARRAYS

Algorithm 1: Phase correction algorithm.
1 � 1  phase of the base pro�le
2 � 2  First tip-pro�le phase estimated by (3.9)
3 � 0

2  Second tip-pro�le phase estimated by (3.8)
4 � � 2 = � 0

2 � � 2

5 � 2 = � 2 + 2� � round( � 2
2� )

In practice, the formula (3.9) may produce inaccurate phase of tip pro�le by a
perturbation of 2� . The source of the error comes from the integer part calculation
due to its discontinuity. We state Algorithm 1 that eliminates the error, where"
is in the range of the error.

Remark 3 The scanner operates with a su�cient small step, so that we can lo-
cate the positions where the integer calculation generates inaccurate phases through
algorithm (1). Then, these positions are saved in the memory for real-time control
applications.

3.2 Least Square Algorithm (LSQ) for Phase Com-
putation

For the sake of simplicity of the notations, we consider the light intensityI a
function on the interval [0; M � 1] which itself is the range of a one-to-one mapping
de�ned on the physical segment. The pixels are assumed to be regularly spaced
and centered at the positionsxp 2 f 0; 1; : : : ; M � 1g. We use the simplest de�nition
of a pixel, namely the value ofI at its center. The pixel intensities are considered
as pre-normalized so that their minimum and maximum have been resized to� 1
and 1;.

We compute the phase during the acquisition loop, equation (3.1) has only
4 parameters: a; b; A, and � , f and xp being already known. A least square
method based on a Gauss-Newton algorithm can be used to determine these four
parameters. This kind of iterative process ends with a convergence criterion, so
it is not suited to our design goals. Fortunately, it is quite simple to reduce the
number of parameters to� only. Firstly, the a�ne part axp + b is estimated from
the M valuesI (xp) to determine the recti�ed intensities,

I corr (xp) � I (xp) � axp � b:

To �nd a and b we apply an ordinary least square method

a =
covar(xp; I (xp))

var(xp)
and b= I (xp) � a:xp
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3.2. Least Square Algorithm (LSQ) for Phase Computation

where overline symbols represent average. Then the amplitudeA is approximated
by

A �
max(I corr ) � min(I corr )

2
:

Finally, the problem of approximating � is reduced to minimizing

min
� 2 [� �;� ]

M � 1X

i =0

�
cos(2�f:i + � ) �

I corr (i )
A

� 2

;

which will allow to determine an angle� � (t; x 0
2) 2 (� �; � ). Note that the solution

of minimizing this problem is not unique.
An optimal value � � of the minimization problem is a zero of the �rst derivative

of the above argument,

2
�
cos� �

M � 1P

i =0
I corr (i ):sin(2�f:i ) + sin� �

M � 1P

i =0
I corr (i ):cos(2�f:i )

�

� A
�
cos2� �

M � 1P

i =0
sin(4�f:i ) + sin2� �

M � 1P

i =0
cos(4�f:i )

�
= 0

Several points can be noticed:

� The terms
M � 1P

i =0
sin(4�f:i ) and

M � 1P

i =0
cos(4�f:i ) are independent of� , they can

be precomputed.

� Lookup tables (namely lutsf i and lutcf i in the following algorithms) can be
set with the 2:M valuessin(2�f:i ) and cos(2�f:i ).

� A simple method to �nd a zero� � of the optimality condition is to discretize
the range [� �; � ] with a large number nbs of nodes and to �nd which one
is a minimizer in the absolute value sense. Hence, three other lookup tables
(lut s, lut c and lutA ) can be set with the3 � nbs valuessin� , cos� , and

"

cos2�
M � 1X

i =0

sin(4�f:i ) + sin2�
M � 1X

i =0

cos(4�f:i )

#

:

� The search algorithm can be very fast using a dichotomous process inlog2(nbs):

The overall method is synthesized in an algorithm (called LSQ in the following)
divided into the precomputing part and the acquisition loop, see [47].
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Chapter 3. INTERFEROMETRY MEASUREMENT FOR AFM ARRAYS

Algorithm 2: LSQ algorithm - before acquisition loop.
1 M  number of pixels of the pro�le
2 I[]  intensity of pixels
3 f  frequency of the pro�le
4 s4i  

P M � 1
i =0 sin(4�f:i )

5 c4i  
P M � 1

i =0 cos(4�f:i )
6 nbs  number of discretization steps of[� �; � ]
7 for i = 0 to nbs do
8 �  � � + 2 � � i

nbs

9 lut s[i ]  sin�
10 lut c[i ]  cos�
11 lut A [i ]  cos2� � s4i + sin2� � c4i
12 lut sf i [i ]  sin(2�f:i )
13 lut cf i [i ]  cos(2�f:i )
14 end
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3.2. Least Square Algorithm (LSQ) for Phase Computation

Algorithm 3: LSQ algorithm - during acquisition loop.
1 �x  M � 1

2
2 �y  0, xvar  0, xycovar  0
3 for i = 0 to M � 1 do
4 �y  �y+ I[i ]
5 xvar  xvar + ( i � �x)2

6 end
7 �y  �y

M
8 for i = 0 to M � 1 do
9 xycovar  xycovar + ( i � �x) � (I [i ] � �y)

10 end
11 slope xy covar

xvar

12 start  �y � slope� �x
13 for i = 0 to M � 1 do
14 I [i ]  I [i ] � start � slope� i
15 end
16 I max  maxi (I [i ]), I min  min i (I [i ])
17 amp  I max � I min

2
18 Is  0, Ic  0
19 for i = 0 to M � 1 do
20 Is  Is + I [i ]� lut sf i [i ]
21 Ic  Ic + I [i ]� lut cf i [i ]
22 end
23 �  nbs

2 , bl  0, br  �
24 vl  � 2:I s � amp:lut A [bl ]
25 while � > = 1 do
26 vr  2:[Is: lut c[br ]+ Ic:lut s[br ]] � amp:lut A [br ]
27 if !(vl < 0 and vr > = 0) then
28 vl  vr

29 bl  br

30 end
31 �  �

2
32 br  bl + �
33 end
34 if !(vl < 0 and vr > = 0) then
35 vl  vr

36 bl  br

37 br  bl + 1
38 vr  2:[Is: lut c[br ]+ Ic:lut s[br ]] � amp:lut A [br ]
39 else
40 br  bl + 1
41 end
42 if abs(vl ) < v r then
43 b�  bl

44 else
45 b�  br

46 end

47 �  � �
h

2:bref

nbs
� 1

i
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Chapter 3. INTERFEROMETRY MEASUREMENT FOR AFM ARRAYS

3.3 Application: Topographic Scan

We illustrate the algorithm by a sample surface topographic scan simulation for
an array of AFMs in quasi-static regime. We consider an10-cantilevers array with
base dimensionsLB � `B � hB = 500�m � 16:7�m � 10�m; and those of cantilevers
LC � `C � hC = 25�m � 10�m � 1:25�m . The other model parameters are the
bending coe�cient RB = 1:09� 10� 5N=m, RC = 2:13� 10� 4N=m and the masses
per unit length mB = 0:0233kg=m, mC = 0:00291kg=m, and the light wavelength
is � = 0:633�m . The number of pixels in all measurement segments is taken as
20. The position of the base pro�le line is de�ned asy2;1 = L 0

C
10 . The topography of

the samples is de�ned with bumps that are regularly distributed both inx1- and
y2-directions, see Figure3.4.

