@. J. Issued-from-this-work, J. Molina, M. Dufrêche, O. Salanne, M. Bernard et al., Models of electrolyte solutions from molecular descriptions: the example of NaCl, Phys. Rev. E, vol.80, p.65103, 2009.

@. J. Molina, M. Duvail, . Ph, J. Guilbaud, and . Dufrêche, Coarse-grained lanthanoid chloride aqueous solutions, Journal of Molecular Liquids, vol.153, issue.2-3, pp.107-111, 2010.
DOI : 10.1016/j.molliq.2010.01.007

@. J. Molina, S. Lectez, S. Tazi, M. Salanne, J. Dufrêche et al., Ions in solutions: Determining their polarizabilities from first-principles, The Journal of Chemical Physics, vol.134, issue.1, p.14511, 2011.
DOI : 10.1063/1.3518101

URL : https://hal.archives-ouvertes.fr/in2p3-00575117

@. J. Molina, M. Duvail, J. Dufrêche, . Ph, and . Guilbaud, Atomistic Description of Binary Lanthanoid Salt Solutions: A Coarse-Graining Approach, The Journal of Physical Chemistry B, vol.115, issue.15, pp.4329-4340, 2011.
DOI : 10.1021/jp1110168

@. J. Molina, J. Dufrêche, M. Salanne, O. Bernard, and P. Turq, Primitive models of ions in solution from molecular descriptions: A perturbation approach, The Journal of Chemical Physics, vol.135, issue.23
DOI : 10.1063/1.3668098

@. S. Tazi, J. J. Molina, M. Salanne, B. Rotenberg, J. Dufrêche et al., Classical force-fields of ions in solution derived from ab-initio calculations

@. J. Molina, C. Pierleoni, B. Capone, J. Hansen, I. S. Santos et al., Crystal stability of diblock copolymer micelles in solution, Molecular Physics, vol.3, issue.4-6, pp.535-548, 2009.
DOI : 10.1063/1.448024

URL : https://hal.archives-ouvertes.fr/hal-00513281

Y. Marcus, Ion solvation, 1985.

V. Dahirel, F. Paillusson, M. Jardat, M. Barbi, and J. Victor, Nonspecific DNA-Protein Interaction: Why Proteins Can Diffuse along DNA, Physical Review Letters, vol.102, issue.22, p.228101, 2009.
DOI : 10.1103/PhysRevLett.102.228101

URL : http://arxiv.org/abs/0902.2708

S. W. Hunt, M. Roeselová, W. Wang, L. M. Wingen, E. M. Knipping et al., Formation of Molecular Bromine from the Reaction of Ozone with Deliquesced NaBr Aerosol:?? Evidence for Interface Chemistry, The Journal of Physical Chemistry A, vol.108, issue.52, pp.11559-11572, 2004.
DOI : 10.1021/jp0467346

B. Bonin, Le traitement -recyclage du combustible nucléaire usé. La séparation des actinides -Applications à la gestion des déchets, 2008.

A. Aguado, L. Bernasconi, S. Jahn, and P. A. Madden, Multipoles and interaction potentials in ionic materials from planewave-DFT calculations, Faraday Discussions, vol.124, pp.171-184, 2003.
DOI : 10.1039/b300319c

A. Ruas, P. Moisy, J. Simonin, O. Bernard, J. Dufreche et al., Lanthanide Salts Solutions:?? Representation of Osmotic Coefficients within the Binding Mean Spherical Approximation, The Journal of Physical Chemistry B, vol.109, issue.11, pp.5243-5248, 2005.
DOI : 10.1021/jp0450991

URL : https://hal.archives-ouvertes.fr/hal-00162126

P. Sillren and J. Hansen, Pertubation theory for systems with strong short-ranged interactions, Molecular Physics, vol.20, issue.13-14, pp.1803-1811, 2007.
DOI : 10.1080/00268970701416605

URL : https://hal.archives-ouvertes.fr/hal-00513103

P. Sillren and J. Hansen, On the critical non-additivity driving segregation of asymmetric binary hard sphere fluids, Molecular Physics, vol.39, issue.1, pp.97-104, 2010.
DOI : 10.1080/00268970903514561

URL : https://hal.archives-ouvertes.fr/hal-00565914

L. Onsager and R. M. Fuoss, Irreversible Processes in Electrolytes. Diffusion, Conductance and Viscous Flow in Arbitrary Mixtures of Strong Electrolytes, The Journal of Physical Chemistry, vol.36, issue.11, pp.2689-2778, 1932.
DOI : 10.1021/j150341a001

A. Chandra and B. Bagchi, Ionic contribution to the viscosity of dilute electrolyte solutions: Towards a microscopic theory, The Journal of Chemical Physics, vol.113, issue.8, p.3226, 2000.
DOI : 10.1063/1.1286963

H. L. Friedman, A Course in Statistical Mechanics, 1985.

L. D. Landau and E. M. Lifshitz, Statistical Physics, 1980.

L. P. Pitaevskii and E. M. Lifshitz, Statistical Physics, 1980.

J. Hansen and I. R. Mcdonald, Theory of Simple Liquids, 2008.

A. Ben-naim, Molecular Theory of Solutions, 2006.

J. W. Gibbs, Elementary Principles in Statistical Mechanics. Developed with Especial Reference to the Rational Foundation of Thermodynamics, 2010.
DOI : 10.5962/bhl.title.32624

D. Frenkel and B. Smit, Understanding Molecular Simulation, Computers in Physics, vol.11, issue.4, 2002.
DOI : 10.1063/1.4822570

S. Velasco, The Ornstein-Zernike equation in the canonical ensemble, Europhysics Letters, vol.54, issue.5, pp.475-481, 2001.

