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Chapter 1

Introduction

Life scientists exhaustively investigate the processes in living cells not

only to progress in curing devastating diseases, like cancer or AIDS,

or to push the limits of aging, but also to understand life itself. To

this end, the greatest challenge is to deal with the complexity of cell-

biological processes, which is a result not just of the large number of

players involved but also of their numerous ways of interacting. The

traditional approach to understanding complex systems is to follow the

reductionist’s agenda, i.e. to separately gather all information about

their constitutes in order to obtain the overall picture. Yet, rather re-

cently, scientists came to the conclusion that is is the interaction of the

players of cell-biological processes in particular that creates the overall

picture. Thus, to understand cell-biological systems, they can only be

regarded as a whole with an emphasis on molecular interplay (Pollard,

2003).

Dynamic systems form the basic metaphor for cell-biological sys-

1
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tems. Instead of static networks describing the interdependencies be-

tween the players, it is the changes in amounts, structures, interaction

capabilities, and locations which have to be observed and understood.

Therefore, the temporal dimension is of significant importance. On

one hand, it allows to simplify the complex overall picture of cell-

biological systems as some options can be eliminated. For example,

the passive motion of molecules (diffusion) is often considered to be

too slow, such that only active forms of transport, i.e. movements un-

der energy consumption, are plausible, see e.g. Krieghoff et al. (2006).

On the other hand, the speed of processes has significant impact on

their actual outcome. Cases are known where the race condition is a

regulatory tool, such as reported by Merino and Yanofsky (2005) for

the transcriptional attenuation at the tryptophan operon.

Concurrency strongly influences the dynamics of cell-biological

processes. In computational theory, concurrent systems consist of pro-

cesses that independently run in parallel but compete for common,

limited resources, see e.g. Bowman and Gomez (2005) for an intro-

duction. A prominent example in databases is given by two customers

of an airline interested in booking the same seat on a single flight.

Processes in cells are mostly performed in parallel and many of them

compete for common, limited resources in the form of molecules in

low abundance. Prominent examples are the simultaneously running

transcription and translation processes in bacteria, see e.g. Ralston

(2008), or the crosstalk in signaling pathways, see e.g. Nagao et al.

(2007).

Non-determinism is inherent to concurrent systems, since processes
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running in parallel do not follow a concrete order of events. Thus, lim-

ited resources may be distributed in different ways, often with signif-

icant impact on the behavior of cell-biological systems. For example,

a protein’s production involves a reading process of the genetic code

(transcription). For transcription to start, a reader (polymerase) has to

bind to a specific region of the DNA, called promoter. As a regulatory

tool, promoters may be occupied by some molecules different from the

polymerase, such that reading cannot start. Thus, the order of binding

events at promoters significantly influences a protein’s abundance and

consequently the intensiveness with which its functions are performed,

see e.g. Alberts et al. (2002).

Probabilities assigned to specific orders of concurrent events form

a restriction on pure non-determinism. In their essence, cell-biological

processes are stochastic since molecules perform Brownian motion,

i.e the direction and velocity of a molecule moving in a fluid is mainly

determined by its collision with others. For a more abstract view disre-

garding the fluid, the location of a molecule at a certain time point can

be described by a stochastic process, see e.g. Lawler (2006). Stochas-

tic processes distinguish a system’s different states and describe the

probability of a system being in a certain state at a certain time, where

time can be of the domain N0 or R+, i.e. discrete or continuous. Thus,

the event of two molecules being at a location sufficiently close to

interact, e.g. to bind, at a certain time point can be associated with

a probability. Gillespie (1977) identified Continuous Time Markov

Chains (CTMC’s) as the basic type of stochastic processes to describe

molecular systems. The essential property of a CTMC is that the prob-
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ability for a system to evolve from state S to state S′ is entirely de-

termined by S - the predecessors of S do not need to be considered.

Whether the stochastic aspects of cell-biological processes have sig-

nificant impact on their outcome, i.e. lead to observable stochastic-

ity, depends on different factors, see e.g. Wolkenhauer et al. (2004).

McAdams and Arkin (1999) point out that a major criterion is that

some players of central importance appear in low abundance.

Recently, the location of proteins was identified to have a major im-

pact on cell-biological processes, see e.g. Kholodenko (2006); Cheb-

otareva et al. (2004); Takahashi et al. (2005). Proteins are major play-

ers in cell-biological processes; they are large molecules with many,

often independent, binding sites, which allow them to interact in a va-

riety of ways. Space in eukaryotic cells is partitioned by intra-cellular

structures, such as membranes. Cell parts completely enveloped by

membranes form compartments, for example the cytosol or the nu-

cleus. As a basic regulatory concept in cells, membranes distinctively

hinder molecules in their movement (semi-permeability). Thus, pro-

teins are not equally distributed in intracellular space. At different

locations, proteins perform different functionality. For example, the

main player β -Catenin of the Wnt/β -catenin signaling pathway has to

move from the cytosol to the nucleus for a cellular response to occur,

see e.g. Miller et al. (1999). Spatial aspects like the location and mo-

tion of molecules are therefore of increasing interest when studying

cell-biological processes.
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1.1 Formal Modeling to Study Cell-

Biological Processes

Formal modeling is a well-established method to investigate the dy-

namics of cell-biological systems, see e.g. Kitano (2002a). The basic

idea is to transform the system under study into a formal representa-

tion, expressed in a modeling formalism, and to analyze the latter often

with the help of computers. The transformation process forces the ex-

isting knowledge base to be structured, often revealing insufficiencies,

contradictions, and ambiguities. The analysis step allows the valida-

tion of theories or predictions about the system under study to be made.

Often, the investigation of cellular processes is regarded as an itera-

tive process alternating between experimental work in the wet-lab and

computational modeling in the dry-lab, see e.g. Kitano (2002b). Al-

though very promising, in practice, projects combining wet-lab work

with computational modeling are challenging to realize, often taking

several years until scientific contributions can be achieved. Asides

from the complexity of cell-biological systems, this is mainly due to

the interdisciplinarity of such projects, since wet-lab experiments are

usually performed by life scientists, whereas modeling is done by com-

puter scientists. Communication between experts of these two scien-

tific fields turns out to be difficult, not only because of discrepancies in

the area-specific knowledge but also since the basic understanding of

research is very different: whereas life scientists aim to gain detailed

knowledge about the different players and aspects of the system un-
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der study, the essential tool for computer scientists to obtain insights

is abstraction.

Reaction rules are the basic paradigm to describe cell-biological

processes on the molecular level. They textually or graphically rep-

resent the chemical reactions occurring between chemical species. In

its basic form, a reaction rule specifies the transformation of a set of

reactants into a set of products, e.g. r1 : Na,Cl −→ NaCl. As discussed

e.g. by (Gillespie, 1977), atomic reactions have at most two reactants,

since at a specific point in time at most two molecules may collide.

Reaction rules of a higher order, as e.g. r2 : H2,H2,O2 −→ H2O,H2O,

allow one to abstract from details which are either not of interest or

unknown, like the order in which the three molecules bind. However,

pure reaction rules are only syntactic constructs, which help to struc-

ture knowledge but do not provide information about the dynamics of

cell-biological processes.

By providing a formal semantics for reaction rules one takes the

step from a purely descriptive formalism that can only be used for

structuring knowledge to a full-fledged modeling language which also

allows studying the dynamics of cell-biological processes. Non-

deterministic transition systems assign state spaces to sets of reac-

tions rules, where solutions form the different states. Thereby, a so-

lution is understood as a multiset of instances of chemical species, e.g.

S = {Na,Na,Cl,Cl} for a solution of two molecules of sort Na and Cl,

respectively. In order to determine the successors and the correspond-

ing transitions of a single state, the given reaction rules are applied to

the members of the solution. Those rules that lead to the same solu-
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tion, i.e. to the same successor state, are combined to a single transi-

tion. For example, applying reaction rule r1 to the members of solution

S yields a single transition to the successor state S′ = {Na,Cl,NaCl}.
Approaches like non-deterministic transition systems that only con-

sider the mere order of events but not any temporal aspects are usually

referred to as qualitative modeling methods.

Semantics in terms of CTMC’s consider stochasticity by assigning a

propensity to each transition. Starting from a state S, the ratio between

the propensity of a single transition leading to state S′ and the propen-

sities of all transitions starting from S captures the probability of S′ to

be the actual successor state. The absolute value of the propensity re-

flects the time that is consumed when reaching S′. Since a semantics in

terms of CTMC’s allows the consideration of time, it qualifies as a basis

for quantitative modeling methods. In order to derive the propensities

of a CTMC, it is presumed that each reaction rule is annotated with a

stochastic rate constant k, e.g. Na,Cl k−→C, which defines the affinity

of a reaction as a frequency, i.e. with a unit 1/time. Based on some

kinetic law, the amounts of molecules in the current solution and the

reaction rate constants are combined to a reaction rate providing the

propensity. As the basic kinetic law, the law of Mass action, specifies

the rate of a reaction as the product of the amounts (or concentrations)

of the reactants, representing the number of different molecular inter-

actions captured by the rule, times the rate constant (assuming distinct

reactants). For illustration consider two chemical species Na and Cl



8

Figure 1.1: A realization of a CTMC based on the kinetic law of Mass

action. It describes the possible states of a chemical solution with two

molecules of species Na and Cl and rate constants k1 = 0.5, k2 = 2.0,

following the two reactions above.

and the following reactions with rate constants k1, k2:

bind : Na,Cl
k1−→ NaCl

decay : NaCl
k2−→ Na,Cl

Assuming a solution S = {Na2,Cl2,NaCl0}, with Xn the multiplicity

n of species X is denoted, and rate constants k1 = 0.5s−1, k2 = 2.0s−1,

the CTMC in Figure 1.1 is obtained. Other kinetic laws exist, e.g.

Michaelis-Menten kinetics or Hill kinetics, which allow to describe

more abstract reactions and thus to deal with missing knowledge, e.g.

missing rate constants. The decision on which kinetic to apply de-

pends on different factors, see e.g. Millat et al. (2007). Aside from

CTMC’s, other formalisms can be used to define semantic objects. The

most prominent example are ordinary differential equations (ODE’s),

which so far form the main approach to studying the dynamics of

cell-biological processes (for an introduction see e.g. Fall et al., 2002;

Klipp et al., 2009).

Gillespie (1977) proposed the stochastic simulation algorithm
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(SSA) to analyze models with CTMC semantics by building timed

traces through their state space. These can be compared to experi-

mental data from the wet-lab or other references, e.g. existing mod-

els, allowing for statements about a model’s validity. Since they

only produce traces, simulation methods can always be applied, even

when faced with very large or infinite state spaces. However, inter-

esting observations may be excluded. Beyond simulation, different

forms of model checking can be used as analysis methods, see e.g.

Kwiatkowska et al. (2004); Fages and Rizk (2007).

Existing languages for the modeling of cell-biological systems sub-

scribe to different modeling styles, i.e. ways in which the systems

under study are described. Rule-based approaches, like the κ-calculus

(Danos and Laneve, 2004; Faeder et al., 2005), allow to directly write

down reaction rules similar to those shown above. By contrast, object-

centered approaches, like the π-calculus (Milner, 1999), rather induce

the view of interacting molecules. Furthermore, population-based

and individual-based approaches are distinguished, whereas the for-

mer rather focus on the amounts of species, e.g. sCCP (Bortolussi and

Policriti, 2008b), the latter consider the distinct states of molecules,

e.g. the κ-calculus or the π-calculus. Notice, that these two classifica-

tions are basically independent dimensions, such that a language may

be object-centered and population-based, e.g. Bio-PEPA (Ciocchetta

and Hillston, 2009), and vice versa, e.g. the κ-calculus. More specif-

ically, the Bio-PEPA approach can be regarded as species-based, since

objects represent species.
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1.2 The π-Calculus to Model Cell-Biological

Processes

Priami et al. (2001) suggested that the π-calculus is a well-suited lan-

guage to model cell-biological processes. Milner et al. (1992) intro-

duced the π-calculus to the field of concurrency theory as a formal-

ism to specify the interaction of concurrent processes based on a non-

deterministic semantics. A stochastic semantics for the π-calculus in

terms of CTMC’s was first developed by Priami (1995), introducing

the stochastic π-calculus, and later refined by Kuttler (2006). The

π-calculus thus naturally covers some of the basic aspects of cell-

biological processes. Regev (2003), Phillips and Cardelli (2007), Kut-

tler et al. (2007), and Leye et al. (2010) proposed stochastic simulators

for the stochastic π-calculus building on the SSA. Regev (2003) and

Kuttler (2006) provided ways of transforming reaction rules into π-

calculus-models. Based on this work, several studies on modeling cell-

biological processes in the π-calculus have been realized so far, see

e.g. Kuttler and Niehren (2006); Mazemondet et al. (2009); Cardelli

et al. (2009); Schaeffer (2008).

The basic idea of mapping reaction rules to π-calculus-models is to

abstract molecules as communicating processes and reactions as com-

munications over channels. For example, the reaction rules bind and

decay above can be specified in the π-calculus as follows:

Na ( ) , bind : k1 ! ( ) . NaCl ( )

Cl ( ) , bind ? ( ) . 0
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NaCl ( ) , decay : k2 ! ( ) . ( Na ( ) | Cl ( ) )

T( ) , decay ? ( ) .T( )

Processes Na(),Cl(), and NaCl() are defined to represent the molecules

of the different chemical species. In the π-calculus, communication al-

ways happens between two processes, one sending ("!") and the other

receiving ("?") on the same channel. Here, processes Na() and Cl()

may interact on channel bind and processes NaCl() and T() on chan-

nel decay , representing the reaction rules bind and decay, respectively.

Process T() is an artifact to provide a communication partner for the

single reactant NaCl() of rule decay. Rate constants are included by

annotating them to the sender, e.g. bind :k1. Reaction products are

given by the successors of an interaction provided behind the operator

"." by both interaction partners. For example, when processes Na()

and Cl() communicate, Na() proceeds with process NaCl() and Cl()

with the idle process 0, denoting its consumption. Thus, on their in-

teraction, processes Na() and Cl(), are replaced by process NaCl(),

which reflects the reaction bind. When process T() and NaCl() inter-

act, T() proceeds recursively, ready to serve as a partner for the next

decay reaction, and NaCl() with Na() | Cl(). Thereby, operator "|"
defines a parallel composition of processes, here of Na and Cl, repre-

senting chemical solutions. Consequently, an initial solution with two

molecules of each species (and an interaction partner for NaCl()) is

specified by:

Na() | Na() | Cl() | Cl() | NaCl() | NaCl() | T()

The parentheses behind process names or sending and receiving ac-
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tions may be filled with lists of channels in order to define abstract

species which are parametric on the reactions they are involved in or to

denote channels that are exchanged on interaction, respectively. Notice

that, since communication in the π-calculus always happens between

two processes, modeling reactions with more than two reactants is not

possible. The decision on which reactants are mapped to senders and

receivers or which reactant is consumed or proceeds with a complex is

arbitrary.

Although useful for modeling reaction networks, the π-calculus has

its limitations when studying the spatial aspect of cell-biological pro-

cesses. On one hand, this regards the description of molecule loca-

tions in compartments. On a basic level, it is necessary to reflect that

molecules are only able to interact if they are in the same compartment.

More advanced modeling also considers the location dependency of

the functionality of proteins and their affinity to interact. To imple-

ment such aspects in the π-calculus means to enumerate the different

species and communication channels with their rate constants for each

location. However, this approach yields models of high complexity in

terms of the number of process definitions and channels when study-

ing proteins which are largely location dependent in their functionality

or when considering a fine-granular spatial resolution. Moreover, con-

sidering space to be a dimension of a continuous domain, it cannot be

applied.

On the other hand, modeling dynamic cell structures like merging

compartments is also problematic in the π-calculus. Merging com-

partments induce a change in global information. By a single event,
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namely the merging, entire sets of molecules are impacted, since the

location of all the molecules in the compartments changes in the sense

that their interaction capabilities are increased, e.g. molecules that

were separated before may now interact, or decreased, e.g. a motion

from one compartment to the other is not possible anymore. For a con-

sistent model state after a compartment merging, it needs to be ensured

that the local information in all processes is updated before any other

interaction may happen. This is challenging since it contradicts the

essential π-calculus idea of locally and independently interacting pro-

cesses. Besides merging compartments, changes in global information

are also caused by dynamics in compartment volumes or temperature.

Expressiveness studies allow making formal statements about the

aspects of the systems under study that can be implemented in a cer-

tain modeling language. Due to its leanness and strong theory, the

π-calculus has been largely used as a basis for expressiveness studies,

see e.g. Versari et al. (2009); Palamidessi (2003); Ene and Muntean

(1999). Depending on the desired result, expressiveness studies in the

π-calculus can be designed in different ways. For example, to show

that one π-calculus has at least the same expressiveness as another,

an encoding from the latter to the first is provided. Therefore, encod-

ings are required to meet certain criteria. The most important one is

that they respect compositionality, i.e. the introduction of a central

unit, which implements a protocol to control all interactions should

be avoided. More formally, if P is a process in some π-calculus and

JPK its encoding, then for parallel compositions it should hold that

JP1 | P2K = JP1K | JP2K. An encoding not preserving compositionality
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violates the essential π-calculus idea of locally and independently in-

teracting processes. Compositionality is also relevant for the modeling

of cell-biological processes, since it supports model refinement, an es-

sential tool in the iterative modeling process. That is, in the absence

of a central interaction protocol, changing the interaction of molecules

requires only limited modifications. Notice that the actual quest is not

to find the most expressive language but the one with optimal expres-

siveness to model cell-biological processes: too little expressiveness is

certainly problematic as significant aspects of the system under study

may not be included in the model or only with a reduced level of detail,

i.e. at a higher abstraction level. In such cases, it is not the modeler

who chooses the abstraction level, as desired, but rather it is dictated

by the modeling language. Too much expressiveness, however, may

lead to error-prone and inaccessible models. Moreover, due to large

state spaces, model analysis is burdened by high computational costs,

often up to an impractical level.

Regev et al. (2004) introduce BioAmbients as a spatial extension

of the π-calculus. It introduces ad-hoc operators that allow locating

processes in possibly nested ambients which represent compartments,

and provides ad-hoc operators for communication of processes in am-

bients, e.g. from an ambient to a contained ambient, and to change am-

bient structures, e.g. for merging ambients. However, ad-hoc operators

are a disadvantage, since each operation that slightly deviates from the

provided ones requires an extension of the language or, strictly speak-

ing, a new language. Furthermore, languages with ad-hoc operators

are hard to compare, which complicates the task of finding a language
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with optimal expressiveness for the modeling of cell-biological pro-

cesses.

Versari (2009) proposed π@ for the modeling of dynamic cell struc-

tures, a π-calculus which avoids ad-hoc operators but introduces two

additional, orthogonal concepts, polyadic synchronization and prior-

ity. Polyadic synchronization extends communication by considering

tuples of channels, e.g. x@y@z. A communication can only happen

if the channel tuples of the sender and the receiver match. This allows

modeling process interactions that can only happen if the interaction

partners are at the same location, e.g. bind@Cytosol :k1!().NaCl() |
bind@Cytosol?().0. Discrete motion, i.e. jumps between two loca-

tions, can be modeled by making process definitions parametric over

locations, e.g. Na(l1 ) , move@l1?(l2 ).Na(l2 ). Priority levels are

assigned to interactions - an interaction with some priority level may

only be executed if no interaction of higher priority is enabled. Their

idea to model dynamic cell structures is to implement protocols that

update the position of each process one by one and assigning them

a higher priority than interactions that represent reactions. Priority is

thus used to ensure that first the local information of all processes is

updated before any interaction happens that may lead to an inconsis-

tent model state. An expressiveness study was performed which indi-

cates that π@ is sufficiently expressive for the modeling of dynamic

cell-structures by providing a compositional encoding of BioAmbients

into π@. Versari and Busi (2009) introduce a stochastic version of

π@, called Sπ@. In addition to dynamic cell-structures, it offers ways

to model changes in compartment volumes. However, the correspond-
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ing operations are hard-wired to the stochastic semantics, which gives

them a certain ad-hoc flavor. Furthermore, the stochastic semantics of

π@ is not defined in terms of CTMC’s but makes use of a short-cut

directly mapping to the SSA.

1.3 Contribution

In this thesis, we introduce reaction constraints for the π-calculus as

a language for the stochastic and spatial modeling of cell-biological

processes. Reaction constraints allow making the occurrence of reac-

tions dependent on the attribute values of their reactants. Attributes of

different types, e.g. Booleans, numbers, or Strings allow the specifica-

tion of properties, like locations of molecules (Na(cyt)), compartment

volumes (Cytosol(10.5)), or the occupation of a protein’s binding sites

(Prot(free,bound)). For instance, with a reaction constraint one may

ensure that the chemical species Na and Cl only interact if they are in

the same compartment:

naclpos: ∀p1,p2 ∈ {cyt,nuc}.

Na(p1),Cl(p2)
if p1=p2 then k else 0.0−−−−−−−−−−−−−−→ NaCl(p1)

Reaction constraints replace the usual rate constant by a function that

computes a reaction’s affinity dependent of the attribute values of the

reactants. By this, they denote the step from reaction rules to rule

schemes. Rule schemes include variables (p1, p2) and thus compactly

represent sets of reaction rules. The example above yields the follow-
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ing two reaction rules:

naclcyt: Na(cyt),Cl(cyt) k−→ NaCl(cyt)

naclnuc: Na(nuc),Cl(nuc) k−→ NaCl(nuc)

In fact, the number of represented reaction rules can grow up to infinity

depending on the domains (types) of variables.

The results of reaction constraints are not restricted to real numbers.

We define a set of successful values which specifies those results that

allow a reaction to occur. In the example above, if the positions p1 and

p2 are equal, the rate constant k is associated with the reaction; other-

wise the constraint returns the value 0.0. Thus, as usual in a stochastic

setting, the set of all reaction rate constants, i.e. the positive real num-

bers, are considered to be successful. By contrast, a study on the mere

non-deterministic order of events may only require a single successful

value, e.g. the Boolean true.

We introduce communication constraints as the counterpart of reac-

tion constraints in the π-calculus. Communication constraints consist

of two parts: the constraint argument at the sender side of the com-

munication and the constraint function at the receiver side. Whether

a communication may occur is determined by applying the constraint

function to the constraint argument. For example, the following pro-

cess definitions model the reaction schema naclpos above, where pro-

cess NaCl() is left unspecified:

Na(p ) , naclpos [ p ] ! ( ) . NaCl ( )

Cl (p ) , naclpos [ λq.if p = q then k else 0 . 0 ] ? ( ) . 0
NaCl ( ) , . . .
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Constraint functions and arguments are annotated in square brackets.

In a solution Na(cyt) | Cl(cyt), applying the function λq.if cyt =

q then k else 0.0 to the argument cyt yields the term λq.if cyt =

cyt then k else 0.0. Assuming an appropriately defined operator

"=", this evaluates to the successful value k enabling the communi-

cation.

We extend the π-calculus with communication constraints, consid-

ering both the non-deterministic and stochastic semantics, and by this

obtain the attributed π-calculus. Based on a modeling study in the at-

tributed π-calculus, we show that communication constraints are use-

ful to model molecule locations, discrete motion, and location depen-

dent reaction affinities. In order to also be able to express changes in

global information, we pursue two orthogonal approaches, priority and

a global imperative store.

Adapting the idea of Versari (2009), we design the attributed π-

calculus, such that its non-deterministic and stochastic semantics con-

sider interactions with different levels of priority. These may be used

to implement prioritized update protocols. To ensure the usefulness of

the attributed π-calculus for the modeling of dynamic cell-structures,

we show that it can express π@. It became apparent during the prepa-

ration of this thesis that polyadic synchronization is not sufficient to

express molecule locations as in BioAmbients. We propose a small

extension of polyadic synchronization, called π[@, 6=], to fix this prob-

lem, which allows checking for inequality of channel names. Then we

develop a compositional encoding from π[@, 6=] to the attributed π-

calculus and prove its correctness with respect to the non-deterministic
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semantics. This shows that the attributed π-calculus has sufficient ex-

pressiveness to model dynamic cell structures and is thus well-suited

for the spatial modeling of cell-biological processes. Since there exists

no stochastic version of π@ which includes priority and a semantics

in terms of CTMC’s, we do not have the basis for a formal expressive-

ness study with respect to the stochastic semantics of the attributed

π-calculus. However, rate constants can be introduced into our encod-

ing in a straightforward way, which lets us conclude that it also works

in the stochastic realm. Based on different modeling studies, we show

that the attributed π-calculus additionally allows the application of dif-

ferent modeling-styles, population-based and species-based styles in

addition to the inherent object-centered, individual-based styles.

Our idea of a global imperative store is to allow communication

constraints to access and change the values of global variables. This

implies twofold: on one hand, values in the store directly impact the

results of communication constraints. On the other hand, communi-

cation constraints can change the values in the store. Changes in vari-

able values caused by a communication constraint are committed to the

global store when the corresponding communication occurs. Simulta-

neously, the constraints of all communications are re-evaluated, intro-

ducing side effects of process interactions. Variables are integrated in

the π-calculus by allowing channels to map to values. Consider, e.g.,

the chemical species Na and Cl to be in separate compartments comp1
and comp2, respectively. As soon as comp1 and comp2 merge, Na and

Cl should be able to react as in the examples above. In π imp(L ), this

can be modeled as follows, where again process NaCl() is left unspec-
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ified:

Global variables

p1 : comp1
p2 : comp2
Process definitions

Na(p ) , naclpos [ p ] ! ( ) . NaCl ( )

Cl (p ) , naclpos [ λq.if (val p) = (val q) then k

else 0 . 0 ] ? ( ) . 0
Merge ( ) , act [ λ_.p1 :=(val p2 ) ; k′ ] ? ( ) . 0
T( ) , act [_] ! ( ) . 0
NaCl ( ) , . . .

Initial solution

Na(p1 ) | Na(p1 ) | Cl (p2 ) | Cl (p2 ) | Merge ( ) | T( )

Global variables, i.e. channels, p1 and p2 represent the positions of

Na and Cl. If their values equal, p1 and p2 refer to the same position.

The constraint function of process definition Cl(p) is slightly modified,

such that operator val is applied to the global variables in order to ac-

cess their values. By this, the current positions of processes Na(p1 )

and Cl(p2 ) are obtained. Initially, the values of p1 and p2 are set to

compartment names comp1 and comp2, respectively, denoting the dif-

ferent locations. The constraint function of process Merge() is defined,

such that on interaction with process T() it executes the compartment

merging. The expression λ_ denotes the function with no parameter,

i.e. the constraint is entirely defined by the constraint function. Ex-

pressions e1;e2 define sequences whose return value is determined by
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e2. In the case of process Merge(), this is considered to be some rate

constant for compartment merging k′. The second part of the sequence

assigns the value of variable p2 to variable p1 . Thus, as a side ef-

fect, communication of processes T() and Merge() sets the positions

of processes Na(p1 ) and Cl(p2 ) to be of equal value, which enables

their interaction.

We extend the non-deterministic and stochastic semantics of the at-

tributed π-calculus, such that global variables are considered, by this

obtaining the imperative π-calculus. Based on a modeling study, we

show the usefulness of the imperative π-calculus for the modeling of

changing compartment volumes. For this, our approach does not rely

on special operators hard-wired to the stochastic semantics as in Sπ@

and thus promises more flexibility. In fact, we underline this point

by showing that in the imperative π-calculus the model can be ex-

tended such that it also considers changes in compartment surfaces.

Furthermore, based on another modeling study, we show that the im-

perative π-calculus also allows the implementation of reactions with

Michaelis-Menten kinetics in a population-based style. This denotes

the first successful attempt to model reactions with Michaelis-Menten

kinetics in a π-calculus-based approach.

We perform a formal expressiveness study which follows the ap-

proach of Versari (2009) to develop a compositional encoding of

BioAmbients. The main idea is to check molecule location with com-

munication constraints. Global variables are used to model changes

in global information. We prove that our encoding is correct with re-

spect to the non-deterministic semantics and by this also show that the
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imperative π-calculus is well-suited for the spatial modeling of cell-

biological processes. Brodo et al. (2007) also proposed a stochastic

semantics for BioAmbients which, however, does neither include pri-

ority nor is defined in terms of CTMC’s, such that we miss a basis for a

formal expressive study with respect to the stochastic semantics. How-

ever, rate constants can be introduced into our encoding in a straight-

forward way, which lets us conclude that it also works in the stochastic

realm.

Since priority and global variables similarly support the model-

ing of changes in global information as resulting from dynamic cell-

structures, a study directly comparing the expressiveness of both con-

cepts is desirable, not only to find a language with an optimal expres-

siveness for the spatial modeling of cell-biological processes but also

for concurrency theory in general. We take a first step in this direc-

tion by developing an encoding of a restricted imperative π-calculus

which may only read but not change global values to the attributed

π-calculus.

The following reports on the technical contributions regarding the

attributed and the imperative π-calculus in detail.

1.3.1 The Attributed π-Calculus

We contribute the attributed π-calculus (π(L )) that extends the π-

calculus with species attributes, communication constraints, and prior-

ity. The parameter L of π(L ), denotes an attribute language L , in

which attributes and constraints are expressed. The attribute language
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is chosen to be a parameter in order to allow the modeling language

to be adapted to the application at hand. The attribute language L

is a λ -calculus (see e.g. Barendregt, 1985). Thus, it supports modu-

larity, since functional constants can be defined and reused to specify

constraints and attributes. For example, relations on locations, like

functions to calculate distances, can be introduced. Despite the ex-

pressiveness of L , simulation performance is not hampered, as first

tests suggest. The attribute language also fixes the set of successful

values. The number of priority levels is specified as a partial order on

the successful values, i.e. as part of L . Thus, although π(L ) is capa-

ble of handling any number of priority levels, it can also be restricted

to a single one, if it turns out to be enough for the application at hand.

We present two operational semantics for π(L ), a non-

deterministic and a stochastic one in terms of CTMC’s. In contrast to

Phillips and Cardelli (2007), their definitions do not rely on any syn-

tactic restrictions, like biochemical forms. The stochastic semantics

is a refinement of the non-deterministic semantics - we show that the

latter permits the same reduction steps as the former. The stochastic

semantics of π(L ) basically adopts the kinetics of the stochastic π-

calculus semantics, i.e. Mass action, with the only difference that, as

shown above, reaction constraints make a reaction’s rate dependent on

the attribute values of the interaction partners.

Based on the SSA, we develop a stochastic simulator for π(L )

which is directly derived from the stochastic semantics and indepen-

dent of the attribute language L . First, we propose a naive version.

Then we show that the basic idea of Phillips and Cardelli (2007) to gain
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more efficiency, that is, grouping interactions by the channels they are

performed on, can also be applied. Performance studies with a first

implementation suggest that by this a practical efficiency is achieved,

despite the high expressiveness of L .

We perform several small modeling studies to show the usefulness

of π(L ) for the modeling of cell-biological processes on different lev-

els of abstractions. On the cellular level the phototaxis of Euglena

serves as an example to detail how location and motion can be modeled

in π(L ). An example on the molecular level regards cooperative en-

hancement, a common regulatory tool in cell-biological processes (see

e.g. Ptashne and Gann, 2001), and depicts how constraints allow sim-

plifying an existing model as proposed by Kuttler and Niehren (2006).

Moreover, we study the applicability of π(L ) to different modeling

styles; in addition to the inherent individual-based style, we also ex-

amine the population-based and the species-based style. A further ex-

ample focuses on how changes in global information can be modeled

in individual-based π(L )-models by using prioritized update proto-

cols.

Our expressiveness results formally underline the usefulness of

π(L ). Encodings of the π-calculus with priorities, both the non-

deterministic and the stochastic versions, are provided and proved to

be correct. Furthermore, encodings of different variants of the π-

calculus (SPiCO (Kuttler et al., 2007), BioSPi (Regev, 2003), SPiM

(Phillips and Cardelli, 2007)) are developed, by this showing that

π(L ) is a unifying approach. As discussed above, we provide an

encoding of an extended version of π@ and its proof of correctness
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to show that the attributed π-calculus is well-suited for the spatial and

stochastic modeling of cell-biological processes.

We propose a simple type system for π(L ). Type systems help

to ensure that model implementations behave correctly. They do so

by providing and checking additional rules on the syntax for proving

the absence of certain erroneous model behaviors (for an introduction

see e.g. Pierce, 2002). This is especially important when developing

modeling languages for experts from domains different from computer

science. In the particular case here, the type system even ensures that

the evaluation of expressions in the attribute language always halts,

since a simply typed λ -calculus (Church, 1940) is obtained.

1.3.2 The Imperative π-Calculus

We introduce the imperative π-calculus (π imp(L )) which is a conser-

vative extension of π(L ) with respect to the non-deterministic and

the stochastic semantics. Syntactically it only differs in that values

are assigned to channels, representing global variables. Consequently,

as in the example above, the attribute language needs to provide ad-

ditional operators to access and change channel values. Semantically,

the main difference is that, due to the global variables, pairs of pro-

cesses and global stores need to be considered. As before π imp(L )

provides priority levels for interactions, where the number of priority

levels is defined as part of L , such that it can be set to one if desired.

We formally underline the conservativeness of π imp(L ) by provid-

ing two encodings. One shows that every process in π(L ) can be
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transformed into a π imp(L )-process just by assigning a dummy value

to all channels. Conversely, considering an attribute language for the

imperative π-calculus without assignments, there exists an encoding

from the imperative to the attributed π-calculus. This shows on the

one hand that in the imperative π-calculus, π(L )-processes can be

defined almost transparently. On the other hand, the only actual differ-

ence between the two calculi is the possibility to change the values of

variables. This observation denotes the first step to a direct comparison

of prioritized interactions and global variables.

As for π(L ), we directly derive a stochastic simulator for π imp(L )

from the stochastic semantics. We show that optimizations based on

the grouping of channels can be applied too, in order to obtain a simu-

lator with practical performance.

We highlight the usefulness of the imperative π-calculus for the

modeling of dynamic cell-structures using the example of water

molecules traveling between two compartments through a membrane.

This phenomenon was first brought up by Versari and Busi (2009) to

show the usefulness of Sπ@. It turned out that the exact behavior can

be only obtained if changes in compartment volumes due to the flow

of water are considered. These changes are the global aspects consid-

ered in the example model here. The developed model confirms the

proposed results. It also takes a step further by considering changes

in the compartment surface which turn out to have an impact on the

results. This is possible due to the higher flexibility of π imp(L ) com-

pared to Sπ@, since in the latter changes in compartment volumes are

hard-wired in the semantics and cannot be extended accordingly.
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Furthermore, we provide an example model of a reaction with

Michaelis-Menten kinetics in a population-based style, denoting the

first successful attempt to represent a Michaelis-Menten reaction in an

approach based on the stochastic π-calculus. Small experiments are

performed to show that the implementation behaves as expected.

As a further key result we present an encoding of BioAmbients into

π imp(L ). Therefore, we introduce a first version of BioAmbients with

a non-deterministic semantics that provides priority levels for inter-

actions. It is shown that BioAmbients with n priority levels can be

expressed in π imp(L ) with n priority levels, i.e. to encode changes

in global information, prioritized update protocols are not necessary,

since only global variables are used.

A simple type system for the imperative π-calculus is omitted here

since there exists no obvious way to obtain one that also allows to type

our encoding of BioAmbients. The reason is that the encoding makes

use of lists of varying size requiring recursive types, see e.g. Pierce

(2002). In any case, due to the imperative store, a simply typed λ -

calculus whose evaluation always halts could not be obtained, see e.g.

Pierce (2002).

1.4 Related Work

Many languages for the modeling of cell-biological processes

have been proposed. To the realm of object-centered languages,

Kwiatkowski and Stark (2008) contribute a continuous version of



28

the π-calculus with semantics in terms of ODE’s. sCCP (stochastic

concurrent constraint programming) is an approach closely related to

π imp(L ) in that it introduces a global store to which constraints can

be added and removed to model the interaction of concurrent pro-

cesses, see Bortolussi and Policriti (2008b). Processes can have at-

tributes with impact on the constraints. However, a direct communica-

tion between processes is not possible. By this sCCP rather subscribes

to a population-based style of modeling. The differences between

π imp(L ) and sCCP are discussed in more detail at the hand of the

Michaelis-Menten model in Section 4.2.2. Ciocchetta and Guerriero

(2009) introduce an extension of Bio-PEPA that allows the considera-

tion of molecule location in compartments, discrete molecule motion,

and compartment volumes. However, dynamic cell-structures are ex-

plicitly omitted. Besides BioAmbients, Beta-binders (Dematté et al.,

2008a), BlenX (Dematté et al., 2008b), and Brane Calculi (Cardelli,

2004) also extend the π-calculus with ad-hoc operators to model dy-

namic cell structures. Guerriero et al. (2007) propose an extension of

Beta-binders explicitly aiming at describing nested but static compart-

ment structures. Cardelli and Gardner (2009) introduce the π-calculus

extension 3π , which fully focuses on describing the geometry of pro-

cesses in 3D space and its evolution over time by matrix operations.

Whereas 3π sticks to the realm of discrete motion, John et al. (2008a)

propose with SpacePi an approach that exclusively considers contin-

uous motion. Processes move through space and may only interact if

they are sufficiently close. Concepts based on continuous motion may

help to reduce the amount of experimental data required to build mod-
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els, see Chapter 5. The extension Labeled SpacePi (Schäfer and John,

2009) provides more flexibility on describing the shape of processes.

Bartocci et al. (2009) introduce the shape calculus, which takes a step

further into this direction.

Due to their closeness to the biological realm, approaches based on

reaction rules gain increasing interest. Different qualitative approaches

have been proposed to model cell-biological processes, e.g. the Path-

way Logic (Eker et al., 2002) or standard Petri-nets (Petri, 1962),

where the latter has been used e.g. by Simao et al. (2005) to study

the tryptophan biosynthesis in Escheria Coli. Extensions of Petri-nets

that provide a stochastic semantics in terms of CTMC’s or a continu-

ous semantics in terms of ODE’s are widely applied, see e.g. Chaouiya

(2007); Hardy and Robillard (2004) for an overview. However, studies

that explicitly aim at investigating the usefulness of Petri-nets for the

spatial modeling of cell-biological processes have not been performed

so far. Pedersen and Plotkin (2010) introduce LBS with a semantics

in terms of Petri-nets. LBS allows to define locations for reactions in

static compartments with fixed volumes. Similarly, Harris et al. (2009)

propose an extension for the κ-calculus that allows placing species into

static compartments with fixed volumes. BIOCHAM (Calzone et al.,

2006) addresses molecule locations and compartment volumes in the

very same way. P systems (Paun, 2000) allow defining reaction rules

that consider molecule locations, discrete molecule motion, and dy-

namic cell-structures. Versari (2007b) propose a π@ encoding of a re-

stricted version of P systems that only allows for reactions with at most

two reactants but conserves all features regarding space. The calcu-
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lus of looping sequences (CLS) by Barbuti et al. (2008) also provides

means of modeling molecule location, discrete molecule motion, and

dynamic cell-structures. However, similar to Sπ@, it misses a well-

defined stochastic semantics in terms of CTMC’s but instead makes use

of a short-cut to the SSA. Moreover, the modeling of location-based in-

teraction affinities is not considered. With the spatial calculus of loop-

ing sequences (sCLS) Barbuti et al. (2009) transfer CLS to the realm

of continuous motion. In Bigraphs (Milner, 2009), models of cell-

biological processes are defined in terms of two independent graphs,

one describing the bonds between proteins and the other nested com-

partments structures. Reaction rules describe the replacement of parts

of the graphs by other graphs. Thus, Bigraphs inherently provides

means to model molecule location, discrete molecule motion, and dy-

namic cell structures. Krivine et al. (2008) introduce a stochastic se-

mantics for Bigraphs in terms of CTMC’s. Therefore, in its motivation

Bigraphs is strongly related to the work presented here, such that a

full comparison of both approaches is desirable. Initial investigations,

which were performed during the preparation of this thesis, revealed

as a first differences that Bigraphs does not consider numerical values

of nodes, such that it appears difficult to express location dependent

affinities or compartment volumes changing their values over time. At

this point it shall be emphasized, however, that in contrast to e.g. the κ-

calculus, LBS, or Bigraphs, in the π-calculus there exists no obvious

way to model reactions with more than two reactants in an individual-

based style.