Figure 3.4: AFM arrays and samples.

The scan procedure is following:

1. The AFM arrays is a low position to put tips in contact with the sample
surface.

2. The scanner moves in the negativey2-direction and the de�ection at tips are
measured by interferometry in each scan step.

3. At the end of the line, the scanner moves back to the initialy2-position, then
increase thex1-position to the next line.

4. Repeat step 2 and 3 until the required number of lines is obtained.

5. Save data.

All these steps together with the method for estimation of cantilever de�ection
have been implemented in a simulation. The sample is an array of10� 10 bumps.
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Their dimensions areLS � `S � hS = 10�m � 20�m � 0:1�m . Twenty scan lines
distant from 2�m are recorded in thex1-direction with 128scan points each distant
from 1�m . The estimated three-dimensional topography with Formula (3.9) is
presented in Figure3.5.

Figure 3.5: Estimated sample topography with Formula (3.9).

It shows peaks due to the integer part calculation in Formula (3.9). The use
of Algorithm ( 1) eliminates them as seen in Figure3.6.

Figure 3.6: Estimated sample topography after phase correction.

Here, we also present the topographic scan results through the commercial
software MountainsMapr . In this simulation, we use the same con�guration of the
AFM arrays and the topography of samples. One surface view in three-dimensional
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is shown in Figure3.7 (a). A stitching technique is used to recover the topography
of the sample, (see Figure3.7 (b)).

(a) (b)

Figure 3.7: (a) One surface viewed in three-dimensional (b) Stitched surface

3.4 Conclusion

In this paper, we have presented an e�ective global phase computation algorithm of
interferometry for de�ection measurement in an array of cantilevers in quasi-static
regime. It improves a method using three measurements in each cantilever by
avoiding one of them. It has been tested in a full simulation including a cantilever
array, a scanner and an analyzed surface. Applications are also envisioned as for
instance topographic scans for di�erent samples and force spectroscopy.

In the next chapter, we shall present the semi-decentralized approximation
method and its application to LQR control problem andH1 �ltering problem for
an array of cantilevers.
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In spite of signi�cant development of large AFM arrays, the status of achiev-
ing their global distributed control is still at its preliminary stage. Due to the
extremely huge data exchanges between distributed sensors and actuators, appro-
priate architectures of distributed processors allowing for highly parallel processing
are wished. So, appropriate distributed control algorithms are required to operate
on such architectures. Some groups have reported algorithms of semi-decentralized
optimal control for systems with distributed actuators and sensors. In [34] and
[35], the authors have considered the systems with in�nite length, which are gov-
erned by partial di�erential equations. And the paper [36] has focused on discrete
systems. A preliminary investigation of semi-decentralized control for partial dif-
ferential equations in a bounded domain has been carried out for vibration control
by M. Kader et al. and reported in [37] and [38]. It uses distributed piezoelectric
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actuators and sensors, and implement a simple optimal control strategy, namely
a Linear Quadratic Regulator (LQR), using a distributed analog electronic cir-
cuits. Other authors, [49], [50], [51], [52], have also worked on the same concept
of distributed control realized by distributed circuits. The approach [37] has been
signi�cantly improved by [39], [40]. The polynomial approximation of a function of
a self-adjoint operator was replaced by an approximation derived from the Cauchy
integral formula. Here, we improve this method, apply it to control problems for
cantilever arrays, and show how it can be implemented as Periodic Network of
Resistors (PNR). The latter is a general method presented in [53], [54] for solving
a large class of partial di�erential equations by analog computation. Two applica-
tions are studied, one to an LQR control problem published in [55], and one to an
H1 �ltering problem.

This chapter is organized as follows. In section4.1, we focus on the derivation
of the semi-decentralized approximation method and its applications to the LQR
control problem for a one-dimensional AFM arrays. This is followed in section4.2
by the application to an H1 �ltering problem.

4.1 Semi-decentralized Approximation Method of
an LQR Problem

We apply, with some improvements, the theory presented in [39], [40] on the re-
formulated two-scale model of one-dimensional micro-cantilever arrays introduced
in section 1.3. The calculations are carried out using a simple Linear Quadratic
Regulator (LQR) optimal control strategy, for the purpose of canceling vibrations.
We study the quality of the approximation method, i.e. its precision and its cost.
We also provide a realization of the semi-decentralized control scheme through
PNR circuits.

4.1.1 Statement of the LQR Problem

By recalling the reformulated model in section1.3,
8
<

:

� B @2
tt u + RB @4

x1 ��� x1
u + `0

C r C

(L 0
C )3

P

k
eukck = f B in base,

mC0@2
tt euk + mC0@2

tt �u�� k + r C 0 � C
k

(L 0
C )4 euk = f C

k for eachk,
(4.1)

where ck = @3
� 2 � 2 � 2

' k(0) with � 2 = y2
L 0

C
. We can write the LQR problem in

an abstract setting, see [56], even if we do not justify the functional frame-
work. We set zT =

�
u (euk)k=1 ;��� ;nC @tu @t (euk)k=1 ;��� ;nC

�
the state variable,

uT =
�

f B (f C
k )k=1 ;��� ;nC

�
the control variable. The LQR problem, consisting
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in minimizing the functional under the constraint, can be written under its usual
form as

dz
dt = Az (t) + Bu (t) for t > 0 and z (0) = z0,
min
u2 U

J (z0; u) = min
u2 U

R+ 1
0 jjCzjj 2

Y + ( Su; u)Udt: (4.2)

where A =
�

0 Id
� M � 1

array K array 0

�
the state operator, with the matricesM array

and K array

M array =
�

� B 0
mC0L0

C �' k mC0L0
C Id

�
;

and

K array =

 
RB @4

x1 ��� x1
0

0 RC � C
k + L 0

C `0
C r C 0ck

(L 0
C )4 Id

!

;

Id is the identity matrix with size nC +1 and B =
�

0
M � 1

array

�
the control operator,

C =

0

B
B
@

@2
xx 0 0 0
0 Id 0 0
0 0 0 0
0 0 0 0

1

C
C
A

the observation operator, andS = Id the weight operator. The choice forB and
C is the simplest one so that it can guarantee the controllability and observability
of the system. We denote byX the spaceL2(�) . Here, A is the in�nitesimal
generator of a continuous semigroup on the separable Hilbert spaceZ = H 2

0 (�) �
X nC

� X � X nC
with dense domainD(A) = H 4(�) \ H 2

0 (�) �X nC
� H 2

0 (�) �X nC
.

