. Santato, J. Ulmann, and . Augustynski, Enhanced Visible Light Conversion Efficiency Using Nanocrystalline WO3 Films, Advanced Materials, vol.13, issue.7, pp.511-514, 2001.
DOI : 10.1002/1521-4095(200104)13:7<511::AID-ADMA511>3.0.CO;2-W

J. Yu and . Chen, Enhancing Solar Cell Efficiencies through 1-D Nanostructures, Nanoscale Research Letters, vol.91, issue.1, pp.1-10, 2009.
DOI : 10.1007/s11671-008-9200-y

URL : http://doi.org/10.1007/s11671-008-9200-y

M. Paulose, G. Mor, O. Varghese, C. Shankar, J. Panayotov et al., Journal of Photochemistry and Photobiology A: Chemistry, Chemical Physics Letters Surface Science Reports, vol.178, issue.154, pp.8-15, 2003.

C. Hanaor and . Sorrell, Review of the anatase to rutile phase transformation, Journal of Materials Science, vol.5, issue.335, pp.855-874, 2011.
DOI : 10.1007/s10853-010-5113-0

C. Xiaoyan and . Yi, Phase Transformation of Nanocrystalline Anatase Powders Induced by Mechanical Activation, Journal of the American Ceramic Society, vol.41, issue.3, pp.1164-1166, 2004.
DOI : 10.1111/j.1551-2916.2004.01164.x

D. Hurum, K. Gray, M. Rajh, and . Thurnauer, :?? Surface versus Lattice Mechanisms, The Journal of Physical Chemistry B, vol.109, issue.2, p.977, 2005.
DOI : 10.1021/jp045395d

I. N-martyanov and K. , Comparative study of TiO2 particles in powder form and as a thin nanostructured film on quartz, Journal of Catalysis, vol.225, issue.2, pp.408-416, 2004.
DOI : 10.1016/j.jcat.2004.04.019

Y. Li, . Ma, . Wang, and . Li, Preparation of cerium-doped titania macroporous films by a sol???gel spin coating using polypropylene glycol (PPG) as pore-creating agent: Effects of Ce ions, PPG and calcination on photocatalytic activity, Surface and Coatings Technology, vol.204, issue.9-10, pp.1353-1358, 2010.
DOI : 10.1016/j.surfcoat.2009.09.027

I. Alhomoudi and G. Newaz, Residual stresses and Raman shift relation in anatase TiO2 thin film, Thin Solid Films, vol.517, issue.15, pp.4372-4378, 2009.
DOI : 10.1016/j.tsf.2009.02.141

O. Carp, C. Huisman, and . Reller, Photoinduced reactivity of titanium dioxide, Progress in Solid State Chemistry, vol.32, issue.1-2, pp.33-177, 2004.
DOI : 10.1016/j.progsolidstchem.2004.08.001

S. Bangkedphol, . Keenan, . Davidson, . Sakultantimetha, . Sirisaksoontorn et al., Enhancement of tributyltin degradation under natural light by N-doped TiO2 photocatalyst, Journal of Hazardous Materials, vol.184, issue.1-3, pp.533-537, 2010.
DOI : 10.1016/j.jhazmat.2010.08.068

M. Kitano, . Matsuoka, M. Ueshima, and . Anpo, Recent developments in titanium oxide-based photocatalysts, Applied Catalysis A: General, vol.325, issue.1, pp.1-14, 2007.
DOI : 10.1016/j.apcata.2007.03.013

P. Zeman and S. Takabayashi, Effect of total and oxygen partial pressures on structure of photocatalytic TiO2 films sputtered on unheated substrate, Surface and Coatings Technology, vol.153, issue.1, pp.93-99, 2002.
DOI : 10.1016/S0257-8972(01)01553-5

S. Lee, . Yamasue, H. Ishihara, and . Okumura, Photocatalysis and surface doping states of N-doped TiOx films prepared by reactive sputtering with dry air, Applied Catalysis B: Environmental, vol.93, issue.3-4, pp.217-226, 2010.
DOI : 10.1016/j.apcatb.2009.09.032

P. Song, Y. Irie, and . Shigesato, Crystallinity and photocatalytic activity of TiO2 films deposited by reactive sputtering with radio frequency substrate bias, Thin Solid Films, vol.496, issue.1, pp.121-125, 2006.
DOI : 10.1016/j.tsf.2005.08.249

M. Jung, K. Nam, L. Shaginyan, and J. Han, Deposition of Ti thin film using the magnetron sputtering method, Thin Solid Films, vol.435, issue.1-2, pp.145-149, 2003.
DOI : 10.1016/S0040-6090(03)00344-4

L. Chen, M. Graham, K. Li, and . Gray, Fabricating highly active mixed phase TiO2 photocatalysts by reactive DC magnetron sputter deposition, Thin Solid Films, vol.515, issue.3, pp.1176-1181, 2006.
DOI : 10.1016/j.tsf.2006.07.094

V. Sakkas, C. Islam, and . Stalikas, Photocatalytic degradation using design of experiments: A review and example of the Congo red degradation, Journal of Hazardous Materials, vol.175, issue.1-3, pp.33-44, 2010.
DOI : 10.1016/j.jhazmat.2009.10.050

P. Mccurdy, . Sturgess, E. Kohli, and . Fisher, Investigation of the PECVD TiO2???Si(100) interface, Applied Surface Science, vol.233, issue.1-4, pp.69-79, 2004.
DOI : 10.1016/j.apsusc.2004.03.009

U. Helmersson, . Lattemann, A. Bohlmark, J. Ehiasarian, and . Gudmundsson, Ionized physical vapor deposition (IPVD): A review of technology and applications, Thin Solid Films, vol.513, issue.1-2, pp.1-24, 2006.
DOI : 10.1016/j.tsf.2006.03.033

P. Zeman and S. Takabayashi, Nano-scaled photocatalytic TiO2 thin films prepared by magnetron sputtering, Thin Solid Films, vol.433, issue.1-2, pp.57-62, 2003.
DOI : 10.1016/S0040-6090(03)00311-0

D. Depla and S. Mahieu, Reactive Sputter Deposition, 2008.
DOI : 10.1007/978-3-540-76664-3

R. Dholam, . Patel, . Santini, and . Miotello, Efficient indium tin oxide/Cr-doped-TiO2 multilayer thin films for H2 production by photocatalytic water-splitting, International Journal of Hydrogen Energy, vol.35, issue.18, pp.9581-9590, 2010.
DOI : 10.1016/j.ijhydene.2010.06.097

L. Zhu, . Xie, . Cui, . Shen, Z. Yang et al., Photoelectrochemical and optical properties of N-doped TiO2 thin films prepared by oxidation of sputtered TiNx films, Vacuum, vol.84, issue.6, pp.797-802, 2010.
DOI : 10.1016/j.vacuum.2009.10.040

