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Abstract

The recent impressive growth of Internet in the last two decades lead to an increased
need of techniques to measure its structure and its performance. Network measurement
methods can broadly be classi ed irpassive methodbat rely on data collected at routers,
andactive methodbased on observations of actively-injected probe packets. Active mea-
surement, which are the motivation of this dissertation, are attractive to end-users who,
under the current Internet architecture, cannot access any measurement data collected at
routers.

On another side, network theory has been developed for over one century, and many
tools are available to predict the performance of a system, depending on a few key parame-
ters.Queueing theorgmerges as one particularly fruitful network theory both for telephone
services and wired packet-switching networks. In the latter case, queuing theory focuses on
the packet-level mechanisms and predicts packet-level statistics. At the ow-level view-
point, the theory obandwidth sharing networkis a powerful abstraction of any bandwidth
allocation scheme, including the implicit bandwidth sharing performed by the Transfer Con-
trol Protocol. There has been many works showing how the results stemming from these
theories can be applied to real networks, in particular to the Internet, and in which aspects
real network behaviour differs from the theoretical prediction.

However, there has been up to now very few works linking this theoretical viewpoint of
networks and the practical problem of network measurement. In this dissertation, we aim
at building a few bridges between the world of network active probing techniques and the
world of network theory. We adopt the approachroferse problemsnverse problems are
best seen in opposition to direct problems. A direct problem predicts the evolution of some
speci ed systems, depending on the initial conditions and some known evolution equation.
An inverse problem observes part of the trajectory of the system, and aims at estimating the
initial condition or parameters that can lead to such an evolution . Active probing technique
inputs are the delay and loss time series of the probes, which are precisely a part of the
trajectory of the network. Hence, active probing techniques can be seen as inverse problems
for some network theory which could predict correctly the evolution of networks.

In this dissertation, we show how active probing techniques are linked to inverse prob-
lems in queueing theory. We specify how the active probing constraint can be added to
the inverse problems, what are the observables, and detail the different steps for an inverse
problem in queueing theory. We classify these problems in three different categories, de-
pending on their output and their generality, and give some simple examples to illustrate
their different properties.

We then investigate in detail one speci c inverse problem, where the network behaves as



a Kelly network withK servers in tandem. In this speci c case, we are able to compute the
explicit distribution of the probe end-to-end delays, depending on the residual capacities
on each server and the probing intensity. We show that the set of residual capacities can
be inferred from the mean end-to-end probe delayifodifferent probe intensities. We
provide an alternative inversion technique, based on the distribution of the probe delays for
a single probing intensity. In the case of two servers, we give an explicit characterization of
the maximum likelihood estimator of the residual capacities. In the general case, we use the
Expectation-Maximization algorithm (E-M). We prove that in the case of two servers, the
estimation of E-M converges to a nite limit, which is a solution of the likelihood equation.
We provide an explicit formula for the computation of the iteration step wken 2 or

K = 3, and show that the formula stays tractable for any number of servers. We evaluate
these techniques numerically. Based on simulations fed with real network traces, we study
independently the impact of the assumptions of a Kelly network on the performance of the
estimator, and provide simple correction factors when they are needed.

We also extend the previous example to the case of a tree-shaped network. The probes
are multicast, originated from the root and destined to the leaves. They experience an ex-
ponentially distributed waiting time at each node. We show how this model is related to the
model of a tree-shaped Kelly network with unicast cross-traf c and multicast probes, and
provide an explicit formula for the likelihood of the joint delays. We use the E-M algorithm
to compute the maximum likelihood estimators of the mean delay in each node, and derive
explicit solutions for the combined E and M steps. Numerical simulations illustrate the con-
vergence properties of the estimator. As E-M is slow in this case, we provide a technique for
convergence acceleration of the algorithm, allowing much larger trees to be considered as
would otherwise be the case. This technique has some novel features and may be of broader
interest.

Finally, we explore the case of inverse problems in the theory of bandwidth sharing
networks. Using two simple examples of networks, we show how a prober can measure
the network by varying the number of probing ows and measure the associated bandwidth
allocated to each probing ow. In particular, when the bandwidth allocation maximizes an

-fair utility function, the set of server capacities and their associated ow numbers can be
uniquely identi ed in most cases. We provide an explicit algorithm for this inversion, with
some cases illustrating the numerical properties of the technique.

Keywords: inverse problems — Internet tomography — active probing measurement —
statistics — queueing theory —- Expectation-Maximization algorithm



Résumeé

La croissance récente d'Internet lors deux derniéres décennies a conduit & un besoin crois-
sant de techniques permettant de mesurer la structure et la performance d'Internet. Les tech-
niques de mesures de réseaux peuvent étre classi éegtrodes passivesli utilisent des
données collectées au niveau des routeurs, ehéthodes activeseposant sur l'injection

active et I'observation de paguets-sondes. Les méthodes actives, qui sont la motivation prin-
cipale de ce doctorat, sont particulierement adaptées aux utilisateurs naux, qui ne peuvent
pas accéder aux données mesurées par les routeurs avec l'architecture actuelle d'Internet.

Sur un autre plan, la théorie des réseaux se développe depuis un siécle, et de nom-
breux outils permettent de prédire la performance d'un systeme, en fonction de quelques
parameétres clés. L#néorie des les d'attenteémerge comme une solution particuliére-
ment fructueuse, que ce soit pour les réseaux téléphoniques ou pour les réseaux laires a
commutation de paquet. Dans ce dernier cas, elle s'intéresse au mécanisme a I'échelle des
paquets, et prédit des statistiques a ce niveau. A I'échelle des ots de paquets, la théorie des
réseaux a partage de bande passaméemet une abstraction de tout schéma d'allocation
de bande passante, y compris le partage implicite résultant du protocole TCP. De hombreux
travaux ont montré comment les résultats provenant de ces théories peuvent s'appliquer aux
réseaux reels, et en particulier a Internet, et dans quels aspects le comportement de réseaux
réels differe des prédictions théoriques.

Cependant, il y a eu peu de travaux établissant des liens entre le point de vue théorique
d'un réseau et le probléme pratique consistant a le mesurer. Le but de ce manuscrit est de
batir quelques ponts entre le monde des méthodes de mesure par sondes actives et le monde
de la théorie des réseaux. Nous adoptons l'approchg@idéemes inversegjui peuvent
étre vus en opposition aux problémes directs. Un probléme direct prédit I'évolution d'un
systéme dé ni, en fonction des conditions initiales et d'une équation d'évolution connue.

Un probléme inverse observe une partie de la trajectoire d'un systéme dé ni, et cherche

a estimer les conditions initiales ou paramétres pouvant conduire a cette trajectoire. Les
données des méthodes de mesure par sondes actives sont les séries temporelles des pertes et
délais des sondes, c'est-a-dire précisément une partie de la “trajectoire” d'un réseau. Ainsi,

les méthodes de mesures par sondes actives peuvent étre considérées comme des problémes
inverses pour une théorie des réseaux qui permettrait une prédiction exacte de I'évolution
des réseaux.

Nous montrons dans ce document comment les méthodes de mesures par sondes actives
sont reliées aux problémes inverses dans la théories des les d'attentes. Nous spéci ons
comment les contraintes de mesures peuvent étre incluses dans les problémes inverses, quels
sont les observables, et détaillons les étapes successives pour un probléme inverse dans la
théorie des les d'attentes. Nous classi ons les problemes en trois catégories différentes, en
fonction de la nature de leur résultat et de leur généralité, et donnons des exemples simples
pour illustrer leurs différentes propriéteés.

Nous étudions en détail un probléme inverse spécique, ou le réseau se comporte



comme un réseau dit “de Kelly” avéc serveurs en tandem. Dans ce cas précis, nous calcu-
lons explicitement la distribution des délais de bout en bout des sondes, en fonction des ca-
pacités résiduelles des serveurs et de l'intensité des sondes. Nous montrons que I'ensemble
des capacités résiduelles peut étre estimeé a partir du délai moyen des sondé€smeunr

sités de sondes différentes. Nous proposons une méthodes d'inversion alternative, a partir
de la distribution des délais des sondes pour une seule intensité de sonde. Dans le cas a
deux serveurs, nous donnons une caractérisation directe de I'estimateur du maximum de
vraisemblance des capacités résiduelles. Dans le cas général, nous utilisons l'algorithme
Espérance-Maximisation (E-M). Nous prouvons que dans le cas a deux serveurs, la suite
des estimations de E-M converge vers une limite nie, qui est une solution de I'équation de
vraisemblance. Nous proposons une formule explicite pour le calcul de l'itération quand

K =2 ouK = 3, et prouvons que la formule reste calculable quelque soit le nombre

de serveurs. Nous évaluons ces techniques numériquement. A partir de simulations util-
isant des traces d'un réseau réel, nous étudions indépendamment l'impact de chacune des
hypothéses d'un réseau de Kelly sur les performances de l'estimateur, et proposons des
facteurs de correction simples si besoin.

Nous étendons I'exemple précédant au cas des réseaux en forme d'arbre. Les sondes
sont multicast, envoyées depuis la racine et a destination des feuilles. A chaque nceud,
elles attendent un temps aléatoire distribué de fagon exponentielle. Nous montrons que
ce modeéle est relié au modéle des réseaux de Kelly sur une topologie d'arbre, avec du
tra c transverse unicast et des sondes multicast, et calculons une formule explicite pour la
vraisemblance des délais joints. Nous utilisons I'algorithme E-M pour calculer I'estimateur
de vraisemblance du délai moyen a chaque nceud, et calculons une formule explicite pour
la combinaison des étapes E et M. Des simulations numériques illustrent la convergence de
I'estimateur et ses propriétés. Face a la complexité de I'algorithme, nous proposons une
technique d'accélération de convergence, permettant ainsi de considérer des arbres beau-
coup plus grands. Cette technique contient des aspects innovant dont l'intérét peut dépasser
le cadre de ces travaux.

Finalement, nous explorons le cas des probléemes inverses dans la théorie des réseaux a
partage de bande passante. A partir de deux exemples simples, nous montrons comment un
sondeur peut mesurer le réseau en faisant varier le nombre de ots de sondes, et en mesurant
le débit associé aux ots dans chaque cas. En particulier, si I'allocation de bande passante
maximise une fonction d'utilité -équitable, 'ensemble des capacités des réseaux et leur
nombre de connections associé peut étre identi € de maniére unique dans la plupart des cas.
Nous proposons un algorithme pour effectuer cette inversion, avec des exemples illustrant
ses propriétés numériques.

Mots-clés : Problemes inverses — tomographie d'Internet — mesure par sondes actives —
statistique — théorie des les d'attentes — algorithme Espérance-Maximisation






Organization of the dissertation

This dissertation lies at the crossroad of several elds: queueing theory, active network
measurement, statistics and the theory of bandwidth sharing networks. The presentation
aims at making the manuscript readable by anyone knowledgeable in probability theory.
This leads to a large introduction in the rst chapter, covering the needed notions of the
different elds. The operation of real networks, in particular of Internet, is explored in
sectior] 1.]l. Sectign 1.2 covers basic notions of queueing theory. Seciion 1.3 introduces the
theory of bandwidth sharing networks. The relevant de nitions and theorems of statistics
are presented in sectign [L.4. Knowledgeable readers can easily skip the corresponding
sections, and read directly sectjon|1.5, which is the “classical PhD introduction”. For those
whose interest lies mostly in the philosophy and aims of this work in particular, and active
probing in general, it is possible to have a quick overview by reading se€tion[1.1.], 1.1.2,

[1.1.3, and then directly sectipn [L.5.
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Chapter 1

Introduction

1.1 Networks

This dissertation has a strong focus on measurement based inverse problems in communica-
tion networks. Whilst many readers are already familiar with communication networks and
their theoretical side, we will introduce very succinctly, in a simple manner, the necessary
concepts in this section.

1.1.1 What are networks

Throughout this dissertation reetworkwill be considered as a set wértices(or locations),

and a set obdgegor links) between these vertices. Hence, the network is connecting the
different vertices with the edges. Depending on the nature of the network considered, the
vertices and edges can have different incarnations.

Example 1.1.1(Different examples of networks)The rst natural example of network is
the Internet. The Internet vertices are the home computers of Internet users, the routers
and switches ensuring the connectivity of the network, and the servers that store the data of
interest to users. These vertices are not identical, and do not have any symmetrical role for
the network; however, each of these classes of nodes has a vital role for the network. In this
example, edges are a lot more similar. They consist of any physical connection between
any pair of these locations, be it using copper wires, coaxial cables, ber optics or radio
spectrum links. They all carry the data between different locations. The network as a whole
is focused on carrying information between data servers and end-users. The Internet is of
speci ¢ interest because it is one of the dominant network today, which use has become
vital for the economy. Additionnally, the Internet is by its very nature dynamical in the
middle and long term: new wired links are connected regularly, and some are shut-down, the
wireless connections are by their nature not permanent, and most importantly, the content
on the Internet and the usage of the network vary signi cantly along the years. This leads
to a strong need of measuring and understanding this network.

A second interesting example is the almost static network of the streets and roads of a
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city or country. The edges are easy to identify: they are the roads and streets. The vertices
are by de nition the extremities of the edgés. the crossroads, squares and junctions.
Even if they have a natural de nition, they do not have any speci c role in this network.

In fact, this network aims at allowing vehicle movement, and our interest in it lies in the
edges, which have a natural de nition of weight, corresponding to the capacity (in vehicle
per minutes) of the road. Such a graph (or network) is said to be weighted, and a primary
metric of interest is the maximum ow from one source to one destinatierthe maximum
number of vehicles per second that the road network can carry between both locations.

The third example of network we will present here is calgetial network it is a
different kind of network, and is a common object of study in social and computer sciences.
It arises as a model for the interactions of human beings. Its vertices are the human beings
themselves, or the groups of human beings, and edges appear between two vertices when
both vertices are in contact. The canonical example for this kind of network is the friendship
relation network on the Facebook website: each Facebook pro le corresponds (in theory)
to one human being, and is a vertex of the social network. Each pro le has a list of friend
pro les, and to each of these friendships corresponds one edge between both friend pro les
in the social graph. Studies of social graphs aim at recovering the different communities
from these friendship connections, or at quantifying the diffusion of information due to
gossips in a social network. Such networks differ from the two previous example in that
there is no physical reality for the edges: the links are not physical connections ensuring
that data or vehicles can be transported, but are a formal understanding of relation between
people. In fact, in some examples, there is no unique answer whether an edge is present or
not: friendship between human beings (except on online social networks as Facebook) is
not a binary question, and being someone's friend does not mean you see him regularly, or
exchange any piece of information immediately.

Considering that no edge is removed from or added to the network at the time scales we
are interested in, we will limit ourselves staticnetworks, which can then be considered as
agraph(V; E), whereV is the ( nite) set of vertices ank the ( nite) set of edges. Because
of this equivalence, we will use both the terminology of graphs and networks in this thesis.

As shown in Examplg 1.1].1, networks are of broader interest than only communication
networks, and most of the results presented here can be generalized to other kinds of net-
works: in particular, we will see in sectipn 1.3 that networks can be a good model for and
give insight into objects that have no obvious connections with them. However, commu-
nication networks will be the connecting thread of this document, and we will now spend
some time presenting key concepts concerning them.

The aim of communication networks can be described in a very general way as carrying
data between nodes. The speci ¢ meaning of “data” and the way to carry them depends on
the nature of the network and the technology chosen to operate it. The former can vary from
binary packets to real-time streaming, and the latter is for instance chosen among wireless
connections, copper links and optical ber connectl@)ns

A technology usually includes much more precise information about the encryption and communications
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1.1.2 Network applications

Before going into a more detailed study of networks, it is useful to start with a few examples
of network applications, and how they impact the design of a network. As the Internet is
the main focus of this dissertation, the remaining part of this section (up to sgctjon 1.2) will
be dedicated to introducing the key concepts and mechanisms of the Internet, and in which
aspects it is similar to or different from other networks.

In the computer science terminology, a network application is a sequence of “unitary”
tasks, which uses the network in order to perform a global task. As such, applications run
at the end-point (or edges, or host, or end-system) of the connection, and are by nature
distributed over several nodes.

Internet applications

We will start with four Internet killer applications, which are responsible for most of today's
traf c [BDF * 09,[MFPAQY]:

1. The World Wide Web (WWW);
2. E-mail, including web-accessible e-mail and attachments;
3. Peer-to-peer le sharing, pioneered by Napster, and now dominated by BitTorrent;

4. Live streaming, including radio and television broadcasts on the Internet, but also
Skype phone calls or Youtube video watching.

The World Wide Web The Web is composed of two main components:

the HyperText Markup Language (HTMLyhich is a common language to all web-
sites and web browsers, used to specify the content and presentation of any web page;

the HyperText Transfer Protocol (HTTPWhich is a communication protocol, ruling
how web-servers and browser exchange their data.

HTML is outside the scope of communication networks. It will be enough to know that
it is a structured language, which allows one to write plain text documents and add tags
to structure the text, include images, links or other objects. An HTML document can then
be interpreted by a web browsaz.g. Internet Explorer or Firefox) in order to display its
content on a screen. The different tags and the language syntax is speci ed Wpitlle
Wide Web Consortium (W3C, [WBCBuch that new browsers and new web sites can be
easily designed.

protocol (both GSM and 802.11 networks are wireless communication, but they are for some aspects much
more different than 802.11 and ADSL connections) and similar details, but this is outside the scope of this
thesis.



HTTP is the network application used to transfer the HTML objects between web
servers and browsers. Is is a distributed application, with 2 different pieces of soft-
ware, called HTTP servere(g. Apache) and HTTP cliente(g. web browsers). These
software run respectively on the web servers and the client end-hegts desktops,
laptops, smart phones, etc.). HTTP has public speci cations, which one can nd in
[BLFF96,[FGM 97,[FGM 99].

Now, what happens when one wants to see a webpage? Let us consider for example that
Alice wants to learn more about HTTP, and consults the wikipedia page abouﬁ.—llm'd%
launches her favorite browser Mozilla Firefox, and in the URL bar, types the URL. Her
browser, formally a HTTP client with a graphical user interface, tries to open a connection
with the nodeen.wikipedia.orgIf successful, it then sends a message, which coulcﬂread

GET /wiki/Http HTTP/1.1

Host: en.wikipedia.org

User-Agent: Mozilla/5.0 (Windows; U; Windows NT 6.0; fr;
rv:1.9.0.1) Gecko/2008070208 Firefox/3.0.1

[blank line]

The server then answers a message, which could be:

HTTP/1.0 200 OK

Date: Fri, 27 Aug 2010 21:32:09 GMT

Server: Apache

Last-Modified: Fri, 27 Aug 2010 20:06:40 GMT
Content-Length: 114962

Content-Type: text/html; charset=UTF-8
Connection: close

[blank line]

(data...data...data... ... data)

In a human fashion, this dialogue would read:

Client: - Hello, en.wikipedia.org. Can we talk? (Ask connection)

Server: - I'm listening to you. (Accept connection)

Client: - Could you send me a file (request GET)? This is the
file /wiki/Http. I'm using the protocol HTTP/1.1. By
the way, in case several of you live at the same
address, I'm speaking to en.wikipedia.org (this is the
line Host:....). In case you are interested, my web
browser is currently Firefox, version 3.0.1 for

2 http://en.wikipedia.org/wiki/Http

%In fact, many options would most likely be included in the message, making it much longer. However, they
do not impact directly at the heart of the protocol, and its principles can be explained and understood with a
short message.



Windows Vista (line User-Agent....).

Server: - | prefer protocol HTTP/1.0. I'm sending you the
required file at the end of this paragraph (code 200
OK). My current time is 21:32:09 GMT, on Friday
08/27/2010 (line Date:...). I'm running the Apache
version of HTTP server (line Server:...). The file I'm
sending you was last modified on 08/27/2010, at
20:06:40 GMT. It is 114 962 bytes long (line
Content-Length...). Is an HTML file, encoding in UTF-8
characters (line Content-Type:...). And just to let you
know, I'll break contact as soon as I've sent the file
(line Connection:close).

[File here]

This dialogue is repeated for every web page that Alice wants to display. Some web
pages consist of several objects: the main object is the HTML le, which can include other
objects €.g.images), designated by their own URL. When trying to display this page, the
browser will realize that other objects are required, and hence will ask the hosting servers
to send the corresponding les.

GET is the easiest and most-used request for HTTP clients. On a broad scale, it works
via exchanging a few “messages” (either the headearsthe lines preceding the HTML
object, or the HTML obiject itself) between the HTTP client and the HTTP server. Other
requests are de ned, for the cases where one wants to Il an online form, or delete a le on
a online server, etc. These requests contain more data and more messages, but the protocol
stays based on the exchange of speci ¢ messages.

We will nish this brief HTTP introduction with its consequences on network design.
Which functionalities are required from the network, in order to let HTTP run on it? The
list is short, but meaningful:

1. A naming functionality, which ensures that there is only one node with a given name;
the dif culty here is that no server or organization on the Internet has a global view
of the set of connected nodes, and the allocation of names hence can't be centralized.
Additionnally, somes nodes need to have a xed static unique name (in particular, web
servers, such asww.google.coim whereas other nodes don't have this requirement
(a end-host PC usually acts only as a client, and can deal with a different name each
time it connects to the Internet).

2. A transport functionality, which can deliver messages from one node to any other
node speci ed with its address;

3. A reliability-checking functionality, which ensures that the message was not altered
during the transport;



4. A delivery-checking mechanism, which veri es that the message arrived at destina-
tion, and raises an alert if needed.

In theory, the fourth requirement could be dealt with in the HTTP application itself.
However, this requirement is common, and it is easier to add this functionality to the net-
work than to redesign it for every new application.

E-mail The application architecture is more complicated here. We will explain rst how
web-based mail servers work, and then see how mail user agegtSi{underbird or Out-
look) can interact with them.

Consider that Alice dlice@gmail.com wants to send an email to Bob
(bob@yahoo.coin Alice starts her web browser, loads the gmail.com web page,
and logs onto her Gmail account. This is for the moment pure HTTP exchange. She's
quickly on the “compose Email” web page, she writes her email and the address of Bob,
then pushes the “Send Mail” button. This button triggers a special HTTP request called
POST which allows a web client to send data to the web server. Here, the data consists of
the email and the order to send it.

Each mail server runs two Simple Mail Transfer Protocol (SMTP) [KIe08, Res08] pro-
grams: one SMTP client program, which is responsible for sending mails to other servers,
and one SMTP server program, which listens for incoming mails. In our case, the Gmail
web server will pass Alice's email to the Gmail SMTP client. Looking at Bob's address,
the Gmail SMTP client realizes that Bob's address is not from Gmail, and that he needs to
contact the Yahoo SMTP server. The Gmail SMTP client then requests a connection to the
Yahoo SMTP server, and starts a connection that looks like (in human presentation):

[Gmail requests a connection to Yahoo]

Yahoo: - I'm listening, and my name is smtp.yahoo.com.

Gmail: - Hello! I'm smtp.gmail.com.

Yahoo: - Hello smtp.gmail.com. Glad to hear from you.

Gmail: - I've an email from <alice@gmail.com>.

Yahoo: - OK

Gmail: - It's destinated to <bob@yahoo.com>.

Yahoo: - That's fine: | know Bob.

Gmail: - I'm sending the email.

Yahoo: - I'm ready to copy it. Just signal the end with a "." line.
Gmail: - From: "Alice <alice@gmail.com>"

To: "Bob <bob@yahoo.com>"
Date: Mon, 30 Aug 2010, 10:13:42 GMT
Subject: Weather

Hello Bob,
Can you tell me what the weather is at your home? I'm

6



hesitating about taking my umbrella.

Looking forward to visiting you,

Alice.
Yahoo: - I've got it, and I'll give it to Bob.
Gmail: - Thanks. Bye!
Yahoo: - Bye!

[Yahoo closes the connection].

After reception, the Yahoo SMTP server will copy the email onto its le system, and
add it to Bob's inbox. Later that day, Bob eventually connects via the web interface, asks
for new mails, and the Yahoo web server will send him an HTML le that lists his mails,
including the one from Alice.

We presented the simple case where everything works without any problem. The Simple
Mail Transfer Protocol covers many more situations. If, for example, the client SMTP
application (the sender) cannot nd the server SMTP application (the destination), the client
will repeatedly try to send Alice's mail to Bob's mail server, let us say every 30 minutes,
until successful. These retries are also speci ed in the SMTP protocol.

SMTP shares a lot of similarities with HTTP. Both rely on a server-client architecture,
and reliable network connections between both hosts. Both use headers as a way to agree
on their operations. The main difference is that HTTP is principafylprotocol, where
the client requests the data it needs, and the server then sends this data. On the opposite,
SMTP is apushprotocol: the client pushes its data to the server, and the server accepts it.

Our presentation would not be complete if we did not cover the case of non web-based
emails. If Alice or Bob do not want to use a web-based email, they can use a mail user
agent, such as Outlook or Thunderbird. The advantage of mail user agents is that they
work on one's own end-host, and hence are more reactive to user inputs, and allow to work
of ine. But this adds two new links in the email chain, between Alice's mail user agent
and her mail server, and Bob's mail server and his mail user agent. The case of Alice has
an easy solution. After all, she must be connected in any case when she wants to send an
email: hence, her mail user agent can act as an SMTP client and push her mail directly to
her mail server, which will forward it to Bob's mail serﬂarlf Bob's mail server is not
available, Alice's mail server will retry regularly to send the mail, following the protocol.
Hence, Alice can no go ofine, and be con dent in the fact that her mail will eventually
arrive at destination. If Alice's mail server is not available, the case is more complicated.
But since she is a client for her mail server, she has a way to complain if her mail server is
not available, where as she cannot do anything if Bob's mail server is unreachable.

The last link of the chain, from Bob's mail server to Bob's mail user agent, is more

40One might try to remove one step and have Alice's mail user agent push directly her mail on Bob's mail
server, but this does not allow to identify Alice, and things become more complex if Bob's server is temporary
not available.



complicated. SMTP cannot be used here: remember that SMTP is a push protocol, where
the destination server is assumed to be (nearly) always reachable, and Bob might sometimes
turn off his computer, have no wi connection, etc. To solve this issue, new protocols,
called Post Of ce Protocol (POP3) and Internet Mail Access Protocol (IMAP), have been
developed. POP3 is the simplest: it is a pull protocol, with a client-server architecture. The
mail user agent runs the client side, and asks for the datéhe mail list and mail contents)
from the POP3 server side, which runs on the mail server. The detailed design of POP3 is
fairly similar to HTTP. IMAP is slightly more complex, because it is able to synchronize
the mail user agent side and the web server side, and allows mails to be stored in folders on
the server side. It acts both as a pull and push protocol in that manner.

To summarize this part, the network requirements to run an email application are again:

1. A naming functionality, enabling one to identify the mail server for any email address;

2. Atransport functionality, which allows messages to be sent from one node to another
node;

3. A reliability-checking functionality, which ensures that any message sent was not
altered during its journey in the network;

4. A delivery-checking mechanism, which noti es whether the message arrived at des-
tination.

To understand in fact the real rst requirement, we must signal here that a speci ¢ appli-
cation, calledDomain Name System (DNI&Js been developed and deployed on the whole
Internet. The purpose of DNS is to keep and publish lists of human readable host names,
such asen.wikipedia.organd the corresponding more binary IP addresses. Hence, when
Alice wants to consult a web page em.wikipedia.org Alice will type the URL in her
favorite browser, and the browser will then send a DNS request to know the IP address
corresponding to the speci ed host. After the DNS server answers, the browser can then
send its HTTP request to them.wikipedia.orgHTTP server, specifying to the network the
correct IP address. Similarly, DNS keeps track of mail domains and their associated malil
servers. In our previous example, when Alice's Gmail mail client wants to forward Alice's
mail to Bob's Yahoo mail server, it will ask a DNS server about which node is responsible
for @yahoo.conmails, and get the address of Yahoo mail server. Hence, the rst require-
ment now becomes “A naming functionality, which ensures that there is only one node with
a given name”, similarly to the HTTP requirement.

Peer-to-peer le sharing This is maybe the most debated application of the Internet, for
legal copyright reasons. However, from a technical measurement point of view, one cannot
dismiss peer-to-peer (P2P) le sharing applications, as they are responsible for a signi cant
part of today's traf c [BDF" 09,[MFPAQ9].

There is no single protocol or application for P2P le sharing: many different ap-
proaches have been used by different programs. However, from Napster to Kazaa to the
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currently prevailing BitTorrent, any P2P le sharing system relies on the same few princi-
ples. Any P2P application is by de nition a distributed application, where the same code
runs on most end-hosts. The fact that all hosts belonging to the network run the same code,
and hence are “equal” or “peers” is indeed the origin of the name “peer-to-peer”.

Assume, for example, that Alice wants to download the séegierdayy The Beatles
Alice launches her P2P client, and starts searching for the song. Her client contacts the
index of the peer-to-peer sysl@n&nd simultaneously, asks for peers with testerday
song and publishes on the index the list of les that Alice can share. The index answers
with a list of peers that Alice's client can contact, including Bob's peer-to-peer client, and
Alice's client can then start to ask Bob's client for the song. This request for the song is
then similar to the HTTP case and many other pull protocols: Alice's client wants a speci c
object, knows where this object is hosted, and contacts that host directly. In fact, many
peer-to-peer systems use the HTTP protocol for the download of les. Simultaneously,
Carla might be searching fétello, Dolly by Louis Armstrong, and Alice indicated earlier
that she made that le available for download. Carla's client will then contact Alice's client,
and ask for the le. Alice's client will then simultaneously act as a client downloading
from Bob's host and as a server, delivering an object at Carla's client request. When Alice
decides to switch her computer off, her P2P client will inform the index, and Carla's client
will ask another host witlidello, Dolly to send the remaining part of the le.

There are many more details that would need to be speci ed for the peer-to-peer system
to be complete. In particular, the implementation of the index and the request and answer
templates must be fully speci ed. The number of peers one client might contact for the
download, as well as the choice of these peers can be the object of optimization. However,
any peer-to-peer le sharing system will rely on these three principles:

1. Maintain and use a (centralized or decentralized) index for localizing the content of
the system;

2. Peers contact directly other peers in order to download the les they are interested in;

3. Reciprocally, peers answer to other peers' requests for le download, and act hence
as servers.

The main advantage of peer-to-peer systems is their scalability. The more peers there are
in the system, the more requests are made, but simultaneously, the more hosts can answer
these requests. Both numbers grow at the same rate. This means that, outside an eventual
centralized index, there is no bottleneck in the system, and the performance should be the
same with a thousand members or a million members. At the opposite, the world wide web
architecture is not scalable: a single (or a few) hosts have to answer all requests about a web

SWe are voluntarily not precise here: the index can be either a centralized index on a server, or a fully-
distributed index on the peers, which Alice's client can access thanks to a few peers it knows, or some hybrid
solution. Different peer-to-peer systems have used different solutions, but these make very little difference to
the network requirements.



site. If the web server is not quick enough, requests will have to queue before being served,
or can be lost.

The network requirements here are once again identical to the web and email cases: the
network needs to be able to name hosts, transport messages between any pair of hosts, and
ensure these messages are delivered and not altered.

Live streaming It is possible today to listen to radio broadcasts or watch TV on the In-
ternet. Although the current quality is not as high as one can get with classical radio spec-
trum or dedicated cable transmission, Internet based radio and television do not require a
heavy infrastructure to broadcast. Additionally, because radio or television on the Internet
are broadcast at the request of users, there is (nearly) no limit to the number of available
channels, whereas the radio spectrum is limited, and hence can support a nite number of
channels. Finally, as the Internet is deployed all over the world today, it allows anyone to
access his favorite broadcast from anywhere.

There are many different protocols for live streaming, suited to different cases. Some are
used for radio or television on the Internet, others are more dedicated to phone on Internet
systems, such as Skype, and some have been designed for audio or video conferences.
We will present here only, and brie y, the Real-time Transfer Protocol (RTP) [HEGC98,
SCFJO3], but other protocols are similar. As its name suggests, RTP is a real-time protocol,
and this will lead to signi cant differences for network requirements compared to the three
previous cases we studied.

The RTP protocol is designed to work in pair with the Real-time Transfer Control Pro-
tocol (RTCP). In short, RTP is responsible for the transfer of the media content, whereas
RTCP takes charge of the control of the broaddasstthe speci cation of requests, quality
feedback and similar details. The RTCP protocol relies on a reliable exchange of messages,
in a close way to previous protocols.

Live streaming starts with a digital copy of the media broadcast. This digital real-time
encoding step is not speci ed by the protocol itself, and any encoding / decoding scheme
can be used, as long as the broadcasting source and the nal user agree on it. Once a hew
“chunk” (we will call these chunks frames) of the broadcast is available, the source will
add a header that speci es when to play this chunk and append a sequence number, then
send it to the source. The sequence number is increased by one for each frame, and will
allow the destination to reorder the frames if needed, and detect lost frames. Lost frames
will not be sent again, as they would possibly arrive too late, but intelligent software try
to minimize as much as possible the impact of such losses. The timestamp in the header
allows the destination to replay the frames at the correct speed.

Taking a look at what is required for the network here, one can list:

1. A naming functionality, which allows to designate uniquely hosts;
2. Atransport functionality, which carries messages between any pair of hosts;
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3. Alow loss rate between the source and the destination;
4. ldeally, a bound (or at default, a low variation) on the delay between the hosts;
5. Alow delay between hosts.

We can see here the impact of real-time on the design: the fact that one has no time
for retransmission makes reliability-checking and delivery-checking functionalities useless.
On the other side, one must ensure or hope that enough messages will go through for the
broadcast to be correctly decoded, and that the message will arrive in time.

Postal network

We will present here another network, and three among its potential applications. The
postal network is composed of the union of all postal companies or administrations all over
the world. The vertices of this network are the letter boxes, the post boxes, as well as
any internal center for grouping, sorting, dispatching mails. The edges are the rounds of
postmen and the exchanges between different centers.

Bank statement monthly sending Banks often propoﬁea free bank statement each
month. Internal procedures allow the bank to establish these bank statements. The question
then arises about how to make them available to the client. Several solution are of course
possible, including Internet access or email for electronic statements, or letting the client
fetch the statement from his local bank.

A common if not universal solution is to send these statements directly to the client
home using postal mail. Every account holder has some postal address, even if he has no
regular Internet access, and many people still prefer to store paper-based archives rather
than electronic archives.

What is needed for such an application of postal networks to be possible ? First, the
communication must be asynchronois, it must not require the client to be available
personally to take delivery of the statement. The sending happens at regular times, but as
for most push protocols, these are not controlled by the user, and most people have a regular
activity during working hours, such as a job or studies. Second, the bank must be able to
send each report privately to the correct client, hence needs to be able to name precisely and
uniquely each client. Third, the network delays must be reasonably low compared to the
monthly frequency of sending. Finally, the network must be able to transport the message
at a suf ciently low cost for this solution to be economically feasible.

We did not put the delivery-control functionality as a requirement here, because the
client knows that he is to be sent a bank statement, and can ask for another one if needed.

5At least in France, by law, it must be proposed for free to any client.
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Summoning to appear in court Courts conduct trials, as they should. The norm in
democracy is for the defendant to attend the trial, in order to be able to defend himself.
If for some reason, he is already in custody, the court can make sure that he will be there.
However, in many cases, the defendant is not in custody before the trial, and the court must
inform him of the date and place of the trial, and eventually even that he has been brought
suit.

This expresses the need for the court to be able to send a summoning message to precise
people. Let us list the requirement for a network transporting such messages:

1. It needs to uniquely identify and name any human being in the country;
2. It must keep the message private, to preserve the presumption of innocence;

3. It must be reliable, as one cannot be accused of non-appearance before the court if
the message was not received,

4. It must not assume that the addressee is available at the moment of delivery, since he
might not be aware that he will be delivered a summoning to appear in court;

5. It must be reasonably fast, so that the court can plan trials with a reasonable delay.

Urgent parcel periodic delivery The previous example of court summoning introduced
the constraint of reliability for postal networks. This last example will present the need for
speed in some cases. Consider the case of a hospital, which periodically requires new drugs.
Some of these drugs must be kept cool in a speci ¢ state, which necessitates an upper bound
on the time it spends in the network. As they are crucially needed for the good running of
the hospital, these deliveries cannot be signi cantly delayed: the hospital needs a minimum
amount of drugs per week. Contrary to the previous cases, the hospital is in fact requesting
these drugs, and they have signi cant value for it: it is hence possible for it to make sure
that someone is available for reception either permanently or at speci ¢ delivery times.