T. Morita and K. Hiroike, A New Approach to the Theory of Classical Fluids. III, Progress of Theoretical Physics, pp.537-578, 1961.
DOI : 10.1143/PTP.25.537

J. Percus and G. J. Yevick, Analysis of Classical Statistical Mechanics by Means of Collective Coordinates, Physical Review, vol.110, issue.1, pp.1-13, 1958.
DOI : 10.1103/PhysRev.110.1

R. J. Baxter, Percus???Yevick Equation for Hard Spheres with Surface Adhesion, The Journal of Chemical Physics, vol.49, issue.6, pp.2770-2774, 1968.
DOI : 10.1063/1.1670482

M. Wertheim, Exact Solution of the Percus-Yevick Integral Equation for Hard Spheres, Physical Review Letters, vol.10, issue.8, pp.321-323, 1963.
DOI : 10.1103/PhysRevLett.10.321

J. Lebowitz, Exact Solution of Generalized Percus-Yevick Equation for a Mixture of Hard Spheres, Physical Review, vol.133, issue.4A, pp.895-899, 1964.
DOI : 10.1103/PhysRev.133.A895

L. Blum, Mean spherical model for asymmetric electrolytes, Molecular Physics, vol.30, issue.5, pp.1529-1535, 1975.
DOI : 10.1063/1.1669510

L. Blum and J. Høye, Mean spherical model for asymmetric electrolytes. 2. Thermodynamic properties and the pair correlation function, The Journal of Physical Chemistry, vol.81, issue.13, pp.1311-1316, 1977.
DOI : 10.1021/j100528a019

L. Blum, Theoretical Chemistry: Advances and Perspectives, 1980.

M. Jardat, O. Bernard, P. Turq, and G. R. Kneller, Transport coefficients of electrolyte solutions from Smart Brownian dynamics simulations, The Journal of Chemical Physics, vol.110, issue.16, pp.7993-7999, 1999.
DOI : 10.1063/1.478703

URL : https://hal.archives-ouvertes.fr/hal-00164882

L. Belloni, Inability of the hypernetted chain integral equation to exhibit a spinodal line, The Journal of Chemical Physics, vol.98, issue.10, pp.8080-8095, 1993.
DOI : 10.1063/1.464564

J. Caillol, D. Levesque, and J. Weis, Critical Behavior of the Restricted Primitive Model, Physical Review Letters, vol.77, issue.19, pp.4039-4042, 1996.
DOI : 10.1103/PhysRevLett.77.4039

URL : https://hal.archives-ouvertes.fr/hal-00119091

P. J. Camp and G. N. Patey, Ion association and condensation in primitive models of electrolyte solutions, The Journal of Chemical Physics, vol.111, issue.19, pp.9000-9007, 1999.
DOI : 10.1063/1.480243

J. G. Kirkwood, Statistical Mechanics of Fluid Mixtures, The Journal of Chemical Physics, vol.3, issue.5, pp.300-313, 1935.
DOI : 10.1063/1.1749657

J. Barker and D. Henderson, What is "liquid"? Understanding the states of matter, Reviews of Modern Physics, vol.48, issue.4, pp.587-671, 1976.
DOI : 10.1103/RevModPhys.48.587

R. Zwanzig, High???Temperature Equation of State by a Perturbation Method. I. Nonpolar Gases, The Journal of Chemical Physics, vol.22, issue.8, pp.1420-1426, 1954.
DOI : 10.1063/1.1740409

J. Weeks, D. Chandler, and H. Andersen, Perturbation Theory of the Thermodynamic Properties of Simple Liquids, The Journal of Chemical Physics, vol.55, issue.11, pp.5422-5423, 1971.
DOI : 10.1063/1.1675700

J. Barker and D. Henderson, Perturbation Theory and Equation of State for Fluids: The Square???Well Potential, The Journal of Chemical Physics, vol.47, issue.8, pp.2856-2861, 1967.
DOI : 10.1063/1.1712308

S. Viscardy, J. Servantie, and P. Gaspard, Transport and Helfand moments in the Lennard-Jones fluid. I. Shear viscosity, The Journal of Chemical Physics, vol.126, issue.18, p.184512, 2007.
DOI : 10.1063/1.2724820

S. Viscardy, J. Servantie, and P. Gaspard, Transport and Helfand moments in the Lennard-Jones fluid. II. Thermal conductivity, The Journal of Chemical Physics, vol.126, issue.18, p.184513, 2007.
DOI : 10.1063/1.2724821

J. Simonin, Study of experimental-to-McMillan???Mayer conversion of thermodynamic excess functions, J. Chem. Soc., Faraday Trans., vol.21, issue.19, pp.3519-3523, 1996.
DOI : 10.1039/FT9969203519

URL : https://hal.archives-ouvertes.fr/hal-00162530

L. Blum and O. Bernard, The general solution of the binding mean spherical approximation for pairing ions, Journal of Statistical Physics, vol.81, issue.3-4, pp.569-583, 1995.
DOI : 10.1007/BF02184871

URL : https://hal.archives-ouvertes.fr/hal-00165084

O. Bernard and L. Blum, Binding mean spherical approximation for pairing ions: An exponential approximation and thermodynamics, The Journal of Chemical Physics, vol.104, issue.12, pp.4746-4754, 1996.
DOI : 10.1063/1.471168

URL : https://hal.archives-ouvertes.fr/hal-00165063

T. Boublík, Hard???Sphere Equation of State, The Journal of Chemical Physics, vol.53, issue.1, pp.471-472, 1970.
DOI : 10.1063/1.1673824

G. Mansoori, N. Carnahan, K. Starling, and T. L. Jr, Equilibrium Thermodynamic Properties of the Mixture of Hard Spheres, The Journal of Chemical Physics, vol.54, issue.4, pp.1523-1525, 1971.
DOI : 10.1063/1.1675048

J. Salacuse and G. Stell, Polydisperse systems: Statistical thermodynamics, with applications to several models including hard and permeable spheres, The Journal of Chemical Physics, vol.77, issue.7, pp.3714-3725, 1982.
DOI : 10.1063/1.444274

T. Vilarino, O. Bernard, and J. Simonin, Ionic Solutions in the Binding Mean Spherical Approximation. Thermodynamics of Associating Electrolytes up to Very High Concentrations, The Journal of Physical Chemistry B, vol.108, issue.18, pp.5763-5770, 2004.
DOI : 10.1021/jp037993i