C. Lee, L. Lin, K. Tsai, K. Vittal, and . Ho, Enhanced performance of dye-sensitized solar cell with thermally-treated TiN in its TiO2 film prepared at low temperature, Journal of Power Sources, vol.196, issue.3, pp.1632-1638, 2011.
DOI : 10.1016/j.jpowsour.2010.09.022

J. Taranto, P. Frochot, and . Pichat, -Octane as Test Pollutant, Industrial & Engineering Chemistry Research, vol.48, issue.13, pp.6229-6236, 2009.
DOI : 10.1021/ie900014f

URL : https://hal.archives-ouvertes.fr/hal-00471898

J. Suna, . Qiao, . Suna, and . Wang, Photocatalytic degradation of Orange G on nitrogen-doped TiO2 catalysts under visible light and sunlight irradiation, Journal of Hazardous Materials, vol.155, issue.1-2, pp.312-319, 2008.
DOI : 10.1016/j.jhazmat.2007.11.062

H. Koseki, . Shiraishi, . Asahara, . Tsurumoto, . Shindo et al., Photocatalytic bactericidal action of fluorescent light in a titanium dioxide particle mixture: an in vitro study, Biomedical Research, vol.30, issue.3, pp.189-192, 2009.
DOI : 10.2220/biomedres.30.189

J. Yu, . Yu, . Ho, L. Jiang, and . Zhang, Powders, Chemistry of Materials, vol.14, issue.9, pp.3808-3816, 2002.
DOI : 10.1021/cm020027c

URL : https://hal.archives-ouvertes.fr/hal-00981887

T. Thompson and J. Yates, New Photochemical Processes, Chemical Reviews, vol.106, issue.10, pp.4428-4453, 2006.
DOI : 10.1021/cr050172k

H. Yu, . Zheng, . Yin, . Tag, . Fang et al., Preparation of Nitrogen-doped TiO2 Nanoparticle Catalyst and Its Catalytic Activity under Visible Light, Chinese Journal of Chemical Engineering, vol.15, issue.6, pp.802-807, 2007.
DOI : 10.1016/S1004-9541(08)60006-3

O. Akhavan and E. Ghaderi, Self-accumulated Ag nanoparticles on mesoporous TiO2 thin film with high bactericidal activities, Surface and Coatings Technology, vol.204, issue.21-22, pp.3676-3683, 2010.
DOI : 10.1016/j.surfcoat.2010.04.048

C. Karunakaran, . Abiramasundari, G. Gomathisankar, . Manikandan, and . Anandi, Cu-doped TiO2 nanoparticles for photocatalytic disinfection of bacteria under visible light, Journal of Colloid and Interface Science, vol.352, issue.1, pp.68-74, 2010.
DOI : 10.1016/j.jcis.2010.08.012

P. Wu, . Xie, K. Imlay, and . Shang, Visible-light-induced photocatalytic inactivation of bacteria by composite photocatalysts of palladium oxide and nitrogen-doped titanium oxide, Applied Catalysis B: Environmental, vol.88, issue.3-4, pp.576-581, 2009.
DOI : 10.1016/j.apcatb.2008.12.019

F. Spadavecchia, . Cappelletti, . Ardizzone, L. Ceotto, and . Falciola, Nanocrystals by Electrochemical Experiments and First Principles Calculations, The Journal of Physical Chemistry C, vol.115, issue.14, pp.6381-6391, 2011.
DOI : 10.1021/jp2003968

F. Peng, . Liu, . Wang, . Yu, and . Yang, Photocatalyst with Visible Light Active, Chinese Journal of Chemical Physics, vol.23, issue.4, pp.437-441, 2010.
DOI : 10.1088/1674-0068/23/04/437-441

K. Obata, H. Irie, and K. Hashimoto, Enhanced photocatalytic activities of Ta, N co-doped TiO2 thin films under visible light, Chemical Physics, vol.339, issue.1-3, pp.124-132, 2007.
DOI : 10.1016/j.chemphys.2007.07.044

U. G-akpan and B. Hameed, Parameters affecting the photocatalytic degradation of dyes using TiO2-based photocatalysts: A review, Journal of Hazardous Materials, vol.170, issue.2-3, pp.520-529, 2009.
DOI : 10.1016/j.jhazmat.2009.05.039

B. Liu, X. Wen, and . Zhao, The structure and photocatalytic studies of N-doped TiO2 films prepared by radio frequency reactive magnetron sputtering, Solar Energy Materials and Solar Cells, vol.92, issue.1, pp.1-10, 2008.
DOI : 10.1016/j.solmat.2007.07.009

G. Liu, . Li, . Chen, H. Lu, and . Cheng, The role of NH3 atmosphere in preparing nitrogen-doped TiO2 by mechanochemical reaction, Journal of Solid State Chemistry, vol.179, issue.1, pp.331-335, 2006.
DOI : 10.1016/j.jssc.2005.10.030

M. Batzill, E. Morales, and U. Diebold, Surface studies of nitrogen implanted TiO2, Chemical Physics, vol.339, issue.1-3, pp.36-43, 2007.
DOI : 10.1016/j.chemphys.2007.07.037

T. Umebayashi, . Yamaki, K. Itoh, and . Asai, Band gap narrowing of titanium dioxide by sulfur doping, Applied Physics Letters, vol.81, issue.3, pp.454-458, 2002.
DOI : 10.1063/1.1493647

D. Lee, G. Kim, and J. Lee, Oxidation of TiN and Ti(C,N) thin films deposited on titanium substrate, Metals and Materials International, vol.141, issue.75, pp.43-46, 2003.
DOI : 10.1007/BF03027228

T. Thompson and J. Yates, (110) Using a Surface Photoreaction, The Journal of Physical Chemistry B, vol.109, issue.39, p.18230, 2005.
DOI : 10.1021/jp0530451

H. Irie, Y. Watanabe, and K. Hashimoto, Powders, The Journal of Physical Chemistry B, vol.107, issue.23, pp.5483-5486, 2003.
DOI : 10.1021/jp030133h

F. Dong, . Zhao, S. Wu, and . Guo, Band structure and visible light photocatalytic activity of multi-type nitrogen doped TiO2 nanoparticles prepared by thermal decomposition, Journal of Hazardous Materials, vol.162, issue.2-3, pp.763-770, 2009.
DOI : 10.1016/j.jhazmat.2008.05.099

T. Ihara, Y. Miyoshi, . Triyama, S. Marsumato, and . Sugihara, Visible-light-active titanium oxide photocatalyst realized by an oxygen-deficient structure and by nitrogen doping, Applied Catalysis B: Environmental, vol.42, issue.4, pp.403-409, 2003.
DOI : 10.1016/S0926-3373(02)00269-2

C. Di-valentin, . Pacchioni, . Selloni, E. Livraghi, and . Giamello, Powders by EPR Spectroscopy and DFT Calculations, The Journal of Physical Chemistry B, vol.109, issue.23, p.11414, 2005.
DOI : 10.1021/jp051756t

X. Chen and C. Burda, Photoelectron Spectroscopic Investigation of Nitrogen-Doped Titania Nanoparticles, The Journal of Physical Chemistry B, vol.108, issue.40, p.15446, 2004.
DOI : 10.1021/jp0469160