The case of hospital drugs deliveries might seem really restricted. It however appears
(slightly modi ed) in many other fresh-product trading situations. The list of functionalities
required from the network is as follows:

1. A naming functionality, allowing to designate uniquely the addressee of the message;
2. A transport functionality, which carries messages between any pair of hosts;
3. Ideally a bounded low delay, between the source and the destination;

4. A guaranteed transport capacity, which ensures that enough deliveries can be made
per unit of time to meet the required (daily or weekly) demand on drugs. One do
not only need to deliver drugs, but also to deliveliably enoughdrugs for the good
running of the hospital.
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Social networks

We take here a last example of network and applications that can be run on it. Social
networks have already been presented in exafnple] 1.1.1, and we will consider them here
with the speci ¢ incarnation of Facebook in mind. Recall here that we consider only the
social network of Facebook pro les, and not the speci c Facebook Internet application,
based on HTTP exchange between pro le owner and the Facebook web server.

Social networks in general allow two main applications: private message exchange, and
public opinion or news release. Private message can of course be destined to a direct friend.
However, the power of some social networks is that one can ask friends to forward a mes-
sage (for example, a request for favor), or to present the sender to the next friend in the path.
Since these forwarded messages or presentations come from personal acquaintances, they
are often better received than when they come from an unknown person. Private messages
can of course include direct requests for favor, but also opinions and requests for advice
about some project in a professional network, reform proposition, personal application or
government composition in political networks. A public opinion or a news release corre-
sponds to cases where one wants everybody, in the long term, to know that one has moved
to another city, had a child, or is looking for a job opportunity, or expresses a global opinion
on a subject that affects many people. Whilst this is mostly not urgent, any acquaintance
can access the information, and is free to forward it.

In the Facebook website, private messages are called, well, private messages, and are
basically similar to web-based emails. Public opinion or news releases are a lot more de-
veloped. All the following actions fall into that category:

personal status update: Facebook personal status usually indicates the current mood
of the pro le owner;

personal information update, such as email, city, hobbies or job;

public comment, on one's pro levall: a pro le wall is a place where every friend

of this pro le can write public comments, which can then be consulted by any other
friend of this pro le. It is often used for some casual group discussion, or comments
about the personal status updates.

We have here two applications. One is point-to-poirg, from a single source to a
single destination, and requires a non-obvious task of addressing and routing to reach the
intended destination: one needs to be aware of who knows who. It also requires a reasonable
reliability in the message forwards, or a delivery-checking mechanism (which can be just
a simple acknowledgment). The other one is point-to-multipdiat,has multiple (here
anyone who is interested in the message) destination. It does not require fast or reliable
transmission, and low-cost opportunistic transmission seems ideal for it.
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Elastic and streaming applications

Most of the applications we have presented have no delay or bandwidth constraints. They
can work with and adapt to low bandwidth. More is always better, but emails can still be
used if they need one hour to be sent, and in principle (outside the human user comfort),
nothing prevents the world wide web usage if one hour is needed to display a web page. We
will call such application®lastic because their bandwidth allocation can grow or shrink.
Elastic applications have this interesting particularity that they usually do not use the net-
work for a speci ¢ time, but for a speci ¢ number of messages. The time of connection
then depends on the bandwidth used by the application, and the higher the bandwidth is,
the shorter the time of connection is, and the faster the web page is displayed on the screen.
Most of the elastic applications use or prefer a reliable transfer protocol. These applica-
tions are based on the exchange of many messages: what could be considered as only one
network operation by the user (for example, the download of one single web page, or the
sending of one email to one addressee) often requires the exchange of several messages
between end-hosts. These messages are hence generated in a bursty non- uid manner.

Some applications require a minimum bandwidth or a maximum latency to function:
this is the case of live streaming and urgent parcel delivery in the example we presented.
These constraints are usually originated by the real-time nature of the system: one cannot
delay the sending of a new message in case of insuf cient bandwidth, and this messages
must arrive in time. A side-effect of these time and bandwidth constraints is that these
applications usually neither require nor use reliable transfer protocols, because they cannot
afford the time to resend lost messages. They rely on error-correcting codes to be able to
recover from the losses. Such applications will be cailhedastic bandwidth-sensitiver
streamingapplications. Compared to elastic applications, streaming application are less
bursty: they also rely on the exchange of several messages, but these are generated on a
regular, almost periodic basis.

1.1.3 Functionalities of networks

We have seen in the previous section that several functionalities are required from the net-
work, in order to be able to run applications. We will here list the main functionalities. In
two examples of networks, we will provide additional insight on how these functionalities
are provided, which will be useful in sectipn 1]1.4, where we will present mathematical
models of networks based (in part) on these functionalities.

There are ve broad requirements stemming from applications for any communication
network:

1. An addressing functionality, which allows one to designate precisely the nodes of the
network;

2. A localizing and routing functionality, which determines a route from any node to
any address;
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3. Atransport functionality, which can carry messages over a network;

4. A reliability-checking functionality, which ensures that the message transmitted over
the network have not been altered,;

5. A (non-mandatory) delivery-checking functionality, which ensures that the message
has been received, and raises an alert if needed.

One must add a sixth requirement, in order to keep a network operational:

6. A congestion-control functionality, which ensures that the network load does not in-
crease too much, and prevents network collapse.

Functionalities 3 and 4 are highly dependent on the speci ¢ network, or even on the
technology used for a speci c link. Transportation over a link is not the same between a
post box and the local center and between the Paris city postal center and New-York city
postal center. The reliability-checking functionality usually involves either error-checking
codes €.g.parity check bits), or a more materiel process such as a closed envelope. As it
is highly dependent on speci ¢ implementations, we will not cover details, and assume that
the network provides it.

In the speci ¢ case of packet-switching networks, including the Internet, the transport
functionality divides any message in little chunks, called packets. Small messages can be
a single packet, but large messages will be composed of many packets, possibly millions
of packets for large les of size in the order of giga-bytes. This allow to interleave packets
belonging different messages, and hence serve simultaneously several messages (with a
lower rate).

The congestion control functionality is critical to keep networks ef cient. It's aim is to
keep the loss rates low. As losses in communication networks are mostly due to temporary
buffer over ows'} a side effect of congestion control is to also decrease the network delays.
To understand the importance of this functionality, consider a heavily loaded network where
most routes have several links. If at each link, each packet has the same probability to be
dropped, this means that some packets will be lost close to their destination. If they already
went through a bottleneck, part of this precious limited capacity of the network will have
been lost to transport messages that do not reach their destination. The throughput of the
network can drop to low levels, because of these losses.

Congestion control is often implemented in two different ways. For elastic traf c, the
most common solution is rate contréle. every application is accepted and can send
traf ¢, but the rate at which it can send traf c is limited (either directly, or in an indirect
way). This works well with elastic traf ¢, which has by de nition no bandwidth constraint.

On the other hand, streaming traf ¢ is bandwidth sensitive, and it makes no sense to require
a bandwidth sensitive application to send messages at a lower rate than their minimal rate.

"This means that locally on a server, packets arrive suddenly and the number of packets to be stored before
being sent further on their route exceeds the storage capacity (called buffer): the exceeding packets are then
dropped.
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Hence, the usual solution is admission contr@, new applications are refused access to
the network when they would induce overload. In phone networks, this corresponds to the
message “All circuits are currently busy. Please try again in a few moments.”

The other functionalities are covered in the following examples:

Example 1.1.2(Postal network) The addressing functionality of this network is easy to
identify. It's the postal addresses, which identi es a unique box.

The localization and routing is also quite natural. Postal addresses are (partially) recur-
sive: they include the country, which is unique, and cover a small and (usually) connected
part of the world. The state (or Frendepartementetc.) is then the next division, again
in small and (usually) connected parts. Cities often come next, once again division is in to
smaller and connected sets. Most systems then use different post codes for smaller areas,
and nally the street, the number and the name for the precise letter box. This hierarchical
addressing leads to a natural easy solution for routing. To make it more concrete, consider
a letter posted from somewhere in Los Angeles, California, USA, to somewhere in Mar-
seille, in France. Starting from the rst post box, the next node is automatically the local
grouping and sorting center. This center will (usually, detailed organization differs between
companies) determine whether the letter is to be sent within the same city or not. If this is
the case, the letter is then forwarded to the right part of the city. Here, this is not the case,
hence it will be forwarded to the state postal center (which might in fact be the same). In
the state center, the letter will then be sent to some “foreign outgoing center”, for letters to
be sent abroad. The next node is then some French incoming center, which receives letters
from abroad (likely in Paris). The Parisian center will then realize that the destination is
in France, and forward the letter to the departn@otiches-du-Rhéneenter. This center
will then use the detailed post code and forward the letter to the post of ce closest to the
destination, where it will be sorted and handed to the postman who will put it in the correct
letter box. To generalize this example, one can divide the postal network into layers: post
boxes and letter boxes belongs to the layer 0. The local post of ces, grouping letters from
or to a small area of the city are the layer 1, and cities centers, which centralize everything
leaving or entering a city are layer 2, and so forth. Edges between nodes occur only between
two nodes of neighboring layers, or in the same @yéhsually, one node would have only
one (or a very few) links with nodes of higher layers (this is the hierarchical part), a few
links with nodes of the same layer, and lots of links with nodes of lower layer. Each node
then forwards a letter to:

1. one of its children nodes (a node from a lower layer), if the destination belongs to the
area covered by that node;

2. apeernode (a node from the same layer), if the destination belongs to the area covered
by that node;

8In fact, if two companies have a different number of layers, this would be true only if we were numbering
from the highest layer. But we can assume without any loss of generality that all companies have the same
number of layers.
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3. its parent node (or one of its parent nodes, depending on the country or state of the
destination), if the destination does not belong to its area, or to the area of any peering
node.

The hierarchical structure makes it easy to determine the cases 1 and 2, since one only needs
to read a speci ¢ part of the address.

Most letters have no explicit delivery-checking functionality. Whilst almost all letters
arrive correctly at destination, there is no guarantee that a typical letter is not lost, and no
“speci ¢” warning if it is (but one may realize it because of the absence of an answer, or
during a discussion with the receiver). For important mails, there is a reliability-checking
option, which lets you know when the receiver actually received your letter: these are reg-
istered letters with recorded delivery.

Finally, there is no speci ¢ congestion-control mechanism in postal networks. However,
they can have only a nite number of letters entering the network each day: the post boxes
have a nite size, and they are emptied only a few times a day. Once a post box is full,
clients cannot post their letters, and hence the total load is bounded. To ensure that the
networks do not collapse, it is then enough to increase the capacity of the postal network
until it is higher than this upper boufld

Example 1.1.3(the Internet) The second example we take is our main focus: the Internet.
The addressing functionality of the Internet are the well-known Internet Protocol (IP) ad-
dresses. Each IP address is a succession of four eight-bits n@marated by periods,

often written in decimal manner (hence the addresses like 125.84.3.247, where each number
is lower than 256). IP addresses are allocated by the Internet Assigned Numbers Author-
ity (IANA), usually in “blocks” to the Regional Internet Registries (RIR), which further
allocate lower blocks to Internet Service Providers (ISP) and other entities. Hence, for ex-
ample, all IP addresses whose rst group of 8 bits is 41, 154, 196 or 197 are allocated to the
African Regional Internet Registry (the African Network Information Center, or AfriNIC),
which will further allocate it in smaller blocks (usually blocks of 1024 IP addresses, which
will share the same pre x of 22 bits) to African ISPs. Whilst this is not an absolute require-
ment, ISPs tend to also allocate their IP addresses to their end-users following a hierarchical
pattern.

This hierarchical addressing leads to the same natural localizing and routing techniques,
which are also part of the Internet Protocol, as in postal networks. Looking at the rst 8 bits
of the IP address is enough to localize the RIR managing this address. Looking at the
next 14 bits (for the AfriNIC case, the number might change for other RIRs) allows one to
determine the ISPs providing this IP address. Similarly, these pre xes allow ISPs to forward

%In practice, it is likely that post companies only set their capacity in order to match the empirical load
observed on busy days. GSM networks, which are in a similar situation (antennas can serve a nite number of
calls simultaneously), serve most calls during the year. However, they are known to collapse at midnight for
New Year, because the load is exceptionally high at this time.

OFor the sake of simplicity, we consider only IPv4 addresses. The details of IP protocol are far beyond the
scope of this thesis.
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an IP packet to the correct node, depending on whether the pre x indicates they belong in
the area they cover or not. A property of this routing scheme is that the sender is not aware
of the route that its packets will follow. At each hop, the router locally decide what the
next hop of the packet will be, based on the single destination address (which is stored in
the packet header) and its routing table (which is stored on the router, and is independent
of the incoming packets). This allow to limit strongly the need of information exchanges
(a local end-user computer needs very little routing information, for example, since most
packets will go to the contracting ISP). A second consequence is that the servers do not
need to know to which message a packet belongs, they do not need to maintain “a state” of
the connections, but only a routing table.

The Internet has two main “transport” protocols, whose main difference is their reliabil-
ity. Transmission Control Protocol (TCP) is a relatively slow protocol, where the destination
acknowledges each received packet to the source. In case of absence of acknowledgement,
the source can resend the packet to the destination, hence ensuring a reliable transmission.
It is used mostly for elastic traf c, where there is no prerequisite rate. User Data Protocol
(UDP), on the other side, sends packets, and does not care (or verify) whether the destina-
tion received them. Its use consists mainly in real-time streaming traf c.

1.1.4 Abstraction of networks

From managing networks to provisioning new links to designing new protocols to trou-
bleshooting networks, it is useful to have key insights of what happens in a network. It is
possible to (re)play step by step the sequence of events in a lab experience with a real net-
work. However, this solution is not really practical, and any result will be strongly speci c

to this particular network and traf c. There has hence been a strong effort to model both
networks and their traf c, in the hope of having reliable but general solutions or guidelines
for networks. This effort can be divided in two parts:

1. An effort to model networks, and in particular, routers behaviour. Most of the “in-
teresting” events in wired networks appear at the routers and s@hmd links
usually lead to constant delays and no loss. With a good network model, it is then
possible to simulate a network. The simulation of “big” networks requires plenty of
computation power and time, but this is easier to perform than real measurements;

2. An effort to have a probabilistic description of traf ¢, depending on a few parameters
and which has the same properties as real traf c. Full traces of trafec (the
sequence of messages, speci ed by their arrival time, source, destination, and size)
are dif cult to measure with precision, and require lots of space to store, and are not
easy to manipulate. A quick number might give a rough idea here: Cisco's CRS-1,
one of today's Internet “best” routers, can scale up to 92Tb/s, or 11.5 terabytes per

MThe distinction between routers and switches is beyond the scope of this dissertation. It is enough to know
that both can forward messages to their next node in the path, looking at their address in the message headers.
They just look at different kinds of address.
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Figure 1.1: A diagram of a router.

second (a byte is 8 hits); the maximal size of an Ethernet packet being 1500 bytes,
this means that this router can serve up to 7.6 billions of packet per second. It is
hence useful to be able to characterize traf ¢ with only a few parameters. Simulation
can then be handled by sampling random traf ¢, and this allows also to tune the load
nely to see the impact of different parameters, instead of being limited to the (few)
cases of actual traf c measurement.

Router model

We will study here routers of thgtore & forward type, which are the majority of today's
routers in the Internet. Other networks have of course different routers, and this model
might not be valid outside the Inter@t But the Internet is our main focus. As depicted
in gure [L.7, a router of thestore & forward type is composed of mainly three different
elements: awitching fabri¢ controlled by acentralized schedulerandlinecards (also
calledinterface$. Each linecard controls two links: one input and one output.

A typical packet will cross the router as follows. When it arrives at the input link of
a linecard, it is stored (hence tlseorepart of store & forward) in the linecard's memory
(called buffer). After the packet has fully left the input link and is stored in the buffer, its
destination address is looked up in the forwarding table, in order to determine to which
output link it must be forwarded. The packet is then stored in the First In First Out (FIFO)
gqueue corresponding to that output interface. When it reaches the head of this queue, it is
transmitted to the output linecard, possibly in different separated chunks (cells), where it is
reassembled and handed to the output link scheduler (thatfertivard part). It might then
experience some queueing time, and eventually is serialised without interruption onto the
output link. In the '‘queueing’ terminology, the packet is said to be served at a rate equal to
the bandwidth of the output link, and the output process is said to be of uid type, because

2| fact, itwill not be valid for many different networks, such as the postal network.
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packets ow out gradually, instead of leaving instantaneously.

The delay experienced by such a packet, de ned as the difference between the time
when the last bit of the packet left the router and the time when the last bit of the packet
arrived in the router, can be decomposed in 6 parts:

1. the time needed to cross the input linecard;

2. the queueing delay in the input linecard queue, before being transmitted by the
switching fabric;

3. the time needed to cross the switching fabric;

4. the time needed to cross the output linecard;

5. the queueing delay at the output link;

6. the service time to be serialized at the output link.

Losses appear when a queue is full, and a new packet has to be stored in it: it is then dropped
by the server.

In practice, the delay structure can be simpli ed. First, the switching fabric is usually (at
least for core network routers) overprovisioned, meaning that there is no queueing time (nor
loss) at the input linecard queue. Second, the rst, third and fourth components of the total
delay will depend only on the speci c implementation of the switching fabric and linecards,
and on the size of the packet. They can hence be merged in a single router-crossing time,
which is a function of the router, input and output linecards, and packet size.

In [HVPDO4], Hohnet al. monitored all the traf ¢ going through a core network router
for 13 hours, and got detailed delay statistics. They proposed a further simpli ed model,
which was shown in their case to match the actual delay for packets. To the best of our
knowledge, very few detailed studies have been conducted that validate or refute this model.
In [CESQO8], Chertowet al. proposed a more complete model for routers. However, they
stated that their model performs better only for routers that are (nearly) overloaded, at the
edge on the Internet. We will keep the simpli ed model of Hohn and his coauthors, which
is as follows:

1. Fully arrived packets at the input linecard are instantaneously transported to the out-
put linecard; hence, in particular, packets stemming from different links but going to
the same output link are multiplexed according to their arrival time;

2. Packets at the linecard rst experience a minimum crossing dejd$), depending
on their sizeS and the output linecard This delay represents the time needed for a
packet to cross the input line card, the switching fabric and output line card, before
nally reaching the output queue. Packets cannot overtake each other at this stage,
hence they might be blocked behind another packet;
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Figure 1.2: A diagram of a path in a simpli ed router: a multiplexer (a), an internal mini-
mum delay (b) and an output queue (c).

3. Packets then join a uid queue (see secfior} 1.2 for a complete de nition of queues),
where they wait before being serialized. The rate of service &nd the service time
is proportional to the size of the packet, hence a packet of&iz#l require % time
to be serialized. Any order of service (called discipline) can be considered here, but
we will mostly stick to the First In First Out (FIFO) caseg. packets are served in
their order of arrival.

Hence, from the point of view of a single output linke( ignoring all traf ¢ that
does not exit the router through this link), the router can be modeled as in[gure 1.2. In
[HVPDO4], the authors plof S) as a function of the siz8, for the speci c case of the
router they monitored. The shape is roughly af feS) = a+ bS, witha = 18:8 s and
b= 1:8125[ns/bit]. This internal delay is hence (at least in that case) of the order of dozens
of microseconds: if the queuing delay or service time is larger than this order, it makes
sense to ignore this internal delay as a rst approxim@on

Traf ¢ model

It is dif cult to exhibit a “good” traf c model: traf ¢ varies highly between different points

in the networks (for example, there are many differences between the traf c on an ADSL
line linking the client ADSL box to the DSLA@and the highly aggregated traf c on high-
speed links in the core Internet network). Moreover, traf ¢ varies highly in time [BO%;
HcJS03]: bandwidth increases and new applications can have signi cant impact. Hence,
any traf c model will be valid only for a speci c time span and at a speci ¢ set of network
locations. However, due to the crucial need of both understanding traf ¢ characteristics
for better network management and of allowing easier simulation, a considerable effort
has been devoted to this issue in the last two decades. Most of this work models traf ¢
arrivals as a one-dimensional marked point process. This choice is natural: the traf ¢ can
be characterized by the sequence of message arrival times, with a label being added to each
specifying the nature of this message (its source, destination, nature, size, etc.). This is
precisely what the marked point processes model is.

13For comparison, on a 1 Gbps link, the service time of a 1500 bytes packet is. The links used on the
server in that experiment were had respective bandwidth of 150 Mbps, 600 Mbps and 2.4 Gbps.

14A DSLAM is the rstrouter in ADSL access networks, making the connection between the ADSL line and
the “classical Internet IP” network.
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Plain old telephone heritage: the Poisson assumptionTeletraf ¢ engineering and the-

ory started with the design and development of a circuit-based telephone service in the early
20" century. A communication required then a dedicated circuit, and blocked call events
occurred when it was not possible to book a circuit between the source and the destination
of the call.

In order to better provision and manage these networks, Agner K. Erlang studied em-
pirical traf ¢ traces. Erlang found that call arrivals were correctly modeled by a non-
homogeneous Poisson process. Retrospectively, this could be expected: new calls are gen-
erated by a large set of users, in a cross-user independent manner. If the set of users is large
enough for self-dependence to be negligible, there is nearly no auto-correlation in the arrival
process at most time scales, and this is a characteristic feature of Poisson point processes.
Additionnally, Poisson processes, due to the independence of points or so-called memo-
ryless property, are particularly tractable for a mathematical analysis. Hence, Poissonian
models for call arrivals are still considered as valid today and used in telephonic networks
models, and lead to accurate resduilts [WP98].

Self-similarity and long range dependence: the fall of Poisson Due to this early work

and success, Poisson processes have been an obvious choice for traf c model when the
Internet and other packet-switching networks have been designed (se€l [Kle75]). However,
contrary to telephonic networks, the actual performance of these new networks has been
repeatedly below the model expectation [ENW96]. [In [LTWW94] Leladal. showed

that Etherntrafc and packet arrivals exhibited self-similar prop@yand in [PE95],
Paxson and his coauthors found a long range deper@ncmaf c. These properties are
incompatible with simple Poisson point process. This was considered as “The failure of
Poisson modeling”, and was the starting point of intensive research, both to understand why
Internet traf ¢ had these properties, and to nd better traf c models.

Flows, heavy tails, mice and elephants A brief return to the physical meaning of traf-

c is now useful. How do the Internet and other packet-switching networks work ? Old
telephonic networks were circuit based: a physical circuit (with relays) is booked between
both end-hosts for each call, and physical coding-decoding happens at end-hosts. As we
have seen in sectign 1.1.3, packet-switching networks have a different approach and divide
messages into (smaller) packets. There are hence two levels of viewpoints for the network

Bwithout going into details, Ethernet is one of the main technologies for the transport of messages and the
share of the media on the physical layer. This self-similar property is not particular to Ethernet, and was found
on many other traces in the following years.

Wwithout going into details which are of little relevance for this dissertation, a random process is said
self-similar if it is similar to a part of itself (in a fractal-like way). In mathematical notations, a pro¢gss
self-similar if for allm andk, miH(X km +1 * 111+ Xim + m ) has the same distribution Asfor some parameter
H . In contrast to self-similarity, Poisson processes are known to “smooth” when one zooms out.

TUnformally, a procesX (t) is said to have a long-range dependence if the val€(®j has a “signi cant
impact” in the future for a long time. Formally, long-range dependence processes are characterized with an
autocorrelation function X ()X (t+ )] E[X ()] E[X (t + )] whose decrease is slower than exponential
in
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traf c: the packet-level makes sense for the routers and links, which are aware only of
packets, and ignore to which “message” they belong. But from the application (or end-host)
point of view, packets do not really matter, and the whole message must be considered. For
better understanding, it is hence useful to try to classify together packets which belong to
the same message, although the network is unaware of it. That is what the notion of
does. There is no single de nition of ows, but we will use here a common de nition in the
literature: a ow is the set of packets which share common source address and port, com-
mon destination address and port, and common transport protocol (TCP or UDP), with no
interarrival time greater than a threshold (usually, of the order of a dozen ser(ds).

de nition is network-centric (it uses information that is available to any network router),
but it is useful to imagine ows as the set of many different packets forming the same
application message, although this is not strictly equivalent.

A crucial discovery was that Internet ows have a heavy-t@gﬂze ([Pax94] for Tel-
net, NNTP, SMTP and FTP ows/ [CB97] for HTTP ows). Ir_[CB97], Crovella and
Bestravos found that Internet les size distribution is also heavy-tailed, which explains why
ow sizes have a heavy-tailed distribution. This is often referred to aslgghant and mice
phenomenommeaning that most ows are really short (mice), but most of traf c comes from
very few large ows (elephants).

In fact, phone calls most likely also have no exponentially distributed length. How-
ever, it has been shown ([Tak62]) that the actual performengetlie blocking probability)
of plain old telephone service (or circuit-based networks) is insensitive to the precise dis-
tribution of call durations. Only their mean matters. The same results does not hold for
packet-switching networkse(g. Internet), where these few huge ows will have a long
range impact on the system. In opposition to the previously assumed exponential distribu-
tion with a nice memoryless property, this was empirically explaining why Internet traf ¢
was not Poisson. Indeed, it can be shown that the superposition of many independent ON-
OFF sourc@ with a heavy-tailed ON distribution leads to self-similar long range depen-
dent traf c WTSW97,[CB97[ BMSV00]. The ON-OFF source model refers here to the
fact that an end-host sends (or receives) a (set of) message, then is idle for some time, until
the next connection is opened. ON periods corresponds to the transmission periods, with a
message fragmented in several packets.

18RFC 2722 de nes traf ¢ ow as "an arti cial logical equivalent to a call or connection.” RFC 3697 de nes
traf c ow as "a sequence of packets sent from a particular source to a particular unicast, anycast, or multicast
destination that the source desires to label as a ow. A ow could consist of all packets in a speci c transport
connection or a media stream." Note that our de nition is in fact similar but not equivalent to the previous
de nitions, nor to the de nition of ows as the set of packets belonging to the same message: one client could
download several web pages or les simultaneously from the same server.

1A random variablé is said heavy-tail if the probability of having arbitrarily large values decreases slowly.
Formally,X is heavy-tail ifP(X > ) is a slower than exponential decreasing function for large

20An ON-OFF source is a source that alternates between constant rate emission (ON periods) and silence
(OFF periods). The simplest model assumes that the ON periods are independent and identically distributed
(i.i.d.), that OFF periods are also i.i.d. (with a potentially different distribution), and that ON and OFF periods
are independent.
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Looking for Poissonianity: human user and sessions Even if the packet arrivals are not
distributed according to a Poisson process, there are still two reasons to look for some Pois-
sonianity in the arrival process. First, Poisson processes and their variants are remarkably
amenable from a mathematical point of view, and hence provide of a natural rst choice
for a model. Second, and more importantly, Internet traf enisne generated by human
impulses, and the human impulses are often by nature independent [P8HElence, the
question is more to nd the right scale for Poissonian impulses to appear.

Poisson clusters processes (also called Bartlett-Lewis processes) are a natural choice
when looking for Poissonianity in a point process which is not Poisson. They consist of
seeds, distributed according to a Poisson process. Each seed then expands into a cluster
point process, which can have any independent and identically distributed (i.i.d.) distribu-
tion: a classic choice for these in-cluster processes is to take a renewal process with an
independent random number of points. [In [HVAO3], Hodtnal. showed that interaction
between ows is not signi cant. They hence proposed a model with a Poisson ow ar-
rival process, a Gamma renewal in- ow packet process and a heavy-tailed per ow number
of packet distribution. In particular, they exhibited a bi-scaling phenomenon. At small
(sub-second) time scale, the packet arrival process is nearly Poissonian_(see [KMFBO04]),
has little correlation (which is due to in- ow structure caused by feedback of TCP (see
[JDO5])), and is mostly characterized by the number of competing ows and their rates. At
large time scale, a long range dependence effect is prevailing, originated by the heavy-tail
nature of the per ow packet number distribution. This model was validated with real data
in [HVYYQ5], and its properties have been explored.in [FGAMSO06].

This model, whilst natural and tting the data, failed to explain why ow arrivals also
exhibit a long range dependence [ROIY, |[PSHC 06]. A rst physical reason can be
proposed to explain why ows are not the right time scale for Poissonianity: rst, les are
often transferred in batcl@sleading to several simultaneous or close ows. In fact, ows
are not generated only by human impulses, and Poisson processes fail to reproduce this fact.
However, in [PSHC 06], it was shown that even web document downloaédsdll the ow
exchanges needed for a single webpage), whicinane generated by human impulses, do
not follow a Poisson process. There is a human correlation between web page requests: web
surfers often request several web pages (or les) simultaneously, and then are idle (from the
network point of view) during the time needed to read (or analyze) these documents. The
correct time scale to look for Poissonianity is in fact the user session. Similar to how ows
group packets, a session is the set of ows initiated by the same user with inter-arrival time
lower than a threshold. Paék al. propose inl[PSHCO6] a threshold between 12s and 30s.

Three different time scales, and a basic approximation From these works, we must
distinguish three different time scales. At a large time scale, a long range effect is prevailing,
paired with the self-similarity property. The real traf c does not smooth out as fast as

21To name a few reasons: protocols often rely on exchange of several messages, and webpages typically
consist of more than one object.
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Poisson traf c when the time scale is increased. At the opposite, on a very small time scale,
the traf c is also not Poisson. Real traf ¢ is highly bursty at a very small time scale, and
Poisson models are not adaggdn an intermediate range, from dozens of milliseconds to

a few minutes, it seems that the traf ¢ is somehow more similar to Poisson. This timescale is
large enough for the precise synchronisation of packet arrivals and their corresponding size
to be of little effect. On the other side, most of the traf c at this time scale is characterized
by the number of competiting ows (or messages) being exchanged at that time, and the
size of these ows has little impact at this time scale. In other words, the total number of
mice and elephants is more important than the siee knice or elephant specie) of each
animal.

Similarly, the addressing, localizing and routing functionalities of the network need in
practice the exchange of messages between different network elements, which will interfer
with data packets. But on this intermediate time scale, their effect can nearly be ignored,
and we will assume that they are provided in a transparent manner.

Finally, although we are aware of no recent work on this subject, the growth of streaming
applications can be imagined to increase the Poisson nature of the traf c. Whilst the heavy-
tail size distribution is valid for both type of traf ¢, streaming applications tend to send their
message in a more uid regular way. Elastic applications mostly use TCP, which is in some
aspect “aggressive”, increasing repetitively its sending rate until it experiences losses, and
creating hence more variation in the traf c rate.

1.2 Queueing theory: a microscopic model for networks

Queueing theory is the mathematical study of waiting linegjueueswhich have to be
understood as classic “real-life” queues that one experiences everyday, when waiting at
the medical of ce, in any shop or at a taxi station (at least in certain countries). It aims
at deriving and computing performance metrics of queueing systems, such as the average
waiting time in the queue, the expected number of customers when a new customer arrives,
the stability of the system or the distribution of the total time spent in the system. Typical
incarnations of queueing systems include obviously plain old telephone service and packet-
switching networks (such as the Internet), but also healthcare emergency rooms, factories
or call-centers. Since the pioneering work of Erlang in 1909 [Erl09], it has been an active
research eld, with numerous results and publications. We do not aim here at covering it
exhaustively: this would require a whole book, or even more. However, we present here

ZThere is no consensus for this effect, but several origins have been proposed. First, at a packet level, the
packet arrival times are obviously not independent of their size: for example, two packets can not be closer
than the service time of the rst packet. Another proposition is the rate control mechanism of TCP, which
induces a self-clocking mechanism. TCP ows sharing the same bottleneck tend to share the loss periods, and
hence decrease their rate in a correlated manner and then slowly increase them. Finally, a third candidate is
the merging at the router of different link traf c ows, and the discrete nature of packet sizes. Link traf c is
composed of back-to-back packets period, followed by an idle period. The precise effect of merging several
such ows at a router is not well understood, but it is obvious that because packets size distribution is not
exponential but trimodal (with many packets at the maximum size, many at the minimum size, and some in a
intermediate range around 600 bytes), these back-to-back and idle period are far from Poisson.
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brie y the key results that are needed in this dissertation. Queueing theory is of particular
interest for us because it models the behaviour of the system at the scale of customers (we
will also use interchangeably the terms of tasks, jobs or packets). This scale is natural when
dealing with packet-switching networks such as the Internet. We refér to [Kle75, BBO3,
Kel79] for a more complete survey.

1.2.1 Asingle queue
The simplest queueing system is a single queue.
De nition 1.2.1 (Queue) A queue is de ned by the following elements:

A packet arrival process.e. an increasing sequen€t,)n2z wheret, denotes the
arrival time of the H' customer;

A service requirement distributiori,e. a sequence of non-negative real values

( n)n2z, Where |, is the service time required by th& rtustomer before leaving

the queue. Alternatively, the service is speci ed in size (and not time), and the ca-
pacity or speed of the server is added. The service time of a packet is then its size
divided by the speed of the server;

A service discipline, determining which packet(s) of the queue is (are) served when
there are several packets in the queue;

A buffer size, indicated the maximum number of packets (in number, or sometimes
in total size) that can be stored in the queue, before additional packets are lost. When
this is not speci ed, it is assumed to be in nitee. no packet is lost by the queue;

A number of servers, indicating how many packets can be served simultaneously and
independently; this is usually assumed to be 1, unless otherwise speci ed.

Many disciplines can be imagined, and the proper de nition of a discipline is somewhat
technical. However, many usual disciplines can be easily understood.

Example 1.2.1(Common disciplines) We will list here the most common disciplines:

1. First In First Out (FIFO) discipline: the server serves its customers in their order of
arrival. This is the most common discipline in human waiting queues (at shops, taxi
stations, etc.). This is also the most common discipline in Internet routers, and is
assumed by default unless otherwise speci ed;

2. Last In First Out (LIFO) discipline: when a packet leaves, the last packet to have
arrived is served. This happens in the case of “stacksy. for washing-up or for
bills): the last element is on the top of the stack, and is the rst one the be dealt with;

3. Processor Sharing (PS) discipline: the server capacity is evenly split among all the
customersi.e. for all the customers remaining, remaining services decrease %t rate
when there ara customers in the queue;
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4. Uniform Random discipline: the next customer is chosen uniformly at random among
the waiting customers;

5. Priority discipline: the customers are divided in two (or more) different classes. When
a new customer is to be served, it is chosen rst in the highest priority class. If no
packet belongs to the high priority class, then a customer of a lower priority class can
be served. This can be combined with any in-class priority discipline. Emergency
medical services apply a similar discipline, with classes depending on the degree of
emergency of each patient;

6. Preemptive Priority discipline: this is the same as above, but a higher priority cus-
tomer can interrupt the service of a lower priority custc@eHence, low priority
customers can be served only when there is no high priority customer. In case of
interruption, it must be speci ed whether the interrupted service is resumedilater (
no service is lost), or started afreske(the interrupted service is lost);

7. Shortest Remaining Processing Time (SRPT) discipline: this is a preemptive disci-
pline which serves the packet with the shortest remaining service time. When a new
packet arrives, it is served immediately if the server is idle or if the current packet has
a longer remaining service time. In the later case, the previously served packet is put
back at the head of the queue (its remaining service time is obviously shorter than any
other packet of the queue) , and its service will be resumed later. If the arriving packet
has a longer service time than what remains for the packet being currently served, the
new packet is put at the right place in the queue. This discipline is known to minimize
the mean waiting time per packet and the mean number of packets in the queue, but
is highly unfair for large packets.

We will call conservativeany discipline which does not “lose” any service. This in-
cludes all non-preemptive disciplines, but also all preemptive disciplines which later resume
the interrupted service at the time of interruption (in contrast to fresh restart).

The Kendall notation, proposed by D. G. Kendall, allows for a compact description of
most queues. It reads AsS=N;=B=D, whereA denotes the arrival process the service
requirementsNg the number of server® the capacity of the system, or the maximum
number of customers allowed in the system including those in service) dhe discipline.