It is known that the control operator B 2 L (U; Z ), the observation operator
C 2 L (Z ; Y) ; and S 2 L (U; U), where Y = X 2(nC +1) and U = X nC +1 . We
admit that (A; B ) is stabilizable and that (A; C) is detectable, in the sense that
there exist G 2 L (Z ; U) and F 2 L (Y; Z ) such that A � BG and that A � FC
are the in�nitesimal generators of two uniformly exponentially stable continuous
semigroups. It follows that for eachz0 2 Z , the LQR problem (4.2) admits a
unique solution

u� = � Kz (4.3)

whereK = S� 1B � Pz; and P is the unique self-adjoint nonnegative solution of the
operational Riccati equation

�
A � P + PA � PBS� 1B � P + C � C

�
z = 0; (4.4)

for all z 2 D (A), see [56]. The adjoint A � of the unbounded operatorA is de�ned
from D (A � ) � Z to Z by the equality (A � z; z0)Z = ( z; Az0)Z for all z 2 D (A � )
and z0 2 D (A). The adjoint B � 2 L (Z ; U) of the bounded operatorB is de�ned
by (B � z; u)U = ( z; Bu)Z , the adjoint C � 2 L (Y; Z ) is de�ned similarly.
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4.1.2 Derivation of Semi-decentralized Approximation Method

This section is devoted to formulate the approximation method. Its mathematical
derivation has been introduced in the paper [39] and detailed in the thesis [40]
where many illustrating examples have been presented.

Matrices of functions of a self-adjoint operator

We denote by� , the mapping: � : f �! w, where w is the unique solution of
@4

x��� xw = f in � with the boundary conditions w = @xw = 0 for x = f 0; LB g:
The spectrum � of � is discrete and made up of real eigenvalues� k : They are
solutions to the eigenvalue problem� � k = � k � k with jj � k jj L 2 (�) = 1: In the sequel,
I � = ( � min ; � max ) refers to an open interval that includes the complete spectrum.
For a given real valued functiong; continuous onI � ; g(�) is the linear self-adjoint

operator on the spaceX de�ned by g(�) z =
1P

k=1
g(� k)zk � k ; wherezk =

R
� z� k dx:

Factorization of K by a Matrix of Functions of �

In this part, we introduce the factorization of the controllerK under the form of
a product of a matrix of functions of� . To do so, we introduce the operators of

change of variables� Z =

0

B
B
@

�
1
2 0 0 0

0 Id 0 0
0 0 Id 0
0 0 0 Id

1

C
C
A 2 L

�
X 2(nC +1) ; Z

�
, � U = Id 2

L
�

X nC +1 ; U
�

and � Y =

0

B
B
@

@2
xx �

1
2 Id 0 0 0

0 Id 0 0
0 0 Id 0
0 0 0 Id

1

C
C
A 2 L

�
X 2(nC +1) ; Y

�
, from

which we introduce the matrices of functions of� , a (�) = � � 1
Z A� Z ; b(�) =

� � 1
Z B� U ; c(�) = � � 1

Y C� Z and s(�) = � � 1
U S� U , simple to implement on a semi-

decentralized architecture. A straightforward calculation yields

a(� ) =

0

B
B
B
@

0 0 � � 1
2 0

0 0 0 Id
� RB

� B � � 1
2 0 0 0

RB �� T
k

� B �
1
2 � r C 0

(L 0
C )4 diag(� C

k + L0
C `0

Cck) 0 0

1

C
C
C
A

; b(� ) =
�

0
M � 1

array

�
;

c(� ) =
�

Id 0
0 0

�
; and s (� ) = Id:
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4.1. Semi-decentralized Approximation Method of an LQR Problem

Endowing Z , U and Y with the inner products (z; z0)Z =
�
� � 1

Z z; � � 1
Z z0

�
X 2n C +2 ,

(u; u0)U =
�
� � 1

U u; � � 1
U u0

�
X n C +1 , and (y; y0)Y =

�
� � 1

Y y; � � 1
Y y0

�
X 2n C +2 , we �nd the

subsequent factorization of the controllerK in (4.3) which plays a central role in
the approximation.

Proposition 4 The controller K admits the factorization

K = � Uq(�) � � 1
Z ;

where q(� ) = s� 1 (� ) bT (� ) p(� ) ; and where for all � 2 �; p (� ) is the unique
self-adjoint nonnegative matrix solving the algebraic Riccati equation.

aT (� ) p + pa(� ) � pb(� ) s� 1 (� ) bT (� ) p + cT (� ) c(� ) = 0 : (4.5)

Proof. The algebraic Riccati equation can be found after replacingA; B; C and
S by their decomposition

A = � Z a(�) � � 1
Z ; B = � Z b(�) � � 1

U ; C = � Y c(�) � � 1
Z and S = � Us (�) � � 1

U :

in the Riccatti equation (4.4).

Remark 5 In this example,� U and � Z are some matrices of functions of� ; and
so is K ,

K = k(�) : (4.6)

Thus, the approximation is developed directly onk(�) ; but we emphasize that in
more generic situations it is pursued onq(�) .

Remark 6 Introducing the isomorphisms� Z , � Y , and � U allows to consider a
broad class of problems where the operatorsA; B , C and S are not strictly functions
of a same operator. In this particular application, the observation operatorC is
composed with the operator@2

xx . This is taken into account in � Y in a manner in
which � � 1

Y C� Z is a function of � only.

Remark 7 We indicate how the isomorphisms� Z , � Y , and � U have been chosen.
The choice of� Z comes directly from the expression of the inner product(z; z0)Z =�
� � 1

Z z; � � 1
Z z0

�
(L 2 (�)) 2N and from

(zn ; z0
n )H 2

0 (� ) =
�

(� 2)
1
2 zn ; (� 2)

1
2 z0

n

�

L2 (� )

with n = 1; ::; N . For � Y , we start from C = � Y c(�) � � 1
Z and from the relation

(y; y0)Y =
�
� � 1

Y y; � � 1
Y y0

�
(L2 (� )) 2N

which implies that@2
xx = (� Y ) i;i ci;i (�) � � 1

2 and 0 = (� Y ) j;j cj;j � with i = 1; ::; N
and j = N + 1; ::; 2N . The expression of� Y follows. Choosing� U is straightfor-
ward.
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Chapter 4. SEMI-DECENTRALIZED APPROXIMATION METHOD AND ITS APPLICATIONS

Approximation of Functions of �

Our approximation method is based on the Cauchy integral formula from func-
tional calculus, see [57], representing a function of an operator. We build the
approximation in two steps. Since the functionk(�) is not known, the spectrum
� cannot be easily determined, so �rstly, the function is approximated by a highly
accurate rational approximation. We notice thatk(� ) may be a singular function
when � approaches to0, (see Figure4.1).

0 0.5 1 1.5 2

x 10
-3

50

100

150

200

250

300

Spectrum l

k(
l)

Figure 4.1: One component of the functionk(� )

To avoid the singularity of k(� ), for each componentkij (� ), we introduce a
componentwise rational approximation, operating on the logarithm of� instead of
on � as done in [39], [40]

kR (� ) =

RNP

m=0
dm (ln � )m

RDP

m0=0
d0

m0(ln � )m0

; (4.7)

where dm , d0
m0 are two coe�cient matrices, and R =

�
RN ; RD

�
is a couple of

matrices of polynomial degrees. Now, we approximatekR (� ) by another function
kR;M (� ) which is simple to discretize. To do so, we use the Cauchy integral formula,

kR (�) =
1

2i�

Z

C
kR (� ) ( �Id � �) � 1 d�; (4.8)

because it involves only the resolvent(�I � �) � 1 ; which may be simply and ac-
curately approximated. We apply it to the rational approximation with a path
C tracing out an ellipse includingI � but no poles. It is chosen to be an ellipse
parameterized by

� (� ) = � 1(� ) + i� 2(� ); with � 2 [0; 2� ];
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4.1. Semi-decentralized Approximation Method of an LQR Problem