H. Yates, M. Nolan, D. Sheel, and M. Pemble, The role of nitrogen doping on the development of visible light-induced photocatalytic activity in thin TiO2 films grown on glass by chemical vapour deposition, Journal of Photochemistry and Photobiology A: Chemistry, vol.179, issue.1-2, pp.213-223, 2006.
DOI : 10.1016/j.jphotochem.2005.08.018

H. Shen, . Mi, . Xu, P. Shen, and . Wang, Visible-light photocatalysis of nitrogen-doped TiO2 nanoparticulate films prepared by low-energy ion implantation, Applied Surface Science, vol.253, issue.17, pp.7024-7028, 2007.
DOI : 10.1016/j.apsusc.2007.02.023

X. Chen, Y. Lou, A. Samia, C. Burda, and J. Gole, Formation of Oxynitride as the Photocatalytic Enhancing Site in Nitrogen-Doped Titania Nanocatalysts: Comparison to a Commercial Nanopowder, Advanced Functional Materials, vol.496, issue.234, p.41, 2005.
DOI : 10.1002/adfm.200400184

C. Di-valentin, . Finazzi, . Pacchioni, . Selloni, M. Livraghi et al., N-doped TiO2: Theory and experiment, Chemical Physics, vol.339, issue.1-3, pp.44-56, 2007.
DOI : 10.1016/j.chemphys.2007.07.020

A. Brudnik, . Bucko, . Radecka, K. Trenczek-zajac, and . Zakrzewska, Microstructure and optical properties of photoactive TiO2:N thin films, Vacuum, vol.82, issue.10, pp.936-941, 2008.
DOI : 10.1016/j.vacuum.2008.01.020

Z. Wu, . Dong, S. Zhao, and . Guo, Visible light induced electron transfer process over nitrogen doped TiO2 nanocrystals prepared by oxidation of titanium nitride, Journal of Hazardous Materials, vol.157, issue.1, pp.57-63, 2008.
DOI : 10.1016/j.jhazmat.2007.12.079

A. Trenczek-zajac, K. Kowalski, K. Zakrzewska, and M. Radecka, Nitrogen-doped titanium dioxide???Characterization of structural and optical properties, Materials Research Bulletin, vol.44, issue.7, pp.1547-1552, 2009.
DOI : 10.1016/j.materresbull.2009.02.007

J. White, M. Szanyi, and . Henderson, (110) and Adsorbed Trimethyl Acetate, The Journal of Physical Chemistry B, vol.107, issue.34, p.9029, 2003.
DOI : 10.1021/jp0345046

Y. Gao, K. Masuda, and . Koumoto, Thin Films Deposited in an Aqueous Peroxotitanate Solution, Langmuir, vol.20, issue.8, p.3188, 2004.
DOI : 10.1021/la0303207

T. Zubkov, . Stahl, . Thompson, . Panayotov, J. Diwald et al., (110)(1??1). Dominant Role of the Photooxidation of Adsorbed Hydrocarbons Causing Wetting by Water Droplets, The Journal of Physical Chemistry B, vol.109, issue.32, p.15454, 2005.
DOI : 10.1021/jp058101c

J. Wang, G. Ma, and . Zhang, Preparation of novel nanometer TiO2 catalyst doped with upconversion luminescence agent and investigation on degradation of acid red B dye using visible light, Catalysis Communications, vol.8, issue.3, pp.607-611, 2007.
DOI : 10.1016/j.catcom.2006.08.022

S. Karvinen, T. Hirva, and . Pakkanen, Ab initio quantum chemical studies of cluster models for doped anatase and rutile TiO2, Journal of Molecular Structure: THEOCHEM, vol.626, issue.1-3, p.271, 2003.
DOI : 10.1016/S0166-1280(03)00108-8

T. Kaspar, . Droubay, S. Shutthanandan, C. Heald, . Wang et al., thin films, Physical Review B, vol.73, issue.15, pp.155327-155328, 2006.
DOI : 10.1103/PhysRevB.73.155327

URL : https://hal.archives-ouvertes.fr/hal-00843879

W. Sproul, D. J. Christie, and D. Carter, Control of reactive sputtering processes, Thin Solid Films, vol.491, issue.1-2, pp.1-17, 2005.
DOI : 10.1016/j.tsf.2005.05.022

X. Li and P. Yue, Synthesis and photocatalytic oxidation properties of iron doped titanium dioxide nanosemiconductor particles, New Journal of Chemistry, vol.27, issue.8, p.1264, 2003.
DOI : 10.1039/b301998e

M. Okutan, H. Basaran, F. Bakan, and . Yakuphanoglu, AC conductivity and dielectric properties of Co-doped TiO2, Physica B: Condensed Matter, vol.364, issue.1-4, pp.300-305, 2005.
DOI : 10.1016/j.physb.2005.04.027

W. Smith, . Wolcott, . Fitzmorris, Y. Zhang, and . Zhao, Quasi-core-shell TiO2/WO3 and WO3/TiO2 nanorod arrays fabricated by glancing angle deposition for solar water splitting, Journal of Materials Chemistry, vol.101, issue.8, pp.10792-10800, 2011.
DOI : 10.1039/c1jm11629k

J. Moon, K. Yun, M. Chung, J. Kang, and . Yi, Photocatalytic activation of TiO2 under visible light using Acid Red 44, Catalysis Today, vol.87, issue.1-4, pp.77-86, 2003.
DOI : 10.1016/j.cattod.2003.10.009

H. Tong, Y. Ouyang, . Bi, . Umezawa, and . Oshikiri, Nano-photocatalytic Materials: Possibilities and Challenges, Advanced Materials, vol.49, issue.5, pp.229-251, 2012.
DOI : 10.1002/adma.201102752

O. Optical-emission-spectroscopy, 54 II-2-1) Experimental conditions for OES measurements, p.54

.. Parametric-study, 60 a) Low pressure and low Argon flow rate 60 b) High pressure and low Argon flow rate 61 c) High pressure and high Argon flow rate, ., p.62

.. Plasma, 65 II-6-1) Langmuir probe measurements 66 II-6-1-a) Effect of reactive gas at fixed RF power and pressure, ., p.66

A. Trenczek-zajac, M. Radecka, K. Zakrzewska, A. Brudnik, E. Kusior et al., Structural and electrical properties of magnetron sputtered Ti(ON) thin films: The case of TiN doped in situ with oxygen, Journal of Power Sources, vol.194, issue.1, pp.93-103, 2009.
DOI : 10.1016/j.jpowsour.2008.12.112

URL : https://hal.archives-ouvertes.fr/hal-00432344

U. Helmersson, M. Lattemann, J. Bohlmark, P. Ehiasarian, and J. Gudmundsson, Ionized physical vapor deposition (IPVD): A review of technology and applications, Thin Solid Films, vol.513, issue.1-2, pp.1-24, 2006.
DOI : 10.1016/j.tsf.2006.03.033