B andD are often not speci ed, and have then default valud ofind FIFO. The arrival
process is speci ed with the distribution of inter-arrival times. A few letters cover most
classical distribution:

M denotes an exponential distribution;

D denotes a deterministic distributiare. a xed value;

Z0ther preemptive disciplines obviously exists, such as preemptive LIFO discipline. We do not present them
here for simplicity.
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Gl means any i.i.d. distribution;
G covers any other case.

Hence, an M/M/1 queue denotes a queue with Poisson arrival process of inteftbity
interarrivals of a point process are exponentially i.i.d. if and only if the process is a Poisson
stream), exponentially distributed service times (of méjra single server and an in nite
buffer. The GI/G/K/IK+2/PS queue is a queue with a renewal arrival process, any service
distribution, K servers, a buffer limited to only 2 packets and a processor-sharing discipline.

The next example presents a typical result of queueing theory. It was shown in 1917 by
Agner K. Erlang[[ErI17], and is furthermore considered to be one of the very rst queueing
theory results.

Example 1.2.2(Erlang blocking formula) Consider an M/M/K/K queuei.e. a queue
where customers arrive according to a Poisson point process of intenasitgt have i.i.d.
exponentially distributed service times of mean!. Up to K customers can be served
simultaneously, but no customer can be queued. New customers arriving whenkall the
servers are busy are rejected and lost forever. What is the proportion of rejected customers,
or equivalently, what is the probability for a new customer to be rejected?

This probability is called the blocking probability, and has interesting application in
industrial systems. Before presenting its proof, let us spend a few lines to explain why
this is an meaningful quantity to estimate. Erlang was an engineer and mathematician at the
Copenhagen Telephone Exchange. He had already shown that calls were initiated according
to a Poisson process, and that calls duration could be approximated with an exponential
random variable [ErI09]. In Plain Old Telephone Service, a call required booking a circuit
between both end points. If the service exchange has a capa&tycwtuits, the blocking
probability is exactly the probability for a new call to be rejected because all circuits are
busy. Hence, this quantity is one measure of the performance of the telephone network, and
can be used to estimate the eventual gain in performance of increasing the service exchange
capacity.

Erlang established that the blocking probabifty is

P = P
i=0 T

K
]
i

To prove this result, IeN (t) denote the number of calls being served at timd (t) is
a birth-and-death process. The birth raievhen the call population isis:

ifo i<K
0 ifi=K
The death ratejis | = i

Indeed, just after a new arrival, the inter-arrival is distributed with an exponential distri-
bution of parameter. But due to the memoryless property of exponential distribution, this
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is also the case when a call leaves the system. If the current populaKortligs new call
will be rejected, and the birth rate is hence 0.

Similarly, at any time, the residual service time of any call is an exponential random
variable of parameter, thanks to the same memoryless property of exponential random
variables. The next departure happens at the minimum of the residual service times. As the
minimum ofi i.i.d. exponential random variables of same parametir an exponential
random variable of parameter , we get the death rates.

Denoting by = - the load of the system and by = ( ¢; 1;:::; k) the station-
ary distribution of the populatiofNl (t), we have from the detailed balance equations that
i 1=1 ,forl i K,andhence:
[
80 i K; i= — 0

By normalisation, we get that

j!

o

J:
Calls arrives according to a Poisson process, and see the system at the equilibrium state.
They are blocked if the population is already Hence, the blocking probability is¢ .

Erlang's formula is a typical (and historical) example of the many fruits of queueing
theory. It is today still widely used, for example in the case of inventory stocks and lost
sales.

1.2.2 The M/M/1 queue

In this section, we will present succinctly a few results about the M/M/1 queue. Recall that
an M/M/1 queue is the queue with Poisson arrivals, i.i.d. exponential service times, 1 server,
an in nite buffer and a FIFO discipline. Throughout this sectionwill be the intensity of

the arrival process andthe inverse of the mean service time.

Stability and steady-state population distribution The rst result we establish is
whether the population of the queue diverges or converges to a steady-state distribution.

Proposition 1.2.2(Stability and population distribution)Let N (t) denote the total popu-
lation of the queue at timeg and = - its load. Then:

1. If < 1, thenN (t) admits a single state steady distribution;
2. If 1, N (t) admits no steady state distribution.

Additionally, in the rst case, the steady state distributiorwill be:
k=P(NO=K=@ )* : (1.1)
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Proof. Let Q denote any steady-state measuréNdt), and consideN (t) at the arrival
times. The inter-arrival time is an exponential random variable of paramet@ue to the
memoryless property of exponential distribution, the residual service time is also an expo-
nential random variable, of parameterSimilarly, at departure time, the next packet service
time is an exponential r.v. of parameterand the time to next arrival is still exponentially
distributed with parameter (thanks to the same memoryless property).

Hence,N (t) is a birth and death process with birth (resp. death) rafesp. ), and
for all non-negativek, we haveQ (k) = Q (k +1). The following then holds:

8k 0, Q)= Q) : (1.2)

If there exists any steady-state distributionits mass is 1, and from (1.2), it satis es

P
When 1 asthe series , , X diverges, there is no steady-state distribution. When
< Lwehave | o ¥= 1, and hencq (1]1). O

From [1.]), we can nd that the mean number of customers in the queue is

N = = : 1.3
: (13)
For birth-and-death processes, the global balance equations are equivalent to the de-
tailed balance equation, and hence, any stationary birth-and-death process, including the
M/M/1 queue when < 1, is reversible. This leads to the following theorem:

Theorem 1.2.3.The departure of an M/M/1 queue form a Poisson point process of intensity
. Moreover, the state of the queligt) at time t is independent of the departure process
prior to timet.

Proof. Both parts are direct application of the reversibility of the M/M/1 queue. Indeed,
the departures in the forward process correspond to the arrivals in the reversed process.
They hence have the same distribution, which is by assumption a Poisson point process of
intensity . Similarly, the state at timehas the same distribution as the state of the reversed
process at time t, and the departures prior to tinten the direct process correspond to
arrivals in the reversed process past time It is enough to conclude by realizing that

in the reversed process, the state at timds obviously independent of arrivals past time

t. O

The departure process is the mixture of a Poisson process of intengitgn the queue
is busy, and null when the queue is empty. Theofem [1.2.3 shows that despite this “bi-
scaling” nature, the output of the queue has the same shape as the input, when the latter is
Poisson. This will allows us to easily build networks of queues in section|1.2.3. The second
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part might seem of little interest for the moment. It will however be crucial in seftion|1.2.3
to compute the steady-state distribution of such networks.

Continuous-time process and discrete-time chain Up to now, we have considered the
continuous-time Markov proce$é(t). It expresses which state the Markov process is in

at timet, and its steady state distribution expresses the fraction of time that the process
spends in any state. However, we might have a special interest in the queue at times when a
packet arrives, since these are the times which will determine what packets experiences. Is
the distribution identical ? L&, )n2 N be the discrete time Markov chain wheMe is the

value ofN (t) just before the arrival time of the'" packet. Because the arrival process is
Poisson, it veri es thd?oisson Arrivals See Time Avera@ASTA) rule, and the distribution

of the queue sizdl, just before thea" packet arrives is also:

PNn=k)=(@1 )~

Due to reversibility, the same holds for the Markov chain at times just after the departure of
a packet.

Finally, we must quickly mention that thmmbedded Markov chaiof the proces$ (t)
does not have the same distribution. The embedded Markov chain of a continuous-time
Markov process is the Markov chain obtained by observing the process just after any jump.
Compared to the continuous-time process, it focuses only on the sequence of states, and
does not include any information about how much time the process spends in each state.
Its steady state distribution expresses fraction ofjtinegposwhich go into a speci c state.
Because thé&olding timein a given state can depend on the state, this is not equivalent to
the continuous-time process. Here, when the jump is a departure, we have seen that station-
ary distribution after the jump is the same as the stationary continuous-time distribution.
However, when the jump is an arrival, we know that the distributionpesdrethe arrival
is also identical to the continuous-time distribution. Hence, after the arrival, we do not have
the same distributione(g. there is no chance of having no customer in the system, since
one just arrived), and the embedded Markov chain does not have the same distribution.

Note that up to now, the results we have presented did not assume that the discipline was
FIFO. In fact, they hold for any conservative discipline independent of the service times.
The discipline will be important when we study the delay of individual packets.

Delay and waiting-time How long does a packet need to wait before being served? How
much time elapsed between its arrival and its departure from the queue? These questions
are natural when trying to predict the performance of a queue.

In this dissertation, we will call the waiting time the time spent by a packet in the queue
before its service start. The de[@will be the total time spent in the queue, including the

240ther terms are also used in the literature. In particular, the delay is sometimes called system time or
sojourn time.
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service time. Hence, the delay is equal to the waiting time plus the service time.

Using the previous result on the mean number of packets in the system, it is easy to
get the mean waiting time and delay of an M/M/1 queue. Indeed, the service times of
packets waiting to be served are i.i.d., with meas . Additionally, at any customer
arrival (or at any time), the remaining service time of the currently served packet has the
same distribution, thanks to the memoryless property of exponential distribution. Hence,
assuming from this point that the discipline is Fﬁ]he mean waiting tim&V is:

R .
W= Pk k —=N —= : (1.4)
k=0

To compute the mean deldy, we just need to add the service time of the packet, which
is independent of the number of packets in the queue at arrival time and the service times of
these packets. Hence, we also have that

D=W+ = : (1.5)

Using the distribution of the queue size at packet arrivals, it is also possible to compute
the whole queuing time and delay distributions.

The probability density function (p.d.ff)y (t) of the waiting time can be computed by
conditioning on the number of packéig0 ) in the queue before arrival. The waiting time
is eitherOif N(O ) = O, or the sum ok i.i.d. exponential of parameter, i.e. a gamma
distribution random variable of parametéks ) if N(0 ) = k. Hence, we have:

e
fw(®) =  fw tN@© )=k P N )= k
k=0
¥ kik 1g t
=@ YoM+ @y
’ e (K
B . » kik 1
=@ a0 et Gty
e
@ o+ (et
Ko k!
fw® = @ )o®+ (el Ot (L6)

where ((t) denotes the Dirac function centered at 0.

This can be summarized as follows: the waiting time distribution for a typical packet in
an M/M/1 queue is the mixture of an atom at O with probabdity , and an exponentially
distributed random variable of parameter  with probability .

BIn fact, the mean delay and waiting time formula hold for any conservative discipline, but they are more
complicated to establish when the discipline is not FIFO. The delay and waitingitstréutionsgiven here
are valid only for FIFO discipline.
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Similarly, the p.d.ffp (t) of the delay of a new packet can be computed as follows:

X
fo(t) = fo tiN(O )=k P N(O )= k
k=0
_ X k+1l kg t .
) k=0 (k+1) ¢
t)é kik
=@ e "
k=0
fo(t) = ( e Ot (1.7)

Hence, the delay is an exponential random variable of parameter equal to the residual band-
width

1.2.3 Network of queues

We have currently presented only models of a single queue. How can one combine queues
in order to build a network? We will present here 3 models for network, each model gener-
alizing the previous one.

Queues in series

We will rst present the notion of queues in tandem, that is on a line, where each queue
departure process is the arrival process of the next queue. Hence, packets arrive in the
system only at the rst queue, and leave the system only after the last queue. An example
of such a network is given in Figure 1.3.

—_[[[O—_110~

<> >

Figure 1.3: Two queues in tandem.

More formally, consider a series &f single-server queues. Assume that all packets
at queue require an i.i.d. exponential service time of parametefhence, the average
capacity of queugis ; packets per second), and that these service times are independent
for different queues. Assume that the rst queue see an “external” arrival process intensity

. Assume nally that when a packet leaves quépie immediately enters the next queue
i +1, unlessi = K, in which case it leaves the system. W¢f(t) denote the number

whole system. What is the distribution Nf (tg) at a given timeg? A network of M/M/1
queues in tandem isroduct formnetwork, because its steady-state distribution is equal to
the product of the steady-states distribution of each queue, as it is shown by the following
theorem:
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Theorem 1.2.4.LetN (t) denote the state at timef a system of a series Kf single-server
gueues, with exponentially distributed independent service times with(rafes:; « ),
and Poisson arrivals of rate at the rst queue. Let; = — denote the load of the queue
i. If9i; ; 1, thenN (t) admits no steady-state distribution. OtherwibEt) admits a
steady state distribution, with

Proof. Consider the rst queue only. This is an M/M/1 queue with arrival ratnd service

rate ;. Hence, if , this queue, and hence the whole system, do not admit any steady
state distribution. If <, the previous results apply here, and we havelthdto) admits

a geometric steady-state distribution of parameter —.

Using the rst part of theorern 1.2.3, we know that the output of queue 1, and hence the
input of queue 2, is a Poisson process of intensitiience, queue 2 is also an M/M/1 queue,
andN,(tg) admits a geometric steady-state distribution of parameter = provided that

< 2. If 2 1, the second queue, and hence the whole system admits no steady-state
solution. The similar reasoning extends recursively for all queues.

However, before concluding for the whole distribution, we must prove that

the product of the steady-states distributiondl@ft); :::; Nk (t). O

These line networks can easily be generalized to any acyclic topologies where every
gueue has a single output, including possible external arrivals at different queues. This
leads to tree topologies, where the packets ow from the leaves down to the root. It relies
on the fact that the superposition of Poisson point processes is still a Poisson point process.
The acyclic assumption implies that Theorgm 1.2.3 can be applied recursively to queues
where all arrivals are Poisson point processes, starting from queues with external arrivals.

Theoreni 1.2}4 does not assume that the queue disciplines are FIFO. It holds for any
discipline which leads to the single queue steady-state distribution and theorem 1.2.3, that is
any conservative independent of the service times discipline. When the disciplines are such
that no packet can overtake other packets, it is possible to compute the delay distribution of
packets. This is done for the speci ¢ cases of FIFO discipline in chapter 3 for line-shaped
networks and chaptgf 4 for tree-shaped networks.
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Jackson network

Networks of queues in tandem can not deal with any topology including a loop, or with
different destinations for packets in the same queue. We present here a more general class
of networks, called Jackson networks or open migration networks, which covers all possible

topologies.

Figure 1.4: An example of Jackson network.

Consider a set dk queues. Packets in queubave i.i.d. exponential size of mean 1,
and are served at a global rate qﬁf} When Ie%ving queuk each packet has a probability
pi; to join queuq , and probabilityp;.o = 1 j bij to exit the system. We can assume
without loss of generality thas;; = 0. Packets arrive from outside to queuaccording
to a Poisson point process of rate We shall require additionally that there be a path of
positive rates from any queue to an exit, either directly or indirectly through other queues.
We shall assume also, without any loss of generality, that there is a path to any queue from
an external arrival (otherwise this queue will receive no new customer, and after some time,
be endlessly empty). Queues in tandem are a Jackson networlpwithl if and only if
j =i+1ori=K andj =0, andp;j =0 otherwise.

Proposition 1.2.5(Total arrival rates in Jackson networks}iven a Jackson network of
K queues, with services rates, external arrival rates j, and transition probabilitieg;;
from queue to queug , there exists a unique vector= ~1;:::; k of positive weights,

such that
_ X
8 i K, Ti= ;+ g - (1.8)
j=1

This vector represents the total arrival rate in the queues.

transition rate® = (G; )o (ij) ;. whereg = jandQjj = pjj . This process is irre-
ducible (there is a path from any state to 0 and from 0 to any state) and time-homogeneous,
with a nite state space. It hence admits an unique steady-state distribytiamch veri es

Z\\fe do not specify here how this global rate is shared among the packets, or, more generally, the discipline.
It does not matter, as long as the discipline is conservative. It is also possible to let the global rate vary with the
gueue size, but for the sake of simplicity, we consider here constant rate: the generalization is straightforward.

35



the equilibrium equations:
80 i K, (i) aq;= (1)g;

Dividing each equation by (0) and replacing thej;; by their value, we get the equations

), and hence the existence and uniqueness of the sorﬁlt'mr% in the proposition.
By de nition, the arrival rate in queukis the sum of the external arrival rate and the

arrival rate from other queugs The total arrival rate of queyeis g and a proportion;;

of it go to queuad just after leaving queug. Hence,™j = ; + J.Kzl Tjpj;i is the total

arrival rate at queuie O

Let N;(t) denote the state of queugi.e. the number of customers in queueand

rates of the queues in the network, it is easy to compute the steady-sdatibution of
the network:

Theorem 1.2.6. Consider a Jackson network &f queues, with services rates, ex-
ternal arrival rates ;, and transition probabilitiesp; from queuei to queuej. Let
= 1;:::; k be the total arrival rate vector, as de ned in proposition 1{2.5. Let

~ = l: be the total load of queue and assume that; < 1forall 1 i K. Let

Then the Jackson network admits an equilibrium distribution. In equilibrium,

81 i K; in)=@ ~)-M
Proof. Itis suf cient (and straightforward) to verify that(N ) = Q iK=1 i(n;) satis es the
partial balance equations. The independendd oiN,;:::; Nk follows from the fact that
both (N ) and the state space have a product form. O

The independence established in theofem [1.2.6 is the independence of the random

tion for queusd in isolation is just what it would be if it were the only colony in the system,
with customers arriving in a Poisson stream of ratand leaving at rate;. This is even
more interesting when one realize that, because of the eventual loops in the network, the
combined arrivals at queue from outside and other queues, is in general not a Poisson
process.

The process is in general not reversible. In fact, the process is reversiblgdffs es

81 (i;k) K; TiPik = kP
8L i K i = TiPo - (1.9)
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However, even whef (1.9) does not hold, the reversed process is of a similar form:

Theorem 1.2.7.Let N (t) be a process corresponding to a Jackson network. Then the
reversed proceshll ( t) corresponds also to a Jackson network on the same queues with
the same topology. In particular, the reversed process has transition probabﬂjﬁf;jeand
external arrival rates ?such that:

Proof. Itis easy to verify that such a Jackson network process is indeed the reversed process
of N (t). O

We will call the exit process the points in time at which customers leaves the whole
network. The arrival processes in the reversed process are the exit processes in the original
process. Hence, we have the following corollary, similar to the¢rem|1.2.3:

Corollary 1.2.8. If N (t) is a Jackson network process, then the exit process from queue
is a Poisson process of rafgp;.o. Additionally, the exit processes from quedes::; K
are independent anll (to) is independent of the exit processes prior to tige

In general, the delay in Jackson networks is dif cult to compute. A speci ¢ case how-
ever occurs when the topology is loopless and queues discipline are such that no packet may
overtake another one. Since the thinning of a Poisson point process and the superposition of
Poisson point processes are Poisson point processes, the repetitive use of fheojem 1.2.3 al-
lows us to consider each queue as an M/M/1 queue independent of the state of prior queues,
and hence compute the delay in each queue.

Kelly network

Jackson networks do not allow us to specify speci ¢ routes. When leaving a queue, each
packet can go to any following queue of the network, with a probability which depends
only on the topology and not on the packet. Therefore, some situations cannot be described
with Jackson networks. For example, consider the example depicted in Fighre 1.5. This
is a networks with ves nodes. Two streams of packet arrive respectively at node 1 (with
intensity 1) and node 2 (with intensity ;). Both streams then cross server 3. However,
their exit point of the network is different. Packets stemming from the stream of queue
1 (resp. queue 2) go to queue 4 (resp. queue 5), and then exit the network. Whilst on
average, a proportio% of the packets that leave queue 3 go to queue 4, this choice
is not independent of their past. We will present here a more general model of network,
introduced by F. Kelly in[[Kel79], that allows such networks.
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Figure 1.5: An example of Kelly network.

Assume that there ajféj different type of packets, and that the packets of cla®d
arrive according to a Poisson point process of ratejl j might be in nite, but the total
arrival rate  ;,, j must be nite. Packets from the same clagsllow a prede ned nite
path. LetS; denote the length of the path for clasandr (i;s) withs  S; denote thes™
gueue visited by packets of clasPackets may visit the same queue several times. We will

This can obviously deal with any queues in series. It is also simple to see how to
represent a loopless Jackson networks as a Kelly network: it is suf cient to create one class
for each possible path in the Jackson network, and adapt the arrival rate of the class such
that the rate of the path correspond to the arrival rate at the rst queue, multiplied by all
transition probabilities. If there are possible loops in the Jackson network, it is a little bit
more tricky to represent it as a Kelly network: the number of visits to the same queue by a
packet is not bounded, and packets in Kelly networks have a predetermined path. Itis hence
necessary to use an in nite number of classes, so as to represent any possible path.

Example 1.2.3: Consider for example the simple network depicted in 1.6. It's a two-
server network. Packets arrive in the network at queue 1, according to a Poisson process
of intensity . They then go to queue 2. After completion of their service in queue 2, they
leave the network with probability 0.9, and go back to queue 1 with probability 0.1. How
to represent it as a Kelly network? Let the cladsave the path; = (1 ;2), and arrival rate

1 =0:9 . In a more general manner, for any positive integdet the class have arrival
rate  =0:1 1 0:9 ,and have a path of lengthS; = 2i wherer (i;s) = s mod 2. In
other words, the clagscorresponds to packets which go exacttimes through queue 1.

By construction, the sum of the arrival rates is nite, and is exactlyMoreover, in
Jackson networks, thexternalarrival process of the packets which will visit queue 1 exactly
once (.e. will leave the network as soon as possible) is a thinning with probaBityf the
total external arrival process. As the thinning with probabitityf a Poisson point process
of intensity is a Poisson point process of intenggy, traf ¢ from class1 in the Kelly
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network corresponds exactly to these packets in the Jackson network. The same extends to
packets which visit queue 1 exactlyimes.

B

Figure 1.6: A toy example of Jackson network.

Describing the state of the network in a Kelly network is more complicated than the
state of a Jackson network. In Jackson networks, all packets behave similarly, and hence,
we can just count the number of packslg(t) in each queue. Here, we have in the state
to include the class of each packet. In order to simplify the notations, we will restrict
ourselves here to networks of single server FIFO queues. This can be generalized to many
more disciplines (even with variable queue service rates which depend on the number of
packets in the queue), but we will not need it in this dissertation.

Let t (1) (resp. sk(l)) denote the class (resp. the stage) of the packet in gkeie
positionl. Hence, we have in particula(tk();sk(l)) = k. Letce(l) = (tk(D);sk(l))
denote the state of the packet at posilicmqueuek. If the packet visits queue more than
once, its state contains more information than its class. The vector

is the state of queue, and

is a Markov process which describes the state of the network, whdasethe number of
gueues.

To describe the transition rates of this processTIC) for1 k K denote the
new state obtained from stae with Ny~ 1 when the packet currently served at qu&ue
leaves this queue, and either exits the network or joins the next queue of its path. Similarly,
let T'(C) fori 2 | denote the new state obtained when a new packet of clasters a
network of stateC and joins the queuk(i; 1). The transition rateg(:;:) are then:

q C;T'(C) =
q(C;Tk(C) = « (1.10)
qc:;c®=o0 otherwise.

Compared to the case of Jackson networks, the total arrival rate and the load of each
queue are easier to compute: the routes are deterministic, and everything depends only on
the different classes. In fact, the total arrival rate at a glea¢he sum of class arrival rates,
multiplied by the number of times the class path goes through the queue. More formally,
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one can de ne the total arrival ratég and load~ as follows:
!

X
k= Liis)y=k i
i21  s=1

= X (1.11)

The Markov process is unstable if at least one of the queues is overloaded, which cor-
responds toy  1for somek. Assuming that this is not the case, it is stable and admits a
stationary distribution:

Theorem 1.2.9. The equilibrium distribution for a Kelly networks withK queues of
capacities k)1 « k and packet classes of arrival rat€s;)i»; and path(r;)i», is:

¥ n te (1)
€)= (1 g
k=1 k
. " P
Proof. We rst prove that sums to unity. By de nition of , we have that ¢, () = &
when we sum over all possible packtates Hence, when considering only the queue sizes

~ Ny

and forgetting packet states, we have th@lfl1; No;:::;Nk) = :<:1 Q@ ~) —E

This sums to unity because by de nitiof = lt
The rest of the proof uses a reversed process. Consider that packets oktilhsster
the system as a Poisson stream of ratdut now follow a path

ro= r(i;Si);r(i; S 1);:005r(d; 1)

before leaving the network. This is still a Kelly network. For simplicity of the notation, we
will inverse the direction of the queue: packets in the reversed process join the head of the
gueue, but the served packet is at the back of the queue. This is still a FIFO queue, but will
remove us some burden of notation. The transition rgles the reversed process are as
follows:

AT(C)C)= i if (1) =(i;S))
ATk(C);C)= j ifr(tk(1);sk(D)+1) = ] (1.12)
ATI(C);C)= « ifr(i;1) =k

qXC:c% =0 otherwise.

It is now straightforward to verify that for any state8 and C% we have
(C)g(C:CY = (CYqYC®C), which is enough to deduce thatis the equilibrium
distribution. O

As for Jackson networks, we have several corollaries, similar to thedrems$ 1.2.7 and

[1.2.8.
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Corollary 1.2.10. If C(t) is a Kelly networks as described in this section, then its reversed
processC( t) is also a Kelly network.

Corollary 1.2.11. In equilibrium, packets of clagsexit the network in a Poisson stream
at rate ;. These Poisson point processes are independentCqbg) is independent of
departures from the network prior to tintg.

Qny

Finally, de ne (ck) = (1  ~)—=x*? as the steady-state measure of the queue

k. The network is then said to be of pkroduct form, and at a given time the steady-state
distribution is as if each queue behaved independently as an M/M/1 queue. Note that this
independence is valid only at a given time, and not for the continuous time process. The
following corollaries express this product form.

Corollary 1.2.12. In equilibrium, the state of queue is independent of the rest of the
network and i, with probability ¢(ck). When forgetting the customer classes, the prob-
ability that queuek containsn packets is

PIN¢=n)=(1 )

Additionally, the probability that the customer at positibim queuek is of classi and at

stages of its route is—1; ()= k-
k

Corollary 1.2.13. A customer of clasisreaching the queuk at stages of his path sees the
gqueuek in its equilibrium state distribution,e. the probability that the queuk s in state
Ck just before its arrival is ¢ (ck).

This is trivial for networks with loopless topologies, as all packets arrival processes
are Poisson streams. In general, arrivals in a queue of a Kelly network are not a Pois-
son point process. However, the probability rate that a packet of classtages of
his path leaves the quelkein statecy after his transition can be easily expressed. Let

probability ux is then
(eDackie) = k@)—

Hence, if a packet of clagsat stages just left the queud, the probability that queuk is
now in statecy is ¢(ck). But the departures of queuén the direct process are the arrivals
in queuek in the reversed process, which is enough to conclude the corollary.

1.2.4 The M/GI/1 queue

We have presented up to now only queueing systems which are remarkably Markovian.
There are two reasons for this: rst, Markovian systems are easier to analyze, and hence
more results are known about them. Second, these models exhibit memoryless properties
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and low interaction between customers, which can be expected when dealing with a large
system with a large customer population.

However, queueing theory is not limited to Markovian systems, and many results are
known about other (albeit less complicated) systems. We shall present here a few results
about the M/GI/1 queue as an example, but since these systems are not central to this dis-
sertation and rather more dif cult to study, we will limit ourself to the single M/GI/1 case.
Although we will not use it here, it should be noted that the Palm calculus approach, such
as presented in [BB03] is extremely powerful for non-Markovian systems.

For an M/M/1 queue, the queue sikt) is a Markov process. However, this relies
on the fact that service times are exponential and i.i.d., and hence have a memoryless prop-
erty. Here, this memoryless property of services is no longer validNgtjlis no more a
Markov process: the probability of the next jump can depend on the past@lthpsugh
the remaining service time.

It is possible to construct a Markov process for an M/GI/1 queue by adding to the state
the remaining service time. But the Markov chain is then a continuous state process, and
this leads to slight technical dif culties. A more elegant approach is to consider the speci c
embedded chain dfl (t) just after packet departures, which will be a Markov chain.

Lett, (resp. ) denote the arrival (resp. departure) time of packetnd , its service
requirement. Let , denote the queue size just after e departurej.e. L, = N( 7).

Let A be the arrival point procesk., then veri es the following relation:

L 1+ A] n; if L 1
Lnsg =" Ininal L : (1.13)
Alth+1; n+tl if Ln =0
Dene Ap = Al na1 n+1; n+1] as the number of arrivals during the service of
packetn, and de nex* = max( x; 0). The previous relation be rewritten as follows:

Lo+t =(Ln D"+ Apsr (1.14)

Because the arrival process is Poisson, the arrivals prigr:to  n+1 and the arrivals
after n+1 n+1 are independent. Moreovér, depends only on the arrivals and service
times prior to n+1l n+1 . Hence An41 isindependent ofL k)k<n , @and(Ln)n2z is
a Markov chain. Contrary to the previous cases we have presdhtgdis not a birth and
death process. Because we “stop” at each departure, downward jumps are limited to one,

2'To give a rough intuition about this dependence on the past, consider the case where service times have a

bimodal distribution or{ 1; 2) with equal probability for each case. Assume that(resp. ) is very low
(resp. large), and let denote the arrival intensity. Consider the jump probabiligésl .1 = kjN, = i)
of the embedded chaiN,, when the queue is not empty (the embedded chain will be a Markov chain if the
process is Markovian). If the last event was a departure of a packet, then the remaining service time is either

1 0r 2, and we have®’(Np+1 = 1 1jN, = 5N, 1 =i+1)=05 (¢ '+e 2)! 05and
P(Np+1 = i+1jNy =Ny, 1=i+1)=1 05 (¢ *+e 2)! 0:5 wherethe limits corresponds
to 1! Oand »!1 . However, ifthe last event was an arrival and the penultimate event was a departure, it
means that there was at least one arrival during the current service time, and the next event will be a departure
only if there is a single arrival in the current service time. He{®n+1 =i 1jNn = N, 1= i+1)=
05 (e '+ e 2)! 0. Thisisenough to conclude th@,) does not have the Markov property.
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but upward jumps can be arbitrarily large.

From (1.14), the transition probabilitig¢n; i) of L, are:

k+1 I

8 h(
3 P(AQO; D= k+1)5 E

We if kK landn 1
pin+ k)= P(AQO; D= k)= E Core ifk Oandn=0
"0 ifk< 1
(1.15)

We can now determine the stability region of the queue:

Theorem 1.2.14.An M/GI/1 queue is stable if its load = E[ ] < 1 and the second
moment E 2] of the service requirement is nite, and unstable otherwise. Additionally,

function
1 Y1 2Ee @32

— N1 —
N(Z)_E[Z ]_ E e 1 2 7

Proof. From [1.14)L, is a re ected random walk o&* , with increments\, 1. Hence,

Ln isrecurrentiff A, 1] < Oand the increment second moment is nite.
[

We have seenth& (A, = k)= E ( k”!)ke n . Hence the following:

R
E[An 1]= (k 1)P(An=K)

k:0 n
# #
Y G LR O Y
B k! k!
hk=0

E ,e "e " E e "e "

|
=

E[A, 1]=

Similarly, E (A, 1) = °E[ ?]+1 is also nite, and(L,) admits a stable
distribution.

It remains to show thqL ) andN (t) have the same distribution. Sincg converges to
its equilibrium distributionP (L = k) = lim an A-o & . 1L,=k. ButsinceN (t)
has only increments of size 1, each upward jump has a corresponding downward jump, and
we have thaj A_o 1,\,(%f K 1N( )=kl 1. Taking the limit of this last inequality
leads toimain  hoo 2 ,Ing)=k = P(L = k), which prove that the queue size
just before packet arrivals admits the same stationary distributigh gs As the arrivals
are a Poisson stream, we can conclude using the PASTA proper.thiaandN (t) have

the same equilibrium distribution.
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This distribution satis es the balance equations, and the following holds:

X
8k 0; = np(n; k)

n=0
5("1 ( )k n+l ( )k
K = nE ————e + oE —=—e
o1 (k n+1)! k!
By summation, we have
x k
N (2) = kZ
k=0 |
5("1 ( )k n+1 ( )k '
= WE ~— e + oE e zX
o nel (k n+1)! k!
G L O L
= 0 k' e n+1l (k n)| €
k=0 ’ n=0 k=n _
i i
= oE e 12 4 n+1ZnE e 1 2z2)
n=0 .
N@ N " | !
N@D)= ————Ee @2+ e @2

Since N (0) = o, we get that

1 2Ee @2

N (Z) = N (O) E e 1 2) 7
Using the normalization constraing (1) = 1, we getthat N(0) = =1 , and
the last part of the theorem is proven. O

This theorem characterizes the stability and size distribution of the M/GI/1 queue. In
particular, the probability that the queue is empt§ is , which is a valid result for general
independent arrivals. Similarly, the GI/GI/1 queue is stable under the same conditions as
the M/GI/1 queue. The characteristic function of the queue size is however speci ¢ to the
M/GI/1 case.

Using this result, it is easy to deduce the Pollazcek-Khintchine formula:

Theorem 1.2.15Pollazcek-Khintchine formula)For an M/GI/1 queue with arrival inten-
sity and service requirement distributidn, the Laplace transforray (s) of the waiting-
time distributionf yy (t) is:

@a s

lw@=Ee™ = 11 ()

Proof. We will prove i@ by expressing the characteristic function of the queue size as a

dx+
Z=X

R 2
%8This result can be also proven directly, from the expressiglf () = e W@+ ¢ @e S@WZ( )
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function of the Laplace transform of the delay. Since the discipline is FIFO, the number of
packets in the queue just after a departure is equal to the number of packets during the delay
of this packeti(e. between its arrival and its departure). Hence, we have:

R k
n(2) = kZ
k=0
X 2
= P(Ln = kjDy, = t) fp (t)dtz"
k=0 Zt=0
X “1 k
= e t(:o) fp(t)z¥dt
_ t=0 :
v
= e @ DY (t)dt
t=0
n(Z)=Lo( (1 2)
Using theorem 1.2.14, we get that
_ s,_ (@ )sL (s
L®= v D= ST
Finally, we conclude the proof by saying that for all pack&g, = W, + ., and hence
Lo(s)= Lw(s) L (9). O
Since W] = @u .+ We can deduce the following Pollaczek-Khintchine
S=
mean-value formulas:
2
E[W]= 20 ) (1.16)
and
E 2
E[D] = ﬁ+ E[] : (1.17)

We conclude this section by Little's law. Little's law is not restricted to M/GI/1 queue,
and is valid for any stable queueing system with non-preemptive discipline:

E[N]= E[D] : (1.18)

As written here, Little's law is easily deduced for M/GI/1 queue from the relation

P

SW (T ) sW (T, )

o<, t © e , where(T, ) are the discontinuity points &/ (t), i.e. the packets arrival
times. The result follows by taking the expectation and the linhit
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n(z)= Lp( (1 z)) that we saw in the proof of theordm 1.2.15. Indeed, we have

_ @n(2)
E[N]= h@z ) i
=E De @2P
z=1
E[N]= E[D]

Little's law is valid for any system or even sub-system, as longjlas the law of the
number of customers in the (sub)system, @nthe law of the time spent by customers in
the (sub)system. In particular,Nf is the number of customers in the buffer of a queue, we
have hoi

EN = E[W]

As N = N, 5 0 when the queue is empty, alhl = N + 1 otherwise, we have that
E[N] E N = P(N 1), and using Little's law for both the queue and the buffer
(excluding the server), we get once again the probability that the queue is busy (or empty):

P(N 1)= (E[D] EW])= E[]=

1.3 Bandwidth sharing networks: a macroscopic model

1.3.1 Bandwidth sharing networks

Queueing theory focuses on the microscopic scale of networks. Mechanisms are solved
and explained at the packet level. However, as application messages correspond to many
packets, it makes sense to try to study the network performance as perceived by the user,
i.e. the performance of all packets stemming from the same user. In other words, we are
here more interested in the connection or ow point of view of the network than in its
packet-level analysis.

A natural question that arises in this context is for example to determine which share
of the network capacity should (or will) get a speci ¢ application or a specic user. In
the network community, this is usually called bandwidth sharing, and has been studied
for a long time. The objective of bandwidth sharing is usually to use all the available
bandwidth, whilst keeping the system stable and maintaining a kind of “fairness” in the
allocation to different users. Many algorithms, including most notably TCP, are meant to
allocate bandwidth to ows in a stable and fair way.