Besides ODE’s or CTMC’s other formalisms could be used to define
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the semantics of languages for the modeling of cell-biological pro-

cesses. Different textbooks exist that report in detail on how to apply

cellular automata to describe the spatial dynamics of biological sys-

tems, see e.g. Kier (2005); Deutsch and Dormann (2004). Stochastic

and delayed differential equations have been applied e.g. by Saarinen

et al. (2008) to model nerve signaling and by Wawra et al. (2007) to

study the Wnt/β -catenin signaling pathway, respectively. The VCell

project1 makes use of partial differential equations to provide a se-

mantics for a graphical notation that allows describing cell-biological

processes continuously distributed in space. Bortolussi and Policriti

(2008b) propose applying hybrid automata (Alur et al., 1992) to study

the dynamics of cell-biological processes. A semantics in terms of hy-

brid automata is given to Labeled SpacePi to describe the continuous

motion of processes in combination with discrete interaction events

and, by Bortolussi and Policriti (2008a), to the π-calculus to capture

the evolution of molecule amounts. Fisher et al. (2005) and Kam et al.

(2008) use state charts (Harel, 1987) and live sequence charts (Damm

and Harel, 2001) to develop models of the vulval development of C.

elegans. Degenring et al. (2004) and Maus (2008) apply dynDEVS

(Uhrmacher, 2001) and ML-DEVS (Uhrmacher et al., 2007), i.e. dif-

ferent extensions of DEVS (for an introduction see e.g. Zeigler et al.,

2000), to model processes at the tryptophan operon and RNA folding,

respectively.

Beyond the application domain of cell-biological processes, Abadi

1http://www.nrcam.uchc.edu/, 06/22/2010

http://www.nrcam.uchc.edu/
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and Fournet (2001), Baldamus et al. (2005), and Johansson et al.

(2008) consider extended π-calculi with values that can not only be

channels but general data terms, which is similar to the idea of species

attributes. However, apart from synchronization on data terms, ways of

making reaction affinities dependent on attribute values have not been

considered. John et al. (2008a) and Schäfer and John (2009) allow

for species attributes to describe process location, size, and motion.

Communication constraints are restricted to distances.

Besides polyadic synchronization, various notions of constraints on

π-calculus communications have been proposed so far. SPiCO asso-

ciates sets of functions with channels as a weak form of polyadic syn-

chronization, see also Section 3.3. In Beta-binders for two processes

to communicate they need either to be surrounded by a common box

or their surrounding boxes need to have interfaces of compatible types.

Cappello and Quaglia (2009) propose an encoding of this constraint to

polyadic synchronization which, however, does not respect composi-

tionality. Most spatial extensions of the π-calculus constrain commu-

nication, since they need to ensure that the location of two processes

permits interactions. For example in BioAmbients, an interaction be-

tween two processes is only permitted if they are located according to

the declared communication direction. In SpacePi, the distance of two

possible interaction partners needs to fall below a certain threshold.
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1.5 Outline

The thesis is structured in three main chapters. Chapter 2.1 introduces

the π-calculus with priority, including its spatial extension BioAmbi-

ents with priority (Section 2.2). In Chapter 3 the attributed π-calculus

is presented with modeling and expressiveness studies in Sections 3.2

and 3.3, respectively. Chapter 4 regards the imperative π-calculus in-

cluding modeling and expressiveness studies in Sections 4.2 and 4.3,

respectively. For an improved reading, extensive proofs have been

moved to Appendix B.

1.6 Bibliographic Note

The work presented in Chapters 2 and 3 is published: a first version of

the attributed π-calculus, including a stochastic semantics in terms of

CTMC’s, is presented in the following conference article.

John, M., Lhoussaine, C., Niehren, J., and Uhrmacher, A. M. (2008).

The attributed pi-calculus. In Heiner, M. and Uhrmacher, A. M.,

editors, CMSB, volume 5307 of Lecture Notes in Computer Science,

pages 83–102. Springer.

A completely revised version of this article denotes the journal article

below. It describes the π-calculus with priority and the attributed

π-calculus with their syntax, non-deterministic and stochastic se-

mantics, type systems, stochastic simulators, and modeling examples

as presented in this thesis. Most parts of the expressiveness studies
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are also provided there. At the time of publication, the problems

in the encoding of BioAmbients into π@ were not known. Thus,

the extended version of π@, π[@, 6=], and its encoding had to be

developed during the preparation of this thesis. BioAmbients with

priority has been derived from the π-calculus with priority exclusively

for this thesis, too, in order to provide a basis for the expressiveness

studies in the imperative π-calculus.

John, M., Lhoussaine, C., Niehren, J., and Uhrmacher, A. M. (2010).

The attributed pi-calculus with priorities. Transactions on Com-

putaional Systems Biology XII. Special Issue on Modeling Method-

ologies, 5945:13–76. LNCS (Lecture Notes in Bioinformatics),

Springer Berlin/Heidelberg.

Chapter 4 is based on the following conference article, where a first

version of the imperative π-calculus, including a non-deterministic

and stochastic semantics, a stochastic simulator, the osmosis example,

and an encoding from BioAmbients to the imperative π-calculus is

presented. However, the work neither considers priority nor provides

a full proof of the BioAmbients encoding. Thus, for this thesis a

completely revised version of the imperative π-calculus with an im-

proved semantics has been developed. The encoding of BioAmbients

is mostly adopted but its proof is entirely new. The same holds true

for the encodings to show the conservativeness of the imperative

π-calculus.

John, M., Lhoussaine, C., and Niehren, J. (2009). Dynamic compart-

ments in the imperative pi-calculus. In Degano, P. and Gorrieri, R.,
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editors, CMSB, volume 5688 of Lecture Notes in Computer Science,

pages 235–250. Springer.

The concept of modeling Michaelis-Menten kinetics has been pub-

lished in the conference article below, which provides a modeling

study on the cell cycle dependency of the Wnt/β -catenin signaling

pathway.

Mazemondet, O., John, M., Maus, C., Uhrmacher, A. M., and Rolfs,

A. (2009). Integrating diverse reaction types into stochastic mod-

els - a signaling pathway case study in the imperative pi-calculus.

In Rossetti, M. D., Hill, R. R., Johansson, B., Dunkin, A., and In-

galls, R. G., editors, Winter Simulation Conference, pages 932–943.

Institute of Electrical and Electronics Engineers, Inc.

The author of this thesis also contributed to some related work. In

the following workshop article, which is usually listed as a journal

article as it is published in Electronic Notes in Theoretical Computer

Science, SpacePi is presented which denotes a first approach to

introduce species attributes and communication constraints. At-

tributes are restricted to process positions, movement functions, and

radii and constraints to check process distances. Processes move

continuously through space, communication happens only when they

are sufficiently close.

John, M., Ewald, R., and Uhrmacher, A. M. (2008). A spatial exten-

sion to the pi-calculus. Electronic Notes in Theoretical Computer

Science, 194(3):133–148.
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A more general approach also sticking to the realm of continuously

moving processes denotes Labeled SpacePi as presented in the

following conference article. It provides a semantics in terms of

hybrid automata and allows for more general shapes.

Schäfer, A. and John, M. (2009). Conceptional modeling and analysis

of spatio-temporal processes in biomolecular systems. In Kirchberg,

M. and Link, S., editors, APCCM, volume 96 of CRPIT, pages 39–

48. Australian Computer Society.

In the conference article below an extension of DEVS, called ML-

DEVS, is presented that aims at supporting the multi-level modeling

of cell-biological processes. Multi-level modeling approaches enable

the modeler to explicitly reflect the abstraction levels and related

hierarchies of cell-biological systems, see also Section 5.

Uhrmacher, A. M., Ewald, R., John, M., Maus, C., Jeschke, M., and

Biermann, S. (2007). Combining micro and macro-modeling in devs

for computational biology. In Henderson, S. G., Biller, B., Hsieh,

M.-H., Shortle, J., Tew, J. D., and Barton, R. R., editors, Winter

Simulation Conference, pages 871–880. Institute of Electrical and

Electronics Engineers, Inc.

The following conference article provides a general concept for

implementing simulators for the π-calculus and its extensions. It

also includes performance studies but exclusively for the stochastic

π-calculus.
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Leye, S., John, M., and Uhrmacher, A. M. (2010). A flexible architec-

ture for performance experiments with the pi-calculus and its exten-

sions. In Lawson, B., editor, SIMUTools 2010. ICST/IEEE.

Beyond the direct scope of this thesis, work is in progress on the

visual analysis of the simulation results of models in the attributed

π-calculus. π-calculus models represent reaction networks by process

interaction. In order to support domain experts with understanding

simulation results, the goal is to define a formal transformation from

process interaction as in the attributed π-calculus back to reaction

networks, and to develop visualization methods to explore the thus

obtained dynamic, bipartite graphs. A first concept for a visualization

provides the following workshop article.

Schulz, H.-J., John, M., Unger, A., and Schumann, H. (2008). Visual

analysis of bipartite biological networks. In Botha, C., Kindlmann,

G., Niessen, W., and Preim, B., editors, Eurographics Workshop on

Visual Computing for Biomedicine, Delft, Netherlands, pages 135–

142.





Chapter 2

The π-Calculus with Priority

In this chapter, the π-calculus with priority and its spatial extension

BioAmbients with priority is introduced. From the π-calculus with pri-

ority, the attributed π-calculus is derived in Chapter 3. In Section 4.3,

BioAmbients with priority serves as a basis to study the expressiveness

of the imperative π-calculus.

2.1 The π-Calculus with Priority

In the following, first the π-calculus with priority, including a non-

deterministic and a stochastic semantics, is introduced. By provid-

ing a stochastic semantics, a new version of the stochastic π-calculus

is proposed, which, in contrast to Phillips and Cardelli (2007) or the

conference Version of the attributed π-calculus, does not impose any

syntactic restrictions (such as biochemical forms).

39
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2.1.1 Design Decisions

Both priority and stochastic rates express global properties that con-

cern sets of processes. For selecting a communication step with high-

est priority, one has to inspect all potential communication steps. Sim-

ilarly, the probability of a communication step in a stochastic setting

depends globally on all possible communication steps. In both cases,

the difficulty is therefore to reason globally about all possible com-

munication steps in a given population. Based on this idea, the goal

is to find a unified treatment of the π-calculus with priority and the

stochastic π-calculus.

The first design decision is to permit process definitions with re-

cursion and parameters in the syntax (rather than replication). Defi-

nitions are convenient for modeling cellular processes, and therefore

supported by all current simulators for the stochastic π-calculus, see

(Regev, 2003; Phillips and Cardelli, 2007; Kuttler et al., 2007). The

difficulty in the presence of priority is to discover all potential commu-

nication steps in a given process, since some of them may be hidden

by definitions. This problem is solved here by exhaustively applying

process definitions before selecting any communication step. Fortu-

nately, the resulting operational semantics remains pleasantly simple,

and can be generalized properly to the stochastic setting.

The second design choice is to annotate communication prefixes

rather than channels by elements in an ordered set (R,<), which may

either contain priority levels or stochastic rates. Notice that stochas-

tic rates were annotated to channels in the conference version of the
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attributed π-calculus, and that priority was not considered in the non-

deterministic version there. The change toward prefix annotations

simplifies the semantics considerably (and some proof obligations

tremendously). Notice also that priority levels are only annotated to

sender prefixes, rather than to sender and receiver prefixes, since oth-

erwise one has to resolve conflicting priority levels as done by Versari

(2007a). See Section 3.3.3 for further discussions.

2.1.2 Syntax of Processes

Let Bool= {true,false} be the set of Booleans, N the set of natural

numbers starting from 1, N0 = N∪{0}, R+ the set of non-negative

real numbers, and R∞
+ = R+∪{∞}.

The π-calculus with priority is based on a partially ordered set of

priority levels (R,<), an infinite set Vars of channel names x,y ∈ Vars,

and an infinite set of process names A ∈ Proc, that have fixed arities

in N0. At any place, a term A(x1, . . . ,xn) presumes that n is the arity

of A. Tuple notations are broadly used, as for instance x̃ for tuples of

channels. If x̃ = (x1, . . . ,xn) then the length of the tuple is given by

|x̃|= n. Whenever terms A(x̃) occur, it is assumed that the length of x̃

is equal to the arity of A. Substitutions replacing x by y are denoted by

[y/x]. Substitutions [ỹ/x̃] apply to tuples of the same length |ỹ|= |x̃|.
The syntax of the π-calculus with priority is defined in Fig. 2.1.

In addition to channel names x ∈ Vars and priority levels r ∈ R there

are four syntactic categories: prefixes π , processes P, sums M, and

definitions D. A prefix is either a receiver x?(ỹ) or a sender x:r!(z̃). All
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Prefixes π ::= x?(ỹ) receiver

| x:r!(z̃) sender

Sums M ::= π.P prefixed process

| M1 +M2 choice

Processes P ::= M sums

| A(x̃) defined process

| P1 | P2 parallel composition

| (νx)P channel creation

| 0 idle process

Definitions D ::= A(x̃), P parametric process definition

Figure 2.1: Syntax of the π-calculus with channels x, x̃, ỹ, z̃ ∈ Vars and

priority levels r ∈ R.

fv(0) = /0

fv(M1 +M2) = fv(M1)+ fv(M2)

fv(P1 | P2) = fv(P1)∪ fv(P2)

fv(x?(ỹ).P) = {x}∪ (fv(P)\{ỹ})
fv(x:p!(z̃).P) = {x}∪ fv({z̃})∪ fv(P)

fv((νx)P) = fv(P)\{x}
fv(A(x̃)) = {x̃}

fv(A(x̃), P) = fv(P)\{x̃}

Figure 2.2: Free channel names of the π-calculus with priority.
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P | 0 ≡ P

P1 | P2 ≡ P2 | P1

M1 +M2 ≡ M2 +M1

(P1 | P2) | P3 ≡ P1 | (P2 | P3)

(M1 +M2)+M3 ≡ M1 +(M2 +M3)

(νx)(νy)P ≡ (νy)(νx)P

(νx)(P | Q) ≡ (νx)P | Q, if x 6∈ fv(Q)

P≡α Q ⇒ P≡ Q

Figure 2.3: Axioms of the structural congruence of the π-calculus with

priority.

channel names in ỹ shall be pairwise distinct (since they are distinct

formal parameters). A receiver is supposed to receive a tuple of values

for ỹ on channel x, and a sender to send a tuple of values z̃ on channel

x. The priority r of an interaction is determined by the sender. A

term π1.P1 + . . .+πn.Pn is a sum of guarded prefixes, that is denoted

by ∑
n
i=1 πi.Pi or by ∑

n
i=1 Mi, equivalently. A process P may be either a

defined process A(x̃), or a parallel composition P1| . . . |Pn, which is also

denoted by ∏
n
i=1 Pi, or a process (νx)P creating a new channel x with

scope P. If x̃ = (x1, . . . ,xn) then (ν x̃)P abbreviates (νx1) . . .(νxn)P.

Note that the syntax provides empty products but not empty sums, i.e.

if n = 0 then ∏
n
i=1 Pi = 0 is the idle process, while ∑

n
i=1 Pi is undefined.

The free channel names fv(P) are defined as usual in Fig. 2.2. The

three variable binders are ν-binders (νx)P, formal parameters ỹ in in-
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put prefixes x?(ỹ).P, and formal parameters x̃ in definitions A(x̃), P.

Bound variables are said to be named distinctly in P, if 1) no variable is

bound twice in P, 2) no bound variable of P has a free occurrence in P,

and 3) no bound variable of P has a free occurrence in some definition.

It is generally assumed, that the variables in all processes P are named

distinctly, before applying any interaction step to any subprocess of P.

The structural congruence on processes ≡ is the least congruence

satisfying the axioms given in Figure 2.3, i.e. consistent renaming of

bound variables, associativity and commutativity of parallel composi-

tion and summation, the rule of the neutral element of 0 with respect to

parallel composition, and scope intrusion and extrusion for ν-binders.

The prenex normal form of processes is defined as follows:

Definition 1. A process P is said to be in prenex normal form, if

P = (ν x̃)(∏n
i=1 Mi | ∏m

i=1 Ai(x̃)) and all bound names in P are named

distinctly.

Notice that every process P is congruent to some process in prenex

form.

For illustration, consider silent actions delay:r.P. A silent action

becomes active with priority r without any communication partner and

then behaves like P. In the syntax of the π-calculus with priority,

silent actions can be expressed by processes (νdelay)(delay?().P |
delay:r!().0) where a dummy interaction partner sends the empty tu-

ple on local channel delay with priority r and then disappears.
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2.1.3 Non-deterministic Operational Semantics

The operational semantics of the π-calculus with priority is presented

in Figure 2.4. It is defined by a reduction relation → that is based

on three kinds of binary relations, reductions r−→
nd

with priority r ∈ R,

reductions err−→
nd

leading to errors, and reductions
app−−→
nd

applying process

definitions. The label nd distinguishes non-deterministic from stochas-

tic reduction steps, err stands for error and app for application.

A communication step (COM) applies to two parallel sums with

matching prefixes, a sum with a receiver x?(ỹ).P1 +M1 and another

with a sender x:r!(z̃).P2+M2 for the same channel x and with the same

number of arguments |ỹ| = |z̃|. The sender hands over its arguments

z̃ to the receiver and continues with P2, while the receiver replaces its

formal parameters ỹ by z̃ and continues with P1[z̃/ỹ]. All alternative

choices in M1 and M2 are discarded. The communication step may be

performed with priority r contributed by the sender. A communication

error (E.COM) is raised, if two matching prefixes on the same channel

x offer different arities |ỹ| 6= |z̃|. Here, ⊥ denotes an arbitrary erro-

neous expression. A single application step (APP) replaces a defined

process by its definition. It is assumed that there exists a unique def-

inition for all defined processes. Communication and error steps are

closed under structural congruence (STRUC), and permitted under par-

allel composition (PAR) and new binders (NEW). Rule (PRIOR) states

that only communication steps with highest available priority may be

selected by final reduction relation →. The set of all communication

prefixes becomes apparent only after having applied definitions ex-
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Communication and application steps

(COM)
|ỹ|= |z̃|

x?(ỹ).P1 +M1 | x:r!(z̃).P2 +M2
r−→

nd
P1[z̃/ỹ] | P2

(APP)
A(x̃), P

A(ỹ)
app−−→
nd

P[ỹ/x̃]

Program errors

(E.COM)
|ỹ| 6= |z̃|

x?(ỹ).P1 +M1 | x:r!(z̃).P2 +M2
err−→
nd
⊥

Structural rules where β ∈ {err,app}∪R

(PAR)
P1

β−→
nd

P′1

P1 | P2
β−→
nd

P′1 | P2

(NEW)
P

β−→
nd

P′

(νx)P
β−→
nd

(νx)P′

(STRUC)
P≡ P1 P1

β−→
nd

P2 P2 ≡ P′

P
β−→
nd

P′

continued...

Figure 2.4: Rules of the non-deterministic semantics of π-calculus

with priority levels in (R,<).
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Error-free convergence of application

(CONV)
P

app−−→
nd

∗
P′ P′ = (ν x̃)∏

n
i=1 Mi ¬P′ err−→

nd
⊥

P ⇓ P′

Reduction (r ∈ R)

(PRIOR)
P ⇓ P′ P′ r−→

nd
Q ¬∃r1 ∈ R.∃Q1. r < r1∧P′

r1−→
nd

Q1

P→ Q

Figure 2.4: Rules of the non-deterministic semantics of π-calculus

with priority levels in (R,<)(continued).

haustively (CONV). Application may not terminate such as for A() if

defined by A(), A(). Such nonterminating definitions block all poten-

tial subsequent communication steps. Similarly, communication errors

P err−→
nd
⊥ block all communication steps on P.

Example 1. Consider the example of forwarders Fwd(x,y) which re-

ceive some value on channel x and forward it to channel y. Forwarders

can be used to let objects flow along lists, such as RNAP polymerases

along DNA sequences. Two levels of priorities low < high are as-

sumed, where highest priority is given to forwarding actions.

Fwd(x,y), x?(z).(y:high!(z).0 | Fwd(x,y))

First, forwarders are used in order to define a list with two elements,



48

which an object z traverses.

List2() , x1:low!(z).0 | Fwd(x1,x2) | Fwd(x2,x3)

Process List2() can be reduced as follows:

List2() → Fwd(x1,x2) | x2:high!(z).0 | Fwd(x2,x3)

→ Fwd(x1,x2) | Fwd(x2,x3) | x3:high!(z).0

Beside lists, rings or other cyclic data structures can be constructed

from forwarders:

Ring3() , x1:low!(z).0 | x2:low!(z).0 | Fwd(x1,x2) | Fwd(x2,x3) |
Fwd(x3,x1)

One of the two z objects is turning around in the ring forever, while the

other can never enter the ring, since entering actions are given lower

priority.

Ring3() → x1:low!(z).0 | Fwd(x1,x2) | Fwd(x2,x3) |
x3:high!(z).0 | Fwd(x3,x1)

→ x1:low!(z).0 | x1:high!(z).0 | Fwd(x1,x2) |
Fwd(x2,x3) | Fwd(x3,x1)

→ x1:low!(z).0 | Fwd(x1,x2) | x2:high!(z).0 |
Fwd(x2,x3) | Fwd(x3,x1)

→ . . .

2.1.4 Uniqueness of Convergence

To ensure computational feasibility of the π-calculus with priorities, it

needs to be shown that processes converge to a unique result, i.e. for
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all P there exists at most one P′, such that P ⇓ P′. This is fulfilled if the

reduction relation
app−−→
nd

, as it is used in process convergence, is conflu-

ent. Confluence expresses the insignificance of the order of steps of re-

duction relations. Below, the notion of uniform confluence is defined,

which implies strong confluence and thus confluence (Huet, 1980).

Definition 2 (Reformulation of uniform confluence of calculi by

Niehren (2000)). A rewrite relation σ is confluent modulo structural

congruence provided that if (P,ρ)σ(P1,ρ1) and (P,ρ)σ(P2,ρ2) then

(P1,ρ1) ≡ (P2,ρ2) or there exists (P′,ρ ′), such that (P1,ρ1)σ(P′,ρ ′)

and (P1,ρ1)σ(P′,ρ ′).

The reduction relation
app−−→
nd

is uniform confluent and, under the as-

sumption that no cyclic definitions exist, terminates, which allows for

the conclusion that in the π-calculus with priorities convergence yields

unique results.

Lemma 1. The rewrite relation
app−−→
nd

is uniform confluent modulo

structural congruence, irreducible processes are congruent to pro-

cesses (ν x̃)∏
n
i=1 Mi.

Proof. The lemma relies on the assumption that there exists a unique

definition for every defined process, and that the order of application

of these definitions does not matter. In the following, it is first shown

that application terminates on equivalence classes of processes of the

form [(ν x̃)∏
n
i=1 Mi]≡ and then that for a single process it always leads

to the same result.

Claim. Let P = (ν x̃)∏
n
i=1 Pi be a prenex normal form in which all
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bound variables are named distinctly, and such that all Pi are sums or

defined processes. In this case, P
app−−→
nd

P′ if and only if the following

rule applies:

1≤ j ≤ n

Pj = A j(z̃ j) A j(ỹ j), Q j P′ ≡ (ν x̃)(∏n
i=1,i 6= j Pi | Q j[z̃ j/ỹ j])

P
app−−→
nd

P′

Application defines a relation on equivalence classes of processes

modulo structural congruence, such that [P]≡
app−−→
nd

[P′]≡ if P
app−−→
nd

P′.

The above claim shows that application terminates on equivalence

classes of processes of the form [(ν x̃)∏
n
i=1 Mi]≡, since it is assumed

that there exists at least one definition for every defined process.

To see uniform confluence, it is assumed that P
app−−→
nd

P′1 and P
app−−→
nd

P′2, with j1 and j2 being the positions of the respective reduction step

(according to the above rule). If j1 = j2 then P′1 ≡ P′2, since it is as-

sumed that there exists at most one definition for every defined pro-

cess. Otherwise, if j1 6= j2 then P′′ can be set to (ν x̃)(∏n
i=1,i 6∈{ j1, j2}Pi |

Q j1[z̃ j1/ỹ j1] | Q j2[z̃ j2/ỹ j2]).

Proposition 1 (Convergence uniqueness of the π-calculus with priori-

ties). For all processes P there exists at most one class [P′]≡, such that

P ⇓ P′.

Proof. This follows immediately from the confluence result in Lemma

1.
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There exist processes P that do not converge to any P′ since the

application of process definitions does not terminate. The semantics

of the π-calculus with priorities ensures that such processes cannot be

reduced any further, even though they might not contain an immediate

error P err−→
nd
⊥. For instance, consider the process A() with the follow-

ing definition A() , A() that is not well-founded. An implementation

of the π-calculus with priorities may either run into an infinite loop

unfolding the definition of A repeatedly, or report the erroneous cycle.

Thus, application may yield three possible kinds of results: conver-

gence, arity mismatches, and non-termination of application.

Remark 1. If P≡ (ν x̃)∏
n
i=1 Mi and ¬P err−→

nd
⊥ then P≡ P′⇔ P ⇓ P′.

Proof. Suppose that P ≡ (ν x̃)∏
n
i=1 Mi and ¬P err−→

nd
⊥. If P ≡ P′ then

P
app−−→
nd

∗
P′ by definition of reflexivity, such that P ⇓ P′. Conversely,

suppose that P ⇓ P′. By definition of convergence, this implies P
app−−→
nd

∗

P′, which yields P ≡ P′ since [P]≡ is irreducible with respect to
app−−→
nd

by Lemma 1.

2.1.5 Stochastic Operational Semantics

In this section, a stochastic operational semantics for the π-calculus

with priorities is presented, under the assumption that stochastic rates

in R∞
+ are used as priorities with two levels, the lower level for numbers

in R+ and the higher for ∞.

In contrast to most previous approaches, the syntax of processes
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Labeled communication steps (r ∈ R∞
+ and ` ∈ N4)

(COM`)

`= (i1, j1, i2, j2)

i1 6= i2 π
j1

i1 = x?(ỹ) π
j2

i2 = x:r!(z̃) |ỹ|= |z̃|
(ν x̃)∏

n
i=1 ∑

mi
j=1 π

j
i .P

j
i

r−→
`

(ν x̃)(∏n
i=1,i6=i1,i2 ∑

mi
j=1 π

j
i .P

j
i | P

j1
i1 [

ṽ/ỹ] | P j2
i2 )

Markov chain (r,r′ ∈ R+)

(SUM)
P ⇓ P1 ∑

{(r′,`)|P1
r′−→̀P2≡P′}

r′ = r 6= 0 ¬∃`∃P′′.P1
∞−→
`

P′′

P r−→ P′

(COUNT)
P ⇓ P1 n = ]{` | P1

∞−→
`

P2 ≡ P′} 6= 0

P
∞(n)−−→ P′

Figure 2.5: Rules of the stochastic semantics of the π-calculus with

priorities. Except rules (COM) and (PRIOR) all rules of the non-

deterministic semantics are inherited.

remains without change. This means in particular, that stochastic rates

are annotated to output prefixes rather than to channel names as done

by Regev (2003); Phillips and Cardelli (2007); Kuttler et al. (2007), or,

like Priami (1995), to both input and output prefixes.

The stochastic semantics of a process P in the stochastic π-calculus

is a continuous time Markov chain (CTMC). The states of a CTMC are

classes of processes [P]≡. A priori, the state space may be infinite,
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even though only finitely many states may be reachable in many cases.

State transitions P r−→P′ are labeled by propensities r∈R∞
+. If r is finite

then the probability of a reduction step from P to P′ is r/s, where s is

the sum of all propensities r′ of transitions starting in P. If s is infinite

then the transition is impossible, since a transition exists with infinite

rate which has priority.

The probability of a reduction step follows the Chemical Law of

Mass Action. Given a source process P and a target process P′, the

rate of P→ P′ depends on the number of ways in which P may reduce

to P′. For instance, consider P1 = x?().0 and P2 = x:r!().0 for some

rate r ∈ R+. By fixing P = P1 | P1 | P2 and P′ = P1, two possible

interactions of rate r are obtained, yielding transition P 2r−→ P′ where

2r is the reaction rate.

In order to discriminate interactions leading to the same state, rule

(COM`) in Figure 2.5 defines communication steps labeled by posi-

tions ` ∈ N4, where the interaction occurs. Given a prenex normal

form P = (ν x̃)∏
n
i=1 ∑π

j
i .P

j
i , a tuple ` = (ii, j1, i2, j2) defines the pair

of communication prefixes π
j1

i1 .P
j1

i1 and π
j2

i2 .P
j2

i2 . As before, a commu-

nication step can only be applied to senders and receivers on the same

channel. Notation P r−→
`

P′ denotes that there exists a potential interac-

tion at position `, where r is the rate annotated to the sender.

The definition of the rules to obtain the CTMC transitions of a pro-

cess are based on the non-deterministic semantics of the π-calculus

with priorities, replacing rule (PRIOR) by rules (SUM) and (COUNT)

and keeping all others rules. Notice, however, that structural rules do

not apply to communication steps anymore, since they are labeled by
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nd. With this, the order of processes in a parallel composition and of

summands in a summation is fixed, which is necessary to accumulate

a process’ possible interactions based on the labels ` provided by rule

(COM`).

Transitions [P]≡
r−→

nd
[P′]≡ with finite propensities r ∈ R+ are ob-

tained by rule (SUM). First, convergence of P with respect to appli-

cation is tested. If this test fails then no transition is possible. Other-

wise, the unique equivalence class [P1]≡ is computed such that P ⇓ P1.

Second, an arbitrary representative in prenex normal form P1 of this

congruence class is fixed. Third, all pairs (r′, `) of P are computed

such that there exists P2 ≡ P′ and a communication step P1
r′−→
`

P2. Fi-

nally, all such rates r′ are summed up into propensity r. Going back to

the previous example, the two communications P1 | P1 | P2
r−−−−−→

(1,1,3,1)
P1

and P1 | P1 | P2
r−−−−−→

(2,1,3,1)
P1 are obtained, such that P1 | P1 | P2

2r−→ P1 as

expected.

Communication steps with infinite propensities are treated by rule

(COUNT). These are given highest priority as stated already in rule

(SUM). The probability of a reduction P
∞(n)−−→ P′ is n/m where n is

the number of interactions with rate ∞ leading from P to a process

congruent to P′, and m the overall number of interactions with rate

∞ starting from P. Given these probabilities, and provided that no

infinite sequence of immediate transitions is reachable, one can build a

reduction, without immediate transitions, that defines a proper CTMC

and preserves the probabilities of transitions and sojourn times (see

e.g. Kuttler et al. (2007) for details).
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Chemical reactions:

x : A,B 0.5−→ A,C

y : A,C 5−→ A,B

π-calculus definitions:

A , x:0.5!().A+ y:5!().A

B , x?().C

C , y?().B

CTMC with states reachable from A2 | B2 |C1:

Figure 2.6: Example of a CTMC generated by the stochastic semantics

of the π-calculus with priorities.

For illustration, consider a system of two chemical reactions, x :

A,B 0.5−→ A,C and the inverse y : A,C 5−→ A,B whose rate is 10-fold

higher. In Figure 2.6, molecules of species A,B,C are defined as pro-

cesses in the stochastic π-calculus that act according to these chemical

reactions and the CTMC of this chemical system is shown in Figure 2.6.

The stochastic semantics of the π-calculus with priorities does in-

deed properly refine the non-deterministic operational semantics.
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Proposition 2. If the set of priorities (R,<) is equal to (R∞
+,<2),

where <2 defines the usual two levels of priorities (i.e. r <2 ∞ for

all r ∈ R+), then for all processes P,Q:

P→ Q iff (∃r ∈ R+ : P r−→ Q∨∃n ∈ N : P
∞(n)−−→ Q)

Proof. The implication from the right to the left is quite obvious, since

P r−→
`

Q implies P→ Q. The proof of the direction from the left to the

right is based on the following claim that relates communication steps

to labeled communication steps in this direction:

Claim. If P1
r−→

nd
Q and P1 = (νx)∏

n
j=1 ∑

m j
i=1 π

j
i .P

j
i then there exists a

label `= (i1, j1, i2, j2) and a process Q′ such that Q′ ≡Q and P1
r−→
`

Q′.

This follows from a standard analysis of the structural congruence.

Suppose now, that P→ Q holds. In this case, the following rule must

be applicable:

(PRIOR)
P ⇓ P1 P1

r−→
nd

Q ¬∃r1 ∈ R.∃Q1. r < r1∧P1
r1−→
nd

Q1

P→ Q

Without loss of generality, it can be assumed that P1 is in prenex nor-

mal form, since relation r−→
nd

is closed under structural congruence by

rule (STRUC). The second hypothesis and the above claim show that

P1
r−→
`

Q′ for some process Q′, with Q′ ≡Q. The third hypothesis holds

if and only if either r = ∞ or else r ∈ R+ and ¬∃Q1. P1
∞−→
nd

Q1:

• In the case r = ∞, a transition with infinite propensity can be

created:

(COUNT)
P ⇓ P1 n = ]{` | P1

∞−→
`

Q′ ≡ Q} 6= 0

P
∞(n)−−→ Q
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• In the case r ∈ R+, property P1
r−→
`

Q′ shows that

∑
{(r′,`)|P1

r′−→̀Q′≡Q}
r′ 6= 0. Thus a transition of the Markov

chain with finite propensity can be created:

(SUM)
P ⇓ P1 ∑

{`|P1
r′−→̀Q′≡Q}

r′ = r 6= 0 ¬∃`∃Q1.P1
∞−→
`

Q1

P r−→ Q

2.1.6 Type System

In this section, a type system for the π-calculus with priority is pre-

sented, which prevents arity mismatches in communication attempts as

defined by rule (E.COM). Non-immediate errors, like nonterminating

applications of unguarded process definitions are not captured, though.

These can be detected by a simple syntactic cycle check.

Channels are the only values in the π-calculus. In order to exclude

arity mismatches on communication, channel types fix the types of all

arguments that can be communicated:

types τ ::= ch(τ̃)

A channel of type ch(τ̃) may only be used to receive and send values

of types τ̃ .

Example 2. Consider the process P= x:r!(z).z?(y).P1 | x?(y).y:r!().P2.

The arities of the sender and receiver for x coincide in that they



58

both have one argument. After communication, however, P becomes

z?(y).P1 | z:r!().P2, which has an arity mismatch on z. These kinds of

situations should be excluded for well-typed processes. Indeed, the

first subprocess of P is well-typed, considering the following typing

x:ch(ch(τ)),z:ch(τ) for some type τ . The second subprocess of P, re-

quires a typing x:ch(ch()). Both conditions together are unsatisfiable.

In order to capture types, the syntax of the π-calculus is slightly

extended:

typed processes P ::= (νx):τP | . . .
typed process definition D ::= A(x̃ : τ̃), P,with |x̃|= |τ̃|

The rules of the type system are given in Figure 2.7. They make use

of type environments Γ, which map variables x and process definitions

A to types. Environment Γ,x:τ denotes the environment with the same

mappings as Γ, except x, which it maps to τ . In the same way Γ,A:τ̃

denotes Γ changed by mapping A:τ̃ . Notation Γ ` P states that process

P is well-typed in typing environment Γ. Rules (T.SEND) and (T.REC)

check whether channels are used for communication in a correct way.

For processes νx : τP, rule (T.NEW) ensures that P is well-typed in the

typing environment extended by the type τ of the new channel x. By

rules (T.PAR) and (T.SUM), the components of parallel compositions

and summations are inspected separately. Process 0 is always well-

typed. Rule (T.APP) checks whether the types of the arguments of

an application fit the type of the corresponding definition. By rule

(T.DEF), a process definition A(x̃ : τ̃) , P is well-typed if P is well-

typed in the type environment extended by the types τ̃ of parameters
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(T.REC)
Γ ` x:ch(τ̃) Γ, ỹ:τ̃ ` P

Γ ` x?(ỹ).P
(T.NIL)

Γ ` 0

(T.SEND)
Γ ` x:ch(τ̃) Γ ` z̃:τ̃ Γ ` P

Γ ` x:r!(z̃).P

(T.SUM)
Γ `M1 Γ `M2

Γ `M1 +M2
(T.PAR)

Γ ` P1 Γ ` P2

Γ ` P1 | P2

(T.APP)
Γ ` A:τ̃ Γ ` ỹ:τ̃

Γ ` A(ỹ)
(T.NEW)

Γ,x:τ ` P

Γ ` (νx:τ)P

(T.DEF)
Γ ` A : τ̃ Γ, x̃ : τ̃ ` P

Γ ` A(x̃ : τ̃), P
(T.DEFS)

∀D ∈D .Γ ` D

Γ `D

Figure 2.7: Type system for π-calculus with priority.
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x̃. Rule (T.DEFS) states, that a set of process definitions is well-typed

if all its elements are.

Example 3. Consider again processes Fwd(x ,y), List2(), and Ring3()

from example 1:

Fwd(x ,y ) , x ?(z ) . ( y : high ! ( z ) . 0 | Fwd(x ,y ) )

L i s t 2 ( ) , x1 : low ! ( z ) . 0 | Fwd(x1 ,x2 ) | Fwd(x2 ,x3 )

Ring3 ( ) , x1 : low ! ( z ) . 0 | x2 : low ! ( z ) . 0 |
Fwd(x1 ,x2 ) | Fwd(x2 ,x3 ) | Fwd(x3 ,x1 )

Processes List2 and Ring3 are well-typed in environments, where

channel z is given an arbitrary type, say τ = ch(), while process Fwd

must be assigned type (ch(τ),ch(τ)). Furthermore the three channels

x1,x2,x3 that connect the forwarders must be of type ch(τ), too. Valid

type environments Γ for Ring3 thus must contain the following as-

sumptions:

x1:ch(τ), x2:ch(τ), x3:ch(τ), z:τ, Fwd:(ch(τ),ch(τ)), List2:(),

Ring3:()

Proposition 3 (Type safety). Let P be a process in the π-calculus with

priorities and D its set of definitions. If Γ ` P, Γ `D , and P→Q then

Γ ` Q.