(see Figure4.2). The parametrization is used as a change of variable, so the integral
can be approximated by a quadrature formula involvingM nodes(� l ) l=1 ;::;M 2
[0; 2� ], and M weights (! l ) l=1 ;::;M ,

I M (g) =
MX

l=1

g(� l ) ! l :

Figure 4.2: The contour in the Cauchy integral formula

So, for eachz 2 X 2(nC +1) and � 2 C, we introduce the2(nC + 1) -dimensional
vector �eld

v� = � i� 0kR (� ) ( �Id � �) � 1 z:

Decomposingv� into its real part v�
1 and its imaginary part v�

2; the couple(v�
1; v�

2)
is solution of the system

�
� 1v�

1 � � 2v�
2 � � v�

1 = Re(� i� 0kR (� )) z,
� 2v�

1 + � 1v�
2 � � v�

2 = Im (� i� 0kR (� )) z.
(4.9)

Thus, combining the rational approximationkR and the quadrature formula yields
an approximate realizationkR;M (�) of k (�) ;

kR;M (�) z =
1

2�

MX

l=1

v� (� l )
1 ! l : (4.10)

This formula is central in the method, so it is the center of our attention in the
simulations. A fundamental remark is that, a "real-time" realization,kR;M (�) z;
requires solvingM systems like (4.9) corresponding to theM quadrature nodes
� (� l ): The matrices kR (� (� l )) could be computed "o�-line" once and for all, and
stored in memory, so their determination would not penalize a rapid real-time com-
putation. In total, the ultimate parameter responsible of accuracy in a real-time
computation, apart from spatial discretization, isM the number of quadrature
points.
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Chapter 4. SEMI-DECENTRALIZED APPROXIMATION METHOD AND ITS APPLICATIONS

Spatial Discretization

The �nal step in the approximation consists in a spatial discretization and syn-
thesis of equation (4.9). The interval � is meshed with regularly spaced nodes
separated by a distanceh; we introduce� � 1

h the �nite di�erence discretization of
� � 1; associated with the clamping boundary condition. In practice, the discretiza-
tion length h is chosen small compared to the distance between cantilevers. Then,
zh denoting the vector of nodal values ofz; for each� we introduce (v�

1;h ; v�
2;h); a

discrete approximation of(v�
1; v�

2); solution of the discrete set of equations,

� 1v�
1;h � � 2v�

2;h � � hv�
1;h = Re(� i� 0kR (� )) zh; (4.11)

� 2v�
1;h + � 1v�

2;h � � hv�
2;h = Im (� i� 0kR (� )) zh: (4.12)

Finally, an approximate optimal control, intended to be implemented in a set of
spatially distributed actuators, could be estimated from the nodal values at mesh
nodes,

kR;M;h zh =
1

2�

MX

l=1

v� l
1;h ! l :

� Analog Computation of � hv1 and � hv2

We propose a synthesis of (4.11-4.12) by a distributed electronic circuit that
could be integrated in a physical device. For this purpose, the system is rewritten
under the manageable form

v1 =
� 1

� 2
1 + � 2

2

(� + � hv1) +
� 2

� 2
1 + � 2

2

(� + � hv2) ; (4.13)

v2 =
� 1

� 2
1 + � 2

2

(� + � hv2) �
� 2

� 2
1 + � 2

2

(� + � hv1) ; (4.14)

where we use the notations� = Re(� i� 0kR (� )) zh, � = Im (� i� 0kR (� )) zh, v1 =
v�

1;h , and v2 = v�
2;h . The analog computation of� hv1 and � hv2 are made by Periodic

Network of Resistances (PNR) circuits [54]. These electronic circuits have been
developed to solve a large class of PDEs by analog computation. More exactly,
PNR circuits compute the �nite di�erence solution of a PDE. PNR circuits are
gathering of cells (Figure4.3), the interior cells are indexed byk = 1; : : : ; N � 1,
while the boundary cells correspond tok = � 1; 0; N and N +1. We will show that
the circuits solve the equationsAu1 = i 1. If the current sourcesi 1 are replaced by
voltage controlled current sources de�ned byi 1 = gv1 (with g is a real number),
the voltage outputs of the circuitsu1 solveg(� hv1) and so� hv1. The computation
of � hv2 is done in the same way. The interior cellk which computes(� hv1)k is
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i ( k � 1)
1 i ( k )

1

Cell

k � 2 k � 1
Cell

k
Cell

k + 1
Cell
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Cell

1
Cell

0
Cell

� 1
Cell

N � 1
Cell

N
Cell

N + 1
Cell

i ( N � 1)
1i ( k +2)

1i ( k +1)
1i ( k � 2)

1i (1)
1

= vB= 0= vA = 0

� � � � � �

u(1)
1 u( k � 2)

1 u( k � 1)
1 u( k )

1 u( k +1)
1 u( k +2)

1 u( N � 1)
1

(� h i 1)1 (� h i 1)k � 2 (� h i 1)k � 1 (� h i 1)k (� h i 1)k +1 (� h i 1)k +2 (� h i 1)N � 1

Figure 4.3: Analog computation of � hv1.

represented on Figure4.4 with its two adjacent cells on each side. We call� 1 the
resistance value between the potentialsu(k)

1 and u(k� 2)
1 , and � 2 the resistance value

between the potentialsu(k)
1 and u(k� 1)

1 . By applying the Kirchho� Current Law

1

22

1

r 1

r 2

r 3

r 4

r 5

r 6

i ( k )
1i ( k � 2)

1 i ( k � 1)
1 i ( k +1)

1 i ( k +2)
1

i ( k � 2)
1 = gv( k � 2)

1 i ( k � 1)
1 = gv( k � 1)

1 i ( k )
1 = gv( k )

1 i ( k +1)
1 = gv( k +1)

1 i ( k +2)
1 = gv( k +2)

1

k � 2 k � 1 k k + 1 k + 2

g(� h v1 )k � 2 g(� h v1 )k � 1 g(� h v1 )k g(� h v1 )k +1 g(� h v1 )k +2

u( k � 2)
1 u( k � 1)

1 u( k )
1 u( k +1)

1 u( k +2)
1

Figure 4.4: Five adjacent interior cells.

(KCL) at node u(k)
1 , rearranging some terms and dividing byh4, the equation of

the cell k can be written under the form:

1
h4 � 1

� 1
u(k� 2)

1 � 1
� 2

u(k� 1)
1 + 2u(k)

1

�
1
� 1

+ 1
� 2

�

� 1
� 2

u(k+1)
1 � 1

� 1
u(k+2)

1 = 1
h4 i (k)

1 :

If one choose the negative potential� 1 = � h4� 0 and the positive potential � 2 =
h4� 0=4, then the potential at nodeu(k)

1 is expressed as a function of its neighbor
voltages as

1
h4

u(k� 2)
1 � 4u(k� 1)

1 + 6u(k)
1 � 4u(k+1)

1 + u(k+2)
1 = � 0i (k)

1 ;

which is the stencil of the di�erential operation� � 1. Consequently, the whole elec-
tronic circuit composed ofN � 1 cells computes the �nite di�erences approximation
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u1 = � h i 1 = g(� hv1). The numerical value of� 0 only changes the magnitude of the
voltagesu(k)

1 . The values of the resistances inside a cell depend only on the circuit
topology and are easily expressed as a function of� 1 or � 2. Here the resistances of
the cells can be taken asr1 = r3 = r4 = r6 = � 1=4 and r2 = r5 = � 2=2.