Fairness and utility

Stability is a well-de ned notion, both from the mathematical and the engineering points of
view. Fairness is less natural. The rst natural notion of fairness is the max-min fair allo-
cation, where bandwidth (or resources in general) is shared in the most equal possible way,
meaning that any individual bandwidth increase within the region of feasible allocations
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must be at the cost of a decrease of some already smaller bandwidth. This natural inter-
pretation has been the de nition of fairness for a long time.[In [Kel97], Kelly questioned
the optimality of max-min allocation, and introduced the notion of proportional fairness. In
[MWO0O], Mo and Walrand generalized this allocation with the family of weightefir
allocations, which is de ned as follows:

De nition 1.3.1 ( -fairness) Let S be the set of users of a network, and let (R*)ISI
be a set of feasible allocations. het= (ws)szs 2 (R*)SI be a sequence on non-negative
weights. Let 0 be a (possibly in nite) value.
An allocation = ( g)s2s is said to bgw; )-fair if it maximizes among all feasible
allocations the followindw; )-utility U ( ):
Zp .
> 529 wslog(s) if =1

1 -
s2s Ws7— otherwise

U ()= (1.19)

The weights are often omitted, and assumed to be all equal to 1 in this case.

Remark. The max-min allocation is the limits dfw; )-fair allocation when goes to
in nity. Symmetrically, maximum-throughput allocation (which maximizes the sum of the
rates) is the limit ofw; )-fair allocation when goes to zero.

This notion of bandwidth sharing extends naturally to servers and networks. Consider
for example a single server with a limited capactywith clients of different classes. How
shall one share this capacity among the different clients? A natural answer is to do itin a
way maximizing a well-chosen utility function, whilst keeping the total allocated bandwidth
lower thanC. We will not consider here the question of how to do such a sharing. Many
have proposed (distributed or centralized) algorithms that achieve some desired bandwidth
sharing. Such a goal is indeed important, but we will consider here as granted a way to do
an optimal bandwidth allocation that maximizes any utility function.

Static networks

Let us now generalize this approach to networks. Consider for example a network as de-
picted in gure[1.T with three different serve&, S, andS3 of respective capacitieSy,
C, andCs;, and for different class of users. Each class of users uses a xed route, consisting
of a list of 1 or more servers, possibly with repetitions. For example, consider that route 1
of clients of class 1 consists of the pd8y; Sy; S3) (meaning that users of class 1 rst cross
Si1, thanS; and nally S; before exiting the network), route 2 (§;; S3), route 3 crosses
only the servelS,, and route 4 consists @5;; S3; Sy; S;). Let nj denote the number of
users of class, and s be the bandwidth allocated to user

Allocating a bandwidth s to a clients of classi consumes s resources on all servers
belong to the route, multiplied by the multiplicity of the server in the route (in the example
above, a cliens of class 4 would consun s on S;). A bandwidth allocation is then said
feasible if on any server, the bandwidth consumption is less than the capacity of the server.
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Figure 1.7: An example of bandwidth sharing network.

Lemma 1.3.2. Assume that the utility functidd is strictly concave. Then any bandwidth
allocation maximizing this utility among a compact set of feasible allocations allocates the
same bandwidth; to all users of the clasis

Proof. Let = ( s)s2s be a feasible utility maximizindg). Leti be a class, and; the
number of clients of class
Let °=( 9s2 S be another allocation, de ned by:
8p

< u2clasgi) Y H :
0 if s2 C|a3$|)

”wo

s otherwise

Then Cis a feasible allocation, since for any class, the total bandwidth allocated to the
class in Cis identical to the total bandwidth allocated to the same class Additionally,
by convexity ofU, we have that

X X
u(d U( s)

s2class(i) s2class(i)

with a strict inequality if there is at least one usewhere s 6 {. Hence, since
maximizesU, we have that = © and the result follows. O

Remark.The(w; )-fair utilities are concave utilities.

Example 1.3.1: With these notations, an allocation will be feasible in the above example if
it respects the following inequalities, called the capacity constraints:

Ng 1+ N22+2n4 4 Cy
Ng1+nN3s3+ng g4 G

Np 1+ N2 2+nNg 4 C3

Dynamical networks

This allocation is de ned for any set of users. When this set of clients and their routes, the
set of servers and their capacities does not evolve in time, the bandwidth sharing network
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is said to be static: users cannot join or leave the network. However, today's networks are
often dynamic: a small fraction of the potential users is actually using the network. Users
sometimes join the systemd. start using their web browser or initiate a le download for
example). As for queuing theory, in the simplest model, users of clsve at a xed rate

i, require a random amount of service and leave when their service is nished.

The instantaneous bandwidth allocation at any time is performed as if the network was
static with its current set of clients. This instantaneous bandwidth allocation hence deter-
mines the time needed for a client to have its required service nished. We do not give here
details about the detailed clients arrival process: it can be any point process with intensity

i, meaning that in average; clients of class join the system per unit of time. This ar-
rival process can be steady or bursty, the most canonical example being the Poisson process.
Similarly, one can imagine many service requirement distribution, including the canonical
exponential distribution. The only assumption is that the mean service requiremeit
users of claskis nite.

How do such fair allocations work? For any strictly concave utility functions, includ-
ing the -fairness family, it attributes a lower bandwidth to classes with long route, since
they use more resource than shorter routes for the same bandwidth. In this aspect, they
differ from the max-min allocation, which can dramatically reduce the bandwidth allocated
to some users in order to gain a negligible increase in the allocation to a user who has a
lower bandwidth, and they have some global ef ciency criteria. However, contrary to the
maximum-throughput, they do not allow starvation easily (in faekairnesses do not allow
any starvation), meaning that users will (nearly) always have a positive bandwidth alloca-
tion. This comes from the fact that these utility functions have some fairness criteria, which
value more bandwidth increases on lower-bandwidth users than on higher-bandwidth users.
For -fairnesses, this trade-off between ef ciency and fairness (or social care) is controlled
by the value of : the lower is, the more ef cient the allocation is, and the highers,
the fairer the allocation is.

Bandwidth sharing networks were introduced by Kelly[in [KMT98], in order to dis-
cuss the optimality of max-min bandwidth sharing. Their main advantage is that, ignor-
ing the microscopic interaction of packets, they capture well the macroscopic behaviour
of networks. Hence, they provide a useful tool to compare the global performance (such
as the mean delay for service completion) of different bandwidth allocations and utilities.
They can be used also to compare different routing schemes, including multipath routing.
Bandwidth sharing networks are a good approximation of the steady state distribution of
gueuing networks: This is best illustrated by the following result, proved by etlgt. in
[KMT98]: in a stable regime of a static network, (a simpli ed version of) TCP-algorithm
leads to a bandwidth allocation which is a random process whose stable point is a weighted
proportionally-fair allocation. This result was generalized in the following years by many
people, in order to include some additional properties of TCP. The generalization to dy-
namical networks was mostly introduced by Bonald, Massoulié, Proutiére and Roberts, and
lead to important results. In [BM00], Bonald and Massoulié established the crucial result
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that(w; )-fair allocations achieve stability under the necessary condition that no individ-
ual link is overloaded, and 2 (0;1 ). In [BJP04], Bonaldet al. stated that bandwidth
allocation should be insensitive, meaning that the stable state of the system should depend
only on the networks topology and capacities, and on the traf c intensities. The precise ar-
rival processes and service distributions should not matter. These insensitive (or balanced)
bandwidth allocations have a very speci ¢ stationary ow distribution, which leaves little
room to inverse problems.

1.3.2 Bandwidth sharing networks are useful outside communication net-
works

We have introduced bandwidth sharing networks as a model for communication networks.
However, their applications are much broader than communication networks. Bandwidth
sharing networks can model any system with known utility and (linearly) limited resources,
as shown in the two following examples.

Example 1.3.2(Factory production) Consider the case of a factory, with production con-
straints. The servers are then limited resources, such as manpower, periodic supplies or
equipment. Classes are then product that need to be produced, and require part of the re-
sources. The “route” of a product determines which and how much of the resources are
needed. A resource can be heavily needed for a product, and hence appear several times
in the route. The bandwidth allocation corresponds to the total production per unit of time.
The utility function expresses the global gain of the production. Two speci c utility func-
tions must be mentioned here: rst, the weighted maximum throughput allocation, which
corresponds to the global gain if all products can be sold independently at xed prices equal
to their weights ; second, the max-min allocation, which express the global gain if one need
to assemble together one of each product to product the nal gbed. )-fairness is an
intermediate step, where the price of goods decreases when the number of available goods
increases. The bigger is, the sharper the decrease is. The limiting case s 1 , as
described above, where additional goods have no value if you cannot assemble them. This
example of bandwidth sharing networks as production constraints will be later referred as
the production example, or production context.

Example 1.3.3(Budget allocation) Another example of application of bandwidth sharing
networks outside communication networks is social care and governmental (or association)
budgets, which we will refer to as the budget allocation example or context. Assume that
one can divide the population in different groups with distinct characteristics, which one
could call classes. Consider that the government (or association) has different levers at its
disposal, all of which needs some budget, and have inhomogeneous ef ciency in increas-
ing the “condition” of different classes. This levers could be for example public education,
public universities, public transport, family welfare, unemployment security, economic de-
velopment aid, taxes reduction, etc. More precisely, assume that in order to increase the
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wealth of one person of one claissf i, the government needs to spend at least a;x

of the leverk, where those values, are known integer valu@What are the constraints

of feasible budgets in this case? Denote respectivel@yN andn; the budget allocated

to leverk, the total number of classes, and the number of persons inicld$en for any
leverk, the expenses must be lower than the budget, which in mathematical form, reads
as: 8k; iNzl niaik i Ck. This is equivalent to the capacities constraints for bandwidth
sharing networks, where users of clasguld cross the servéra; times. Now, one needs

to evaluate the bene ts of budget decisions. Let us assume that there is a known function
fi, that indicates the global beneft( ;) of ensuring a wealth increase to classi. The

global aim of budget decision is then to nd the class wealth increases that maximize the
global bene t,i.e. nd argmax :\':1 n;ifi( i). Thisis equivalent to the global utility that

is maximized by the bandwidth allocation in bandwidth sharing networks. The same utility
function could of course be used here: for example, maximum throughput utility would
mean here that one tries to maximize, as in the capitalism theory, the global wealth of the
country. Max-min allocation is a lot more social, up to the point of being communist: it
aims at giving the best situation to the poorest, in spite of having to dramatically cut the
wealth of richer people. -fairnesses are somewhere between maximum throughput and
max-min, and are strictly concave (meaning that one more dollar is more valuated for poor
people than for rich people, but has a positive value for all people). In contrast to communi-
cation networks, we have here allowed different utility functions for different classes, since
their “starting situation” might be different. What would be the aim of modelling welfare as
such a bandwidth sharing network? It provides an easy way to compare the global gain of
different budget allocations, as can be shown in the following example: assume that the total
budget for welfare is known, and that one has to split it among the different levers. Then, if
the utility functions and class populations are known, it is easy to estimate the global effect

to nd the best splitting.

1.3.3 One single path

This section provides a rst example of bandwidth sharing network and detailed computa-
tion for its bandwidth allocation in the case offair allocation. The network is the most
simple example we can imagine, that is a single path from a source to a destination. We
consider only the static network, where the number of users in each class is xed. Users
may not enter or leave the system. This section aims both at giving a rst concrete example
of bandwidth sharing network and their bandwidth allocations, and providing preliminary
results we will use in chaptgt 5 of this dissertation.

Consider a single static path, as depicted in Fig. 1.8. The path consistssefvers
(S1,...,Sk) in series, where the serv8y has capacity; . There are&K +1 class of users:

2This assumption is not restricting: rational case is easily extended by multiplication of costs and budgets
by a common constant, and real case as limit of the rational case.
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No —| S1 S —----- Sk — O

- -

N 1N2 2 Nk k

Figure 1.8: An example of path.

users of clas® use the whole path, and users of clag¢ i  K) enter the path just
before servef5;, and exit the path after serv&. Each class hasn; users, and each of
these users receives a bandwidth equal to

According to the settings, the capacity constraints are:

81 i K; Npo o+ Nj Ci

Because users of clasgassuming their existence) have no other limits on their bandwidth
than these capacity constraints, the constraints must be tight, and we get the following:

81 i K; Ngo+n i=Cj : (1.20)

Considering the -fairesgde ned in (T.19), and using (1.20), we get the following utility:

X 1
u()= niw; —
i=0 1

1 n
= Nowo § + nw, — 00 : (1.21)

where for simplicity of notation, when; = 0 we abusively de ne

8

4 Ci Mmoo 1 S0 ifC ngo O
I - - .
N 1 otherwise

Maximum throughput

The bandwidth allocation chosen here is one of those that maximize the (weighted) global
throughputj.e. the (weighted) sum of all individual bandwi@ It corresponds to the case
= 0. The utility is then
!

X C X
Uo( )= niWiF"' No o Wo Wiln >0
i=1 ! i=1

P 1 P
\We will abusively writeUs( ) = = (,5 =— with =1, instead ofUs( ) =  ,g log( s). This
is not correct formally, but computations (and in particular differentiation) remains valid, as well as the nal
results.

3ln the case of maximum throughput, it is often implicitely assumed that all weights are equal.
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Its derivative with regards to o depends on the sign of the expression

K
Wo iz1 Wiln>o0 .

Hence, ifwg < iK:1 w; 1n,> 0, the maximum utility allocation in such a case is

_ Ci minlj KCJ'

8
< 6=0
(1.22)
=1 Ci
i ni>0ni
Otherwise, the maximum utility is
8 C
< -

ni

Max-min allocation

A bandwidth allocation is said to be max-min fair if and only if any individual bandwidth
increase within the region of feasible allocations must be at the cost of a decrease of some
already smaller bandwidth. It corresponds to the cak& . The only max-min allocation

in our case is 8
< .
o=miny i k fi(Cy;no;ni)
6 no e (1.24)
e T
where we de ne for all, f;(Ci; no; n;) = noﬁ—'nl

Other -fair allocations

The parameter is now strictly positive and nite. Taking the derivative ¢f (1I]21) leads to
the following:

@u X Ci n
L) . No Wo Wilp>o — 0
@o -1 ni

(1.25)

SinceU is continuously differentiable on the region of feasible allocations, and as the
limit of the derivative when ¢ tends to 0 by positive values #s1 and the limit when g
tends tominy ; g % is 1 (assuming that the correspondingis not null), we know
that the maximum of the function on the feasible region is in the interior of the region, and
is a stationary point o) . The -fair allocation hence veri es the following stationary
equation:
Wo X nj

— = Wilnso

_— 1.26
0 i Ci noo ( )

We are not able to solve the stationary equation in a general case.

53



Identical capacity along the path

However, a solution can be found in the particular case when all servers have the same
capacityC. The equation then reads

X
(C noo) Wwo= o  Wwn; : C npo= o HR
i=1
C
) = ; 1.27
0 Ng+ A ( )
P [
iK:1Wini

where we de ne the “weighted sum” asr =

constraintsO), we getthat= 5 C.

Using the capacity
Wo

1.3.4 The triangle network

The previous example was the single source-destination path, which can hardly be called
a network. We extend here the results to a non-trivial (but small) network topology: a
“triangle network”, as depicted in Fi§. 1.9. Similar to the single path network, we will use
this network in chaptdr|5. However, in contrast to the previous case, we will see here that
there is no closed-form formula for the bandwidth allocation. This situation is in fact the
most common for bandwidth sharing network: bandwidth allocations are implicitly de ned.
They can be approximated numerically for a given set of parameters, but no closed form
formula exists for most networks.

no n3

N\ v

Ky S1 1

¢ / \ a

N\

v

3 2 ks 2

Figure 1.9: The triangle network.

The triangle network consists of 3 servers, each server being connected to both other
servers. Servey; has a capacitZ;. ki ows cross the serve§;, and each of them gets
an allocated bandwidth;. There are also ows using two servenss (resp. n, andns)
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ows use the rout€S1; Sp) (resp.(Sy; S3) and(Sy; S3)) and each of them gets an allocated
bandwidth 3 (resp. 2 and ;). For simplicity, we will call ows that use the routs;; S3)
(resp.(S1; S3) and(Sy; Sy)) of classl (resp.2 and3), and the ows that have routes;) of

classi®

The capacity constraints read as follows:

ki 1+nxo+nzz C
ko 2+ n;1+nzz Cp

ks 3+ Ny 1+ ns > Cs (1.28)

Assuming thak,, ko andks are positive, these constraints are tight, and we get:

Ci n2o n33

1= K
_ C, ni1 n33
2 K
C n n
gz 2 11 22 . (1.29)
K3

Assume also that the bandwidth allocation maximizes tHairness utility in the ca-
pacity region, with weightsv; (resp.v;) for ows of classi (resp.i9:
x3 1 1

U ( ; ): . kiVili +(Xi + ni)wili

1 1 1
= (X1 + nl)Wlll +( X2+ nz)W212 +( X3+ n3)W313

(Ci (X2+1n2) 2 (x3+ n3) 3)*

+ K1V
@k
+ kzvz(c2 (X1+ Nn1) 1 (1X3+ n3) 3)1
1 )k
1
+ k3V3(C3 (x1+ 1) 3 (1X2+ n2) 2) : (2.30)
(1 k3

Except in very speci c cases (max-min and maximum throughput fairnesses), there
is no explicit solution( ; ) maximizing the utility, even in the simple case where
Ci1 = C, = C3. This situation is representative of the general case for bandwidth allo-
cation in bandwidth sharing networks. The bandwidth allocation is de ned implicitly, and
numerical approximatiore.g. through convex optimization, is the most common way to

compute them.
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1.4 Statistics

The previous sections were devoted to explain the behaviour of networks, and introduce
the theoretical tools used to model them. This section aims at presenting basic notions of
measurement and statistics, which are the other basis of this dissertation. Statistics is the
branch of mathematics concerned with collecting and interpreting data. The theory is rich,
and our presentation is far from complete. We refer to [SHe95, Bor98] for additional results.

1.4.1 Parametric estimation and estimators

Assume that you have access to empirical measurefent ::; Xy ) of some quantity

which has a physical meaning in your system. For example, the samples could be delays
of individuals packets, or loss events of the system. Assume also that you canaygess,
through theoretical modeling, the shape of the distribution of these samples, depending on
a few parameters. Taking the example of delays and guessing that the system behaves as an
M/M/1 queue, the distribution of the sample should follow an exponential random variable

of parameter . Is it possible then, from this empirical sample and the guessed shape,

to guess the value of the unknown parameter? This is exactly what parametric estimators
aim at doing.

More formally, consider a familyp of probability distributions (:), where is a pa-
rameter, possibly a vectdr. (:) can denote here a probability mass function in the discrete
case, or a probability density function in the continuous case (the latter will be used in this
presentation).

recovering the value of some functigrf o) of the real parameter. In most caseg(:) is
the identity function or some “simple” function . A6 is a random vector'?(x )isalsoa
random variable or vector.

Remark.A given estimator should formally always use samples of the same size. However,
in practice, we will often consider a class of estimators, one for each sample size, and denote
them as a single estimator.

Example 1.4.1: Assume for example that the family of considered parametric distributions
D =ff g= U[; +1 2R isthe family of uniform distributions on an interval of

distributionf , with ¢ 2 R.

An estimator of g is for example
1(X) 1i N
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This estimator returns the maximum possible value §orSymmetrically,
b(X)= max X; 1
1i N

is also an estimator, bug minimizes the estimation. A median estimator could for example

be ]
ming i N Xi+tmaxy i nX; 1

2

b, is the estimator which puts equal distance betwemd the lowest sample and between
the highest sample arfy + 1.

by(x ) =

The previous example showed that one can design many different estimators for the
same problem. This raises a natural question: which estimator should one choose ? And
how to measure the quality of an estimator? If building estimators is the primary objec-
tive of parametric inference (the branch of statistics which studies the estimators based on
parametric distribution families), the second task is to quantify their performance. We will
present a few classical de nitions and results about this in the following section.

1.4.2 A few classical results

De nition 1.4.1. The biasB P of an estimatoPis de ned as

h i
B D =E_ 6 bX) g(o ;

where E [h(Y)] denotes the expectation oY) whenY is sampled with distributiof.

Remark.The bias depends only on the estimator, and not on the observed data (in contrast to
the error for a given samph¢ , which would beb(x ) dg( o) and depend on the estimator
and the sample).

De nition 1.4.2. The variance of an estimator is de ned as

h iz#

Var b =g bx) E_ bx)
As b(X) is in itself a random variable, this de nition is precisely the de nition of variance
for any random variable.

De nition 1.4.3. The mean squared error of an estimator is de ned as
mn #
2 def 2
MSE b =E  PBx) g(o) Zvar b +B b

De nition 1.4.4. An estimator®is said to be unbiased if its bias is 0.
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Remark.For nite size samples, as shown in the exaniple 1.4.2, unbiased estimators per-
form often poorly. The problem is that bias speaks only about the mean of the error, and not
the mean squared error or the mean absolute error.

Example 1.4.2: Assume that X is distributed according to a Poisson law of mgaiwe
wish to estimatgy( o) = P(X =0) 2= e 20 with only one observation oK . In partic-
ular, this is the probability to have no arrival during two units of time for any network with
Poisson arrivals of intensity.

If b(X) is an unbiased estimator, then we have

9( 0= PrPX =k
k=0
X k
elo=¢g ° b(k)k—‘?
k=0
X k
e °= Dl
k=0

By the uniqueness of Taylor series, we know that
blky=( 1

The estimator is unbiased, and indeeX if, : ::; Xy are i.i.d. with a Poisson distribu-

tion, we have

1 X

lim — )= =e 20
JmoS X =g(0)=e
i=1
However, if one wants to use this estimator on a single saXpli¢ gives no valuable

information abou( o). For evenk, the unbiased estimator states that it is almost sure
that no arrivals will occur during any time interval of length 2. Clearly, that probability is
strongly over-estimated. But for odd the result is a non-sense, since a probability cannot
be negative!

Finally, the mean squared error of the unbiased estimator is

R 2 k
MSE b = e 20 (1) k—?eo

For ¢ '”TZ, the mean squared error of the unbiased estimator is larger than the mean
squared error of the very crude estimator which always ret%n(riis mean squared error is
obviously 2 e 20, hence less thaj).
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We are therefore sometimes interested in estinfZdnat are biased for any nite size
samples, but whose bias tends to 0 as the sample size tends grows. Such an estimator will
be called consistent.

De nition 1.4.5. An estimator sequencebn N is called weakly (resp. strongly) consis-
n

tentiflimny By (X) = g( o) in probability (resp. almost surely).

This interest for nitely-biased consistent estimator is increased by the Cramer-Rao
lower bound on variance of (unbiased) estimators. This means than if we can nd a biased
estimator that has a mean squared error equal to the Cramer-Rao lower bound, we know
that it is as ef cient as any unbiased estimator can be.

De nition 1.4.6. Let us denote = ( 1;:::; n) as the parameter vector. The Fisher

inforhmation matrixl ¢ ( )fortk?e densityf istheN N matrix de ned by(l ¢ ( ))(i;j) =

Er &inf (X)@—@?Inf (X) .

Remark.Under suitable regularity conditions, the Fisher information matrix is also the co-
variance matrix of the vect((r@@i Inf )1 i n. This holds because when one can exchange
the differentiation and integral signs, we have

y
E 2t 0 @it x) f x)dx
@i 7 @i
- 9 x)ax
@
= g f (X)dX
E; anf (X) =0 : (1.31)

This last relation will be also useful later.

Theorem 1.4.7(Cramer-Rao lower bound).etX be a random variable according to some
densityf ,, where gisa(l1 N) vector. Letb(X) 2 RKX be an estimator of ( o). Let
h( o) 2 RK be the mean oP(X). LetHO( ) denote the derivativéK  N) matrix of
h( ), thatis(HO( ), = @@'g(j ). Assume that;

1. The Fisher information matrix is always de ned, or equivalently, foalsuch that
f,(X)>0andalli<N , @@? Inf ,(X) exists and is nite.

2. One can differentiate under the integral S@%for anyi andj :
Shi(aE @ TheOf 00 =[FTRX) @1, (x) dx
Then h i
Covi , B(X) H°(o)(I (o) *' H° o)

where is de ned by positive-de nite matrix ordering.

%2Formally, these are families of different estimators, one for each sample size.
$Recall thatb(X) is a function which depends only ofi, and not on .
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Proof. From assumption 2, we have

@?@(J_O):z b (x) @féEX) dx
: qm)@ﬂao”fAX)dx
@&(j 0) _ E b (x) @nf@j (X)
Considering the vectoK = b(X) ; @nf lO(X) piil @an"(x) , we have thanks to

(1.37) that |
Cov D(X) HO( o)

Covys O(x)(K) = tHO( 0) I+ ( o)

Usingz= t; tHY o)(I1+( o) 1 and the fact that covariance matrix is positive semi-
de nite, we have that for any vectarin RX :

0 zCov(K)Zz

Cov b(X) HY o) t |
HO( o) I+ (o) (11 0) "HY o)t

0 tCov B(X) %t tHY )(Ir(0) *HY )t

tHY o)1t (0) "HYA )t+tHY o)1t (0) "HY o)t
0 tCov B(X) % tHY o)(:(0) *HY )% : O

tt tHY o) (Ir(o) *

Example 1.4.3: This formula may seem complicated, but in most cabebwill be quite
simple. Ifgis the identity function an®is unbiased, theh( ) = , and the lower bound
reads Cov P(X)  (11( o) *

Example 1.4.4: Assume nowg is the identity, is a scalar and is biased. We have
@8(") °
1+
@9
'+ ( o)

h()= +B b . Thenvar

De nition 1.4.8. An estimator is said to be ef cient if it is unbiased and if it achieves the
Cramer-Rao lower bound.

Remark.Note that we require an ef cient estimator to be unbiased. Therefore, the mean
squared error of any ef cient estimatorTs (1 ¢ ( o)) ! wheng is the identity. There can
be some biased estimators that have a lower mean squared error.

De nition 1.4.9. An estimator sequence b, is called asymptotically normal if

n2N
pﬁ b g( o) converges in distribution thl (0; V) for someV > 0.
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1.4.3 Maximum likelihood estimator

In this section, we will introduce a class of estimators called Maximum likelihood estima-
tors (MLE). A MLE infers parameters by nding the parameter values that maximize the
likelihood of the observation data. For the remaining part of this dissertation, all estimators
will be MLESs, unless otherwise speci ed.

densityf ,, the likelihood functionLx ( ) of 2 I m(g) is dened byLx ( ) =
def
oz (X) Emax seg)= f (X).

Remark.We will often use the log-likelihood functioh (:) = log (L (:)) when the loga-
rithm simpli es computations.

Remark.If (Xq1;:::;Xn) are i.i.d. distributed, thehx ( ) = QiNzl fgo)= (Xi) and

Ly ()= L logfg )= (Xi).

De nition 1.4.11. Let D a family of probability distributionf (:). Given observa-

argmax Lx () =argmax Ly ().

Remark.We will often denote byt& the maximum likelihood estimator givdni.i.d. ob-
servations. This de nes a sequence of estimators as the sample size grows.

Lemma 1.4.12. The maximum likelihood estimator is function invaridrg, é’( )= g(D).

Example 1.4.5: We consider again the case of exanjple 1.4.2. We want in a rst stage to
estimate g (i.e. gis the identity). For one observatioh, the MLE estimatop(x ) veri es:

oz@b(x)(x)
&
xe P00 bx)y e B0 brxy
X1 X

0=
Bx ) =X

In a second stage, we estimate? ©, and hence considg( ) = e 2 . Thanks to the
function invariance of MLE& )= g(b) =e X,
Note that the MLE is biased in this case. We have
h i X
Er, B(X) = e e ©
X =0

6( 1 %) 2
=g o 3z 0
X1 © vee

The mean squared error is

MSE b =e 40 20 o3¢ 4g ol e?)

which has to be compared to the mean squared €trore “ ©) of the unbiased estimator.
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In fact, this situation is representative of the general case: the MLE is often biased for
nite sample sizes, but has low mean squared error.

Remark.MLE need not exist, or can exist and not be unique.

Example 1.4.6: Consider random variables sampled uniformlyin + 1]. Any value
betweenmaxX; 1 andmin X; is a maximum likelihood estimator. The MLE is not
unique in such a case.

Similarly, consider random variables sampled uniformiffan [. A maximum likeli-
hood estimator would be the lowest value strictly greater thar X ;, which do not exist
for any nite sample. MLE is not de ned in such a case.

We now give two fundamental theorems. The rst one states that under mild conditions,
maximum likelihood estimators are consistent when the sample size grows. In practice, this
convergence is quite fast, meaning that the bias for nite samples is not a real problem. We
do not have however any results to “guarantee” that the convergence is indeed fast.

The second result is that maximum likelihood estimators are asymptotically normal and
asymptotically ef cient. This means that we know the variance of maximum likelihood
estimators, and we can control easily the deviation between one estimation and the true
parameter. Once again, mild conditions will be necessary.

belongs to the parameter space De ne for everyM and every observatiod 2 X

f.(X)
f(X)

. def .
Z(M;X) = Irzﬂ:w log

Assume that for each 6 ¢ 2 , there is an open sdai including such that
E; LX) [Z(N ;X)] > 0. Assume further that there is a compact €etsuch that
Es | [Z( nC;X)]> 0. Then

lim B, = , almostsurely (a.s.).
Proof. We want to prove that

8 > 0;P, limsupkR, ok =0
n'l
Let > 0 and Ng be the open ball of radius around . Since the open
setsfN : 2 CnNg)g cover the compact se€EnNg, we can e>§[ract a hite subcover
(N1;:::;Nk 1). Rename nC asNg. Then = Ng] iK:1 N;i , and8i
LEr (x)[Z2(Ni;X)] > 0.
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Let us denote byX 1 an in nite sequence of observatiofX 1; X ;:::). Then
X1 Iimsupkbn (X1;:::5:Xn) ok
nil
n o]
3 b

2NN (X)) 0in mtelyoften;

9
[ < X -
X1 o Z(Ni;X;) 0Oinnitely often

But8i 1, E LX) [Z(Nj; X)] > 0. Therefore, by the strong law of large number,

08 91
< 1)@ =
8i, P@ X, = Z(Ni;Xj)  Oin nitely often, A =0; and
: - :
0 8 91
[K < l)@ =
P@ X, = Z(Ni;Xj) Oinnitelyoften. A =0 O
i=1 " j=1 ’

Lemma 1.4.14. Assume that (X) is continuous at for every , almost surely for every
X according tof (X). Then the condition E [Z(N ;X)] > 0in Theore 3 can
be changedto E_[Z(N ;X)]> 1

Proof. Let N be a closed ball with radius at mo%tincluded inN .We therefore have
VA NACRRN , i1=1 N = gandZ N(k);x is increasing withk for every
X. SinceN®™ is a compact set, anfl (X) is continuous at for every , there is a

«2N®suchthaz N®;x = o0 As 1
k

f,(X)
f(X)

lim ZIN®:x) =10
Jr ( ,X) =log
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IfE: [Z(N ;X)] < 0, we use Fatou's lemma for everyé g to get
0

h i
i (k). : (k).
|I|£T!11Inf E; . Z(NY:; X)) Es . kI!llrn Z(NY; X)

fo(X)

Efo Iogf x)
f (X)
IoZ .04 f ,(X)dX
f (X)
fO(X)f o(X)dX
> log(1)

h |
i (k).
“Eﬁmf E; o (X) Z(NY;X) >0

We can now choosk ( ) and take the open ball of centefand radius at mos[;%
suchthatEo(x) Z(N(k());X) > 0. O

Example 1.4.7: Let X; be a random variable with an exponential law of paramejevVe
want to show that the MLE is consistent in such a case. The hard work to use Theorem
[1.4.13 is to verify the assumptions.

f (X)= e X iscontinuous for every andX .

LetN 2 Nand & . WesetN = L, + & . Then
8
%Iog(o) Xo log +z +X +g& if x i
N
Z(N;X):§Iog(o) X o log ¢ +X4 it - x 1o
N N
” log( ¢) X o log &+ X . it 1 x
and
_ 1 1
Ei [ [Z(N ;X)] log( o) oEs [X] log *N T N E:  [X]
1 1
log(o) 1 log + + —N
N 0
E: [Z(N;X)] 1 for N big enough.
Finally, letC = ;N . Then:
8 .
% log(0) X o logs+ X% if x & -
lo X logN + XN if L x ZNjooN
Z( nC;X)= 9 o) ° 9 1 1 . QN log N NE L
log(0) X o logg+ X if N x
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and

Er  [2( nC;X)] log( o)  oFEr  [X]

Zi Z 2N log N
N NZ 1
+ log(X) oe °*dX logN . e XdX
0 1
Zy "z,
+log N oe °XdX +log N 0e X dX
2N log N N
NZ 1
Z 1 Z 2N log N
N
log( o) 1+ oe ® logXdX  ologN lN Y odX
0 N
2N logN
+logNP, X NZ 1
1 1 1
Er [Z( nC;X)] log( o) 1+ o NIOQ(W) N
2N logN 1
olsN) Nz N
2N logN
+logNP, X NZ 1
1 2NlogN
Er ([Z(N;X)] log(o) 1 o St NT o1
2N logN
+logNP, X S

E: . [Z(N ;X)] O for N big enough.
We have veri ed the conditions of Theordm 1.4.13.

We know state the following theorem, showing that under some mild regularity condi-
tions, maximum likelihood estimators are asymptotically normal, with a covariance matrix
equal to the inverse of the Fisher information matrix. We will give no rigorous proof of the
theorem, as it is quite long and complicated and can be found in most textbooks. But we
will give the ow of ideas.

let By be an MLE. Assume th&; is consistent, and that the density(X ) has continuous
second patrtial derivatives with respect toand that differentiation can be passed under the
integral sign. Assume that the Fisher information matriX ) is nite and non-singular.
Assume that there exi#s (X; ) such that

1.8;kij sup k r gy log(f (X)) g%rlog(f (X)) | Ki(X; )

2.8 limpy oEf (x) [Ki(X; )]=0
Then undePo,pﬁ bn o converges in distribution tdl  0; I l( 0) -
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one can show thaf, (X) = op 191W .
N

Using a rst-order Taylor expansion, we can get that

1
|OO(X)+ B By o =o0p %W ;

where the column joBy is @j@gjx) for some N between( o); and(bN)j.
h= i
Next step is to show that € 1° (X) = 0, IDWIOO(X) PN (0:1¢( o) and
pWIOO(X)z Op(1). Similarly,Bny = 1 t( o)+ Cn,WithCn = 0p(1).

ThenCy (v o) = op(#L2). Itis enough to see that

IOm"O(X) It ( o)pﬁ(bN 0) = 0p(1) ;

and we get that

(o) NB o™ ©l(0) ;

which is enough to conclude since multiplication by a matrix is a continuous functian.

1.4.4 Expectation-Maximization (E-M) algorithm
Heuristic idea and toy example

The Expectation-Maximisation algorithm is one of the algorithms that allows one to numer-
ically compute the maximum likelihood estimator when a straightforward maximization is

dif cult. The E-M algorithm is especially powerful when some data is missing or unob-
served and the likelihood of the whole data, including the missing part, is easy to maximise.
The heuristic idea is then to estimate (estimation step) the missing data based on current
parameter estimation and the observed data, and to update the parameters (maximisation
step) according to the observed data and the estimated missing data. In most cases, iterating
these two steps can be proved to converge to some stationary point of the likelihood. A
more complete presentation can been found in [MKO3].

Example 1.4.8: Let us take a simple model taken from genetic studies, where four out-
comes (phenotypes) are possible for each observation (organism), with respective i.i.d.
probabilities of 7, 17, 1T and% + 4, for some parameter (representing the proba-
bility of one gene to be expressed). etdenote the number of observations of typand
X = (X1;X2; X3} Xa).
Then the likelihood of observation is
(X1+ Xo + X3 + X4)! g X2¥ X3 1 X4

L (x)= - i -
( ) X1!X2!X3!X4! 4 4 2 4

This expression is simple enough and could be directly maximised owut we will
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apply however the E-M algorithm, for a better understanding.