URL : https://hal.archives-ouvertes.fr/hal-00162136

W. G. Mcmillan and J. E. Mayer, The Statistical Thermodynamics of Multicomponent Systems, The Journal of Chemical Physics, vol.13, issue.7, pp.276-305, 1945.
DOI : 10.1063/1.1724036

J. G. Kirkwood and F. P. Buff, The Statistical Mechanical Theory of Solutions. I, The Journal of Chemical Physics, vol.19, issue.6, pp.774-777, 1951.
DOI : 10.1063/1.1748352

P. G. Kusalik and G. Patey, The thermodynamic properties of electrolyte solutions: Some formal results, The Journal of Chemical Physics, vol.86, issue.9, pp.5110-5116, 1987.
DOI : 10.1063/1.452629

L. L. Lee, Thermodynamic consistency and reference scale conversion in multisolvent electrolyte solutions, Journal of Molecular Liquids, vol.87, issue.2-3, pp.129-147, 2000.
DOI : 10.1016/S0167-7322(00)00117-3

F. H. Spedding, H. O. Weber, V. Saeger, H. Petheram, J. Rard et al., Isopiestic determination of the activity coefficients of some aqueous rare earth electrolyte solutions at 25.degree.C. 1. The rare earth chlorides, Journal of Chemical & Engineering Data, vol.21, issue.3, pp.341-360, 1976.
DOI : 10.1021/je60070a015

P. Novotny and O. Sohnel, Densities of binary aqueous solutions of 306 inorganic substances, Journal of Chemical & Engineering Data, vol.33, issue.1, pp.49-55, 1988.
DOI : 10.1021/je00051a018

F. H. Spedding, V. Saeger, K. Gray, P. K. Boneau, M. Brown et al., Densities and apparent molal volumes of some aqueous rare earth solutions at 25.deg.. I. Rare earth chlorides, Journal of Chemical & Engineering Data, vol.20, issue.1, pp.72-81, 1975.
DOI : 10.1021/je60064a022

B. Rotenberg, V. Marry, N. Malikova, and P. Turq, Molecular simulation of aqueous solutions at clay surfaces, Journal of Physics: Condensed Matter, vol.22, issue.28, p.284114, 2010.
DOI : 10.1088/0953-8984/22/28/284114

URL : https://hal.archives-ouvertes.fr/hal-00531718

M. Head-gordon, Quantum Chemistry and Molecular Processes, The Journal of Physical Chemistry, vol.100, issue.31, pp.13213-13225, 1996.
DOI : 10.1021/jp953665+

R. G. Parr and W. Yang, Density Functional Theory of Atoms and Molecules. The International Series of Monographs on Chemistry, 1989.

R. Vuilleumier, Density Functional Theory Based Ab Initio Molecular Dynamics Using the Car-Parrinello Approach, Berling, vol.Heidelberg, 2006.
DOI : 10.1007/3-540-35273-2_7

W. Kohn and L. J. Sham, Self-Consistent Equations Including Exchange and Correlation Effects, Physical Review, vol.140, issue.4A, pp.1133-1138, 1965.
DOI : 10.1103/PhysRev.140.A1133

D. M. Ceperley and B. J. Alder, Ground State of the Electron Gas by a Stochastic Method, Physical Review Letters, vol.45, issue.7, pp.566-569, 1980.
DOI : 10.1103/PhysRevLett.45.566

A. D. Becke, Density-functional exchange-energy approximation with correct asymptotic behavior, Physical Review A, vol.38, issue.6, pp.3098-3100, 1988.
DOI : 10.1103/PhysRevA.38.3098

C. Lee, W. Yang, and R. G. Parr, Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density, Physical Review B, vol.37, issue.2, pp.785-789, 1988.
DOI : 10.1103/PhysRevB.37.785

J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized Gradient Approximation Made Simple, Physical Review Letters, vol.77, issue.18, pp.3865-3868, 1996.
DOI : 10.1103/PhysRevLett.77.3865

N. Troullier and J. L. Martins, Efficient pseudopotentials for plane-wave calculations, Physical Review B, vol.43, issue.3, pp.1993-2006, 1991.
DOI : 10.1103/PhysRevB.43.1993

S. Goedecker, M. Teter, and J. Hutter, Separable dual-space Gaussian pseudopotentials, Physical Review B, vol.54, issue.3, pp.1703-1710, 1996.
DOI : 10.1103/PhysRevB.54.1703

URL : http://arxiv.org/abs/mtrl-th/9512004

C. Hartwigsen, S. Goedecker, and J. Hutter, Relativistic separable dual-space Gaussian pseudopotentials from H to Rn, Physical Review B, vol.58, issue.7, pp.3641-3662, 1998.
DOI : 10.1103/PhysRevB.58.3641

M. Krack, Pseudopotentials for H to Kr optimized for gradient-corrected exchange-correlation functionals Theoretical Chemistry Accounts: Theory, Computation , and Modeling, Theoretica Chimica Acta), vol.114, issue.1-3, pp.145-152, 2005.

N. Marzari and D. Vanderbilt, Maximally localized generalized Wannier functions for composite energy bands, Physical Review B, vol.56, issue.20, pp.12847-12865, 1997.
DOI : 10.1103/PhysRevB.56.12847

P. L. Silvestrelli, Maximally localized Wannier functions for simulations with supercells of general symmetry, Physical Review B, vol.59, issue.15, pp.9703-9706, 1999.
DOI : 10.1103/PhysRevB.59.9703

G. Berghold, C. Mundy, A. Romero, J. Hutter, and M. Parrinello, General and efficient algorithms for obtaining maximally localized Wannier functions, Physical Review B, vol.61, issue.15, pp.10040-10048, 2000.
DOI : 10.1103/PhysRevB.61.10040

P. L. Silvestrelli and M. Parrinello, Water Molecule Dipole in the Gas and in the Liquid Phase, Physical Review Letters, vol.82, issue.16, pp.3308-3311, 1999.
DOI : 10.1103/PhysRevLett.82.3308

