M. S. Dresselhaus, G. Dresselhaus, and R. Saito, Physics of carbon nanotubes, Carbon, vol.33, issue.7, pp.883-891, 1995.
DOI : 10.1016/0008-6223(95)00017-8

M. Bonnissel, L. Luo, and D. Tondeur, Compacted exfoliated natural graphite as heat conduction medium, Carbon, vol.39, issue.14, pp.2151-2161, 2001.
DOI : 10.1016/S0008-6223(01)00032-X

R. A. Buerschaper, Thermal and Electrical Conductivity of Graphite and Carbon at Low Temperatures, Journal of Applied Physics, vol.15, issue.5, pp.452-454, 1944.
DOI : 10.1063/1.1707454

L. R. Radovic, Chemistry and Physics of Carbon, 2004.

S. Margadonna, Recent Advances in Fullerene Superconductivity, Journal of Solid State Chemistry, vol.168, issue.2, pp.639-652, 2002.
DOI : 10.1006/jssc.2002.9762

T. Horikawa, T. Kinoshita, K. Suito, and A. Onodera, Compressibility measurement of C60 using synchrotron radiation, Solid State Communications, vol.114, issue.3, pp.121-125, 2000.
DOI : 10.1016/S0038-1098(00)00023-5

M. Monthioux and V. L. Kuznetsov, Who should be given the credit for the discovery of carbon nanotubes?, Carbon, vol.44, issue.9, pp.1621-1623, 2006.
DOI : 10.1016/j.carbon.2006.03.019

W. Kratschmer, L. D. Lamb, K. Fostiropoulos, and D. R. Huffman, Solid C60: a new form of carbon, Nature, vol.347, issue.6291, pp.354-358, 1990.
DOI : 10.1038/347354a0

S. Iijima, Helical microtubules of graphitic carbon, Nature, vol.354, issue.6348, pp.56-58, 1991.
DOI : 10.1038/354056a0

S. Iijima and T. Ichihashi, Single-shell carbon nanotubes of 1-nm diameter, Nature, vol.363, issue.6430, p.737, 1993.
DOI : 10.1038/363603a0

D. S. Bethune, C. H. Kiang, M. S. De-vries, G. Gorman, R. Savoy et al., Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls, Nature, vol.363, issue.6430, pp.605-607, 1993.
DOI : 10.1038/363605a0

J. W. Mintmire, B. I. Dunlap, and C. T. White, Are fullerene tubules metallic ? Physical Review Letters, pp.631-634, 1992.
DOI : 10.1103/physrevlett.68.631

M. S. Dresselhaus, G. Dresselhaus, and R. Saito, and their symmetry, Physical Review B, vol.45, issue.11, pp.6234-6242, 1992.
DOI : 10.1103/PhysRevB.45.6234

N. Hamada and S. Sawada, New one-dimensional conductors: Graphitic microtubules, Physical Review Letters, vol.68, issue.10, pp.1579-1581, 1992.
DOI : 10.1103/PhysRevLett.68.1579

R. Saito, M. Fujita, G. Dresselhaus, and M. S. Dresselhaus, Electronic structure of chiral graphene tubules, Applied Physics Letters, vol.60, issue.18, pp.2204-2206, 1992.
DOI : 10.1063/1.107080

M. S. Dresselhaus and G. Dresselhaus, Avouris : Carbon Nanotubes : Synthesis, Structure, Properties and Applications, 2001.

C. T. White and T. N. , Todorov : Carbon nanotubes as long ballistic conductors, Nature, vol.393, issue.6682, pp.240-241, 1998.
DOI : 10.1038/30420

C. Dekker, Carbon Nanotubes as Molecular Quantum Wires, Physics Today, vol.52, issue.5, pp.22-28, 1999.
DOI : 10.1063/1.882658

J. Charlier, X. Blase, and S. Roche, Electronic and transport properties of nanotubes, Reviews of Modern Physics, vol.79, issue.2, pp.677-732, 2007.
DOI : 10.1103/RevModPhys.79.677

D. Mann, A. Javey, J. Kong, Q. Wang, and H. Dai, Ballistic Transport in Metallic Nanotubes with Reliable Pd Ohmic Contacts, Nano Letters, vol.3, issue.11, pp.1541-1544, 2003.
DOI : 10.1021/nl034700o

J. Kong, E. Yenilmez, T. W. Tombler, W. Kim, H. Dai et al., Quantum Interference and Ballistic Transmission in Nanotube Electron Waveguides, Physical Review Letters, vol.87, issue.10, p.106801, 2001.
DOI : 10.1103/PhysRevLett.87.106801

P. Poncharal, S. Frank, Z. L. Wang, and W. A. De-heer, Conductance quantization in multiwalled carbon nanotubes, The European Physical Journal D, vol.9, issue.1, pp.77-79, 1999.
DOI : 10.1007/s100530050402

Z. Yao, C. L. Kane, and C. , High-Field Electrical Transport in Single-Wall Carbon Nanotubes, Physical Review Letters, vol.84, issue.13, pp.2941-2944, 2000.
DOI : 10.1103/PhysRevLett.84.2941

E. Pop, D. Mann, J. Cao, Q. Wang, K. Goodson et al., Negative Differential Conductance and Hot Phonons in Suspended Nanotube Molecular Wires, Physical Review Letters, vol.95, issue.15, p.155505, 2005.
DOI : 10.1103/PhysRevLett.95.155505

S. Berber, Y. Kwon, and D. Tomanek, Unusually High Thermal Conductivity of Carbon Nanotubes, Physical Review Letters, vol.84, issue.20, pp.4613-4616, 2000.
DOI : 10.1103/PhysRevLett.84.4613

J. Che, T. Çagin, W. A. Goddard, and I. , Thermal conductivity of carbon nanotubes, Nanotechnology, vol.11, issue.2, pp.65-69, 2000.
DOI : 10.1088/0957-4484/11/2/305