Let us divide the last case in two different cases, with probabiliayld%. If y; denotes
the number of observations of typeafter this division, therx = (X1;X2;X3;X4) is a
reduced data of = (y1;Y2;¥3;Va;Ys), wherexy = ya + ys andx; = y; otherwise.

The log-likelihood of the total datg is

X5
L (y)=log((y1+ y2+ ys+ yas+ ys)) log (yi!)
i=1

1
+(y1+ y4)|09;1+(yz+ ys)logT yslog 2

If one knows the full datg, it is easy to maximise the likelihood:

@ (v)
=0
@
) it ya Yot Y3 _ g4
1
) _ Y1+ Yya

T Vit Y2t ystys

All what is left to do is now to estimatg, andys. If we knowxs = ys4 + y5, and
we currently estimate the parameter to B8, then the natural (and maximum likelihood)

® e o (D) —

estimate foly,” isy,” = Xa——-
a2

In this example, the E-M algorithm is the following:

1. Choose one random valu®

)
2. Computey'? = x4~ ;

P, 1
=tz

(p)
3. Compute (p+1) = %;
yit+y2+ys+ y‘(tp)

4. Loop to step 2 until convergence.

For the numerical example, assume we have 197 observations, and the following data
X =(34;18; 20; 125). The maximum likelihood estimator = 0:6268214980

Starting from (@ = 0:5, and using E-M algorithm, we get:
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(P

(M b

(pt) b
(p) b

0.5

0.126821498

0.1465

0.608247423

0.018574075

0.1346

0.624321051

0.002500447

0.1330

0.626488879

0.000332619

0.1328

0.626777323

0.000044179

0.1328

0.626815632

0.000005864

0.1328

0.626820719

0.000000779

0.1335

0.626821395

0.000000104

0.1346

OINO|O B W|IN|FL,O|T

0.626821484

0.000000014

Algorithm

for each , there is a densit§ (X ;Y ) suchthaf (X)= f (X;Y)dY, and let of

densityf (Y jX) = ff(ﬁg) denote the conditional density of the missing data given the

incomplete data, for any parameter

Then one can approximate the log-likeliholod (X ) with the expected complete log-
likelihoodQx ( j )= Ef (vjx)[logf (X;Y)].

The E-M algorithm is the following:
E-M Algorithm: Take any random value fof® and iterate the following for each stép

Expectation Step: Compu@y  j ®

Maximisation Step: Computék*l) = argmax Qx j *

Properties

The E-M algorithm has several useful properties, ensuring that the likelihood can only in-
crease at each step, that any xed point of the algorithm is a stationary point of the likeli-
hood, and that under some mild conditions, the algorithm will converge.

f,2D .
sequence of parameter estimations from the E-M algorithm.

ThenL w1y (X) L @« (X)), with equality iffQx (k+1)j k) = Qx
andf .« (YjX)=f @ (Y )X ) almost everywhere.

(k)j (k)

Proof. For any parameter valueand dataXx andY , we have

fX:Y)=f (YjX) f (X) (1.32)
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Taking the log, then the expectation with respect to the dehsity(Y jX ), we get that:

L X)=Qx % E vx)logf (YjX)] (1.33)

and

Loy (X) L (X)=Qx ®Dj0 g MM

+ Er o vix) 09t co (YIX)  Er ((vix) [0gf ey (YjX)]

By de nition of <t Qy  (k*Dj (k) Qx ®j K And Jensen's inequality is
suf cient to prove that E (v jx) [logf ) (Y jX)] Et . (vix)[logf (Y jX)] for
any , with equality only if both densities are equal almost everywhere. O

Corollary 1.4.17. If the likelihood of the dat&X can be bounded above, then the sequence

(k+1)
L x k2N Converges.

Corollary 1.4.18. Assume thaX admits a uniqgue maximum likelihodd ThenPis a xed
point for E-M algorithm.

Theorem 1.4.19.We use the same notations and assumptions as in th¢orem|1.4.16. Let
denote a xed point of E-M algorithm. Assume that the functiods Qx ( j ) and
' Ef (vjx)llogf (YjX)] are differentiable. Then 'L  (X) is differentiable at
and every partial derivative is zero at this point.

Proof. Equation [(1.3B) proves that the log-likelihood is differentiable at As is a

maximum forboth ! Qx (j )and ! E; (vjx)[logf (Y jX)], both functions

have partial derivatives equal to zero at that point, and it is the same for the log-likelihood.
O

Theorem 1.4.20.We use the same notations and assumptions as in theorem 1.4.16. Assume
further thatL x ( (X)) is bounded or converges, and that there3s 0 such that for ank,
Qx ®j k) Qy Wk k k*1) (k. Then the sequenc&’ converges.

Proof. Lx ( () is an increasing bounded sequence, therefore converging.

Let > 0. 9N, such that8n N, 8p 0, Lx ( ™Ry L x( ™M) =

ip=1 LX( (n+i)) L X( (n+i 1)) <

Theoren] 1.4.16 shows that for akyLx ( <*9) L x ( ®) Qx *Dj ¥
Qx () ®  we get then that P, Qx (<*Dj (+D) Qx  (j (i D <
whichleadsto ~ P, k (™D (1 D gngk (P (Mk<

The sequencel®) is Cauchy, therefore converging. O

P

The last theorem we present here speci es at which speed the sequence of estimated pa-
rameters converges to the nal value. More speci cally, it shows that the difference between
the current estimation and the limit is multiplied by a constant at each step: convergence is
exponentially fast. We refer to [MK08] for the proof.
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Theorem 1.4.21(Speed of convergence)Ve keep the same notations. Assume further
that the sequence®) converges toward some value. Assume also that each matrix

@Lé(# e s ) is de nite negative, bounded away from zero uniformlkin

Then we have tha@Q(X@# Co is de nite negative, and that

" #
wn . @Er oy llogf (YiX)] B (i) Y
@? @ ()

+o ® + o (k)

1.4.5 Design of Experiment

Given a parametric distribution family and a sample, parametric inference focuses on, deter-
mining the “true” parameters that match the sample. Design of experiment (or, depending
on the context, survey of sampling) is a complementary approach. It aims at characterizing
experiments which, within some constraints, will lead to the best samples and parametric
distribution families for inference. Here, the quality is measured in terms of bias and vari-
ance of the nal estimator. In other words, design of experiments studies how one can shift
a little bit an experiment in order to get more exploitable results. There is little theory of
design of experiment, outside the theory of inference. This is more a case by case practice,
where each case depends on the particular constraints and objectives of the experiment.
However, the following elements are often useful:

repetition repeating independently the experiences allows one to reduce the bias of
the measurements;

blocking this corresponds to grouping some elements, in order to remove unneeded
random effects;

factorization exploring the effect of different factors can usually lead to better results
than methods that explore one factor at the time. This effect is particularly clear in
the example that follows.

The subject of design of experiment for communication networks has been partially ex-
plored in [Par0B].
Design of experiment can be illustrated by the following example:

mated using a pan balance. One might use the balance only eight times, and each weighing
has a normal random error, of null mean and variantelt is possible to put any combi-
nation of objects on each pan, provided that no object is present simultaneously on the two
pans. A natural way to proceed would be to use the weightingneasurav;, leading to an
estimation with independent white Gaussian error of variarfoen each weight. Another
possibility is to use combination of objects, as follows:
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ExperimentH Left pan \ Right pan‘
1 (12345678) Empty
(1348) (2567)
(1258) (3467)
(1678) (2345)
(2378) (1456)
(3568) 1247)
(2468) (1357)
8 (4578) (1236)
Let X; denote the (possibly negative) result of experimieit. the weight that must
be added to the right pan to obtain balance. We then have the following estimators:

Njojga|b~hwWIDN

X1+ Xot+ X3+ X4 X5 Xg X7 Xg

\b]_: 8
X1 Xo+ X3 Xg+Xs Xg+ X7 Xg
\IV2=
8
e = X1+ Xo+ X3+ Xg+ X5+ Xgt+ X7+ Xg
g =

8

They are unbiased estimator, and their varianc%ﬁisThis means that using a new com-
bination of objects, we have been able to reduce the estimation error. However, it must be
said that the error for different objects is no more independent.

1.5 Network measurements

1.5.1 Communication networks measurement

The ability to measure any computer system is vital for a variety of functions including
troubleshooting, managing, optimizing and forecasting, and communication networks are
no exception for it. The impressive growth of communication networks in general and of
the Internet in particular in the last two decades, paired with the globalization of economy
and cultural exchange, has lead to an increasing need of networks measurement. This need
is shared by most actors of today's network:

network operators: these are the companies which run the networks. They need to
manage their network, and detect and localize possible faulty links to repair them
(ideally before they impact client service). They also need to evaluate the load on
their network, in order to provision it and eventually upgrade links. Finally, knowing
the main features of the traf c on their network allows them to optimize the network
for these features.

online service providers: we mean here the many organizations that either propose
services that make sense only on a netwexk.(Google), or heavily rely on a net-

71



work to propose a service that is not intrinsically needing a netwaxk Amazon).

Note that this may include vital service for a country, such as the bank system or pub-
lic administration. These organizations need to be able to measure both qualitatively
and quantitatively their access to the network, in order to make sure that they are
available on their target network or can use the network on which they rely on. The
massive cyberattack in 2007 on Estd?_ﬂ]a’s a clear example of the impact that a net-
work collapse can have on a broad scale, and why organizations or countries reliant
on a network need to measure it. The rise of business over the Internet in the re-
cent years and the deployment of cloud computing and distributed network s@vices
used by big companies increase the need to watch and measure the Internet, and in
a more general manner, the development of the current society of information and
communication extends this need to many other networks. Communication networks
in general, and the Internet in particular, now play a vital role in western countries
economy and administration, and the recent history suggests that the importance of
this role will still increase in the coming years.

individual end clients: these are the users of the Internet in a non professional way,
including all the families that pay for ADSL (or similar) lines. Whilst they usually
do not absolutely need the network, they pay for it, and are often in a situation where
it is dif cult for them to evaluate what they get in exchange of their fee, or even to
determine whether their problems of connection are related to their Internet Service
Provider (ISP) or not.

The distributed nature of the Internet makes it even more dif cult to measure it: the In-
ternet is the interconnection of many independent networks, and most paths involve several
different sub-networks. In addition, the operators managing these different networks are
often competing rms, and hence do not always cooperate above the required minimum.
Finally, from the fundamental design of the Internet, Internet routers are not aware about
which data they carry, and the endhosts ignore which routers are responsible of their mes-
sages, or even where or precisely when losses or queueing delays occur. All these factors
contribute to the fundamental dif culty of Internet measurements/ In [[LC06], Laskowsky
and Chuang claim that the distributed nature of the Internet also increases the need of mea-
surement; the fact that network operators are collectively and inseparably responsible of bad
performance incites them to free-ride on the others' investment. This lack of incentive to
invest (or ensure high performance paths) can be countered only with strong measurement
techniques, which are able to precisely localize the faulty links and network operators.

34Estonia had adopted a paperless operation system based on the Internet for many of its administration, and
hence was highly vulnerable to such an attack.

3Many companies now do not anymore store their data on local servers, but use servers from server farms
that are located kilometers away from their of ces. Applications may even be run on these far-away servers,
and the local computer are used just as distant input and output terminals. Google services, such as Gmail,
Google docs and Picasa are a similar concept, applied to individuals.
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The question of network (and Internet) measurement is not a new one. Some com-
munities have arisen to discuss these questions, including the ACM Internet Measurement
Conference (IMC) and the IP Performance Metrics (ippm) working group of the Internet
Engineering Task Force (IETF, [iet]). These communities are not an exclusivity of scientists
or network operators. There are also user associations or communities, sbi@nasille
[gre] in France which has about one hundred of thousands of members, which rely on end-
to-end measurement to determine the service levels and fairness of access actually provided
by ISPs. Grenouilleis particularly relevant for us because it's a case where people have
actually felt the need of measurement and organized themselves to provide it in a primitive
way. They did not subscribe to a service: they created their own (free) service because
nobody was offering it.

The need for accurate and ef cient network measurements is increased by the fact that
measurement techniques are already deployed today on operational systems. The network
operator Sprint (and many other operators) use passive measurements to monitor their net-
work [FDL* 01], they can be used in overlays [FMO5] or sensor netwarks [MKLP05, HL04]
or to predict the expected performance of connections [N)B.

Internet measurement techniques can be broadly classi ed in two different approaches:
passive measurement techniqaesgactive probing toolsPassive measurement techniques
rely on link-level statistics, either measured by derivation directly on the &tk (ising a
DAG card [dag]) or exported by the router or network @rd)ue to the high number of
packets per second crossing any link or server today, packet sampling is often neé&ssary (
only a xed proportion of packets are counted). The main dif culties of this approach are
(1) the inversion of the sampling scheme, such as to recover the whole statistic of the data;
(2) the reconstruction of the whole network performance (or network anomalies), based on
link-level measurementg3) the estimation from the network performance (or link-level
statistics) of user-perceived performance.

On the other hand, active probing techniques send test packets, called probes, across
the network between a set of sources and a set of receivers. The network is unaware of the
probe nature of these packets, and transports them just like any other packet. The analysis
of the probe data, mainly the loss and delay time series, aims to estimate network charac-
teristics such as link capacities and server loads, to provide path bottleneck localization and
characterization, and to remotely measure traf c characteristics. The interaction between
the probes, the network and the rest of the traf ¢ is crucial here.

In any measurement schemes, it is useful to distinguispringary metrics and theec-
ondarymetrics. A primary metric is a quantity that can be directly measured. A secondary
metric is a quantity that can be deduced from primary metrics measurement. Consider for
example a cook who wants to determine whether a chocolate cake is baked or not. A clas-
sical method is to stab a knife into the cake, and observe whether (or how much, or how
it looks) the cake dough stays on the knife. The primary metric is the presence or absence

38Most of today's Internet router support this function.
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of dough on the knife. This is what one can observe directly. The secondary metric is to
know whether the cake is baked or not. This is deduced from the primary metrics, because
the cook knows that for this kind of cakes, both are equivalent. He can even maybe deduce
the remaining baking time from the aspect of the dough if there is any. That is again a
secondary metric. Note that this equivalence, or the inversion from a primary metric to a
secondary metric, is valid only for speci c cakes. It does not work for apple pies or boiled
potatoes. In the case of active Internet probing, the primary metrics are easy to identify:
these are the loss and delay time s@efhey are the only quantities can directly measure,
and from these, we must deduce any other quargity. Capacity, available bandwidth or

path lengths).

1.5.2 Internet Tomography

This end-to-end probing approach is particularly adapted to measurements from individ-
ual clients or online service providers, which do not have access to the internal networks
statistics and hence can perform only very limited passive measurements. In particular, this
allows us to evaluate the performance of whole paths which cross several independent net-
works, as this is the case in the Internet. Even if there was a contract between the Internet
Service Provider and its client which would allow the client to access passive measurements,
these would be limited on the contracting ISP, and would not include the whole path.

A particularly interesting paradigm is the use of the path diversity in the network. When
the set of measurement points is more than a single source—destination pair, it is possible to
conduct measurements on different paths and use the joint measurements to leverage quan-
tities on the sub-paths, or even at the link level if enough path measurements are available.
We will call network tomographgny technique which uses path diversity and exclusively
end-to-end measurements to leverage per-link characteristics of the network: in particu-
lar, we exclude here techniques that require that the internal routers send an ICMP echo
messagé}

Except for the direct estimation of path loss rates and delays, Internet tomography uses
in most cases a parametric inference approach, as seen in $ectign 1.4.1. A model for the
delay or loss series is postulated, with a few parameters allowing a “ ne” tuning of the
shape. This model is often postulated “a priori”, based on the analysis of a few actual
measurements.

Example 1.5.1(Medical Imaging) The tomography approach can be compared to medical
imagin@ For a long time, the only way to have a precise image of what is happening

$70Other metricse.g. connectivity, are sometimes considered as primary metric. Whislt the distinction is not
vital, we argue here that they aire ne in fact deduced from loss and delay time series. Two nodes are for
example said to be not connected if all probe messages between them are lost, and to be connected if at least
one probe message is not lost.

*This last requirement is sometimes omitted in the de nition of tomography. Tomography is also sometimes
used to denote methods that estinae-link characteristics, as opposedaer-pathcharacteristics.

3In fact, Internet tomography was named as such precisely because of this similarity with medical tomogra-

phy.
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inside a human body was to open it and observe directly. This is similar to the passive
measurement case for networks: direct access to the location of the anomaly i§'lleeded

Radiography, ultrasonography and Magnetic Resonance Imaging (MRI) use a different
approach. Without going into technical details, all run on the same principles: some signal
(X-rays or ultrasound waves) is sent, and interact with the human body. The modi ed
signal is then measured at the output. Using known models for the humal?f]lmdythe
interaction it should have with the signal, it is possible to deduce whether there is something
anormal or everything is sane, and the precise location of an eventual anomaly. Note that in
particular, these technigues, except the basic radiography approach, use the spatial diversity
to leverage more signal and get more precise information. There are more than one source
and one destination, and more than one signal is sent.

Active probing techniques often suffer from two dif culties. First, except for delay or
loss rate estimation, there is aversionstep, that is an estimator of the (aimed) secondary
metric, from the input of the measured primary metric. When the measure of the primary
metric is deterministic, inversion is sometimes tricky due to the numerical instability of the
estimator. When the primary measurements are random variables, such as the delays of
individual probe packets in a queueing network, as seen in sdctipn 1.2, the dif culty can
then be increased by the randomness of the input. It then becomes impossible to nd the
groundtruth in each case, as we have seen in theforem 1.4.7 of gection 1.4. There is an in-
trinsic imprecision for any estimator, due to the nature of the random systein. In [Rou05],
Roughan shows for example that even with perfect sampling with an in nite number of
stealth non-intrusive probes of a M/M/1 queue during a time interval of Bizéhe esti-
mation of (for example) the delay has a minimal variance. This is due to the fact that the
system has a strong correlation in time, and hence, one might be “stuck” into a unlikely
excursion which is far from the steady state.

The second dif culty is what we call in this dissertatiogstitution Active probing is
often described as injecting test packets into the network. These packetsasive they
will be forwarded by the routers, and as any packet, require time to be served. They hence
perturb the observed system, where one is interested in the stateuni@urbedsystem.

There is a need to remove the impact of the probes on the system. This step can be removed
if the impact of the probes on the system is minﬁaThis is particularly the case when the
probing rate is rare enough compared to the system load, but this puts hence a strong limit
on the number of probes one can use, and on their spacing. The impact is even null when,
instead of adding speci ¢ probes packets, one tags some already present packets as probes,

“%e do not mean here to say that passive measurement tools are obsolete, or anything similar to that. They
are useful in some cases. But they do require a direct access to the links or servers, which is (sometimes)
possible in the networking context. For medical imaging, this direct access is sometimes impossible, in most
cases very intrusive, hence the method has been (nearly) abandoned in this context. We just strengthen here the
fact that in both cases, the direct access to the anomaly is needed.

“IThis includes the fact that doctors empirically know the signal (or images) of sane bodies, and the images
of most classical anomalies, and are capable also, based on this knowledge, to interpret many unknown images.

“?|n this case, the probing scheme will often be saithstrusiveeven if this is not formally the case.

75



and measures their delay and loss time series. As these packets would have been anyway
sent at these precise times, the system is unperturbed. However, the prober is strongly
restricted in the choice of the probe patterns, or in their precise timing.

1.5.3 Inverse problems

The notion of inverse problem stems from physics. Consider a dynamical system governed
by some known evolution equation. In a direct problem, the parameters of this dynami-
cal system are known and the goal is to calculate the associated ‘trajectory’. This is the
most classical approach in physics and many other sciences. In an inverse problem, one or
more trajectories are observed and, using the evolution equations of the system, one tries to
deduce (some of) the parameters which gave rise to those trajectories.

A typical example of an inverse problem is in acoustics. In the direct problem, the pa-
rameters could be the location and shape of some obstacle as well as some input signals
with a given spatial and temporal structure. These parameters, when used together with the
theory of wave propagation and scattering, allow one to determine the acoustic signal at
any location and time. A classical inverse problem consists in selecting appropriate input
signals, measuring the resulting acoustic signal at certain locations where such measure-
ments are possible, and then leveraging the shape of the solution of the direct problem to
determine the unknown location and shape of the obstacle.

Inverse problems are in fact ubiquitous in physics, and have well established incarna-
tions in many other elds such as uid dynamics and electromagnetism. They have major
applications in seismology, oil detection, geophysics, medical imaging, and industrial pro-
cess monitoring to quote just a few.

Example 1.5.2(gravity): The following toy example exhibits many of the key features of
inverse problems which we consider in this paper, and allows us to introduce some termi-
nology.

A mass initially at heighyy and with vertical speed, has a trajectory given by the di-
rect equatiory(t) = yo+ Vot gt . Assume that the initial conditioryg andvg are hidden
to some observer, who can only glimpse the trajectory at n different epochs, and assume
each glimpse allows the observer to make an accurate measurement, an observation, of the
mass's location. Our inverse problem consists in determining the unknown paramgeters
andvg from the observations. It is easy to see that if 2 and if the observer knows
this direct evolution equation, then the observations are enough for him to determine the
unknown parameters unambiguouslynlf 1 the observer can only infer a linear relation-
ship betweelyg andvg, and the inverse problem is ill posed or ambiguous, lacking a unique
solution. Furthermore, if is unknown then the tripl€yo; vo; g) can also be determined
from such observations, and this is in fact one of the ways for estimating local valges of

Our toy example is deterministic. One obtains stochastic scenarios if random measure-
ment errors are considered, or more fundamentally, when replacing the direct equation by
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a stochastic evolution equation. The inversion problem now becomes one of statistical esti-
mation of the unknown parameters from the observable time series.

Note that the direct equation of our toy system lives in continuous time (and space). A
natural inverse problem is to determine the parameters given observations over continuous
time. Instead, we consider a more dif cult problem which consists in inverting for the
parameters based only on a nite number of observations. Part of the great richness of
inverse problems in general is that the nature of the observations may be constrained in
many different ways, often corresponding to practical limitations from applications, each
case demanding different solution methods. Here we will focus on discrete observations,
and we distinguish two subcases:

passive observations where the glimpse times are not controlled by the observer;
active observations where the observer can choose when the process is glimpsed.

In the latter setting certain constraints still apply, for example often there is a xed bodget
of available glimpses, an may be in nite but a xed average observation rate is imposed.
A natural question is then that of an optimal spacing of the glimpse times, for example in
the sense of minimal estimation bias and variance.

Our toy example and its stochastic versions are non-intrusive in that the act of making
observations did not perturb the system. A natural extension is to examine the associated
intrusive or perturbation problem, for example each glimpse could add a random impulse
to the motion. Would it still be possible to measure the parameters even in this case? What
would the optimal trade-off between the accuracy of the estimation and the disturbance of
the system? In the particular case of network active probing, probes will add load to the
system, and hence increase loss rates and delays, or lower the quality of service. Whilst
disturbing slightly the system is feasible, it is desirable to limit the perturbation, and even
better to have an almost non-intrusive method.

Finally, the richness of inverse problems also lies in part in the fact that one might have
only a partial knowledge of the direct problem. Newtonian physics is a well-known theory,
which is nearly fuIIy—soIve@ In many cases, when systems are non-linear with a high
degree, only qualitative answers can be given, or quantitative answers for only a part of the
solution. It may be the case also that even if the explicit solution is not known, one can
say that it satis es a speci c relation. When the problem is stochastic, full distributions or
time series may not be computed in the direct problem, but speci c transition of the system
may however speci ed. In some cases, this partial knowledge will be enough for an inverse
problem.

Inverse problem theory can be applied to network measurement. The direct problem
is to predict the evolution of the network. In this dissertation, we will use two network
theory: the queueing theory, as presented in sectign 1.2 and the theory of bandwidth sharing

“3some problems, such as the n-body problem for n greater than 3, are not solved (or even unsolvable). But
much is known is Newtonian physics.
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networks, which we presented in sectfon|1.3. However, any other theory predicting the
evolution of networks can be used.

The observables.e. the trajectories that one can measure, are the results of the direct
problem. In the case of bandwidth sharing networks, these are the (eventually dynamical)
bandwidth allocations, or any statistic based on them. In the case of queueing theory, the
observables are the delay and loss series (or statistics of these, such as their moments,
distribution, etc.) and buffer occupancy statistics. In this dissertation, we will focus on the
Internet active probing paradigm, and hence restrict ourselves to observables that can be
measured from an end-to-end point of view. However, within the IP network framework,
there are many meaningful ISP-centric inverse problems, which can use internal network
observables.

It is important to realize that the application of inverse problems to network measure-
ment is not a direct measurement of the quantities we aim to estimate. Inverse problems
theory estimates the parameters of the model, and not the parameters of the actual sys-
tem. Furthermore, the trajectories one will observe are not trajectories of the theoretical
model, but trajectories of the real network. Since neither queueing theory nor the theory of
bandwidth sharing networks are perfect model for actual networks, there will be a (small)
difference between the modelled and the observed trajectories. However, it the modeled tra-
jectories used for inverse problems are “close to” the real system behaviour, the imprecision
of inverse problem theory might also be small.

Inverse problems could be seen as yet another name for parametric inference of network
characteristics. There are two main difference between “basic” parametric inference and
network inverse problems. First, inverse problem theory is based on classical theoretical
model results. The parametric distribution families on which the inference is based on
corresponds to the prediction of theoretical models. This is clearly possible to state this
a priori for classical inference, but many of the current tomography results are not based
on theoretical model prediction. The inverse problem approach is based on this proximity
between inference and direct theory, and using this name strengthens this fact. As such, it
is a bridge between classical network theory and practical network measurement. Whilst
the (slight) difference of behaviour between actual networks and theoretical models might
lead to the fact that some of the results are not directly applicable to real networks, classical
theoretical models share many key properties with real networks, and hence, the inverse
problems approach can be fruitful and give interesting insight about network measurement.

Second, inverse problem theory is larger than parametric inference and includes the
design of (probing) experiment. A natural question is how to get the “best” observations
within some constraints, be it through a careful design of the probing signal (for example in
oil detection or in medical imaging, where one can control the signal that will be sent and
will interact with the probed object), or through the control of the sampling times (in the
case of the gravity example, or for passive probing of a network). In the case of interest for
us, both aspect will be used. Trains of probe packets can be sent to measure the network,
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and their design can improve the quality of the measureﬁ_ﬂe@ln another side, when the
number of observations (or probes) is limited, the timing of probe packets or probe trains
is crucial to the quality of the observation. Finally, a prober needs to take into account the
effect of the probe packets onto the network, in order to both not be make it collapse and to
take this perturbation into account, as the quantities that one aims to estimate are the network
characteristics in absence of probes. They are tradeoff here between the increased accuracy
of the estimation that additional probes will most likely allow and the increased perturbation
of the system they will be responsible for. In all these aspects, inverse problem theory
also aims at providing not only estimators of network characteristics, but also guidelines
about how to ef ciently probe a network, and which characteristics will be accessible or not
through active network probing.

1.5.4 Bibliography

We end this introduction with a brief bibliography of known results about active network
measurements. The rst part quickly goes through the main steps of the active probing his-
tory, and presents existing tools for active probing. The second part focuses on the literature
of active network tomography and the use of path diversity to infer network characteris-
tics. Finally, the third section presents results that we classify as inverse problems, in that
that they don't aim at providing estimators of network characteristics, but rather guidelines
about what can be inferred or how one can optimally try to infer these quantities.

A brief history of active network measurements The very rst beginning of active mea-
surement tools is theping program [Muu83], which uses ICMP Echo req$o measure
whether an host is alive or not, and the round-trip time to this host. Van Jacolsmnes
oute [Jac87] is another widely-used tool that sends a stream of packets with increasing
Time-To-Live value to a destination host. The resulting ICMP echos allow to determine
the route from the source to the destination, coupled with rough estimates of the round-trip
times to each of the intermediate hops. Both of these tools are used in a daily manner by
network administrators.

In [Bal93], Bolot conducted in 1993 one of the rst systematic study of packet delays
and losses on a single path. He used periodic UDP probes sent with tiNet&gin[SB93],
to characterize the behaviour of the Internet. Paxson also performed a large-scale study
of routing and packet dynamics on the Internet, deploying measurement tools on many
host over the Internet. In [Pax97], he used repetitive Traceroute measurement between 37
Internet sites to analyze the routing behaviour for pathological conditions, routing stability,

44“Common examples are the use of a large train to ensure (or at least increase the likelihood) that the buffers
are non-empty, or the use of back-to-back packets of different sizes, in order to explore the effect of the packet
size on the delay.

“The Internet Control Message Protocol (ICMP) is a transport protocol, similar to TCP and UDP. It is used
to carry control messages, such as error reports (in particular when a packet has exceeded its maximum number
of hops, calledlime-To-Livé or (in the case of ping) a request to generate a “host-alive” answer. Contrary to
UDP and TCP, ICMP is not used to carry data, but to exchange information about the state of the network.
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and routing symmetry. I [Pax99], he studied the packet dynamics of TCP transfers between
35 Internet sites.

Infrastructures have been developed in order to allow the deployment of measurement
tools on many different siteslraceroute.ordtra] maintains a list of servers which accept
to conduct traceroute or ping measurement from their server to any destination address.
The Internet End-to-End Performance Monitoring (IEPM) group, at Stanford, is monitoring
connectivity and end-to-end performance for sites and universities involved in High En-
ergy physics. These sites also allow to conduct network experiments between their sites.
PlanetLabl[Pla] is an overlay of Internet hosts, where institution members can develop and
run their own distributed software. It has become popular to conduct Internet measurement
experiences.

Many tools have been developed in the recent years with the use of active probes to
measure the loss rates of links. Loss rates are dif cult to measure, because losses are caused
in batch by short and infrequent buffer over owssting [Sav99] allows to measure the
loss rates on a TCP path between a node and a web servers, and to distinguish between
losses on the forward path and the return pathg [MPAM98] evaluates the loss rate on a
single one-way path, between any pair of nodes, with user-speci ed probe sizes and probes
rate. Badabing[SBDRO05] and its slightly modi ed versioslam[SBDRO7] use trains of
probe packets to estimate the loss rates and congestion episodes. The precision of these
tools can be increased with the use of longer (and more) trains, at the cost of a greater
intrusivenessTulip [MSWAOQ3J] allows in addition to localize the lossy links on a one-way
path, but requires 10 to 30 minutes to run, which is longer than most other tools. It does so
by estimating the loss rates between the source and any node in the path.

Bandwidth also received considerable interest. The initial approach [Kes95] was to
send two back-to-back probe packets, and measure their dispérsiotie difference in
their arrival time, to deduce the minimum capacity, catbettleneckalong the pathbprobe
[CC9€], Nettimer[LBO1] andpipechar[JYCAOI] use such an approadhathchar[Jac97]
and its varianBing[Bey95] andPchar[Mah99] analyze packets' Round Trip Time linearity
with respect to their size, and deduce the capacity of the hop. Repetitive use of this approach
allows to deduce the capacity of all links along a path/ In [PV02a], Pasztor and Veitch use
a similar idea on carefully constructed sequence of packets, which allows to reduce the
probing overhead.

Packet pair method was also extended to trains of p@étsorder to estimate the
available bandwidth (that is the space capacity on the link) along a path. Many tools use this
approach, with careful constructed trains and a slightly different analysis of the delay series.
We must mention her€probe[CC9€], Pathrate[DRMO1,[DRMO04], Pathload[JD0Z],PTR
[HS03], Pathchirp[RRB* 03], TOPP[MBGO0], Spruce[SKK03], Delphi [RCR* 00] and
IGI [HS0Z]. Depending on the train construction and the delay analysis, they allow to
estimate either the cross-traf c intensity, the available (or sometimes achievable) bandwidth

6By a packet train, we mean a set of more than 2 closely spaced probe packets.
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or the load (de ned as the ratio between the cross-traf ¢ intensity and the capacity) of the
path.

Internet tomography literature  The tomography literature can be broadly divided into
three parts: literature speaking about loss inference, literature whose subject is the delay
inference, and nally literature which focus on topology inference.

The rst tomography paper [CDHT99] used multicast probes to infer the internal loss
characteristics in a tree. The correlation of losses for different receivers allowed to distin-
guish the contribution of each link to the end-to-end loss rates. The method was evaluated on
a large scale in [ABCO0Q], and generalized to the case of partial information (where some
data points are unknown) by the use of the E-M algorithm_ in [DI8Z]. In [BDLPTO0Z],
it was generalized to no tree-shaped topologies, and suf cient and necessary conditions for
identi ability of individual link loss rates are given. Losses are in practice not independent,
and the Bernoulli model is an approximation. This weakness is studied in [ADV07], where
the temporal loss characteristics are infered from multicast probes.

As multicast is not always feasible, unicast alternatives have been considered. Coates
and Nowalet al. in [CNOQ] use pairs of closely spaced unicast packets, exploiting the strong
correlation of the losses of packets in the same pair. Dufetldl. use a same approach
in [DPPTO1], withstripesof packets that can be larger than pairs..In [ZCB09], the authors
identify the loss rates ahinimal identi able link sequencda a general topology, using as
little assumption as possible.

Finally, loss rates have a particular pattern on the Internet: most links have a (near) zero
loss rate, and losses are concentrated on a few links only. It hence makes sense to try to infer
which links have a positive (or a null) loss rate, without focusing on the value of the loss
rates. This is known as tHanary (loss) tomography, and has been proposed_in [DufO6].
Using the assumption that faulty links are few, they proposenallest consistent failure
setalgorithm to identify these faulty links. [PQWO02] propose 3 different algorithms for the
same problem based on web-server measurement: random sampling and linear optimization
algorithm also operates on the assumption that the failure probability are identical and that
lossy links are uncommon, but the Bayesian inference they propose can work with any prior
distribution of loss rates. Nguyen and Thiran have relaxed these assumptidns: in [NTO7b],
they estimates prior distribution for failure rates using special properties of the boolean
algebra, and localize congested links based on this priol._In [NTO7a], they rst estimates
the variance of the link loss rates, and using the fact that in practice on the Internet, the
variance increases with the loss rates and that many links have a low loss rates, they remove
these un-congested links from the system until they have a full rank linear system that they
can solve.

Delay tomography followed a similar path: the rst delay tomography paper [DP00] ex-
ploited probe multicasting. It used non-parametric estimators, but only recovered the delay
variance at each node rather than the full delay distribution. The related work [PDHTO02]
extended the approach to the entire distribution by discretizing delay, effectively introduc-
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ing a multinomial model for each node delay, and therefore a large number of parameters.
The non-parametric estimators described were based on recursive conditional independence
of child subtrees and deconvolution, and have no direct link to the MLE. In [LYO03] a similar
multinomial delay model was taken, but a pseudo MLE approach was employed . A full
MLE was avoided in order to reduce complexity.

Since multicasting is not always practically feasible, a number of works, including
[CNO1,[TCNO3[ SHOB] examined unicast alternatives based on a packet-pair scheme where
probes are sent in as closely spaced pairs so that they will experience similar delays until
a branch point is reached, after which they follow different paths. Here the likelihood is
simpler as probes approximately “multicast’ over two paths only, but the packet-pair as-
sumption introduces additional noise and a much higher probing overhead. In [LMNO6],
hybrid ~ exicast' combinations of unicast and multicast probing are explored in order to
tradeoff estimation accuracy against computational and probing costs.

The use of discretized node delay models make tradeoffs between computational cost
and accuracy dif cult. A small number of papers address this, as we do, by using parametric
approaches involving continuous distributions. Using unicast proking, [SHO3] proposes a
mixture model for node delays including Gaussian densities and an atom representing the
minimum propagation delay. A penalized likelihood was adopted to control the number of
Gaussians in the mixture which is maximized using an associated E-M algorithm. More
recently, using multicast probing [CCBO07] also employs a mixture model including a single
atom, this time combined with multiple uniform and exponential densities. The analysis is
performed in the transform domain with sampled characteristic functions and performs an
L » based optimization using quadratic programming, which scales better than E-M to large
trees. In[[LMNOT] a mixture model, consisting of an atom combined with a continuous
density satisfying certain conditions, is considered for exicast probing. Based on examples
on simple trees, MLE based approaches are considered but then discarded as intractable in
favour of moment based methods using least squares. The study is preliminary but the
observations on identi ability are important.