L. Bernasconi, M. Wilson, and P. Madden, Cation polarizability from first-principles: Sn2+, Computational Materials Science, vol.22, issue.1-2, pp.94-98, 2001.
DOI : 10.1016/S0927-0256(01)00173-2

L. Bernasconi, P. Madden, and M. Wilson, Ionic to molecular transition in AlCl3: an examination of the electronic structure, PhysChemComm, vol.5, issue.1, pp.1-11, 2002.
DOI : 10.1039/b107715e

R. Kingsmith and D. Vanderbilt, Theory of polarization of crystalline solids, Physical Review B, vol.47, issue.3, pp.1651-1654, 1993.
DOI : 10.1103/PhysRevB.47.1651

D. Vanderbilt and R. Kingsmith, Electric polarization as a bulk quantity and its relation to surface charge, Physical Review B, vol.48, issue.7, pp.4442-4455, 1993.
DOI : 10.1103/PhysRevB.48.4442

I. Souza, T. Wilkens, and R. Martin, Polarization and localization in insulators: Generating function approach, Physical Review B, vol.62, issue.3, pp.1666-1683, 2000.
DOI : 10.1103/PhysRevB.62.1666

P. A. Madden, Ewald summation of electrostatic multipole interactions up to the quadrupolar level, The Journal of Chemical Physics, vol.119, issue.14, pp.7471-7483, 2003.

T. Laino and J. Hutter, Notes on Ewald summation of electrostatic multipole interactions up to quadrupolar level, J. Chem. Phys. The Journal of Chemical Physics, vol.119, issue.129 7, pp.7471-074102, 2003.

P. Umari and A. Pasquarello, Ab initio Molecular Dynamics in a Finite Homogeneous Electric Field, Physical Review Letters, vol.89, issue.15, 2002.

P. Umari, A. Pasquarello, and R. Resta, Density functional theory with finite electric field, International Journal of Quantum Chemistry, vol.56, issue.6, pp.666-670, 1998.
DOI : 10.1002/qua.20324

J. Schmidt, J. Vandevondele, I. F. Kuo, D. Sebastiani, J. I. Siepmann et al., Isobaric???Isothermal Molecular Dynamics Simulations Utilizing Density Functional Theory: An Assessment of the Structure and Density of Water at Near-Ambient Conditions, The Journal of Physical Chemistry B, vol.113, issue.35, pp.11959-11964, 2009.
DOI : 10.1021/jp901990u

P. L. Silvestrelli, Van der Waals Interactions in DFT Made Easy by Wannier Functions, Physical Review Letters, vol.100, issue.5, p.53002, 2008.
DOI : 10.1103/PhysRevLett.100.053002

B. Rotenberg, M. Salanne, C. Simon, and R. Vuilleumier, From Localized Orbitals to Material Properties: Building Classical Force Fields for Nonmetallic Condensed Matter Systems, Physical Review Letters, vol.104, issue.13, p.138301, 2010.
DOI : 10.1103/PhysRevLett.104.138301

URL : https://hal.archives-ouvertes.fr/hal-00531715

Y. Andersson, D. Langreth, and B. Lundqvist, van der Waals Interactions in Density-Functional Theory, Physical Review Letters, vol.76, issue.1, pp.102-105, 1996.
DOI : 10.1103/PhysRevLett.76.102

R. Car and M. Parrinello, Unified Approach for Molecular Dynamics and Density-Functional Theory, Physical Review Letters, vol.55, issue.22, pp.2471-2474, 1985.
DOI : 10.1103/PhysRevLett.55.2471

G. Ciccotti, M. Ferrario, and J. Ryckaert, Molecular dynamics of rigid systems in cartesian coordinates A general formulation, Molecular Physics, vol.64, issue.6, pp.1253-1264, 1982.
DOI : 10.1080/00268978200100942

H. Andersen, Rattle: A ???velocity??? version of the shake algorithm for molecular dynamics calculations, Journal of Computational Physics, vol.52, issue.1, pp.24-34, 1983.
DOI : 10.1016/0021-9991(83)90014-1

W. Hoover, Canonical dynamics: Equilibrium phase-space distributions, Physical Review A, vol.31, issue.3, pp.1695-1697, 1985.
DOI : 10.1103/PhysRevA.31.1695

S. Nosé, A molecular dynamics method for simulations in the canonical ensemble, Molecular Physics, vol.79, issue.2, pp.255-268, 1984.
DOI : 10.1080/00268978400101201

S. Nosé, A unified formulation of the constant temperature molecular dynamics methods, The Journal of Chemical Physics, vol.81, issue.1, p.511, 1984.
DOI : 10.1063/1.447334

G. Martyna and D. Tobias, Constant pressure molecular dynamics algorithms Constant pressure molecular dynamics algorithms, 1994.

H. C. Andersen, Molecular dynamics simulations at constant pressure and/or temperature, The Journal of Chemical Physics, vol.72, issue.4, pp.2384-2393, 1980.
DOI : 10.1063/1.439486

H. J. Berendsen, J. P. Postma, W. F. Van-gunsteren, A. Dinola, and J. R. Haak, Molecular dynamics with coupling to an external bath, The Journal of Chemical Physics, vol.81, issue.8, pp.3684-3690, 1984.
DOI : 10.1063/1.448118

J. Stenhammar, M. Trulsson, and P. Linse, Some comments and corrections regarding the calculation of electrostatic potential derivatives using the Ewald summation technique, The Journal of Chemical Physics, vol.134, issue.22, p.224104, 2011.
DOI : 10.1063/1.3599045

W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, Numerical Recipes in Fortran: The Art of Scientific Computing, 1992.