N. Britun, . Gaillard, Y. Schwaederlé, J. Kim, and . Han, Spatial characterization of Ar???Ti plasma in a magnetron sputtering system using emission and absorption spectroscopy, Plasma Sources Science and Technology, vol.15, issue.4, pp.790-796, 2006.
DOI : 10.1088/0963-0252/15/4/024

URL : https://hal.archives-ouvertes.fr/hal-00705268

K. S. Mogensen, S. S. Eskildsen, C. Mathiasen, and J. Bøttiger, Optical emission spectroscopy on pulsed-DC plasmas used for TiN depositions, Surface and Coatings Technology, vol.102, issue.1-2, pp.41-49, 1998.
DOI : 10.1016/S0257-8972(97)00529-X

M. J. Jung, K. H. Nam, L. R. Shaginyan, and J. G. Han, Deposition of Ti thin film using the magnetron sputtering method, Thin Solid Films, vol.435, issue.1-2, pp.145-149, 2003.
DOI : 10.1016/S0040-6090(03)00344-4

W. D. Sproul, D. J. Christie, and D. C. Carter, Control of reactive sputtering processes, Thin Solid Films, vol.491, issue.1-2, pp.1-17, 2005.
DOI : 10.1016/j.tsf.2005.05.022

V. Godyak and . Piejak, Measurement of electron energy distribution in low-pressure RF discharges, Plasma Sources Science and Technology, vol.1, issue.1, pp.36-58, 1992.
DOI : 10.1088/0963-0252/1/1/006

D. Depla and S. Mahieu, Reactive Sputter Deposition, 2008.
DOI : 10.1007/978-3-540-76664-3

Y. Yamamura and H. Tawara, Atomic Data and Nuclear Data Tables, pp.149-253, 1996.

A. Brudnik, M. Bucko, M. Radecka, A. Trenczek-zajac, and K. Zakrzewska, Microstructure and optical properties of photoactive TiO2:N thin films, Vacuum, vol.82, issue.10, pp.936-941, 2008.
DOI : 10.1016/j.vacuum.2008.01.020

S. Schiller, U. Heisig, K. Steinfelder, and J. Strompfelon, On the investigation of d.c. plasmatron discharges by optical emission spectrometry, Thin Solid Films, vol.96, issue.3, pp.235-240, 1982.
DOI : 10.1016/0040-6090(82)90247-4

J. Affinito and R. Parsons, atmospheres, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol.2, issue.3, p.1275, 1984.
DOI : 10.1116/1.572395

E. Shidoji and T. Makabe, Magnetron plasma structure with strong magnetic field, Thin Solid Films, vol.442, issue.1-2, pp.27-31, 2003.
DOI : 10.1016/S0040-6090(03)00933-7

V. Vancoppenolle, P. Jouan, A. Ricard, M. Wautelet, J. Dauchot et al., Oxygen active species in an Ar???O2 magnetron discharge for titanium oxide deposition, Applied Surface Science, vol.205, issue.1-4, pp.249-255, 2003.
DOI : 10.1016/S0169-4332(02)01085-1

A. Brudnik, W. Czapla, and . Posadowski, Studies of medium frequency high power density magnetron sputtering discharges, Vacuum, vol.82, issue.10, pp.1124-1127, 2008.
DOI : 10.1016/j.vacuum.2008.01.029

M. A. Lewis and D. A. Glocker, Measurements of secondary electron emission in reactive sputtering of aluminum and titanium nitride, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol.7, issue.3, p.1019, 1989.
DOI : 10.1116/1.576222

O. Novák and J. Vl?ek, Effect of ion bombarding energies on photocatalytic TiO2 films growing in a pulsed dual magnetron discharge, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol.29, issue.3, pp.31301-031307, 2011.
DOI : 10.1116/1.3563612

G. Este and W. D. Westwood, A quasi???direct???current sputtering technique for the deposition of dielectrics at enhanced rates, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol.6, issue.3, p.1845, 1988.
DOI : 10.1116/1.575266

W. D. Westwood, Sputter Deposition, AVS, 120 Wall Street, 10005, 2003.

F. Perry, A. Billard, and P. Pigeat, Performances of interferometric optical transmission diagnostic for in situ and real-time control of magnetron sputtering deposition process, Measurement, vol.41, issue.5, pp.516-525, 2008.
DOI : 10.1016/j.measurement.2007.06.003

F. Tomasel, . Carter, J. J. Hwalde, . Gonzalez, G. Gmcdonough et al., Fast imaging of transient electron injection in planar magnetron discharges, Plasma Sources Science and Technology, vol.12, issue.2, pp.139-141, 2003.
DOI : 10.1088/0963-0252/12/2/302

H. Irie, Y. Watanabe, and K. Hashimoto, Powders, The Journal of Physical Chemistry B, vol.107, issue.23, pp.5483-5486, 2003.
DOI : 10.1021/jp030133h

B. Liu, X. Wen, and . Zhao, The structure and photocatalytic studies of N-doped TiO2 films prepared by radio frequency reactive magnetron sputtering, Solar Energy Materials and Solar Cells, vol.92, issue.1, pp.1-10, 2008.
DOI : 10.1016/j.solmat.2007.07.009

H. Yu, . Zheng, F. Yin, and . Tao, Preparation of Nitrogen-doped TiO2 Nanoparticle Catalyst and Its Catalytic Activity under Visible Light, Chinese Journal of Chemical Engineering, vol.15, issue.6, pp.802-807, 2007.
DOI : 10.1016/S1004-9541(08)60006-3

X. Zhao, . Sakka, Y. Kihara, . Takada, M. Arita et al., Structure and photo-induced features of TiO2 thin films prepared by RF magnetron sputtering, Microelectronics Journal, vol.36, issue.3-6, pp.549-551, 2005.
DOI : 10.1016/j.mejo.2005.02.094

I. Nakamura, . Negishi, . Kutsuna, . Ihara, K. Sugihara et al., Role of oxygen vacancy in the plasma-treated TiO2 photocatalyst with visible light activity for NO removal, Journal of Molecular Catalysis A: Chemical, vol.161, issue.1-2, pp.205-212, 2000.
DOI : 10.1016/S1381-1169(00)00362-9

A. Fujishima, D. Zhang, and . Tryk, TiO2 photocatalysis and related surface phenomena, Surface Science Reports, vol.63, issue.12, pp.515-582, 2008.
DOI : 10.1016/j.surfrep.2008.10.001

A. Trenczek-zajaca, M. Radeckaa, . Zakrzewskab, E. Brudnikb, and . Kusiorb, Structural and electrical properties of magnetron sputtered Ti(ON) thin films: The case of TiN doped in situ with oxygen, Journal of Power Sources, vol.194, issue.1, pp.93-103, 2009.
DOI : 10.1016/j.jpowsour.2008.12.112