The proof works as usual. See the proof of Theorem 1 for a more

general instance.
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Corollary 1 (Error freeness). Let P be a process in the π-calculus with

priorities and D its set of definitions. If Γ ` P, Γ ` D , and P→∗ Q

then ¬Q err−→
nd
⊥.

Proof. Assuming Γ ` P and P→n Q, the proof is by induction on n.

The inductive step follows from Proposition 3. It thus remains to prove

the initial case that is Q≡ P. Assume by contradiction that there exists

some process P0 such that Γ ` P0 and P0
err−→
nd
⊥. As for the proof of

Lemma 1, a standard analysis of the structural congruence shows the

following claim: let P0 ≡ (ν x̃:τ̃)∏
n
i=1 Pi be a prenex normal form in

which all bound variables are named distinctly, and such that all Pi are

sums or defined processes, and ∃ j,k.1≤ j < k ≤ n, Pj = x0?(ỹ).Q1 +

M1, Pk = x0:r!(z̃).Q2 +M2, and |ỹ| 6= |z̃|. From Γ ` P0 follows that

Γ ` (ν x̃:τ̃)∏
n
i=1 Pi. This statement results from a series of applications

of rules (T.NEW) and (T.PAR) and from statements Γ, x̃:τ̃ ` Pi for all

i ∈ {1, . . . ,n}. In particular, it is true that Γ, x̃:τ̃ ` x0?(ỹ).Q1 +M1 and

Γ, x̃:τ̃ ` x0:r!(z̃).Q2 +M2. Therefore, by rules (T.REC) and (T.SEND),

it holds that Γ, x̃:τ̃ ` x0:ch(τ̃), Γ, x̃:τ̃ ` z̃:τ̃ , and Γ, x̃:τ̃, ỹ:τ̃ ` Q1. Thus,

it is true that |z̃|= |τ̃| and |ỹ|= |τ̃| which contradicts |ỹ| 6= |z̃|.

2.2 BioAmbients with Priority

BioAmbients allows locating π-calculus processes in ambients, e.g.

to denote compartments. Ambients can be nested in other ambients

which allows building up spatial, hierarchical structures. Addition-

ally, dynamics in ambient structures can be modeled in the sense that
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ambients may fuse or enter and leave other ambients. Such operations

denote changes in global information, since they can broadly influence

the interaction possibilities of entire sets of processes at once. Among

process algebras, BioAmbients is also established as one of the main

formalisms for the spatial modeling of cell-biological systems. Thus,

it forms a proper basis to study the expressiveness of the imperative

π-calculus, see Section 4.3.2.

In this section, a version of BioAmbients is presented, which is ob-

tained by extending the π-calculus with priority as it is defined above.

It conserves all the features for the spatial modeling of the original

language, as presented by Regev et al. (2004). However, as a major

difference the version presented here provides priority.

In the following, first, in Section 2.2.1, the syntax of BioAmbients

is introduced, followed by the non-deterministic semantics of BioAm-

bients in Section 2.2.2. A stochastic semantics is omitted, as such

seems to be hard to obtain. In fact, Brodo et al. (2007) present a

stochastic semantics for BioAmbients, which, however, is neither de-

fined in terms of CTMC’s (a direct mapping to the SSA is provided),

nor considers priority.

2.2.1 Syntax of Processes

The syntax of BioAmbients is presented in Figure 2.8. The π-calculus

is extended in two ways: first, processes can be engulfed by ambients

denoting locations, e.g. compartments. Second, prefixes are enriched

by a context, which can be either a communication direction or a re-
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Communication d ::= local local

direction | p2c parent to child

| c2p child to parent

| s2s sibling to sibling

Rearrangement c ::= enter enter ambient

capability | exit exit ambient

| merge merge ambients

Prefixes π ::= d x?(ỹ) receiver

| d x:r!(x̃) sender

| c x? rearrangement accepter

| c x:r! rearrangement initializer

Sums M ::= π.P prefixed process

| M1 +M2 choice

Processes P ::= [P] ambient

| M sums

| A(x̃) defined process

| P1 | P2 parallel composition

| (νx)P channel creation

| 0 idle process

Definitions D ::= A(x̃), P parametric process definition

Figure 2.8: Syntax of BioAmbients with channels x, x̃, ỹ ∈ Vars and

priorities r ∈ R.
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arrangement capability. Communication directions describe the ways

in which processes in ambient structures can communicate. They are

depicted in Figure 2.11, columns (2) and (3), where boxes represent

ambients, which are labeled with names a1,a2, p for illustration. The

context local allows for the communication of two processes in the

same ambient. A process in a parent ambient can send to a process in

a child ambient in the p2c context. The symmetric case is covered by

the context c2p. Processes in sibling ambients, i.e. in ambients which

are contained by the same ambient, can interact in the s2s context.

Rearrangement capabilities allow for dynamic changes in the ambient

structure. They are depicted in Figure 2.11, column (1). By merge two

sibling ambients merge, such that the processes in the siblings end up

in the same ambient and can perform local communication. On enter

the ambient of the sender enters the ambient of the receiver, such that

the former becomes the child ambient of the latter which allows them

to perform c2p communication. The context exit denotes the sym-

metric case, which results in two sibling ambients.

The set of free names basically remains as before, only considering

ambients in addition, whose free names are defined by their content.

The context of communication and rearrangement prefixes is ignored,

see Figure 2.9.

The rules of the structural congruence of BioAmbients are pre-

sented in Figure 2.10. Compared to the π-calculus only two additional

rules are needed, one stating that an empty ambient is congruent to the

idle process 0 and the other one that ν-operators can be freely moved

from the outside to the inside of ambients and vice versa.
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fv(0) = /0

fv([P]) = fv(P)

fv(M1 +M2) = fv(M1)+ fv(M2)

fv(P1 | P2) = fv(P1)∪ fv(P2)

fv(c x:r!.P) = {x}∪ fv(P)

fv(c x?.P) = {x}∪ fv(P)

fv(d x?(ỹ).P) = {x}∪ (fv(P)\{ỹ})
fv(d x:r!(z̃).P) = {x}∪{z̃}∪ fv(P)

fv((νx)P) = fv(P)\{x}
fv(A(x̃)) = {x̃}

fv(A(x̃), P) = fv(P)\{x̃}

Figure 2.9: Free channel names of BioAmbients.
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[0] ≡ 0
P | 0 ≡ P

P1 | P2 ≡ P2 | P1

M1 +M2 ≡ M2 +M1

(P1 | P2) | P3 ≡ P1 | (P2 | P3)

(M1 +M2)+M3 ≡ M1 +(M2 +M3)

(νx)(P | Q) ≡ (νx)P | Q, if x 6∈ fv(Q)

(νx)(νy)P ≡ (νy)(νx)P

[(νx)P] ≡ (νx)[P]

P≡α Q ⇒ P≡ Q

Figure 2.10: Rules of the structural congruence of BioAmbients.
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Figure 2.11: Communication directions and rearrangement capabilities of BioAmbients.
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2.2.2 Non-deterministic Operational Semantics

The non-deterministic semantics of BioAmbients with priorities is pre-

sented in Figure 2.11. It builds upon the non-deterministic semantics

of the π-calculus with priorities in that it adopts the rules for process

application and convergence. The usual structural rules are extended

by rule (AMB), which allows for reduction steps in ambients. Rule

(CONV) for process convergence makes use of an additional predicate

C(P), which recursively checks that the nested ambient structure of P

does not contain any defined processes. As before, it is assumed that

all bound variables are named distinctly before applying any reduction

step.

Rules to handle interaction prefixes form the major extension to the

π-calculus syntax and follow the ideas of communication directions

and rearrangement capabilities in nested ambient structures as depicted

in Figure 2.11. Rules (COMlocal), (COMp2c), (COMc2p), and (COMs2s)

allow processes to communicate if they are located in the same ambi-

ent, from a surrounding to a child ambient, from a surrounded ambient

to the parent ambient, and between two ambients that are located in

the same ambient, respectively. As before, communication may only

happen if sender and receiver perform on the same channel and pro-

vide the same number of arguments. If so, the formal parameters of

the receiver are replaced by the actual parameters of the sender in the

receiving process. Rules (ENTER), (EXIT), and (MERGE) enable an

ambient to enter another ambient, which has to be located in the same

ambient, to exit its surrounding ambient, resulting in two ambients
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Application and Interaction steps

(APP)
A(x̃), P

A(ỹ)
app−−→
nd

P[ỹ/x̃]

(COMlocal)
|ỹ|= |z̃| P′ = P1[z̃/ỹ] | [P2 | P′2]

c2p x?(ỹ).P1 +M1 | [c2p x:r!(z̃).P2 +M2 | P′2]
r−→

nd
P′

(COMc2p)
|ỹ|= |z̃| P′ = P1[z̃/ỹ] | [P2 | P′2]

c2p x?(ỹ).P1 +M1 | [c2p x:r!(z̃).P2 +M2 | P′2]
r−→

nd
P′

(COMp2c)
|ỹ|= |z̃| P′ = [P1[z̃/ỹ] | P′1] | P2

[p2c x?(ỹ).P1 +M1 | P′1] | p2c x:r!(z̃).P2 +M2
r−→

nd
P′

(COMs2s)

|ỹ|= |z̃| P′ = [P1[z̃/ỹ] | P′1] | [P2 | P′2]
[s2s x?(ỹ).P1 +M1 | P′1] |

[s2s x:r!(z̃).P2 +M2 | P′2]
r−→

nd
P′

(ENTER)
P′ = [P1 | P′1 | [P2 | P′2]]

[enter x?.P1 +M1 | P′1] | [enter x:r!.P2 +M2 | P′2]
r−→

nd
P′

continued...

Figure 2.12: Rules of operational semantics of BioAmbients with pri-

orities in (R,<).
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(EXIT)
P′ = [P1 | P′1] | [P2 | P′2]

[exit x?.P1 +M1 | P′1 | [exit x:r!.P2 +M2 | P′2]]
r−→

nd
P′

(MERGE)

P′ = [P1 | P′1 | P2 | P′2]
[merge x?.P1 +M1 | P′1] |

[merge x:r!.P2 +M2 | P′2]
r−→

nd
P′

Program errors

(E.COM)

|ỹ| 6= |z̃|
[. . . [[d x?(ỹ).P1 +M1 | P′1] | P′2] . . . | P′n] |

[. . . [[d x:r!(z̃).P2 +M2 | P̂1] | P̂2] . . . | P̂n]
err−→
nd
⊥

Structural rules where β ∈ {err,app}∪R

(PAR)
P1

β−→
nd

P′1

P1 | P2
β−→
nd

P′1 | P2

(AMB)
P

β−→
nd

P′

[P]
β−→
nd

[P′]

(NEW)
P

β−→
nd

P′

(νx)P
β−→
nd

(νx)P′
(STRUC)

P≡ P1 P1
β−→
nd

P2 P2 ≡ P′

P
β−→
nd

P′

continued...

Figure 2.12: Rules of the operational semantics of BioAmbients with

priorities in (R,<)(continued).
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Error-free convergence of application

C(P) =


true, if P = ∏

n
i=1 Mi

∧m
i=1C(Pi), if P = ∏

n
i=1 Mi |∏m

i=1[Pi]

false, else

(CONV)
P

app−−→
nd

∗
P′ P′ = (ν x̃)P1 C(P1) ¬P′ err−→

nd
⊥

P ⇓ P′

Reduction (r′ ∈ R)

(PRIOR)
P ⇓ P1 P1

r−→
nd

P′ ¬∃r′ ∈ R. r < r′∧P1
r′−→
nd

P2

P→ P′

Figure 2.12: Rules of the operational semantics of BioAmbients with

priorities in (R,<)(continued).

that are surrounded by the same ambient, and two ambients, which are

located in the same ambient, to become one. Communication and re-

arrangement reductions are equally annotated with priority r in order

to select a reduction with highest priority by rule (PRIOR), as before.

A single error rule (E.COM), reduces a process P to erroneous process

⊥, if it contains unguarded communication attempts on some chan-

nel with different numbers of arguments. Notice, that this happens

independently of the ambient structure, i.e. any false communication

attempt is detected even if not located in neighboring ambients.
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Clearly, processes in BioAmbients with priority also converge to a

unique result.

Proposition 4 (Convergence uniqueness of BioAmbients with priori-

ties). For all process P there exists at most one class [P′]≡, such that

P ⇓ P′.

Proof. The proof is the same as for the π-calculus with priorities,

building upon a lemma that states that
app−−→
nd

is uniform confluent mod-

ulo structural congruence.



Chapter 3

The Attributed π-Calculus

This chapter introduces the attributed π-calculus with its attribute lan-

guage, syntax, non-deterministic and stochastic semantics, and sim-

ple type system (Section 3.1). Modeling and expressiveness studies in

Sections 3.2 and 3.3, respectively, show the usefulness of the attributed

π-calculus for the spatial and stochastic modeling of cell-biological

systems. Section 3.4 presents a stochastic simulator for the attributed

π-calculus with a feasible computational complexity as indicated by

the results of first performance experiments provided in Section 3.5.

3.1 Language

In this section the attributed π-calculus π(L ) is introduced, by extend-

ing the π-calculus with priority with richer sets of values and expres-

sions in some call-by-value λ -calculus L that is called the attribute

73
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language L . Generalized senders and receivers feature λ -expressions,

which allow defining constraints on communication steps, subsuming

priority levels and stochastic rate constants. As before, both a non-

deterministic and a stochastic operational semantics are presented (ex-

cept that the set of successful values must be R∞
+ with 2 levels of pri-

ority in the stochastic case).

In the following, first the idea of communication constraints is re-

called and basic design decisions are explained in Section 3.1.1. At-

tribute languages, syntax, and non-deterministic and stochastic seman-

tics of π(L ) are introduced in Sections 3.1.2, 3.1.3, 3.1.4, and 3.1.6,

respectively. In Section 3.1.5 it is shown that the convergence of at-

tributed processes produces unique results. A type system for π(L )

is developed in Section 3.1.7, by refining the type system of the π-

calculus, such that it considers the types of constraint functions and

arguments.

3.1.1 Idea of Communication Constraints

For illustration, consider proteins Prot(x), which may bind to oper-

ators Op(y) only if they have equal types x = y . Expressing such

constraints in an object-centered languages such as the π-calculus

is difficult, since it concerns the attribute values of two independent

processes. The solution proposed for the attributed π-calculus is to

use functions such as λx .x=y on the receiver side, and to apply them

to the value of x on the sender side:
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Prot (x ) , bind [ x ] ! ( ) . 0
Op(y ) , bind [ λx . x= y ] ? ( ) . OpBound (y )

These definitions allow for the following reduction steps for arbi-

trary values b, since the application (λx .x=b)b evaluates to Boolean

true: Prot(b) | Op(b)→ OpBound(b) In order to permit richer sets

of values and constraints, such as, e.g., arithmetic values and con-

straints, call-by-value λ -calculi are used as attribute languages L . The

choice of constants is kept parametric, in order to avoid reinventing in-

dependent calculi for the many useful choices in practice. The seman-

tics of π(L ) is defined such that they are independent of the concrete

choice of the attribute language.

3.1.2 Attribute Languages

An attribute language is a functional programming language that pro-

vides expressions by which to compute values. Expressions are built

from constants for numbers, functions, relations, or biological enti-

ties (such as 0, 1, +, ∗, ≥, fst, snd, repressor, . . .) and from vari-

ables x,y ∈ Vars, which may in particular take the role of communi-

cation channels. Whenever facing ambiguities, constants are printed

in courier, e.g. first, and variables in italic font, e.g. bind . The set

of real numbers is denoted by R, where R+ is restricted to positive

values and R∞ includes the value ∞. The set N contains all natural

numbers, and N0 zero in addition. Boolean values are given by the set

Bool= {true,false}.
As an example, consider the expression (snd x) + (fst y) in which



76

fst, snd, and + are constants, while x and y are variables. In the

following process definition, this expression defines a stochastic rate

constant or a priority level: A(x ,y ,z) , z[(snd x) + (fst y)]!().P.

An attribute language with variables in Vars is a tuple L =

(Consts,⇓,R,<), that contains a set of constants c∈Consts, a big-step

evaluator ⇓ for λ -expressions with constants, pairs, and conditionals,

and a partially ordered set (R,<) of successful values, that enables

communication steps. More precisely, the first component Consts is a

finite set that fixes the constants of a call-by-value λ -calculus. The set

of expressions e∈ Exprs of L is defined as the set of all λ -expressions

with constants in c ∈ Consts and variables in x ∈ Vars. The set of val-

ues v ∈ Vals of L is the subset of all values of this λ -calculus.

c ∈ Consts ::= false | true | fst | snd | . . .
v ∈ Vals ::= x | c | λx.e | 〈v1,v2〉

e ∈ Exprs ::= v | e1e2 | 〈e1,e2〉 | if e then e1 else e2

As usual, λ -expressions provide abstractions λx.e and applications

e1e2 for specifying function definitions and function application. The

set of constants Consts is assumed to contain the Booleans true and

false, and pair projections fst and snd. There also exist expressions

for pairs 〈e1,e2〉 and Boolean conditionals if e then e1 else e2.

The third component is a set R⊆ Vals of successful values enabling

communication steps, such as priorities or stochastic rate constants.

The fourth component < is a partial order on successful values R that

defines priority levels. The last component of L is a big-step evalua-

tor for λ -expressions, i.e. a partial function ⇓ : dom(⇓)→ Vals from
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(V)
v ∈ Vals

v ⇓ v
(FUN)

e1 ⇓ λx.e′1 e2 ⇓ v′ e′1[v
′/x] ⇓ v

e1e2 ⇓ v

(PAIR)
e1 ⇓ v1 e2 ⇓ v2

〈e1,e2〉 ⇓ 〈v1,v2〉
(SELECT)

e ⇓ 〈v1,v2〉
fst e ⇓ v1 snd e ⇓ v2

(COND1)
e ⇓ true e1 ⇓ v1

if e then e1 else e2 ⇓ v1

(COND2)
e ⇓ false e2 ⇓ v2

if e then e1 else e2 ⇓ v2

Figure 3.1: Big-step evaluator of call-by-value λ -calculus with pairs

and conditionals.

(EQ1)
e1 ⇓ v e2 ⇓ v v ∈ Vars∪Consts

e1=e2 ⇓ true

(EQ2)
e1 ⇓ v1 e2 ⇓ v2 v1 6= v2 ∈ Vars∪Consts

e1=e2 ⇓ false

(+N)
e1 ⇓ n1 e2 ⇓ n2 n1 +N n2 = n

e1 + e2 ⇓ n

Figure 3.2: Additional rules of big-step evaluator of the attribute lan-

guage λ (N0,+,=)<1 .



78

λ -expressions in a domain dom(⇓)⊆ Exprs to values. It can be under-

stood as a black box algorithm that evaluates all expressions to values

or failure, in case of program errors or non-termination. Instead of

⇓(e) = v the notation e ⇓ v is used, where v is called the value of e.

It is assumed that the big-step evaluator satisfies the usual rules of

the call-by-value λ -calculus with conditionals in Figure 3.1. Rule (V)

states that all values evaluate to themselves. Rule (FUN) defines the

standard meaning of call-by-value function application. It says that

the value of an application e1e2 is obtained by evaluating e1 to some

function λx.e′1 and e2 to some value v′, and then returning the value of

e′1[v
′/x]. Rule (PAIR) states that the value of a pair is the pair of val-

ues of its components (as standard in call-by-value languages). Rule

(SELECT) states the usual meaning of pair selectors. Rule (COND1)

and (COND2) defines the semantics of conditionals such that only the

needed branch is evaluated. For richer attribute languages with further

constants, such as +, *, or a call-by-value fixed point operator, further

rules need to be added. This is possible, since the big-step evaluator is

kept abstract.

As a first example, consider the attribute language λ (R)< for some

partially ordered set (R,<) of priority levels. Set R contains the only

successful values, which are ordered according to <. The big-step

evaluator remains unchanged, since no function constants are added.

A second example forms the attribute language λ (N0,+,=)<1 ,

where the call-by-value λ -calculus is extended by constants for natu-

ral numbers with 0 and addition +. The successful values are nonzero

natural numbers and there is a single level of priority, fixed by the
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empty partial order that is denoted by <1. Constant = defines equal-

ity on all constants and variables, i.e. on Booleans, natural numbers,

channel names, and the function constants. The required extensions of

the big-step evaluator are given in Figure 3.2. Notice that addition and

equality are treated as curried binary functions. Infix notation is freely

used, i.e. e1+e2 instead of (+ e1) e2, and respectively, e1=e2 instead

of (= e1) e2.

As a third example, consider the attribute language λ (R∞
+)<2 ,

whose successful values are the stochastic rate constants in R∞
+. There

are two levels of priority, lower priority for all positive real numbers in

R+ and higher priority for ∞. The obvious order that introduces these

two levels of priority is denoted with <2.

Further extensions of the attribute language might be useful in var-

ious applications, such as n-tuples (beyond pairs), lists, or case state-

ments, but cannot be obtained just by adding new constants, since they

require new forms of expressions and values. For the sake of simplic-

ity, these shall be omitted here.

Values of expressions may be undefined, such that for some expres-

sions e there exists no value v with e ⇓ v, due to two possible reasons.

The first reason is the occurrence of programming errors, like division

by 0, or type errors, like sending or receiving on values, which are

no channels. The second reason is non-termination, which may arise

in an untyped setting or in rich attribute languages with fixed point

operators.

In Section 3.1.7, a type system for the attributed π-calculus is pre-

sented, which prevents type errors. If no constants are added to the
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Prefixes π ::= e1[e2]?(x̃) receiver

| e1[e2]!(ẽ) sender

Sums M ::= π.P guarded process

| M1 +M2 choice

Processes P ::= M sums

| A(ẽ) defined process

| P1 | P2 parallel composition

| (νx)P channel creation

| 0 empty solution

Definitions D ::= A(x̃), P parametric process definition

Figure 3.3: Syntax of π(L ), where x, x̃ ∈ Vars, and e1,e2, ẽ ∈ Exprs.

attribute language, it even excludes non-termination. For more gen-

eral attribute languages, however, type systems may neither exclude

all program errors (e.g. division by 0) nor ensure termination (e.g.

fixed point operators).

3.1.3 Syntax of Processes

Let L be an attribute language over some infinite set of variables x ∈
Vars, with expressions e∈Exprs and values v∈Vals. The syntax of the

attributed π-calculus, π(L ), is defined in Figure 3.3. Compared to the

π-calculus, variables x of various types are used instead of just channel

names (which correspond to variables of channel type), expressions
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e are permitted in all non-binding positions, where previously only

channel names were allowed, and priorities “:r” in send prefixes and

the corresponding receive prefixes are extended to expressions “[e]”.

Receiver prefixes thus have the form e1[e′1]?(x̃) and sender prefixes the

form e2[e′2]!(ẽ). Prefixes in which e1 respectively e2 do not evaluate to

channels are erroneous. The application e′1e′2 imposes a constraint on

the ability to communicate, in addition to that e1 and e2 must evaluate

to the same channel. Communication is permitted only if e′1e′2 ⇓ v for

some successful value v ∈ R. This value then fixes the priority or the

stochastic rate constant of a communication step.

For illustration, consider three instances of the attributed π-calculus

with different attribute languages. For the first example, take the cal-

culus π(λ (R)<) whose attribute language is a λ -calculus with priority

levels. The second example is π(λ (N0,+,=)<1) which provides nat-

ural numbers and defines addition and equality. The third example is

π(λ (R∞
+)<2), where λ -expressions can be used in order to compute

priorities on two levels.

For example, consider process definitions in π(λ (N0,+,=)<1),

which express the following rule schema that compactly represents an

infinite set of chemical reaction rules:

react: ∀x ,y ∈ N A(x), B(y)
x + y−−−→ A(x + 1), B(y)

A(x ) , react [ x ] ! ( ) .A(x + 1)

B(y ) , react [ λx .x + y ] ? ( ) .B(y )

The process A(2) | B(5) may communicate on channel react and

become A(3) | B(5), since the constraint function λx .x + 5 applied to
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the constraint argument 2 yields the successful value 7. More formally,

this number can be computed by evaluating the interaction constraint

(λx.x+5)2 via (FUN), (V), and (+N) as follows, where v f = λx.x+5:

v f ∈ Vals

v f ⇓ v f

2 ∈ Vals

2 ⇓ 2

2 ∈ Vals

2 ⇓ 2

5 ∈ Vals

5 ⇓ 5 2+N 5 = 7

2+5 ⇓ 7

(λx.x+5)2 ⇓ 7

Free variables fv(P) are defined as before, except that it is now neces-

sary to additionally account for free variables fv(e) in λ -expressions e,

i.e. those occurring out of the scope of all λ -binders in e:

fv(A(ẽ)) = fv(ẽ)

fv(e1[e2]?(ỹ).P) = fv(e1)∪ fv(e2)∪ (fv(P)\{ỹ})
fv(e1[e2]!(ẽ).P) = fv(e1)∪ fv(e2)∪ fv(ẽ)∪ fv(P)

Bound variables bv(P) are defined as before, except that λ -binders in

expressions e ∈ Exprs are included too. The structural congruence on

processes ≡ remains unchanged, except that α-conversion becomes

applicable to bound variables in λ -expressions.

3.1.4 Non-deterministic Operational Semantics

The non-deterministic operational semantics of the attributed π-

calculus with priorities is given by the rules in Figure 3.4 and inherits

the convergence and reduction rules and the structural rules of the π-

calculus with priority in Figure 2.4. The new rules always evaluate
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Communication and application steps

(TUP)
∧n

i=1ei ⇓ vi

(ei)
n
i=1 ⇓ (vi)

n
i=1

(APP)
ẽ ⇓ ṽ A(x̃), P

A(ẽ)
app−−→
nd

P[ṽ/x̃]

(SEND)
e1 ⇓ x e2 ⇓ v2 ẽ ⇓ ṽ

e1[e2]!(ẽ) ⇓ x[v2]!(ṽ)
(REC)

e1 ⇓ x e2 ⇓ v2

e1[e2]?(ỹ) ⇓ x[v2]?(ỹ)

(COM)
π1 ⇓ x[v1]?(ỹ) π2 ⇓ x[v2]!(ṽ) v1v2 ⇓ r ∈ R |ṽ|= |ỹ|

π1.P1 +M1 | π2.P2 +M2
r−→

nd
P1[ṽ/ỹ] | P2

Program errors

(E.PREF)
¬∃π ′.π ⇓ π ′

π.P+M err−→
nd
⊥

(E.COM)
π1 ⇓ x[v1]?(ỹ) π2 ⇓ x[v2]!(ṽ) |ỹ| 6= |ṽ|

π1.P1 +M1 | π2.P2 +M2
err−→
nd
⊥

(E.CONSTR)
π1 ⇓ x[v1]?(ỹ) π2 ⇓ x[v2]!(ṽ) ¬∃v.v1v2 ⇓ v

π1.P1 +M1 | π2.P2 +M2
err−→
nd
⊥

Figure 3.4: Non-deterministic operational semantics of π(L ). Addi-

tionally, the convergence and reduction rules and the structural rules

of the π-calculus with priorities in Figure 2.4 are inherited.
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expressions to values before applying communication or application

steps (COM) and (APP). This is done by using the big-step evaluator of

the attribute language according to axioms (SEND), (REC), and (TUP).

Notice that evaluation of expressions may get stuck – in contrast to the

pure π-calculus with priorities. For instance, an application A(ẽ) gets

stuck if the evaluation of one of the expressions in ẽ does not succeed.

In this case, application does not converge, so that communication gets

blocked.

The communication rule (COM) permits receivers x[v1]?(ỹ).P1 and

senders x[v2]!(ṽ).P2 to interact only if the expression v1v2 evaluates to

a successful value v1v2 ⇓ r ∈ R. This value defines the priority level of

the communication step. Communication steps perform substitutions

[ṽ/ỹ] replacing variables by values. The application of substitutions is

well-defined for all processes, since the syntax of π(L ) permits values

in all positions where free variables may be used. Notice, however, that

substitution may raise program errors as specified by rule (E.PREF),

where non-channel values arise in sender or receiver position. Rule

(E.CONSTR) specifies constraint errors, where the evaluation of com-

munication constraints v1v2 fails.

The closure rules in Figure 2.4 remain unchanged. As before, all

relations are closed under the structural rules, while (CONV) applies

definitions exhaustively and continues to require error-freeness. The

overall reduction relation P→ P′ is defined by rule (PRIOR) without

change. All changes are imported from the changes in communication,

application, and error steps.
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Example 4. Consider a client-server system in the attributed π-

calculus with integers and strings and two levels of priority

π(λ (Int,String)<2), such that there are two successful values R =

{1,2} ordered by the least ordering <2 that satisfies 1 <2 2. Further-

more, let never =df 0, low =df 1, high =df 2, and function price :

String→ Int be defined by the following expression:

price =df λx .if x = chicken then 10 else

if x = fish then 14 else 0

Servers are accessible on a public channel connect to all clients that

know a password key of type String. The server applies function

price to a string value received from the client and returns the value

on a private ret channel that was also provided by the client. Servers

and clients are defined as follows:

Serv ( ) ,

connect [ λk.if k = key then low

else never ] ? ( x , ret ) .

( ret [high ] ! ( price x ) . 0 | Serv ( ) )

C l i e n t (s ) , (ν ret ) connect [ key ] ! ( s , ret ) .

ret [ λz .z ] ? ( y ) . P
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A process with two clients and one server can be reduced as follows:

Serv() | Client(chicken) | Client(fish)→
(ν ret)(ret[high]!(price chicken).0 | Serv() |

ret[λx .x ]?(y).P) | Client(fish)≡
Serv() | Client(fish) | (ν ret)(ret[high]!(price chicken).0 |

ret[λx .x ]?(y).P)→
Serv() | Client(fish) | (ν ret) P[10/y ]

No unrelated client can access a client-server dialog, since private

channels are used for communication. Note however, that the second

communication action gets highest priority, so that client Client(fish)

cannot act before Client(chicken) obtained the price for chicken.

3.1.5 Uniqueness of Convergence

Similar to the π-calculus with priority, it needs to be shown that con-

vergence of attributed processes produces unique results. The next

lemma extends on Lemma 1. It states that application is confluent

(Definition 2), such that exhaustive application must lead to a unique

outcome (including non-termination). This allows for the conclusion

that the convergence of attributed processes is unique.

Lemma 2. The rewrite relation
app−−→
nd

is confluent modulo structural

congruence. Irreducible processes are congruent to processes of the

form (ν x̃)∏
n
i=1 Pi such that all Pi are sums or match some defined pro-

cess Ai(ẽi) with ¬∃ṽ.ẽi ⇓ ṽ.
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Proof. A standard analysis of the structural congruence yields the fol-

lowing:

Claim. Let P = (ν x̃)∏
n
i=1 Pi be a process in prenex normal form in

which all bound variables are named distinctly, and such that all Pi are

sums or defined processes. In this case, P
app−−→
nd

P′ if and only if the

following rule applies:

1≤ j ≤ n ẽ j ⇓ ṽ j

A j(ỹ j), Q j Pj = A j(ẽ j) P′ ≡ (ν x̃)(∏n
i=1,i 6= j Pi | Q j[ṽ j/ỹ j])

P
app−−→
nd

P′

Let the rewrite system on congruence classes of processes be de-

fined as [P]≡
app−−→
nd

[P′]≡ if P
app−−→
nd

P′. The above claim shows that this

rewrite system terminates on equivalence classes of processes of the

form (ν x̃)∏
n
i=1 Pi where all Pi are either sums or irreducible defined

processes A(ẽ). The uniform confluence of this rewrite system can be

proven by minor adaptation of the proof in Lemma 1.

Proposition 5 (Convergence uniqueness of π(L )). For every at-

tributed process P, there exists at most one class [P′]≡ such that P ⇓ P′.

Proof. This follows immediately from the confluence result in

Lemma 2.

Remark 2. If P≡ (ν x̃)∏
n
i=1 Mi and ¬P err−→

nd
⊥ then P≡ P′⇔ P ⇓ P′.

Proof. Analogue to the proof of Remark 1.
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Labeled communication steps (` ∈ N4, r ∈ R∞
+)

(COM`)

π
j1

i1 ⇓ x[v1]?(ỹ) π
j2

i2 ⇓ x[v2]!(ṽ)

`= (i1, j1, i2, j2) i1 6= i2 v1v2 ⇓ r ∈ R∞
+ |ỹ|= |ṽ|

(ν x̃)∏
n
i=1 ∑

mi
j=1 π

j
i .P

j
i

r−→
`

(ν x̃)(∏n
i=1,i 6=i1,i2 ∑

mi
j=1 π

j
i .P

j
i | P

j1
i1 [

ṽ/ỹ] | P j2
i2 )

Figure 3.5: Rules of the stochastic semantics of π(L ). Addition-

ally, the rules (SUM) and (COUNT) of the stochastic semantics of the

stochastic π-calculus in Figure 2.5 are inherited. The rules of the

non-deterministic semantics of π(L ) in Figure 3.4, except (COM) and

(PRIOR), remain valid.

3.1.6 Stochastic Operational Semantics

In this section, a stochastic semantics for the attributed π-calculus is

presented, under the condition that the set of successful values of the

attribute language are the stochastic rate constants R ⊆ R∞
+. As in the

stochastic π-calculus, highest priority is assigned to communication

steps with infinite rates, and lowest priority to all others.

The rules of the stochastic semantics of π(L ) are given in Fig-

ure 3.5. Few changes are needed with respect to the stochastic π-

calculus. In particular, both calculi have the same closure rules, which

were already presented in Figure 2.5.

The main difference concerns the new communication rule (COM`),

where all expressions have to be evaluated in order to compute the
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stochastic rate constant. All other differences are hidden in the con-

vergence predicate, as defined in the non-deterministic operational se-

mantics.

The stochastic version remains a proper refinement of the non-

deterministic version of the attributed π-calculus with priorities.

Proposition 6. If the successful values of L are ∈ R∞
+ with the usual

two levels of priority then for all processes P,P′:

P→ P′ iff (∃r ∈ R+. P r−→ P′∨∃n ∈ N. P
∞(n)−−→ P′)

The proof is mostly the same as for Proposition 2, which relates

the two operational semantics of the stochastic π-calculus. The only

minor difference is in the treatment of basic interaction steps.

3.1.7 Type System

Higher-order attribute languages add much expressive power to the π-

calculus, but at the price of introducing many new error situations. The

most frequent errors are type errors. In this section, a type system is

presented which detects type errors in attributed processes. Notice that

well-typedness does not exclude all kinds of errors, such as division by

0.

The type system for π(L ) is defined, such that it integrates the

simple type system for the λ -calculus L into the type system of the

π-calculus from Section 2.1.6. In the following, it is shown that the

type system of π(L ) is safe if the type system of L is. Whether this

holds depends on the precise definition of the big-step evaluator of L
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that was left open here. The attribute languages λ (R)< in Figure 3.1

and λ (N0,+,=)<1 in Figure 3.2 are type safe. These two attribute

languages are strongly normalizing, i.e. always terminating, as usual

for the simply typed lambda calculus. General termination may fail,

however, once new rules are added to the big-step evaluators for new

constants with functional type, as e.g. recursion. In this case, the type

safety of the attribute language must be checked again.

Based on type constants, such as Int, Bool, and String, Types are

defined by the following grammar:

type constants ι ::= Int | Bool |String| . . .
types τ,σ ::= ι constants

| τ → σ function type

| [τ]⇒ σ̃ channel type

| τ×σ pair type

A pair type states that a pair’s first and second component are of types

τ and σ , respectively. A function’s type denotes that the function maps

values of type τ to values of σ . An additional type constant Unit is

assumed in order to type the empty value _ and the function without

parameters λ_.e, which is of type Unit→ σ if e is of type σ . Channel

types [τ]⇒ σ̃ now type channel constraints by τ and channel argu-

ments by σ̃ . More precisely, a channel x of type [τ1→ τ2]⇒ σ̃ can be

used as follows:

• in input prefixes x[e]?(y), the type of expressions e must be τ1→
τ2 and the types of ỹ must be σ̃
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• in output prefixes x[e]!(ẽ′), the type of expression e must by τ1

and the types of ẽ′ must be σ̃

Type constants and the types of functions and pairs are standard. As

before, type environments Γ are sets of type assignments for variables

x:τ and process names A:τ̃ . Types are captured by slightly extending

the syntax, here additionally by annotations to the formal parameters

of λ -abstractions and constants:

typed λ -expressions e ::= cτ | λx : τ.e | . . .
typed processes P ::= (νx):τP | . . .

typed process definition D ::= A(x̃ : τ̃), P,with |x̃|= |τ̃|

In examples, types annotations are ignored if they are clear from the

context. It is particularly useful to annotate functional types to con-

stants, e.g., in order to type pair selectors fstτ×σ→τ and sndτ×σ→σ

or fixed point operators. Additionally, note that pairs of different types

can also be used, since different annotations for the same constant may

be used.

Example 5. In a typed version of the client-server example, constants

have to be annotated with their types and a type for the new binder in

the definition of process Client has to be specified:

Serv ( ) ,

connect [ λk : Int.if k = keyInt then lowInt
else neverInt ] ? ( x , ret ) .

( ret [highInt ] ! ( priceInt→Int x ) . 0 |
Serv ( ) )
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C l i e n t ( s : String) ,

(νret) : [Int→ Int]⇒ (Int)

connect [ keyInt ] ! ( s , ret ) . ret [ λz : Int.z ] ? ( y ) . P

The definitions are well typed if in the following type environment:

connect : [Int→ Int]⇒ (String, [Int→ Int]⇒ (Int)),

Client : (String), Serv : ()

Rules for typing expressions and processes are given in Figure 3.6.

Typing rules for expressions are standard as in the simply typed λ -

calculus. Rule (T.AXIOMS) assigns the type Bool to boolean constants.

Functional constant fst and snd operate on pairs and return a value of

the type of the first or second component, respectively. Equality and

arithmetic functions are curried binary functions, such that e.g. addi-

tion (+) has an argument of type Int and returns a function with an

argument and a return value of type Int. Rule (T.CONST) and (T.VAR)

check types of constants and variables, respectively. Rule (T.PAIR) en-

sures that the two expressions that form a pair are of types according

to the type of the pair. Rule (T.COND) states that expressions in both

branches of a condition have to be of the same type, which is then the

return type of the condition. Function definitions are typed by rule

(T.FUNDEF), where the return type of a function is given by the type

of the function’s body in a type environment, which is extended by the

type of the function’s argument. Rule (T.FUNAPP) ensures that in a

function application the first expression is of functional type and the

second expression matches the type of the argument of the function.

The return type of function application is the return type of the func-
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Typing rules for expressions

(T.AXIOMS)

τ,σ types

fst : τ×σ → τ true:Bool

snd : τ×σ → σ false:Bool

= : τ → σ → Bool + : N→ N→ N

(T.CONST)
c ∈ Consts

Γ ` cτ :τ
(T.VAR)

x:τ ∈ Γ

Γ ` x:τ

(T.PAIR)
Γ ` e1:τ Γ ` e2:σ

Γ ` 〈e1,e2〉:τ×σ

(T.COND)
Γ ` e:Bool Γ ` e1:τ Γ ` e2:τ

Γ ` if e then e1 else e2:τ

(T.FUNDEF)
Γ,x : τ ` e : σ

Γ ` λx : τ.e : τ → σ

(T.FUNAPP)
Γ ` e1:τ → σ Γ ` e2:τ

Γ ` e1e2:σ

continued...