L. X. Dang and T. Chang, Molecular dynamics study of water clusters, liquid, and liquid???vapor interface of water with many-body potentials, The Journal of Chemical Physics, vol.106, issue.19, pp.8149-8159, 1997.
DOI : 10.1063/1.473820

J. R. Hammond, N. Govind, K. Kowalski, J. Autschbach, and S. S. Xantheas, Accurate dipole polarizabilities for water clusters n=2???12 at the coupled-cluster level of theory and benchmarking of various density functionals, The Journal of Chemical Physics, vol.131, issue.21, p.214103, 2009.
DOI : 10.1063/1.3263604

J. W. Ponder, TINKER Molecular Modeling Package

L. X. Dang, ions in polarizable water, The Journal of Chemical Physics, vol.96, issue.9, pp.6970-6977, 1992.
DOI : 10.1063/1.462555

L. X. Dang and B. C. Garrett, Photoelectron spectra of the hydrated iodine anion from molecular dynamics simulations, The Journal of Chemical Physics, vol.99, issue.4, pp.2972-2977, 1993.
DOI : 10.1063/1.465203

L. X. Dang and P. A. Kollman, Free Energy of Association of the K+:18-Crown-6 Complex in Water: A New Molecular Dynamics Study, The Journal of Physical Chemistry, vol.99, issue.1, pp.55-58, 1995.
DOI : 10.1021/j100001a011

H. J. Berendsen, J. Grigera, and T. P. Straatsma, The missing term in effective pair potentials, The Journal of Physical Chemistry, vol.91, issue.24, pp.6269-6271, 1987.
DOI : 10.1021/j100308a038

G. Lamoureux and B. Roux, Absolute Hydration Free Energy Scale for Alkali and Halide Ions Established from Simulations with a Polarizable Force Field, The Journal of Physical Chemistry B, vol.110, issue.7, pp.3308-3322, 2006.
DOI : 10.1021/jp056043p

P. Ren and J. W. Ponder, Polarizable Atomic Multipole Water Model for Molecular Mechanics Simulation, The Journal of Physical Chemistry B, vol.107, issue.24, pp.5933-5947, 2003.
DOI : 10.1021/jp027815+

A. Grossfield, P. Ren, and J. W. Ponder, Ion Solvation Thermodynamics from Simulation with a Polarizable Force Field, Journal of the American Chemical Society, vol.125, issue.50, pp.15671-15682, 2003.
DOI : 10.1021/ja037005r

D. Jiao, C. King, A. Grossfield, T. A. Darden, and P. Ren, Solvation Using Polarizable Atomic Multipole Potential, The Journal of Physical Chemistry B, vol.110, issue.37, pp.18553-18559, 2006.
DOI : 10.1021/jp062230r

J. Piquemal, L. Perera, G. A. Cisneros, P. Ren, L. G. Pedersen et al., Towards accurate solvation dynamics of divalent cations in water using the polarizable amoeba force field: From energetics to structure, The Journal of Chemical Physics, vol.125, issue.5, p.54511, 2006.
DOI : 10.1063/1.2234774

P. Salvador, J. E. Curtis, D. J. Tobias, and P. Jungwirth, Polarizability of the nitrate anion and its solvation at the air/water interface, Physical Chemistry Chemical Physics, vol.5, issue.17, pp.3752-3757, 2003.
DOI : 10.1039/b304537d

P. Jungwirth, J. E. Curtis, and J. D. Tobias, Polarizability and aqueous solvation of the sulfate dianion, Chemical Physics Letters, vol.367, issue.5-6, pp.704-710, 2003.
DOI : 10.1016/S0009-2614(02)01782-7

P. Jungwirth and D. J. Tobias, Ions at the Air/Water Interface, The Journal of Physical Chemistry B, vol.106, issue.25, pp.6361-6373, 2002.
DOI : 10.1021/jp020242g

P. L. Silvestrelli and M. Parrinello, Structural, electronic, and bonding properties of liquid water from first principles, The Journal of Chemical Physics, vol.111, issue.8, pp.3572-3580, 1999.
DOI : 10.1063/1.479638

C. Sagui, P. Pomorski, T. A. Darden, and C. Roland, calculation of electrostatic multipoles with Wannier functions for large-scale biomolecular simulations, The Journal of Chemical Physics, vol.120, issue.9, p.4530, 2004.
DOI : 10.1063/1.1644800

G. Mahan, Modified Sternheimer equation for polarizability, Physical Review A, vol.22, issue.5, pp.1780-1785, 1980.
DOI : 10.1103/PhysRevA.22.1780

C. Hättig and B. A. Hess, TDMP2 calculation of dynamic multipole polarizabilities and dispersion coefficients for the halogen anions F???, Cl???, Br??? and I???, The Journal of Chemical Physics, vol.108, issue.10, pp.3863-3870, 1998.
DOI : 10.1063/1.475789

H. Yu, T. W. Whitfield, E. Harder, G. Lamoureux, I. Vorobyov et al., Simulating Monovalent and Divalent Ions in Aqueous Solution Using a Drude Polarizable Force Field, Journal of Chemical Theory and Computation, vol.6, issue.3, pp.774-786, 2010.
DOI : 10.1021/ct900576a

L. X. Dang, J. E. Rice, J. Caldwell, and P. A. Kollman, Ion solvation in polarizable water: molecular dynamics simulations, Journal of the American Chemical Society, vol.113, issue.7, pp.2481-2486, 1991.
DOI : 10.1021/ja00007a021

T. Chang and L. X. Dang, Recent Advances in Molecular Simulations of Ion Solvation at Liquid Interfaces, Chemical Reviews, vol.106, issue.4, pp.1305-1322, 2006.
DOI : 10.1021/cr0403640

J. J. Molina, S. Lectez, S. Tazi, M. Salanne, J. Dufreche et al., Ions in solutions: Determining their polarizabilities from first-principles, The Journal of Chemical Physics, vol.134, issue.1, p.14511, 2011.
DOI : 10.1063/1.3518101

URL : https://hal.archives-ouvertes.fr/in2p3-00575117

J. N. Wilson and R. M. Curtis, Dipole polarizabilities of ions in alkali halide crystals, The Journal of Physical Chemistry, vol.74, issue.1, pp.187-196, 1970.
DOI : 10.1021/j100696a034

M. Wilson, P. A. Madden, P. Jemmer, P. W. Fowler, A. Batana et al., Models of environmental effects on anion polarizability, Molecular Physics, vol.39, issue.10, pp.1457-1467, 1999.
DOI : 10.1098/rspa.1985.0040