Finally, the actual (multicast or unicast) topology is not always known or accessible.
This has been considered in different papers._in [RM99], Ratsamrarly infer the multi-
cast topology from the correlation of losses experienced by multicast probes. The bottleneck
of the path is also identi ed from the delays. The inference is also made from delays of mul-
ticast probes i [DHPT0O0], and generalized to amrk (including signi cant delay, loss, or
any ag) that can be added to the probes by the server they cross on their path. The covari-
ance of multicast of probes is usedlin [DP04] to estimate the variance of link delays and the
multicast topology. Thess different approaches are merged in a single ef cient method in
[DHLPO1]. An penalized MLE approach is proposed in [DHPT02] based on the delay mea-
surement of careful construct sandwich unicast probes, and a Markov Chain Monte Carlo
algorithm is used to perform the maximization. Rabdéiaal. in [RNCO04] use probes sent
from a pair of sources to a pair of destinations and their order of arrival to estimate (part
of) the topology of a general network. An overview can be found_ in [CT4], where the
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authors presents an interesting focus on the scalability of the algorithms and cover mostly
pseudo-likelihood approaches.

Inverse problems in networks related work A main question about active (and passive)
probing is how one should sample a network. The rst active measurements used periodic
probing. The ease of sending periodic streams made it a natural choice. Paxson in [Pax97,
Pax99] addressed explicitly the issue of when probes packets should be sent. He applied the
“Poisson Arrivals See Time Averages (PASTA)” principle of the classical queueing theory,
and advocated to use exponentially distributed interprobing time such as to have a sampling
at Poisson epochs. Since then, Poisson probing has become part of the conventional wisdom
of active network measurements. [MACMO5] showed that in their particular experiments,
Poisson probing and periodic sampling are both yielding estimations with no signi cant
difference. The authors also note that the Poisson structure of the probe stream may not be
preserved through the network. [BMVBO06] proved that Poisson probing is adapted mostly
when the probes perturb signi cantly the network. In the case of rare (or stealth) probes,
they propose the “Non Intrusive Mixing Arrivals See Time Averages (NIMASTA)” rule,
and advocate for a probes with interarrival uniformly distributed on a small interval around
the mean, in order to avoid eventual phase locks but stay “close to” periodic sampling. In
[BMVBQ7], the authors show that an optimal probing strategy (in terms of mean-squarred
error) when the probes do not perturb the network is to use the family of Gamma renewal
probing processes. In [Rou06], Roughan compares periodic and Poisson probing and shows
that (near) periodic sampling usually is slightly more accurate for estimating rst order
statistics , but that Poisson (or irregular) sampling can be (at least in some cases) ef ciently
used to estimate time series properties, such as auto-correlation functions or periodicities.
[HSTO7] use a simple two states Markov chain to show that the number of probes needed
to reach a given accuracy threshold in the loss rate estimation is much higher than what a
naive approach would suggest. Parkeaml. in [PGS09] study the impact of the probing
rate, using the same model.

The link with (linear) inverse problems is well explained(in [CHNY02]. The complex-
ity of the estimation algorithm is considered in [LMN06, XMN06, LMNO7]. The main
suggestion is to use “ exicast” experiments, that is probes sent with multicast protocol to
a small set of receivers (instead of all receivers). When using enough (and well designed)
experiments, this exicast approach allows to keep the needed correlation in measurements
for the same total number of probes, but allows quicker computation of estimators. The
Maximum Likelihood estimator is computed, and an alternative less accurate but quicker to
compute moment-based estimator is proposed. [DD¥] follows the same approach, and
considers also optimal design of experiment. In particular, the question of probe allocation
(with a total budget) is raised (but not solved). The authors also suggests an interesting tech-
nigue to merge “expensive” but accurate measurements (probes) and cheap but error-prone
measurements (traceroute) in a single estimator.

The identi ability of particular metrics is a classical question in inverse problems. Many
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articles provide results in a particular case. To the best of our knowledge, the most general
identi ability results can be found i [LMNOG6] for discrete delay distributions and [COB07]

for general delay distributions. In the particular case of binary tomography, a related ques-
tion is to determine the minimal number of paths to monitor and the associated optimal
placement of measurement points calbedconssuch as to ensure identi abilityl [HA03]

for example shows that the problem is usually NP-hard, and propose an ef cient heuristic
for its particular model [[NTO4] consider a similar problem with a slightly different model:
the placement of beacons remains a NP-hard problem.

Finally, there has been recently some work that aims at doing a link between classi-
cal queuing theory models and network measurements. [Rou05] uses a M/M/1 model to
assess fundamental bounds on the accuracy of network performance measurement. When
measurements are limited in a nite time frame, they can at best sample the exact trajec-
tory of the network during that time frame, but there is always a chance that the network is
not in that time frame in its stationary distribution. Letaal. [LRLLO4| [LRLO5] evaluates
with a queueing-theoretic rigourous approach the dispersion of probe trains caused by the
cross-traf ¢, and show the simpli ed uid approach, on which most tools evaluating the
cross-traf ¢ intensity are based, is biaised in many cases. Machétagli in [MVBBO7]
study rigorously the case of a single queue with a probabilistic queuing-theoretic treatment,
and provide identi ability results for the cross-traf ¢ distribution and proven estimators
when this is possible. In [NTV06], the authors computes the distribution of the number
of arrival in a M/D/1 queue between two consecutive probe packets, conditionned on the
event that both belong to the same busy period, and use this distribution to evaluate the
cross-traf ¢ intensity on the queue. In a different more ISP-centric framework, [MvdMO09]
provides carefully justi ed guidelines for link dimensioning, based on measurement of the
buffer occupancy. [[MZ09] proposes statistical tests based on alM/@bdel to detect
changepoints in the load of a voice call system.

1.6 Contribution of this dissertation

Chapter[2 We formulate extensively the end-to-end active probing techniques as inverse
problems in queueing theory. Whilst this connection has been stated for a long time, we
are the rst as far as we know to explore it thouroughly. This formulation connects the
active measurement eld and queueing theory eld, and is aimed mostly at the part of the
community of queueing theory which is not aware of the end-to-end probing paradigm. The
constraints of active probing are formulated in a queueing theoretical manner.

The different steps of active problems in queueing theory are enumerated, and we iden-
tify the main potential dif culties. We classify these inverse problems into three different
categories:

1. Analytical inverse problemsvhere we assume that the traf c arrivals and the network
behave as a given queueing model, use queueing theory to predict some statistics

84



(e.g. moments, distribution or series of loss events and individual delays) about the
observables, and propose an analytical formula or algorithm providing the desired
parameters from the observation. The particularity here is that we assume a perfect
noiseless statistic of the primary metric, which could be obtained for example with
in nite time series.

2. Statistical inverse problemsvhich are similar, but take into account the intrisic ran-
domness of the queueing system; the output in this case is a statistical estimator, such
as presented in sectipn [L.4.

3. Optimal probing strategiesvhere the aim is to nd inversion techniques that work or
are optimal for a large class of queueing systems; the output are general guidelines,
bounds, feasibility or impossibility results about inverse problems in queueing theory.

We give examples for the rst and third cases, based on simple classical queueing mod-
els, and illustrate through them some properties of these inverse problems.
This chapter is based on results which have been published in [BKV09].

Chapter[3 In this chapter, we consider in details the speci ¢ queueing model of a single
path in a Kelly-type network. We rst compute the mean and the distribution of probe end-
to-end delays in such a network. We then show that the set of residual bandwigltts(
difference between the capacity of a link and the sum of the cross-traf ¢ intensities on this
link) is identi able from the mean end-to-end delays #r different probing intensities,
whereK is the length of the path. We propose an algorithm to compute this set of residual
bandwidths, and give numerical applications that show that the algorithm is exact for perfect
end-to-end mean delays, but is intrisically unstable when the empirical mean delays do not
match perfectly the theoretical mean delays.

We then study the maximum likelihood estimator of the set of residual bandwidths,
based on the family of theoretical delay distribution for each set of residual bandwidths. For
K =2, we present a method to compute it based on a xed-point equation, and show that
the maximum likelihood estimator is asymptotically consistent in this case. For larger paths,
we compute explicitely the E-M algorithm, and show that it will convergeKor 2@
Numerical examples for different path lengths are given, on which the estimator seems to
perform well and converge in a small con dence set for reasonnable number of probes.

Finally, we present preliminary simulations that empirically study the difference be-
tween this model and real networks, for networks of length= 1 andK = 2. The
simulation is based on real traf ¢ traces from the core network of a Tier-1 ISP. We study
independently the impact of each assumption of Kelly networks, compared to real networks
case, and propose simple correction factor or techniques when this is needed.

4The classical result is the convergence of the likelihood of E-M estimates. The convergence of the estimates
of the E-M algorithm usually happens in practice, but is dif cult to prove theoretically. The general assumptions
are restrictive, and can not be applied in our case. The proof we propose in this chapter is speci c to the studied
case.
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The key result in this chapter is the identi cation of the whole set of available bandwidth
based on pure end-to-end measurements. As far as we are aware of, previous techniques for
the estimation of available bandwidth were:

either relying on the cooperation of the internal servers of the netwerggsusing
ICMP echo replies or ICMP Time Exceeded error messages;

either are based on dispersion techniques (or packet pairs/trains tec@i,qub'&h
can accurately estimate the bottleneck link or the tight link of the path, but are
(mostly) silent about other nodes.

The results of this chapter have been published in [BKV09] and [KBV09].

Chapter[d This chapter extends the results of chapter 3 to the case of a Kelly tree, with
unicast cross-traf ¢ and multicast probes from the root to the leaves of the tree. Whilst
multicast is not fully deployed, the recent development of television and radio on Internet
increases the realism of this model.

Using combinatorial arguments, we compute the distribution of the joint delays at all
leaves for a general tree. We then propose explicit formulas for E-M algorithm, and give
numerical applications on a few different trees. As one could expect, the estimation is less
precise for nodes that have relative higher available bandwidth. It is also clear (at least on
these examples) that the case of a single path (or more generally, of a few successice nodes
with a single child) leads to less accurate estimation: the reason is that because each branch-
ing point replicates the multicast probes, it becomes “easier” to distinguish the contribution
of each node to the end-to-end delay for (part of ) the trees with many branching points.

The E-M algorithm is known to suffer from its low speed. This weakness is not critical
for the case of a single path, but it strongly limits the size of the trees where one can real-
istically computes the maximum likelihood estimator. We propose hence three acceleration
techniques, which decrease the computation time by a large factor (U)toFirst, for
computability reasons, the E-M algorithm does not maximize at each step the (complete)
likelihood, but the difference between the likelihood and a Kullback-Leibler distance. For
this reason, E-M steps are smaller that what would be “optimal”, and we increase their size
in order to decrease the number of steps. More precisely, we double the step size as long
as this operation increases the likelihood of the estimate. We hence keep the convergence
properties of E-M, and nd quickly an right-order estimate of the optimal step size. Second,
on a few examples, it appears that E-M trajectories are roughly piecewise linear. Hence, at
each step, we compute, in addition of the classical step, two steps with a slightly modi-

ed direction in order to increase this linearity with previous steps, and execute only the
step which performs the best in terms of likelihood. Paired with the previous size increase

“8packet trains technique send carefully constructed trains of packet with precise departure time, and measure
the arrival times of the packets at destination. By analizing the difference in their arrival times with respect to
their size, it is possible to deduce either the service time on the tight link or the available bandwidth of the
bottleneck link.
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heuristic, this direction correction allows to have larger steps, and the computation time
is greatly reduced. Finally, the E-M algorithm can start from any (random) point. From
this start, we rst nd a rough estimate of the MLE by performing a few quick steps with
only a (random) part of the data, before running the full precision algorithm. This allows
to quickly reach the neighbourhood of the maximum likelihood estimate, and reduces the
computation time.

We believe that the acceleration techniques presented in this chapter are useful outside
this precise case. They can be adapted to any iterative algorithm whose trajectory is ap-
proximately piecewise linear. In the case we studied here, the key points are the agressive
algorithm used to nd quickly a correct order for the ideal step size, and the fact that the
objective function is much quicker to compute than one algorithm step, hence allowing to
check the objective value for different step sizes.

This chapter is based on the results published in [PVK10].

Chapter [§ In this chapter, we consider inverse problems in bandwidth sharing theory,
such as presented in sect[on|1.3. Bandwidth sharing theory is less developped than queue-
ing theory, and fewer results can be exploited. In particular, there is no explicit bandwidth
allocation formula in most (including some simple) c@eWe show that however, given

an -fair utility function, it is possible for two simple but generic networks (a single path
with arbitrary number of hops, and a “triangle” network with 3 servers) to infer the server
capacities and number of competiting ows from the allocation with different probe ows
number. We conjecture that this method can be applied to any given topology. As it has been
shown that for speci c parameters, bandwidth sharing networks allocation corresponds to
the mean allocation performed by TCP on the equivalent network, it means that in theory,
it should be possible to infer the capacity of the different links and the number of competit-
ing ows on a network, when one measure the bandwidth allocated by TCP to the (TCP)
probing ows for different ow numbers. Numerical applications show that this inversion

is numerically highly unstable, even with very little error in the measured bandwidth allo-
cation.

Bandwidth sharing networks can be used to represent other objects that communica-
tion networks. The formulation is general, and can be adapted to many cases with linear
constraints and general utility maximization. In a few different examples, we also examine
what an inverse problem would mean in this context, and how our proposed technique could
be applied.

These results have not been published yet outside this dissertation.

“*We mean here that the bandwidth is implicitely and uniquely de ned as maximizing some function, but
that there is no explicit closed-form formula which corresponds to the bandwidth allocation that performs this
maximization. For any concave utility function, the maximization is then a convex optimization problem with
linear constraints, and many techniques exist to approximately compute an optimal solution.
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Chapter 2

Inverse Problems in Queueing
Networks

2.1 Introduction

The general aim of this chapter is to discuss a class of inverse problems of queueing theory
which nd their origin in Internet probing. It is our belief that much of what is attempted
in the Internet active probing area can be cast into the framework of inverse problems in
gueueing theory, or more generally, of inverse problems in discrete event dynamical systems
theory. The present chapter contains new and recent results in this connection and proposes
a classi cation of questions and problems within this setting. The choice of queueing theory
as direct theory for inverse problems is a natural choice, due to its historical interaction with
the design of telephone networks and its fundamental role in the design of Internet, to its
proximity with the actual behaviour of communication networks, and to the richness of its
many results. A small number of recent works provide rigorous results of this type. The
great majority of the literature however is focussed on heuristic inversion methods.

This theoretical approach for a practical problem is motivated by the following:

1. the (hidden) assumptions about the behaviour of the network are systematically stated
here, due to the speci cation of the considered direct problem;

2. the connections between network theory and network measurement is explored in
a structured way; in particular, inverse problem terminology allows one to take into
account the natural constraints of network active probing; in this aspect, inverse prob-
lems theory is a fundamental theoretical approach to the practical problem of mea-
suring networks;

3. itis suited to provide general recommendations about network measurement, such as
optimal probe sequences; the design of experiment is a useful resource for this aim.

Additionally, we will see in chaptdr]|3 that although queueing theory does not model per-
fectly the Internet, it is possible to adapt the inverse problem technique to real networks.
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In this dissertation, we focused on the settings of end-to-end active probing, as a partic-
ular case of great interest for Internet measurement. In particular, the primary metrics will
be restricted to quantities that can be measured in an end-to-end setting, and no cooperation
from the network will be assumed. This excludes techniques that rely on the clever use of
ICMP messages for example. Some of the constraints we put here can be removed in a
second step, and it is possible to consider inverse problems related to ISP-centric (or server-
centric) measurement, or that include limited cooperation from the network. We however
think that it is useful to start with the most restrictive (and hence general) case rst.

This chapter is organized as follows: secfior] 2.2 describes the main concepts of inverse
problems in queueing theory and gives a rst classi cation of these problems. The chapter
is then structured into sections with increasing levels of realism. Séctipn 2.3 focuses on the
case where the observations provide noiseless estimates of certain stationary distributions
or moments. This leads to a classamfalytical inverse problemsvhere the main output of
the method is a closed form formula or a terminating algorithm providing the exact value of
the unknown parameters from the observations.

Although it does not belong to this chapter, we mention here that the casatisfical
inverse problemswhere observations armite time seriesand where the need is therefore
for robust inversion methods taking the noise into account, deserves great attention, and is
the subject of chaptefs 3 ahfl 4. The main outputs of the method are 1) a set of estimators
that are shown to be asymptotically consistent and 2) recursive algorithms allowing one to
implement the estimation of the unknown parameters from the time series.

Both analytical and statistical inverse problems are based on rather speci ¢ parametric
models which may not be realistic for representing IP networks. The drawback of such
parametric methods is that they have to be checked on testbeds and adapted using heuristic
modi cations in order to cope with real IP networks and traf ¢ (as amply exempli ed in
e.g. the papers published in the proceedings of the IMC conference). We will not pursue
this line of thought here. We will rather investigate methods which do not suffer from this
weakness. This is the object of sectjon|2.4 which is centered on inversion techniques that
work for general classes of models. For these more general systems, we will limit our-
selves to the non intrusive case, as de ned in se¢tion]1.5.2. In this case, we show that there
exist probing strategies leading to asymptotically consistent and minimal variance estima-
tors of the unknown parameters, and this regardless of the speci ¢ instance of model taken
from this class. These examples are taken from the literature, and have been published in
[BMVBO06, BMVBO07]. The conclusions of sectign 2.4 are guidelines and recommendations
on how to 'optimally’ act in this more general setting. This is linked to the general frame-
work of thedesign of experiments statistics (see the thesis of B. Parker for the application
of this methodology to packet networks). Secfiorj 2.5 concludes this chapter.
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2.2 Inverse problems in queueing theory

Our discussion of inverse problems in queueing theory will be from the viewpoint of an
Internet prober. That is, an entity whose network observations are derived from probes
which are inserted into the network, where the latter is modelled as a queueing system. The
default assumption is that only end-to-end measurements on probes are available, that is
that the network does not cooperate in any way and so must be treated as a "black box'. The
reason for this are that Internet service providers are generally either unable, or unwilling,
to provide information on their network or the traf c owing on it. In addition, a route

may traverse several Autonomous Systems (administrative domains), implying the need
for cooperation across multiple, and competing, providers. Probing is one of the main
ways in which knowledge of the growth and performance of the Intenet, for example its
interconnection graph or topology, is known today. Indeed, service providers themselves
use probing, despite the fact that they have the option of making measurements directly on
their switching infrastructure. The exible nature of probing, and its direct access to end-
to-end metrics important for network applications, makes it an important tool for providers

to learn about their own networks. For the end user, it is perhaps their only option. Due
to its practical importance, and a considerable and growing literature, we focus on this
end-to-end probing viewpoint, although of course there exist many other types of inverse
problems pertaining to queueing theory. Within the IP network framework, there are for
instance many interestin§P-centricinverse problems too, which will be brie y discussed

in sectior{ 2.2.70. There are also interesting problems in connection with other domains of
applications of queueing theory. Let us quote for instance the queue inference engine of R.
Larson [Lar90]. This inference engine was designed for ATM machines where the operator
of the (cash) machine wants to evaluate the distribution of the customer queue size. The
observables are here the epochs of the beginning and the end of all transactions (as recorded
by the machine). The busy periods of the single server queue representing the ATM machine
can hence be reconstructed from these observations; from this, the law of the queue size can
then be evaluated. As we see, the nature of the problem is quite different from what was
described above because the observables are quite different (the beginning and end of each
service time in the latter case, the arrival times to and the departure times from the queue in
the Internet probing case, assuming that one represents the IP path as a single server queue).

2.2.1 Direct equations of queueing theory

Queueing theory studies the dynamics of stochastic processes in a network of queueing
stations, such as queue sizes, losses and delays, as a function of certain parameters. These
parameters can be related to the structure of the stations (the number of servers, buffer
sizes, service disciplines) or can be the distribution of the stochastic processes driving the
gqueueing networkd.g.the rate of some exogenous Poisson arrival point process, or the law

of the service times in a given station). The associated direct equations may bear either on
the joint law of these stochastic processegl.{he queue sizes form a Markov chain in a
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Jackson network), or on the recursions satis ed by the random variables themsetyes (
Lindley's equation for the end-to-end delays feG1=1 FIFO queues in series).

The solution of the direct equation bears on the law of these stochastic processes and
might be the steady state or the transigistribution The solution in the recursion view-
point might be the steady state or the transient randomistatlom variable

In the network probing setting, there are two types of customers in the network: the
customers (or packets) sent by regular users, often referrecdctosss-traf ¢, and the cus-
tomers (or probes) sent by the prober performing the measurement experiment. The former
are typically xed, namely the prober has no way to act on the cross—traf ¢ offered to the
network, whereas the latter can be sent at will, at least in the case of active probes.

Note that probes are themselves packets. In the active measurement case, their sizes
may be chosen at will within a range of values. In the case of the Internet, all IP packets
contain a header carrying essential information such as the IP address of the destination, so
that O size probes are not possible. The maximal size of an IP packet is also xed, which
translates to an upper bound on probe size. In the passive measurement case, probes are just
normal packets sent as part of a given application, for instance the packets of a Transport
Control Protocol (TCP) ow in charge of a le transfer. The probe sizes are then determined
by the selected application and associated network protocol.

A key question within this setting is whether the chosen paramgtiécieing moddbk
an acceptable approximation of the concrete communication network with its cross—traf ¢
and its probes. One most often needs a solution for the direct equation in order to solve
the inverse problem. There is hence a crucial tradeoff between the realism of the queueing
model and the mathematical tractability of its direct equation.

2.2.2 Noise

Deviations from ideal assumptions, which we denote generically by “noise', are present at
several levels within this setting:

Most queueing problems are random by nature: for instance cross—traf c is best rep-
resented as a random process. A key question here is whether the underlying random
processes are stationary or not. Since stationarity is most often desirable for tractabil-
ity, this will lead to upper-bounds on the probing period which should not exceed the
time scale at which macroscopic, for example diurnal, changes occur.

There may also be actual measurement noise in the data. In the probing framework,
most raw measurements consist of probe departure and arrival timestamps. Neither
timestamping, nor the clocks that underlie them, are perfect, and high precision is
important in order to resolve small differences in latencies (system times) arising
from high capacity links (high service rates). The probability law of the measurement
errors can however be well approximated in many cases.

Finally, there may be noise stemming from the nature of the data itself: all practical
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time series obtained from measurement experiments are nite, and so the resulting
estimators for parameters are non-degenerate random variables. In other words, there
are statistical errors in the parameter estimates.

In spite of all these random phenomena, it may still make sense to consider deterministic
direct equations. For instance, the law of a stationary and ergodic stochastic process is a
deterministic object, and the pointwise ergodic theorem shows that when the observables
contain an in nite time series of samples of such a process, these allow one to reconstruct
the stationary law in question with arbitrary precision. In what follows, we will distinguish
between noiseless inverse problems, which correspond to a kind of mathematical idealiza-
tion of reality .g. obtained with in nite stationary and ergodic time series, which allow
one to determine the exact value of all mean quantities), and noise-aware or robust inverse
problems where the intrinsic randomness of the problem is faced.

2.2.3 Probing actions

The observables are generated through certain actions of the network prober. We below
describe what actions are allowed.

Choice of topology Whenever probes traverse more than a single statiomptite they

follow must be speci ed. We have seen in sedtion].1.3), and that the routes on the Internet
are determined by the network functionalities, based on the addresses of the origin and des-
tination, and that the sender has no control on (or even knowledge about) that route. Hence,
a route is here an input-output/origin-destination pair. Within the IP network setting these
end points correspond to interfaces in IP routers. In queueing theory, a natural incarnation
is that of a route in the sense of Kelly-type networks as presented in sectign 1.2.3. The chief
scenarios are as follows. The network probing is:

point-to-pointwhen probes are sent from a single source to a single destination;

point-to-multipointwhen probes are sent from a single source to multiple destinations
(the network of queues traversed then has a tree-like topology);

multipoint-to-pointin the case of multiple sources to a single destination;
multipoint-to-multipointin the case of multiple sources to multiple destinations.

In the point-to-multipoint case the actual IP network experiment may differ depending on
whether the network has nativetfulticastavailable or not. In the former case, probes fork-

out at each node of the network with a degree larger than 1, and this is well represented by
what happens in a Fork-Join queueing network [BMT89]; in the latter case, the experiment
will in fact consist of a collection of coordinated point-to-point schemes. In the other cases,
the only possibility directly supported by the current Internet is that of a collection of point-
to-point schemes. Note that it is generally assumed that all probes traveling from a given
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source to a given destination pass by the same sequence of internal stations (routers), though
this can be generalized.

Passive probing actions Purely passive probing is in fact monitoring, and the only free-
dom the experimenter enjoys is an ability to lter packets according to various criteria, for
example to only take note of TCP packets, and to decide which of these to "baptiag' or

as probes. A less restrictive case is when the prober can in addition control certain overall
parameters of probing traf c. In the IP setting, he could for instance select an HTTP appli-
cation which would initiate several TCP connections whose packets would act as probes, or
alternatively a UDP based application like Voice over IP (MolP) could be used to generate
a probe stream. Here the prober can nsure that probes of the desired transport and applica-
tion type are present, and also decide on when to start and end the ow(s), but there is still
no control at the level of individual packet timing. This is for example the approach taken
in Grenouille fgre], where FTP downloads and uploads are initiated, and their bandwidth
measured.

Active probing actions Active probing consists in sending a set of probes at carefully
selected epochs and with carefully chosen sizes. Complete control is possible subject only
to constraints on probe size and/or rate as noted above. We include in this category the im-
portant case where the probe sizes and their emission times are de ned through stochastic
processes with fully controlled parameters. Because the network functionalities of sec-
tion[1.1.3 require some exchange of data and identi cation of packets, the size of a packet
has a lower bound. For example, a TCP/IP packet is at least 40 bytes long: the Internet
Protocol (IP), the routing protocol over Internet, adds a (minimum) 20 bytes header to any
packet, and TCP, the transfert protocol which provides reliable transfert and congestion
control via acknowledgements, also adds its own header of at least 20 bytes. For this rea-
son, it is impossible to send perfect 'stealth’ probes. Active probing techniques impact the
network, and this (possibly negligible) impact will be considered in seftion|2.2.6.

2.2.4 Observables

Observables are the raw data quantities available to the prober through conducting a prob-
ing experiment, and derive from the probing actions just described. In the end-to-end view-
point, for each route, this data consists of probe packet sizes and departure timestamps at
the origin, and loss indication and arriving timestamps (if applicable) at the destination.
Effectively therefore, the information is of two types for each route: a loss indication for
each probe marking whether it arrived at the destination or not, and if applicable, the probe
latency ordelayin traversing the route.

In the case of active observations, the packet sizes and departure times are in fact con-
trolled by the prober and therefore already known. For simplicity we nonetheless refer to
these as observables.
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2.2.5 Unknown parameters and performance metrics

In the context of communication network probing, typical parameters to be identi ed would
be:

structure parametersf the nodes/queueing stations traversed by the probes such as
the speed of the link/server, the buffer size, the service discipline esgdo check
neutrality, an important requirement of the IETF that packets should not be discrimi-
nated against on the basis of the application they stem from);

cross—traf ¢ parameterst a given node if the law of the cross—traf ¢ is in a known
parametric class, or otherwise its full distribution.

It is often desirable to estimate certggarformance metricsuch as the packet loss proba-
bility, or the distribution of packet latency, along a route or at a given node, in the context
of incomplete knowledge of the system parameters.

2.2.6 Intrusiveness, bias and restitution

Since probes are processed as customers by the queueing system, and moreover have a min-
imum size which is positive, they interact with cross—traf c and so are inherently intrusive.

At rst glance, this seems to make the inverse problems more dif cult. In fact, as we shall
see, intrusiveness may be useful and can be leveraged in many cases (for example see the
poly-phase methods introduced below).

As a result of intrusiveness, in general, the performance metrics of the system with
cross—traf ¢ and probes differ from those of the system with cross—traf ¢ only. The perfor-
mance metrics (or the parameters) of the system "without the probes" are often referred to as
theground truthin the network probing literature. For instance the probability that a typical
packet of the cross—traf ¢ on a given route will be lost if there were no probes, or the mean
cross—traf ¢ load at thd-th router on a route, belong to the ground truth. More generally,
the parameters listed above (structural or pertaining to cross—traf ¢) are by de nition part
of the ground truth.

An important question is the reconstruction of some ground truth metric from the ob-
servation or the estimation of the metric for the perturbed system. This will be referred to
asrestitutionbelow.

Restitution may even be needed even in the non-intrusive case (for example when probes
have zero size and system time is the metric of interest) becausesaniming biagprob-
lem: atypical example is when the ground truth can be evaluated from certain time-averages
and where probe-averages do not coincide with time-averages.

2.2.7 ldenti ability, ambiguity

The observables, either implicitly or explicitly, carry information regarding a spatio-
temporal slice of the network experienced by the probes. This information is clearly partial,

95



which gives rise to a set of system identi ability questions. For example, in the context
of intrusive probing, it is not clear whether the restitution of many ground truth metrics is
possible even in principle.

We shall see below that some parameters or performance metrics of a queueing system
are not always identi able from the observables. In some cases, different parameters can
lead to the same observations.

2.2.8 Estimation problems

As mentioned above in 2.2.2, in practice the duration of a probing experiment compatible
with stationarity is nite, and the number of probes that can be sent during a nite time
interval is likewise nite. As a result, in practice the observables consist of time series of
nite length, and inversion for the unknown parameters based on them is no longer a deter-
ministic problem, but one of statistical estimation. This leads to a new class of problems
in the design of such estimators, and the establishment of their properties, in particular the
classical ones of bias, variance, asymptotic consistency and asymptotic normality.

In the case of active probing, the degrees of freedom in how probes are sent allows for
another level of problems built on optimizing the statistical properties above. For example
a natural question is to ask how probes should be spaced so as to minimize estimation
variance.

2.2.9 The prober's path(s) to Ground Truth

Let us summarize by stressing that all paths to a given ground truth or performance metric
require the following series of steps:

1. atractable and yet realistic direct equation for the dynamics of the observables;
2. aproof of the identi ability of the perturbed metric from the observables;
3. the de nition (and possibly the optimization) of estimators for these metrics;

4. the design of a restitution mechanism allowing one to reconstruct the ground truth
from the perturbed or biased metrics.

The aim of the following sections is to illustrate the above in a few fundamental scenarios.
Fortunately enough, some of the requirements may be relaxed in some cases, one may for
instance

idealize step 3, by assuming an in nite time series and therefore, for example, a full
knowledge of the stationary distribution of some observable; this leads to determin-
istic problems that will be illustrated in sectipn P.3.

avoid step 4, by selecting an active probing strategy involving probes rare and small
enough to have almost no impact, which justi es a claim that the perturbed and un-
perturbed systems are the same in practice.
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Of course, the validity of such simpli cations will have to be discussed in detail.

2.2.10 ISP-centric inverse queueing problems

The scenarios considered in the remainder of the chapter focus on point-to-point inverse
problems (which are often more challenging than their multipoint counterparts) arising in
active Internet probing with end-to-end observables. For the sake of completeness, we now
add a few words on other practical incarnations of inverse problems in queueing theory
stemming from the ISP viewpoint.

The simplest observables for an ISP are time series of individual queue sizes and traf ¢
(service times and packet sizes and arrival times) at the input or output ports of its own
routers. The ISP has the privileged option of directly and non-intrusively monitoring these.
Its actions then primarily consist in choosing when and what queues or traf ¢ processes
to monitor. The parameters and metrics of interest are quite different from, in some sense
inverse to, those alluded to above. An elegant example is that of the reconstruction of end-
to-end metrics, such as the packet loss point process or the uctuations of end-to-end delays
(jitter) experienced by a typical user whose packets pass by the monitored router, given the
node based observables.

Other aspects of the problem, such as the direct equations to be used, their random
nature, the resulting need for estimators of the metrics of interest, are all quite similar to
what was described above in the Internet prober case.

2.3 Noiseless Inverse Queueing Problems

As mentioned above, in this section we assume that the availability of an in nite time series
has provided perfect knowledge of the distribution function of the end-to-end stationary
observables, so that step 3 from secfion 2.2.9 may be skipped. This is an idealization of the
noise-aware case, which we study in chadtérs 3 and 4.

Within this context, we discuss three types of classical models of queueing theory on
which Internet probing type inversion is possible: M/G/1, M/M/1 and M/M/1/B. The meth-
ods described in this section all leverage the fact that probes are intrusive. They consist in
varying the probing rate and in observing how the system reacts to this variation. There are
again various levels of realism: one can either assume, as in sectioh 2.3.1, thetpthe
ping that describes the variation of the observation as a function of the probing rate can be
deduced from the observations, or pursue a more realistic scenario (considered in the other
subsections) where one knows the value of this variation at some nite number of points
(probing rates), as in the ~ nite number of glimpses' scenario of the introduction.

There is a small literature on this analytic approach, scattered in the communication net-
work literature, particularly the proceedings of venues with a strong Internet focus. Among
these the rst seems to be [SM98]. Another early paper advocating an analytical inversion
for the estimation of loss processes in networks is [ANTO1]. The approach in the latter is
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moment based (see below).

2.3.1 The M/G/1 Queue

Before probes are injected, the system consists of a FIFO M/G/1 queue with a single server
with speed 1. The service distributi@is the unknown parameter of cross—traf c, but the
input rate is known. The sizes of probes obey a IEw(this is the service time for probes)
and arrive according to a Poisson point process with xatdhe active prober only has
access to the distribution of end-to-end delays of probes. Can he reconstruct the unknown
parameteG?

The direct equation is the Pollaczek-Khinchin (PK) formula of thedrem 1.2.15 which
stipulates that the stationary waiting times of probes have for Laplace Transform (LT)

1 xK G))s

W= XA L) AL e®)

whereL g (:) andL g(:) denote the LT oK andG respectively, an&k andG their means.
We assume that

xK+ G<1
which is necessary and suf cient for the existence of a stationary regime. Sinisein-
known, it is impossible to check this condition without prior knowledge. Most Internet
resources have a moderate utilization facta. ( G rarely exceeds 3/4 or even 1/2) and
if xK 1, then the last condition is quite likely to hold. Note that as a general principle
probing overhead should be kept small, in order to avoid consuming network bandwidth, to
reduce intrusiveness, and to prevent probes being confused with network attacks, so assum-
ingxK  1is quite reasonable.

From our in nite time series assumption, we have access to any function of the sta-
tionary end-to-end delay process of probes. In particular, the funtctjp¢s) is indirectly
observablgi.e. can be obtained from the direct delay observable) for all valuesarid
K since the waiting time of a probe is obtained by subtracting its service time — which is
known to the prober — from its end-to-end delay.

We now proceed tinvert the direct equation. By letting go to in nity, we have

Lw(l)= Py(W=0)=1 xK G= (x)

which is also indirectly observable. Hence for ajl1 (x) = xK + G, and one can
determineG, which, substituting into the PK transform,

(1 xK G)s s x + XLk (3))
Lw (S)

La(s) = (2.1)

determines the transform of the entire |&v Therefore, our unknown parameter can be
unambiguously estimated from such observables.
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This approach also allows us to estimate the ground truth stationary end-to-end delay
distribution. The restitution formula consists in again applying the PK formula for waiting
time, but this time without the probe traf ¢, which is possible sincendG are now known.

The main weakness of the present approach should be clear: it requires the estimation of
distribution functionghere LTs) rather thamomentsit may be desirable to havaoment-

basedmethods (see sectipn 2.3.2 and 2.3.3 below);

2.3.2 The M/M/1 Queue

The setting of this section is slightly different from that of the last section. The system
is a M/M/1 FIFO queue with a server of unknown speedCross—traf ¢ is Poisson with
unknown intensity and exponential packets with mean 1. The active prober sends Poisson
probes with ratex to the system. All probes have exponential size of mean 1. Can one
reconstruct and when observing only the mean stationary end-to-end delays experienced
by the probes?