Figure 3.6: Type system for π(L ).
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Typing rules for processes

(T.REC)
Γ ` e1:[τ]⇒ σ̃ Γ ` e2:τ Γ, x̃:σ̃ ` P

Γ ` e1[e2]?(x̃).P
(T.NIL)

Γ ` 0

(T.SEND)
Γ ` e1:[τ1→ τ2]⇒ σ̃ Γ ` e2:τ1 Γ ` ẽ3:σ̃ Γ ` P

Γ ` e1[e2]!(ẽ3).P

(T.PAR)
Γ ` P1 Γ ` P2

Γ ` P1 | P2
(T.SUM)

Γ `M1 Γ `M2

Γ `M1 +M2

(T.NEW)
Γ,x:[τ]⇒ σ̃ ` P

Γ ` (νx):[τ]⇒ σ̃P
(T.APP)

Γ ` A:τ̃ Γ ` ẽ:τ̃

Γ ` A(ẽ)

(T.DEF)
Γ ` A : τ̃ Γ, x̃ : τ̃ ` P

Γ ` A(x̃ : τ̃), P
(T.DEFS)

∀D ∈D .Γ ` D

Γ `D

Figure 3.6: Type system for π(L ) (continued).

tion.

Typing rules for communication prefixes (T.REC) and (T.SEND) de-

rive directly from the above explanations of channel types. Rules for

process application (T.APP) and definition (T.DEF) are similar to those

for the π-calculus with priority in Figure 2.7. Typing rule (T.NEW)

now checks explicitly that a new channel name is created and nothing

else; previously all values were channel names. Finally, typing rules

(T.PAR) and (T.SUM) remain as in Figure 2.7.
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Proposition 7 (Type safety for expressions). The attribute language

λ (N0,+,=) in Figure 3.1 is type safe, i.e. if Γ ` e:τ and e ⇓ v then

Γ ` v:τ .

The proof is standard and proceeds by induction on the proof of Γ `
e:τ and follows from a substitution lemma stating that if Γ,x:τ ` e:σ

and Γ ` v:τ then Γ ` e[v/x] : σ .

Proposition 8 (Normalization). In the attribute language λ (N0,+,=)

every typable expression evaluates to some value, i.e., if Γ ` e:τ , then

there exists v such that e ⇓ v.

Typings of terms in λ (N0,+,=) that make use of rule (T.CONST)

always do so with a constant type (Int) for τ . Therefore, λ (N0,+,=)

is a simply-typed λ -calculus (e.g. fixed point operators are not ty-

pable) that is known to have the normalization property. A proof of

this result by Tait’s methods (Tait, 1967) can be found in many text

books (see e.g. Mitchell (1996)).

Lemma 3. The following properties hold for the typing rules of pro-

cesses:

1. (strengthening) if Γ,x:τ ` P and x 6∈ fv(P) then Γ ` P,

2. (weakening) if Γ ` P and x 6∈ fv(P) then Γ,x:τ ` P,

3. (substitution) if Γ,x:τ ` P and Γ ` v:τ then Γ ` P[v/x],

4. if Γ ` P and P≡ Q then Γ ` Q.

Strengthening and weakening also hold for the typing of definitions.
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Proof. The proofs of the three first properties are straightforward in-

ductions on the derivation of Γ,x:τ ` P (strengthening and substitu-

tion) and of Γ ` P (weakening). They easily extend to (and depend

on) the same properties for expressions. The proof of the last prop-

erty is by induction on the definition of the structural congruence. The

only interesting case is for scope extrusion, i.e., assuming x 6∈ fv(Q),

Γ ` (νx):τ(P | Q)⇔ Γ ` (νx):τP | Q.

(⇒) Rules (T.NEW) and (T.PAR) imply that Γ,x:τ ` P and Γ,x:τ `Q.

Since x 6∈ fv(Q), by strengthening, it holds that Γ ` Q and, by

rule (T.NEW), it is true that Γ ` (νx):τP. Finally, rule (T.PAR)

provide that Γ ` (νx):τP | Q.

(⇐) Rules (T.PAR) and (T.NEW) imply that Γ,x:τ ` P and Γ ` Q. By

weakening, it holds that Γ,x:τ `Q and, by (T.PAR) and (T.NEW)

it is also true that Γ ` (νx):τ(P | Q).

Lemma 4. Let P be a process with definitions D in the attributed π-

calculus with a type safe attribute language. If Γ ` P, Γ ` D , and

P ⇓ Q then Γ ` Q.

Proof. By reduction rule (CONV), there exists n≥ 0, such that P(
app−−→
nd

)nQ. Thus, the proof is by induction on n, i.e. if Γ ` P and P(
app−−→
nd

)nQ

then Γ ` Q. The case n = 0 is straightforward, so only the case n = 1

needs to be considered by induction on the derivation of P
app−−→
nd

Q. The
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induction cases (PAR) and (NEW) are straightforward and (STRUC) fol-

lows from Lemma 3(4). The case of rule (APP) yields A(ẽ)
app−−→
nd

P[ṽ/ẽ]

with ẽ ⇓ ṽ and A(x̃ : σ̃), P. Since Γ ` A(x̃ : σ̃), P, by rule (T.DEF),

it holds that Γ, x̃:σ̃ ` P (†) and Γ ` A:σ̃ . Moreover, by hypothesis,

Γ ` A(ẽ), thus Γ ` ẽ:σ̃ . Since ẽ ⇓ ṽ, the type safety of attribute lan-

guage yields Γ ` ṽ:σ̃ . Property (†) and substitution Lemma 3(3) yield

Γ ` P[ṽ/x̃].

Theorem 1 (Type safety for processes). If L is a type safe attribute

language then π(L ) is type safe, i.e. for all processes P with defini-

tions D in the attributed π-calculus, it holds that if Γ ` P, Γ `D , and

P→ Q then Γ ` Q.

Proof. By reduction rule (PRIOR), there exists P′ such that P ⇓ P′ and

P′ r−→
nd

Q where r ∈ R. By Lemma 4, it is thus sufficient to prove the

theorem for reduction r−→
nd

by induction on the derivation. The induc-

tive cases of rules (PAR), (STRUC), and (NEW) are straightforward. The

case of rule (COM) yields P = e1[e2]?(ỹ).P1 +M1 | e′1[e′2]?(ẽ).P2 +M2,

Q = P1[ṽ/ỹ] | P2, such that e1 ⇓ x, e′1 ⇓ x, e2 ⇓ v2, e′2 ⇓ v′2, v2v′2 ⇓ r,

and ẽ ⇓ ṽ. Rules (T.PAR), (T.SUM), (T.REC) and (T.SEND) imply that

Γ ` e1 : [τ]⇒ σ̃ and Γ ` e1 : [τ1→ τ2]⇒ σ̃ ′. Since e1 ⇓ x and e′1 ⇓ x,

type safety of expressions ensures that x has the same type as e1 and

e′1. Thus, it holds that τ = τ1→ τ2, σ̃ ′ = σ̃ , and Γ ` x : [τ1→ τ2]⇒ σ̃ .

Moreover, since Γ ` ẽ:σ̃ , type safety of expressions yields Γ ` ṽ:σ̃ . In

addition, it holds that Γ, ỹ:σ̃ ` P1 and, by the substitution Lemma 3(3),

it is true that Γ ` P1[ṽ/ỹ]. Finally, from Γ ` P2 and rule (T.PAR), it
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follows that Γ ` P1[ṽ/ỹ] | P2.

Corollary 2 (Error freeness). If L is an attribute language that is both

type safe and normalizing (see Propositions 7 and 8) then π(L ) is

error free, i.e. for all processes P with definitions D in the attributed

π-calculus, it holds that if Γ ` P, Γ `D , and P→∗ Q then ¬Q err−→
nd
⊥.

The proof is elaborated in Appendix B.

3.2 Modeling Techniques and Biological Ex-

amples

In this section, the usefulness of the attributed π-calculus for the mod-

eling of cell-biological systems is underlined by two example models.

The models consider spatial aspects of Euglena’s phototaxis and co-

operative enhancement for gene regulation at the lambda switch. Fur-

thermore, population- and species-based modeling in the attributed π-

calculus is illustrated and it is shown how changes in global informa-

tion can be broadcasted in individual-based models by using priori-

tized update protocols.

3.2.1 Spatial Aspects: Euglena’s Phototaxis

In the following, a model is presented that considers simple spatial as-

pects of location dependent motion using the example of Euglena’s

phototaxis John et al. (2008a). A formal study on the possibility
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of modeling systems with dynamic compartment structures in the at-

tributed π-calculus is provided Section 3.3.2.

Engelmann (1882) describes Euglena as a single cell organism

that lives in water, performs photosynthesis, and thus exhibits light-

dependent motion. In inland water, depending on the brightness, it

swims up and down in order to reach a zone with just the right amount

of light. In the model presented here, the probability that an Euglena

moves upwards is constant, since it always tries to reach regions with

more light. However, in order to avoid too intense light, Euglena

moves downwards whenever it receives light for photosynthesis, i.e.

with a probability proportional to the light intensity of its current po-

sition. It is assumed that light photons travel top-down and that light

intensity degrades exponentially with respect to the depth (repeated

filtering).

Given a light source with initial intensity I ∈ R+ at depth 0, and

a transparency factor for filtering σ ∈ ]0,1], this means that the light

intensity at depth d ∈R+ equals σd ∗ I. The model comprises two light

sources with initial intensities I1 and I2, such that the overall amount of

light yields I= I1+ I2. Furthermore, it assumes a rate constant u ∈ R
for upward motion.

Space is considered by discrete depth levels {0, . . . ,m} where level

0 denotes the surface and level m ∈N0 the ground. Euglena may move

up and down in steps of exactly one level. Continuous depth levels

and movement steps could be modeled similarly, but would increase

simulation costs. The model’s initial state provides n ∈ N0 Euglenas

on every level, summing up to totally n∗(m+1) Euglenas in the water.
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The two light sources are located at the water surface. The probability

of an interaction with a light source is proportional to its intensity. The

values u,σ ,m,n, I1, I2 are model parameters.

The model is defined in π(λ (R,+,−,∗,/,pow,≤)<1), the at-

tributed π-calculus with constants for real numbers and the usual arith-

metic operations. For convenience, xy is written instead of (pow x) y.

The successful values are the positive real numbers that all have the

same level of priority. The big-step evaluator for these operators can

be defined as usual (in analogy to natural numbers, see Section 3.1.2).

The model is presented in Figure 3.7. An Euglena at depth level

d may interact with a light source of intensity i and go down by one

level:

down : Euglena(d),Light(i) σd∗i−−−→ Euglena(d +1),Light(i)

Such interactions happen on channel down with rate constant σd ∗ i
under the condition that d ≤ m− 1. An Euglena can also move up

with rate constant u by interacting with a dummy interaction partner

on channel up:

up : Euglena(d) u−→ Euglena(d −1)

If Euglena is at the surface, i.e. the constraint d ≥ 1 is not satisfied, it

cannot move upwards any further.

Based on the Master Equation, the numbers of Euglenas on each

depth level in equilibrium can be computed. The Master Equation is

a set of ODE’s that, similar to a CTMC, describes a system’s dynam-

ics, see e.g. Reichl (2009). For each species a variable is introduced
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Parameters

n ∈ N0 // i n i t number o f E . pe r water l e v e l

m ∈ N0 // deepe s t water l e v e l

I1, I2 ∈ R+ // i n t e n s i t y r a t e s o f l i g h t s o u r c e s

σ ∈ [0,1] // t r a n s p a r e n c y o f water

u ∈ R+ // Euglena ’ s upwards speed

Process definitions

Eug lena (d ) , up [ λ_. i f d ≥ 1 then u

e l se 0 ] ? ( ) . Eug lena (d −1)

+ down [ λ i . i f d ≤ m−1 then σd ∗i
e l se 0 ] ? ( ) . Eug lena (d +1)

L i g h t ( i ) , down [ i ] ! ( ) . L i g h t ( i )

Dummy( ) , up [_ ] ! ( ) .Dummy( )

Initial solution

∏
m
d=0 ∏

n
i=1 Eug lena (d ) | L i g h t ( I1 ) | L i g h t ( I2 ) |

Dummy( )

Figure 3.7: A model of Euglena’s light-dependent motion with two

light sources.
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and a differential equation describes the change of the variable’s value

over time. Equilibrium happens if the system is free of change, i.e.

the derivation of every variable is 0. For illustration, consider a model

with maximum depth level m = 4. Let l0, . . . , l4 be the number of Eu-

glenas per level. The master equation provided in Figure 3.8. The first

equation −σ0 ∗I∗ l0+u∗ l1 = 0 = dl′0/dt states that the change in the

number of Euglenas at level 0 is obtained by summing up a loss of

σ0 ∗I∗ l0 due to Euglena’s downward motion to level 1, and a gain of

u∗ l1 due to Euglena’s upward motion from level 1. The last equation

∑
4
i=0 li = 5n denotes that the overall number of Euglenas is constant

and equals the initial number.

In order to verify the behavior of the model with respect to predic-

tions obtained from the Master Equation, two simulation experiments

were performed, named A and B. There are constantly five depth levels

(m = 4), 100 Euglenas on each depth level (n = 100), a rate constant

of upward motion u = 0.4, intensity rate constants I1 = 5.0, I2 = 15.0

(I = 20.0), and transparency factors σ = 0.1 in experiment A and

σ = 0.2 in experiment B. Each experiment consists of a single sim-

ulation run, both of them performed until simulation time t = 10.0.

The simulation results are presented in Figures 3.9, 3.10. Heat maps

and line charts show the number of Euglenas on each depth level over

time. Below them, the solutions of the Master Equation with the re-

spective model parameters are given. The simulation results confirm

the predictions with slight derivations due to stochasticity. The com-

parison of both experiments shows that with a higher transparency Eu-

glenas accumulate on a deeper level, since more light is available.
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

−σ0 ∗I u 0 0 0

σ0 ∗I −(σ1 ∗I+u) u 0 0

0 σ1 ∗I −(σ2 ∗I+u) u 0

0 0 σ2 ∗I −(σ3 ∗I+u) u

0 0 0 σ3 ∗I −u

1 1 1 1 1


·



l0
l1
l2
l3
l4


=



0

0

0

0

0

5n


Figure 3.8: Master Equation to compute the numbers of Euglenas on each depth level in equilibrium.
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Experiment A, Predictions: l0 = 1.16, l1 = 57.84, l2 = 289.20, l3 = 144.65, l4 = 7.15

Figure 3.9: Euglena model, Experiment A with m= 4, n= 100, u= 0.4, I1 = 5.0, I2 = 15.0 (I= 20.0),

and σ = 0.1. A line chart and a heat map show the Euglena numbers on each depth level versus time

for a single simulation run until time t = 10.0. The numbers at equilibrium for the different depth

levels as obtained by solving the Master Equation are shown below.
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Experiment B, Predictions: l0 = 0.26, l1 = 12.81, l2 = 128.14, l3 = 256.28, l4 = 102.51

Figure 3.10: Euglena model, Experiment B that differs from A only in setting σ = 0.2.
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The Euglena model with attributed processes can be translated into

the stochastic π-calculus without attributes, since all parameters are

finitely valued. The idea is to duplicate the down-channels for all depth

levels, such that their rate constants are chosen dependent on the depth.

This leads to processes Euglenad (), Light1,d (), and Light2,d () for all

possible depth levels, see Fig. 3.11.

3.2.2 Cooperative Enhancement: Gene Regulation at
the Lambda Switch

Cooperative binding is a frequent and often decisive aspect in gene

regulatory networks, where proteins stabilize each other’s binding to

neighboring DNA sites by adhesive contacts. In quantitative terms, the

unbinding rate of one DNA-protein complex decreases by the existence

of another. This is an instance of cooperative enhancement of reaction

rates by third partners. Kuttler et al. (2007) and Kuttler and Niehren

(2006) showed that cooperative enhancement can be modeled in the

stochastic π-calculus. It however requires nontrivial encodings that

can be alleviated within the attributed π-calculus.

A well understood instance of cooperative binding occurs during

transcription initiation control at the λ switch. The λ switch is a seg-

ment of the DNA of bacteriophage λ . It contains two binding sites OR1

and OR2, where rep and cro proteins can bind. An unstable binding of

a rep molecule to OR2 is stabilized by the simultaneous presence of

another rep at the neighboring site OR1. As illustrated in Figure 3.12,

the two proteins actually touch each other.
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// Eug l enas on d i f f e r e n t depth l e v e l s

Eug lena0 ( ) , down0 ? ( ) . Eug lena1 ( )

Eug lena1 ( ) , up ? ( ) . Eug lena0 ( )

+ down1 ? ( ) . Eug lena2 ( )

. . .

Eug lenam ( ) , up ? ( ) . Eug lenam-1 ( )

// l i g h t from f i r s t s ou r c e on d i f f e r e n t l e v e l s

L i g h t 1,0 ( ) , down0 : σ0∗I1 ! ( ) . L i g h t 1,0 ( )

. . .

L i g h t 1,m ( ) , downm : σm∗I1 ! ( ) . L i g h t 1,m ( )

// l i g h t from second sou r c e on d i f f e r e n t l e v e l s

L i g h t 2,0 ( ) , down0 : σ0∗I2 ! ( ) . L i g h t 2,0 ( )

. . .

L i g h t 2,m ( ) , downm : σm∗I2 ! ( ) . L i g h t 2,m ( )

Dummy( ) , up : u ! ( ) .Dummy( )

Example solution

∏
m
d=0 (∏

n
i=0 Eug lenad ( ) | L i g h t 1,d ( ) | L i g h t 2,d ( ) )

Figure 3.11: An equivalent model of Euglena in the stochastic π-

calculus.
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OR1 OR2
or2Delay

rep rep

Figure 3.12: The decay of the rep-OR2 complex: in order to make the

decay rate of the rep-OR2 complex dependent on OR1’s state, the two

sites communicate on or2Delay before OR2 unbinds.

A model of cooperative binding at OR2 in π(λ (R∞
+,Prot,=)<2)

is presented in Figure 3.13. It contains the parametric definition

Prot(type), which emulates the behavior of the proteins. The param-

eter type can be instantiated by constants rep or cro, introduced by

Prot to model either protein sort. Proteins can bind to both sites OR1

and OR2. Free sites are defined by processes OR1() and OR2(), where

proteins can attach via channel bind . As this occurs, the channel re-

lease is created and henceforth connects the protein to the site (com-

plexation). Later communication on release breaks the complex. The

rate constant of complexation is fixed to 0.098. For decomplexation

the rate constant is determined by the sender, i.e. the binding site, the

receiving protein accepts it by applying the identity function.

For illustration, consider the models for the protein bound DNA

sites. ORiB(type,release) describes the unbinding from the occupied

site ORi, where type indicates the type of the bound protein. For i = 1

the rate of the unbinding reaction merely depends on the protein type.
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Process definitions

Prot(type) , (νrelease )bind [_] ! ( type , release ) .

release [ λ r . r ] ? ( ) . Prot(type)

Or1() , bind [ λ_. 0 . 0 9 8 ] ? ( type , release ) .

Or1b(type,release)

+ or2Delay [ free ] ! . OR1 ( )

Or1b(type,release) , release [

i f type = rep then 0 .155

e l se i f type = cro then 2 .45

e l se 0 ] ! ( ) .Or1()

+ or2Delay [ type ] ! ( ) .Or1b(type,release)

Or2() , bind [ λ_. 0 . 0 9 8 ] ? ( type , release ) .

Or2b(type,release)

Or2b(type,release) ,

or2delay [ λ t .

i f type = rep then

i f t = rep then 0 .155 // c o o p e r a t i v e

e l se 3 .99 // OR1 bound to c ro or f r e e

e l se 2 .45 // bound to c ro

] ? ( ) . release [ ∞ ] ! ( ) .Or2()

Example process

Or1() | Or2() | ∏
28
i=1 Prot(rep) | ∏

67
i=1 Prot (cro)

Figure 3.13: A model of cooperative binding between OR1 and OR2 at

the λ switch.
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For the second site (i = 2) decomplexation is influenced by coopera-

tive binding. To model this, OR1 and OR2 are linked via the channel

or2Delay , as illustrated in Figure 3.12. Additionally, the release op-

eration is decomposed into an interaction on channel or2Delay , with

a reaction rate defining the actual unbinding delay, and an immediate

communication on release. As stated in the definition of the global

channel or2Delay the unbinding delay depends not only on the type of

the bound protein, but also on the state of OR1, which can be either

free, bound to rep or bound to cro.

The model of Kuttler and Niehren (2006) in the stochastic π-

calculus requires to keep OR2 constantly informed about state changes

of OR1, which is implemented by immediate communication steps

(priority). Keeping state information consistent in this manner is error-

prone, it may easily lead to deadlocks. The subsequent model of

Kuttler et al. (2007) in SPiCO requires significantly fewer updates. In

π(λ (R∞
+,Prot,=)<2), rate constants directly depend on the attribute

values of the interaction partners. State changes are propagated with-

out additional communication steps.

3.2.3 Population-based Modeling

The stochastic π-calculus supports individual-based modeling where

molecules are mapped to objects. The attributed π-calculus enables,

in addition, a population-based modeling style, where reactions are

mapped to objects.

For illustration, consider a chemical system with three species A, B,
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and C and the following two reactions with rate constants k1 and k2:

r1 : A+B
k1−→C r2 : B+C

k2−→ A

Figure 3.14 shows a population-based description of this system

in π(λ (R,+,−,∗,/,pow,≤)<1). The model parameters a0,b0,c0 ∈
N0 represent the initial amounts of the three species. A process

Reac(f ,da,db,d c) defines a reaction with kinetic function f , while the

other parameters da, db, and d c reflect how the reaction affects the

population, i.e. the differences in the amounts of the species. The

latter parameters could also be regarded as stoichiometric factors, ex-

cept that reactants are always associated with negative numbers. The

kinetics of all reactions in this example follow the law of Mass ac-

tion. For instance, the kinetics of r1 yields the product of the amounts

of species A and B and rate constant k1. It changes the population

by decreasing the amount of A and B by one each and increasing the

amount of C by one. Thus, to represent reaction r1, the initial solu-

tion comprises a process Reac(λa.λb.λc .a ∗b ∗k1,-1,-1,1), where the

function parameters a,b,c represent the amounts of A,B,C, respec-

tively. Consequently, also one process Reac(λa.λb.λc .b∗c ∗k2,1,-1,-

1) is introduced to model reaction r2. Notice, that it is also possible

to account for different kinetic laws and different stoichiometric fac-

tors. In Section 4.2.2, this idea is used to implement a reaction with

Michaelis-Menten kinetics. For valid models, however, one needs to

ensure that the applied kinetic laws satisfy the Markov property, since

the stochastic semantics is defined in terms of CTMC’s. The restriction

that only reactions with at most two reactants and Mass action kinetics
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can be implemented in the attributed π-calculus in an individual-based

style remains valid.

In order to represent populations, processes Pop(a,b,c) are intro-

duced, whose parameters stand for the amounts of the three species.

In addition to the two reactions, the initial process thus also comprises

Pop(a0,b0,c0). Interactions on channel r indicate the occurrence of a

reaction. For the computation of reaction kinetics Reac(f ,da,db,d c)

provides its kinetics function f as the constraint argument. Pop(a,b,c)

defines a constraint function, which applies f to the current amounts

of the species. When an interaction occurs, Reac(f ,da,db,d c) sends

its population changes and Pop(a,b,c) applies them to the current

amounts, which is implemented by recursively calling Pop(a+da,b+

db,c+d c). Afterward, the next reaction can happen. Function f eval-

uates to 0 whenever one of the populations becomes 0.

The model can be generalized to systems in which new species can

be created dynamically by using property lists as parameters, where

each element contains a pair of a species and its amount. Even new

reactions could be dynamically introduced. Such a model is close to

the way cell-biology is expressed in sCCP, pointing to the possibility

of generally encoding sCCP in the attributed π-calculus. Notice, how-

ever, that with process Pop(a,b,c) a central unit is introduced, essen-

tially violating the basic idea of compositional implementations. This

can, however, be fixed by distributing the information about species

numbers to the different reactions and using more sophisticated prior-

itized update protocols. In Section 4.2.2, an alternative is presented

which avoids priority by making use of the global imperative store of
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Parameters

a0,b0,c0 ∈ N0 // i n i t i a l amounts o f A , B, and C

k1,k2 ∈ R // r e a c t i o n r a t e c on s t a n t s

Process definitions

Reac ( f ,da ,db ,d c ) , r [ f ] ! ( da ,db ,d c ) .

Reac ( f ,da ,db ,d c )

Pop (a ,b ,c ) , r [ λ f .( f a b c ) ] ? ( da ,db ,d c ) .

Pop (a+da ,b+db ,c+d c )

Example solution

Reac (λa.λb.λc . a ∗b ∗k1 ,−1 ,−1 ,1) |
Reac (λa.λb.λc . b ∗ c ∗k2 ,1 ,−1 ,−1) | Pop (a0 ,b0 ,c0 )

Figure 3.14: A population-based model of three species and two re-

actions in π(λ (R,+,−,∗,/,pow,≤)<1). Process Reac(f ,da,db,d c)

defines reactions, where parameter f is a function reflecting the re-

action kinetics and parameters da, db, d c account for the way species

amounts are changed when the reaction occurs. Process Pop(a,b,c)

reflects species amounts and interacts with process Reac(f ,da,db,d c)

for reaction execution.
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the imperative π-calculus. Since this idea is even closer to sCCP, a dis-

cussion between the differences of the imperative π-calculus and sCCP

is provided.

3.2.4 Global Information in Individual-Based Model-
ing

Versari (2009) showed that priority is useful in order to track global

information in individual-based models in a consistent manner, e.g. to

model changes in compartment structures. The general idea is to prop-

agate changes globally by a sequence of prioritized local interactions,

before enabling the next possible reactions, since these are given lower

priority.

In the example in Figure 3.15, global information on population

sizes is traced, i.e. numbers of individuals. The model rephrases the

population-based model in Section 3.2.3 in an individual-based way.

Molecules of the three species are represented by processes A(),B(),

and C(), a process Pop(a,b,c) is defined, such that it tracks molecule

numbers. Chemical reactions are modeled by interactions on channel

r , where A() or C() send to B() with rate constants k1 and k2, respec-

tively. Changes in populations are updated by prioritized interactions

on channel u once a reaction occurs. Process Pop(a,b,c) receives such

changes with infinite rate, i.e. with priority, such that no reaction can

occur before the population information is updated. This ensures that

the effect of each reaction is correctly reflected in the species amounts,

i.e. that the population information is consistent.
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Parameters

a0,b0,c0 ∈ N0 // i n i t i a l amounts o f A , B, and C

k1,k2 ∈ R // r e a c t i o n r a t e c on s t a n t s

Process definitions

A( ) , r [ k1 ] ! ( ) . u [_]!(−1 ,−1 ,1) .C( )

B( ) , r [ λk .k ] ? ( ) . 0
C( ) , r [ k2 ] ! ( ) . u [_]!(1 ,−1 ,−1) .A( )

Pop (a ,b ,c ) , u [ λ_.∞ ] ? ( da ,db ,d c ) .

Pop(a+da ,b+db ,c+d c )

Initial solution

∏
a0
i=1 A( ) | ∏

b0
i=1 B( ) | ∏

c0
i=1 C( ) | Pop(a0 ,b0 ,c0 )

Figure 3.15: An individual-based variant of the population-based

model in Figure 3.14. Processes A(),B(), and C() represent molecules

of different species, process Pop(a,b,c) accounts for molecule num-

bers, which are updated by prioritized interactions on channel u.
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3.2.5 Species-Based Modeling

As a last example, it is shown how one can rephrase the model given in

Section 3.2.3 in a species-based style as it is introduced by Bio-PEPA,

see Figure 3.16. The model makes use of priority (i.e. immediate com-

munications) and the fact that reactions have at most two reactants. A

process A(a) represents the species A which is attributed by the num-

ber a of molecules of A. Species B and C are implemented analogously.

In contrast to the individual-based model, the solution contains only a

single process for each species.

Reaction r1 is modeled as an interaction between processes A(a)

and B(b) on channel r1 . The corresponding communication constraint

yields a successful value, which follows the definition of reaction rates

given by Mass action kinetics. Again, other kinetics could be intro-

duced, as long as they respect the Markov property. After an inter-

action, A(a - 1) and B(b - 1) are called recursively, thus decreasing

the number of molecules of species A and B. In parallel, a request

is sent with priority on channel uc in order to increase the number of

molecules of species C. Reaction r1 is implemented analogously.

3.3 Expressiveness

In this section, it is shown that the attributed π-calculus provides a uni-

fying framework that generalizes on various dialects of the π-calculus

in the literature. Furthermore, an encoding from π[@, 6=] to the at-

tributed π-calculus is presented. The work of Versari (2009) implies
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Parameters

a0,b0,c0 ∈ N0 // i n i t i a l amounts o f A , B, and C

k1,k2 ∈ R // r e a c t i o n r a t e c on s t a n t s

Process definitions

A(a ) , r1 [ a ] ! ( ) . (A(a−1) | uc [_] ! ( 1 ) )

+ ua [ λ_. ∞ ] ? ( d ) .A(a+d )

B(b ) , r1 [ λa.k1 ∗a ∗b ] ? ( ) .B(b−1)

+ r2 [ λc .k2 ∗ c ∗b ] ? ( ) .B(b−1)

C(c ) , r2 [ c ] ! ( ) . ( C(c−1) | ua [_] ! ( 1 ) )

+ uc [ λ_. ∞ ] ? ( d ) .C(c+d )

Initial solution

A(a0 ) | B(b0 ) | C(c0 )

Figure 3.16: A species-based variant of the population-based model

in Figure 3.14 in π(λ (R,+,−,∗,/,pow,≤)<1). Processes A(a), B(b),

and C(c) represent species parametrized by their multiplicities possi-

bly updated through communication on channel ua and uc .
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Jx?(ỹ).PK = x[λ z.z]?(ỹ).JPK JP1 | P2K = JP1K | JP2K
Jx:r!(ỹ).PK = x[r]!(ỹ).JPK JM1 +M2K = JM1K+ JM2K

J(νx)PK = (νx)JPK JA(x̃), PK = A(x̃), JPK
J0K = 0

Figure 3.17: The encoding of the π-calculus with priorities (R,<) into

π(λ (R)<).

that π[@, 6=] allows for the modeling of dynamic cell structures. Since

the presented encoding is compositional, it shows that the attributed

π-calculus is sufficiently expressive for the spatial modeling of cell-

biological systems.

3.3.1 Encoding of the π-Calculus with Priority

In the following, an encoding of the π-calculus with priority is pre-

sented and proved to be correct with respect to both semantics - the

non-deterministic and the stochastic. It is also shown that the encod-

ing can be refined such that it preserves well-typedness.

The translation of the π-calculus with priority levels in (R,<) into

π(λ (R)<) is given in Figure 3.17. Senders x:r!(ỹ).P are mapped to

x[r]!(ỹ).P and receivers x?(ỹ).P to x[λ z.z]?(ỹ).P.
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Theorem 2. The encoding of the π-calculus with priority levels

(R,<) into the attributed π-calculus, π(λ (R)<), is correct in that for

all processes P,P′ it holds that:

1. if P→ P′ then JPK→ JP′K

2. if JPK→ Q then there exists a process Q̂ of the π-calculus with

priority, such that JQ̂K≡ Q and P→ Q̂

The proof is elaborated in Appendix B. It is mostly straightforward, but

covers several pages since all rules of both calculi must be inspected

in detail.

The same encoding is also correct with respect to the stochastic

operational semantics, under the assumption that the set of stochastic

rates (R∞
+,<2) is chosen as the set of priorities.

Theorem 3. The encoding of the π-calculus with priority levels in

(R∞
+,<2) into the attributed π-calculus, π(λ (R∞

+)<2), is correct with

respect to the stochastic operational semantics. For all processes

P,P′, P̂, attributed processes Q, and labels β ∈ {r,∞(n) | r ∈ R+,n ∈
N} it holds that:

1. if P
β−→ P′ then JPK

β−→ JP′K

2. if JP̂K
β−→ Q then there exists a process Q̂, such that P̂

β−→ Q̂ and

JQ̂K≡ Q.

Proof. The stochastic semantics of both calculi are built upon their

non-deterministic semantics. In the appendix (see the proof of The-
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orem 2) it is shown that the translation is invariant under substitu-

tion and that it reflects and preserves the structural congruence and

errors. Furthermore, it is shown that if PσQ then JPKσJQK, for

σ ∈ {⇓,→}∪{ α−→
nd
| α ∈ {app}∪R}.

Claim. Relation r−→
`

is preserved and reflected by translation (positions

` of redexes remain unchanged), i.e.:

1. if P r−→
`

Q then JPK r−→
`

JQK

2. if JP̂K r−→
`

Q then there exists Q̂, such that P̂ r−→
`

Q̂ and JQ̂K≡ Q

Proof.

1. If P r−→
`

Q then rule (COM`) can be applied as follows, where

P= (ν x̃)∏
n
i=1 ∑

mi
j=1 π

j
i .P

j
i and Q= (ν x̃)(∏n

i=1,i 6=i1,i2 ∑
mi
j=1 π

j
i .P

j
i |

P j1
i1 [

ṽ/ỹ] | P j2
i2 ):

`= (i1, j1, i2, j2) π
j1

i1 = x?(ỹ) π
j2

i2 = x:r!(z̃) |ỹ|= |ṽ|
P r−→

`
Q

Thus, it holds that JPK= (ν x̃)∏
n
i=1 ∑

mi
j=1Jπ

j
i K.JP j

i K, with Jπ
j1

i1 K=
x[λy.y]?(ỹ) and Jπ

j2
i2 K = x[r]!(z̃). Now, rules (VAL) and (FUN)

provide that rule (COM`) of π(L ) applies to the translations in

the following way, where JPK = (ν x̃)∏
n
i=1 ∑

mi
j=1Jπ

j
i K.JP j

i K and

JQK = (ν x̃)(∏n
i=1,i 6=i1,i2 ∑

mi
j=1Jπ

j
i K.JP j

i K | JP j1
i1 [

ṽ/ỹ]K | JP j2
i2 K):

Jπ
j1

i1 K ⇓ x[λy.y]?(ỹ) Jπ
j2

i2 K ⇓ x[r]!(z̃)

`= (i1, j1, i2, j2) (λy.y)r ⇓ r ∈ R∞
+ |ỹ|= |z̃|

JPK r−→
`

JQK



121

The substitution claim provides that JP j1
i1 [

ṽ/ỹ]K = JP j1
i1 K[ṽ/ỹ],

such that JQK = (ν x̃)(∏n
i=1,i 6=i1,i2 ∑

mi
j=1Jπ

j
i K.JP j

i K | JP j1
i1 K[ṽ/ỹ] |

JP j2
i2 K).

2. If JP̂K r−→
`

Q then rule (COM`) must be applicable

as follows, where JP̂K = (ν x̃)∏
n
i=1 ∑

mi
j=1 π

j
i .P

j
i and

Q = (ν x̃)(∏n
i=1,i6=i1,i2 ∑

mi
j=1 π

j
i .P

j
i | P

j1
i1 [

ṽ/ỹ] | P j2
i2 ):

π
j1

i1 ⇓ x[v1]?(ỹ) π
j2

i2 ⇓ x[v2]!(ṽ)

`= (i1, j1, i2, j2) v1v2 ⇓ r ∈ R∞
+ |ỹ|= |ṽ|

JP̂K r−→
`

Q

Since the translation is compositional, process P̂ must have the

form P̂ = (ν x̃)∏
n
i=1 ∑

mi
j=1 π̂

j
i .P̂

j
i , with Jπ̂

j
i K = π

j
i and JP̂ j

i K =

P j
i . Furthermore, it is true that v1 = λy.y, v2 = r, such

that π̂
j1

i1 = x?(ỹ) and π̂
j2

i2 = x:r!(z̃), with ṽ = z̃. Let Q̂ =

(ν x̃)(∏n
i=1,i 6=i1,i2 ∑

mi
j=1 π̂

j
i .P̂

j
i | P̂

j1
i1 [

ṽ/ỹ] | P̂ j2
i2 ). Since the transla-

tion is substitution invariant, it holds that JQ̂K = Q. Thus, rule

(COM`) applies as follows, where P̂ = (ν x̃)∏
n
i=1 ∑

mi
j=1 π̂

j
i .P̂

j
i and

Q̂ = (ν x̃)(∏n
i=1,i 6=i1,i2 ∑

mi
j=1 π̂

j
i .P̂

j
i | P̂

j1
i1 [

ṽ/ỹ] | P̂ j2
i2 ):

`= (i1, j1, i2, j2) π̂
j1

i1 = x?(ỹ) π̂
j2

i2 = x:r!(z̃) |ỹ|= |z̃|
P̂ r−→

`
Q̂

Given two processes P,Q, a set I(P,Q) ⊆ R∞
+×N4 and a number

S(P,Q) ∈ R∞
+ as used in rule (SUM) can be defined as follows:

I(P,Q) = {(r, `) | ∃Q′. P r−→
`

Q′ ≡ Q} and S(P,Q) = ∑
(r,`)∈I(P,Q)

r
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Claim. S(P,Q) = S(JPK,JQK)

Proof. It is sufficient to prove that I(P,Q) = I(JPK,JQK). There are two

inclusions to be shown:

“⊆” If (r, `) ∈ I(P,Q) then there exists Q′, such that P r−→
`

Q′ ≡Q. The

first part of the previous claim shows that JPK r−→
`

JQ′K, and since

the translation preserves structural congruence also JQ′K≡ JQK.

Hence, it holds that (r, `) ∈ I(JPK,JQK).

“⊇" If (r, `)∈ I(JPK,JQK) then there exists Q′′, such that JPK r−→
`

Q′′≡
JQK. The second part of the previous claim shows that there

exists Q′, such that P r−→
`

Q′, with JQ′K ≡ Q′′ ≡ JQK. This im-

plies that Q′ ≡ Q, since translation reflects structural congru-

ence. Thus, it is true that (r, `) ∈ I(P,Q).

Claim. Let Q and P1 ≡ P2 be processes. If P1 and P2 are prenex

normal forms in which all bound variables are named distinctly then

S(P1,Q) = S(P2,Q).

Proof. Suppose that P1 = (νx1) . . .(νxk)∏
m
i=1 ∑

ni
j=1 M j

i for guarded

processes M j
i . An analysis of the structural congruence shows that

there exists a sequence of variables (y1, . . . ,yk) and permutations

σ : {1, . . . ,k} → {1, . . . ,k}, θ : {1, . . . ,m} → {1, . . . ,m}, and θi :

{1, . . . ,ni}→ {1, . . . ,ni}, such that:

P2 = (νyσ(1)) . . .(νyσ(k))∏
m
i=1 ∑

ni
j=1 M′θi( j)

θ(i) and

M j
i ≡M′ ji [yσ(1)/x1, . . . ,yσ(k)/xk]
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Given this representation of P2 and since all bound variables are named

distinctly, it is easy to check that (r,(θ(i1),θi1( j1),θ(i2),θi2( j2))) ∈
I(P1,Q), iff (r,(i1, j1, i2, j2)) ∈ I(P2,Q).