P. Zeman and S. Takabayashi, Nano-scaled photocatalytic TiO2 thin films prepared by magnetron sputtering, Thin Solid Films, vol.433, issue.1-2, pp.57-62, 2003.
DOI : 10.1016/S0040-6090(03)00311-0

M. Kitano, . Matsuoka, M. Ueshima, and . Anpo, Recent developments in titanium oxide-based photocatalysts, Applied Catalysis A: General, vol.325, issue.1, pp.1-14, 2007.
DOI : 10.1016/j.apcata.2007.03.013

Y. El-gendy, films, Journal of Physics D: Applied Physics, vol.42, issue.11, p.115408, 2009.
DOI : 10.1088/0022-3727/42/11/115408

A. Mills and . Wang, Photobleaching of methylene blue sensitised by TiO2: an ambiguous system?, Journal of Photochemistry and Photobiology A: Chemistry, vol.127, issue.1-3, pp.123-134, 1999.
DOI : 10.1016/S1010-6030(99)00143-4

R. Beranek, . Neumann, . Sakthivel, . Janczarek, . Dittrich et al., Exploring the electronic structure of nitrogen-modified TiO2 photocatalysts through photocurrent and surface photovoltage studies, Chemical Physics, vol.339, issue.1-3, pp.11-19, 2007.
DOI : 10.1016/j.chemphys.2007.05.022

C. Di-valentin, . Finazzi, . Pacchioni, . Selloni, M. Livraghi et al., N-doped TiO2: Theory and experiment, Chemical Physics, vol.339, issue.1-3, pp.44-56, 2007.
DOI : 10.1016/j.chemphys.2007.07.020

S. Lee, . Yamasue, H. Ishihara, and . Okumura, Photocatalysis and surface doping states of N-doped TiOx films prepared by reactive sputtering with dry air, Applied Catalysis B: Environmental, vol.93, issue.3-4, pp.217-226, 2010.
DOI : 10.1016/j.apcatb.2009.09.032

O. Diwald, . Thompson, . Zubkov, . Goralski, J. Walck et al., (110) in Visible Light, The Journal of Physical Chemistry B, vol.108, issue.19, pp.6004-6008, 2004.
DOI : 10.1021/jp031267y

O. Diwald, . Thompson, . Goralski, J. Walck, and . Yates, Rutile Single Crystals, The Journal of Physical Chemistry B, vol.108, issue.1, pp.52-57, 2004.
DOI : 10.1021/jp030529t

F. Dong, . Zhao, S. Wu, and . Guo, Band structure and visible light photocatalytic activity of multi-type nitrogen doped TiO2 nanoparticles prepared by thermal decomposition, Journal of Hazardous Materials, vol.162, issue.2-3, pp.763-770, 2009.
DOI : 10.1016/j.jhazmat.2008.05.099

P. Zeman and S. Takabayashi, Effect of total and oxygen partial pressures on structure of photocatalytic TiO2 films sputtered on unheated substrate, Surface and Coatings Technology, vol.153, issue.1, pp.93-99, 2002.
DOI : 10.1016/S0257-8972(01)01553-5

I. Ozen and . Gulgun, Residual Stress Relaxation and Microstructure in ZnO Thin Films, Advances in Science and Technology, vol.45, pp.1316-1321, 2006.
DOI : 10.4028/www.scientific.net/AST.45.1316

I. Alhomoudi and G. Newaz, Residual stresses and Raman shift relation in anatase TiO2 thin film, Thin Solid Films, vol.517, issue.15, pp.4372-4378, 2009.
DOI : 10.1016/j.tsf.2009.02.141

A. Trenczek-zajaca, M. Radeckaa, . Zakrzewskab, E. Brudnikb, and . Kusiorb, Structural and electrical properties of magnetron sputtered Ti(ON) thin films: The case of TiN doped in situ with oxygen, Journal of Power Sources, vol.194, issue.1, pp.93-103, 2009.
DOI : 10.1016/j.jpowsour.2008.12.112

N. Raut, . Mathews, . Rajagopalan, . Subba-rao, . Dash et al., Secondary ion mass spectrometry and X-ray photoelectron spectroscopy studies on TiO2 and nitrogen doped TiO2 thin films, Solid State Communications, vol.151, issue.3, pp.245-249, 2011.
DOI : 10.1016/j.ssc.2010.11.017

H. Yates, M. Nolan, D. Sheel, and M. Pemble, The role of nitrogen doping on the development of visible light-induced photocatalytic activity in thin TiO2 films grown on glass by chemical vapour deposition, Journal of Photochemistry and Photobiology A: Chemistry, vol.179, issue.1-2, pp.213-223, 2006.
DOI : 10.1016/j.jphotochem.2005.08.018

M. Batzill, E. Morales, and U. Diebold, Surface studies of nitrogen implanted TiO2, Chemical Physics, vol.339, issue.1-3, pp.36-43, 2007.
DOI : 10.1016/j.chemphys.2007.07.037

A. Trenczek-zajaca, M. Radeckaa, . Zakrzewskab, E. Brudnikb, and . Kusiorb, Structural and electrical properties of magnetron sputtered Ti(ON) thin films: The case of TiN doped in situ with oxygen, Journal of Power Sources, vol.194, issue.1, pp.93-103, 2009.
DOI : 10.1016/j.jpowsour.2008.12.112

B. Avasarala and P. Haldar, Electrochemical oxidation behavior of titanium nitride based electrocatalysts under PEM fuel cell conditions, Electrochimica Acta, vol.55, issue.28, pp.9024-9034, 2010.
DOI : 10.1016/j.electacta.2010.08.035

M. Wong, H. Chou, and T. Yang, Reactively sputtered N-doped titanium oxide films as visible-light photocatalyst, Thin Solid Films, vol.494, issue.1-2, pp.244-249, 2006.
DOI : 10.1016/j.tsf.2005.08.132

F. Peng, . Liu, . Wang, . Yu, and . Yang, Photocatalyst with Visible Light Active, Chinese Journal of Chemical Physics, vol.23, issue.4, pp.437-441, 2010.
DOI : 10.1088/1674-0068/23/04/437-441

J. Suna, . Qiao, . Suna, and . Wang, Photocatalytic degradation of Orange G on nitrogen-doped TiO2 catalysts under visible light and sunlight irradiation, Journal of Hazardous Materials, vol.155, issue.1-2, pp.312-319, 2008.
DOI : 10.1016/j.jhazmat.2007.11.062

Y. Nakano, . Morikawa, Y. Ohwaki, and . Taga, Origin of visible-light sensitivity in N-doped TiO2 films, Chemical Physics, vol.339, issue.1-3, pp.20-26, 2007.
DOI : 10.1016/j.chemphys.2007.05.031

M. Kitano, . Matsuoka, M. Ueshima, and . Anpo, Recent developments in titanium oxide-based photocatalysts, Applied Catalysis A: General, vol.325, issue.1, pp.1-14, 2007.
DOI : 10.1016/j.apcata.2007.03.013