M. A. Osman and D. Srivastava, Temperature dependence of the thermal conductivity of single-wall carbon nanotubes, Nanotechnology, vol.12, issue.1, pp.21-24, 2001.
DOI : 10.1088/0957-4484/12/1/305

P. Kim, L. Shi, A. Majumdar, and P. L. , Thermal Transport Measurements of Individual Multiwalled Nanotubes, Physical Review Letters, vol.87, issue.21, p.215502, 2001.
DOI : 10.1103/PhysRevLett.87.215502

M. Fujii, X. Zhang, H. Xie, H. Ago, K. Takahashi et al., Measuring the Thermal Conductivity of a Single Carbon Nanotube, Physical Review Letters, vol.95, issue.6, p.65502, 2005.
DOI : 10.1103/PhysRevLett.95.065502

J. Hone, M. C. Llaguno, N. M. Nemes, A. T. Johnson, J. E. Fischer et al., Electrical and thermal transport properties of magnetically aligned single wall carbon nanotube films, Applied Physics Letters, vol.77, issue.5, pp.666-668, 2000.
DOI : 10.1063/1.127079

W. Yi, L. Lu, Z. Dian-lin, Z. W. Pan, and S. S. Xie, Linear specific heat of carbon nanotubes, Physical Review B, vol.59, issue.14, pp.9015-9018, 1999.
DOI : 10.1103/PhysRevB.59.R9015

D. J. Yang, Q. Zhang, G. Chen, S. F. Yoon, J. Ahn et al., Thermal conductivity of multiwalled carbon nanotubes, Thermal conductivity of multiwalled carbon nanotubes, p.165440, 2002.
DOI : 10.1103/PhysRevB.66.165440

J. Hone, M. Whitney, and C. Piskoti, Thermal conductivity of single-walled carbon nanotubes, Physical Review B, vol.59, issue.4, pp.2514-2516, 1999.
DOI : 10.1103/PhysRevB.59.R2514

H. Zhong and J. R. Lukes, Interfacial thermal resistance between carbon nanotubes: Molecular dynamics simulations and analytical thermal modeling, Physical Review B, vol.74, issue.12, p.125403, 2006.
DOI : 10.1103/PhysRevB.74.125403

O. L. Blakslee, D. G. Proctor, E. J. Seldin, G. B. Spence, and T. Weng, Elastic Constants of Compression???Annealed Pyrolytic Graphite, Journal of Applied Physics, vol.41, issue.8, pp.3373-3382, 1970.
DOI : 10.1063/1.1659428

J. P. Lu, Elastic Properties of Carbon Nanotubes and Nanoropes, Physical Review Letters, vol.79, issue.7, pp.1297-1300, 1997.
DOI : 10.1103/PhysRevLett.79.1297

T. Ozaki, Y. Iwasa, and T. Mitani, Stiffness of Single-Walled Carbon Nanotubes under Large Strain, Physical Review Letters, vol.84, issue.8, pp.1712-1715, 2000.
DOI : 10.1103/PhysRevLett.84.1712

Y. Nan and L. Vincenzo, Young's modulus of single-walled carbon nanotubes, Journal of Applied Physics, vol.84, pp.1939-1943, 1998.

A. Sears and R. C. Batra, Macroscopic properties of carbon nanotubes from molecular-mechanics simulations, Physical Review B, vol.69, issue.23, p.235406, 2004.
DOI : 10.1103/PhysRevB.69.235406

M. M. Treacy, T. W. Ebbesen, and J. M. Gibson, Exceptionally high Young's modulus observed for individual carbon nanotubes, Nature, vol.381, issue.6584, pp.678-680, 1996.
DOI : 10.1038/381678a0

A. Krishnan, E. Dujardin, T. W. Ebbesen, P. N. Yianilos, and M. M. , Young???s modulus of single-walled nanotubes, Physical Review B, vol.58, issue.20, pp.14013-14019, 1998.
DOI : 10.1103/PhysRevB.58.14013

J. Salvetat, G. A. Briggs, J. Bonard, R. R. Bacsa, A. J. Kulik et al., Elastic and Shear Moduli of Single-Walled Carbon Nanotube Ropes, Physical Review Letters, vol.82, issue.5, pp.944-947, 1999.
DOI : 10.1103/PhysRevLett.82.944

J. Salvetat, A. J. Kulik, J. Bonard, G. A. Briggs, T. Stöckli et al., Elastic Modulus of Ordered and Disordered Multiwalled Carbon Nanotubes, Advanced Materials, vol.11, issue.2, pp.161-165, 1999.
DOI : 10.1002/(SICI)1521-4095(199902)11:2<161::AID-ADMA161>3.0.CO;2-J

B. Lukí-c, J. W. Seo, R. R. Bacsa, S. Delpeux, F. Béguin et al., Catalytically Grown Carbon Nanotubes of Small Diameter Have a High Young's Modulus, Nano Letters, vol.5, issue.10, pp.2074-2077, 2005.
DOI : 10.1021/nl051034d

D. A. Walters, L. M. Ericson, M. J. Casavant, J. Liu, D. T. Colbert et al., Elastic strain of freely suspended single-wall carbon nanotube ropes, Applied Physics Letters, vol.74, issue.25, pp.3803-3805, 1999.
DOI : 10.1063/1.124185

T. W. Ebbesen and P. M. , Large-scale synthesis of carbon nanotubes, Nature, vol.358, issue.6383, pp.220-222, 1992.
DOI : 10.1038/358220a0

T. Guo, P. Nikolaev, A. Thess, D. T. Colbert, and R. E. Smalley, Catalytic growth of single-walled manotubes by laser vaporization, Chemical Physics Letters, vol.243, issue.1-2, pp.49-54, 1995.
DOI : 10.1016/0009-2614(95)00825-O

. Yiming, D. Li, M. Mann, W. Rolandi, A. Kim et al., Preferential growth of semiconducting single-walled carbon nanotubes by a plasma enhanced cvd method, Nano Letters, vol.4, pp.317-321, 2004.