The Voltage Controlled Current Source (VCCS)i (k)
1 of Figure 4.4 is controlled

by the voltage v(k)
1 through the equation i (k)

1 = gv(k)
1 . The four boundary cells

are represented on Figure4.5. The imposed values of the voltages correspond to
the clamping boundary condition. Remark that the terminals denoted by a cross
are not connected, so the resistances which are linked by one side at them can be
removed without changing the behavior of the circuits. They are saved to show
clearly the real di�erence between interior cells and boundary cells.

vB

0 N N + 1� 1

vA

g(� h v1 )0 = 0 g(� h v1 )N = 0

vB = g(� h v1 )N � 1vA = g(� h v1 )1

g(� h v1 )N +1 = vBg(� h v1 ) � 1 = vA

Figure 4.5: Four boundary cells.

� Analog Computation of Equation (4.13)

The analog computation of (4.13) can be made by an array of classical non
inverting summing ampli�ers of Figure 4.6. Notice that there is no current ex-
change between these circuits and PNR inputs and outputs, see bu�ers in Figure
4.4. Analysis of the circuit of Figure4.6 leads to (4.15). With a proper choice of
resistances, Figure4.6 solves (4.13),

v(k)
1 =

R1 + R2

R1

Ru

Ra
� +

Ru

Rb
g(� hv1)k +

Ru

Rc
� +

Ru

Rd
g(� hv2)k ; (4.15)

where 1
Ru

= 1
Ra

+ 1
Rb

+ 1
Rc

+ 1
Rd

:

� Analog Computation of Equation (4.14)

In a very similar way, the analog computation of equation (4.14) can be made
by an array of classical di�erence summing ampli�ers of Figure4.7.
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�

Figure 4.6: Analog computation of thek-th equation (4.13).
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Figure 4.7: Analog computation of thek-th equation (4.14).

Analysis of the circuit of Figure 4.7 leads to (4.16). With a proper choice of
resistances, Figure4.7 solves (4.14),

v(k)
2 =

Rv

Rw

R0
2

R0
a
� +

Rv

Rw

R0
2

R0
b

g(� hv2)k �
R0

2

R0
c
� �

R0
2

R0
d

g(� hv1)k ; (4.16)

where 1
Rv

= 1
R0

a
+ 1

R0
b

+ 1
R0

1
and 1

Rw
= 1

R0
c

+ 1
R0

d
+ 1

R0
2
:

4.2 H1 Filtering Problem Based on Functional Cal-
culus

In this section, we extend our semi-decentralized approximation method to a mod-
ern control theory, i.e. a robustH1 control problem. We focus on anH1 �ltering
problem using interferometry measurements of the displacements for AFM arrays
which has been introduced in chapter3. Here, we improve the quadrature rule
used for the Cauchy integral thanks to the approach presented in [58]. This signif-
icantly improves the computation of the functionk(� ) when � is closed to0 and
improves the accuracy of the quadrature rule.
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4.2.1 Statement of H1 Filtering Problem

For the �ltering problem in AFM array application we take into account unknown
noise associated to interferometry measurements as well as other noise sources as
air or liquid environment, thermal e�ect, electromagnetic noise. To deal with these
uncertainties, we uses anH1 theory which is based on the worst case approach.
According to the dynamic equation of (4.1) stated in section4.1.1, we set the state
variable zT =

�
u (euk)k=1 ;��� ;nC @tu @t (euk)k=1 ;��� ;nC

�
, the state operatorA and

B =
�

0 Id
� T

the perturbation operator. The perturbations in the state system
being denoted byw1 2 W 1 = X � X nC

; the state equation is

@tz = Az + Bw1 for t 2 R+ and z(0) = z0: (4.17)

Here A is the in�nitesimal generator of a continuous semigroup on the separable
Hilbert spaceZ = H 2

0 (�) � X nC
� X � X nC

with dense domainD(A) = H 4(�) \
H 2

0 (�) � X nC
� H 2

0 (�) � X nC
: The perturbations operatorB 2 L (W1; Z ).

The observation comes from interferometry measurement but takes into ac-
count an additional unknown noisew2. We observe the phase of base pro�le plus a
very small constant which has not e�ect on the observation in normalized domain,
as introduced in section3.1.2. Then, using the modal decomposition with respect
to y2, the noise disturbed measurement turns to be given by

Y = Cz + Dw2 2 Y = X

the space of measurements, with the observation operator

C =
�

� 4�
�� Id � 4�

�� ' k(y0;1
2 )k=1 ;::;n C 0 0

�
2 L (H ; Y); w2 2 W 2;

with �� is the light wave length and the weight operator for the measurement noise
D = Id 2 L (W2; Y). We assume that(A; B ) is stabilizable and that (C; A) is
detectable. The output operator isL : Z �! Z N , and the partial state to be
estimated is

Z = Lz:

Here, we estimate the displacement at base, soL =
�
Id 0 0 0

�
and Z N =

H 2
0 (�) . We de�ne the estimation bZ of Z and the worst-case performance measures

as

J = sup
(z0 ;W1 �W 2 )

jjZ � bZ jj 2
Z N

jjw1jj 2
W1

+ jjw2jj 2
W2

:

The �ltering problem is stated as: Given
 > 0; �nd a �lter Y �! Z; such that
J < 
 2. This problem has a solution if and only there exists a unique self-adjoint
non-negative solutionP to the operational Riccati equation, [59].

(AP + PA� � PC� CP +
1

 2

PL � LP + BB � )y = 0; (4.18)

80



4.2. H1 Filtering Problem Based on Functional Calculus

for all y 2 D(AN � ): The �lter Y 7! Ẑ is given as follows

@t ẑ = Aẑ + Ky; (4.19)

Ẑ = Lẑ for t 2 R+ ;

where the �lter gain is K = PCN � and y = Y � Cẑ:

4.2.2 Functional Calculus Based Approximation

As introduced in section4.1.2, we have the factorization of the �lter gainK under
the form of a product of a matrix of functions of� . Here, we introduce the change
of variable operators

� H =

0

B
B
@

�
1
2 0 0 0

0 Id 0 0
0 0 Id 0
0 0 0 Id

1

C
C
A 2 L

�
X 2(nC +1) ; Z

�
;

� W = Id 2 L
�

X nC +1 ; W1

�
, � Z = �

1
2 2 L

�
X ; Z N

�
; and � Y = Id 2 L (X ; Y),

from which we introduce the matrices of functions of� , a (�) = � � 1
H A� H , b(�) =

� � 1
H B� W , c(�) = � � 1

Y C� H and ` (�) = � � 1
Z L� H , simple to implement on a semi-

decentralized architecture. We note that the �lter gainK in (4.19) is function of
operator � .