In the following the theorem for reductions with finite rates is

proved.

Claim. The translation preserves and reflects relations r−→ for all r ∈
R+, i.e.:

1. if P r−→ P′ then JPK r−→ JP′K

2. if JP̂K r−→ Q then there exists Q̂, such that P̂ r−→ Q̂ and JQ̂K≡ Q

Proof.

1. Assumption P r−→ Q must be inferred by rule (SUM) as follows:

P ⇓ P1 S(P1,Q) = r 6= 0 ¬∃`∃Q′.P1
∞−→
`

Q′

P r−→ Q

In the proof of Theorem 2, it is shown that P ⇓ P1 implies

JPK ⇓ JP1K. The second claim above shows that S(P1,Q) =

S(JP1K,JQK). The second part of the first claim above ensures

that ¬∃`∃Q′.JP1K
∞−→
`

Q′. Thus, the following rule is applicable:

JPK ⇓ JP1K S(JP1K,JQK) = r 6= 0 ¬∃`∃Q′.JP1K
∞−→
`

Q′

JPK r−→ JQK

2. By assumption it holds that JP̂K r−→ Q for r ∈ R+. Since the

stochastic semantics refines the non-deterministic semantics by
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Proposition 6, it is true that JP̂K→ Q. Theorem 2 on the preser-

vation of the non-deterministic semantics shows that there exists

a process Q̂, such that JQ̂K≡ Q and P̂→ Q̂. The following only

makes use of JQ̂K ≡ Q. Assumption JP̂K r−→ Q must be inferred

by rule (SUM) in the following way:

JP̂K ⇓ P1 S(P1,Q) = r 6= 0 ¬∃`∃Q′.P1
∞−→
`

Q′

JP̂K r−→ Q

In particular, P1 must be in prenex normal form, such that

w.l.o.g. all its bound variables are named distinctly. Since

JP̂K ⇓ P1, there exists P̂1, such that P̂ ⇓ P̂1 and JP̂1K ≡ P1, as it

is was shown in the proof of Theorem 2. Process P̂1 is a prenex

normal form, such that w.l.o.g. all its bound variables can be

assumed to be named distinctly. The above claims show that:

S(P1,Q) = S(JP̂1K,JQ̂K) = S(P̂1, Q̂)

Since the translation reflects ∞−→
`

steps, rule (SUM) can be applied

as follows:

P̂ ⇓ P̂1 S(P̂1, Q̂) = r 6= 0 ¬∃`∃Q′.P̂1
∞−→
`

Q′

P̂ r−→ Q̂

Claim. The translation preserves and reflects immediate reactions, i.e.:

1. if P
∞(n)−−→ P′ then JPK

∞(n)−−→ JP′K

2. if JP̂K
∞(n)−−→ Q then exists Q̂, such that P̂

∞(n)−−→ Q̂ and JQ̂K≡ Q
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The proof of this claim shall be omitted here. It concerns rule

(COUNT), which can be treated quite similarly to rule (SUM) above:

The translation can be refined such that types are preserved. In

order to do so, it is assumed that there exists a type constant R by

which to type priority levels r ∈ R during translation. The translation

for restriction and output prefixes is refined as follows:

J(νx:τ)PK = (νx:JτK)JPK
Jx:r!(ỹ).PK = x[rR]!(ỹ).JPK

Types of the π-calculus with priority are translated to types of

π(λ (R)<):

Jch(τ1, . . . ,τn)K = [R→ R]⇒ (Jτ1K, . . . ,JτnK)

Proposition 9 (Type preservation). Let P be a process of the π-

calculus with priority and Γ a type environment such that Γ ` P then

JΓK ` JPK.

The proof is straightforward by structural induction over type deriva-

tions.

3.3.2 Encoding π[@, 6=] for Dynamic Compartments

Versari (2009) proposed an encoding of BioAmbients into π@ to show

that π@ is sufficient expressive to model dynamic cell structures. The

syntax of π@ is the same as for the π-calculus with priority, except
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that communication now acts on non-empty tuples of channels and

that priority levels are assigned to both senders and receivers. This

means that prefixes now have the following form, where |x̃| ≥ 1:

polyadic prefixes π ::= x̃?(r)ỹ | x̃:r!(z̃)

The communication rule (COM) is adapted, such that tuples of chan-

nels and priority levels are tested for equality before communication.

Otherwise, the non-deterministic semantics of the π-calculus with pri-

ority remains unchanged:

(COM@)
|ỹ|= |z̃|

x̃ : r?(ỹ).P1 +M1 | x̃:r!(z̃).P2 +M2
r−→

nd
P1[z̃/ỹ] | P2

However, as it was discovered during the preparation of this the-

sis, there is no obvious way to encode process location as in BioAm-

bients to polyadic synchronization. The reason is that an encoding

of interactions between processes located in two ambients sharing the

same parent (siblings), i.e. s2s communication and enter and merge

rearrangements, requires not only checking channel equality but also

channel inequality. Consider e.g. the following BioAmbients process:

P = [[s2s x?(ỹ).P1] | [s2s x :r!(z̃).P2]]

According to Versari (2009), the encoding to π@ proceeds by intro-

ducing channels for all existing ambients, here e.g. channels a1 , a2 ,

and p to represent the ambients containing the receiver and the sender

and their parent ambient, respectively. Additional channels are needed
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to denote communication directions, such as s2s for s2s communica-

tion. The obtained channels are then used to encode location depen-

dent interaction into polyadic synchronization yielding the following

encoding of P:

JPK = s2s@x@p : r?(ỹ).JP1K | s2s@x@p:r!(z̃).P2 faulty encoding

In words, the encoding allows all processes to perform an s2s commu-

nication if their surrounding ambients share the same parent. However,

this also includes processes of the form that, according to the seman-

tics of BioAmbients, clearly may not communicate:

P′ = [[s2s x?(ỹ).P1 | s2s x :r!(z̃).P2]] counter example

The same holds true for enter and merge rearrangements. To encode

such BioAmbients prefixes it is thus necessary to check the inequality

of the ambients directly surrounding senders and receivers, i.e. in the

example that a1 6= a2 , which is not possible in polyadic synchroniza-

tion.

The problem can be fixed by introducing π[@, 6=], which extends

polyadic synchronization in the following way: to each receiver an

additional tuple, b̃, of constants true and false is annotated. Output

prefixes remain the same:

extended polyadic prefixes π ::= x̃ : b̃ : r?(ỹ) | x̃:r!(z̃)

The tuple b̃ denotes the matching result necessary for two processes

to interact, i.e. which channels should equal (true) and which should
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differ (false) in order for a receiver and a sender to perform a com-

munication. The channel tuples and the matching result tuple must be

of equal length:

(COM[@,6=])

|ỹ|= |z̃| ∀i ∈ {1, . . . ,n}.(xi = x′i)⇔ (bi = true)

(xi)
n
i=1 : (bi)

n
i=1 : r?(ỹ).P1 +M1 |

(x′i)
n
i=1:r!(z̃).P2 +M2

r−→
nd

P1[z̃/ỹ] | P2

Based on the extended version of polyadic synchronization, BioAm-

bients process P′ can be encoded in the following way, where a iden-

tifies the ambient directly surrounding the sender and the receiver and

no communication steps are possible:

JP′K = s2s@x@a@p : (true,true,false,true) : r?(ỹ).JP1K |
s2s@x@a@p:r!(z̃).P2

corrected encoding

In the following, a compositional encoding of π[@, 6=] with pri-

ority levels in an ordered set (R,<) into the attributed π-calculus,

π(λ (R,=,EQ)<), is presented and proved to be correct. This result

shows that the attributed π-calculus inherits the correct encoding of

BioAmbients from π[@, 6=] and is thus sufficiently expressive for the

modeling of dynamic cell structures.

The encoding of π[@, 6=] is decomposed into two parts. The first

part is a preprocessing step that rewrites all tuples in sending or re-

ceiving positions, such that they are of the same arity. Given a process

P of π[@, 6=], let n be the maximal arity of tuples in subject position

of polyadic prefixes and x a fresh channel name not occurring in P
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(which exists since Vars is infinite). Sending and receiving tuples in P

are completed by x’s until they are of arity n. Similarly, the tuples of

Booleans of receiver prefix are filled up with value true:

(x1, . . . ,xm) ⇒ (x1, . . . ,xm,x, . . . ,x︸ ︷︷ ︸
n−m

)

(b1, . . . ,bm) ⇒ (x1, . . . ,xm,true, . . . ,true︸ ︷︷ ︸
n−m

)

In order to encode processes in π[@, 6=] with channel tuples in subject

positions of a maximal arity n, the attribute language λ (R,=,EQ)<

provides functions eqn ∈ EQ, which check [in-]equality of n-tuples of

constants or variables (and thus channel names):

eq0 =df true

eqn =df λx1 . . .λxnλy1 . . .ynλb1 . . .bn.

if(xn = yn) = bn then

eqn−1 x1 . . .xn−1y1 . . .yn−1b1 . . .bn−1

else false

Lemma 5. For all constants or variables v1, . . . ,vn, v′1, . . . ,v
′
n,

b1, . . . ,bn it is true that:

1. eqnv1 . . .vnv′1 . . .v
′
nb1 . . .bn ⇓ true, if ∀i∈ {1, . . . ,n}.(vi = v′i)⇔

(bi = true)

2. eqnv1 . . .vnv′1 . . .v
′
n ⇓ false, if ∃i ∈ {1, . . . ,n}.¬((vi = v′i) ⇔

(bi = true))
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The proof is straightforward by induction on n. It relies on the def-

inition of conditionals and equality of the big-step evaluator in Fig-

ures 3.1 and 3.2. See Appendix B for details.

The main translation J_K : π[@, 6=]→ π(λ (R,=,EQ)<) maps to the

attributed π-calculus with an attribute language that provides addi-

tional constants for priority levels and equality. Only priority levels

are successful values. Since the encoding J_K is compositional, only

the mapping of communication prefixes needs to be specified. There-

fore, it is assumed that all subject tuples have the same arity n. A single

fresh channel x not occurring in P is introduced at the subject position

of all encoded prefixes:

J(xi)
n
i=1:r!(z̃).PK = x[λx1 . . .λxnλ rλb1 . . .λbn.

if eqn+1x1 . . .xnr x1 . . .xnr

b1 . . .bntrue then r

else false]!z̃.JPK
J(xi)

n
i=1 : (bi)

n
i=1 : r?(z̃).PK = x[λe.e x1 . . .xnr b1 . . .bn]?(z̃).JPK

A sender on channel tuple (x1, . . . ,xn) with priority level r is translated

to a sender on a single channel x. Its constraint argument is defined

to be a function with parameters x1 , . . . ,xn, b1 , . . . ,bn, and r , denoting

the channel tuple, the expected matching result, and the priority level

of the receiver. Pairwise equality of channels and priority levels are

checked with function eqn+1, testing if for all i ∈ {1, . . . ,n} it holds

that (x i = xi) = bi and that (r = r) = true. Consequently, a receiver

on channel tuple (x1, . . . ,xn), with a tuple of Booleans (b1, . . . ,bn), and

priority level r is translated to a receiver on a single channel x with a
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constraint function that applies the functional constraint argument to

channels x1, . . . ,xn, Booleans b1, . . . ,bn and priority level r. All pro-

cess definitions need to be translated in the same way:

JA(x̃), PK = A(x̃), JPK

Theorem 4. The encoding of π[@, 6=] with priority levels in (R,<)

to the attributed π-calculus, π(λ (R,=,EQ)<), is correct, in that all

preprocessed processes P in π[@, 6=] satisfy:

1. if P→ Q then JPK→ JQK

2. if JPK→ Q then there exists Q̂, such that Q≡ JQ̂K and P→ Q̂

The proof is elaborated in Appendix B. It checks that communica-

tion steps correspond in both calculi, i.e. that the polyadic synchro-

nization of π[@, 6=] is translated properly to [in-]equality testing in

π(λ (R,=,EQ)<). This mostly follows from Lemma 5 on the correct-

ness of encoding equality of n-tuples.

Finally, notice that the encoding of π[@, 6=] does not preserve types

in any obvious sense. Finding a convincing type system for π[@, 6=]

(and also π@) is nontrivial, since there the capabilities of tuples and

channels are overloaded while usual type systems separate tuples and

channel types properly.

3.3.3 Variants of the Stochastic Pi-Calculus

It remains to discuss the relationship to variants of the stochastic π-

calculus where rates are annotated to channels.
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BioSpi and SPiM

The syntax of BioSpi (Regev, 2003) and SPiM Phillips and Cardelli

(2007) differ from that of π(L ) in that stochastic rates are annotated

to channels at creation time, rather than to communication prefixes.

The rates of the prefixes can then be deduced from the rate of the com-

municating channel.

The idea of encoding this variant of the stochastic π-calculus into

π(λ (R∞
+)<2) is to replace channels x with rate r by pairs 〈x,r〉, that

are decomposed at communication time. Here it is relevant that the

attributed π-calculus permits pairs and that it allows for expressions in

sender and receiver positions.

Below, a formal representation of the encoding is presented,

which is claimed to be correct with respect to both semantics, non-

deterministic and stochastic (without proof):

assumption: all bound variables in P are named distinctly

JPK1 = JP[〈x1,r1〉/x1] . . . [〈xn,rn〉/xn]K1,

with fv(P) = {x1, . . . ,xn},
∀i ∈ {1, . . . ,n}.ri is rate of xi

JA(ỹ), PK1 = A(ỹ), JP[〈x1,r1〉/x1] . . . [〈xn,rn〉/xn]K1,

with fv(A(ỹ), P) = {x1, . . . ,xn},
∀i ∈ {1, . . . ,n}.ri is rate of xi

J(νx:r)PK2 = (νx)JP[〈x,r〉/x]K2

Jx?(ỹ).PK2 = (fst x)[λ z.z]?(ỹ).JPK2

Jx!(ỹ).PK2 = (fst x)[snd x]!(ỹ).JPK2

. . .
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The encoding defines a two-step approach, first replacing all free

names by pairs in P and its definitions in D as implemented by encod-

ing J·K1 and then all names bound by ν-operators (J·K2). The two last

lines of the definition of J·K2 state that the channel is extracted from the

pair before communication and that the rate is extracted in the commu-

nication constraint. The definitions of the encoding’s second step for

defined processes, parallel compositions, summations, and idle pro-

cesses are straightforward and thus omitted here. The encoding can

only work if the bound variables are named distinctly, since otherwise

names are incorrectly replaced by pairs.

Stochastic Pi-Calculus with Concurrent Objects

The stochastic π-calculus with concurrent objects (SPiCO) supports a

static form of polyadic synchronization, called pattern guarded inputs.

Patterns are tuples a(ỹ) that are built from a finite set of function sym-

bols a in some set Σ and a sequence of channels. Senders transmit

tuples b(z̃) to receivers, which match it against a pattern a(ỹ). A com-

munication step is allowed only if the function symbol b of the sent

tuple matches the function symbol a of the receiving pattern:

x?a(ỹ).P | x!b(z̃).P′→ P[z̃/ỹ] | P′, if a = b

The communication constraint is thus equality a=b. This is a weak

form of polyadic synchronization, additionally checking function sym-

bols. As before, stochastic rates are annotated to channels at creation

time.
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Kuttler et al. (2007) showed that SPiCO can be encoded in the

stochastic π-calculus and by this, following Theorem 3, also in π(L ).

A more direct encoding from SPiCO to π(λ (R∞
+,Σ,=))<2 can be ob-

tained similarly as for SPiM and BioSPi, where a,b ∈ Σ:

assumption: all bound variables in P are named distinctly

JPK1 = JP[〈x1,r1〉/x1] . . . [〈xn,rn〉/xn]K1,

with fv(P) = {x1, . . . ,xn},
∀i ∈ {1, . . . ,n}.ri is rate of xi

JA(ỹ), PK1 = A(ỹ), JP[〈x1,r1〉/x1] . . . [〈xn,rn〉/xn]K1,

with fv(A(ỹ), P) = {x1, . . . ,xn},
∀i ∈ {1, . . . ,n}.ri is rate of xi

J(νx:r)PK2 = (νx)JP[〈x,r〉/x]K2

Jx?a(ỹ).PK2 = (fst x)[λz .if z = a then (snd x)

else 0.0]?(ỹ).JPK2

Jx!(ỹ).PK2 = (fst x)[snd x]!(ỹ).JPK2

. . .

The only new aspect here is to check the communication constraint

a=b in addition.

Original Attributed Pi-Calculus

A preliminary version of the attributed π-calculus (John et al., 2008b)

annotates stochastic rate constants to channels, and a fixed function

val is used to obtain the rate constants of channels. This version of



135

π(L ) can be encoded into the version of π(L ) presented here:

assumption: all bound variables in P are named distinctly

JPK1 = JP[〈x1,r1〉/x1] . . . [〈xn,rn〉/xn]K1,

with fv(P) = {x1, . . . ,xn},
∀i ∈ {1, . . . ,n}.ri is rate of xi

JA(ỹ), PK1 = A(ỹ), JP[〈x1,r1〉/x1] . . . [〈xn,rn〉/xn]K1,

with fv(A(ỹ), P) = {x1, . . . ,xn},
∀i ∈ {1, . . . ,n}.ri is rate of xi

Jv[e]?(ṽ).PK2 = (fst JvK)[JeK]?(JṽK).JPK2

Jv[e]!(ỹ).PK2 = (fst JvK)[JeK]!(ỹ).JPK2

JxK = x

JvalK = snd

Jλx.eK = λx.JeK
Je1e2K = Je1KJe2K

. . .

3.4 Stochastic Simulator

In this section, a stochastic simulation algorithm is developed that

closely follows the stochastic semantics of the attributed π-calculus in

terms of CTMC’s. Thereby, it is shown that a simulator for π(L ) can

be obtained independently of the choice of L by extending previous

simulators for the stochastic π-calculus or SPiCO.

The stochastic semantics of π(L ) induces the naive stochastic sim-

ulator given in Figure 3.18. The simulator’s input comprises a process
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P and a time point t ∈R. The next reduction step for process P is cho-

sen in a memoryless stochastic manner. The sojourn time ∆ ∈ R+ of

P is inferred and the simulator proceeds with the resulting solution at

time point t +∆. This loop continues until no next reduction step can

be found; in fact it may run for ever, if not interrupted externally or

equipped with some additional termination condition.

The first step of the simulation algorithm is to apply definitions of

P exhaustively. This computation may run into an infinite loop or raise

errors in case of malformed definitions or if the evaluation of some

expressions diverges (¬∃v.e ⇓ v). If application raises an immediate

error P1
err−→
nd
⊥ by rules (E.COM), (E.PREF), or (E.CONSTR), then the

simulator throws an exception (which kills its continuation). Note that

error checking may run into infinite loops or raise an error, too. If

P does converge to an error-free process P1 then P1 is uniquely deter-

mined up to structural congruence (Proposition 5) and must be congru-

ent to some prenex normal form (ν x̃)∏
n
i=0 Mi. The remainder of the

algorithm is independent of the concrete representative of congruence

class [P1]≡, such that it can be chosen arbitrarily. The next step is to

compute the set of all labeled reactions of P1:

Reacts = {(`,r) ∈ N4×R∞
+ | ∃P2. P1

r−→
`

P2}

Labeled reactions with rate r = ∞ are executed with priority and with-

out time consumption. If no reaction with rate r = ∞ exists, the SSA is

applied to select a reaction (`,r) ∈ Reacts with probability r/s where

s = ∑(`,r′)∈Reacts r′. The sojourn time in P is ∆ =−ln(1/U)/s for some

uniformly distributed random number 0 <U ≤ 1.
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S imu la t e−n a i v e ( P, t )

/ / process P, time point t ∈ R
l e t P1 such t h a t P ⇓ P1

/ / P1 obtained from P by exhaustively applying definitions

/ / computation may diverge

i f P1
err−→
nd
⊥ then r a i s e error

/ / apply all rules (E.COM), (E.PREF), (E.CONSTR).

/ / computation may diverge since expressions are evaluated

l e t Reacts = {(`,r) ∈ N4×R∞
+} | ∃P2. P1

r−→
`

P2} / / (COM`)

i f Reacts∩ (N4×{∞}) = /0 then
l e t ((`,r),∆) = ssa(Reacts) / / (SUM)

l e t P2 such t h a t P1
r−→
`

P2

Simu la t e−n a i v e ( P2, t +∆ )

e l s e
/ / (COUNT)

s e l e c t (`,∞) ∈ Reacts with equal probability

l e t P2 such t h a t P1
∞−→
`

P2

Simu la t e−n a i v e ( P2, t )

Figure 3.18: Naive simulator interpreting the stochastic semantics of

π(L ).
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In order to compute Reacts, all possible instances of the commu-

nication rule (COM`) have to be enumerated. This requires evaluating

all communication constraints by applying the evaluation algorithm of

the attribute language L .

Fortunately, the CTMC itself does not need to be computed by the

simulation algorithm. This would be largely unfeasible, since the num-

ber of possible outcomes of non-deterministic interactions may grow

exponentially. Furthermore, it would require deciding structural con-

gruence (rules (SUM) and (COUNT)), which is a graph isomorphism

complete problem, as shown by Khomenko and Meyer (2008), yield-

ing high computational costs.

The efficiency of the naive simulation algorithm can be increased

by applying an idea that was basically exploited already in the BioSpi

implementation. The objective is to avoid the enumeration of all pairs

of alternatives (and thus redexes), since there may be quadratically

many in the size of P1. The strategy is to group all reactions on the

same channel with the same constraint argument and the same rate

constant. The SSA is first applied to such grouped reactions and then a

specific interaction is chosen with equal distribution.

Group labels allow the identification of grouped reactions. A group

label of a process P1 is a triple in fv(P1)×Vals(P1)
2. The group of

reactions for P1 = ∏
n
i=1 ∑

m
j=1 π

j
i .P

j
i with label L = (x,v,r) is defined as

follows:

Reacts(L) = {((i1, j1, i2, j2),r) ∈ Reacts |
∃v′ỹṽ.π j1

i1 ⇓ x[v]!(ṽ), π
j2

i2 ⇓ x[v′]?(ỹ), v′v ⇓ r}
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A triple L identifies reaction groups by a communication channel x, a

constraint argument v, and a rate constant r yielding the application

of the constraint function v′ to v. The propensity of a grouping label

L, prop(L) ∈ R+ ]{∞(n) | n ∈ N}, sums up all rate constants of the

labeled reactions that are grouped together or counts the number of

labels of infinite rate reactions if there are any:

prop(L) =

∞(n), if n = #{` | (`,∞) ∈ Reacts(L)} ≥ 1

∑(`,r)∈Reacts(L) r, otherwise

The set of grouped reactions with their propensities, which forms the

input of the SSA, is defined as follows:

GReacts = {(L,prop(L)) | L ∈ Vars(P1)×Vals(P1)
2}

The cardinality of GReacts is linear in the size of P1. In many practi-

cally relevant cases, only a fixed number of values will ever be used.

This is e.g. the case in the example models of Euglena’s movement

and cooperative enhancement, where none of the processes succeeding

the initial solution introduces new channels or new constraint values,

see Section 3.2. By contrast, the cardinality of set Reacts becomes

quadratic in the size of P1, e.g., if all senders and receivers may inter-

act.

Figure 3.19 provides a simulation algorithm based on grouped re-

actions. In contrast to the naive simulator, it first selects a grouped

reaction based on the SSA and then a label of a reaction within this

group with equal distribution.
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S i m u l a t e ( P, t ) / / solution P, time point t ∈ R
l e t P1 be such t h a t P ⇓ P1

/ / P1 is obtained from P by exhaustively applying definitions.

/ / computation may diverge

i f P1
err−→
nd
⊥ then r a i s e error

/ / apply all rules (E.COM), (E.PREF), (E.CONSTR).

/ / computation may diverge since expressions are evaluated

l e t GReacts = {(L,prop(L)) | L ∈ Vars(P1)×Vals(P1)
2}

i f {(L,r) ∈ GReacts | r = ∞(n)}= /0 then
l e t ((L,r),∆) = ssa(GReacts)

s e l e c t (`,r) ∈ Reacts(L) with equal probability

l e t P2 such t h a t P1
r−→
`

P2

S i m u l a t e ( P2, t +∆ )

e l s e
s e l e c t (L,∞(n)) ∈ GReacts

with probability n/m where m = ∑(L′,∞(n′))∈GReacts n′

s e l e c t (`,∞) ∈ Reacts(L) with equal probability

l e t P2 such t h a t P1
∞−→
`

P2

S i m u l a t e ( P2, t )

Figure 3.19: Stochastic simulator for π(L ) (to be implemented incre-

mentally).
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What remains is to compute the propensities of all labels of grouped

reactions in a process P1. These can be derived from the values below

if P1 = ∏
n
i=1 ∑

m
j=1 π

j
i .P

j
i :

out(x,v) = #{(i, j) | ∃ṽ : π
j

i ⇓ x[v]!(ṽ)}
in(x,v,r) = #{(i, j) | ∃v′∃ỹ : π

j
i ⇓ x[v′]?(ỹ), v′v ⇓ r}

mixin(x,v,r) = #{(i, j1, j2) |
∃v′∃ṽ∃ỹ : π

j
i ⇓ x[v]!(ṽ), π

j
i ⇓ x[v′]?(ỹ), v′v ⇓ r}

Lemma 6. prop(x,v,r)= (out(x,v)∗ in(x,v,r)−mixin(x,v,r))∗r, if the

solution does not contain infinite rates.

Proof. Let L = (x,v,r). It is enough to show that out(x,v)∗ in(x,v,r)−
mixin(x,v,r) = #Reacts(L). This holds, since all pairs of indices

counted by out(x,v)∗ in(x,v,r) form a redex according to rule (COM),

except for those that are counted by mixin(x,v,r).

The computation of mixins can still produce an output of quadratic

size and thus needs quadratic time. The square factor, however, is

in the maximal number of alternatives in sums defining molecules of

P1 which will be small in practice. All other needed values can be

computed in linear time in the size of P1, when ignoring the time for

evaluating expressions, which is justified in many practical cases.

The final step toward an efficient simulator consists of comput-

ing the propensities prop(x,v,r) incrementally, such that they do not

need to be recomputed from scratch in every reduction step. This can

be based on Lemma 6, since the values of out(x,v), in(x,v,r), and
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mixin(x,v,r) can be updated incrementally when adding new solutions

or canceling alternative choices by communication.

3.5 Implementation and Performance Eval-

uation

In this section, the implementation of the stochastic simulator for

π(L ) is outlined and some experimental results are presented in order

to give an impression on its performance.

The π(L ) simulator is implemented on top of the simulator for the

stochastic π-calculus by Leye et al. (2010) in the modeling and simu-

lation framework JAMES II (Himmelspach and Uhrmacher, 2007). The

implementation is freely available1. It relies on a two layer approach:

the base layer is the simulator of the stochastic π-calculus along the

lines of Phillips and Cardelli (2007), i.e. for each communication

channel the propensity is calculated under consideration of the cor-

responding senders and receivers and the rate constant assigned to the

channel. The results are passed to a Stochastic Simulation Algorithm

(SSA) that determines the next communication to perform and the so-

journ time. There are three alternative versions of the SSA that can

be freely chosen, the First Reaction Method by Gillespie (1976), the

Direct Reaction Method by Gillespie (1977), and the Next Reaction

Method by Gibson and Bruck (2000). The top layer implements the

1See the James-Imp-Pi web page at http://biopi-lille-ros.gforge.

inria.fr.

http://biopi-lille-ros.gforge.inria.fr
http://biopi-lille-ros.gforge.inria.fr
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grouping as explained in Section 3.4, i.e. it groups the communication

pairs in a solution by channels, constraint arguments, and rate con-

stants. In order to link the two layers, the idea of implementing the

Euglena model in the stochastic π-calculus in Section 3.2.1 is applied.

That is, for each group an extra channel is created to which the cor-

responding senders, receivers and also the rate constant are assigned.

The set of the thus obtained communication channels is passed to the

base layer, which determines the next model state.

Performance experiments were carried out to compare the simulator

of π(L ) to the stochastic π-calculus simulator in JAMES II and the

stochastic Pi Machine (SPiM) by Phillips and Cardelli (2007). Only

the Direct Reaction Method is considered, since this is the only version

of the SSA supported by SPiM. The experiments were performed on a

WindowsXP machine with an Intel Core 2 Duo 2.00 GHz processor,

and 2 GB RAM providing a SciMark 2.0 Java benchmark score2 of

383.9 Mflops. Simulations in JAMES II used the Mersenne Twister

random number generator as introduced by Matsumoto and Nishimura

(1998). Notice, that there exists a faster version of SPiM for Linux

based on native code compilation, an aspect that is, however, irrelevant

for this study. For further details on the runtime of SPiM compared to

the stochastic π-calculus simulator in JAMES II see Leye et al. (2010).

A well-suited test example is provided by the Euglena model in Sec-

tion 3.2.1, as it allows gradually raising the number of grouped reac-

tions and process definitions by increasing the number of depth levels.

2http://math.nist.gov/scimark2/, 06/22/2010

http://math.nist.gov/scimark2/
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Furthermore, it can be implemented in both the stochastic π-calculus

and π(L ). Implementations in the stochastic π-calculus are obtained

by enumerating the Euglena processes for different depth levels in the

same way as shown in Section 3.2.1. The Euglena benchmark model

comprises two light sources with intensity rates I1 = 5.0 and I2 = 15.0

and 100 Euglenas on each depth level (n= 100). The rate of Euglena’s

upwards motion is set to u = 2.0 and the water opacity to σ = 0.2.

Among the experiments, the number of depth levels was gradually in-

creased from 10 to 100 by steps of 10, i.e. m ∈ {9,19, . . . ,99}. To en-

sure comparability, two model implementations in π(L ) for each ex-

periment were used, one enumerating the depth levels as in the stochas-

tic π-calculus ("Enum") and one in the more compact form with the

depth level as a parameter of Euglena ("Comp"). Measured was the

time needed to simulate until time point 100.0, see Appendix A. The

results for each experiment are the average of three simulation runs

with small deviations due to both the stochastic nature of the simula-

tion and the work load of the machine. The results of the experiment

sets are shown in Figure 3.20. The implementations are labeled ac-

cording to the utilized formalism, "StoPi" or "AttrPi", the tool, "SPiM"

or "James", and the implementation, "Enum" or "Comp".

The results show a general increase in simulation time with an in-

crease in the number of depth levels. Presumably due to the choice of

operating system, SPiM performs slower. All other implementations

need similar amounts of time. The maximal simulation time required

is around 160s. The results indicate that the computational complexity

of the π(L ) simulator is moderate.
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Figure 3.20: Runtime of different simulators in s for the Euglena

model with parameters I1 = 5.0, I2 = 15.0, n= 100, σ = 0.2, u= 2.0,

and m ∈ {9,19, . . . ,99}, i.e. number of depth levels ranging between

0 and 100. Simulation runs were performed until simulation time

t = 100.0 (average of 3 runs each): "StoPi" = the stochastic π-calculus,

"AttrPi" = the attributed π-calculus, "SPiM" = SPiM, "James" = JAMES

II, "Enum" = model with enumerated depth levels, "Comp" = model

with depth level as species parameter.





Chapter 4

The Imperative π-Calculus

This chapter introduces the imperative π-calculus with its attribute lan-

guage, syntax, and non-deterministic and stochastic semantics (Sec-

tion 4.1). As discussed already in Section 1, a simple type system for

the imperative π-calculus is omitted since there exists no obvious way

to obtain one that covers the encoding of BioAmbients as presented

here. Modeling and expressiveness studies in Sections 4.2 and 4.3,

respectively, show the usefulness of the imperative π-calculus for the

spatial and stochastic modeling of cell-biological systems. Section 4.4

presents a stochastic simulator for the imperative π-calculus including

a short discussion on its performance.
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4.1 Language

The imperative π-calculus extends π(L ) by a global imperative store.

That is, values are assigned to channels that can be changed by pro-

cess communication. As before, constraints and attributes are speci-

fied in an attribute language with the basic difference that the evalua-

tion of expressions additionally considers a global store and operators

for its modification, see Section 4.1.3. Syntactically, attributed pro-

cesses are only slightly extended by introducing initial channel values

in ν-operators, see Section 4.1.4. Semantically, the basic difference is

that pairs of processes and stores are considered. However, the impact

of assignments in concurrent processes requires special attention. The

basic idea here is to restrict assignments to places that are not read

concurrently, see Sections 4.1.1, 4.1.4, 4.1.5. Nevertheless, the imper-

ative π-calculus is a mostly conservative extension of the attributed π-

calculus. In fact, neglecting the imperative store, the calculi are equal,

as reflected by both their non-deterministic and stochastic semantics,

see Section 4.3.1.

In the following, first the idea of a global store is recalled and basic

design decisions are explained. Attribute languages, syntax, and non-

deterministic and stochastic semantics of π imp(L ) are introduced in

Sections 4.1.3, 4.1.4, 4.1.5, and 4.1.7, respectively. In Section 4.1.6 it

is shown that, by restricting the use of assignments, the convergence of

imperative processes produces unique results. Section 4.3.1 highlights

the conservative nature of the imperative extension by comparing the

non-deterministic and stochastic semantics of π imp(L ) and π(L ).
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4.1.1 Idea of a Global Imperative Store

For illustration, consider a compartment C containing molecules of

species R1 and R2, which may bind to a product P, and a flux constantly

adding molecules of species R1 to C:

bind : R1,R2
k1−→ P

flux :
k2−→ R1

Following Gillespie (1977), the affinity of a two-reactant reaction de-

pends on the volume of the containing compartment. Thus, k1 is only

valid for a constant volume of C. With the flux adding molecules R1

to C, the volume of C, however, increases. Using a global impera-

tive store, this side effect of the flux can be modeled in the imperative

π-calculus in the following way.

Assuming that VR1 denotes the volume of a single R1 molecule,

VC the initial value of compartment C, NR1 , NR2 , and NP the initial

amounts of the reactants and the product, respectively, and the affin-

ity of the binding reaction in dependency of the compartment volume

yields k1/v, where v denotes the compartment volume, the model may

read as follows, where P is left unspecified:

Global variables

v : VC // compartment volume

Process definitions

R1 ( ) , bind [ λ_ . k1 /(val v ) ] ? ( ) .P( )

R2 ( ) , bind [_ ] ! ( ) . 0
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F ( ) , flux [ λ_ . v :=(val v ) + VR1 ; k2 ] ? ( ) .

(F ( ) | R1 ( ) )

T( ) , flux [_ ] ! ( ) .T( )

P( ) , . . .

Solution

∏
NR1
i=1 R1 ( ) | ∏

NR2
i=1 R2 ( ) | ∏

NP
i=1 P( ) | F ( ) | T( )

A global variable, i.e. a channel, v denotes the current volume of the

compartment which is initially set to the initial compartment volume

VC. Process definitions R1() and R2() represent the reactants and P()

the product, respectively. Processes F() and T() are defined to perform

the flux. As usual, the binding reaction is reflected by an interaction

of processes R1() and R2() on a channel bind , where R1() proceeds

with P() and R2() is consumed. Their constraint value yields the affin-

ity of the binding reaction k1/v. Therefore, the constraint function on

the receiver side accesses the value of global variable v by applying

functional constant val to it. Similarly, processes F() and T() com-

municate on a channel flux , where both proceed recursively and F()

additionally adds a process R1() to the solution. The constraint func-

tion of process F() is defined as a sequence. The evaluation result of

a sequence is considered to be given by its second component, i.e., in

this case, constantly the flux’s rate constant k2. The sequence’s first

component implements the side effect of the flux, i.e. it increases the

value of global variable v , representing the compartment’s volume,

by the volume of a single R1 molecule VR1 . A change in the value

of v is committed to the global store every time the communication
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on flux occurs. Simultaneously, all other constraint expression are re-

evaluated, such that processes R1() and R2() always interact with the

right affinity. A more elaborated example using global variables to

model changes in compartment volumes is provided in Section 4.2.1.

4.1.2 Design Decisions

What follows reports on a few important decisions regarding the de-

sign of the imperative π-calculus.

Assignments and concurrency. Although processes run in parallel,

the order of evaluation must be deterministic. Consider e.g. a solution

A(x :=1) | B(val x) with an initial value of x = 2. There is no inherent

order of evaluation of the expressions in the solution, such that with

B(1) and B(2) two different results are possible. In the design of the

imperative π-calculus, this problem is met by prohibiting assignments

in the context of actual process parameters and initial values of chan-

nels. In Section 4.1.6, it is shown that this is, indeed, a proper solution.

An alternative is to obtain an order of such evaluations by determining

whether processes take the role of senders or receivers in communica-

tions. However, this leads to higher computational costs, since parallel

processes need to be evaluated more than once in different orders.

Environments as additional binders. As usual in imperative pro-

gramming languages, the imperative π-calculus reflects the global

store in its semantics by introducing pairs of processes and environ-
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ments, the latter mapping variables to values. Environments act as

binders for processes. In a process-environment pair, all the free names

of the process, which the environment maps to values, are bound. In

the definition of the imperative π-calculus, this dependency is made

explicit by lifting the notion of free names and structural congruence

up to the level of process-environments. This also allows extending α-

conversion to environments, which, in turn, leads to a slightly weaker

form of structural congruence, such that more process-environment

pairs can be identified.

Order of evaluation. Since reaction constraints may cause side ef-

fects, the order in which senders and receivers are evaluated is of

great significance. When evaluating senders first, a receiver can only

be evaluated under consideration of the changes in the environment

caused by a specific sender, and vice versa. The imperative π-calculus

is designed, such that senders and then receivers are evaluated with

an argument originating in the context of simulation. The stochastic

simulator needs to group senders and receivers not only by their chan-

nels but also by the values of their constraints, see Section 4.4. In

many cases, senders provide simple constraint values that are easy to

compare and thus allow for an effective grouping. By contrast, the

constraint values of receivers are functions by definition, which are

hard to identify. Thus, first evaluating and grouping senders and then

assigning receivers to these groups seems to be more effective than the

symmetric approach.
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4.1.3 Attribute Languages

The imperative π-calculus inherits the concept of attribute languages

from π(L ), with small extensions in order to handle global variables.

Thus, an attribute language L of the imperative π-calculus is a func-

tional, call-by-value programming language with expressions that base

on constants c ∈ Consts and variables (channel names) x,y ∈ Vars.