P. C. Eklund, B. K. Pradhan, U. J. Kim, Q. Xiong, J. E. Fischer et al., Large-Scale Production of Single-Walled Carbon Nanotubes Using Ultrafast Pulses from a Free Electron Laser, Nano Letters, vol.2, issue.6, pp.561-566, 2002.
DOI : 10.1021/nl025515y

R. T. Baker, G. R. Gadbsy, and S. Terry, Formation of carbon filaments from catalysed decompasition of hydrocarbons, Carbon, vol.13, issue.3, pp.245-246, 1975.
DOI : 10.1016/0008-6223(75)90242-0

M. José-yacamán, M. Miki-yoshida, L. Rendón, and J. G. Santiesteban, Catalytic growth of carbon microtubules with fullerene structure, Applied Physics Letters, vol.62, issue.6, pp.657-659, 1993.
DOI : 10.1063/1.108857

C. P. Deck and K. Vecchio, Prediction of carbon nanotube growth success by the analysis of carbon???catalyst binary phase diagrams, Carbon, vol.44, issue.2, pp.267-275, 2006.
DOI : 10.1016/j.carbon.2005.07.023

N. Inami, M. A. Mohamed, E. Shikoh, and A. Fujiwara, Synthesis-condition dependence of carbon nanotube growth by alcohol catalytic chemical vapor deposition method, Science and Technology of Advanced Materials, vol.8, issue.4, p.292, 2007.
DOI : 10.1016/j.cplett.2006.07.039

E. Flahaut, C. Laurent, and A. Peigney, Catalytic CVD synthesis of double and triple-walled carbon nanotubes by the control of the catalyst preparation, Carbon, vol.43, issue.2, pp.375-383, 2005.
DOI : 10.1016/j.carbon.2004.09.021

URL : https://hal.archives-ouvertes.fr/hal-00474904

C. Zhou, J. Kong, E. Yenilmez, and H. Dai, Modulated Chemical Doping of Individual Carbon Nanotubes, Science, vol.290, issue.5496, pp.1552-1555, 2000.
DOI : 10.1126/science.290.5496.1552

R. Seidel, A. P. Graham, E. Unger, G. S. Duesberg, M. Liebau et al., High-Current Nanotube Transistors, Nano Letters, vol.4, issue.5, pp.831-834, 2004.
DOI : 10.1021/nl049776e

A. Bachtold, P. Hadley, T. Nakanishi, and C. , Logic circuits based on carbon nanotubes, Physica E: Low-dimensional Systems and Nanostructures, vol.16, issue.1, pp.42-46, 2003.
DOI : 10.1016/S1386-9477(02)00580-5

Z. Chen, J. Appenzeller, Y. Lin, J. Sippel-oakley, A. G. Rinzler et al., An Integrated Logic Circuit Assembled on a Single Carbon Nanotube, Science, vol.311, issue.5768, p.1735, 2006.
DOI : 10.1126/science.1122797

. Milne, Achieving high-current carbon nanotube emitters, Nano Letters, vol.5, pp.2135-2138, 2005.

M. Terrones, Science and Technology of the Twenty-First Century: Synthesis, Properties, and Applications of Carbon Nanotubes, Annual Review of Materials Research, vol.33, issue.1, pp.419-501, 2003.
DOI : 10.1146/annurev.matsci.33.012802.100255

A. C. Dillon, K. M. Jones, T. A. Bekkedahl, C. H. Kiang, D. S. Bethune et al., Storage of hydrogen in single-walled carbon nanotubes, Nature, vol.386, issue.6623, pp.377-379, 1997.
DOI : 10.1038/386377a0

U. S. Doe-hydrogen-program and . Review, Hydrogen storage in carbon single-wall nanotube, 2002.

P. Bibliographie and . Bernier, Hydrogen storage in sonicated carbon materials, Applied Physics A, vol.72, pp.129-132, 2001.

A. Chambers, C. Park, R. T. Baker, and N. M. Rodriguez, Hydrogen Storage in Graphite Nanofibers, The Journal of Physical Chemistry B, vol.102, issue.22, p.4256, 1998.
DOI : 10.1021/jp980114l

E. Frackowiak and F. Béguin, Electrochemical storage of energy in carbon nanotubes and nanostructured carbons, Carbon, vol.40, issue.10, pp.1775-1787, 2002.
DOI : 10.1016/S0008-6223(02)00045-3

R. A. Dileo, A. Castiglia, M. J. Ganter, R. E. Rogers, C. D. Cress et al., Enhanced Capacity and Rate Capability of Carbon Nanotube Based Anodes with Titanium Contacts for Lithium Ion Batteries, ACS Nano, vol.4, issue.10, pp.6121-6131, 2010.
DOI : 10.1021/nn1018494

C. L. Cheung, J. H. Hafner, and C. M. Lieber, Carbon nanotube atomic force microscopy tips: Direct growth by chemical vapor deposition and application to high-resolution imaging, Proceedings of the National Academy of Sciences, vol.97, issue.8, pp.3809-3813, 2000.
DOI : 10.1073/pnas.050498597

O. Kuzmych and B. L. Allen, Carbon nanotube sensors for exhaled breath components, Nanotechnology, vol.18, issue.37, p.375502, 2007.
DOI : 10.1088/0957-4484/18/37/375502

K. Besteman, J. O. Lee, F. G. Wiertz, H. A. Heering, and C. Dekker, Enzyme-Coated Carbon Nanotubes as Single-Molecule Biosensors, Nano Letters, vol.3, issue.6, pp.727-730, 2003.
DOI : 10.1021/nl034139u

D. Chunfeng, Z. Xuexi, and M. Yanxia, Dezun : Fabrication of aluminum matrix composite reinforced with carbon nanotubes, Rare Metals, vol.26, pp.450-455, 2007.