Proposition 8 The �lter gain K admits the factorizationK = � H q(�)� Y , where
q(� ) = p(� )cT (� ), and where for all � 2 � , p(� ) is the unique symmetric non-
negative matrix solving the algebraic Riccati equation

ap+ paT � p(�cT �c �
1

 2

�̀T �̀ )p + �b�bT = 0:

where �̀(� ) = � Z (� )`(� ); �c(� ) = � � 1
Y (� )c(� ) and �b(� ) = b(� )� � 1

W (� ):

Approximation of Functions of �

We refer to the same rational approximation and Cauchy integral formula as stated
in section 4.1.2. In order to improve the accuracy of the approximation, before
computing kR (�) , a slight change should be done for the formula (4.8),

kR (�) =
�

2i�

Z

C�

� � 1kR (� ) ( �Id � �) � 1 d�: (4.20)
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We introduce a new variable! = � 1=2, and d� = 2!d!; then the above formula
becomes

kR (�) =
�
i�

Z

C!

! � 1kR
�
! 2

� �
! 2Id � �

� � 1
d!: (4.21)

Thus we have a new contour integral problem, where the contour maps from� -
plane to ! -plane and encloses[� 1=2

min , � 1=2
max ], (see Figure4.8). The integral can be

approximated by a quadrature formula involvingM nodes.
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Figure 4.8: The contour in the Cauchy integral formula

We apply the trapezoid rule withM equally spaced nodes in(� K p+ iK 0
p=2; K p+

iK 0
p=2); the Cauchy integral formula for the method applied to� can be written

as

kR;M (�) =
� 8K p�( � min � max )1=4

iMk p
Im

MX

l=1

kR (! 2(t l )) ( ! 2(t l )I � �) � 1 cn(t l )dn(t l )
! (t l )(k� 1

p � sn(t l ))2
;

where t l = � K p + iK 0
p

2 + 2 (l � 1
2 K p )
M ; 1 � l � M; the values ofK p and K 0

p are the
complete elliptic integrals associated with the parameterskp

kp =
(� max=� min )1=4 � 1
(� max=� min )1=4 + 1

:

The Jacobi elliptic function

u = sn(t l ) = sn(tjk2
p);

and the combination of the further Jacobi elliptic functions

cn(t l )dn(t l ) =
q

1 � k2
pu2

p
1 � u2:
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Finally, the transformation

! = ( � min � max )1=4 (k� 1
p + sn(t))

(k� 1
p � sn(t))

:

We decompose� into their real part � 1 and their imaginary part � 2; and we de�ne
the function

h� =
8K p(� min � max )1=4cn(t l )dn(t l )

Mk p(� l )1=2(k� 1
p � sn(t l ))2

:

So, for eachy = Y � Cẑ 2 X 2(nC +1) and � 2 C� , we introduce the 2(nC + 1) -
dimensional vector �eld

v� = � h� kR (� ) ( �I � �) � 1 y

and its real part v�
1 and its imaginary part v�

2; the couple(v�
1; v�

2) is solution of the
system �

� � 1� 1v�
1 � � � 1� 2v�

2 � v�
1 = Re(h� kR (� ))y,

� � 1� 2v�
1 + � � 1� 1v�

2 � v�
2 = Im (h� kR (� ))y.

(4.22)

Thus, combining the rational approximation kR and the contour integration
formula yields an approximate realizationkR;M (�) y of k (�) y;

kR;M (�) y =
MX

l=1

v� l
1 : (4.23)

whereM is the number of quadrature points.

Spatial Discretization

The �nal step in the approximation consists in a spatial discretization and synthesis
of Equation (4.22). The interval � is also meshed with regularly spaced nodes
separated by a distanceh: Denoting by yh the vector of nodal values ofy; for
each� we introduce(v�

1;h ; v�
2;h); a discrete approximation of(v�

1; v�
2); solution of the

discrete set of equations,
(

� � 1
h � 1v�

1;h � � � 1
h � 2v�

2;h � v�
1;h = Re(h� kR (� ))yh,

� � 1
h � 2v�

1;h + � � 1
h � 1v�

2;h � v�
2;h = Im (h� kR (� ))yh.

(4.24)

Finally, an approximate optimal �lter could be estimated from the nodal values,

kR;M;h yh =
MX

l=1

v� l
1;h :
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Chapter 4. SEMI-DECENTRALIZED APPROXIMATION METHOD AND ITS APPLICATIONS

4.3 Conclusion

We have presented the derivation of a semi-decentralized approximation method
and its applications to an LQR control problem and anH1 �ltering problem for
one-dimensional cantilever arrays. The resulting semi-decentralized control can be
realized by PNR circuits. We notice that the entire approach is general and it can
be extended to other linear optimal control problems, e.g.LQG or H1 controls. It
may apply or be adapted to other systems including a cantilever array, for instance
to parallel AFMs or to storage devices, like the millipede, see [5].

84



Chapter 5

CONCLUSIONS AND
PERSPECTIVES

A two-scale model of cantilever arrays in dynamic regime has been presented. Its
derivation, previously carried out, uses a theory of strongly heterogeneous homoge-
nization in which the cantilevers play the role of soft parts. In the resulting model,
only the transverse displacement was retained. We analyzed it and compared it
to ordinary �nite element simulations from the viewpoint of modal structure. A
special emphasis was placed on the distinction between modes dominated by base
deformation and those dominated by cantilever deformation. We observe that this
concept can be met in various kinds of arrays of coupled systems, so the analysis
methodology could be re-used in other applications.

The two-scale model and the direct �nite element model provide comparable
results but some modes are not absolutely correct. A possible way to improve the
current model would be to take into account the three mechanical displacements
rather than the transverse displacement only. The di�erent phases of the design
optimization problem of AFM arrays have been described. For a static design
problem based on a two-scale model of AFM arrays, the design variables spaceX
is de�ned, as well as the response feature spaceS, the design objective functions
Fi (x) and the design nonlinear constraints spaceC: We have demonstrated that it
is possible to:

1. Select a set of in�uential design variables based on sensitivity analysis.

2. Find an optimal solution of the constrained design problem using both mono-
objective and multi-objective optimization algorithms.

3. Quantify the impact of manufacturing uncertainties on the performance char-
acteristics of the AFM array.
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The implemented tools provide an e�ective means for supporting the decision
making process in arrays of AFM design.

The measurement of cantilever displacements is done by an interferometric
readout method. We have presented an e�ective global phase computation al-
gorithm based on the least square method . Positive results of sample surface
topographic scan application for an array of AFMs have been reported.

Our semi-decentralized approximation method has been applied to aLQR prob-
lem and H1 �ltering problem of a cantilever array. The system was represented
through a validated two-scale model. We have proposed a possible implementation
of the semi-decentralized controller as a set of distributed electronic circuits. The
method has been validated, and all sources of errors have been quanti�ed. We
arrive to the conclusion that the main limitation comes from the spatial mesh size
h which need to be quite small to reach a good resolution. Conversely, the number
M of quadrature nodes is not needed to be large. This may be interpreted in
terms of analog circuit implementation by saying that a large number of resistors
is needed in the circuit, and a relatively small number of global analog compu-
tations is required to get accurate results. Further applications are now possible,
for instance to more complex systems, as two-dimensional arrays, and to more
sophisticated optimal control laws involving Riccati equations or inequalities.

We remark the future research works in the following:

1. Complete the validation of the whole control loop: from physical domain to
two-scale domain then back to physical domain.

2. Choose the control objectives for di�erent applications, for instance apply
LQR control to an array of AFMs.

3. Extend this approach to other linear optimal control problems, LQG andH1

control for an array of AFMs operating in contact mode or tapping mode.