As before, a specific attribute language is defined by a tuple L =

(Consts,⇓,R,<), with Consts representing a set of constants, a big-

step evaluator ⇓, R denoting the set of successful values, and a partial

order < on R defining priority levels. With the restricted expressions

f ∈ Exprs− an additional syntactic category is introduced. The def-

initions of constants, values v ∈ Vals, and expressions e ∈ Exprs are

selectively extended:

c ∈ Consts ::= false | true | unit | fst | snd | val . . .
v ∈ Vals ::= x | c | λx.e | 〈v1,v2〉

e ∈ Exprs ::= v | e1e2 | 〈e1,e2〉 | if e then e1 else e2 | ref x |
e1 := e2

f ∈ Exprs− ::= v | f1 f2 | 〈 f1, f2〉 | if f then f1 else f2 | ref x

The basic elements of set Consts remain Booleans, numbers and func-

tional constants fst and snd to access the element of pairs. Addition-

ally, constant val and dummy value unit are introduced. Operator

val gives access to the value of a channel. Constant unit is used to

denote that a channel’s value is empty. As before, the set Vals contains

constants, pairs of values and λ -abstractions, i.e. functions. Possible

expressions are function application, pairs of expressions, and condi-
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tionals. Expressions ref x and assignments e1 := e2 are specific to

π imp(L ). Since the value of a channel is potentially another channel,

reference chains can be built. Expressions ref x allow obtaining the

last channel in such a chain, i.e. they denote dereferentiation; more

precisely, the first channel whose value is not a channel, if one ex-

ists. Assignments permit altering the values of variables. As discussed

above, for proper computation, assignments are prohibited in certain

places. In such places, only restricted expressions f can be used.

In contrast to π(L ), the big-step evaluator of π imp(L ) maps pairs

of expressions and environments to pairs of values and environments.

Circular reference chains introduce a further possibility for the non-

termination of evaluation. An environment is a partial function ρ :

Vars→ Vals, mapping names to values. The set of all possible envi-

ronments is given by Env. The domain of an environment dom(ρ)

yields the set of names for which ρ defines a mapping. Notation

(e,ρ) ⇓ (v,ρ ′) abbreviates ⇓ (e,ρ) = (v,ρ ′). The evaluator follows

the rules presented in Figure 4.1. Most of them are defined as be-

fore, except that they now consider pairs of values and environments.

Only assignments may change environments, but they can be part of

other expressions, such as pairs or conditions. Rule (V), (PAIR), and

(SELECT) evaluate values, pairs, and select-expressions. Rule (ASS)

executes assignments by first evaluating them from the left to the right,

where the order is realized by the way the resulting environments are

passed around, and then changing the environment, accordingly. No-

tation ρ[x 7→ v] describes the store, which maps all names to values

as ρ , except name x, which it maps to value v. The evaluation result
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(V)
v ∈ Vals

(v,ρ) ⇓ (v,ρ)
(PAIR)

(e1,ρ) ⇓ (v1,ρ1) (e2,ρ1) ⇓ (v2,ρ
′)

(〈e1,e2〉,ρ) ⇓ (〈v1,v2〉,ρ ′)

(SELECT)
(e,ρ) ⇓ (〈v1,v2〉,ρ ′)

(fst e,ρ) ⇓ (v1,ρ
′) (snd e,ρ) ⇓ (v2,ρ

′)

(ASS)
(e1,ρ) ⇓ (x,ρ1) (e2,ρ1) ⇓ (v,ρ ′)
(e1 := e2,ρ) ⇓ (unit,ρ ′[x 7→ v])

(VAL)
(e,ρ) ⇓ (x,ρ ′) ρ ′(x) = v

(val e,ρ) ⇓ (v,ρ ′)
(REF1)

ρ(x) /∈ Vars

(ref x,ρ) ⇓ (x,ρ)

(REF2)
ρ(x) ∈ Vars (ref ρ(x),ρ) ⇓ (y,ρ)

(ref x,ρ) ⇓ (y,ρ)

(COND1)
(e,ρ) ⇓ (true,ρ1) (e1,ρ1) ⇓ (v1,ρ

′)

(if e then e1 else e2,ρ) ⇓ (v1,ρ
′)

(COND2)
(e,ρ) ⇓ (false,ρ1) (e2,ρ1) ⇓ (v2,ρ

′)

(if e then e1 else e2,ρ) ⇓ (v2,ρ
′)

(FUN)

(e1,ρ) ⇓ (λx.e′1,ρ1)

(e2,ρ1) ⇓ (v′,ρ2) (e′1[v
′/x],ρ2) ⇓ (v,ρ ′)

(e1e2,ρ) ⇓ (v,ρ ′)

Figure 4.1: Big-step evaluator of a call-by-value λ -calculus with pairs

and conditionals.
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(EQ1)
(e1,ρ) ⇓ (v,ρ1) (e2,ρ1) ⇓ (v,ρ ′) v ∈ Vars∪Consts

(e1=e2,ρ) ⇓ (true,ρ ′)

(EQ2)
(e1,ρ) ⇓ (v1,ρ1) (e2,ρ1) ⇓ (v2,ρ

′) v1 6= v2 ∈ Vars∪Consts

(e1=e2,ρ) ⇓ (false,ρ ′)

(�R)

� ∈ {+,−,∗,/,pow}
v1� v2 = v (e1,ρ) ⇓ (v1,ρ1) (e2,ρ1) ⇓ (v2,ρ

′)

(e1� e2,ρ) ⇓ (v,ρ ′)

Figure 4.2: Additional rules of the big-step evaluator of the attribute

language λ (N0,+,=)<1 .

of assignments is constantly unit. By rule (VAL), the value mapped

to a name x is determined. dereferentiation is recursively defined by

rules (REF1) and (REF2), accordingly. Rule (REF2) implements the re-

cursive step, i.e. it considers those channel values which are channels.

Rule (REF1) returns the value of a channel which is not a channel.

dereferentiation may diverge if applied to environments which are not

acyclic, see below. Rules (COND1), (COND2), and (FUN) follow their

counterparts in π(L ) to evaluate conditions and functions. The eval-

uator ⇓ also applies to restricted expressions f ∈ Exprs−.

Since dereferentiation is introduced as a separate operator ref, it

can be used in different contexts, e.g. in combination with assignments

in order to assign a value to the end of a reference chain, or together

with the operator val in order to obtain the value at the end of the ref-
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λx1x2 . . .xn.e =df λx1.λx2. . . .λxn.e

e1;e2 =df (λ_.e2)e1

let x = e1 in e2 =df (λx.e2)e1

not e =df e = false

e1 and e2 =df if e1 then e2 else false

Figure 4.3: Abbreviations for expressions of the attribute language

L . The same abbreviations are valid for restricted expressions f ∈
Exprs−.

erence chain. Providing dereferentiation as a separate operation sup-

ports modularity of the evaluator rules, since necessary recursive steps

only need to be implemented once - no additional assignment or val

operators are needed. It is assumed that assignments and value access

are only performed in combination with dereferentiation, i.e. corre-

sponding expressions must be of the form val(ref x) and ref x := e.

In order exclude divergence of dereferentiation it must be applied to

acyclic environments, i.e. if there exists no x ∈ dom(ρ), such that

x = ρ(ρ(x) . . .).

Figure 4.3 presents a set of handy expression abbreviations: let-

expressions, sequences of function parameters and expressions, nega-

tions, and conjunctions. The same abbreviations are valid for restricted

expressions f ∈ Exprs−.

As in the case of π(L ), the evaluator is kept rather abstract, such

that it can be adapted to the application at hand. The encoding of
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BioAmbients is based on the attribute language L = λ (R,DIR,CAP,=

,and)<n , with a set of n priority levels as successful values. It provides

an additional operators to check equality (=). It is defined by rules

(EQ1) and (EQ2) in Figure 4.2, covering the cases of in-/equality, re-

spectively. Sets DIR and CAP provide additional names as constants to

represent communication directions and rearrangement capabilities.

The example models in Section 4.2 use the attribute language

L = λ (R+,=,+,∗,−,/,pow), where the successful values are set

to R = R+ and which provides constants for equality (=), addition

(+), multiplication (*), subtraction (-), division (/), and exponentia-

tion (pow). Evaluation of arithmetic expressions is fixed by a single

rule (�R) in Figure 4.2, working in the expected way.

4.1.4 Syntax of Processes

Syntactically, the imperative extension of π(L ) only requires the in-

troduction of ν-operators with initial channel values. As discussed

above, restricted expressions f ∈ Exprs− excluding assignments are

used to define initial channel values and the actual parameters of de-

fined processes. Sequences of ν-operators are denoted by (ν x̃: f̃ )P,

where it is assumed that |x̃| = | f̃ |. Notation Nn
i=1(xi, fi) is used as an

alternative for (ν x̃: f̃ )P, with |x̃|= n.

In Figure 4.5 the definition of free names of π imp(L ) is presented,

similar to what is known from π(L ). Slight changes are introduced

due to initial channel values and the two different syntactic categories

of the attribute language. An additional equation allows obtaining the
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Prefixes π ::= e1[e2]?(x̃) receiver

| e1[e2]!(ẽ) sender

Sums M ::= π.P guarded process

| M1 +M2 choice

Processes P ::= M sums

| A( f̃ ) defined process

| P1 | P2 parallel composition

| (νx: f )P channel creation with value

| 0 idle process

Definitions D ::= A(x̃), P parametric process definition

Figure 4.4: Syntax of π imp(L ) where x, x̃∈ Vars, e1,e2, ẽ∈ Exprs, and

f , f̃ ∈ Exprs−.
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fv(0) = /0

fv(P1 | P2) = fv(P1)∪ fv(P2)

fv(M1 +M2) = fv(M1)+ fv(M2)

fv(e1[e2]?(ỹ).P) = fv(e1)∪ fv(e2)∪ (fv(P)\{ỹ})
fv(e1[e2]!(ẽ).P) = fv(e1)∪ fv(e2)∪ fv(ẽ)∪ fv(P)

fv((νx: f )P) = fv(P)∪ fv( f )\{x}
fv(A( f̃ )) = fv( f̃ )

fv(A(x̃), P) = fv(P)\{x̃}
fv(P,ρ) = fv(P)\dom(ρ)

Figure 4.5: Free names of π imp(L ).

set of free names of process-environment pairs fv(P,ρ). Following the

idea of ρ being an additional binder, fv(P,ρ) is defined to contain all

free names of P, except those which are contained in the domain of

ρ . Bound names of processes bv(P) and process-environment pairs

bv(P,ρ) are all names which are not free. The concept of naming

bound variables distinctly is adopted from π(L ). In the semantics

when applying a reduction step to (P,ρ), it is assumed that all bound

variables in (P,ρ) are named distinctly and fv(P,ρ) = /0.

The structural congruence of π imp(L ) is the least relation satisfy-

ing the rules given in Figure 4.6. As before, they define associativity

and commutativity for summation and parallel composition and set

process 0 to be the neutral element of parallel composition. Further-

more, rules are introduced that allow for scope intrusion and extru-
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P | 0 ≡ P

P1 | P2 ≡ P2 | P1

M1 +M2 ≡ M2 +M1

(P1 | P2) | P3 ≡ P1 | (P2 | P3)

(M1 +M2)+M3 ≡ M1 +(M2 +M3)

(νx: f )(P | Q) ≡ (νx: f )P | Q, if x 6∈ fv(Q)

(νx1: f1)(νx2: f2)P ≡ (νx2: f2)(νx1: f1)P,

if x1 6∈ fv( f2), x2 6∈ fv( f1)

P≡α P′ ⇒ P≡ P′

P≡ P′ ⇒ (P,ρ)≡ (P′,ρ)

(P,ρ)≡α (P′,ρ ′) ⇒ (P,ρ)≡ (P′,ρ ′)

Figure 4.6: Axioms of structural congruence of π imp(L ).
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sion of ν-binders, for changes in the order of ν-binder sequences, and

for α-conversion in processes, i.e. consistent renaming. Apparently,

the order of ν-binder sequences may only be changed if the expres-

sions specifying their initial values do not access associated variables.

As discussed in Section 4.1.2, structural congruence is also defined

for process-environment pairs. Two pairs with the same environment

are congruent, if their processes are. α-conversion is extended, such

that bound names in bv(P,ρ) may be consistently changed in process-

environment pairs. The prenex normal form of processes in π imp(L )

is defined as follows:

Definition 3. A process P is said to be in prenex normal form, if P =

(ν x̃: f̃ )(∏n
i=1 Mi | ∏

m
i=1 Ai( f̃i)) and all bound names in P are named

distinctly.

Notice that for all processes P, there exists a process P′, such that

P′ is in prenex normal form and P≡ P′.

4.1.5 Non-Deterministic Operational Semantics

The non-deterministic semantics of the imperative π-calculus operates

on process-environments pairs, such that changes in environments can

be captured. Thus, rules of the non-deterministic semantics of π(L )

cannot be directly inherited. An additional difference regards the han-

dling of ν-operators. In π(L ), ν-operators are used to introduce new

names. Processes in the scope of the same ν-binders may interact, as

denoted by rule (NEW), and already introduced names are captured by
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Communication and application steps and channel initialization
f ∈ Exprs− (no assignments)

(TUP)
∧n

i=1(ei,ρi−1) ⇓ (vi,ρi)

((ei)
n
i=1,ρ0) ⇓ ((ei)

n
i=1,ρn)

(SEND)
(e1,ρ) ⇓ (x,ρ1) (e2,ρ1) ⇓ (v,ρ2) (ẽ,ρ2) ⇓ (ṽ,ρ ′)

(e1[e2]!(ẽ),ρ) ⇓ (x[v]!(ṽ),ρ ′)

(REC)
(e1,ρ) ⇓ (x,ρ1) (e2,ρ1) ⇓ (v,ρ ′)
(e1[e2]?(x̃),ρ) ⇓ (x[v]?(x̃),ρ ′)

(APP)
( f̃ ,ρ) ⇓ (ṽ,ρ) A(x̃), P

(A( f̃ ),ρ)
app−−→
nd

(P[ṽ/x̃],ρ)

(NEW)
( f ,ρ) ⇓ (v,ρ) x /∈ dom(ρ)

((νx: f )P,ρ) new−−→
nd

(P,ρ[x 7→ v])

(COM)

(v1v2,ρ2) ⇓ (r,ρ ′) r ∈ R |ṽ|= |ỹ|
(π2,ρ) ⇓ (x[v2]!(ṽ),ρ1) (π1,ρ1) ⇓ (x[v1]?(ỹ),ρ2)

(π1.P1 +M1 | π2.P2 +M2,ρ)
r−→

nd
(P1[ṽ/ỹ] | P2,ρ

′)

continued...

Figure 4.7: Non-deterministic operational semantics of π imp(L ) with

priority levels in (R,<).
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Program errors

(E.PREF)
¬∃(π ′,ρ ′).(π,ρ) ⇓ (π ′,ρ ′)

(π.P+M,ρ)
err−→
nd
⊥

(E.CONSTR)

¬∃(v,ρ ′).(v1v2,ρ2) ⇓ (v,ρ ′)
(π2,ρ) ⇓ (x[v2]!(ṽ),ρ1) (π1,ρ1) ⇓ (x[v1]?(ỹ),ρ2)

(π1.P1 +M1 | π2.P2 +M2,ρ)
err−→
nd
⊥

(E.COM)

|ṽ| 6= |ỹ|
(π2,ρ) ⇓ (x[v2]!(ṽ),ρ1) (π1,ρ1) ⇓ (x[v1]?(ỹ),ρ2)

(π1.P1 +M1 | π2.P2 +M2,ρ)
err−→
nd
⊥

Structural rules where β ∈ {err,app,new}∪R

(PAR)
(P1,ρ)

β−→
nd

(P′1,ρ[x̃/ỹ]∪ρ ′)

(P1 | P2,ρ)
β−→
nd

(P′1 | P2[x̃/ỹ],ρ[x̃/ỹ]∪ρ ′)

(STRUC)

(P,ρ)≡ (P1,ρ1)

(P1,ρ1)
β−→
nd

(P2,ρ2) (P2,ρ2)≡ (P′,ρ ′)

(P,ρ)
β−→
nd

(P′,ρ ′)

continued...

Figure 4.7: Non-deterministic operational semantics of π imp(L ) with

priority levels in (R,<) (continued).
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Error-free convergence with σ =
app−−→
nd
∪ new−−→

nd

(CONV)
(P,ρ)σ∗(P′,ρ ′) P′ = ∏

n
i=1 Mi ¬(P′,ρ ′)

err−→
nd
⊥

(P,ρ) ⇓ (P′,ρ ′)

Reduction (r ∈ R)

(PRIOR)

(P1,ρ1)
r−→

nd
(P′,ρ ′)

(P,ρ) ⇓ (P1,ρ1) ¬∃r′ ∈ R. r < r′∧ (P1,ρ1)
r′−→
nd

(P2,ρ2)

(P,ρ)→ (P′,ρ ′)

Figure 4.7: Non-deterministic operational semantics of π imp(L ) with

priorities in (R,<) (continued).

keeping all ν-binders. By contrast, in π imp(L ), ν-operators are in-

tended to extend the global store by a new name with an initial value.

Reduction steps must not be applied to processes in the scope of ν-

operators, since the access of names, e.g. by applying constant val to

them, could fail. Already existing names are kept in the store. Thus,

rule (NEW) is rephrased to eliminate ν-binders and add their name and

initial value to the global store. In case the store already contains the

very same name, α-conversion may be applied, see also the example

below.

The non-deterministic semantics of π imp(L ) defines reduction re-

lation → , which itself is based on the four reduction relations
app−−→
nd

,
new−−→
nd

, r−→
nd

, and err−→
nd

. Labels nd, app, err, and r are used as before,
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i.e. to distinguish the steps of the non-deterministic from those of the

stochastic semantics, see Section 4.1.7, to denote application steps and

the reduction steps of erroneous processes, and to capture the priority

level of a communication, respectively. The additional label new is an-

notated to ν-binder elimination steps. Communication steps may only

be applied, if all unguarded defined processes are replaced by their

definition and all initial channel values are evaluated, such that any

non-termination or failure of corresponding expressions blocks reduc-

tion.

Figure 4.7 presents the rules of the non-deterministic semantics of

π imp(L ). Rule (TUP) evaluates tuples of expressions. Notice that due

to possible changes in the environment, the order of evaluation matters.

In all such sequential cases, an order from left to right is assumed. Rule

(APP) replaces defined processes by their definitions. Therefore, first

the expressions forming the actual parameters are evaluated. Notice

that their evaluation cannot lead to changes in the environment, since

in expressions f̃ no assignments are allowed. Rule (NEW) adds the

initial value of a new channel to the environment and eliminates the

corresponding ν-binder. Also here no environmental changes can oc-

cur due to the restrictions applied to expressions f . Rules (SEND) and

(REC) evaluate the expressions in prefixes. By rule (COM) a send and

a receive action in two concurrently running summations can com-

municate if they perform on the same channel. As before, the con-

straint function of the receiver applied to the constraint argument of

the sender must yield a successful value and the receiver must await

for as many values as the sender delivers. Error rules allow detecting
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prefixes for which evaluation fails, constraint application which fails,

and mismatches in the numbers of send values and receive parame-

ters. Rules (PAR) and (STRUC) enable application, channel creation,

and error steps in parallel compositions and under structural congru-

ence. In the case of rule (PAR), α-conversion can be also applied to

(P1,ρ) when reducing it. This is accounted for by replacing the names

in P2 accordingly (P2[x̃/ỹ]). As discussed above, a structural rule for

reduction in the scope of ν-binders is omitted. Rule (CONV) brings

processes into prenex normal form by exhaustively applying applica-

tion and channel creation steps in any order, i.e. the union of relations
app−−→
nd

and new−−→
nd

. As already mentioned, processes may not converge due

to definitions A() , A(), failure in expression evaluation, or errors as

they are covered by reduction relation err−→
nd

. Rule (PRIOR) first forces

a process to converge and then picks a single interaction with highest

priority to reduce.

Example 6. Consider a solution S = Sn() | Rc() | (νy :true)(Sn() |
Rc()), a store ρ = {x 7→ unit,y 7→ true}, and the following process

definitions:

Sn ( ) , x [_] ! ( ) . 0
Rc ( ) , x [ λ_.let r : val y = true

in (y :=false ; r ) ] ? ( ) . 0

When communicating on channel x with sender Sn(), process Rc()

changes the values of variable y to the Boolean false. The commu-

nication occurs only if variable y is set to true. The let-expression

ensures that the value of variable y is checked before it is changed.
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Solution S allows for the following reduction steps in environment ρ:

(S,ρ) → ((νy :true)(Sn() | Rc()),{x 7→ unit,y 7→ false})
≡ ((νy :true)(Sn() | Rc()),{x 7→ unit,y’ 7→ false})
→ (0,{x 7→ unit,y’ 7→ false,y 7→ false})

First, processes Sn() and Rc() outside of the scope of the ν-binder

communicate, changing the value of the variable y in the store to

Boolean false. By α-conversion, the name of variable y in the global

store of the resulting process-environment pair can be changed to y’ .

In the second step, first the ν-binder is eliminated by adding the map-

ping y 7→ true to the environment. This allows processes Sn() and

Rc() to communicate, changing the value of y to Boolean false.

4.1.6 Uniqueness of Convergence

In the imperative π-calculus convergence yields unique results if the

reduction relation
app−−→
nd
∪ new−−→

nd
fulfills uniform confluence (Defini-

tion 2) and terminates. In the following, it is first shown that both

reduction relations new−−→
nd

and
app−−→
nd

are separately uniform confluent and

terminate, see Lemmas 7 and 8. Then it is shown that the reduc-

tion relation
app−−→
nd
∪ new−−→

nd
is also uniform confluent and terminates, see

Lemma 9. This allows for the conclusion, that process convergence in

π imp(L ) is unique, see Proposition 10.

Lemma 7. The rewrite relation new−−→
nd

is confluent modulo structural

congruence. Irreducible processes are congruent to processes of the

form Nn
i=1(xi, fi)∏

m
i=1 Pi, where for all fi it is true, that ¬∃v. fi ⇓ v.
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Proof. The structural congruence of the imperative π-calculus al-

lows turning parallel compositions of unguarded ν-binders into a se-

quence under α-conversion. By rule (NEW), the order of steps to

reduce a sequence of ν-binders is determined to be from the left to

the right. However, structural congruence allows changing the or-

der of ν-binder sequences in the following way: (νx1: f1)(νx2: f2)P≡
(νx2: f2)(νx1: f1)P, if x1 6∈ fv( f2),x2 6∈ fv( f1). The lemma relies on the

latter condition and on the fact that assignments in channel initializa-

tions are not allowed. The proof makes use of the following claim,

which is directly implied by the operational semantics of π imp(L ):

Claim. Let P = Nn
i=1(xi, fi)∏

m
i=1 Pi be a processes in normal form. Re-

ductions (P,ρ) new−−→
nd

(P′,ρ ′) can be applied if and only if the following

rule applies:

1≤ j ≤ n f ⇓ v x j /∈ dom(ρ)

(P′,ρ ′)≡ (Nn
i=1,i 6= j(xi, fi)∏

m
i=1 Pi,ρ[x j 7→ v])

(P,ρ) new−−→
nd

(P′,ρ ′)

Let the rewrite system on congruence classes of processes-

environment pairs be defined as [(P,ρ)]≡
new−−→
nd

[(P′,ρ ′)]≡, if (P,ρ) new−−→
nd

(P′,ρ ′). Since the non-deterministic semantics of π imp(L ) is closed

under structural congruence, it can be assumed that x j /∈ dom(ρ),

w.l.o.g. Thus, the claim above shows that channel initialization

terminates on equivalences classes of processes of the form P =

Nn
i=1(xi, fi)∏

m
i=1 Pi, where for all fi it is true that ¬∃v. fi ⇓ v.

To see uniform confluence of new−−→
nd

, consider reductions (P,ρ) new−−→
nd

(P1,ρ1) and (P,ρ) new−−→
nd

(P2,ρ2), with j1 and j2 chosen according to
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the rule in the claim above and ρ1 = ρ[x j1 7→ v j1] and ρ2 = ρ[x j2 7→
v j2]. If j1 = j2 then (P1,ρ1) ≡ (P2,ρ2). Since (P,ρ) new−−→

nd
(P1,ρ1)

and (P,ρ) new−−→
nd

(P2,ρ2), it must be possible to put both (νx j1: f j1)

and (νx j2 : f j2) to the left-most position under structural congruence,

such that x j1 /∈ fv( f j2) and x j2 /∈ fv( f j1). Thus, one can choose

(P′,ρ ′) = (Nn
i=1,i 6= j1, j2

(xi, fi)∏
m
i=1 Pi,ρ[x j1 7→ v j1][x j2 7→ v j2]), such

that (P1,ρ1)
new−−→
nd

(P′,ρ ′) and (P2,ρ2)
new−−→
nd

(P′,ρ ′).

Lemma 8. The rewrite relation
app−−→
nd

is confluent modulo structural

congruence. Irreducible processes are congruent to processes of

the form (ν x̃: f̃ )(∏n1
i=1 Mi | ∏

n2
i=1 Ai( f̃i)) | ∏

n3
i=1 Ai( f̃ ′i ), where for all

i ∈ {1, . . . ,n2} it holds that x̃∩ fv( f̃i) 6= /0 and for all i ∈ {1, . . . ,n3}
it holds that ¬∃ṽ. f̃ ′i ⇓ ṽ.

Proof. The lemma relies on the facts that for each defined process only

one definition exists and that the order of application steps does not

matter, since assignments are not allowed. The following claim can be

seen by inspecting the non-deterministic semantics of π imp(L ):

Claim. Let (ν x̃: f̃ )(∏n
i=1 Mi | ∏m

i=1 Ai( f̃i)) be a process in prenex nor-

mal form. Reductions (P,ρ)
app−−→
nd

(P′,ρ ′) can be applied if and only if

the following rule applies:

1≤ j ≤ n fv( f̃ j)∩ x̃ = /0 f̃ j ⇓ ṽ

A(ỹ), Q (P′,ρ ′)≡ ((ν x̃: f̃ )∏
m
i=1,i 6= j Pi | Q[ṽ/ỹ],ρ)

(P,ρ)
app−−→
nd

(P′,ρ ′)
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Condition fv( f̃ j)∩ x̃ = /0 states that for an application step the ex-

pression of a defined process must not comprise any name bound

by the ν-operators, since otherwise scope intrusion is not possible.

Let the rewrite system on congruence classes of process-environment

pairs be defined by [(P,ρ)]≡
app−−→
nd

[(P′,ρ ′)]≡ if (P,ρ)
app−−→
nd

(P′,ρ ′).

From the claim above it is apparent that
app−−→
nd

terminates on processes

congruent to the stated form. Next, it is shown that this rewrite

system is uniformly confluent. Consider the reductions (P,ρ)
app−−→
nd

(P1,ρ1) and (P,ρ)
app−−→
nd

(P2,ρ2) and let j1, j2 be the positions of

the application step, respectively, according to the rule in the claim

above. If j1 = j2 then (P1,ρ1) ≡ (P2,ρ2). If not, one can choose

(P′,ρ ′) = ((ν x̃: f̃ )∏
n
i=1,i6= j1, j2 Pi | Q j1 [ṽ j1/ỹ j1] | Q j2[ṽ j2/ỹ j2],ρ

′), such

that (P1,ρ1)
app−−→
nd

(P′,ρ ′) and (P2,ρ2)
app−−→
nd

(P′,ρ ′).

Lemma 9. The reduction relation
app−−→
nd
∪ new−−→

nd
is confluent modulo

structural congruence. Irreducible processes are congruent to pro-

cesses in the form Nn1
i=1(xi, fi)(∏

n2
i=1 Mi | ∏

n3
i=1 Ai( f̃i)) | ∏

n4
i=1 Ai( f̃ ′i ),

where for all i ∈ {1, . . . ,n1} it holds that ¬∃v. fi ⇓ v, for all i ∈
{1, . . . ,n3} it holds that fv( f̃ )∩ fv( f̃i) 6= /0, and for all i ∈ {1, . . . ,n4} it

holds that ¬∃ṽ. f̃ ′i ⇓ ṽ.

Proof. By Lemmas 7 and 8 it is clear that
app−−→
nd
∪ new−−→

nd
reaches irre-

ducible processes of the form stated above. For the union of two re-

duction relations to be confluent modulo structural congruence, both

relations need to be confluent modulo structural congruence and they

need to commute, see Niehren (2000). Lemmas 7 and 8 provide that
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new−−→
nd

and
app−−→
nd

are confluent modulo structural congruence. What is left

to show is that they commute, i.e. if (P,ρ) new−−→
nd

(P1,ρ1) and (P,ρ)
app−−→
nd

(P2,ρ2) then there exists (P′,ρ ′), such that (P1,ρ1)
app−−→
nd

(P′,ρ ′) and

(P2,ρ2)
new−−→
nd

(P′,ρ ′), see (Niehren, 2000). This follows from the claim

in the proof of Lemma 8. It states that for a reduction
app−−→
nd

a defined

process A( f̃ ) is required such that the free names in f̃ are not bound

by ν-operators with initial values. Also, since assignments are not

allowed in the expressions of channel initialization and defined pro-

cesses, it is clear that new−−→
nd

and
app−−→
nd

commute.

Proposition 10 (Convergence uniqueness of π imp(L )). For every

process-environment pair (P,ρ) there exists at most one equivalent

class of process-environment pairs [(P′,ρ ′)]≡, such that (P,ρ) ⇓
(P′,ρ ′).

Proof. Follows directly from Lemma 9.

Remark 3. If P≡∏
n
i=1 Mi and ¬(P,ρ) err−→

nd
⊥ then (P,ρ)≡ (P′,ρ ′)⇔

(P,ρ) ⇓ (P′,ρ ′).

Proof. Analogue to the proof of Remark 1.

4.1.7 Stochastic Semantics

The stochastic semantics of π imp(L ) extends on the stochastic se-

mantics of π(L ) in that, instead of considering processes only, it de-

fines CTMC’s for process-environment pairs (P,ρ), whose states are the
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Labeled communication steps (` ∈ N4, r ∈ R∞
+)

(COM`)

(π
j2

i2 ,ρ) ⇓ (x[v2]!(ṽ),ρ1) i1 6= i2
(π

j1
i1 ,ρ1) ⇓ (x[v1]?(ỹ),ρ2) |ỹ|= |ṽ|

`= (i1, j1, i2, j2) (v1v2,ρ2) ⇓ (r,ρ ′) r ∈ R∞
+

(∏n
i=1 ∑

mi
j=1 π

j
i .P

j
i ,ρ)

r−→
`

(∏n
i=1,i 6=i1,i2 ∑

mi
j=1 π

j
i .P

j
i | P

j1
i1 [

ṽ/ỹ] | P j2
i2 ,ρ

′)

Markov chain (r,r′ ∈ R+)

(SUM)

¬∃`.(P1,ρ1)
∞−→
`
(P2,ρ2)

(P,ρ) ⇓ (P1,ρ1) ∑
{(r′,`)|(P1,ρ1)

r′−→̀(P2,ρ2)≡(P′,ρ ′)}
r′ = r 6= 0

(P,ρ) r−→ (P′,ρ ′)

(COUNT)

(P,ρ) ⇓ (P1,ρ1)

n = ]{` | (P1,ρ1)
∞−→
`
(P2,ρ2)≡ (P′,ρ ′)} 6= 0

(P,ρ)
∞(n)−−→ (P′,ρ ′)

Figure 4.8: Rules of stochastic semantics of π imp(L ). The rules of the

non-deterministic semantics of π imp(L ) in Fig. 4.7, except (COM) and

(PRIOR), remain valid.

equivalence classes [(P′,ρ ′)]≡ of all process-environment pairs (P′,ρ ′)

reachable from (P,ρ). As before, successful values are the stochastic

rates, i.e. R = R∞
+, with ∞ denoting a higher priority level then real
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numbers.

The rules of the stochastic semantics of π imp(L ) are given in Fig-

ure 4.8. Rule (COM`) evaluates prefixes and checks communication

constraints and the equality of tuple length. As before, redexes are

used to distinguish transitions that lead to the same state. Rules (SUM)

and (COUNT) define timed and immediate transitions, respectively.

Following the law of mass action, rule (SUM) determines the propen-

sity of transition (P,ρ) r−→ (P′,ρ ′) by summing up the rate constants

of all interaction pairs in (P,ρ) that lead to state [(P′,ρ ′)]≡. Similarly,

rule (COUNT) obtains the propensity of transition (P,ρ)
n(∞)−−→ (P′,ρ ′)

by counting the interactions in (P,ρ) with infinite rate that lead to the

state [(P′,ρ ′)]≡. Except rules (COM) and (PRIOR), all rules of the non-

deterministic semantics of π imp(L ) remain valid. Notice, however,

that in order to sum up the rate constants of a process’ possible interac-

tions based on redexes, structural rules do not apply to communication

steps anymore, as they are labeled by nd.

Example 7. Figure 4.9 presents a system of two reaction schemes on

species A, B, and C with global side effects. The reactions increase or

decrease the value of global variable b by one, depending on whether

a molecule of species B is produced or consumed. By this, they allow

explicitly tracing the amount of B. An according implementation in

π imp(L ) is shown on the right side. Furthermore, the CTMC is given

for a process-environment pair (A2 | B2 | C1,{b 7→ 2}) as the initial

chemical solution, where we write Pn instead of ∏
n
i=1 P. In every state,

the value of b and the amount of B coincide. The propensities are



175

Chemical reactions:

x : A,B 0.5;b:=val b -1−−−−−−−−−→ A,C

y : A,C 5; b:=val b +1−−−−−−−−−→ A,B

π imp(L ) definitions:

A , x [ λ_. 0 . 5 ] ( ) .A

+ y [ λ_. 5 ] ( ) .A

B , x [ b:= val b −1] ! ( ) .C

C , y [ b:= val b +1] ! ( ) .B

CTMC with states reachable from (A2 | B2 | C1,{b 7→ 2}):

Figure 4.9: Example of a CTMC generated by π imp(L ).

determined as by rule (SUM).

The stochastic semantics of π imp(L ) is a proper refinement of the

non-deterministic semantics of π imp(L ).

Proposition 11. If the set of priorities (R,<) is equal to (R∞
+,<2),

where <2 defines the usual two levels of priorities (i.e. r <2 ∞ for all

r ∈ R+), then for all process-environment pairs (P,ρ),(P′,ρ ′):

(P,ρ)→ (P′,ρ ′) iff

(∃r ∈ R+ : (P,ρ) r−→ (P′,ρ ′)∨∃n ∈ N : (P,ρ)
∞(n)−−→ (P′,ρ ′))

Proof. The implication from the right to the left is obvious, since

(P,ρ) r−→
`
(P′,ρ ′) implies (P,ρ)→ (P′,ρ ′). For the direction from the
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left to the right we start with a claim that relates communication steps

to labeled communication steps in this direction:

Claim. If (P1,ρ1)
r−→

nd
(P2,ρ2) and P1 = ∏

n
j=1 ∑

m j
i=1 π

j
i .P

j
i then there ex-

ists a label `= (i1, j1, i2, j2) and a process (P′2,ρ
′
2), such that (P2,ρ2)≡

(P′2,ρ
′
2) and (P1,ρ1)

r−→
`
(P′2,ρ

′
2).

This follows from a standard analysis of the structural congruence.

Suppose now that (P,ρ)→ (P′,ρ ′) holds. In this case, the following

rule must be applicable:

(PRIOR)

(P,ρ) ⇓ (P1,ρ1) (P1,ρ1)
r−→

nd
(P′,ρ ′)

¬∃r′ ∈ R.∃(P2,ρ2). r < r′∧ (P1,ρ1)
r′−→
nd

(P2,ρ2)

(P,ρ)→ (P′,ρ ′)

Without loss of generality, we can assume that P1 is in prenex nor-

mal form, since relation r−→
nd

is closed under structural congruence by

rule (STRUC). The second hypothesis and the above claim show that

(P1,ρ1)
r−→
`

(P2,ρ2) for some process-environment pair (P2,ρ2) with

(P2,ρ2) ≡ (P′,ρ ′). The third hypothesis holds if and only if either

r = ∞ or else r ∈ R+ and ¬∃(P3,ρ3). (P1,ρ1)
∞−→
nd

(P3,ρ3).

• In the case r = ∞, we can create a transition with infinite propen-

sity:

(COUNT)

(P,ρ) ⇓ (P1,ρ1)

n = ]{` | (P1,ρ1)
∞−→
`
(P2,ρ2)≡ (P′,ρ ′)} 6= 0

(P,ρ)
∞(n)−−→ (P′,ρ ′)
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• In the case r ∈ R+, the claim above shows that

∑
{(r′,`)|(P1,ρ1)

r′−→̀(P2,ρ2)≡(P′,ρ ′)}
r′ = r 6= 0. We can thus cre-

ate a timed transition of the Markov chain:

(SUM)

∑
{(r′,`)|(P1,ρ1)

r′−→̀(P2,ρ2)≡(P′,ρ ′)}
r′ = r 6= 0

(P,ρ) ⇓ (P1,ρ1) ¬∃`∃(P3,ρ3).(P1,ρ1)
∞−→
`
(P3,ρ3)

(P,ρ) r−→ (P′,ρ ′)

4.2 Modeling Techniques and Biological Ex-

amples

In this section, example models are presented, which on one hand shall

show the usefulness of the imperative π-calculus to model changes in

global values, in particular in compartment volumes. On the other

hand, they serve as a basis to compare the imperative π-calculus to

sCCP, which is a modeling formalism very close to π imp(L ), since it

provides attributed processes, constraints, and a global store. More-

over, it is shown that reactions with Michaelis-Menten kinetics can

also be implemented in the imperative π-calculus. By introducing

prioritized update protocols similar to those used in Section 3.2.4 to

reflect changes in global information in an individual-based model,

the following models could also be implemented in the attributed π-

calculus. For a more detailed comparison of the attributed and the
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imperative π-calculus, see Section 4.3.1.

4.2.1 Osmosis: Variable Volumes and Surfaces

Osmosis is a simple example for concurrent systems with compart-

ments of variable volumes. It was modeled already by Versari and Busi

(2009) in Sπ@, the stochastic version of π@, which offers a stochas-

tic semantics in terms of a mapping to the SSA. Here it is shown how

to simulate osmosis in the imperative π-calculus with an attribute lan-

guage that provides arithmetics. The solution presented here is more

flexible and accurate, in that it accounts for dynamic changes of com-

partment surfaces, which cannot be expressed in Sπ@.

The model describes a very simple system, which consists of a

sphere filled with water (H2O), sodium (Na+), and chlorine (Cl−) and

a membrane through which water may diffuse. This membrane sep-

arates an inner compartment Inn of spherical shape, from an outer

compartment Out, which has the form of a sphere shell (a ring in 2D).

Both compartments have the same center point. The precise values of

all parameters are given in Table 4.1.

For simplicity, the model adopts the assumption of Versari and Busi

(2009) that the volume of a compartment is determined by summing

up the volumes of the contained molecules. However, in general, at-

tribute languages may allow for the definition of complex functions to

obtain compartment volumes that e.g. consider atomic forces between

particles. The volumes of compartments Inn and Out change with wa-

ter moving through the membrane. The radius of compartment Inn
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Parameters

// copy numbers o f s p e c i e s i n each compartment

N : {H2O ,Na+ ,Cl-}×{Inn ,Out} → N
Constants

V : {H2O ,Na+ ,Cl-} → R+ // mo l e cu l e vo lumes

C ∈ R // d i f f u s i o n c o e f f i c i e n t o f water

Expressions

rad =df λv .((3∗v ) /(4∗π ) )
1
3 // volume to r a d i u s

surf =df λ r .4∗π∗r2 // r a d i u s to s u r f a c e

// d i f f u s i o n d i s t a n c e

dist =df λ r1λ r2 . r1 + (( r2−r1 ) /2)

// ou t e r r a d i u s o f s phe r e s h e l l

rout =df rad(∑c∈{Inn,Out}∑m∈{H2O,Na+,Cl-}V(m)∗N(m ,c) )

Global variables // i n i t vo lumes o f compartments

inn : ∑m∈{H2O,Na+,Cl-} V(m)∗N(m ,Inn) // i n n e r s phe r e

out : ∑m∈{H2O,Na+,Cl-} V(m)∗N(m ,Out) // ou t e r s h e l l

continued...