H. Irie, Y. Watanabe, and K. Hashimoto, Powders, The Journal of Physical Chemistry B, vol.107, issue.23, pp.5483-5486, 2003.
DOI : 10.1021/jp030133h

B. Liu, X. Wen, and . Zhao, The structure and photocatalytic studies of N-doped TiO2 films prepared by radio frequency reactive magnetron sputtering, Solar Energy Materials and Solar Cells, vol.92, issue.1, pp.1-10, 2008.
DOI : 10.1016/j.solmat.2007.07.009

R. Dholam, . Patel, . Santini, and . Miotello, Efficient indium tin oxide/Cr-doped-TiO2 multilayer thin films for H2 production by photocatalytic water-splitting, International Journal of Hydrogen Energy, vol.35, issue.18, pp.9581-9590, 2010.
DOI : 10.1016/j.ijhydene.2010.06.097

H. Yu, . Zheng, F. Yin, and . Tao, Preparation of Nitrogen-doped TiO2 Nanoparticle Catalyst and Its Catalytic Activity under Visible Light, Chinese Journal of Chemical Engineering, vol.15, issue.6, pp.802-807, 2007.
DOI : 10.1016/S1004-9541(08)60006-3

M. Simonsen, E. Li, and . Søgaard, Influence of the OH groups on the photocatalytic activity and photoinduced hydrophilicity of microwave assisted sol???gel TiO2 film, Applied Surface Science, vol.255, issue.18, pp.8054-8062, 2009.
DOI : 10.1016/j.apsusc.2009.05.013

H. Shen, . Mi, . Xu, P. Shen, and . Wang, Visible-light photocatalysis of nitrogen-doped TiO2 nanoparticulate films prepared by low-energy ion implantation, Applied Surface Science, vol.253, issue.17, pp.7024-7028, 2007.
DOI : 10.1016/j.apsusc.2007.02.023

H. Matsui and H. Tabata, Epitaxial growth and characteristics of N-doped anatase TiO2 films grown using a free-radical nitrogen oxide source, Journal of Applied Physics, vol.97, issue.12, pp.123511-123512, 2005.
DOI : 10.1063/1.1929889

A. Fujishima, D. Zhang, and . Tryk, TiO2 photocatalysis and related surface phenomena, Surface Science Reports, vol.63, issue.12, pp.515-582, 2008.
DOI : 10.1016/j.surfrep.2008.10.001

L. Boufendi and . Bouchoule, Particle nucleation and growth in a low-pressure argon-silane discharge, Plasma Sources Science and Technology, vol.3, issue.3, pp.262-267, 1994.
DOI : 10.1088/0963-0252/3/3/004

L. Boufendi and . Bouchoule, Industrial developments of scientific insights in dusty plasmas, Plasma Sources Science and Technology, vol.11, issue.3A, p.211, 2002.
DOI : 10.1088/0963-0252/11/3A/332

M. Cavarroc, Y. Mikikian, L. Tessier, and . Boufendi, Nanostructured Silicon Thin Films Deposited Under Dusty Plasma Conditions, IEEE Transactions on Plasma Science, vol.36, issue.4, pp.1016-1017, 2008.
DOI : 10.1109/TPS.2008.920889

URL : https://hal.archives-ouvertes.fr/hal-00312605

D. Results, 133 V-4-1) Morphology and appearance of TiO2, TiN Bi-layer thin films, p.133

A. Xps, ) Ti 2p and O1s Peaks Observation and Analysis, p.143

Y. He, Y. Zhang, and . Zhao, Optical and photocatalytic properties of oblique angle deposited TiO[sub 2] nanorod array, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol.26, issue.4, pp.1350-1358, 2008.
DOI : 10.1116/1.2949111

M. Yan, . Chen, M. Zhang, and . Anpo, Preparation of Controllable Crystalline Titania and Study on the Photocatalytic Properties, The Journal of Physical Chemistry B, vol.109, issue.18, pp.8673-8678, 2005.
DOI : 10.1021/jp046087i

R. Bickley, T. Gonzalez-carreno, J. Lees, J. Palmisano, and . Tilley, A structural investigation of titanium dioxide photocatalysts, Journal of Solid State Chemistry, vol.92, issue.1, pp.178-190, 1991.
DOI : 10.1016/0022-4596(91)90255-G

A. Datye, . Riegel, . Bolton, M. Huang, and . Prairie, Microstructural Characterization of a Fumed Titanium Dioxide Photocatalyst, Journal of Solid State Chemistry, vol.115, issue.1, pp.236-239, 1995.
DOI : 10.1006/jssc.1995.1126

T. Ohno, . Sarukawa, M. Tokieda, and . Matsumura, Morphology of a TiO2 Photocatalyst (Degussa, P-25) Consisting of Anatase and Rutile Crystalline Phases, Journal of Catalysis, vol.203, issue.1, pp.82-86, 2001.
DOI : 10.1006/jcat.2001.3316

D. Hurum, . Agrios, . Gray, M. Rajh, and . Thunauer, Using EPR, The Journal of Physical Chemistry B, vol.107, issue.19, p.4545, 2003.
DOI : 10.1021/jp0273934

L. Kavan, . Gräzel, . Gilbert, and . Klemenz, Electrochemical and Photoelectrochemical Investigation of Single-Crystal Anatase, Journal of the American Chemical Society, vol.118, issue.28, pp.6716-6723, 1996.
DOI : 10.1021/ja954172l

S. Higashimoto, . Kitahata, M. Mori, and . Azuma, Photo-electrochemical properties of amorphous WO3 supported on TiO2 hybrid catalysts, Catalysis Letters, vol.5, issue.24, pp.49-51, 2004.
DOI : 10.1007/s10562-004-3748-7

W. Smith and . Zhao, Two-Layer Nanorod Arrays, The Journal of Physical Chemistry C, vol.112, issue.49, pp.19635-19641, 2008.
DOI : 10.1021/jp807703d

W. Smith and . Zhao, Superior photocatalytic performance by vertically aligned core???shell TiO2/WO3 nanorod arrays, Catalysis Communications, vol.10, issue.7, pp.1117-1121, 2009.
DOI : 10.1016/j.catcom.2009.01.010

H. Tong, Y. Ouyang, . Bi, . Umezawa, and . Oshikiri, Nano-photocatalytic Materials: Possibilities and Challenges, Advanced Materials, vol.49, issue.5, pp.229-251, 2012.
DOI : 10.1002/adma.201102752

O. Pierson, Handbook of refractory carbides and nitrides: properties, characteristics, processing, and applications, 1996.