4. More design problems, such as dynamics design problem and control design
problem, will be solved by the toolbox SIMBAD presented in this disserta-
tion. Hence the limitations of the current version of AFMLab will be over-
comed in the new version. The method developed in this work is su�ciently
general to apply to multi-physics and multi-scale modeling for a broad range
of arrays of microsystems and nanosystems whose components present some
(wanted or unwanted) couplings.
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Appendix A

Two-scale Model Parameters and
Cell Problem

A.1 Approximations in the Physical System

The two-scale approximation of the transverse mechanical displacement �eld is
derived following a similar principle as for theSimple Model, but we also take
into account the lateral displacements. This requires additional scaling in the in-
plane displacements. Denoting byuP = ( uP

1 ; uP
2 ; uP

3 ) the elastic displacements in
the model of a Kirchho�-Love thin plate interacting with objects, the two-scale
approximation is applied to(uP

1 ; uP
2 ; uP

3 ) in the base and to(" � uP
1 ; " � uP

2 ; uP
3 ) in the

cantilevers and in objects. Precisely,

(buP �
1 ; buP �

2 ; buP �
3 ) = ( uA

1 ; uA
2 ; uA

3 ) + O(" � ) in the base and

(" � buP �
1 ; " � buP �

2 ; buP �
3 ) = ( uA

1 ; uA
2 ; uA

3 ) + O(" � ) in the cantilevers and in the objects.

Conversely, the two-scale approximation in the physical domain is

u � uA in the base andu � (
uA

1

" �
;
uA

2

" �
; uA

3 ) in the cantilevers and in the objects.

A.2 Strains and Stresses

OnceuA together with second order correctoruB (coming from two-scale approx-
imation of second order derivatives) are known, the strains are approximated by

s�� (u) � �
x3

" � 2
@2

y� y�
uA

3
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in cantilevers. In the base their expression involveuB ,

s�� (u) � � x3(@2
x � x �

uA
3 + @2

y� y�
uB ): (A.1)

Moreover, in case of isotropic materials, with Young modulusE and Poisson co-
e�cient �; plane stresses are approximated by

� �� � �
x3h2

CE
24(1 + � )" � 2

(@2
y� y�

uA +
�

(1 � � )
� eyuA � �� )

in cantilevers, and

� �� � �
x3h2

B E
12(1 + � )

[@2
x � x �

uA
3 + @2

y� y�
uB +

�
(1 � � )

(� exuA
3 + � eyuB )� �� ] (A.2)

in the base.

A.3 Problem PB

The following cell problem is used to computeL B in (1.14) and uB in (A.1,A.2).
For a 2� 2 symmetrical matrix � , we say that a �eld wB ; independent ofy3; solves
the problem PB if it solves the partial di�erential equation,

divey(divey(M B 0(wB ))) = � divey(divey(r B : � )) in eYB (A.3)

with M B 0 = r B : r eyr T
ey wB ; endowed with the following boundary conditions. The

free base boundary and the base-cantilever interface are subjected to the same
boundary conditions

r ey(nT
ey M B 0(wB )� ey):� ey + divey(M B 0(wB )) :ney = �r ey(nT

ey (r B : � )� ey):� ey

� divey(r B : � ):neyand nT
ey M B 0(wB )ney = � nT

ey (r B : � )ney:

The rest of the base boundary, which is its boundary common with this of the
whole cellY; is subjected to periodicity conditions

wB ; nT
ey M B 0(wB )ney are eY � periodic, (A.4)

and r eywB :ney, r ey(nT
ey M B 0(wB )� ey):� ey + divey(M B 0(wB )) :ney are eY � antiperiodic.

(A.5)

Calculation of L B and of r eyr T
ey uB The linear mapping which transforms the

matrix � into the matrix of functions r eyr T
ey wB de�nes a linear operator denoted

by L B ;

(r eyr T
ey wB )�� =

2X


;� =1

L B
��
� � 
� : (A.6)
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OnceuA
3 is known, r eyr T

ey uB is computed using the linear operatorL B ;

r eyr T
ey uB = L B r ex r T

ex uA in ! � eYB : (A.7)
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Appendix B

AFMALab: A Simulator of an
Array of AFMs

AFMALab is our new developed interactive environment which is dedicated to
perform various analysis for an array of cantilevers based on the two-scale model
that has been presented in chapter1. Within AFMALab environment, you can
solve di�erent kinds of model-based problems, such as modal computation, static,
quasi-static and dynamic problems for an array of cantilevers. Moreover, it can
be used for design optimization of arrays of AFMs by integrating with SIMBADr .
AFMALab requires less computation e�ort comparing with a standard Finite Ele-
ment Method analysis environment, namely COMSOLr . Thanks to an easy-to-use
graphical user interface (GUI), such as menus and buttons built on MATLABr

environment, it is �exible and convenient to con�gure and modify material prop-
erties, loads, geometry, scanner and parameters of postprocessing.

The script of AFMALab is written in the MATLAB language. It can be in-
tegrated as a toolbox into MATLAB environment. AFMALab can run on any
platform supported by MATLAB. In addition, a compiled run-time version is also
available which can be operated without MATLAB.

B.1 Introduction

Using AFMALab toolbox, the user can perform di�erent types of analysis based
on our two-scale model of an array of cantilevers. The following applications are
available for the current version:

� Modal computation

Compute the global eigenvalue� A and eigenvector A .

� Static Analysis
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Solve the static problem by applying various types of loads, such as concen-
trated loads at tips, face loads and body loads.

� Dynamic Analysis

Solve the dynamic problem by exciting a single cantilever with concentrated
loads oscillating to a frequency, i.e. the �rst base eigenfrequency or the �rst
cantilever eigenfrequency.

� Design Optimization

A robust optimization toolbox SIMBAD is interfaced with AFMALab and
provides GUI to perform optimization analysis for designing arrays of AFM
before the microfabrication process.

Remark 9 The following typographical conventions have been used throughout:
- Sans SerifAll GUI labels, for instance: Project or Model
- Bold Names of buttons, such as theOK button.

B.2 Graphical User Interface

This section describes the major components in the AFMALab environment. When
starting AFMALab, the main interface of AFMALab appears as shown in Fig-
ureB.1.

Figure B.1: The main interface of the software AFMALab.

The main interface of AFMALab includes6 menus, namelyProject, Model,
Compute, Plots, Optimizationand Help. We describe each sub-menu in the following
sections.

Remark 10 Most GUI objects in the AFMALab environment have a tooltip as-
sociated with them to provide a more detailed description of their function. The

92



B.2. Graphical User Interface

tooltip is automatically displayed when the mouse pointer is placed over the object
of interest.

B.2.1 Project

Here the user can begin a new application or import an existing application into
AFMALab, see FigureB.2.

Figure B.2: Menu of Project in AFMALab

The user can also save the con�guration and the result of their current ap-
plication in this menu. The Export generates the geometry description �le for
COMSOL and the �les for mode shapes, static and dynamic displacement at user-
de�ned points.

B.2.2 Model

The Modelmenu allows the user to de�ne and modify the parameters associated to
the material, geometry, loads, scanner, tip-sample interaction and optical devices,
as seen in FigureB.3.