P. Jemmer, M. Fowler, and . Wilson, Environmental Effects on Anion Polarizability:?? Variation with Lattice Parameter and Coordination Number, The Journal of Physical Chemistry A, vol.102, issue.43, pp.8377-8385, 1998.
DOI : 10.1021/jp982029j

B. Bauer, T. Lucas, A. Krishtal, and C. Van, Variation of Ion Polarizability from Vacuum to Hydration: Insights from Hirshfeld Partitioning, The Journal of Physical Chemistry A, vol.114, issue.34, pp.8984-8992, 2010.
DOI : 10.1021/jp103691w

P. Bultinck, C. Van-alsenoy, P. W. Ayers, and R. Carbo-dorca, Critical analysis and extension of the Hirshfeld atoms in molecules, The Journal of Chemical Physics, vol.126, issue.14, p.144111, 2007.
DOI : 10.1063/1.2715563

T. M. Chang and L. X. Dang, Ion Solvation in Polarizable Chloroform:?? A Molecular Dynamics Study, The Journal of Physical Chemistry B, vol.101, issue.49, pp.10518-10526, 1997.
DOI : 10.1021/jp972101y

F. James and M. Roos, Minuit - a system for function minimization and analysis of the parameter errors and correlations, Computer Physics Communications, vol.10, issue.6, pp.343-367, 1975.
DOI : 10.1016/0010-4655(75)90039-9

I. Yeh and G. Hummer, System-Size Dependence of Diffusion Coefficients and Viscosities from Molecular Dynamics Simulations with Periodic Boundary Conditions, The Journal of Physical Chemistry B, vol.108, issue.40, pp.15873-15879, 2004.
DOI : 10.1021/jp0477147

I. Yeh and G. Hummer, Diffusion and Electrophoretic Mobility of Single-Stranded RNA from Molecular Dynamics Simulations, Biophysical Journal, vol.86, issue.2, pp.681-689, 2004.
DOI : 10.1016/S0006-3495(04)74147-8

M. Kastenholz and P. Hunenberger, Computation of methodology-independent ionic solvation free energies from molecular simulations. I. The electrostatic potential in molecular liquids, The Journal of Chemical Physics, vol.124, issue.12, p.124106, 2006.
DOI : 10.1063/1.2172593

M. A. Kastenholz and P. Hunenberger, Computation of methodology-independent ionic solvation free energies from molecular simulations. II. The hydration free energy of the sodium cation, The Journal of Chemical Physics, vol.124, issue.22, p.224501, 2006.
DOI : 10.1063/1.2201698

I. Kalcher and J. Dzubiella, Structure-thermodynamics relation of electrolyte solutions, The Journal of Chemical Physics, vol.130, issue.13, p.134507, 2009.
DOI : 10.1063/1.3097530

J. T. Chayes and L. Chayes, On the validity of the inverse conjecture in classical density functional theory, Journal of Statistical Physics, vol.25, issue.3-4, pp.3-4, 1984.
DOI : 10.1007/BF01010992

J. T. Chayes, L. Chayes, and E. H. Lieb, The inverse problem in classical statistical mechanics, Communications in Mathematical Physics, vol.2, issue.1, pp.57-121, 1984.
DOI : 10.1007/BF01218639

A. Lyubartsev and S. Mar?elja, Evaluation of effective ion-ion potentials in aqueous electrolytes, Physical Review E, vol.65, issue.4, p.41202, 2002.
DOI : 10.1103/PhysRevE.65.041202

G. Zerah and J. Hansen, Self???consistent integral equations for fluid pair distribution functions: Another attempt, The Journal of Chemical Physics, vol.84, issue.4, pp.2336-2343, 1986.
DOI : 10.1063/1.450397

A. Lyubartsev and A. Laaksonen, Calculation of effective interaction potentials from radial distribution functions: A reverse Monte Carlo approach, Physical Review E, vol.52, issue.4, pp.3730-3737, 1995.
DOI : 10.1103/PhysRevE.52.3730

M. D. and F. Cilloco, Information-theory-based solution of the inverse problem in classical statistical mechanics, Physical Review E, vol.82, issue.2, p.21128, 2010.

D. J. Mitchell, D. A. Mcquarrie, A. Szabo, and J. Groeneveld, On the second-moment condition of Stillinger and Lovett, Journal of Statistical Physics, vol.65, issue.1, pp.15-20, 1977.
DOI : 10.1007/BF01089374

J. J. Molina, C. Pierleoni, B. Capone, J. Hansen, and I. S. De-oliveira, Crystal stability of diblock copolymer micelles in solution, Molecular Physics, vol.3, issue.4-6, pp.4-6, 2009.
DOI : 10.1063/1.448024

URL : https://hal.archives-ouvertes.fr/hal-00513281

A. B. Bhatia and D. E. Thornton, Structural Aspects of the Electrical Resistivity of Binary Alloys, Physical Review B, vol.2, issue.8, pp.3004-3012, 1970.
DOI : 10.1103/PhysRevB.2.3004

J. J. Molina, M. Duvail, J. Dufreche, and P. Guilbaud, Atomistic Description of Binary Lanthanoid Salt Solutions: A Coarse-Graining Approach, The Journal of Physical Chemistry B, vol.115, issue.15, pp.4329-4340, 2011.
DOI : 10.1021/jp1110168

G. Hummer, N. Gronbech-jensen, and M. Neumann, Pressure calculation in polar and charged systems using Ewald summation: Results for the extended simple point charge model of water, The Journal of Chemical Physics, vol.109, issue.7, pp.2791-2797, 1998.
DOI : 10.1063/1.476834

Y. Marcus and G. Hefter, Ion Pairing, Chemical Reviews, vol.106, issue.11, pp.4585-4621, 2006.
DOI : 10.1021/cr040087x

U. Essmann, L. Perera, M. L. Berkowitz, T. Darden, H. Lee et al., A smooth particle mesh Ewald method, The Journal of Chemical Physics, vol.103, issue.19, pp.8577-8593, 1995.
DOI : 10.1063/1.470117