Figure 4.10: A model of osmosis with variable compartment volume

and surface.
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Process definitions

H2O(ori ,des ) ,

// d i f f u s i o n from o r i g i n to d e s t i n a t i o n

diffuse [ λ_.

// r a d i u s o f i n n e r s phe r e

let r = rad (val inn ) in

let a = (surf r ) /10 in // d i f f u s i o n a r ea

let s = dist r rout in // d i f f u s i o n d i s t a n c e

// d i f f u s i o n r a t e

let diff = a∗C/(s ∗(val ori ) ) in (

// update volume o f o r i g i n

ori := val ori − V(H2O) ;

// update volume o f d e s t i n a t i o n

des := val des + V(H2O) ;

diff ) // r e t u r n d i f f u s i o n r a t e

] ? ( ) . H2O(des ,ori )

Membrane ( ) , diffuse [unit ] ! ( ) . Membrane ( )

Solution

∏
N(H2O,Inn)
i=1 H2O( inn ,out ) |∏N(H2O,Out)

i=1 H2O( inn ,out ) |
Membrane ( )

Figure 4.10: A model of osmosis with variable compartment volume

and surface (continued).
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parameter value description

N(Na+,Inn) 100 number of sodium ions in compartment

N(Na+,Out) 10 number of sodium ions in environment

N(Cl-,Inn) 100 number of chlorine ions in compartment

N(Cl-,Out) 10 number of chlorine ions in environment

N(H2O,Inn) 1000 initial no. of water molecules in comp.

N(H2O,Out) 10000 initial no. of water molecules in env.

V(H2O) 0.01 volume of one water molecule

V(Na+) 0.0244 volume of one sodium atom

V(Cl-) 0.0042 volume of one chlorine atom

C 2.272 diffusion coefficient of water

Table 4.1: Parameters and constants used in osmosis experiments.

may thus vary with diffusion, while the outer radius rout of com-

partment Out always remains fixed. Figure 4.10 shows the model of

the system in π imp(λ (R,V,C,N)). The attribute language λ (R,V,C,N)
provides real number arithmetics with function constants for division

/, multiplication *, and subtraction -, and numeric constants such as

2, 10, or π . Furthermore, there are three problem specific constants,

the diffusion coefficient C of H2O, the constant V for the function that

maps molecules to their volumes, and the constant N for the function

assigning copy numbers to molecules in compartments. The latter two

introduce additional constants by their domains, e.g. the name H2O

in the domain of V. The big-step evaluator for λ (R,V,C) is defined as

usual. Nonzero positive real numbers are the successful values, i.e.
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R = R+.

The diffusion rate of H2O is determined by a∗C
d∗v , where a is the dif-

fusion area, d the diffusion distance, and v the volume of the compart-

ment that the molecule leaves, see e.g. Mazemondet et al. (2009). It is

assumed that 1/10 of the surface of compartment Inn serves as diffu-

sion area. The radius and surface of compartment Inn are computed

from its volume by functions rad and surf. The diffusion distance

represents the average path that a molecule travels from one com-

partment to the other. Following the approach in Mazemondet et al.

(2009), the diffusion distance yields the distance from the center point

to the middle of the sphere shell. In the model, it is determined by

function dist applied to the constant outer radius of compartment Out

and the variable radius of Inn.

The compartments Inn and Out are modeled by public channels

inn and out, respectively, each referring to the variable volume of

the corresponding compartment. The public channel diffuse with the

dummy value unit represents diffusion reactions. Three processes ex-

ist: H2O(inn,out), which describes a water molecule in compartment

Inn that may diffuse to compartment Out, H2O(out,inn), its symmet-

ric variant, and Membrane(), which enables diffusion on channel dif-

fuse at all times.

Process definition H2O(ori ,des) may perform diffusion by commu-

nication on channel diffuse and then continue with H2O(des,ori). The

corresponding rate constant varies with volumes and surfaces and is

therefore consecutively recomputed. Every application of the con-

straint function performs volume changes by assignments ori := val
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Figure 4.11: Experiment results without (Model A) and with (Model

B) variable surfaces. Model parameters are provided in Table 4.1
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(ori) - V (H2O) and des := val (ori) + V (H2O). Since the simulator

needs to compute the diffusion rates for all possible interactions in the

system (there are at most two, water moving in or out), it has to reset

the environment every time. Only once some interaction is chosen by

the SSA, can it commit to the changes required by this interaction.

The model presented by Versari and Busi (2009) is extended here

by adapting the diffusion area and distance at each diffusion event,

instead of just the compartment volume. Simulation results can be

seen in Figure 4.11. Model B, being the one that considers updates of

the diffusion area and distance, features a steeper slope. This is due

to the fact that with the increasing volume of compartment Inn, the

diffusion area grows faster than the distance, which raises the resulting

diffusion rates.

4.2.2 Michaelis-Menten kinetics à la sCCP

In this section, two different models of an enzymatic reaction network,

one based on Mass action and the other one on Michaelis-Menten ki-

netics, are presented. The goal is on one hand to provide a basis to

discuss the differences between sCCP and the imperative π-calculus.

On the other hand, it shall be shown that a model implemented in

the sCCP-style may also correctly represent reactions with Michaelis-

Menten kinetics. To underline the second point, the results of simula-

tion experiments comparing both models are presented.

Enzymes are proteins that accelerate chemical processes. They are

of significant importance, since they allow cells to process chemi-
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cal substances that would normally require temperatures beyond that

which a cell can survive. A typical enzymatic reaction network con-

verts a substrate into a product in the following way:

bind: E,S
k1−→ ES

decay: ES
k−1−−→ E,S

convert: ES
k2−→ E,P

First, the enzyme E binds to the substrate S. The resulting substrate-

enzyme complex ES may either decay to its parts or carry out the con-

version to an enzyme and a product P. In both cases, the enzyme is

available for further interaction with the substrate.

The Michaelis-Menten theory allows abstracting these three steps

to a single reaction with a rate defined by the Michaelis-Menten kinet-

ics. The reaction network above can be reduced in the following way,

where #S and #E denote the amounts of S and E, respectively, and r

the reaction rate:

mm: S,E
KM ,k2−−−→ P,E with KM = k−1+k2

k1
and r = k2∗#S∗#E

KM+#S

KM denotes the Michaelis-Menten constant. Under the assumption

that k−1 >> k2, KM approximately equals the dissociation constant

Kd = k−1/k1. The latter is easier to obtain experimentally than k1 and

k−1, separately. Thus, the Michaelis-Menten theory does not just allow

reducing the model complexity, since three reactions are replaced by

one, but also to cope with difficulties in determining model parameters.

In the following, first a model of the detailed enzymatic reaction

network based on Mass action is presented. This allows a discussion
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of the basic differences between sCCP and the imperative π-calculus.

Then it is shown that the sCCP-style also provides a way to correctly

introduce Michaelis-Menten abstractions in the imperative π-calculus.

The basic idea is to bypass the Mass action kinetics hard-wired to the

stochastic semantics of π imp(L ).

Models of reaction networks in the sCCP-style can be directly de-

rived from the population-based example in Section 3.2.3: processes

represent reactions and change the amounts of species on communica-

tion, appropriately. In contrast to the implementation in Section 3.2.3,

species numbers are not provided by a central process but are cap-

tured by global variables. Figure 4.12 shows a population-based model

of the enzymatic reaction network above in π imp(λ (R,K,N)). The at-

tribute language λ (R,K,N) provides arithmetics on real numbers and

functional constants K and N that map parameters to values, represent-

ing rate constants and initial amounts, respectively. Global variables

are introduced to capture the amounts of S (nS), E (nE ), ES (nES), and

P (nP). Processes Bind(), Decay(), and Convert() are defined to rep-

resent the three reactions, respectively. Process T() forms their send-

ing interaction partner. Communication constraints are specified to

completely depend on the constraint functions, which follow the same

scheme: first a sequence of assignments implements the impact of the

reaction, i.e. it decreases and increases species amounts, accordingly,

by assigning new values to global variables. Then the rate constant

is computed and returned as the constraint value. Local variables are

introduced by let-expressions that allow calculating rate constants de-

spite the reverse order of changing species amounts and computing
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rate constants. The initial solution contains a single instance of pro-

cess definitions Bind(), Decay(), and Convert(), since they represent

reactions and not species.

The population-based schema to implement reactions in the impera-

tive π-calculus essentially reflects the way of modeling cell-biological

systems in sCCP: processes change the amounts of species, which are

stored in a global store, by using an operator tell. The rate of change

is defined based on expressions, which in return access the global store.

An operator ask is used to check whether the condition for a reaction

to happen is fulfilled, e.g. that the amount of all reactants is greater

than 0. The major difference to the imperative π-calculus is, however,

that processes in sCCP may not communicate. Interaction can only

happen between a process and the global store. Thus, in each step,

only a single process may be reduced. In an individual-based modeling

style, where processes represent molecules, this only allows describ-

ing single-reactant reactions. Since, in particular, bindings happen be-

tween two reactants, such an approach is not sufficient. Thus, in con-

trast to the π-calculus, sCCP essentially subscribes to the population-

based modeling style. Instead of species, processes describe reactions,

which can be attributed with e.g. locations. However, based on priori-

ties, this restriction of sCCP may be circumvented, since atomic reduc-

tion sequences of more than one process may be defined. In fact, sCCP

provides infinite rate constants. However, such an approach seems to

be a work-around. Furthermore, languages in sCCP to express con-

straints are, in contrast to the λ -calculus, first order and thus do not

provide the same possibilities for modular implementations.
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Parameters

K : {1 ,−1 ,2} → R+ // r a t e c on s t a n t s

// i n i t i a l amounts o f s u b s t r a t e and enzyme

N : {S ,E} → N0

Global variables

nS : N(S) // amount o f s u b s t r a t e

nE : N(E) // amount o f enzyme

// amount o f enzyme−s u b s t r a t e complex ,

i n i t i a l l y 0

nES : 0

nP : 0 // amount o f product , i n i t i a l l y 0

Process definitions

Bind ( ) , // r e a c t i o n b ind

perform [ λ_.

l e t s = val nS in

l e t e = val nE in (

// change amounts a c c o r d i n g to r e a c t i o n

nS := s −1; nE := e −1; nES := val nES +1;

k1∗s∗e ) // compute r a t e

] . Bind ( )

continued...

Figure 4.12: A population-based model of an enzymatic reaction net-

work with Mass action kinetics in π imp(λ (R,K,N)).
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Decay ( ) , // r e a c t i o n decay

perform [ λ_.

l e t es = val nES in (

// change amounts a c c o r d i n g to r e a c t i o n

nES := es −1; nS := val nS +1; nE := val

nE +1;

// compute r a t e

k-1∗es )

] . Decay ( )

Conver t ( ) , // r e a c t i o n con v e r t

perform [ λ_.

l e t es = val nES in (

// change amounts a c c o r d i n g to r e a c t i o n

nES := es −1; nP := val nP +1;

// compute r a t e

k2∗es )

] . Conver t ( )

T( ) , perform [_] ! ( ) .T( )

Initial solution

// s t a r t w i th one p r o c e s s f o r each r e a c t i o n

Bind ( ) | Decay ( ) | Conver t ( ) | T( )

Figure 4.12: A population-based model of an enzymatic reaction net-

work with Mass action kinetics in π imp(λ (R,K,N)) (continued).



190

Parameters

K : {1 ,−1 ,2} → R+ // r a t e c on s t a n t s

N : {S ,E} → N0 // i n i t i a l amounts

Expressions

KM =df (K(−1) + K (2 ) ) /K (1 ) // d i s s o c i a t i o n con s t .

Global variables

nS : N(S) // amount o f s u b s t r a t e

nE : N(E) // amount o f enzyme

nP : 0 // amount o f product , i n i t i a l l y 0

Process definitions

// r e a c t i o n b ind

MM() ,

perform [ λ_.

l e t s = val nS in

l e t e = val nE in (

// change amounts a c c o r d i n g to r e a c t i o n

nS := s −1; nE := e −1; nP := val nP +1;

(K (2 ) ∗s∗e ∗) /(KM∗s ) ) // compute r a t e

] ? ( ) .MM()

T( ) , perform [_] ! ( ) .T( )

Initial solution

MM() | T( ) // on l y one r e a c t i o n (MM k i n e t i c s )

Figure 4.13: A population-based model of an enzymatic reaction net-

work with Michaelis-Menten kinetics in π imp(λ (R,K,N)).
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parameter value description

K(1) 100 rate constant of enzyme binding to substrate

K(-1) 0.1 rate constant of enzyme releasing substrate

K(2) 0.01 rate constant of enzyme to convert substrate

N(S) 1000 initial amount of substrate

N(E) 100 initial amount of enzyme

Table 4.2: Parameters and constants used in experiments to compare

models based on Michaelis-Menten and Mass action kinetics.

Based on the ideas in the example above, a model of the more ab-

stract enzymatic reaction with Michaelis-Menten kinetics can be eas-

ily obtained, see Figure 4.13. Process definition MM() changes the

amounts of species accordingly when interacting with process T().

The rate (constant) of this interaction is defined following the rate of

Michaelis-Menten reactions as presented above. This implementation

of Michaelis-Menten kinetics relies on the fact that processes repre-

sent reactions and not molecules, since otherwise the way in which

molecule numbers are taken into account could not be influenced by

the modeler, but would be entirely dictated by the stochastic semantics,

see Section 4.1.7.

Figure 4.14 shows the results of simulation experiments that

were performed to compare the Mass action implementation to the

Michaelis-Menten abstraction, based on the parameters in Table 4.2.

In order to account for possible stochastic effects, five simulation runs

have been performed for each model. For the Mass action model,
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global variables S, E, ES, and P were observed and for the Michaelis-

Menten model S and P. In the Figure, variable names are distin-

guished by annotating them with "MA" and "MM" for Mass action

and Michaelis-Menten, respectively.

The behavior of both models is essentially equal. The only dif-

ference is that the substrate in the Mass action case is rapidly re-

duced in the beginning. This is due to the initial binding of the en-

zyme to the substrate, the step which is omitted by the Michaelis-

Menten abstraction. In fact, summing up the amounts of substrate

and substrate-enzyme complex for the Mass action model yields the

amount of substrate in the Michaelis-Menten case at any time point

(ignoring small stochastic variations). Consequently, the Mass action

model only asymptotically approaches its final state, since the few re-

maining substrate-enzyme complexes have to be converted.

In the same way as Michaelis-Menten other kinetics, e.g. Hill-

kinetics, may also be included into population-based models in

π imp(L ), even when including more than two reactants. However, for

each kinetics it has to be separately checked to determine if it respects

the Markov property, since the stochastic semantics is defined in terms

of CTMC’s. The restriction that only reactions with at most two reac-

tants and Mass action kinetics can be implemented in the imperative

π-calculus in an individual-based style remains valid.
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4.3 Expressiveness

This section provides expressiveness studies on the imperative π-

calculus, showing on one hand its conservativeness (Section 4.3.1)

and on the other hand its usefulness for the spatial modeling of cell-

biological processes (Section 4.3.2).

4.3.1 Conservativeness

In this section it is shown that the imperative π-calculus is a conser-

vative extension of the attributed π-calculus. That is, there exists a

transformation from attributed processes to process-environment pairs,

which does nothing else than assigning dummy value unit to all chan-

nels. Vice versa, considering an attribute language for the impera-

tive π-calculus without assignments, there exists an encoding from

process-environment pairs to processes in the attributed π-calculus,

which replaces channels by pairs, similar to the encodings in Sec-

tion 3.3.3. This means, on one hand, that in the imperative π-calculus,

attributed processes can be defined almost transparently. On the other

hand, the only actual difference between the two calculi is the possibil-

ity to change the values of variables. Whether assignments do yield an

increased expressiveness is still not investigated and subject to future

work, see Section 5.
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From the attributed to the imperative π-calculus

Transforming an attributed process into a process-environment pair is

simply done by assigning the value unit to all channels:

assumption: all bound variables in P are named distinctly

JPK1 = (JPK2,{x̃ 7→ unit}),
with fv(P)∪

⋃
D∈D fv(D) = {x̃}

J(νx)PK2 = (νx:unit)JPK2

. . .

The encoding defines two steps to encode attributed process P. First

an environment that maps the free names of P and its definitions to

unit is created, since the non-deterministic semantics of the impera-

tive π − calculus assumes that on reduction of process-environment

pairs (Q,ρ) it holds that fv(Q,ρ) = /0. Then unit is assigned

to all ν-operators as their initial value. All the rest remains un-

changed. Clearly, this encoding is correct with respect to both the

non-deterministic and the stochastic semantics.

From the imperative π-calculus without assignments to the at-
tributed π-calculus

In the following, the encoding from the imperative π-calculus with

an attribute language that prohibits assignments to the attributed π-

calculus is presented. The overall idea is based on the encoding of

the original version of the attributed π-calculus in Section 3.3.3. That

is, pairs are used to represent the mapping from channels to their val-

ues. As before, a two-step approach is deployed, but here to encode
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process-environment pairs (P,ρ), first replacing those names in P by

pairs that are mapped in ρ and then those bound by ν-operators. The

value of a channel is obtained by accessing the second component of

a pair, i.e. operator val is replaced by operator snd. Special atten-

tion has to be drawn to reference chains, which were not explicitly

considered before. They are represented by nested pairs forming lists

〈x1,〈x2, . . .〈xn,v〉 . . .〉〉. Operator snd∗ is introduced to obtain the last

pair in a list, by this denoting the counterpart of operator ref for deref-

erentiation in the imperative π-calculus:

(SND∗1)
e ⇓ 〈v1,v2〉 v2 6= 〈v′1,v′2〉

snd∗e ⇓ 〈v1,v2〉

(SND∗2)
e ⇓ 〈v1,v2〉 v2 = 〈v′1,v′2〉 snd∗v2 ⇓ v

snd∗e ⇓ v

Rule (SND∗1) evaluates an argument e to a pair 〈v1,v2〉, where v2 is not

a pair, i.e. 〈v1,v2〉 is the last pair in a list, such that it is returned. Rule

(SND∗2) denotes the recursive step, i.e. it evaluates an argument e to a

pair 〈v1,v2〉, where v2 is a pair itself and recursively applies operator

snd∗ to v2.

The value at the end of a reference chain in an initial environment

can be obtained a-priori. Thus, using function γ(x,ρ) below to recur-

sively traverse reference chains, the introduction of nested pairs in the

first step of the encoding can be avoided:

γ(x,ρ) =

ρ(x), if ρ(x) /∈ Vars

γ(ρ(x),ρ), else
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Apparently, an encoding of a process-environment pair can only by ob-

tained for acyclic environments, i.e. environments that do not contain

reference chains forming rings.

In contrast to the original version of the attributed π-calculus, ν-

operators in the imperative π-calculus allow for expressions to specify

initial values. Thus, in the second step, a simple replacement of names

bound to ν-operators by pairs of names and values is not possible. It

has to be ensured that an expression is first evaluated before it is passed

around. This can be achieved by introducing an additional process def-

inition and a defined process for each ν-operator. Consider, e.g., a pro-

cess Q = (νx: f )P in the imperative π-calculus, with restricted expres-

sion f , containing no assignments. The encoding proposed here in-

troduces an additional process definition A(x), P′, with a fresh name

A, and replaces process Q by attributed process Q′ = (νx)A(〈x, f ′〉),
where P′ and f ′ are the encodings of P and f , respectively. Rule (APP)

of the non-deterministic semantics of the attributed π-calculus reduces

Q′ as follows:

(νx)A(〈x, f ′〉) app−−→
nd

(νx)P[〈x,v〉/x], with f ′ ⇓ v

Exactly as needed, first expression f ′ is evaluated to v and then the

name x in P is replaced by 〈x,v〉. Notice that all the names in the scope

of ν-operators and also of receivers and process definitions have to be

collected and added to the parameter list of newly introduced process

definitions, such that e.g. Jx?(y).(νz: f )PK /0 = x?(y).(νz)A(y,〈z, f 〉)
with new definition A(y,z) , JPK(y,x). Otherwise, scoping is not con-

sistently transferred. Notice that the parameter lists of existing process
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definitions and defined processes do not need to be extended, since due

to the assumption that all channels in a process to encode are named

distinctly the scope of bindings ends with a defined process.

Below, the encoding of the imperative attribute language with a big-

step evaluator as defined in Figure 4.1 is presented, only allowing for

restricted expressions f without assignments. As discussed above, op-

erators val and ref are replaced by snd and snd∗, respectively. Ev-

erything else remains the same:

JxK = x Jval f K = snd J f K
Jref f K = snd∗ J f K Jλx. f K = λx.J f K
J f1 f2K = J f1KJ f2K J〈 f1, f2〉K = 〈J f1K,J f2K〉

Jfst f K = fst J f K Jsnd f K = snd J f K
Jif f then f1 else f2K = if J f K then J f1K else J f2K

The rules of the two-step encoding of process-environment pairs

(P,ρ) are defined below. First, each name x in environment ρ is re-

placed by pair 〈x,γ(x,ρ)〉 in P and all its processes definitions, where

γ(x,ρ) obtains the value at the end of reference chain x. In the sec-

ond step, process definitions and defined processes are introduced for

ν-operators. The tuple ñ of encoding JPKñ contains the names of all

binders with scope to P that previously occurred, such that the parame-

ter lists of the introduced process definitions and defined processes are

chosen accordingly. As before, the subjects of sending and receiving

prefixes are obtained by accessing the first value of a pair and all the
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rest remains unchanged:

assumptions: all bound variables in P are named distinctly,

ρ is acyclic, fv(P,ρ) = /0

J(P,ρ)K = JP[〈x1,γ(x1,ρ)〉/x1] . . . [〈xn,γ(xn,ρ)〉/xn]K /0,

with fv(P) = {x1, . . . ,xn}
J(A(x̃), P,ρ)K = JA(x̃), P[〈x1,γ(x1,ρ)〉/x1] . . .

[〈xn,γ(xn,ρ)〉/xn]K /0,

with fv(A(x̃), P) = {x1, . . . ,xn}
JA(x̃), PK /0 = A(x̃), JPKx̃

JP1 | P2Kñ = JP1Kñ | JP2Kñ

JM1 +M2Kñ = JM1Kñ + JM2Kñ

J f1[ f2]!( f̃ ).PKñ = (fst J f1K)[J f2K]!(J f̃ K).JPKñ

J f1[ f2]?(ỹ).PK(x̃) = (fst J f1K)[J f2K]?(ỹ).JPK(x̃,ỹ)
JA( f1, . . . , fn)Kñ = A(J f1K, . . . ,J fnK)

J(νx: f )PK(x̃) = (νx)A(x̃,〈x,J f K〉), with additional

process definition A(x̃,x), JPK(x̃,x)

Let L − be an attribute language of the imperative π-calculus with-

out assignments and let L −[(val,ref)/(snd,snd∗)] be the attribute

language L − where operators val and ref are replaced by operators

snd and snd∗. The encoding of the imperative π-calculus, π imp(L −)

to the attributed π-calculus, π(L −[(val,ref)/(snd,snd∗)]), is cor-

rect with respect to the non-deterministic and the stochastic seman-

tics. The proof is by induction on all the rules of the non-deterministic

and the stochastic semantics of the imperative and the attributed π-

calculus. It shall be omitted here.
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4.3.2 Encoding BioAmbients

In this section, an encoding of BioAmbients with priority into the

imperative π-calculus is presented. More precisely, it is shown that

BioAmbients with a set of priorities (R,<n), i.e. n priority levels,

can be expressed in π imp(λ (R,DIR,CAP,=,and)<n), the imperative π-

calculus with an attribute language that provides n priority levels. That

is, the encoding avoids deploying update protocols with higher priority

to broadcast changes in global information. The encoding is composi-

tional, i.e. the encoding of a parallel composition yields the encoding

of its parts. In BioAmbients, changes in global information occur due

to ad-hoc operators for reconfigurations in ambient hierarchies. Thus,

the fact that a compositional encoding exists that does not require pri-

oritized update protocols underlines that communication constraints

with access to a global imperative store are sufficiently expressive to

model dynamic cell structures.

The main idea of the encoding is to represent ambients by channels

which refer to pairs that provide information about the ambient. The

first component of such a pair is the ambient’s name and the second a

channel referring to the pair of the parent ambient, see Figure 4.18, row

1, column 1. Thus, ambient pairs represent the hierarchy of nested am-

bient structures by lists capturing the paths from ambients to their top

most parents. The sets DIR and CAP of the attribute language provide

constants to represent communication directions, e.g. local or s2s,

and rearrangement capabilities, e.g. merge or exit, respectively. Re-

strictions of process interaction due to their location in ambient struc-
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tures are modeled by communication constraints that compare commu-

nication directions or rearrangement capabilities and ambient names.

Thereby, constraints may access the name of the surrounding ambient

or the name of its parent. As Versari (2009) already showed, to judge

whether an interaction in BioAmbients may happen, it is not neces-

sary to traverse the ambient hierarchy any further than to the parent

of a process’ surrounding ambient. Rearrangements in the ambient

structure are implemented by changing the values of channels. Since

initially all the parallel processes in one ambient access the same chan-

nel, a change of the channel’s value modifies the ambient information

for all these processes in a single step. This idea denotes the essential

ingredient in order to avoid prioritized update protocols. Notice that

the encoding of enter and exit rearrangements leads to changes in

the length of ambient pair lists since new parent ambients are assigned.

Thus, they require a type system that supports recursive types.

The most challenging part of the encoding is ambient merging. Af-

ter a merging, not only do the channels representing the two compart-

ments have to refer to the same value, but also changes in the informa-

tion of the fused compartments have to be updated for both channels in

a single reduction step. Otherwise, inconsistencies regarding the abil-

ity of processes to interact may occur. Instead of introducing additional

arrays to store all channels referring to the same ambient and defining

loops to update them, the encoding presented here makes use of refer-

ence chains: when two ambients merge, the channel representing one

of the ambients is assigned as a value to the other. Communication

constraints are defined to rely on operator ref, such that the pair at the
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end of a reference chain is always accessed. Thus, when changing this

pair, the ambient information that all the channels in the chain refer to

is changed in a single step.

The encoding makes use of auxiliary functions to obtain ambient

information from channels, as defined in Figure 4.15. Function amb

determines the name of an ambient by returning the first component of

the pair at the end of a reference chain l . Function parref provides the

second component of this pair, which is the reference chain referring

to the information about the parent of the ambient that l represents.

Function par combines functions amb and parref to obtain the name

of the parent of the ambient that channel l represents.

Figure 4.16 presents the encoding of BioAmbients processes. It

makes use of parameter l which captures the channel representing the

ambient that contains the process to encode. For processes on the top

level, i.e. those which are not engulfed by an ambient, an additional

common ambient is introduced. To each ambient in process P, a fresh

channel is assigned. Thereby, it is assumed that channel names are

chosen deterministically, such that the number of processes in the re-

sult set of JPKl is one, i.e. #JPKl = 1.

Parallel compositions and summations are treated by separately

considering their components. Process 0 remains unchanged. To en-

code ν-operators, they are extended by initial value unit. Special

attention needs to be drawn to the representation of ambients. For

each engulfed process [P], two ν-bindings are introduced with scope

to the encoding of P. The first introduces a unique name a for the

ambient, which is compared to the names of other ambients in com-
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amb =df λ l .fst(val(ref l))

parref =df λ l .snd(val(ref l))

par =df λ l .amb(parref l)

Figure 4.15: Auxiliary functions for the encoding of BioAmbients to

π imp(L ).

J0Kl = 0
JP1 | P2Kl = JP1Kl | JP2Kl

JM1 +M2Kl = JM1Kl + JM2Kl

Jπ.PKl = JπKl.JPKl

JA(x̃)Kl = A(x̃, l)

J(νx)PKl = (νx:unit)JPKl

J[P]Kl = (νa:unit)(ν l′:〈a, l〉)JPKl′,

with fresh l′ chosen deterministically

JA(x̃), PK0 = A(x̃, l), JPKl

JPK0 = (JPKl,{l 7→ 〈a, l′〉, l′ 7→ 〈a′,unit〉, x̃ 7→ unit}),
with{x̃}= fv(P)∪

⋃
D∈D fv(D)

Figure 4.16: Encoding of processes from BioAmbients to π imp(L ).
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Jd x?(x̃)Kl = x[λe.(e d l)]?(x̃)

Jc x?Kl = x[λe.(e c l)]?()

Jlocal x:r!(x̃)Kl = x[λd l .if(d = local) and (amb l = amb l)

then r else 0]!(x̃)

Jc2p x:r!(x̃)Kl = x[λd l .if(d = c2p) and (amb l = par l)

then r else 0]!(x̃)

Jp2c x:r!(x̃)Kl = x[λd l .if(d = p2c) and (par l = amb l)

then r else 0]!(x̃)

Js2s x:r!(x̃)Kl = x[λd l .if(d = s2s) and (par l = par l)

and not(amb l = amb l)

then r else 0]!(x̃)

Jmerge x:r!Kl = x[λc l .if(c = merge) and (par l = par l)

and not(amb l = amb l) then

{ref l:= l ;r} else 0]!()

Jenter x:r!Kl = x[λc l .if(c = enter) and (par l = par l)

and not(amb l = amb l) then

{ref l:= 〈amb l, l〉;r} else 0]!()

Jexit x:r!Kl = x[λc l .if(c = exit) and (amb l = par l)

then {ref l:= 〈amb l,parref l〉;r}
else 0]!()

Figure 4.17: Encoding of prefixes from BioAmbients to π imp(L ).
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munication constraints. The second ν-binding creates the channel l′

representing the ambient engulfing P. Consequently, instead of chan-

nel l, the encoding of P proceeds with channel l′. To capture in which

ambient a process definition is instantiated, the parameter lists of de-

fined processes and process definitions are extended with parameter

l. The initial step of the encoding JPK0
l defines a process-environment

pair for P which introduces an ambient for the top level processes in P

and encodes P with the channel l representing that ambient. Since the

non-deterministic semantics of the imperative π − calculus assumes

that on reduction of process-environment pairs (Q,ρ) it holds that

fv(Q,ρ) = /0, mappings from the free names of P and its definitions

D to the value unit are added to the environment.

The basic ideas of encoding BioAmbients prefixes are depicted in

Figure 4.18. In columns 2 and 3 the encodings of BioAmbients com-

munications are illustrated. Row 1 depicts the case that two processes

in the same ambient try to perform a local communication. Initially,

the processes were engulfed by separate ambients, such that their en-

coding is parameterized with different channels l1 and l2. However,

due to a former merging, the value of l1 is changed, such that it now

refers to l2, building a reference chain. The encoding defines the con-

straint of a local communication to check whether (amb l1)=(amb l2).

Since function amb obtains the first component of a pair at the end

of a reference chain, the processes can interact as expected. As for

all BioAmbients communications, the values of channels representing

ambients remain unchanged.

The second row shows the case of a parent-to-child communication
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attempt. In the encoding, the constraint of p2c communication is de-

fined, such that the processes may interact if (par l1)=(amb l2). Since

l1 stands for an ambient engulfed by the ambient represented by l2, the

second component of its pair is l2. Thus, in the same way as amb l2,

par l1 accesses the first component of the pair of l2, such that the

processes can interact. Possible primer merging is again covered by

letting constant amb and par determine the end of reference chains be-

fore obtaining values. The constraint of the communication direction

c2p is defined symmetrically.

In the third row, two processes attempt to communicate in a s2s

context. The constraint for s2s communication is defined, such

that processes may interact if their parent ambients equal, i.e. (par

l1)=(par l2), and, as also discussed in Section 3.3.2 introducing

π[@, 6=], their surrounding ambients differ, i.e. not (amb l1 = amb l2).

The second components of the pairs of l1 and l2 both equal l, such that

in each case function par returns p as the name of the parent. By con-

trast, their first components differ, such that amb applied to l1 and l2
yields a1 and a2 , respectively. Thus, the processes may communicate.

The encodings of rearrangement attempts are illustrated in column

1. Corresponding communication constraints first check interaction

restrictions dependent on the location of processes. In this sense, ca-

pabilities merge and enter equal communication direction s2s and

capability exit communication direction c2p. Additionally, each con-

straint consists of a single assignment, which is executed on process

communication.

The case of ambient merging is presented in row 1. The channel l2
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representing the ambient engulfing the accepting process is assigned as

a value to channel l1, which stands for the ambient engulfing the pro-

cess initializing the rearrangement. Notice that by applying function

ref to l1 on the left side of the assignment, l2 is assigned to the end

of the reference chain l1. This ensures that the ambient information,

which all channels of the reference chain point to, is changed at once.

In row 2, the case of one ambient (l1) entering another one (l2)

is depicted. This is implemented by assigning a pair to the end of

reference chain l1, such that the ambient name remains unchanged but

the parent is set to channel l2. Symmetrically, an exit rearrangement is

reflected by keeping the first component of the corresponding pair but

changing the second component to the channel representing the parent

of l2, see row 3.

Figure 4.17 presents the encoding of prefixes. As a general schema,

the encoding leaves the subjects and parameters of prefixes unchanged.

Constraint functions are defined, such that the receiver only applies its

communication direction c or rearrangement capability d and the chan-

nel referring to the information of its ambient l to a function defined

by the sender. Consequently, following the ideas described above, the

function of the sender side defines the restrictions for interactions and

changes in channel values, accordingly. The communication direc-

tion, rearrangement capability, and ambient channel of the sender are

denoted by c, d, and l, respectively. Those of the receiver are provided

by function parameters c , d , and l . As a successful value, the priority

level of the encoded sending prefix is always returned.

The proof that this encoding is correct is by structural induc-
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tion on all the rules of non-deterministic semantics of BioAmbients

and π imp(λ (R,DIR,CAP,=,and)<n). It requires to define a rather

weak relation between process-environment pairs: first, processes-

environment pairs need to be related that differ only in the length of

their reference chains. This can be seen by considering the result of

reducing the encoding of a merge rearrangement in Figure 4.18, row

1, column 2. It should be possible to identify the obtained reference

structure with a process-environment pair, where l1 directly refers to

the pair 〈a2, l〉. Second, the structural congruence of BioAmbients

allows to remove empty ambients from processes ([0] ≡ 0). Thus,

processes-environment pairs need to be related if their environments

only differ in containing some variables that are neither referred to

by their processes nor by the right-hand side of any mapping. Third,

the encoding of a BioAmbients process P introduces ν-operators that,

according to the non-deterministic semantics, are removed when re-

ducing its encoding. However, these are re-introduced when encoding

a process P′ that results from reducing P. Thus, process-environment

pairs need to be related that only differ by some new−−→
nd

reductions. The

definition of this relation and the proof of the correctness of the encod-

ing shall be omitted here.
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Figure 4.18: Graphical representation of BioAmbients encoding.
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4.4 Stochastic Simulator

The stochastic simulator of π imp(L ) builds on the one of the attributed

π-calculus. As usual, the main differences result from the fact that

environments for global variables have to be additionally considered.

This affects the input of the simulator and all of its steps, see Fig-

ure 4.19, in particular the grouping of reactions and the calculation of

propensities.

A group label L = (x,v,r,ρ1,ρ2) of a process-environment pair

(P1,ρ1) considers two additional environments, the current environ-

ment ρ1 and the environment ρ2 resulting from evaluating the sender.

The latter is needed to ensure that all receivers in group L are evaluated

in the same environment, such that they remain fixed in combination

with all senders. The group of reactions for P1 = ∏
n
i=1 ∑

m
j=1 π

j
i .P

j
i is

defined as follows:

Reacts(L) = {((i1, j1, i2, j2),r) ∈ Reacts |
∃v′∃ỹ∃ṽ∃ρ3∃ρ4.(π

j1
i1 ,ρ1) ⇓ (x[v]!(ỹ),ρ2),

(π
j2

i2 ,ρ2) ⇓ (x[v′]?(ṽ),ρ3), (v′v,ρ3) ⇓ (r,ρ4)}

The definition of the propensity of L remains unchanged, where ` =

(i1, j1, i2, j2):

prop(L) =

∞(n), if n = #{` | (`,∞) ∈ Reacts(L)} ≥ 1

∑(`,r)∈Reacts(L) r, otherwise

The set of grouped reactions with their propensities thus yields:

GReacts = {(L,prop(L)) | L ∈ Vars(P1)×Vals(P1)
2×Env2}



211

S i m u l a t e ( P,ρ, t ) / / solution P, environment ρ , time point t ∈ R
l e t (P1,ρ1) be such t h a t (P,ρ) ⇓ (P1,ρ1)

/ / (P1,ρ1) is obtained from (P,ρ) by exhaustively applying

/ / definitions and eliminating ν-operators (may diverge)

i f (P1,ρ1)
err−→
nd
⊥ then r a i s e error

/ / apply all rules (E.COM), (E.PREF), (E.CONSTR)

/ / this computation may diverge as expressions are evaluated

l e t GReacts = {(L,prop(L)) | L ∈ Vars(P1)×Vals(P1)
2×Env2}

i f {(L,r) ∈ GReacts | r = ∞(n)}= /0

then
l e t ((L,r),∆) = ssa(GReacts)

s e l e c t (`,r) ∈ Reacts(L) with equal probability

l e t P2 such t h a t (P1,ρ1)
r−→
`
(P2,ρ2)

S i m u l a t e ( (P2,ρ2), t +∆ )

e l s e
s e l e c t (L,∞(n)) ∈ GReacts

with probability n/m where m = ∑(L′,∞(n′))∈GReacts n′

s e l e c t (`,∞) ∈ Reacts(L) with equal probability

l e t (P2,ρ2) such t h a t (P1,ρ1)
∞−→
`
(P2,ρ2)

S i m u l a t e ( (P2,ρ2), t )

Figure 4.19: Stochastic simulator for π(L ) (to be implemented incre-

mentally).
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In order to additionally consider environments, the computation of the

propensities of L needs to be changed to:

out(x,v,ρ1,ρ2) = #{(i, j) | ∃ṽ. (π j
i ,ρ1) ⇓ (x[v]!(ṽ),ρ2)}

in(x,v,r,ρ1) = #{(i, j) | ∃v′ỹρ2ρ3.(π
j

i ,ρ1) ⇓ (x[v′]?(ỹ),ρ2),

(v′v,ρ2) ⇓ (r,ρ3)}
mixin(x,v,r,ρ1,ρ2) = #{(i, j1, j2) |

∃v′ṽỹρ3ρ4.(π
j

i ,ρ1) ⇓ (x[v]!(ṽ),ρ2),

(π
j

i ,ρ2) ⇓ (x[v′]?(ỹ),ρ3),

(v′v,ρ3) ⇓ (r,ρ4)}

Lemma 10. prop(x,v,r,ρ1,ρ2) = (out(x,v,ρ1,ρ2) ∗ in(x,v,r,ρ1) −
mixin(x,v,r,ρ1,ρ2))∗ r, if the solution does not contain infinite rates.