Example 11 De�ne and modify the material parameters, see FigureB.4

1. Click on menuModel, select sub-menuMaterial Parametersthen click.

2. De�ne or modify the parameters.

3. Click on OK .

Example 12 De�ne and modify the loads, see FigureB.5
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Figure B.3: Menu of Model in AFMALab

Figure B.4: Material parameter settings.

1. Click on menuModel, select sub-menuForce Settingsthen click.

2. De�ne or modify the loads. The loads can be expressed as constant or as an
expression of the coordinates(x; y; z).

3. Close the edit window, the changes will be saved automatically.

B.2.3 Compute

The Computemenu allows the user to perform the modal, static and dynamic
analyses, see FigureB.6. Each analysis involved inComputehas its own sub-menu
with which the user can con�gure and modify the parameters of the solver.

Example 13 Modify the modal analysis solver properties and perform modal anal-
ysis.
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Figure B.5: Load settings �le

Figure B.6: Menu of Compute in AFMALab

1. Click on menuCompute, select sub-menuParameters Settingsthen click.

2. Keep the default parameters of modal analysis solver or modify them.

3. Click on OK .

4. Click on menu Compute, select sub-menuSolvethen click it to execute the
analysis.

The user can modify the static and dynamic analyses solver properties and
perform their analysis by following the same steps as indicated for modal analysis.

B.2.4 Plots

The Plots menu allows the user to display the solution of the analysis after its
execution. It provides the postprocessing plots for the static solutions in two-
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dimension (2D) and the modal, static and dynamic solutions in three-dimension
(3D), see FigureB.7.

Figure B.7: Menu of Plots in AFMALab

Example 14 Static solution plots in 2D.

1. Click on menuPlots, select sub-menu2D Plots.

2. Click on its sub-menuStatics. A �gure appears to display the static solutions
in the base, the free end of cantilevers and the tips (in case of an array of
cantilevers has tips), see FigureB.8 (a).

3. Click on OK .

Example 15 Static solution plots in 3D

1. Click on menuPlots, select sub-menu3D Plots.

2. Click on its sub-menuStatics. A menu appears to let the user con�gure the
parameters of the 3D display.

3. Keep the default parameters of 3D plots or modify them, then clickOK , as
seen in FigureB.8 (b).

Example 16 Modal solution plots in 3D

1. Click on menuPlots, select sub-menu3D Plots.

2. Click on its sub-menuModes. A menu appears to let the user con�gure the
parameters of the 3D display.
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(a) (b)

Figure B.8: (a) 2D plot and (b) 3D plot of static analysis.

3. Keep the default parameters of 3D plots or modify them, then clickOK , as
seen in FigureB.9.

Figure B.9: Mode plot of modal analysis.

Example 17 Dynamic solution plots in 3D.

1. Click on menuPlots, select sub-menu3D Plots.

2. Click on its sub-menuMovies. A menu appears to let the user con�gure the
parameters of the 3D movie.

3. Keep the default parameters of 3D plots or modify them, then clickOK .
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B.2.5 Optimization

The Optimizationmenu contributes to the interface between AFMALab and SIM-
BAD which is an interactive program dedicated to simulation-based design appli-
cations. It allows the user to de�ne di�erent types of arrays of AFMs on a single
wafer, as shown in FigureB.10.

Figure B.10: Menu of Optimization in AFMALab

Example 18 De�ne and modify the parameters for arrays of AFMs.

1. Click on menuOptimization, select sub-menuParameters Settingsthen click.

2. Keep the default parameters of arrays of AFMs or modify them.

3. Click on OK .

Example 19 Run SIMBAD in AFMALab environment.

1. Click on menuOptimization, select sub-menuRun.

2. The main interface of SIMBAD appears, see FigureB.11. A design opti-
mization application has been reported in section2.3.

B.2.6 Help

The Helpmenu allows the user open the AFMALab help documentations inhtml
format, as shown in FigureB.12. It provides the descriptions of the main functions
of AFMALab. The presentation of the two-scale approximation theory and modal
description are also included in the documentation.
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Figure B.11: Main interface of SIMBAD.

Figure B.12: The main page of AFMALab help documentation.

The AFMALab is a pre-alpha version for performing the simulations of array
of cantilevers based on the two-scale model. It is designed for satisfying the basic
requirements of using this tool. More sophisticated object-oriented graphics in
MATLAB environment and more functionalities will be integrated into the next
version of AFMALab.
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Abstract:

We establish a two-scale model both for one-dimensional and two-dimensional Cantilever Arrays
in elastodynamic operating regime with possible applications to Atomic Force Microscope (AFM)
Arrays. Its derivation is based on an asymptotic analysis for thin elastic structures, a two-scale
approximation and a scaling used for strongly heterogeneous media homogenization. We present
the method used for its discretization, and report results of its numerical validation with FEM. A
robust optimization toolbox is interfaced to aid for design before the microfabrication process. A
model based algorithm of static state estimation using measurement of mechanical displacements
by interferometry is presented. We also synthesize a controller based on LQR methodology for a
one-dimensional cantilever array with regularly spaced actuators and sensors. With the purpose
of implementing the control in real time, we propose a semi-decentralized approximation that may
be realized by PNR. The control approximation method is based on two general concepts, namely
on functions of operators and on the Dunford-Schwartz representation formula. This approximation
method is extended to solve a robust H1 �ltering problem of the coupled cantilevers.

Keywords: Cantilever arrays, Two-scale modeling, Homogenization, Model veri�cation, Optimization design,
Interferometry measurements, Semi-decentralized control, Functional calculus, Cauchy integral
formula

Résum é :

Nous établissons un mod�ele �a deux échelles �a la fois pour des matrices de cantilevers unidimen-
sionnels et bidimensionnels en régime de fonctionnement élastodynamique avec des applications
possibles aux réseaux de microscopes �a force atomique (AFM). Son élaboration est basée sur une
analyse asymptotique pour les structures minces élastiques, une approximation �a deux échelles
et une mise �a l'échelle utilisée pour l'homogénéisation des milieux fortement hétérog�enes. Nous
présentons une méthode de discrétisation du mod�ele et effectuons sa véri�cation num érique en la
comparant avec des résultats de simulation par FEM. Une bo�̂te �a outils d'optimisation robuste est
interfacée avec le mod�ele permettant d'optimiser un design avant micro-fabrication. Un algorithme
d'estimation de l'état statique combinant la mesure de déplacements mécaniques par interférométrie
et le mod�ele a été introduit. Nous avons également synthétisé un LQR pour un réseau de cantilevers
en mode dynamique comprenant actionneurs et capteurs réguli �erement espacées. Dans le but de
mettre en œuvre le contrôle en temps réel, nous proposons une approximation semi-décentralisée
qui peut être réalisé par un PNR. La méthode d'approximation de commande est basée sur deux
concepts généraux, �a savoir sur un calcul fonctionnel et sur la formule de représentation d'une fonc-
tion d'opérateur de Dunford-Schwartz. Cette méthode d'approximation est étendue pour la résolution
d'un probl �eme de �ltrage optimal robuste de type H1 de la dynamique d'un réseau de leviers couplés.

Mots-cl és : Matrice de levier, modélisation �a deux échelles, homogénéisation, véri�cation de mod �ele, con-
ception par optimisation robuste, mesures d'interférométrie, contrôle semi-décentralisé, calcul
fonctionnel, formule intégrale de Cauchy
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