L. X. Dang and D. E. Smith, Comment on ??????Mean force potential for the calcium???chloride ion pair in water?????? [J. Chem. Phys. 99, 4229 (1993)], The Journal of Chemical Physics, vol.102, issue.8, pp.3483-3484, 1995.
DOI : 10.1063/1.468572

L. X. Dang, Mechanism and Thermodynamics of Ion Selectivity in Aqueous Solutions of 18-Crown-6 Ether: A Molecular Dynamics Study, Journal of the American Chemical Society, vol.117, issue.26, pp.6954-6960, 1995.
DOI : 10.1021/ja00131a018

S. Koneshan, J. C. Rasaiah, R. M. Lynden-bell, and S. H. Lee, Solvent Structure, Dynamics, and Ion Mobility in Aqueous Solutions at 25 ??C, The Journal of Physical Chemistry B, vol.102, issue.21, pp.4193-4204, 1998.
DOI : 10.1021/jp980642x

J. C. Rasaiah and R. M. Lynden-bell, Computer simulation studies of the structure and dynamics of ions and non-polar solutes in water, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.359, issue.1785, pp.1545-1574, 2001.
DOI : 10.1098/rsta.2001.0865

L. Vrbka, M. Lund, I. Kalcher, J. Dzubiella, R. R. Netz et al., Ion-specific thermodynamics of multicomponent electrolytes: A hybrid HNC/MD approach, The Journal of Chemical Physics, vol.131, issue.15, p.154109, 2009.
DOI : 10.1063/1.3248218

P. G. Kusalik and I. M. Svishchev, The Spatial Structure in Liquid Water, Science, vol.265, issue.5176, pp.1219-1221, 1994.
DOI : 10.1126/science.265.5176.1219

C. J. Fennell, A. Bizjak, V. Vlachy, and K. A. Dill, Ion Pairing in Molecular Simulations of Aqueous Alkali Halide Solutions, The Journal of Physical Chemistry B, vol.113, issue.19, pp.6782-6791, 2009.
DOI : 10.1021/jp809782z

J. J. Molina, J. Dufreche, M. Salanne, O. Bernard, M. Jardat et al., Models of electrolyte solutions from molecular descriptions: The example of NaCl solutions, Physical Review E, vol.80, issue.6, p.65103, 2009.
DOI : 10.1103/PhysRevE.80.065103

M. Patra and M. Karttunen, Systematic comparison of force fields for microscopic simulations of NaCl in aqueous solutions: Diffusion, free energy of hydration, and structural properties, Journal of Computational Chemistry, vol.1, issue.5, pp.678-689, 2004.
DOI : 10.1002/jcc.10417

M. Fyta, I. Kalcher, J. Dzubiella, L. Vrbka, and R. R. Netz, Ionic force field optimization based on single-ion and ion-pair solvation properties, The Journal of Chemical Physics, vol.132, issue.2, p.24911, 2010.
DOI : 10.1063/1.3292575

B. Hess, C. Holm, N. F. Van, and . Vegt, Osmotic coefficients of atomistic NaCl (aq) force fields, The Journal of Chemical Physics, vol.124, issue.16, p.164509, 2006.
DOI : 10.1063/1.2185105

B. Hess, C. Holm, N. Van, and . Vegt, Modeling Multibody Effects in Ionic Solutions with a Concentration Dependent Dielectric Permittivity, Physical Review Letters, vol.96, issue.14, p.147801, 2006.
DOI : 10.1103/PhysRevLett.96.147801

T. Darden, D. York, and L. Pedersen, ) method for Ewald sums in large systems, The Journal of Chemical Physics, vol.98, issue.12, p.10089, 1993.
DOI : 10.1063/1.464397

J. W. Caldwell and P. A. Kollman, Structure and Properties of Neat Liquids Using Nonadditive Molecular Dynamics: Water, Methanol, and N-Methylacetamide, The Journal of Physical Chemistry, vol.99, issue.16, pp.6208-6219, 1995.
DOI : 10.1021/j100016a067

E. C. Meng and P. A. Kollman, Molecular Dynamics Studies of the Properties of Water around Simple Organic Solutes, The Journal of Physical Chemistry, vol.100, issue.27, pp.11460-11470, 1996.
DOI : 10.1021/jp9536209

D. E. Smith and L. X. Dang, Computer simulations of NaCl association in polarizable water, The Journal of Chemical Physics, vol.100, issue.5, pp.3757-3766, 1994.
DOI : 10.1063/1.466363

M. Duvail, A. Ruas, L. Venault, P. Moisy, and P. Guilbaud, Molecular Dynamics Studies of Concentrated Binary Aqueous Solutions of Lanthanide Salts: Structures and Exchange Dynamics, Inorganic Chemistry, vol.49, issue.2, pp.519-530, 2010.
DOI : 10.1021/ic9017085

J. J. Molina, M. Duvail, P. Guilbaud, and J. Dufreche, Coarse-grained lanthanoid chloride aqueous solutions, Journal of Molecular Liquids, vol.153, issue.2-3, pp.107-111, 2010.
DOI : 10.1016/j.molliq.2010.01.007

K. K. Mon, Hard sphere perturbation theory of dense fluids with singular perturbation, The Journal of Chemical Physics, vol.112, issue.7, pp.3245-3247, 2000.
DOI : 10.1063/1.480908

K. K. Mon, Application of hard sphere perturbation theory for thermodynamics of model liquid metals, Physical Review E, vol.63, issue.6, p.61203, 2001.
DOI : 10.1103/PhysRevE.63.061203

K. K. Mon, Hard sphere perturbation theory for thermodynamics of soft-sphere model liquid, The Journal of Chemical Physics, vol.115, issue.10, pp.4766-4769, 2001.
DOI : 10.1063/1.1392359

G. Ciccotti, P. Turq, and F. Lantelme, Cluster approach to ion association reactions in electrolyte solutions, Chemical Physics, vol.88, issue.2, pp.333-338, 1984.
DOI : 10.1016/0301-0104(84)85291-X

J. Dufreche, T. O. White, and J. Hansen, Charged-stabilized colloidal suspensions: counterion condensation and phase diagrams, Molecular Physics, vol.95, issue.11, pp.1741-1759, 2003.
DOI : 10.1016/0301-0104(84)85291-X