Proof. Let L = (x,v,r,ρ1,ρ2). It is enough to show that

out(x,v,ρ1,ρ2)∗ in(x,v,r,ρ1)−mixin(x,v,r,ρ1,ρ2) = #Reacts(L). This

holds, since all pairs of indices counted by out(x,v,ρ1,ρ2) ∗
in(x,v,r,ρ1) form a redex according to rule (COM), except for those

that are counted by mixin(x,v,r,ρ1,ρ2).

The differences in the computational complexity between the simu-

lator of π imp(L ) and the one of π(L ) basically depend on the number

of assignments in the model. In fact, considering a model not includ-

ing any assignments, the computational complexity is the same, since

senders and receivers can be evaluated separately. A simulator that

incrementally computes propensities for π imp(L ) requires more im-

plementation effort than for π(L ), since in each step the changes to
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the environment need to be traced and prefixes re-evaluated, accord-

ingly. This is also the way the current implementation of the π imp(L )

simulator works.





Chapter 5

Conclusion

In this thesis, reaction constraints for the π-calculus were proposed

as a concept for the spatial and stochastic modeling of cell-biological

processes. For the modeling of changes in global information, espe-

cially that resulting from dynamic cell structures, two concepts were

introduced: priority and global variables. Several formal expressive-

ness studies and small modeling examples showed the usefulness of

both concepts and also of reaction constraints in the π-calculus in gen-

eral. Simulators of sufficient performance and type systems were de-

veloped that ensure the practicability of the concept. A first study that

applies the imperative π-calculus to study the Wnt/β -catenin signal-

ing pathway is underway, see Mazemondet et al. (2009). There, the

population-based modeling style in particular is deployed, revealing

new insights into the applicability of the concept. However, whether

reaction constraints in the π-calculus are going to be a well-established

approach in the field of modeling cell-biological processes in general

215
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remains an open question. The following concluding remarks of this

thesis shall provide an outlook.

The π-calculus subscribes to the individual-based modeling style.

Individual-based approaches allow for more sophisticated modeling,

since species attributes, such as the occupation of binding sites or

molecule positions, can be explicitly considered. However, this leads

to a state space explosion, since for each combination of attribute val-

ues a new species is introduced. Population-based approaches are es-

pecially interesting when trying to keep the state space small. This

makes it possible to support a broader range of analysis methods, in-

cluding those considering entire state spaces. In particular, Bio-PEPA

exploits this idea. Novel analysis methods, e.g. statistical model

checking, explicitly aim at exploring large stater spaces, thus support-

ing the applicability of individual-based approaches.

The π-calculus subscribes to the object-centered modeling style.

Currently, due to its closeness to the domain, it is rather the rule-

based style, as supported by the κ-calculus or LBS, which asserts

itself as the dominant paradigm for the modeling of cell-biological

processes. However, object-centered modeling seems to be especially

useful when studying aspects at the gene level, e.g. as in the co-

operative enhancement example in Section 3.2.2. Models of genetic

transcription make use of the metaphor of a reader traversing a list of

gene sequences, which is very close to what Milner (1999) introduced

as mobility in the π-calculus. Object-centered approaches are well-

established in computer science, such that programming and thus mod-

eling seems to largely benefit from it. Therefore, it is very well pos-
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sible that both modeling styles will find their application domain, just

as it is the case e.g. for functional and object-centered programming.

Which language then is used for a specific modeling scenario depends

not only on the system under study and the question one wishes to

answer but also on personal preferences and other "soft" criteria.

A long lasting and still vital discussion is on the question of whether

formal languages in general will ever become largely established in

the area of modeling cell-biological systems. Most models so far have

been implemented in ODE’s, since they provide a well-established the-

ory including a broad range of analysis techniques. They also offer

almost unlimited possibilities to abstract from the system under study

in order to deal with missing knowledge, see e.g. Mirams et al. (2010).

Yet, this also comes with a major drawback; models may be over-

abstracted and over-fitted to a certain behavior, lacking foundation in

the realm of the actual ongoing processes. They are fixed to a nar-

row scope, which raises questions about the validity of the obtained

results. Here, the syntactic layers of modeling languages may help,

since they restrict modelers to a certain set of operators that usually

find their counterparts in the systems under study, e.g. reaction rules.

In the optimal case, the syntax of a modeling language provides an

interface for the communication between life and computer scientists.

Furthermore, concepts from the field of programming languages, like

modularity and abstraction, as e.g. offered by LBS, and typing tai-

lored to the cell-biological realm, see e.g. Fages and Soliman (2008),

are of fundamental use in order to avoid error-prone models. More-

over, formal semantics can be defined that allow applying a broader
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range of analysis methods, see e.g. Calzone et al. (2006).

Nevertheless, an essential step that has to be taken in order to fully

establish the π-calculus in the realm of modeling cell-biological sys-

tems is to find ways of defining reactions with more than two reac-

tants in an individual-based style. Although Gillespie (1977) states

that reactions with more than two reactants do not occur in reality, ab-

stractions comprising multiple reactants are of great importance. On

one hand, they support the modeling in that they allow for more com-

pact models and dealing with missing parameters. On the other hand,

especially for stochastic simulation, where multiple runs with many

events have to be performed, abstractions help to decrease computa-

tional costs. In the π-calculus, multiple reactants are critical, since

only pairs of senders and receivers are considered. Versions featur-

ing broadcast communication exist but do not solve the problem. The

reason is that it is not all the receivers that listen on some channel that

have to be reduced in a single step. It is rather necessary to select a cer-

tain number of instances of each species involved in the reaction. In

this regard, the question of if CTMC’s are the right formalism to define

the stochastic semantics for the π-calculus also has to be addressed,

since not all abstractions preserve the Markov property. Mura et al.

(2009), e.g., consider a stochastic semantics with general probability

distributions.

Once one succeeds in extending the π-calculus with n-ary reactions,

the question arises if global variables are still needed. It seems also

possible to model global side effects by introducing additional reac-

tants and products. Consider e.g. the following two reaction schemes,
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where x ∈ N is a global variable:

r1 : R1
{x := val x +1; k1}−−−−−−−−−−−−→ P1

r2 : R1
k2 * val x−−−−−−→ P2

with global variable x ∈ N

As a side effect, the constraint of reaction r1 increases x , which di-

rectly reflects the constraint of reaction r2. Introducing a species X(x),

of which only one instance ever exists, this can be modeled without

global variables as follows:

assumption: amount of X(x) is constantly one

r1 : ∀x ∈ N.R1,X(x) k1−→ P1,X(x +1)

r2 : ∀x ∈ N.R2,X(x) k2 * x−−−→ P2,X(x)

Kuttler et al. (2010) first applied this idea to model side effects result-

ing from the interaction of two actors in the context of transcriptional

attenuation. However, a formal expressiveness study has not been car-

ried out so far.

In order to obtain a modeling language with optimal expressiveness,

a formal study is also missing comparing global variables to priority.

In Section 4.3.1, it has been shown that the imperative π-calculus with

an attribute language that does not provide assignments can be encoded

in the attributed π-calculus. Moreover, it has been proven that both pri-

ority and global variables are sufficiently expressive to model changes

in global information. However, it is not clear yet in what sense the two

concepts differ. It seems to be possible to encode the changes in the

values of global variables by using prioritized update protocols, by this

showing that priority is at least as expressive as global variables. Vice
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versa, based on the idea of Versari (2009) to use the Last Man Stand-

ing Problem to separate π-calculi with and without priority, it might be

possible to separate priority from the global imperative store. In this

case, the latter, less expressive approach would be preferable, since it

is sufficient for the spatial modeling of cell-biological processes and

avoids error-prone update protocols.

Other limitations to overcome regard not only the π-calculus but

formal languages for the spatial and stochastic modeling of cell-

biological processes in general.

Abstracting molecular motion as discrete events requires determin-

ing rate constants for reactions in many different conditions, e.g. de-

pendent of molecular density or temperature. Takahashi et al. (2005)

stated that effects like molecular crowding, where molecular density is

very high, are known to have crucial impact on cellular motion and

thus on the final outcome of cell biological systems. To this end,

Haack et al. (2010) propose to computationally determine rate con-

stants by exhaustive simulation of models that consider deterministic,

continuous motion of molecules and their collision. An alternative

would be to define a modeling language with a stochastic semantics

that supports continuous molecular motion, including molecule size

and collision. However, a way of describing continuous motion that

fulfills the Markov property has not been found so far, implying again

that a semantics supporting general probability distributions might be

necessary. Moreover, to ensure practicability regarding the computa-

tional complexity of such an approach, an appropriate abstraction level

has to be found that avoids accounting for every single molecule as an
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individual. First ideas in this regard have already been presented by

Jeschke and Uhrmacher (2008).

Different levels of abstraction can underlie the study of cell-

biological processes, ranging from molecules over cell organelles to

entire cell populations. Multi-level modeling approaches enable the

modeler to explicitly reflect these abstraction levels and related hier-

archies. By this they allow on one hand describing phenomena more

closely to the way they have been observed and on the other hand

to abstract from details of low relevance. For example, dependent on

their role in the system under study, some proteins are regarded only as

single entities, whereas for others different parts need to be identified.

Uhrmacher et al. (2007) introduce ML-DEVS as a first approach that

explicitly aims at the multi-level modeling of cell-biological systems

but does not provide a syntactic layer or a stochastic semantics. Other

multi-level approaches rather focus on spatial hierarchies, like BioAm-

bients, or, as Beta-binders and BlenX, on ways to precisely distinguish

between proteins and their environment.

Finally, while developing more and more modeling languages, it

also has to be addressed more precisely what aspects of cell-biological

processes should be made available by a language. A first step has al-

ready been made by Regev et al. (2004), pointing out that dynamic cell

structures as in BioAmbients are of interest. Their investigations form

the foundation of the expressiveness studies of Versari (2009) and of

this thesis. However, for an overall picture further results are neces-

sary. These may be, in particular, obtained through interdisciplinary

work between experts from life science and computer science.
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224Levels StoPi/SPiM/Enum StoPi/James/Enum AttrPi/James/Enum AttrPi/James/Comp

10 8.10 (0.09) 7.33 (0.58) 8.00 (0.00) 8.00 (0.00)

20 19.12 (0.12) 16.00 (0.00) 16.33 (0.58) 17.33 (0.58)

30 30.42 (0.12) 24.00 (1.00) 25.67 (0.58) 27.00 (0.00)

40 43.37 (0.13) 35.00 (1.00) 34.33 (0.58) 35.33 (0.58)

50 56.99 (0.18) 43.00 (1.73) 45.00 (2.00) 44.67 (2.00)

60 73.40 (0.20) 56.67 (1.53) 56.33 (0.58) 58.33 (1.16)

70 92.32 (0.34) 68.00 (1.73) 66.00 (0.00) 67.00 (3.00)

80 107.41 (0.16) 78.67 (2.31) 75.00 (2.65) 79.33 (1.53)

90 132.77 (0.26) 86.33 (2.52) 89.00 (1.73) 89.67 (1.53)

100 156.13 (2.16) 104.00 (2.65) 106.67 (1.15) 102.00 (1.00)

Table A.1: Runtime of different simulators in s for the Euglena model with parameters I1 = 5.0,

I2 = 15.0, n = 100, σ = 0.2, u = 2.0, and m ∈ {9,19, . . . ,99}, i.e. number of depth levels ranging

between 0 and 100. Simulation runs were performed until simulation time t = 100.0 (average of 3

runs each): "StoPi" = the stochastic π-calculus, "AttrPi" = the attributed π-calculus, "SPiM" = SPiM,

"James" = JAMES II, "Enum" = model with enumerated depth levels, "Comp" = model with depth

level as species parameter.



Appendix B

Remaining Proofs

B.1 Section 3.1.7 (Type System)

Corollary 2 (Error freeness). If L is an attribute language that is

both type safe and normalizing (see Propositions 7 and 8) then π(L )

is error free, i.e. for all processes P with definitions D in the attributed

π-calculus, it holds that if Γ ` P, Γ `D , and P→∗ Q then ¬Q err−→
nd
⊥.

Proof. Assuming that Γ ` P, Γ ` D , and P→n Q the proof proceeds

by induction on n. The induction step follows from Theorem 1. It thus

remains to prove the initial case that is P ≡ Q. Assume by contradic-

tion that there exists some process P0 such that Γ ` P0 and P0
err−→
nd
⊥.

A standard analysis of the structural congruence shows the following

claim: let P0 ≡ (ν x̃:τ̃)∏
n
i=1 Pi be a prenex normal form in which all

bound variables are named distinctly, and such that all Pi are sums or

defined processes. A derivation of P0
err−→
nd
⊥ necessarily involves one
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of the error axioms given in Figure 3.4. In the following it is shown by

case analysis that none of these is applicable:

(E.COM) In that case, it holds that ∃ j,k.1 ≤ j < k ≤ n, Pj = π1.P1 +

M1, Pk = π2.Q2+M2, π1 ⇓ x[v1]?(ỹ), π2 ⇓ x[v2]!(ṽ), and |ỹ| 6= |ṽ|.
From Γ ` P0 it follows, by Lemma 3(4), that Γ ` (ν x̃:τ̃)∏

n
i=1 Pi,

which derives from a series of applications of rules (T.NEW) and

(T.PAR) and from statements Γ, x̃:τ̃ ` Pi, for all i ∈ {1, . . . ,n}.
In particular, it is true that Γ, x̃:τ̃ ` π1.Q1 + M1 and Γ, x̃:τ̃ `
π2.Q2 +M2. By (T.REC), it holds that π1 = e1[e′1]?ỹ, Γ, x̃:τ̃ `
e1:[τ1]⇒ σ̃1, Γ, x̃:τ̃ ` e′1:τ1, and |ỹ| = |σ̃1|. Similarly it is true

that π2 = e2[e′2]!ẽ2
′′, Γ, x̃:τ̃ ` e2:[τ2→ τ ′2]⇒ σ̃2, Γ, x̃:τ̃ ` e′2:τ2,

and Γ, x̃:τ̃ ` ẽ2
′′:σ̃2. Because it holds that e1[e′1]?ỹ ⇓ x[v1]?(ỹ)

and e2[e′2]!ẽ2
′′ ⇓ x[v2]!(ṽ) and, by Proposition 7, e1 and e2 have

the same type, it follows that τ1 = τ2→ τ ′2 and σ̃1 = σ̃2. Because

it is true that ẽ2
′′ ⇓ ṽ, by Proposition 7, it holds that Γ, x̃:τ̃ ` ṽ : σ̃2,

such that |ṽ|= |σ̃2|= |σ̃1|= |ỹ|, which contradicts |ỹ| 6= |ṽ|.

(E.PREF) In this case, it holds that ∃ j.1≤ j≤ n, Pj = π1.P1+M1, and

¬∃π ′1.π1 ⇓ π ′1. Similarly to the previous case, one can show that

Γ, x̃:τ̃ ` π1.P1 +M1 which is either derived from rule (T.REC) or

(T.SEND). Suppose the latter applies (the case (T.REC) is simi-

lar), then π1 = e1[e2]!(ẽ3), Γ, x̃:τ̃ ` e1 : [τ]⇒ σ̃ , Γ, x̃:τ̃ ` e2 : τ ,

and Γ, x̃:τ̃ ` ẽ3 : σ̃ . By Propositions 7 and 8, each of the ex-

pressions e1, e2, and ẽ3 evaluate to some typable value and rule

(SEND) is applicable which contradicts ¬∃π ′1.π1 ⇓ π ′1.
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(E.CONSTR) In this case, it holds that ∃ j,k.1 ≤ j < k ≤ n, Pj =

π1.P1 +M1, Pk = π2.Q2 +M2, π1 ⇓ x[v1]?(ỹ), π2 ⇓ x[v2]!(ṽ), and

¬∃v.v1v2 ⇓ v. Similarly to the case (E.COM) one can show that

v1 has some type τ1 → τ2 and v2 is of type τ1. Thus, by rule

(T.FUNAPP), v1v2 is typable with type τ2 and, by Proposition 8,

evaluates to some value v, which contradicts ¬∃v.v1v2 ⇓ v.

B.2 Section 3.3.1 (Encoding the π-Calculus

with Priority)

Theorem 2. The encoding of the π-calculus with priority levels (R,<)

into the attributed π-calculus, π(λ (R)<), is correct, in that for all

processes P,P′ it holds that:

1. if P→ P′ then JPK→ JP′K

2. if JPK→ Q then there exists a process Q̂ in the π-calculus with

priority, such that JQ̂K≡ Q and P→ Q̂

Proof. The proof is based on three claims: stating that the encoding

is invariant under substitutions, that it preserves and reflects structural

congruence and that it preserves and reflects errors, respectively.

Claim. JP[ṽ/ỹ]K = JPK[ṽ/ỹ].

The proof is by induction on the structure of P.

Claim. P≡ Q⇔ JPK≡ JQK.
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The proof is by structural induction on the derivations of P ≡ Q and

JPK≡ JQK, respectively. All rules of the structural congruence need to

be inspected. Details are omitted here.

Claim. P err−→
nd
⊥⇔ JPK err−→

nd
⊥.

Proof.

(E.COM) This case is obvious, since both calculi provide analogous

rules. Details are omitted here.

(E.PREF) This rule exists only in the attributed π-calculus. Suppose

that JPK err−→
nd
⊥ is inferred by (E.PREF):

¬∃π ′.π ⇓ π ′

JPK = π.Q+M err−→
nd
⊥

Since sums can only be obtained by translating sums, P must

match π̂.Q̂+ M̂ for some Q̂ and M̂. Here, π̂ must be a prefix

of the π-calculus with priority. Thus, it follows that π = Jπ̂K
converges to itself, in contradiction to the hypothesis of the rule.

(E.CONSTR) This rule exists only in the attributed π-calculus. Thus,

suppose that (E.CONSTR) infers JPK err−→
nd
⊥, such that it is applied

as follows:

π1 ⇓ x[v1]?(ỹ) π2 ⇓ x[v2]!(ṽ) ¬∃v.v1v2 ⇓ v

JPK = π1.P1 +M1 | π2.P2 +M2
err−→
nd
⊥

By inspection of the translation and the first two premises of

the rule it holds that P must have the form x?(ỹ).P̂1 + M̂1 |
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x:r!(z̃).P̂2 + M̂2. Thus, JPK = x[λ z.z]?(ỹ).P1 +M1 | x[r]!(z̃).P2 +

M2. This, however, contradicts the third premise, since v1v2 =

(λ z.z) r ⇓ r by rule (FUN) and r ∈ R.

The treatment of structural rules is omitted, here.

In order to proof the theorem by induction, it needs to be general-

ized:

Claim. For any relation ρ∈ {⇓, app−−→
nd

,
r−→

nd
,→| r ∈ R}, and all processes

P, P̂ in the π-calculus with priority it holds that:

1. if P ρ P′ then JPK ρ JP′K.

2. if JP̂K ≡ P and P ρ Q then there exists an attributed process Q̂,

such that JQ̂K≡ Q and P̂ ρ Q̂.

Proof. The claim is proved for all the above relations ρ in the order in

which they are given. The proof of point 1 is by structural induction

on derivations of P ρ P′. All rules of the non-deterministic semantics

of the π-calculus with priority need to be considered:

(COM) This rule yields P r−→
nd

P′ as follows:

|ỹ|= |z̃|
P = x?(ỹ).P1 +M1 | x:r!(z̃).P2 +M2

r−→
nd

P1[z̃/ỹ] | P2 = P′

Thus, JPK= x[λy.y]?(ỹ).JP1K+ JM1K | x[r]!(z̃).JP2K+ JM2K, such

that rule (COM) of the non-deterministic semantics of π(λ (R)<)
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applies as follows, while using rules (V) and (FUN) of the big-

step evaluator:

x[λy.y]?(ỹ) ⇓ x[λy.y]?(ỹ)

x[r]!(z̃) ⇓ x[r]!(z̃) (λy.y)r ⇓ r ∈ R |ỹ|= |z̃|
JPK r−→

nd
JP1K[z̃/ỹ] | JP2K

The claim on substitution invariance provides that JP1[z̃/ỹ]K |
JP2K = JP′K.

(APP) Suppose the following rule is applicable:

A(x̃), P

A(ṽ)
app−−→
nd

P[ṽ/x̃]

The substitution claim provides that JP[ṽ/x̃]K = JPK[ṽ/x̃]. The

translation is defined, such that JA(x̃), PK = A(x̃), JPK. Thus,

the following rule applies:

A(x̃), JPK

A(ṽ)
app−−→
nd

JPK[ṽ/x̃]

(PAR) Suppose that the following rule is applicable:

P1
β−→
nd

P′1

P1 | P2
β−→
nd

P′1 | P2

The induction hypothesis provides that JP1K
β−→
nd

JP′1K. Since the
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translation is compositional, the following rule is applicable:

JP1K
β−→
nd

JP′1K

JP1 | P2K
β−→
nd

JP′1 | P2K

(NEW) Suppose that the following rule is applicable:

P
β−→
nd

P′

(νx)P
β−→
nd

(νx)P′

The induction hypothesis provides that JPK
β−→
nd

JP′K. By the def-

inition of the translation, the following rule is applicable:

JP1K
β−→
nd

JP′1K

J(νx)PK
β−→
nd

J(νx)P′K

(STRUC) Suppose that the following rule is applicable:

P≡ P1 P1
β−→
nd

P2 P2 ≡ Q

P
β−→
nd

Q

By the claim on the preservation of structural congruence, it is

true that JPK ≡ JP1K and JP2K ≡ JQK. The induction hypothesis

provides that JP1K
β−→
nd

JP2K. Thus, the following rule is applica-

ble:
JPK≡ JP1K JP1K

β−→
nd

JP2K JP2K≡ JQK

JPK
β−→
nd

JQK
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(CONV) Suppose that the following rule is applicable:

P
app−−→
nd

∗
P′ P′ ≡ (ν x̃)∏

n
i=1 Mi ¬P′ err−→

nd
⊥

P ⇓ P′

By the claim above and the induction hypothesis, the translation

preserves structural congruence and application steps, such that

JPK
app−−→
nd

∗
JP′K. The claim on error preservation provides that

¬JP′K err−→
nd
⊥. Thus, the following rule is applicable:

JPK
app−−→
nd

∗
JP′K JP′K≡ (ν x̃)∏

n
i=1JMiK ¬JP′K err−→

nd
⊥

JPK ⇓ JP′K

(PRIOR) Suppose the following rule is applicable:

P ⇓ P′ P′ r−→
nd

Q ¬∃r1 ∈ R.∃Q1. r < r1∧P′
r1−→
nd

Q1

P→ Q

The induction hypothesis provides that P ⇓ P′ yields JPK ⇓
JP′K and that P′ r−→

nd
Q implies JP′K r−→

nd
JQK. It can be shown

by contradiction that if ¬∃r1 ∈ R.∃Q1.r < r1 ∧ P
r1−→
nd

Q1 then

¬∃r2.∃Q2.r < r2∧ JPK r2−→
nd

Q2. Suppose that ¬∃r1 ∈ R.∃Q1.r <

r1∧P
r1−→
nd

Q1 but ∃r2.∃Q2.r< r2∧JPK r2−→
nd

Q2. Reduction JPK r2−→
nd

Q′ is only possible if rule (COM) applies to JPK, which is true if

and only if JPK ≡ (ν x̃)(. . . | x[r2]!(ỹ).P1 +M1 | x[λy.y]?(z̃).P2 +

M2 | . . .). By the definition of the translation, this is fulfilled only

if P ≡ (ν x̃)(. . . | x:r2!(ỹ).P̂1 + M̂1 | x?(z̃).P̂2 + M̂2 | . . .). Thus,
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P
r2−→
nd

Q exists, which contradicts the initial assumption. Thus,

the following rule is applicable:

JPK ⇓ JP′K
JP′K r−→

nd
JQK ¬∃r1 ∈ R.∃Q1. r < r1∧ JP′K r1−→

nd
Q1

JPK→ JQK

Proof. The proof of point 2 is by structural induction on derivations

of P ρ Q, under the assumption that JP̂K ≡ P. All rules of the non-

deterministic semantics of π(λ (R)<) need to be considered:

(COM) By assumption, it holds that JP̂K≡ P and P r−→
nd

Q by applying

the following rule:

π1 ⇓ x[v1]?(ỹ) π2 ⇓ x[v2]!(ṽ) v1v2 ⇓ r ∈ R |ṽ|= |ỹ|
P = π1.P1 +M1 | π2.P2 +M2

r−→
nd

P1[ṽ/ỹ] | P2 = Q

Inspecting the translation reveals that P̂ ≡ P̂′ for some process

P̂′ = x?(ỹ).P̂1 + M̂1 | x:r′!(ṽ).P̂2 + M̂2, where π1 = x[λ z.z]?(ỹ),

π2 = x[r′]!(ṽ), JP̂1K≡ P1, and JP̂2K≡ P2. Prefix evaluation yields

v1 = λ z.z and v2 = r′. From v1v2 = (λ z.z)r′ ⇓ r′ it follows

that r = r′ by rules (V) and (FUN). Let Q̂ = P̂1[ṽ/ỹ] | P̂2, such

that JQ̂K = Q by the substitution claim. Thus, rules (COM) and

(STRUC) apply as follows:

P̂≡ P̂′

|ỹ|= |ṽ|
P̂′ = x?(ỹ).P̂1 + M̂1 |
x:r!(ṽ).P̂2 + M̂2

r−→
nd

P̂1[ṽ/ỹ] | P̂2 = Q̂ Q̂ ≡ Q̂

P̂ r−→
nd

Q̂
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(APP) By assumption, it holds that JP̂K ≡ P and P
app−−→
nd

Q is inferred

as follows:

JA(x̃), P1K

P = A(ṽ)
app−−→
nd

JP1K[ṽ/x̃] = Q

Since JP̂K ≡ A(ṽ), the translation yields that P̂ = A(ỹ). The

substitution claim shows that JP1K[ỹ/x̃] = JP1[ỹ/x̃]K. Let Q̂ =

P1[ỹ/x̃], such that JQ̂K = Q. Thus, rule (APP) applies as follows:

A(x̃), P1

P̂ = A(ỹ)
app−−→
nd

P1[ỹ/x̃] = Q̂

(PAR) By assumption, it holds that JP̂K ≡ P and P
β−→
nd

Q is obtained

as follows:

P1
β−→
nd

Q1

P = P1 | P2
β−→
nd

Q1 | P2 = Q

Since the translation is compositional, the assumption JP̂K ≡ P

implies the existence of two processes P̂1 and P̂2, such that

P̂ ≡ P̂1 | P̂2, JP̂1K ≡ P1, and JP̂2K ≡ P2. The induction hypoth-

esis applied to P1
β−→
nd

Q1 provides the existence of a process Q̂1,

such that P̂1
β−→
nd

Q̂1 and JQ̂1K ≡ Q1. Let Q̂ = Q̂1 | P̂2, such that

JQ̂K = JQ̂1K | JP̂2K ≡ Q1 | P2 = Q. Reduction P̂
β−→
nd

Q̂ can be

obtained as follows by rules (PAR) and (STRUC):
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P̂≡ P̂1 | P̂2

P̂1
β−→
nd

Q̂1

P̂1 | P̂2
β−→
nd

Q̂1 | P̂2 Q̂1 | P̂2 ≡ Q̂

P̂
β−→
nd

Q̂

(NEW) By assumption, it holds that JP̂K≡ P and P
β−→
nd

Q is obtained

as follows:
P1

β−→
nd

Q1

P = (νx)P1
β−→
nd

(νx)Q1 = Q

The definition of the translation provides that there exists a

process P̂1, such that P̂ ≡ (νx)P̂1 and P1 ≡ JP̂1K. By induc-

tion hypothesis, there exists a process Q̂1, with P̂1
β−→
nd

Q̂1 and

Q1 ≡ JQ̂1K. Let Q̂ = (νx)Q̂1. Hence, it holds that JQ̂K ≡ Q by

the definition of the translation. Thus, P̂
β−→
nd

Q̂ can be inferred

as follows:

P̂≡ (νx)P̂1

P̂1
β−→
nd

Q̂1

(νx)P̂1
β−→
nd

(νx)Q̂1 (νx)Q̂1 ≡ Q̂

P̂
β−→
nd

Q̂

(STRUC) By assumption, it holds that JP̂K≡ P and P
β−→
nd

Q is inferred

as follows:
P≡ P1 P1

β−→
nd

P2 P2 ≡ Q

P
β−→
nd

Q
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The transitivity of structural congruence provides that JP̂K≡ P1.

The induction hypothesis applied to P1
β−→
nd

P2 thus proves the ex-

istence of a process P̂2, such that P̂
β−→
nd

P̂2 and JP̂2K≡ P2. Transi-

tivity of structural congruence yields JP̂2K ≡ Q. Thus, Q̂ can be

defined, such that Q̂ = P̂2, P̂
β−→
nd

Q̂, and JQ̂K≡ Q.

(CONV)

Claim. For all l ∈ N0 it holds that if JP̂K ≡ P and P(
app−−→
nd

)lQl

then there exists Q̂l , such that P̂(
app−−→
nd

)lQ̂l and Ql ≡ JQ̂lK.

Proof. For l = 0 the assumption P(
app−−→
nd

)0Q0 is equivalent to

P≡ Q0 by definition. Thus, it is true that JP̂K≡ Q0, such that it

is possible to define Q̂0 = P̂ in order to obtain JQ̂0K≡Q0. For the

induction step, let JP̂K ≡ P, such that P(
app−−→
nd

)lQl
app−−→
nd

Ql+1. By

induction hypothesis, there exists Q̂l , such that P̂(
app−−→
nd

)lQ̂l and

Ql ≡ JQ̂lK. Since the theorem holds for reduction relation
app−−→
nd

,

there exists Q̂l+1, such that Q̂l
app−−→
nd

Q̂l+1 and Ql+1 ≡ JQ̂l+1K.

Clearly P̂(
app−−→
nd

)l+1Q̂l+1.

By assumption, it holds that P ≡ JP̂K and P ⇓ Q is inferred by

rule (CONV) as follows:

P
app−−→
nd

∗
Q Q≡ (ν x̃)∏

n
i=1 Mi ¬Q err−→

nd
⊥

P ⇓ Q

By induction hypothesis, there exists Q̂, such that P̂
app−−→
nd

∗
Q̂

and JQ̂K ≡ Q. The definition of the translation yields that Q̂ ≡
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(ν x̃)∏
n
i=1 M̂i for some guarded processes M̂i. Since the transla-

tion is error-reflecting, ¬Q err−→
nd
⊥ yields ¬Q̂ err−→

nd
⊥. Thus, P̂ ⇓ Q̂

can be inferred as follows:

P̂
app−−→
nd

∗
Q̂ Q̂≡ (ν x̃)∏

n
i=1 M̂i ¬Q̂ err−→

nd
⊥

P̂ ⇓ Q̂

(PRIOR) By assumption, it holds that P ≡ JP̂K and P ⇓ Q is inferred

as follows:

P ⇓ P1 P1
r−→

nd
Q ¬∃r1 ∈ R.∃Q1. r < r1∧P1

r1−→
nd

Q1

JPK→ Q

By induction hypothesis, there exists a process P̂1, such that P̂ ⇓
P̂1 and P1 ≡ JP̂1K. Hence, there exists Q̂, such that P̂1

r−→
nd

Q̂ and

Q≡ Q̂. Next, it is shown that ¬∃r1 ∈ R.∃Q̂1.r < r1∧ P̂1
r1−→
nd

Q̂1,

by contradiction. Suppose that such an r1 and Q̂1 exist. By the

first part of this theorem, this implies that JP̂1K
r1−→
nd

JQ̂1K. Since

it is true that P1 ≡ JP̂1K, it is possible to define Q1 ≡ JQ̂1K, such

that, by rule (STRUC), it holds that P1
r1−→
nd

Q1, which is in contra-

diction to the third hypothesis.
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B.3 Section 3.3.2 (Encoding π[@, 6=] for Dy-

namic Compartments)

Lemma 5. For all constants or variables v1, . . . ,vn, v′1, . . . ,v
′
n,

b1, . . . ,bn it is true that:

1. eqnv1 . . .vnv′1 . . .v
′
nb1 . . .bn ⇓ true, if ∀i∈ {1, . . . ,n}.(vi = v′i)⇔

(bi = true)

2. eqnv1 . . .vnv′1 . . .v
′
n ⇓ false, if ∃i ∈ {1, . . . ,n}.¬((vi = v′i) ⇔

(bi = true))

Proof. Functions eqn+1 are defined as:

eq0 =df true

eqn+1 =df λx1 . . .λxn+1λy1 . . .yn+1λb1 . . .bn+1 .

i f (xn+1 = yn+1 ) = bn+1 then eqn

x1 . . .xny1 . . .ynb1 . . .bn

e l se false

The following claim states that the condition in the if-statement cor-

rectly reflects the communication condition of π[@, 6=] on the elements

of channel tuples.

Claim.(Condition) For all constants or variables v,v′,b it is true that

(v = v′) = b ⇓ true, iff (v = v′)⇔ (bi = true) holds.

Proof.

(⇒) two cases have to be considered: if b = true then it holds that

v = v′, by rules (EQ1) and (V) of the big-step evaluator as pre-



239

sented in Figure 3.1. Similarly, if b = false then it holds that

v 6= v′.

(⇐) two cases have to be considered: if b = true then v = v′, such

that by rules (EQ1) and (V) of the big-step evaluator it holds

that (v = v′) = b ⇓ true. The case b = false implies that

v 6= v′, such that by rules (EQ1), (EQ2), and (V) it holds that

(v = v′) = b ⇓ true.

Next, the two statements of the lemma are proved separately:

(1) The proof is by induction on n. For n = 0 it holds that

eq0 ⇓ true by rule (V) of the big-step evaluator as pre-

sented in Figure 3.1. For the induction step, since it is

true that (vn+1 = v′n+1) ⇔ (bn+1 = true), the condition

claim above and rule (COND1) provide that for all values

v it holds that eqn+1v1 . . .vn+1v′1 . . .v
′
n+1b1 . . .bn+1 ⇓ v, iff

eqnv1 . . .vnv′1 . . .v
′
nb1 . . .bn ⇓ v. The induction hypothesis pro-

vides that eqnv1 . . .vnv′1 . . .v
′
nb1 . . .bn ⇓ true.

(2) The proof is by induction on n. The case n = 0 is trivial, since

the hypothesis of the implication is always wrong. For the in-

duction step it is assumed that there exists i ∈ {1, . . . ,n + 1},
such that ¬((vi = v′i)⇔ (bi = true)). Suppose it is true that

1 ≤ i ≤ n and (vn+1 = v′n+1)⇔ (bn+1 = true). Then the con-

dition claim above and rule (COND1) provide that for all val-

ues v it is true that eqn+1v1 . . .vn+1v′1 . . .v
′
n+1b1 . . .bn+1 ⇓ v, iff

eqnv1 . . .vnv′1 . . .v
′
nb1 . . .bn ⇓ v. By the induction hypothesis it
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holds that eqnv1 . . .vnv′1 . . .v
′
nb1 . . .bn ⇓ false. If i = n+1 then

the condition claim above and rule (COND2) of the big-step eval-

uator provide that eqn+1v1 . . .vn+1v′1 . . .v
′
n+1b1 . . .bn+1 ⇓ false.

Theorem 4. The encoding of π[@, 6=] with priority levels in (R,<)

to the attributed π-calculus, π(λ (R,=,EQ)<), is correct, in that all

preprocessed processes P in π[@, 6=] satisfy:

1. if P→ Q then JPK→ JQK

2. if JPK→ Q then there exists Q̂, such that Q≡ JQ̂K and P→ Q̂

Proof. Theorem 2 provides that the encoding of the π-calculus with

priority into π(λ (R)<) is correct. The non-deterministic semantics

of π[@, 6=] and the π-calculus with priority are the same, with one

exception: the communication rule. Therefore, in the following, only

the communication rule is considered.

1. Let κo and κi as follows:

κo =df λx1 . . .λxnλb1 . . .λbnλ r .

if eqn+1x1 . . .xnr x1 . . .xnr b1 . . .λbntrue then r

else false

κi =df λe.e x1 . . .xnr b1 . . .bn

Rule (COM[@,6=]) yields P r−→
nd

P′ as follows:

|ỹ|= |z̃| ∀i ∈ {1, . . . ,n}.(xi = x′i)⇔ (bi = true)

(xi)
n
i=1 : (bi)

n
i=1 : r?(ỹ).P1 +M1 |

(x′i)
n
i=1:r!(z̃).P2 +M2

r−→
nd

P1[z̃/ỹ] | P2
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Thus, JPK = x[κi]?(ỹ).JP1K+ JM1K | x[κo]!(z̃).JP2K+ JM2K, with

some fresh x not occurring in P. Lemma 5 provides that κiκo ⇓ r,

such that the (COM) rule of π(R,<) applies as follows:

x1[κi]?(ỹ) ⇓ x1[v1]?(ỹ)

x1[κo]!(z̃) ⇓ x1[v2]!(z̃) v1v2 ⇓ r ∈ R |ỹ|= |z̃|
JPK r−→

nd
JP1K[ṽ/ỹ] | JP2K

The claim on substitutions provides that JP1K[ṽ/ỹ] | JP2K = JP′K.

2. Let κo and κi as follows:

κo =df λx1 . . .λxnλb1 . . .λbnλ r .

if eqn+1x1 . . .xnr x1 . . .xnr̂ b1 . . .λbntrue then r̂

else false

κi =df λe.e x1 . . .xnr̂ b1 . . .bn

The assumption provides that JP̂K≡ P and P r−→
nd

Q by applying

the following rule:

π1 ⇓ x[v1]?(ỹ) π2 ⇓ x[v2]!(ṽ) v1v2 ⇓ r ∈ R |ṽ|= |ỹ|
P = π1.P1 +M1 | π2.P2 +M2

r−→
nd

P1[ṽ/ỹ] | P2 = Q

Inspecting the translation reveals that there exists P̂′, such

that P̂ ≡ P̂′ and P̂′ = (x1, . . . ,xn) : (b1, . . . ,bn) : r̂?(ỹ).P̂1 + M̂1 |
(x′1, . . . ,x

′
n):r̂
′!(z̃).P̂2 + M̂2, with JP̂1K ≡ P1, JP̂2K ≡ P2, π1 =

x[κi]?(ỹ), and π2 = x[κo]!(z̃). Prefix evaluation yields v1 = κi

and v2 = κo. By Lemma 5 it holds that ∀i ∈ {1, . . . ,n}.(xi =

x′i)⇔ (bi = true), r̂′ = r̂, and r = r̂, since P r−→
nd

Q by the rule
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above. Let Q̂ = P̂1[ṽ/ỹ] | P̂2, such that JQ̂K = Q by the substitu-

tion claim. Rules (COM[@,6=]) and (STRUC) apply as follows:

P̂≡ P̂′

|ỹ|= |z̃|
∀i ∈ {1, . . . ,n}.(xi = x′i)⇔ (bi = true)

(xi)
n
i=1 : (bi)

n
i=1 : r?(ỹ).P1 +M1 |

(x′i)
n
i=1:r!(z̃).P2 +M2

r−→
nd

P1[z̃/ỹ] | P2
Q̂≡ Q̂

P̂ r−→
nd

Q̂
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