The stationary mean number of packets and probes in the station is

_ + X
N(X)= ———;
(x) .
under the condition + x < . From Little's formula the mean end-to-end del@yof
probes (or packets) is o
_ N 1
D = = X 2.2
0= —~ . (22)

This formula, which is our direct equation, shows that the constant , which carries

the interpretation ofesidual bandwidthcan be reconstructed from the observatiorDof
associated with the value gf However, the individual constantsand cannotbe recon-
structed individually from this alone. Fortunately enough, this mean residual bandwidth is
suf cient for the restitution of the ground truth cross—traf ¢ del@y0) = —1—.

Let us summarize our conclusions on this case: we have here a rst-moment based
probing strategy allowing one to determine unambiguously the mean residual bandwidth
of an M/M/1 queue solely from the measurement of the empirical mean end-to-end delays
experienced by probes. Within this context, the problem of identifying the intensity of
cross—traf ¢ or the speed of the server is however ill-posed.

When adding second order estimates, one obtain the additional information needed to
resolve the two parameters. For instance, when sending packet pairs wighasithee same
time, one gets that their system tim&,andD°are such thab® D = y= so that
can be determined (this packet pair method actually holds for all G/G/1 FIFO queues). In
reality, two packets cannot arrive exactly at the same time. It is shown in Appendik 2.6.1
that in the M/M/1 queue, two packets with sigsentt seconds apart have system tinies
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andD which are such that, dggoes to 0,
EDDY=K(y) t (1 )y+ — +oft)

whereK (y) is some constant. The slope w.t.of the functiont ! E(DD9%is(1 )y+ —
and it can be estimated, so tHat and - can also be estimated to arbitrary precision,
using different values of. This determines both and unambiguously.

There are other practical methods to evaluat®t based on moments. The simplest one
consists in sending probes with constant siznd in looking for the probes with minimal
delay. This minimal delay of course allows one to determinsambiguously.

2.3.3 The M/M/1/B Queue

The setting is the following: the prober sends Poisson probes withxratto a system
which, without the probes, would be an M/M/1/B queue with Poisson (cross—traf c) input
point process of unknown intensity Cross—traf c packets are assumed to have exponential
sizes of parametdr, and the prober emulates this by choosing to send probes with the same
size distribution.

Under natural independence assumptions, the full system (with cross—traf c and probes)
is an M/M/1/B queue with arrival rate + x and service rate. The direct equation is
the following classical expression for the stationary loss probaly(ity (see for example
[Tak62]):

B B+1

o) = —— - : (2.3)

)= ——— (2.4)
1 _*x

Can one determine, andB, assuming that these parameters (or some of them) are
unknown?

From our in nite time series assumption, we have access to the losg(rgtas well as
to the sequence of end-to-end delays for each probe. Using packet pair techiniques [PV02b],
or alternatively by observing delay minima when probes are chosen of constant size, it is
possible to extract the server speed We therefore assume thatis known. One key
consequence of knowing is that the prober then knows the service time of each probe,
and he can therefore measure the empirical probalojity that the queue is empty, since
for probes which encounter an empty queue the observed end-to-end delay is equal to the
service time.

Assume a poly-phase probing scheme withdifferent probe intensitiex;, i
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the associated loss rgpe and empty queue probability, and hence to compute the ratio
r = g—: From ) an4), the following should hold for all measured ratios:

p(xi) _ +x °

81 i N; ri =r(xj)= )

wherer (x) is the polynomial + x)B= B  ForallN  1letLy (x) denote the Lagrange

degree at mostt 1 de ned by the formula

X .
Ly (X) = . 25 (2.5)

ForN B +1, we havelLy(x) = r(x) for all x. Hence andB can be determined as
follows:

B is the degree of \ (X);
(-)B is the constant term dfy (x) (or is the unique real root df  (x)).

The main limitation of this characterization is that we don't know winen B +1,
i.e. how many phases are needed. In other words, we have an algorithm which converges
to the correct values when lettimg go to in nity, but we have no termination criterion for
this algorithm. The following lemma and theorem provide such a termination criterion.

Lemma 2.3.1. Consider the set of polynomials.g (x) with B ranging over the positive
integers and and over the positive real line. Two different polynomials of this family
intersect in at mos? points of the positive real line.

Proof. Consider the polynomial®i(x) = r ,. ;.s;, andPx(x) = r ,. ,.5,. One can
assume without loss of generality that> ,. Let = 1 2. Settingy = x + ,, the
equalityP1(x) = P2(x) now reads

B1

(y+ )= —5,y°=
2

If By By, letk= B, Bji. The equality is equivalent to

e D
1+ 9 y © = ?:
The left hand term is a decreasing functionydior positivey, and the right hand term is

constant. There is therefore at most 1 solution for positi@ad hence for positive.
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If B1 >B,, letk = By By. The equality is equivalent to

Assume there exists at least 3 positive solutidrsy ; <y, <y3. Then applying Rolle's
B

theorem to the functioh(y) = 1+ v ' y¥, we get that there are two points 2]yx1; y2[

andys 2]y»; y3[ such that%y;}) =0 and@Ws) =g, Now, note that the derivative

@y
OF_ yk1gs yor 1 ks o) 2L
@y y y y
admits only one zerg = %, which contradicts the existence of 3 solutigns< y, <
Y3. O
Theorem 2.3.2. Assume we have a set of observation portsri),i = 1;:::;N, stem-

for some positive intege® and some positive numbe?sand b, thenB = B andb =

Proof. This is a consequence of Lemifia 2]3.1. The polynomiig/§x) andr .,z (x)
intersect ilN > 2 points, and therefore are equal. O

We have hence a termination rule: increase the carénaf the set of pointgx;;ri),

B

b

b
We can hence reconstruct the ground truth (on the intensity of cross—traf ¢ and on the

loss probability for cross—traf ¢ packets in the absence of probes) by using the formulas for
the M/M/1/B queue again, since all the missing parameters are now determined.

2.3.4 The Erlang loss system

The same method can be easily applied to an Erlang loss syisteran M/G/B/B queue,
where the service time distributidd and the arrival intensity are unknown. The probe
packets arrive according to a Poisson point process withxraa@d their sizes obey a law
K.

From examplé 1.2]2, we know that when the service time distribution is exponential,
the steady-state blocking probability is

(x)®
i=0 il

where (x)= G+ x K isthe load of the system. Similarly, the empty queue probability
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Po(x) = PBli()i : (2.7)

X
i=0 il

A remarkable property of Erlang loss systems ($ee [Tak62] for example) is that they
are insensitive to the precise distribution of service times: the empty queue and blocking
probabilities depend only on the total loagk) and the number of servebs.

For any probing intensity;, the prober can easily measure the loss Pat€x;). Simi-
larly, using xed size packets, the prober can measure the empty queue probRg(ikty
(this corresponds to the proportion of packets which experiences a minimal delay). Hence,
the ratior; = r(x;) = FF’,E(‘J((;‘)) = GJ’E;‘;?)B is indirectly measurable, and the method
developped in secti.3 can be used to estimate the capaaityl load G of the sys-
tem in absence of probes. Due to the insensivity of Erlang loss system to the service time
distribution, it is clear that these are the only parameters that one can be inferred.

A main weakness of this inversion scheme is that it in fact requires several in nite
time series, one per value ®f for instance, the successive interpolations] of|(2.5) would
in practice requirdN successivgphases for eachl i N, a phase where the prober
sends probes at raig and collects enough samples to have a precise enough estimate of
the stationary probability ratio(x;) = gg:; , Which is a new system requiring a new time
series for each. It would be desirable to havaono-phaséversion techniques.

More elaborate questions can be addressed along similar lines, for example concerning
the determination of the parameters wheis unknown, but we will not pursue this line of
thought here as our aim is more to illustrate of the set of problems and solution methods

than to provide an exhaustive set of solutions.

2.4 Optimal Probing Strategies

We have already pointed out that in the error-prone case, once statistical estimators of pa-
rameters have been derived based on a given probing stream, one could consider going
further by asking how their performance can be optimized by taking advantage of the free
parameters of active probing. The dif culty here is that exploring richer probing streams,
for example moving away from Poisson probing, implies dealing with more complex direct
equations.

In this section we show how taking a more general point of view can lead to insight into
the nature of probing streams which are likely to lead to good properties for the associated
estimators, such as low estimation variance. To simplify the problem, we focus on the case
of non-intrusive probes which have no impact on the system, namely the network and its
cross—traf c.

Section 2.4.]L, which builds upon ideas discussed_in [BMVBO6], bears on a question
which is often referred to as theampling biasoroblem and which in fact addresses the
issue of the asymptotic consistency of empirical mean estimators.

Sectior 2.4.2 bears on the minimization of variance within this context. The main ideas
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stem from [BMVBOT7].
Sectior] 2.4.3 discusses a few open problems in the case of maximum likelihood estima-
tors.

2.4.1 Sampling bias

Consider the following non-intrusive variant of the problem considered in s¢ctiof 2.3.2. The
network consists of a single station with cross—traf ¢ consisting in a Poisson point process
(with intensity ) of exponentially sized packets (with mean service timeOne wants to
estimate the residual bandwidth

For this, one sends probes of zero size to this system according to some stationary point
process which is not necessary Poisson.NLet f T, 0n2n denote the points of this point
process and letW (t)gior denote the stationary workload process in the station (since
probes have 0 size, this workload is also the ground truth workload). We will assume this
stochastic process to be right continuous. FonaletD,, = W(T,). Since the system is
FIFO and all probes have 0 siZe,, is the end-to-end delay measured from prabéf N
andf W (t)g are jointly stationary, then the sequerid®, g is stationary too. If in addition
N andf W (t)g are jointly ergodic, then the pointwise ergodic theorem implies that

li 1)@ — 0 o - 2
1im ~ 1 Dn = Exy[W(0)]as: (2.8)
i=

In the last equatiorEf\)I denotes expectation w.r.t. the Palm probabmﬁ/ of the point pro-
cessN (seel[BBO3]). ButifN andf W (t)g: are independent, the®d [W (0)] = E[W (0)],
namely probe averages see time averages. Hence, under our assumptions,

1 X 1

lim — D, =
n'l n .

as. ; (2.9)

so that we then always have an asymptotically consistent estimator for the residual band-
width.

Assume now that the network and its cross—traf ¢ form a G/G/1 queue with a server
with speed 1 and packets with size distributed according to some probabilify lamvthe
positive real line. Lef W (t)g denote the workload process in this queue. Assume one
sends non intrusive probes according to the point proslesd we have joint stationarity
and ergodicity of the two last processes, then

11X -0 = po - o -
nIlllm o 1(D, =0)= Py[W(0)=0] as: : (2.10)
i=1

If N andf W (t)g are independent, theF?NO [W(0)=0]= P[W(0)=0]. Butforall G/G/1
queuesP[W(0)=0]=1 , Where is the load factor of the queue. Hence, under the
foregoing assumptions, we have an asymptotically consistent estimator for the load factor,
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which holds for all G/G/1 systems.

Until relatively recently, whenever the ground truth was some time average (or some
function of a time average as above where the available bandwidth is the inverse of the mean
stationary workload), it was recommended to use Poisson probes, namely probes sent at the
epochs of a Poisson point pro@sThe rationale for that was that sinBeisson Arrivals
See Time AveraggBBO03], the samples of the metrics estimated by Poisson probes allow
one to estimate this ground truth.

The arguments used above show that that there is in fact no fundamental reason for using
Poisson probes in the non intrusive case and that a wide variety of other probing strategies
share the same “lack of sampling bias' or more precisely asymptotic consistency property.

Let us list and discuss the key assumptions of the last derivation so as to reach a general
statement. We consider some system with a continuous timefstafg) g:»r assumed to
be stationary and ergodic and where the unknown parameters can be determined from the
knowledge ofE[W (0)]. If the prober chooses some probing point prodéss f Tngnon
which is

1. nonintrusive;

2. stationary;

3. independent dfW (t)g;

4. jointly ergodic withf W (t)g,

and if he can observe the quantitibg = W (T,), then the empirical mean of the obser-
vations is an asymptotically consistent estimatoE¢¥V (0)] and hence of the unknown
parameters.

All the above assumptions are necessary. For instance, in the G/G/1 queue example, 3
does not hold wheN is the point process of all or some selected arrivals of the cross—traf c.
In this case (which could be seen as an incarnation of passive measurement), the empirical
mean converges but E),(\’, [W (0)] which is then different fronfe [W (0)] in general. As for
4, if for instanceN andf W (t)g are both periodic, then there is no joint ergodicity (we have
a phase lock) and empirical averages converge to a random variables that depends on some
random phase. In none of theses cases do we have an asymptotically consistent estimator
of E[W (0)].

It is easy for the prober to build a stationary point process independé&nt ¢f) g, for
instance by making use of a stationary renewal process. A simple way to guarantee 4 is to
require that this point process be mixing. Indeed, the product of a mixing and an ergodic
shift is ergodic[[Pet83].

Hence the generdIMASTA recommendatiofNon Intrusive and Mixing probing Ar-
rivals See Time Averages. Poisson processes are mixing and there is no harm using such

%0See the paragraph “Inverse problems in network related work” of s 1.5.4 for a quick literature review.
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processes within this setting. But the class of "good' probing point processes is much larger
as we see.

The property that the sampling of an ergodic stochastic process at the epochs of a mixing
and independent point process leads to no sampling bias was rst proved inl[GS98].

We conclude this section with a few observations:

Consider the above framework.fI¥V (t)g is known to be mixing, then all stationary
ergodic point processes which are independeé{t)g lead to an empirical mean
estimator of the mean vall&[W (0)] which is asymptotic consistent.

In the intrusive case and when the inversion method is based on the empirical mean
estimator of the mean valug[D(0)] of some characteristic of the system with

its cross—traf ¢ and its probes, Poisson probing is a natural choice as it guarantees
asymptotic consistency, as a consequence of the PASTA property.

NIMASTA is valid only when the system stat&V (t)g is independent of the probes.

If the network experiences self-synchronization with the probes, or if a network op-
erator unethically perturbs the system just before probe arrigaistp increase the
apparentgerformence), the indepence holds no more, and PASTA is a sure fallback.
This raises interesting questions, with another framework where one needs to include
either the self-synchronization effect of the probes or the malicious behaviour of the
network operator. We also argue here that if the probes are rare and small enough,
the self-synchronization effects will most likely be negligible, and that network oper-
ators are more likely to change theparentgerformance through different routing
policies or priority queues (which will be valid whatever the timing of the probes)
than throught attempting to empty the buffers just before a probe arrives (which is a
technically dif cult operation).

2.4.2 \Variance

The setting is the same as that of the last subsection Nvidrstationary point process with
intensity . We denote the mean value to be estimateg by E[W (0)] and we denote the
auto-covariance function ¢W (t)gi>r by

R( )= EWMW(t+ )] p%

We assume that the function! R( ) exists and izonvexfor 0.
The sample mean estimatorpfisingK samples is
1 X
=i W) (2.11)
[
The underlying probability is the Palm probabilityf. SoTo = 0 by convention and; is
the sum of inter-sample times, which due to stationarity, each haveHamith mean 1
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HenceT; has mean 1, and we denote its law by .
Using the independence assumptions, we get that the varianfize(which coincides
with its mean square error as the estimator is unbiased) is given by

0 1
1 o XX X
Varlpr] = 1 GKEW(0)7]+2 EW(THOW(TIA  p
i=1 j=i+1
0 1
1 2 X ox 2 p?
= 7 @KEW(0)7]+2 RO @)A1
i=1 j=i+1

(2.12)

As a special case of Equatidn (2.11), we pick out the estimator based on periodic samples
of period 1, namely
1 X
Po= i W b (2.13)
i
R
for which the integral R( )fj; j;(d ) in Equation|(2.1R) degeneratesR¢ji jj 1).
Theorem 2.4.1.Under the above convexity assumptivar[p]  Var[f].

Proof. Equation[(2.1IP) holds for all processeg. So, to compare the variances it is enough to

compare, for all 6 j, the cross terms, namelyR( )f;; j;(d ) andR(ji j]j 1). But,
if R( ) is convex, Jensen's inequality says that
Z z
R()fk(d) R fr(d) =Rk 1 ; (2.14)
for all k. O

We see that under the foregoing assumptioexther sampling process has a variance
which is lower than that of periodic sampling. As just one example, by takirtg be
exponential irp; and inter-sample times to be independent, we learn that Poisson sampling
yields a higher variance than periodic. However, the result is much more powerful than
this. It shows that, iR( ) is convex, no kind of train or other structure, no matter how
sophisticated, can do better than periodic.

Unfortunately periodic sampling has a disadvantage already discussed: it is not mixing,
which makes it vulnerable to phase locking effects. Assuming R{a) is convex, we
now determine sampling schemes that offer the best of both worlds: mixing to guarantee
asymptotic consistency, but with variance close to that offered by periodic sampling.

For this, we will consider sampling using renewal processes with inter-probe times that
are Gamma distributed, namely with density

(x) = (x) e * ; (2.15)

()

onx > 0, where () is the familiar Gamma function. Its meanis! = = and its
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variance 2 = = 2, Gamma laws are well known to be stable with respect to the shape
parameter , that is, iff T; .. gare independent, then; T; P . i; - The expo-
nential law corresponds to the 1-parameter sub-family. Another special sub-family are
distributions with the Erlang law. These have only integral shape values.

We will need one more technical result regarding Gamma laws, the proof of which we
leave to the appendix in sectipn P.6.

Lemma 2.4.2. Let T -, Z . be independent, and s¥t = T + Z. Then
C=E[TjY]= Y=( + )hasdensity ,. . )= ,withmeanEC]=a= = E[T].

We can now prove

Theorem 2.4.3. The family of renewal sampling processeé ), parameterized by >

0, with inter-sample time density. (x), provides, at constant mean sampling rate
sampling variance fop; that monotonically decreases with The variance is larger (equal
or smaller) than Poisson sampling ags smaller (equal or larger respectively) thdnand
tends to that of periodic sampling in the limit! 1

Proof. We assume an underlying probability space on which the family of inter-sample
variables are de ned for each> 0. Equation [(2.1IPR) holds for each inter-sample law
G( ). As the means for each are equal tlg =( )=1=, E{roving the variance result
reduces to showing that, for eagh> 0, R( )fy.1(d ) R( )fk.2(d ) for any
values 1, psatisfying > 1, wherefy is the density of the surfi; of k inter-sample
times, each with lavis( ;). We can apply Jensen's inequality to show that
Z
E[E[R(Tk1)iYall  ER(E[Tk1jYi1)] = ER(Tk2)l = R( )fi2(d )

where to show Ely.1jYk:1] = Tk.2, we identied (T;Y; ; ; ) with

(Tk;Yien kK k(2 1) 1)

and used Lemnia 2.4.2. Since this holds for apy » with > > 1, we have monotonicity
of the variance in . As tends to in nity, there is weak convergence of (x)(dx) to
a Dirac measure di= , as is easily seen using Laplace transforms. Since the furigtisn
convey, it is continuous, and as it is also bounded (as a second order process), the property
Z Z
im R 5 ((d)= R(x) 1= (dX)

follows from the very de nition of weak convergence. This shows that the limit of the
variances of the Gamma renewal estimators is that of the deterministic probe case, namely
the optimal variance. m

This result provides a family of sampling processes with the desired properties. By
selecting > 1, we can ensure lower (more precisely, no higher) variance than Poisson
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sampling. By selecting large, we obtain sampling variance close to the lowest possible,
whilst still using a mixing process. The important point is that the parametan be used

to continuously tune for any desired trade-off, and to set the sampling variance arbitrarily
close to the optimal case. Note that this optimality is only valid for the expectation of a
primary (directly observable) metric [8/ (0)]: if the metric of interest is deduced from

E [W (0)], the inversion step can increase the variance of the secondary metric. The ampli-
tude of this increase depends on the inversion step and on the distribution of the error.

There is therefore a need to better understand what classes of queueing sys-
tems/networks lead to second order state processes enjoying the above convexity property
beyond the few classes quoted below.

Known convex examples

A natural question is, how likely is it that networks of interest satisfy the convexity property
for delay and/or loss? There are simple systems for which exact results are known. For
example, Ott[[Ott7[7] showed that convexity holds for the virtual work process (equal to the
delay of probes witkx = 0) of the M/G/1 queue. Mandjes and Es-Saghouani [ESM09]
extended this result to the case of queues fed by a spectrally positive Lévy process, and this
was extended to the case of spectrally negative Lévy processes in [GMO9].

We now show that the loss procdqs) of theM=M=1=B queue, (namely the indicator
function that the number of customerdisi.e. the set of periods where arriving packets are
lost) has a convex auto-covariance function. Denote lapd the arrival and the service
rates and by = = the load factor. From [Tak62] (p.13, Theorem 1), the probability that
the number of customers in the queudisit timet, given that it isB at time0, is

1
Pg:g (1) = 1 B 5+
P— j
2 B (+ )t+2t cos( 515 . Bi o 2
B+ 1 © D . sin BJ+1 P sin(j ) (2.16)
ji=11 2" "cos gy +
in the case when 6 1 and
1
Pr.r (t) = +
B:8 (1) 1+B
1 X g 2t+2t coygly _ Bj o 2
sin 5+ sin(j ) (2.17)

B+1. j
j=1 1 cos g

in the case = 1. In both cases, the auto-covariance function (ft), which is equal
to (B)Pgg (t) (with (B) the stationary probability that the queue lBagustomers) is
a convex combination of convex decreasing functions afid is hence itself convex and
decreasing in.
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2.4.3 Maximum Likelihood

Consider some network with a non-intrusive probing prodés&here the unknown pa-
rameters are obtained by some maximal likelihood method. An example of such a system

depending on the sequerfd®/,g = fW (T,)g, whereW (t) is the virtual end-to-end delay
in the network at time&. HenceW (T, ) is the end-to-end delay seen by theh (stealthly)
probe. Heref W (t)g is a continuous time Markov chain andnf is an independent re-
newal process, then the sequeh@é, g is Markov. If one knows the transition kerrig| of
the continuous time Markov chairW (t)g, then one can compute the likelihood function
associated with the sampl#g,, 1 n  m through a formula that involveB; and the
stationary law of W (t)g. Here are a few open problems within this setting:

What renewal point processes are asymptotically ef cient within this setting? We
conjecture that if W (t)g is mixing, then all renewal point processes are asymptoti-
cally ef cient.

Form xed, what renewal point process gives the MLE with the smallest variance
among the set of all renewal point processes with intensityls the determinis-

tic point process again optimal in terms of variance? These questions are deeply
correlated with the interaction between the sampling of the primary metric and the
inversion from the primary metric to the secondary metric.

2.5 Summary

In this chapter, we have seen how Internet end-to-end probing techniques can be seen as
inverse problems on queueing theory. The speci ¢ constraints of active probing can be
easily integrated in the inverse problem framework. The main steps of such problems have
been identi ed, and dif culties that can arise and some of their potential workarounds are
examined. We have classi ed the inverse problems in different classes, depending on their
properties. Simple examples have been used to illustrate these different properties in the
case of analytical inverse problems. Two known results are cited as examples of optimal
probing strategies, and a few open questions on this topic are nally formulated in a general
setting.

The (important) question to determine which system is being measured is not tackled
here. The answer could come from arpriory knowledge of the nature of the network.
Alternatively, it may be possible to try a few measurement techniques and determine which
technique leads to meaningful results, hence identifying the corresponding system. These
are no general solutions, and the development of speci ¢ techniques to determine to which
class a network belongs, or of description which can accurately describe most of the net-
works (e.g. the Gaussian assumption for aggregated traf ¢ bit rate in Internet links) is left
as an open question.
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2.6 Appendix

2.6.1 Packet pairs in the M/M/1 queue

Consider an M/M/1 queue in steady state with the usual notation. Assume one sends to this
system two additional customers at time 0 arxd O respectively, both with size. Below

we assume thdtis small and thak >t . Let us denote by, the system time of the rst
customer and byV; that of the second. We are interested in the quant{tyoi/;). LetS

be an exponential random variable with paramete€onditioned on the fact that the rst
customer nds an empty system, the latter is

1 t)(x(2x t)+ tEMXE2x+S 1)+ o(t)= x(2x t)+ tx + oft):

Let A(n) be the sum oh independent random variables, all exponential with parameter
Conditioned on the fact that the rst customer ndscustomers in the system, the quantity
of interest is

@ t)EAM)+ xX)(A(n)+2x ]+ t E[(A(n)+ x)(A(nN)+2x+ S )]+ o(t)

x@x H+ EAMI+Gx Hl+t Tex Liow

2 1 1
X@x D+nS+nn DS +Ex Do+t Dax =+ oft)

Hence
2 2
E(MoW) = x(2x )+ X + — T 2’1 +
X t 1 1
+ 1 S+ t= 4 o(t)
1
= E(V()Wo) t (1 )X+ — ;
with 52 3
1 X 1
E(VoWp) = 2x% + — + + A
( 0 0) X 2 (1 )2 1 1 2
2.6.2 Proof of Lemmd2.4.P
LetT -, Z - beindependent, and s¥t = T + Z. ThenC = E[TjY] =
Y=( + )hasdensity ,. ., )= ,withmeanEC]= a= = E[T].
Proof. From the scaling property of Gamni4, + . . SinceT andZ are independent,
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the density of TjY = y) is

P(T=x;Y=y) _ P(T=x;Z2=y Xx)

P(T=xjY=y) =

P(Y=y) P(Y=Yy)
x) ;v x)
+: (y)
o ( +)x Iy x) Lyt (+)

()

Recall theBeta functioB (x;y) = (  )( )=( + ). The required conditional expec-
tation is given by

_ yt (+)%y .
E[TJY=y]=7B(_ ) Ox(y x) ldx
yt (0
= B( +1;
B(; )y ( )
_ Yy
=— (2.18)

using the integral identity 3.191(1) from [GR0O0]. Now viewings a sample of , we have
C = E[TjY]= Y=( + ), whichis Gamma as stated by the scaling property. [
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Chapter 3

The Single-path Kelly Network

3.1 Introduction

The examples treated in chapiér 2 were hardly networks. In the present chapter, we focus
on delay based available bandwidth estimation in a point-to-point tomography context. In
other words, our problem is to determine, based on the end-to-end delays experienced by
probes along a single path, the residual capacity at each node (router) along it. This problem
is of particular interest in practice, because it is the simplest measurement scheme one can
imagine. It requires neither cooperation from the network nor large scale deployment on
a large set of users and coordination between these many end-hosts. In fact, a single pair
of end-hosts can measure the path connecting them, provided they have a reliable way to
measure the (one—w@probe delays on this path.

There are very few published works in this area. Recentlyettial. [LRLLO4| [LRLO5]
provided a rigorous result for available bandwidth of the path, however they focused on
the convergence of average available bandwidth estimates to certain simpli ed uid model
limits, which is of limited practical use, and do not attempt to recover bandwidthesafzir
node. As for parametric approaches, we are aware only of [NTIV06, SM98, ANTO01] which
treat only a single node, and do not attempt any validation on network data. As far as we
aware of, there is currently no work that aims at estimating the residual bandwiétcon
node of a path, using pure point-to-point end-to-end delays, without any cooperation from
the network nor any path diversity.

This last point is possible because of the (rather strong) assumption that we know the
(exponential) parametric family for the probe delay distribution, and hence, our work will
be valid only when this assumption (nearly) holds. On a theoretical side, the model we use
in this chapter is one of the canonical models in queueing theory. Whilst it is known not to
be perfect, it is surprising given the accepted queueing origin of network delays that such a
choice has escaped attention until now. One can also note that this approach can most likely

510ne-way delays are dif cult to measure, because it requires a precise clock synchronisation between end-
hosts. But the techniques we propose in this chapter obviously work for measuring the round-trip path, using
round-trip time of probe packets.
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be adapted (with some likely computation dif culties) to most other parametric families for
the delay distribution, if one is able to exhibit a “good” parametric model for the delays
in a network. For both reasons, one of the main insights in this chapter that we expect to
stay valid in practice is the statement that probe delay distribution is suf cient to determine
the set of available bandwidth along a path. The exact procedure to estimate it might differ
from what is presented here, but this work suggest that the distribution of end-to-end delays
contains enough “information” to estimate the available bandwidth on each node.

In additional to our theoretical contributions based on an idealised network model lead-
ing to a parametric estimation problem, we investigate both theoretically and using real data
the errors induced by deviations from that model. This validation is based on simulations of
network using traces from the core network of a tier 1 ISP. Whilst it is clearly simplistic in
some aspects and can't be considered as a thoroughly validation, these preliminary results
suggest that the proposed technique could be adapted in practice with little modi cation, at
least in the core networks.

The chapter is organized as follows. Secfior} 3.2 is primarily probabilistic. It describes
the parametric model, discusses its limitations, and gives its stationary solution leveraging
classical results. A rst analytical mean-based poly-phase inversion technique, based on is
presented in sectign 3.3. It relies on the interpolation of the expected mean delay, for dif-
ferent probing intensities. Whilst having “good” theoretical results, this method is unstable
in presence of error-prone measurement. In seftign 3.4, we propose an adaptation of the
previous technique that takes into account the randomness of the system. This technique
is still moment-based and poly-phase. Secfion 3.5 is primarily statistical, and use an al-
ternative distribution-based mono-phase path for the inversion. Multihop inverse problems
are posed in relation to the parametric model, and rigorously solved using maximum like-
lihood estimators and Expectation-Maximization algorithm. We prove that the associated
estimators are asymptotically ef cient, and illustrate this using discrete event simulation.
Section[3.p is experimental and queueing theoretic. It uses traces from a core network
router to drive experiments exploring estimator accuracy, to determine the in uence of the
different modelling assumptions, and to test corresponding correction factors which we de-
rive. Sectiorj 3.]7 concludes this chapter.

3.2 The parametric model

3.2.1 The system

We rst describe the system without its probes. It consists of a Kelly network With

has an exogenous Poisson arrival process of intensiéyd its path is the singletasn. All
packets have exponential size with mean 1. The service rate (or the spasgd of. An
instance of the basic setting with a two router path is depicted on Higdre 3.1.
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Switch 1 Switch 2

Figure 3.1: Example of path with two routers with non-persistent cross traf c streams,
whereas the probes (blue) pass end-to-end.

The prober sends probes according to a Poisson point process witk aatg with
exponential sizes with mean 1. Probes follow the same path as ow 0 (hamely from S to
D). We are hence within the context of point-to-point probing.

The unknown parameters arg; 1;:::; k; 1,.::; k. I'he observables are the sta-
tionary end-to-end delays experienced by the probes.

3.2.2 Model Limitations

The adoption of a Kelly network model gives us parametric access to each hop of the path,
however it comes at the price of a number of strong assumptions on traf ¢ structure. Some
of the most important of these, each of which has the potential to make a large impact on
packet delays, are:

Routers as FIFO queuesActual routers may follow complex scheduling disciplines,

and real packets experience delays on the incoming side, and contention across the
backplane, in addition to the output buffer queueing that the commonly used FIFO
model nominally represents.

Poisson cross traf clt is of course well known that Internet traf ¢ is not Poisson (see
section 1.1.14), for example both the packet and TCP ow arrival processes exhibit
long-range dependence. Although Poisson may nonetheless be a good assumption
below some timescale (say 1 second) due to the "noising' effect of multiplexing tens
of thousands of largely independent ows, practical probing schemes will in many
cases exceed this timescale due to the need to control the impact on the network, and
to collect suf cient samples for reasonable estimation variance.

Exponential packet size It is well known (e.g. [[CMT98]) that this distribution

is strongly discrete, and can even be modelled as trimodal. For exd&ne

f 40; 576, 1500y bytes, with probabilitie0:5; 0:1; 0:4), captured its rough shape well

in many cases. This is very far from exponential, however its coef cient to mean ratio
Cov[S] = P Var[S]=E[S]  1:05, which is very close to the 1 of the exponential
case.
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Independence of service timedn real networks packets have a size which, in terms

of bytes (ignoring effects like changes in encapsulation), does not change as it tra-
verses the network. In Kelly networks, packet sizes are modelled by service times
which are chosen independently at each station.

The errors induced by ignoring the above effects will be explored, challenged, and cor-
rected one by one in sectipn B.6.

3.2.3 The direct equation

Let us rst give the stationary distribution of the end-to-end delays of probes, our direct
equation within this setting.

Let us denote bwij andX ! the number of packets of classand the number of probes
respectively, in statiof in steady state. From the product form of Kelly networks (theo-
rem@),we knowthat + o+ ; < ;forallj,then

POXT = KNy = nhiN) = nlij=1;005K) =

i i j J .
] | iy o Mgkl _
Vomorm+ k) o )X 0 ;) x. g
=1 No!njki! jnlo+n; +Ki J_
Let j = j o jdenote the residual bandwidth on statjorDirect calculations show

that the marginal distribution of the number of probes is

P(X] = kj;;(zl;:::;K)><
X X ) . . ) )
= P(ijkJ;Ng)sz;N-Jzn};j=l;:::;K)

nf 0o nf onf 0 nf 0

. . . i ] )
X X X X ¥ (nh+ n}+k1)! oo J_"JxkJ

- ;X
. C s « -y nhinlidr o onbEnjsk
nt 0 nk ony 0 nf 0j=1 J i
. . . i nl )
¥ X X (nh+nl+ k) go OxKo
_ j j j
j| j| j nl+nl + ki ;
o . ng!n: 1k 0
I=Lnl on} o 0" i : )
ki nl j j
Yo M x X o M gt
. J
= J J ; i Ny
j=1 ny 0
. . _ J.
X np+nl+K P
j 5 : (3.2)
) n:
nj 0 J

n+k

. k+1-tuple of non-negative integers which sum exactlyl,

As there is exactly

52To show this, realize that suchkat+ 1 -tuple can be coded as a sequenca af k binary symbols witm
Os anck 1s. The rstinteger is the number of Os before the rst 1, and recursivelyithmteger is the number
of Os between the 1™ and the'" 1.
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one can realize that
0 1 k+1
X n+k _ @X (A
n o0 n n 0
Hence, [(3.R) reads:
P(X! = K;j =1;::::K)
* ¥ X i j i 0 X kl nb+ki+1
: n i :
—_ X j X o ° Motk @ i A
- I T j T
j=1 | nl o J No ko !
0 1nivwe
0
_ K % ki X X 0 nY nJO+ k) @ 1 A
= - . j -
J:]_ J ] n{) 0 ] nO l 71
Yo M o x X o " btk
j= 4 I no
0
| .
kl+1
_ ¥ X K i X 1
j=1 j J j J 1 i 0 i
_ X X
j=1 j 0 j j 0
: : ¥ oo Koy
P(XT = K;j 2 [0;K]) = = ’ (3-3)

These equations tell us that our system is equivalent, from the point of view of the probes,
to a new system witlkk M/M/1 stations in series, without any cross—traf ¢, and where the
server of station has speedj = i o0, Nnamely the residual bandwidth on station
j in the initial system. From this point on, we will therefore consider such a network. The
fact that residual bandwidths are suf cient to characterize (as well as the best one can hope
to determine from) stationary end-to-end delays is in line with what was already observed
in the 1 station case considered in section 2.3.2.

The generating function of the total number of probes in the (reduced) system in equi-
librium is:

¥y

_ j
N(2) = :
o 0ox

(3.4)

Since probe arrivals are Poisson, PASTA tells us that the distribution of the total number of
probes in the system in steady state as give by (3.3) is the same as that just before a probe
arrives. The latter also coincides with the probability distribution of the number of probes
in the system just after a probe leaves it.

This allows us to state the following lemma:

Lemma 3.2.1.Let (t) denote the density &t 0 of the stationary delalp of a probe in
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the system. Then |
¥ o' X e
()= i — (3.5)
i=1 i=1 61 ! '
with 9= ; x.
In addition, the mean value @f(x) of the stationary end-to-end delay of a probe in the
network is

(3.6)

Proof. Let us now consider the system when a tagged probe leaves the system. Since the
queueing discipline is FIFO, the number of prolbesn the system at that time is equal to

the number of probes arrived during the tibehe probe spent in the system. So denoting

by (t) the density oD att 0, we get:

2 2 (xt)¥
P(N = k)=  (t)P(N = kjD = t)dt=  (t)e XtTdt

0 0 '
So the generating functiory (z) of the number of probes in the system at a probe departure
epoch veri es:

z

X 1 k
Z“P(N = k) = (t)e Xt%dt
ko ko? '
1

(e @ dt= Lp (x(@ 2) ;

N (2)

wherelLp (z) is the Laplace transform dP. Hence, setting = x(1 z) the Laplace
transform of the end-to-end del&yis:
S ¥ i X

- i

Lp(s)= N 1 (3.7)

o 00X s’

where we used the fact thaty coincides with the steady state distribution of the number
of probes in the systerh (3.3), so that (z) is given by [(3.4).