T. Laha, A. Agarwal, T. Mckechnie, and S. Seal, Synthesis and characterization of plasma spray formed carbon nanotube reinforced aluminum composite, Materials Science and Engineering: A, vol.381, issue.1-2, pp.249-258, 2004.
DOI : 10.1016/j.msea.2004.04.014

T. Laha, Y. Chen, D. Lahiri, and A. Agarwal, Tensile properties of carbon nanotube reinforced aluminum nanocomposite fabricated by plasma spray forming, Composites Part A: Applied Science and Manufacturing, vol.40, issue.5, pp.589-594, 2009.
DOI : 10.1016/j.compositesa.2009.02.007

S. I. Cha, K. T. Kim, S. N. Arshad, C. B. Mo, and S. H. Hong, Extraordinary Strengthening Effect of Carbon Nanotubes in Metal-Matrix Nanocomposites Processed by Molecular-Level Mixing, Advanced Materials, vol.288, issue.11, pp.1377-1381, 2005.
DOI : 10.1002/adma.200401933

S. R. Bakshi and D. Lahiri, Carbon nanotube reinforced metal matrix composites - a review, International Materials Reviews, vol.129, issue.44, pp.41-64, 2010.
DOI : 10.1016/j.aca.2004.03.075

G. Zhan, J. D. Kuntz, J. Wan, and A. K. Mukherjee, Single-wall carbon nanotubes as attractive toughening agents in alumina-based nanocomposites, Nature Materials, vol.2, issue.1, pp.38-42, 2003.
DOI : 10.1038/nmat793

A. Peigney, F. L. Garcia, C. Estournès, A. Weibel, and C. Laurent, Toughening and hardening in double-walled carbon nanotube/nanostructured magnesia composites, Carbon, vol.48, issue.7, pp.1952-1960, 2010.
DOI : 10.1016/j.carbon.2010.01.063

E. Flahaut, A. Peigney, C. Laurent, C. Marlière, and F. Chastel, Carbon nanotube???metal???oxide nanocomposites: microstructure, electrical conductivity and mechanical properties, Acta Materialia, vol.48, issue.14, pp.3803-3812, 2000.
DOI : 10.1016/S1359-6454(00)00147-6

URL : https://hal.archives-ouvertes.fr/hal-00938352

K. Ahmad, Dramatic effect of multiwalled carbon nanotubes on the electrical properties of alumina based ceramic nanocomposites, Composites Science and Technology, vol.69, issue.7-8, pp.1016-1021, 2009.
DOI : 10.1016/j.compscitech.2009.01.015

S. Rul, F. Lefèvre-schlick, E. Capria, and C. Laurent, Percolation of single-walled carbon nanotubes in ceramic matrix nanocomposites, Acta Materialia, vol.52, issue.4, pp.1061-1067, 2004.
DOI : 10.1016/j.actamat.2003.10.038

URL : https://hal.archives-ouvertes.fr/hal-00917575

M. Cadek, J. N. Coleman, V. Barron, K. Hedicke, and W. J. Blau, Morphological and mechanical properties of carbon-nanotube-reinforced semicrystalline and amorphous polymer composites, Applied Physics Letters, vol.81, issue.27, pp.5123-5125, 2002.
DOI : 10.1063/1.1533118

K. P. Ryan, M. Cadek, V. Nicolosi, S. Walker, M. Ruether et al., Multiwalled carbon nanotube nucleated crystallization and reinforcement in poly (vinyl alcohol) composites. Synthetic Metals, pp.332-335, 2006.

D. Qian, E. C. Dickey, R. Andrews, and T. , Load transfer and deformation mechanisms in carbon nanotube-polystyrene composites, Applied Physics Letters, vol.76, issue.20, pp.2868-2870, 2000.
DOI : 10.1063/1.126500

R. Haggenmueller, W. Zhou, J. E. Fischer, and K. I. Winey, Production and Characterization of Polymer Nanocomposites with Highly Aligned Single-Walled Carbon Nanotubes, Journal of Nanoscience and Nanotechnology, vol.3, issue.1, pp.105-110, 2003.
DOI : 10.1166/jnn.2003.173

R. Haggenmueller, F. Du, J. E. Fischer, and K. I. Winey, Interfacial in situ polymerization of single wall carbon nanotube/nylon 6,6 nanocomposites, Polymer, vol.47, issue.7, pp.2381-2388, 2006.
DOI : 10.1016/j.polymer.2006.01.087

C. A. Martin, J. K. Sandler, M. S. Shaffer, M. Schwarz, W. Bauhofer et al., Formation of percolating networks in multi-wall carbon-nanotube???epoxy composites, Composites Science and Technology, vol.64, issue.15, pp.2309-2316, 2004.
DOI : 10.1016/j.compscitech.2004.01.025

J. K. Sandler, J. E. Kirk, I. A. Kinloch, M. S. Shaffer, and A. H. , Ultra-low electrical percolation threshold in carbon-nanotube-epoxy composites, Polymer, vol.44, issue.19, pp.5893-5899, 2003.
DOI : 10.1016/S0032-3861(03)00539-1

W. Bauhofer and J. Z. Kovacs, A review and analysis of electrical percolation in carbon nanotube polymer composites, Composites Science and Technology, vol.69, issue.10, pp.1486-1498, 2009.
DOI : 10.1016/j.compscitech.2008.06.018

S. Ogawa, K. Mori, H. Natsuhara, T. Ohashi, R. Sakakiyama et al., Optical properties of TiO2 thin films estimated by photothermal deflection spectroscopy, Review of Scientific Instruments, vol.74, issue.1, pp.863-865, 2003.
DOI : 10.1063/1.1517149

B. Bonno, J. L. Laporte, R. Tascon, and D. Leon, Measurement of thermal properties of gases using an open photoacoustic cell as a sensor, Review of Scientific Instruments, vol.76, issue.9, p.96104, 2005.
DOI : 10.1063/1.1994898