R. Andrievski, G. Dashevsky, and . Kalinnikov, Conductivity and the Hall coefficient of nanostructured titanium nitride films, Technical Physics Letters, vol.30, issue.11, pp.930-932, 2004.
DOI : 10.1134/1.1829346

T. Cai, Y. Liao, Y. Peng, . Long, Q. Wei et al., Photocatalytic performance of TiO2 catalysts modified by H3PW12O40, ZrO2 and CeO2, Journal of Environmental Sciences, vol.21, issue.7, pp.997-1004, 2009.
DOI : 10.1016/S1001-0742(08)62374-8

H. Haick and Y. Paz, Long-Range Effects of Noble Metals on the Photocatalytic Properties of Titanium Dioxide, The Journal of Physical Chemistry B, vol.107, issue.10, pp.2319-2326, 2003.
DOI : 10.1021/jp026940i

B. Avasarala and P. Haldar, Electrochemical oxidation behavior of titanium nitride based electrocatalysts under PEM fuel cell conditions, Electrochimica Acta, vol.55, issue.28, pp.9024-9034, 2010.
DOI : 10.1016/j.electacta.2010.08.035

U. Helmersson, . Lattemann, . Bohlmark, J. Ehiasarian, and . Gudmundsson, Ionized physical vapor deposition (IPVD): A review of technology and applications, Thin Solid Films, vol.513, issue.1-2, pp.1-24, 2006.
DOI : 10.1016/j.tsf.2006.03.033

Y. El-gendy, films, Journal of Physics D: Applied Physics, vol.42, issue.11, p.115408, 2009.
DOI : 10.1088/0022-3727/42/11/115408

P. Mccurdy, . Sturgess, E. Kohli, and . Fisher, Investigation of the PECVD TiO2???Si(100) interface, Applied Surface Science, vol.233, issue.1-4, pp.69-79, 2004.
DOI : 10.1016/j.apsusc.2004.03.009

D. Won, . Wang, D. Jang, and . Choi, Effects of thermally induced anatase-to-rutile phase transition in MOCVD-grown TiO2 films on structural and optical properties, Applied Physics A Materials Science & Processing, vol.73, issue.5, pp.595-600, 2001.
DOI : 10.1007/s003390100804

M. Wong, H. Chou, and T. Yang, Reactively sputtered N-doped titanium oxide films as visible-light photocatalyst, Thin Solid Films, vol.494, issue.1-2, pp.244-249, 2006.
DOI : 10.1016/j.tsf.2005.08.132

Y. Li, . Ma, . Wang, and . Li, Preparation of cerium-doped titania macroporous films by a sol???gel spin coating using polypropylene glycol (PPG) as pore-creating agent: Effects of Ce ions, PPG and calcination on photocatalytic activity, Surface and Coatings Technology, vol.204, issue.9-10, pp.1353-1358, 2010.
DOI : 10.1016/j.surfcoat.2009.09.027

H. Matsui and H. Tabata, Epitaxial growth and characteristics of N-doped anatase TiO2 films grown using a free-radical nitrogen oxide source, Journal of Applied Physics, vol.97, issue.12, pp.123511-123512, 2005.
DOI : 10.1063/1.1929889

J. Liao, . Chen, . Chang, Z. Chiu, and . Chen, Thin-film photo-catalytic TiO2 phase prepared by magnetron sputtering deposition, plasma ion implantation and metal vapor vacuum arc source, Thin Solid Films, vol.515, issue.1, pp.176-185, 2006.
DOI : 10.1016/j.tsf.2005.12.150

H. Yates, M. Nolan, D. Sheel, and M. Pemble, The role of nitrogen doping on the development of visible light-induced photocatalytic activity in thin TiO2 films grown on glass by chemical vapour deposition, Journal of Photochemistry and Photobiology A: Chemistry, vol.179, issue.1-2, pp.213-223, 2006.
DOI : 10.1016/j.jphotochem.2005.08.018

C. Di-valentin, . Finazzi, . Pacchioni, . Selloni, M. Livraghi et al., N-doped TiO2: Theory and experiment, Chemical Physics, vol.339, issue.1-3, pp.44-56, 2007.
DOI : 10.1016/j.chemphys.2007.07.020

A. Trenczek-zajaca, M. Radeckaa, . Zakrzewskab, E. Brudnikb, and . Kusiorb, Structural and electrical properties of magnetron sputtered Ti(ON) thin films: The case of TiN doped in situ with oxygen, Journal of Power Sources, vol.194, issue.1, pp.93-103, 2009.
DOI : 10.1016/j.jpowsour.2008.12.112

M. Wong, H. Chou, and T. Yang, Reactively sputtered N-doped titanium oxide films as visible-light photocatalyst, Thin Solid Films, vol.494, issue.1-2, pp.244-249, 2006.
DOI : 10.1016/j.tsf.2005.08.132

B. Avasarala and P. Haldar, Electrochemical oxidation behavior of titanium nitride based electrocatalysts under PEM fuel cell conditions, Electrochimica Acta, vol.55, issue.28, pp.9024-9034, 2010.
DOI : 10.1016/j.electacta.2010.08.035

M. Birkholz, . Ehwald, . Kulse, . Drews, . Fröhlich et al., Ultrathin TiN Membranes as a Technology Platform for CMOS-Integrated MEMS and BioMEMS Devices, Advanced Functional Materials, vol.81, issue.9, pp.1652-1656, 2011.
DOI : 10.1002/adfm.201002062

E. Aubry, . Ghazzal, . Demange, . Chaoui, . Robert et al., Poisoning prevention of TiO2 photocatalyst coatings sputtered on soda-lime glass by intercalation of SiNx diffusion barriers, Surface and Coatings Technology, vol.201, issue.18, pp.7706-7712, 2007.
DOI : 10.1016/j.surfcoat.2007.03.003

D. Hanaor and C. Sorrell, Review of the anatase to rutile phase transformation, Journal of Materials Science, vol.5, issue.335, pp.855-874, 2011.
DOI : 10.1007/s10853-010-5113-0

N. Sakai, . Fujishima, K. Watanabe, and . Hashimoto, Thin Film Surfaces by the Reciprocal of Contact Angle, The Journal of Physical Chemistry B, vol.107, issue.4, pp.1028-1035, 2003.
DOI : 10.1021/jp022105p

W. Smith and . Zhao, Two-Layer Nanorod Arrays, The Journal of Physical Chemistry C, vol.112, issue.49, pp.19635-19641, 2008.
DOI : 10.1021/jp807703d

X. Jiang, Y. Wang, and C. Pan, High Concentration Substitutional N-Doped TiO2 Film: Preparation, Characterization, and Photocatalytic Property, Journal of the American Ceramic Society, vol.99, issue.45, pp.4078-4083, 2011.
DOI : 10.1111/j.1551-2916.2011.04692.x

T. Ihara, Y. Miyoshi, . Iriyama, S. Matsumoto, and . Sugihara, Visible-light-active titanium oxide photocatalyst realized by an oxygen-deficient structure and by nitrogen doping, Applied Catalysis B: Environmental, vol.42, issue.4, pp.403-409, 2003.
DOI : 10.1016/S0926-3373(02)00269-2

H. Irie, Y. Watanabe, and K. Hashimoto, Powders, The Journal of Physical Chemistry B, vol.107, issue.23, pp.5483-5486, 2003.
DOI : 10.1021/jp030133h