J. D. Jackson, Classical Electrodynamics Third Edition, 1998.

H. Eyring, D. Henderson, and W. Jost, Physical Chemistry: An Advanced Treatise, 1971.

P. Attard, Spherically inhomogeneous fluids. II. Hard???sphere solute in a hard???sphere solvent, The Journal of Chemical Physics, vol.91, issue.5, p.3083, 1989.
DOI : 10.1063/1.456931

P. Attard, Spherically inhomogeneous fluids. I. Percus???Yevick hard spheres: Osmotic coefficients and triplet correlations, The Journal of Chemical Physics, vol.91, issue.5, p.3072, 1989.
DOI : 10.1063/1.456930

P. Attard and G. Patey, Hypernetted???chain closure with bridge diagrams. Asymmetric hard sphere mixtures, The Journal of Chemical Physics, vol.92, issue.8, p.4970, 1990.
DOI : 10.1063/1.458556

R. M. Fuoss and L. Onsager, Conductance of Unassociated Electrolytes., The Journal of Physical Chemistry, vol.61, issue.5, pp.668-682, 1957.
DOI : 10.1021/j150551a038

P. Turq, Higher terms in the concentration dependence of self-diffusion coefficients in electrolytes, Chemical Physics Letters, vol.15, issue.4, pp.579-583, 1972.
DOI : 10.1016/0009-2614(72)80376-2

C. Micheletti and P. Turq, Ionic transport in unsymmetrical electrolytes, Journal of the Chemical Society, Faraday Transactions 2, vol.73, issue.6, pp.743-754, 1977.
DOI : 10.1039/f29777300743

J. Dufreche, O. Bernard, S. Durand-vidal, and P. Turq, Analytical Theories of Transport in Concentrated Electrolyte Solutions from the MSA, The Journal of Physical Chemistry B, vol.109, issue.20, pp.9873-9884, 2005.
DOI : 10.1021/jp050387y

URL : https://hal.archives-ouvertes.fr/hal-00173303

G. Jones and M. Dole, THE VISCOSITY OF AQUEOUS SOLUTIONS OF STRONG ELECTROLYTES WITH SPECIAL REFERENCE TO BARIUM CHLORIDE, Journal of the American Chemical Society, vol.51, issue.10, 1929.
DOI : 10.1021/ja01385a012

Y. Marcus, Effect of Ions on the Structure of Water: Structure Making and Breaking, Chemical Reviews, vol.109, issue.3, pp.1346-1370, 2009.
DOI : 10.1021/cr8003828

A. Einstein, Eine neue Bestimmung der Molek??ldimensionen, Annalen der Physik, vol.17, issue.2, pp.289-306, 1906.
DOI : 10.1002/andp.19063240204

A. Einstein, Berichtigung zu meiner Arbeit: ???Eine neue Bestimmung der Molek??ldimensionen???, Annalen der Physik, vol.19, issue.3, pp.591-592, 1911.
DOI : 10.1002/andp.19113390313

U. Balucani and M. Zoppi, Dynamics of the Liquid State, 2003.

H. Mori, Transport, Collective Motion, and Brownian Motion, Progress of Theoretical Physics, vol.33, issue.3, pp.423-455, 1965.
DOI : 10.1143/PTP.33.423

H. Mori, A Continued-Fraction Representation of the Time-Correlation Functions, Progress of Theoretical Physics, pp.399-416, 1965.
DOI : 10.1143/PTP.34.399

T. Geszti, Pre-vitrification by viscosity feedback, Journal of Physics C: Solid State Physics, vol.16, issue.30, 1983.
DOI : 10.1088/0022-3719/16/30/010

B. Bagchi and S. Bhattacharayya, Mode Coupling Theory Approach to the Liquid-State Dynamics, Advances in Chemical Physics. Advances in Chemical Physics, vol.116, 2001.
DOI : 10.1002/9780470141762.ch2

S. Chapman, T. G. Cowling, and C. Cercignani, The Mathematical Theory of Non-Uniform Gases, American Journal of Physics, vol.30, issue.5, 1991.
DOI : 10.1119/1.1942035

M. K. Tham and K. E. Gubbins, Kinetic Theory of Multicomponent Dense Fluid Mixtures of Rigid Spheres, The Journal of Chemical Physics, vol.55, issue.1, pp.268-279, 1971.
DOI : 10.1063/1.1675518

V. M. Lobo, Electrolyte Solutions: Literature Data on Thermodynamic and Transport Properties, vol. I and II, 1984.

N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, and A. H. Teller, Equation of State Calculations by Fast Computing Machines, The Journal of Chemical Physics, vol.21, issue.6, pp.1087-1092, 1953.
DOI : 10.1063/1.1699114

H. Flyvbjerg, Advances in Computer Simulation, Lecture Notes in Physics, vol.501, 1998.

H. Flyvbjerg and H. G. Petersen, Error estimates on averages of correlated data, The Journal of Chemical Physics, vol.91, issue.1, p.461, 1989.
DOI : 10.1063/1.457480

F. B. Hildebrand, Introduction to Numerical Analysis, 1987.

B. Davies, Integral Transforms and Their Applications, Texts in Applied Mathematics, 2010.
DOI : 10.1007/978-1-4684-9283-5

P. Valko and J. Abate, Comparison of sequence accelerators forthe Gaver method of numerical Laplace transform inversion, Computers & Mathematics with Applications, vol.48, issue.3-4, pp.3-4, 2004.
DOI : 10.1016/j.camwa.2002.10.017

J. Abate and P. Valko, Multi-precision Laplace transform inversion, International Journal for Numerical Methods in Engineering, vol.60, issue.5, pp.979-993, 2004.
DOI : 10.1002/nme.995

P. Valko and J. Abate, Numerical Laplace inversion in rheological characterization, Journal of Non-Newtonian Fluid Mechanics, vol.116, issue.2-3, pp.395-406, 2004.
DOI : 10.1016/j.jnnfm.2003.11.001