S. Delenclos, D. Dadarlat, N. Houriez, S. Longuemart, and C. Kolinsky, On the accurate determination of thermal diffusivity of liquids by using the photopyroelectric thickness scanning method, Review of Scientific Instruments, vol.78, issue.2, p.24902, 2007.
DOI : 10.1063/1.2536357

D. Fournier, C. Boccara, A. Skumanich, and N. M. , Photothermal investigation of transport in semiconductors: Theory and experiment, Journal of Applied Physics, vol.59, issue.3, pp.787-795, 1986.
DOI : 10.1063/1.336599

D. Shaughnessy, Carrier-density-wave transport property depth profilometry using spectroscopic photothermal radiometry of silicon wafers II: Experimental and computational aspects, Journal of Applied Physics, vol.93, issue.9, pp.5244-5250, 2003.
DOI : 10.1063/1.1565491

J. E. De-albuquerque, W. L. Melo, and R. M. , Study of optical absorption differences of doped polyaniline films by photothermal spectroscopies, Applied Physics A, vol.34, issue.1, pp.165-172, 2007.
DOI : 10.1007/s00339-007-4161-z

C. Barbero, R. Kotz, and O. Haas, Differential photothermal deflection spectroscopy (dpds). a technique to study electrochromism of synthetic metals., Synthetic Metals, vol.101, issue.1-3, pp.170-170, 1999.
DOI : 10.1016/S0379-6779(98)00766-8

A. Ocariz, A. Sanchez-lavega, and A. Salazar, Photothermal study of subsurface cylindrical structures. I. Theory, Journal of Applied Physics, vol.81, issue.11, pp.7552-7560, 1997.
DOI : 10.1063/1.365298

A. A. Hemida, S. Abdalla, A. F. Hassan, S. Negm, and H. Talaat, Theoretical treatment for photothermal depth profile of subsurface defects in opaque solids, Review of Scientific Instruments, vol.74, issue.1, pp.474-478, 2003.
DOI : 10.1063/1.1516254

S. Delenclos, A. Hadj-sahraoui, J. Buisine, M. Benmouna, C. Kolinsky et al., Photopyroelectric Measurements of Thermal Parameters over Phase Transitions in Polymer/Liquid Crystals Systems, Molecular Crystals and Liquid Crystals, vol.410, issue.1, pp.163-170, 2004.
DOI : 10.1080/15421400490436269

D. Dadarlat, D. Chicea, N. Houriez, S. Delenclos, S. Longuemart et al., Alternative photopyroelectric detection method of phase transitions in ferroelectric materials, Optoelectronics and Advanced Materials, Rapid Communications, vol.3, pp.323-325, 2009.

A. Mandelis, Photothermal applications to the thermal analysis of solids, Journal of Thermal Analysis, vol.109, issue.C6, pp.1065-1101, 1991.
DOI : 10.1007/BF01932803

A. Rosencwaig and A. Gersho, Theory of the photoacoustic effect with solids, Journal of Applied Physics, vol.47, issue.1, pp.64-69, 1976.
DOI : 10.1063/1.322296

A. Rosencwaig, Photoacoustic spectroscopy of solids, Ultrason Symp Proc Phoenix Ariz, pp.337-343, 1977.

N. F. Leite and L. C. Miranda, Thermal property measurements of liquid samples using photoacoustic detection, Review of Scientific Instruments, vol.63, issue.10, pp.4398-4402, 1992.
DOI : 10.1063/1.1143740

A. Pinto-neto, H. Vargas, N. F. Leite, and L. C. Miranda, Photoacoustic investigation of semiconductors: Influence of carrier diffusion and recombination in PbTe and Si, Physical Review B, vol.40, issue.6, pp.3924-3930, 1989.
DOI : 10.1103/PhysRevB.40.3924

W. Jackson and N. M. Amer, Piezoelectric photoacoustic detection: Theory and experiment, Journal of Applied Physics, vol.51, issue.6, pp.3343-3353, 1980.
DOI : 10.1063/1.328045

J. Zakrzewski, F. Firszt, S. Legowski, H. Meczynska, M. Pawlak et al., Piezoelectric and pyroelectric study of Zn1-x-yBexMnySe mixed crystals, Review of Scientific Instruments, vol.74, issue.1, pp.566-568, 2003.
DOI : 10.1063/1.1515896

A. C. Boccara, D. Fournier, and J. Badoz, Thermo???optical spectroscopy: Detection by the ??????mirage effect??????, Applied Physics Letters, vol.36, issue.2, pp.130-132, 1980.
DOI : 10.1063/1.91395

J. C. Murphy and L. C. , Photothermal spectroscopy using optical beam probing: Mirage effect, Journal of Applied Physics, vol.51, issue.9, pp.4580-4588, 1980.
DOI : 10.1063/1.328350

M. Bertolotti, G. L. Liakhou, R. L. Voti, S. Paoloni, and C. , Analysis of the photothermal deflection technique in the surface reflection scheme: Theory and experiment, Journal of Applied Physics, vol.83, issue.2, pp.966-982, 1998.
DOI : 10.1063/1.366785

C. Grover, J. Wetsel, and S. A. Stotts, Absolute measurement of optical attenuation, Applied Physics Letters, vol.42, pp.931-933, 1983.