L. Zhu, . Xie, . Cui, . Shen, Z. Yang et al., Photoelectrochemical and optical properties of N-doped TiO2 thin films prepared by oxidation of sputtered TiNx films, Vacuum, vol.84, issue.6, pp.797-802, 2010.
DOI : 10.1016/j.vacuum.2009.10.040

A. Brudnik, . Bucko, . Radecka, ?. Trenczek, K. Zajac et al., Microstructure and optical properties of photoactive TiO2:N thin films, Vacuum, vol.82, issue.10, pp.936-941, 2008.
DOI : 10.1016/j.vacuum.2008.01.020

D. Lee, . Kim, and . Lee, Oxidation of TiN and Ti(C,N) thin films deposited on titanium substrate, Metals and Materials International, vol.141, issue.75, pp.43-46, 2003.
DOI : 10.1007/BF03027228

Z. Wu, F. Dong, W. Zhao, and S. Guo, Visible light induced electron transfer process over nitrogen doped TiO2 nanocrystals prepared by oxidation of titanium nitride, Journal of Hazardous Materials, vol.157, issue.1, pp.57-63, 2008.
DOI : 10.1016/j.jhazmat.2007.12.079

A. Trenczek, ?. Zajaca, . Radeckaa, . Zakrzewskab, E. Brudnikb et al., Structural and electrical properties of magnetron sputtered Ti(ON) thin films: The case of TiN doped in situ with oxygen, Journal of Power Sources, vol.194, issue.1, pp.93-103, 2009.
DOI : 10.1016/j.jpowsour.2008.12.112

URL : https://hal.archives-ouvertes.fr/hal-00432344

A. Selloni, Crystal growth: Anatase shows its reactive side, Nature Materials, vol.85, issue.8, pp.613-615, 2008.
DOI : 10.1038/nmat2241

R. Sanjinés, . Tang, . Berger, . Gozzo, F. Margaritondo et al., oxide, Journal of Applied Physics, vol.75, issue.6, pp.2945-2951, 1994.
DOI : 10.1063/1.356190

S. Lee, . Yamasue, H. Ishihara, and . Okumura, Photocatalysis and surface doping states of N-doped TiOx films prepared by reactive sputtering with dry air, Applied Catalysis B: Environmental, vol.93, issue.3-4, pp.217-226, 2010.
DOI : 10.1016/j.apcatb.2009.09.032

F. Peng, . Liu, . Wang, . Yu, and . Yang, Photocatalyst with Visible Light Active, Chinese Journal of Chemical Physics, vol.23, issue.4, pp.437-441, 2010.
DOI : 10.1088/1674-0068/23/04/437-441

H. Yates, M. Nolan, D. Sheel, and M. Pemble, The role of nitrogen doping on the development of visible light-induced photocatalytic activity in thin TiO2 films grown on glass by chemical vapour deposition, Journal of Photochemistry and Photobiology A: Chemistry, vol.179, issue.1-2, pp.213-223, 2006.
DOI : 10.1016/j.jphotochem.2005.08.018

J. Suna, . Qiao, . Suna, and . Wang, Photocatalytic degradation of Orange G on nitrogen-doped TiO2 catalysts under visible light and sunlight irradiation, Journal of Hazardous Materials, vol.155, issue.1-2, pp.312-319, 2008.
DOI : 10.1016/j.jhazmat.2007.11.062

M. Wong, H. Chou, and T. Yang, Reactively sputtered N-doped titanium oxide films as visible-light photocatalyst, Thin Solid Films, vol.494, issue.1-2, pp.244-249, 2006.
DOI : 10.1016/j.tsf.2005.08.132

Y. Sun, . Yan, . Wang, . Guo, and . Ma, Nanotube Arrays in a Two-Compartment Photoelectrochemical Cell, The Journal of Physical Chemistry C, vol.115, issue.26, pp.12844-12849, 2011.
DOI : 10.1021/jp1116118

A. Gonzalez and S. Santiago, films prepared using the sol???gel technique, Semiconductor Science and Technology, vol.22, issue.7, pp.709-716, 2007.
DOI : 10.1088/0268-1242/22/7/006

Ø. H. Fig, W. Fakhouri, . Smith, F. Pulpytel, H. Arefi-khonsari et al., A6-1: Optical emission spectra of the white lamp which was used in the photocurrent measurement Enhancement of NMP Degradation Under UV Light by Nitrogen-doped TiO 2 Thin Films: Effect of Morphology and Substituted Nitrogen Using a Design of Experiment, List of publications and conferences Publications, pp.3-4, 2011.

Ø. W. Smith, J. Fakhouri, F. Pulpytel, and . Arefi-khonsari, Control of the optical and crystalline properties of TiO 2 in visible-light active TiO 2 /TiN bi-layer thin-film stacks, Journal of Applied Physics, pp.111-024301, 2012.

Ø. W. Smith, S. Fakhouri, J. Mori, F. Pulpytel, and . Arefi-khonsari, Oxidation Kinetics of TiN Films Deposited by RF Reactive Sputtering at High and Low Pressure, Journal of Physical Chemistry C

Ø. H. Fakhouri, W. Smith, A. Pulpytel, H. Zolfaghati, F. Mortaheb et al., Visible Light Water Splitting and Enhanced UV Photocatalysis from Nitrogen Doped TiO 2 Thin Films

Ø. H. Fakhouri, W. Smith, F. Pulpytel, and . Arefi-khonsari, Enhanced visible light photoactivity and charge separation in optimized TiO 2 /TiN bi-layer thin film

Ø. H. International-conferences, W. Fakhouri, . Smith, F. Pulpytel, and . Arefi-khonsari, Controlling the Properties of TiO 2 in TiO 2 /TiN Bi-Layer Thin Films for Photocatalysis and Photocells. Oral presentation, 2011.

Ø. H. Fakhouri, W. Smith, F. Pulpytel, and . Arefi-khonsari, Influence of RF reactive sputtering on the nitrogen chemical state in nitrogen doped TiO 2 thin films. Oral presentation, 2011.

Ø. S. Mori, H. Fakhouri, J. Pulpytel, and F. Arefi-khonsari, Optical and Langmuir probe diagnostics of an Argon plasma in an RF reactive magnetron sputtering system, th International Symposium on Plasma Chemistry, 2011.

Ø. W. Smith, J. Fakhouri, F. Pulpytel, and . Arefi-khonsari, Photoactive TiO 2 /TiN Bi-Layer Thin Films Deposited by RF Reactive Sputtering, th International Symposium on Plasma Chemistry, 2011.

Ø. W. Smith, J. Fakhouri, F. Pulpytel, and . Arefi-khonsari, Thermal Oxidation of TiN to TiO 2 : Improved Visible Light Photocatalysis and Solar Water Splitting, th International Conference on Surfaces, Coatings, and Nano-structured Materials, NANOSMAT 2011

Ø. W. Smith, J. Fakhouri, F. Pulpytel, and . Arefi-khonsari, Visible Light Photocatalysis in Nitrogen Doped TiO 2 Films, MRS Fall Meeting, 2011.