F. Saadallah, L. Attia, S. Abroug, and N. Yacoubi, Photothermal investigations of thermal and optical properties of liquids by mirage effect, Sensors and Actuators A: Physical, vol.138, issue.2, pp.335-340, 2007.
DOI : 10.1016/j.sna.2007.05.022

A. Mandelis and M. M. Zver, Theory of photopyroelectric spectroscopy of solids, Journal of Applied Physics, vol.57, issue.9, pp.4421-4430, 1985.
DOI : 10.1063/1.334565

R. Santos and L. C. Miranda, Theory of the photothermal radiometry with solids, Journal of Applied Physics, vol.52, issue.6, pp.4194-4198, 1981.
DOI : 10.1063/1.329234

T. Ikari and A. Salnick, Theoretical and experimental aspects of three-dimensional infrared photothermal radiometry of semiconductors, Journal of Applied Physics, vol.85, issue.10, pp.7392-7397, 1999.
DOI : 10.1063/1.369368

W. C. Rontgen, On tones produced by the intermittent irradiation of a gas, Philosophical Magazine Series 5, vol.11, issue.68, pp.308-1881
DOI : 10.1080/14786448108627021

G. Rousset, F. Charbonnier, and F. Lepoutre, Influence of radiative and convective transfers in a photothermal experiment, Journal of Applied Physics, vol.56, issue.7, pp.2093-2096, 1984.
DOI : 10.1063/1.334206

J. A. Balderas-l-´-opez, Thermal diffusivity measurements in the photoacoustic open-cell configuration using simple signal normalization techniques, Journal of Applied Physics, vol.90, issue.5, pp.2273-2279, 2001.
DOI : 10.1063/1.1391224

J. O. Pessoa, C. L. Cesar, N. A. Patel, H. Vargas, C. C. Ghizoni et al., Two???beam photoacoustic phase measurement of the thermal diffusivity of solids, Journal of Applied Physics, vol.59, issue.4, pp.1316-1318, 1986.
DOI : 10.1063/1.336524

. Michaël and . Depriester, Étude de composites à base de nanotubes de carbone par la radiométrie photothermique infrarouge, Thèse de doctorat, 2007.

A. H. Sahraoui, S. Longuemart, D. Dadarlat, S. Delenclos, C. Kolinsky et al., Analysis of the photopyroelectric signal for investigating thermal parameters of pyroelectric materials, Review of Scientific Instruments, vol.74, issue.1, pp.618-620, 2003.
DOI : 10.1063/1.1512976

F. Du, C. Guthy, T. Kashiwagi, J. E. Fischer, and K. I. , An infiltration method for preparing single-wall nanotube/epoxy composites with improved thermal conductivity, Journal of Polymer Science Part B: Polymer Physics, vol.64, issue.10, pp.1513-1519, 2006.
DOI : 10.1002/polb.20801

M. J. Biercuk, M. C. Llaguno, M. Radosavljevic, J. K. Hyun, A. T. Johnson et al., Carbon nanotube composites for thermal management, Applied Physics Letters, vol.80, issue.15, pp.2767-2769, 2002.
DOI : 10.1063/1.1469696

X. Yunsheng, R. Gunawidjaja, and A. , Beckry : Thermal behavior of single-walled carbon nanotube polymer-matrix composites, Composites Part A, vol.37, pp.114-121, 2006.

C. H. Liu, H. Huang, Y. Wu, and S. S. Fan, Thermal conductivity improvement of silicone elastomer with carbon nanotube loading, Applied Physics Letters, vol.84, issue.21, pp.4248-4250, 2004.
DOI : 10.1063/1.1756680

S. C. Sweetman and . Martindale, The Complete Drug Reference, 2009.

M. Depriester, A. Hadj-sahraoui, P. Hus, and F. Roussel, Transport properties in heterogeneous compacted granular media made of carbon nanotubes and potassium bromide, Applied Physics Letters, vol.94, issue.23, p.231910, 2009.
DOI : 10.1063/1.3154521

S. S. Ballard, K. A. Mccarthy, and W. C. , A Method for Measuring the Thermal Conductivity of Small Samples of Poorly Conducting Materials such as Optical Crystals, Review of Scientific Instruments, vol.21, issue.11, pp.905-907, 1950.
DOI : 10.1063/1.1745460

J. Hone, M. Whitney, and C. Piskoti, Thermal conductivity of single-walled carbon nanotubes, Synthetic Metals, vol.103, issue.1-3, pp.2498-2499, 1999.
DOI : 10.1016/S0379-6779(98)01070-4

W. T. Hong and N. H. Tai, Investigations on the thermal conductivity of composites reinforced with carbon nanotubes, Diamond and Related Materials, vol.17, issue.7-10, pp.1577-1581, 2008.
DOI : 10.1016/j.diamond.2008.03.037

C. W. Nan, G. Liu, Y. Lin, and M. Li, Interface effect on thermal conductivity of carbon nanotube composites, Applied Physics Letters, vol.85, issue.16, pp.3549-3551, 2004.
DOI : 10.1063/1.1808874

Y. Chalopin, S. Volz, and N. , Upper bound to the thermal conductivity of carbon nanotube pellets, Journal of Applied Physics, vol.105, issue.8, p.84301, 2009.
DOI : 10.1063/1.3088924

Q. Huang, L. Gab, Y. Liu, and J. Sun, Sintering and thermal properties of multiwalled carbon nanotube???BaTiO3 composites, Journal of Materials Chemistry, vol.77, issue.20, pp.1995-2001, 2005.
DOI : 10.1039/b503444b

A. Mukhopadhyay, G. Otieno, B. T. Chu, A. Wallwork, M. L. Green et al., Thermal and electrical properties of aluminoborosilicate glass???ceramics containing multiwalled carbon nanotubes, Scripta Materialia, vol.65, issue.5, 2011.
DOI : 10.1016/j.scriptamat.2011.05.023

S. Mo, P. Hu, J. Cao, Z. Chen, H. Fan et al., Effective Thermal Conductivity of Moist Porous Sintered Nickel Material, International Journal of Thermophysics, vol.19, issue.1, pp.304-313, 2006.
DOI : 10.1007/s10765-006-0030-9

A. Aurangzeb, Modeling of the Effective Thermal Conductivity of Consolidated Porous Media with Different Saturants: A Test Case of Gabbro Rocks, International Journal of Thermophysics, vol.76, issue.4, pp.1371-1386, 2007.
DOI : 10.1007/s10765-007-0203-1

R. Singh and H. S. Kasana, Computational aspects of effective thermal conductivity of highly porous metal foams, Applied Thermal Engineering, vol.24, issue.13, pp.1841-1849, 2004.
DOI : 10.1016/j.applthermaleng.2003.12.011

K. Hata, Super-Growth Method for Carbon Nanotubes Synthesis, Hyomen Kagaku, vol.28, issue.2, pp.104-110, 2007.
DOI : 10.1380/jsssj.28.104

O. Chauvet and J. M. Benoit, Electrical, magneto-transport and localization of charge carriers in nanocomposites based on carbon nanotubes, Carbon, vol.42, issue.5-6, pp.949-952, 2004.
DOI : 10.1016/j.carbon.2003.12.020

L. Gao, X. Zhou, and Y. , Effective thermal and electrical conductivity of carbon nanotube composites, Chemical Physics Letters, vol.434, issue.4-6, pp.297-300, 2007.
DOI : 10.1016/j.cplett.2006.12.036

S. Wen and D. D. Chung, Double percolation in the electrical conduction in carbon fiber reinforced cement-based materials, Carbon, vol.45, issue.2, pp.263-267, 2007.
DOI : 10.1016/j.carbon.2006.09.031

S. H. Munson-mcgee, Estimation of the critical concentration in an anisotropic percolation network, Physical Review B, vol.43, issue.4, pp.3331-3336, 1991.
DOI : 10.1103/PhysRevB.43.3331

A. Moisala, Q. Li, I. A. Kinloch, and A. H. , Thermal and electrical conductivity of single- and multi-walled carbon nanotube-epoxy composites, Composites Science and Technology, vol.66, issue.10, pp.1285-1288, 2006.
DOI : 10.1016/j.compscitech.2005.10.016

M. Bozlar, D. He, J. Bai, Y. Chalopin, N. Mingo et al., Carbon Nanotube Microarchitectures for Enhanced Thermal Conduction at Ultralow Mass Fraction in Polymer Composites, Advanced Materials, vol.41, issue.14, pp.1654-1658, 2010.
DOI : 10.1002/adma.200901955

G. R. Lima, M. S. Sthel, M. G. Da-silva, D. U. Schramm, M. P. De-castro et al., Photoacoustic spectroscopy of CO 2 laser in the detection of gaseous molecules, Journal of Physics : Conference Series, 2011.

D. Fournier, A. C. Boccara, N. M. Amer, and R. Gerlach, trace???gas detection by photothermal deflection spectroscopy, Applied Physics Letters, vol.37, issue.6, pp.519-521, 1980.
DOI : 10.1063/1.91970

B. L. Zimering and A. C. Boccara, Applications of a compact photothermal-deflection-based setup for trace-gas detection in real-time in situ environmental monitoring and chemical analysis, Applied Optics, vol.36, issue.15, pp.3188-3194, 1997.
DOI : 10.1364/AO.36.003188

C. Christofides, Operating characteristics and comparison of photopyroelectric and piezoelectric sensors for trace hydrogen gas detection. I. Development of a new photopyroelectric sensor, Journal of Applied Physics, vol.66, issue.9, pp.3975-3985, 1989.
DOI : 10.1063/1.344035

C. Christofides, A. Mandelis, J. Rawski, and S. Rehm, Photopyroelectric detection of hydrogen/oxygen mixtures, Review of Scientific Instruments, vol.64, issue.12, pp.3563-3571, 1993.
DOI : 10.1063/1.1144283

URL : https://hal.archives-ouvertes.fr/jpa-00253174

M. Munidasa, Purely thermal wave based nonchemical photopyroelectric gas sensor: Application to hydrogen, Review of Scientific Instruments, vol.65, issue.6, pp.1978-1982, 1994.
DOI : 10.1063/1.1144799

URL : https://hal.archives-ouvertes.fr/jpa-00253175

M. Munidasa, A. Mandelis, A. Katz, D. V. Do, and V. K. Luong, Characterization of a purely thermal wave based photopyroelectric gas sensor for hydrogen detection, Review of Scientific Instruments, vol.65, issue.6, pp.1983-1987, 1994.
DOI : 10.1063/1.1144800

J. K. Abraham, B. Philip, A. Witchurch, V. K. Varadan, and C. C. Reddy, A compact wireless gas sensor using a carbon nanotube/PMMA thin film chemiresistor, Smart Materials and Structures, vol.13, issue.5, p.1045, 2004.
DOI : 10.1088/0964-1726/13/5/010

N. V. Hieu, N. Q. Dung, P. D. Tam, T. T. Et, and N. D. Chien, Thin film polypyrrole/SWCNTs nanocomposites-based NH3 sensor operated at room temperature, Sensors and Actuators B: Chemical, vol.140, issue.2, pp.500-507, 2009.
DOI : 10.1016/j.snb.2009.04.061

Q. Chang, K. Zhao, X. Chen, M. Li, and J. Liu, Preparation of gold/polyaniline/multiwall carbon nanotube nanocomposites and application in ammonia gas detection, Journal of Materials Science, vol.37, issue.17, pp.5861-5866, 2008.
DOI : 10.1007/s10853-008-2827-3

G. Rousset, F. Lepoutre, and L. Bertrand, Influence of thermoelastic bending on photoacoustic experiments related to measurements of thermal diffusivity of metals, Journal of Applied Physics, vol.54, issue.5, pp.2383-2391, 1983.
DOI : 10.1063/1.332352

P. G. Collins, K. Bradley, M. Ishigami, and A. Zettl, Extreme Oxygen Sensitivity of Electronic Properties of Carbon Nanotubes, Science, vol.287, issue.5459, pp.1801-1804, 2000.
DOI : 10.1126/science.287.5459.1801

J. Kong, N. R. Franklin, C. Zhou, M. G. Chapline, S. Peng et al., Nanotube Molecular Wires as Chemical Sensors, Science, vol.287, issue.5453, pp.622-625, 2000.
DOI : 10.1126/science.287.5453.622

G. Korotcenkov, Metal oxides for solid-state gas sensors: What determines our choice?, Materials Science and Engineering: B, vol.139, issue.1, pp.1-23, 2007.
DOI : 10.1016/j.mseb.2007.01.044

H. Bai and G. Shi, Gas Sensors Based on Conducting Polymers, Sensors, vol.7, issue.3, pp.267-307, 2007.
DOI : 10.3390/s7030267

J. A. Robinson, E. S. Snow, and F. K. , Improved chemical detection using single-walled carbon nanotube network capacitors, Sensors and Actuators A: Physical, vol.135, issue.2, pp.309-314, 2007.
DOI : 10.1016/j.sna.2006.07.027

E. S. Snow and F. K. Perkins, Capacitance and Conductance of Single-Walled Carbon Nanotubes in the Presence of Chemical Vapors, Nano Letters, vol.5, issue.12, pp.2414-2417, 2005.
DOI : 10.1021/nl051669c

M. H. Ervin, A. M. Dorsey, and N. M. , Salaets : Hysteresis contributions to the apparent gate pulse refreshing of carbon nanotube based sensors, Nanotechnology, vol.20, 2009.

Y. W. Chang, J. S. Oh, S. H. Yoo, H. H. Choi, and K. H. Yoo, Electrically refreshable carbon-nanotube-based gas sensors, Nanotechnology, vol.18, issue.43, 2007.
DOI : 10.1088/0957-4484/18/43/435504

L. Valentini, F. Mercuri, I. Armentano, C. Cantalini, S. Picozzi et al., Role of defects on the gas sensing properties of carbon nanotubes thin films: experiment and theory, Chemical Physics Letters, vol.387, issue.4-6, pp.356-361, 2004.
DOI : 10.1016/j.cplett.2004.02.038

A. Goldoni, L. Petaccia, S. Lizzit, and R. Larciprete, Sensing gases with carbon nanotubes: a review of the actual situation, Journal of Physics: Condensed Matter, vol.22, issue.1, p.13001, 2010.
DOI : 10.1088/0953-8984/22/1/013001

A. Goldoni, L. Petaccia, L. Gregoratti, B. Kaulich, A. Barinov et al., Spectroscopic characterization of contaminants and interaction with gases in single-walled carbon nanotubes, Carbon, vol.42, issue.10, pp.2099-2112, 2004.
DOI : 10.1016/j.carbon.2004.04.011

Y. Sun and H. H. Wang, Electrodeposition of Pd nanoparticles on single-walled carbon nanotubes for flexible hydrogen sensors, Applied Physics Letters, vol.90, issue.21, p.213107, 2007.
DOI : 10.1063/1.2742596

R. Larciprete, S. Lizzit, L. Petaccia, and A. Goldoni, NO2 decomposition on Rh clusters supported on single-walled carbon nanotubes, Applied Physics Letters, vol.88, issue.24, p.243111, 2006.
DOI : 10.1063/1.2211190

H. Chang, J. D. Lee, S. M. Lee, and Y. H. Lee, Adsorption of NH3 and NO2 molecules on carbon nanotubes, Applied Physics Letters, vol.79, issue.23, pp.3863-3865, 2001.
DOI : 10.1063/1.1424069

F. Villalpando-paez, A. H. Romero, E. Munoz-sandoval, L. M. Martinez, and H. Terrones, Fabrication of vapor and gas sensors using films of aligned CNx nanotubes, Chemical Physics Letters, vol.386, issue.1-3, pp.137-143, 2004.
DOI : 10.1016/j.cplett.2004.01.052

L. Mahdavian and M. Monajjemi, Alcohol sensors based on SWNT as chemical sensors: Monte Carlo and Langevin dynamics simulation, Microelectronics Journal, vol.41, issue.2-3, pp.142-149, 2010.
DOI : 10.1016/j.mejo.2010.01.011

C. K. Liu, M. W. Huang, J. M. Wu, and H. C. Shih, Effect of plasma modification of single wall carbon nanotubes on ethanol vapor sensing, Diamond and Related Materials, vol.19, issue.7-9, pp.981-987, 2010.
DOI : 10.1016/j.diamond.2010.03.003

A. Zahab, L. Spina, P. Poncharal, and C. , Water-vapor effect on the electrical conductivity of a single-walled carbon nanotube mat, Physical Review B, vol.62, issue.15, pp.10000-10003, 2000.
DOI : 10.1103/PhysRevB.62.10000

C. K. Liu, J. M. Wu, and H. C. Shih, Application of plasma modified multi-wall carbon nanotubes to ethanol vapor detection, Sensors and Actuators B: Chemical, vol.150, issue.2, pp.641-648, 2010.
DOI : 10.1016/j.snb.2010.08.026

S. M. Cho, Y. J. Kim, Y. S. Kim, Y. Yang, and S. C. Ha, The application of carbon nanotube - polymer composite as gas sensing materials, Proceedings of IEEE Sensors, 2004., pp.701-704, 2004.
DOI : 10.1109/ICSENS.2004.1426263

E. L. Corral, H. Wang, J. Garay, Z. Munir, and E. V. Barrera, Effect of singlewalled carbon nanotubes on thermal and electrical properties of silicon nitride 31, pp.391-400, 2011.

T. Ueda, S. Katsuki, K. Takahashi, H. A. Narges, T. Ikegami et al., Fabrication and characterization of carbon nanotube based high sensitive gas sensors operable at room temperature, Diamond and Related Materials, vol.17, issue.7-10, pp.1586-1589, 2008.
DOI : 10.1016/j.diamond.2008.03.009

I. Langmuir, THE ADSORPTION OF GASES ON PLANE SURFACES OF GLASS, MICA AND PLATINUM., Journal of the American Chemical Society, vol.40, issue.9, pp.1361-1403, 1918.
DOI : 10.1021/ja02242a004