Note that[(3.]7) is the product of the Laplace transform of exponential variables of pa-
rameters ;  X. By injectivity of the Laplace transform of random variables admitting a
density, this proves that the end-to-end delay of probes is the sum of independent exponen-
tial random variables of parameters x. The mean value is hen@ = J- % Using
the Laplace inversion formula and the residue theorem, and sefting; X,

1 Z i1 X K 0
(t)= — eLp(s)ds= Res et 1
21 i1 iz
i=1
so that using = 0 and then the curve going fromil toil and back on a half circle of
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in nite radius in the left half-plane, we g€t (3.5). O

Remark.Note that both the mean delay and the delay distribution of the probes are a func-
tion of residual capacities, but not the service or arrival rates, showing that only tre
accessible by this technique from the stationary delay distribution.

Remark. More general classes of cross—traf ¢ paths can also be considered within this
framework. In such an extension, there are as many traf ¢ paths as there are pairs of integers
(5j)withl i j K. Apath of type(i;j ) brings cross—traf ¢ which is Poisson and
enters the network on statiorand leaves it from statiod . The methodology described
above works in this more general setting. It is easy to show that the nal result is exactly
the same as above, namdly {3.4) gnd](3.6) still hold withow equal to ;  ; where ;
denotes the sum of the intensities on all paths traversing node

3.3 An analytical solution

Linear system inversion

In this case, we use a rst-moment poly-phase inversion technique, under the following
assumption: the prober can measure the mean end-to-end delay of probes for each phase,
and the number of stations is known (in real IP networks the latter can be measured by tools
such adgraceroutg. We will explain how the prober can compute the coef cients of the
polynomial whose roots are the residual bandwidths of each station on the path.

From [3.6) the mean end-to-end delay can be expressed as follows:

=]
o X 1 K 1 k
D)= —— = pko X (3.8)
i1 10X k=0 DkXK
whereay; b are real numbers de ned by
X . Y K1 . XY
bhx* = (i Xx); ax* = (i %)
k=0 i=1 k=0 i=1 j6i
So
" X
be = (1) i1 ik Kk
(isnik w)sij6i
a = ( Dfk+1) ik 1 =( DK+1) b

(i;i5ik 1 k)i 60

=]
The s are the roots of the denominator ponnomia}f=O hoxX. Therefore, if we identify
theby variables, we have solved the inverse problem that consists in determining all residual
bandwidths from the observations.
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We now show how to nd the coef cients of the polynomial. Assume we h#ve

of the probe rate (we will consider the situation with a number of phases largeKthan
in sectior 3.4.0]0). The method is hence moment-based and poly-phase. We want to nd
(b)k=0: :k such that:

PKl

k k
P R . _ k=0 SKXj _ k=0 (k+1) b1 XP
8]—1,...,K, dj_PK—h()(,k_ P b<xk . (39)
k=0 J k=0 i

Rational fractions are de ned up to a multiplicative factor: we can hence always assume
thatbx = 1. The system is now equivalent to:
1 K1
8j =1;:::;K; di XK + kx| "= dixf Kx{© T (3.10)
k=0 k=1

which can be written as the matrix equatirn= XB , whereX istheK K square matrix
Xjk = ((k  Dxf 2+ dixf 1); jik =1;:5K

andY (resp.B) the column vectol; = Kx[© ' djx (resp.Bj = Iy 1). WhenX is
invertible, there is only one solutidd = X 1Y.
We lack suf cient conditions foiX to be invertible. The prober will therefore have to

continue adding phases until becomes invertible.

Numerical illustration ~ Table[3.]1 gives some numerical results for this method. The rst
column indicates the ground truth, i.e. the real valuet ¢f:::; k). The second column
speci es the probing intensities that were used, that is the végtor. ::; Xk ). The third

column consists of the coef cients of the polynomialic, bx', which we write as the

accurate results in all the cases we tried. However, with 7 (or even 5) stations, one can
already notice some rounding errors in the calculations. These errors, which stem both
from the inversion of the matriX and the determination of the roots of the polynomial

k-0 XX, grow as the number of stations increases.

3.4 Noise Aware moment-based solution

Minimizing quadratic-like error in Kelly networks

The setting is that of sectign 3.3, but we now take into account the fact that the variable
d; in (3.9) is some error-prone measurement of the stationary mean delays of the probes of
phasq . Assuming that the linear system is of full rark, (3.10) has still one unique solution.
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| Ground truth || Intensities | vector B \ Estimation \

(10, 30, 70) 1,2,7) ( 21000 3100 110) (10, 30, 70)
(10, 25, (0.3,1, [ ( 315 10°; 6:43 105 (10, 25,
30, 60, 70) 2,4,7) 4:49 10° 139Q 195) | 29.99, 60.08, 69.92
(10, 12, (0.001,0.3,] ( 6 10%; 1:76 10%, (10, 12,

25, 1, 1:97 10 25.05,

30, 60, 2,4, 1:08 1C%; 312 105 29.84, 62.72,
85, 130) 7,9.7) 474 10% 354) 78.78, 135.3)

Table 3.1: Linear inversion in Kelly networks: numerical results

However, as shown in Table 8.2, the method is extremely sensitive to the presence of noise,
and solutions are meaningless with as little as 1% error in the measurements.

This sensitivity to noise is due to several reasons: rst, the algorithm nds one exact ra-
tional fraction, but this fraction interpolates the noised measurements (this is the over tting
phenomenon). Second, the imprecision is multiplied when taking the invekseantl then
when nding the roots of the polynomial. The concatenation of these operations is quite
unstable.

In order to prevent the over tting phenomenon, we explored the classical solution con-
sisting in increasing the number of measurements. Let us assume walae error-

probing rate.

Following the same lines as in the previous section, we arrive at the matrix equation
XB = Y,whereX istheN K matrix with (i; k) entry equal tdk ~ 1)x{ 2+ dixk 1,
and where¥ istheN  1vector withi entry Kx < *  dixK.

i
This corresponds to a multiple linear regression, with more measurements than param-

eters. There is often no unigue solution to such a system. A common way to circumvent
this dif culty is to select the valud® that minimizes the sum of the square errors in each

| Ground truth || Vector B \ Estimation \
(10, 30, 70) (6564 938 19.9) (-44.4, 10.9, 13.6)
(10, 25, 30, (144053039 ( 246 522 2:46 + 522
60, 70) 358 86; 15.82) 6:191 3:66i; 6:191 + 3:66i; 8:35)
(10,12, 25, || (1:55 10°; 3:82 10 ( 342,01 4 0:1+4i;
30, 60, 31001186 5:31 2:62; 5:31 + 2:62;
85, 130) 891,232 255) 8:21;9:91)

Table 3.2: Numerical results for linear interpolation. Delays are measured with 1% error
(half with 1% more, half with 1% less). Intensities are similar to the ones used in[Taple 3.1.
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equation:

n #2

@zmlign (v XB)(Y XB)= " min (kxf *+ dixf)h : (3.11)
j=1 k=0

The least squares error solution .11@is (XtX) IXty.

Notice that nding the coef cient$y which minimize the sumin (3.11) is not equivalent
to minimizing the square of the differences between the left hand side and the right hand side
of ). We have in fact multiplied the-th difference byP Ezo h<XJk = QiKzl (i X))
before looking for the minimum. The last product is positive and decreasixgiasreases,
so that we put more weight on less intrusive measures. There are several other ways of
estimatingB (e.g. through total least square methads [GL80]) and it would be interesting
to compare them. We will not pursue this line of thought as the last step of the inversion
method (that consisting in determining the zeros of a polynomial from its coef cients) is in
any case likely to be unstable, as illustrated by the following numerical example.

Numerical illustration A Maple implementation indicates that the over tting correction

is not suf cient. We still get complex roots to the polynomial. We conjecture that this is
due to the instability when inverting the matr!X and when nding the roots of the
polynomial. A small error in the measured delay is ampli ed by the matrix inversion, and
it is well-known that a small difference in the coef cients of a polynomial can have a huge
impact on its roots. Table 3.3 provides a few numerical results for the 3 station case. This
instability motivates the maximum likelihood methods studied in the next section.

] N H Intensities \ Vector B \ Estimation \
3 1, 2,7 (6563 93819.9) | (44.4,10.9, 13.6)
5 03,1, 2,4,7) ( 6075914 398) | (9:8,1499 19.9i)

(0.001,03, 1, 2, . an o »

7 27,99 ( 95831417 55.14) | (9:88,226 214i)
(0.001,0.3,0.5,1, 2, ! P o

10| 445,787 6.7 | ( 107661610 627) | (9:9,264 198)

Table 3.3: Least squares linear regression in the 3 servers case. The ground truth is (10, 30,
70). Error in mean delay is 1%.

3.5 Maximum likelihood estimators

The network and its probes are as in sectijon$ 3.3[anjd 3.4. The observables are now a
nite time series of probe end-to-end delays and not an exact moment or distribution as
in that section. In this section, we will assume that all samples are identically distributed
(i.e. we assume stationarity) aimdiependentThe latter assumption is of course not true in
general as samples collected at two epochs with a nite time difference are in fact (Markov)
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correlated. However, if inter-probe times are chosen larger in mean than the mixing time of
the system, then it is justi ed to assume independence.

Remark.It is a well-known that the mixing times of heavily loaded queues can be poten-
tially very large. We refer to the classical litteratueed. [AW87), [AW94|,[Mor55, AW88])
for more details.

Lemmd 3.2.]l showed that the probability density functi¢d) atd 0 of the station-
ary delayD of a probe in the system is,

¥ X e W
o (d) = |0 Qﬁ ;
o im asil] D
with 0= | x.
The problem can hence be viewed as a classical statistical problem, that of tting distri-
butions of this class.

3.5.1 The one station case

ForK =1, one can somewhat simplify the notation: the speed of the link the cross—
traf ¢ intensity is  and the probe intensity is. The system is a FIFO M/M/1 queue. The
distribution of the delayd of probes is exponential of parametét= X, hamely

it admits the density (d)= % ™;foralld 0. Assume we have several independent

likelihood of the parameter is de ned as:

Al P,
fa()= (d)= %e " =
i=1

The maximum likelihood estimator of the paramdigs the maximum of the likelihood
function. This function is positive, and has 0 as a limit whé@tends to 0 or td . At any
local maximum, and therefore bf we have% =0, which is equivalent to:

P X P
an 1e b L d bd" die bo Ly di =0
i=1

Hence 1
po=p ' == (3.12)

The maximum of likelihood for the available bandwidth is henbe: b = b = % + X.
This together with the strong law of large numbers show asymptotic consisteacthe
estimator converges to the ground truth when the number of probes tends to in nity.
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3.5.2 The two stations case

In what follows, we will use the notation to mean iofor the sake of notational simpli -
cation.

We rst evaluate the log likelihood function and then pose the likelihood equations
(3.15). The key results are (i) the fact that (3.15) allow one to determine the MLE estima-
tor and (ii) that the latter is asymptotically ef cient (Theorém 3]5.1). This convergence is
illustrated by simulation results.

The end-to-end delay of a probe is the sum of two independent exponential random
variables of parameter, and » (see Eq.[(3]5)). Its density dt> Ois hence

e 10 o =2
P ) R (3.13)
2 1
If » = 1= (which has essentially no chance of occurring in practice) the density

becomes 2de 9, which coincides with the limit, ! 1 of (3.13).

Y
fa( 1 2)= 32 (di) (3.14)
i=1
We proceed as above by determining the values of the residual capacities that maximize the
log-likelihood functionlogf :

1d; 2d;

X
logfa( 1; 2) = n(log( 1) +log( 2) log( 2 1))+ log e e

i=1

At any local extremum, therefore @bt ; by), we have:

@1 by by bi(b, b)) .1 e (b2 bi)d

i=1
@ogfq( 1; 2) 0 nby o]

M o
@ b1;b2 ba(b2  by) i1 glbz bi)di 1

(3.15)

These equations, which are instrumental in determining the MLE numerically, will be re-
ferred to as thékelihood equationé what follows. Here are important observations: under
the natural non degeneracy assumption satis ed here, the valye lef which maximizes

the likelihood is a stationary point, namely a solution of the likelihood equation. However,
even in this simple two station case, there may be spurious solutions to this equation, like
e.g. local maxima or minima or saddle points. So for locating the global maximum (i.e. the
ML estimator) one should rst determine all the solutions of the likelihood equation and
then determine the solution with maximal likelihood. More can be said on the matter when
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the number of samples is large. Settikg= E—; andY =(by by), ) now read:

1 y X ) y X i
= = L; X = — L (3.16)
X n. 1 edY n. ey 1
i=1 i=1
Note that this transformation is reversible, and we have
b, = 1 X and
XY
b, = T X (3.17)

Multiplying both equations, we get that is a solution of the xed point equation

Y=9(Y)=* ! : (3.18)
n di 1 P n di

n i=1 1 e djY n i=1 ediY 1

Notice that 0 is always a solution ¢f (3]18), when extending the right hand side by continuity.
Once a non-zero solutiovi of (3.1§) is obtainedX is derived from[(3.16) and this gives

a non degenerate solution {o (3.15). In gendral {3.18) can have either no other solution
(than 0), or several other solutions, dependingi@nd on the sequence of random samples
which are chosen. However, the situation simpli es signi cantly wheis large. Assume

that » > ;. Then, by the strong law of large numbers, for\alt 0,

R di D
lim — — =E
ni n 1 edY 1 e DY
i=1
_ 12 t t
= e ' e 2Y)dt
> 1. 1 e vi( )
_ 12 X 1 1
2 1, , (1+kY)2 (2+kY)?
Similarly
lim 1)@ e d‘Ydi _ 12 X 1 1
nitn. 1 oedy 5 g (1+kY)2 (2+KkY)?

Hence, fom large, [3.1B) is approximately equivalent to

bt y=0 (3.19)
== (0) (1)

2 1

. . P ,
with ()= | 5wy (oekvye - tis easy to show thaf (3.19) always admits
and , jassolutions. The function on the L.H.S[of (3.19) is depicted in Figute 3.2 where
one seesthatOand 1 are the only solutions. Hence, we argue thatféerge enough,
spurious solutions will concentrate aroubdo » 1 will be the only other solution.
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Figure 3.2: Shape of the xed point equation: LHS[of (3.19).

Remark.This techniques does not hold when=,. In particular, from equationp (3.[17),

we can see that the estimation in this case wouldybe b = 0. However, this problem

can happen only when the vector of end-to-end delays is sampled exactly according to a
theoretical distribution with1 = 5. This equality is unlikely to happen (as it substracts
traf ¢ intensities, which is unlikely to be equal on different links), and the probability of
having a negligible noise in the measured data is low. Additionnally, this question is solved
with the technique proposed in sectjon 3]5.3.

The main result on this MLE approach is:

Theorem 3.5.1. The MLE(b1; by) is asymptotically consistent. That i;; b,) almost
surely converges to the true parametérg; ») when the number of samplestends to
in nity.

Proof. The proof relies on Theoren 1.4]13 and Lenjma 1]4.14 which state that if
1. . ,(d)iscontinuousir( 1; ») foreveryd;
2.8 6( 1; 2);9N opensets.t. 2 N and

1, 2(d)

Fue Q9 — 9

> 1

3. The parameter spaceis a compact set,

then the MLE estimatofb; ; b2) converges almost surely to the true paramdters »). In
the last expression and below, E,[g(d)] means integration of the functig{d) w.r.t. the
density .. ,().
Let us show that our problem veri es the conditions of the theorem. The function:
. ,(d) is continuous in( 1; 2), so that Property 1 is veri ed. By convexity of the ex-

ponential function, for ala < b real,(b a)xe ™ e & e b (p a)xe ¥:
Therefore,

1 ode 2d sa(d) 1 ode 0 (3.20)
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up to are-ordering of1 and . Therefore, we have:

1241 »)d 1; 2(d)
1 2 1, 2(d)
This implies
. . - (d)
inf log —12 + d inf log—22(9
SinceE,; ,[d= ++ L1  wehave
lo 12 inf e 1
g SUD on 1SUD on 2 (2 nf (1 27)
1, 2(d)

BRI ¢

Hence for all bounded open séis,

1, 2(d)
1; 2(d)

so that Property 2 is veri ed. Finally, remember that the parameters are residual bandwidth.
Therefore, without losing any meaningful solution, we can restrict the natural parameter

E ., |2n’1‘l log > 1 ;

spacq0;1 [2 to a spacg¢; A ]2, where is a very small capacity (for example, 1 packet per
year) andA is the highest capacity of existing routers. O

Theoreni 1.4.73 is in fact more general, and that Property 3 can be replaced by the
following: 9C compactsets.{. 1; 2) 2 Cand

E,, inf log —* ()

L >0 ;
2 nC 1 ,(d)

which would allow us to consider any positive value as an acceptable parameter. We are
con dent that the general form of the theorem holds, and simulations were consistent with
this. We choose to use the restricted parameter space because artbh are well cho-

sen, the restricted parameter space includes all meaningful parameters for the system we
consider in practice. Therefore, restricting the parameter space is equivalent to rejecting
solutions that we know to be impossible. The question whether the result still holds when
taking =10; 1 [2 is still open.

Numerical illustration

We now evaluate the MLE by simulation where delays are generated according to the theo-
retical law. Residual capacity estimates are obtained using the following technique inspired
by the above: we numerically locate the rst zero|of (3.18) which is not in the neighborhood
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Figure 3.3: Precision of the estimated = 1 (left) and , = 2:2 (middle), and variances
(right, note log scale) as a function of

of the origin. We use a stopping precisionidf 4 in the procedure for nding this zero (a
value of10 8 produced the same estimator). In each case results are averaged over 1000
independent experiments.

Figure[3.8 plotsh; andb, when( 1; 2) = (1;2:2) as a function of the number of
probesn. The results are quite satisfying: for 1000 samples 80% of estimates have error
below 10%, and this drops to 4% for 100000 probes. It is clear that the estimation variance
drops, and the right hand plot shows that it does s@@ls=n) as expected. Notice that

2 1isunderestimated. The bias decreases wisiso, though this is less obvious in the
plots since the decay is much slower than the decay of variance. In other words, the MSE is
dominated by the bias for large If instead we usé¢ 1; ») = (1;7:4) we approximately
obtain the same precision fbg and improved precision fdr;.

It is well known, and to be expected, that the maximum likelihood estimator can be
biased (although the consistency property implies that asymptotically it is not). For example
in the case of a single server of residual capacignd a single probe, the estimatois
simply the inverse of the probe delBy. By convexity of the functiori (x) = % we get:

1 1
EbI=E 5 > g5
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Remark.The bias depends obviously of the metric one wants to estimate. Say, for example,
that the prober is interested in the mean timespend in each statiogn As each server
behaves as an M/M/1 queue, and from the function invariance of the maximum likelihood
estimator (see Lemnja 1.4]12), we have that

1 1
j=— and cj=

j b
It follows obviously in the same single server case that
E[b]= E[D]= ;
which shows that, contrary to the residual bandwidth estimator, the MLE of the mean-time
spent in the server is unbiased.
More than two stations

This section is focused on the generalization to a path KWittouters. We follow the same
approach as for the two station case. We still usie place of io.

According to [3.5), the likelihood function far independent end-to-end probe delays

0 1
y X Y
fa( i k)= @ K_A je 14
i=1j=1 «kej K I
0 1 0 1

Ae id

p=1 i=1j=1 kej K |

Therefore, we get the following expression for the log likelihood:

0 0 1 1
X X X Y 1
log(fa( 1;:::; k))=n In( )+ log@ @ Ae 14A ; (3.21)
p=1 i=1 j=1 kej K 1
so that the likelihood equation reads:
@og(fqg 1;:::; ) _n X 1
@ =T P Q 1 di
! ' im a1 ke o € 0°
20 1
X
4@e 19 = L A
wi (k1) g G 1)
0 1 0 13
Y X jpdi Y
@e ¢ 1 A @ & 1 _As
et (k1) el | ke ko

We found no closed form solution to this system of equation, and instead turn to the
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Expectation-Maximization algorithm considered below.

3.5.3 Expectation-Maximization Algorithm

The Maximum Likelihood estimator is very often analytically dif cult or even impossible

to derive. One way to overcome this dif culty is to use Expectation-Maximization (E-M),
which we presented in sectipn 1.4.4. The use of E-M algorithm for tting general phase-type
distributions was rst described by Asmussetal. in [ANO96]. The setting considered in

the present paper, namely the tting of sums of independent exponential random variables,
is much more speci ¢ and this allows us to give explicit iteration formulas and also to
prove the convergence of the algorithm, which has not been done for general phase-type
distributions to the best of our knowledge.

The two station case

In the two link case, théncomplete dataare the end-to-end delayh of probes,i =

algorithm in this setting, and then shows that it converges to a solution of the likelihood
equation. This proof, which is one of the main mathematical results of this chapter, is
structured in two lemmads 3.5.2 aind 315.3.

Let
Qa( 1 2) 17 2= E _ qjoylog ®&a( 15 2) (3.22)
wherefq.q( 1; 2) = . ,(di;lq;::05dn; 1) is the complete likelihood of the complete
dataand = d; [; is the delay on the second link,

The E-M-algorithm can be de ned as follows:
E-M Algorithm: Take any randong 50); ;")) and for each positive integet, do the
following:

Expectation step: compu@q( 1; 2j §k>; ék)).
Maximization step: compute

(§95 8y =argmax Qa( 1; 4 {75 §7) (3.23)

(1;2)

The following lemma illustrates the tractability of this approach:
Lemma 3.5.2.In the two router case, forak 0, (3.23) is equivalent to

1 1 X dj e 0 W, 1

_ = — ; (3.24)
k+1 9 (g K k
§+) ni=19(2 a1 g) &)
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and

1 1 1 X di
= — : (3.25)
£k+1) ék) ik) n e gk) gk))di 1
Proof. We have
, -l d)
C(ljdy = 222t 2
b 2(J ) 1; 2(d)
1 2e 1|e Z(d I)
B 1 28— =% 1% e 2¢
2 1
(2 1)e(2 1)l .
1; 2(|Jd) - e( 2 1)d 1 ’ (326)
so that ( )pn |
o (g De? Vo=
1; 2(|Jd) - Yinzl (e( 2 1)di 1) . (327)
The expectation step gives:
Z
. xn di _ _ el 2 )i
Qd( 1; 2] 13 2)= o log 1 7€ 2digl 2 2)li ( 26(2 13_)di 1 dl;
1=
del 2 1di
= lo +lo d: 2 1+( 2 1)di :
(3.28)
so that
@Q(u 213 2)_n, n X dgelz D4
@1 1 2 1, g2 0d 1 7’
and
@Q(1; 20152 _ N n +Xn d
@> 2 2 1 ., el2 ud 1

The announced result then follows from the maximization step.

Three important remarks are in order:

For allk, -5~ > Oand—5 > 0. This follows from the fact that
1 2

(k) (K)yq (k) (K)yg.
e( 2 1 )di 1< ( gk) ik))die( 2 1 )di

Therefore

k k
diel 29 i

>
9 Py 4 ék) :(Lk)
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and [3.2%) shows thatzl;- > 0. Similarly,
1

() (g,

e( 2 1> ( ék) :(|_k))dl

Therefore
di < 1
o (0 Mg 1 ék) :(Lk)

and [3.25) implies L5 > 0.
2

Forallk O,
1 11X

D T oD - n di (3.29)
1 2

i=1
This is immediate when adding Up (3]24) apd (B.25).

It can be shown that the limit 04) a.25) whézh) ik) ' 0i |s ' 5L d
for both equations. Hence, the cage= ; is not a problem with the E-M algorlthm.

Here is now the main result on the E-M algorithm in this case. From Theforem[1.4.16
and Corollar?, we know that the sequetangf 4 ( §k>; (k)) (and hence also the
sequencéq ( (k); (k))) is increasing and converges to a nite limit.

The fact that the sequen€g( ; (o, (k)) converges does not prove yet tlQaik) (k))

converges, and even if it does so, it could converge to some value which is not a solution of
the likelihood equation.

However, for this particular case:

Lemma 3.5.3. The sequence¢ ; (k) (k)) converges to a nite limit( ;; ,) which is a
solution of the likelihood equation.

Proof. From theorem 1.4.19, the second part is obvious once the convergence has been
shown. The proof of the convergence appears in Appgndix|3.8.1. Note that we provide
an original proof based on a continuity argument, because the natural suf cient conditions
from l for the convergence ()fgk); ék)) do not hold here. O

As a direct corollary of these lemmas, if the likelihood equation has a unique solution
which is a maximum, then this is the maximal likelihood estimator and the E-M algorithm
converges to it, which itself converges to the ground truth axreases (Theorem 3.5.1).
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More than two stations

Denote bylj; the time spent by probieon link j . If there is only one probe, we just write
lj for the time it spends on link. Hence

. we (il 15d)
ceo (Il qjd) = —2 K
! “ 15005 K(d)
1 K € 111 e x 1k 1g k(d Ih Ik 1)
= PK 0 .
1 =1 kéj %« ; © id
e xdOK 1dc
=PK ) 1 )
=1 kej %« ; © id
jK—lle(K J)lj
s (il 1jd) =p - ; (3.30)
1"K(l id) Pk ) 1 el x j)d

Then, for a sample of independent probe delays, we have (with the same notation as
above):

x h i

P
_ x Za Zg P12y _ szlle( ko DG
- g U d
izt laieo Ik wi)=0 sz1 K| klj el k j)di
K( 1
Iog 1 ke K di e( ki dl(l;i) dl(K 1)
j=1
X Za 24 Pszlzl(i;i)K(l
= i(di) el Iy
bzl laiy=o Ik 1i)=0 j=1 1
|§( 1
@og( k) «di+ log()+( k  Dlgiy Adlwiy  dl iy
j=1
with L
i(d)=p < Q : (3.31)




jandlog ;j 81 j K. This means that taking its partial derivative with regards of any
j and setting it to zero will give a simple equation of the f(}f’ij'FTH- b= 0 to solve, which
will provide the solution of the maximization step in closed form. Let us illustrate this by:

Lemma 3.5.4. For the three router case, forakl 0, (3.23) is equivalent to

(k) (k)
(k+1) (k) (k) (k) (k)
1 2 1 3 1 !
1 ($ W)de Pase Pa o Mo (3:32)
PRI I @ 0 Wy Da 4 ( W Wy W,
(k) (k)
(k+1) (k) (k) (k) (k)
2 2 1 3 2 !
X (9 Wyge Pare Pa g (3.33)
IR I I @ Wy Fa 4 ( W Wy W
and "
1 1 1 1
k) ~ n di (k+1) (k+) (3.34)
3 i=1 2 1

Proof. The proof (composed mostly of direct computation) can be found in Appgndix 3.8.2.
O

Remark.In chapte[ #, we will prove an explicit formula for general tree topologies. Applied
to the particular case ¢f serversin a line, we get that the E-M recursion is

1 ix\l o (ljid)

8k 0;81 | K;

where «
i d
e i
(d): Q(—
jzr ke (k)
is the density of the delay distribution@t 0 given parameters = ( 1;:::; k), and
0 0 1 1
id X X id
(= @ ° "~ @ LA ,Q A
ik ) 6 ko o) (1 )% ke 1)

k6 i

is such that the fraction represents the conditional expectation of the sojourn time in server
j, given that the total end-to-end deldy> 0 and the parameters, with = iK=1 i
being a multiplicative constant for both sides of the fraction.

Table 3.4 provides simulation results for the 3 station case.

134



[ Ground truth || Mean | 10% percentile [ 90% percentile | Variance \
(1, 10, 100) (1,9.99,101) | (0.98,9.11, 78.9) (1.02,10.9,129) (1.510 %, 0.43, 320)
(1, 10, 20) (1,9.83,22.2) | (0.99,7.93,15.7) (1.02,11.9,30.6) (1510 %, 2.3, 35)
(1,10, 11) (1,8.35,14.4) | (0.99, 6.83, 11.02) (1.02,9.87,18.5) (1.510 %, 1.35, 9.43)
(1,100, 110) | (1, 68.7,188) | (0.99,59.4, 165) | (1.01, 77.7,213) (L.110 %, 525, 418)
(1,2, 100) (1,2.01,91.4) | (0.97,1.88,72.1)| (1.04, 2.15, 111)] (710 %,0.01, 223)
(1, 1.2, 100) (1,1.2,89,7) | (0.93,1.1,722) | (108, 1.32,107) (3.310 3, 6.810 3, 212)
(1,1.2,10) || (1.07,1.09,13) | (1.05,1.07,9.85)| (1.08,1.1,17.1)| (1410 %,1.710 4, 8.19)
(1,1.2,14) | (1.04,1.105, 1.48] (1,1.04,1.36) | (1.1,1.2,1.67) | (1.210 3,310 3,0.015)

Table 3.4: Precision of estimatfin,; by; b3) for various ground truths. Experiments have
10* probes and are repeated 200 times.

3.5.4 Additive measurement noise

We consider now the case with additive noise in measurements. We come back to the single

station case but we now assume that all delays have some measurement noise which consists
in adding an independent random variable which is uniforth ib; . The density of the
noised delay is then

a

d<a

d, is:

a+b

ng 1 Ad x) 1e Yd+p) :
(d) _ R ba+b Oe dX = 0a+b0 N if b
s & 0 S i
The likelihood to measune delaysd;  dy dk 1<a dg
P
1 k1 0/ o0 d 0
fd( ): W (1 e (d|+b))e i=k (e a e b)n k+1
i=1
Direct calculations give that
1
@ogfg( ) _ X X1 d+b
- "= d nb+ —ap T (n k+1)
@ i=1 iy 1o @D 1

Hence, the maximum likelihood estimatorwhich veri es the relation

is such that

k1

The function

1 & b9di+h
:11e()

d+Db

k1

i=1 1

O

+(n k+1);

@ogfq( )
@

a+b
e bda+b)

d+b
e b%d + D)
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is decreasing. There is therefore only one solutiorj to {3.35), which can easily be found
using numerical techniques. It is easy to check that

D+b a+b
E 0 W1D<a +WP O(D a) b
Za  t+p 1 e b atb ‘e e e M)
= T dt + T E dt b
Zbl e (t+b 2';\+b 1 e Matbh a+b
at+b 1
= dt+e 2 e “dt b
ba+b a
a P 1
= + —
2(a+ b) 0
_a b 1
= +
= Eo[D] : (3.36)

Hence [(3.3p) is equivalent tp (3]35) when the number of prob&shds to in nity. This
shows the asymptotic consistency of MLE estimator for one station and uniform noise.

In practice, timestamps are measured at the departure and the arrival of packets. As-
suming that timestamps suffer from a uniformly distributed noise, the measured delay is
the real delay plus two independent uniform noise variables. The design of maximum like-
lihood techniques for such noise structures and working for several station in series is an
interesting open question.

3.6 Experimental Validation

We test our tomography method using an experimental methodology involving simulations
driven by traces collected on a core Internet router. Although such an approach has limi-
tations, it enables an examination of performance in a context where important real world
issues can be observed, evaluated and understood.

3.6.1 Data Sets and Traces

The traces we use were collected at a gateway router of the Sprint IP backbone network.
The router had 4 linecards supporting 6 active interfacesOC+48 (BB1); 2. OC48
(BB2); 3: OC-12(C4); and4: OC-3 (C1,C2,C3) as shown in Figufe B.4. The interfaces
BB1 and BB2 connect to backbone routers and carry the bulk of the traf ¢, while the others
connect customer links. Traf c on 11 links over the 6 interfaces was monitored, accounting
for more than99:95% of all through-router traf c. DAG cards [dag], synchronized to a
common GPS signal, were used to capture a xed lerGgthyte record for each packet,
and record a timestamp accurate to 22n OC-3 links and below X on others.

We use two “full-router' datasets, Expl and Exp2, each collected with the experiment
over 24 hours, some 4 terabytes of data each. The rst was taken in ARQD3tnd has

136



Trace | Exp#: Input— Output | # Packets Rate Mbps| E[S] bytes| Cov[S] | Cov[ ] |

P1-BB1 | Expl: BB1-in — C2-out 2647128 47.1 658.0 0.90 1.16
P1-BB2 | Expl: BB2-in — C2-out] 3221776 60.1 689.5 0.87 1.16
P2-BB2 | Expl: BB2-in — C2-out 2899816 53.8 686.7 0.89 1.15
P3-BB1 | Expl: BB1-in — C2-out 2130118 35.2 608.5 0.94 1.16
Q1-BB1 | Exp2: BB1-in— C2-outl 1557533 24.1 571.1 111 1.14
Q1-BB2 | Exp2: BB2-in — C2-out 1957099 36.0 680.6 0.96 1.15
Q4-BB1 || Exp2: BB1-in — C2-out 1583546 23.6 549.9 1.15 1.14
Q4-BB2 | Exp2: BB2-in — C2-out 1864193 31.2 617.6 1.04 1.14

Table 3.5: Traces used to feﬁd simulation, each 300 seconds long. The coef cients of vari-
ation of packet size C¢8] =  Var[S]=E[S] and inter-arrival time should be compared
with 1 (exponential case).

been used in several works including [KS@,[HVPD04/ MVBB0O7 BMVBOY], and the
second, from JanuaR004 was used in [BMVBOF7].

A thorough description of the experimental setup including the issues involved in the
processing of the raw DAG timestamps into valid through-router delays, and the careful
management of header overhead effects, which we follow here, can be found in [HVPDO04]
(in particular Section 3). Two points are relevant here concerning serialization times, which
equate to service times and therefore waiting times, of packets at the input and output of
the router. First, with SONET headers removed (the linecards use Packet over SONET
(PoS)), the raw (OC-3, OC-12, OC-48) bandwidths are effectively reduced from (155, 620,
2,480) Mbps to (149.76, 599.04, 2,396.16) Mbps. Second, the DAG records IP packet sizes
but they are transmitted with a 9 byte HDLC transport layer encapsulation (5 leading, 4
trailing). These modi ed capacities and packet sizes are used below.

The traces exhibit marked diurnal variation whereas we require stationary conditions.
We follow [BMVBOQY] in selecting from both experiments a number of time windows which

.
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Figure 3.4: Full-router experimental setup.
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give variety in average link load, but within which stationarity approximately holds. Ta-
ble[3.5 describes the incoming subtraces. The traces used are from different links and/or
well separated in time and so are close to independent.

3.6.2 Semi-Experimental Methodology

Traces from the full-router experiments are static, a xed web of packet delays spanning all
input and output interfaces. The only way to vary parameters in such a context is to search
through the trace hoping for interesting variations, which is not very exible, and even more
seriously, probes cannot be added. One could try to “baptize' selected packets as probes,
however such probes would observe Palm (self-conditional) probabilities rather than the
desired equilibrium probabilities, which introduces an inherent (strong) bias. Finally, with
the traces alone we would be restricted to single hop routes.

To gain the exibility we need, we use trace driven simulation whereby selected traces
from incoming links are fed to a queueing system representing the router, to which we can
also add probes, and direct the output to subsequent hops fed by additional traces. It is
well known that a drawback of this approach is that in practice feedback mechanisms (in
particular TCP) would alter the traf ¢ ows as a function of the experimental parameters.
Nonetheless, it enables us to study the effect of breaking the technical assumptions of Sec-
tion[3.5. A live experiment involving passive capture in the Internet core combined with
simultaneous active probing has been attempted before [MVBBO07], but is very challenging
to put in place and could not be performed here.

A simulator depends crucially on the choice of system model. As presented in section
[1.1.4, we follow [HVPDO04] which investigated this issue in detail for Exp1 and is therefore
relevant for this router. Two models were described, the rst of which was shown to predict
through-router delays very well, and the second extremely well (to within a fevior
almost all packets):

One Stage Model: A FIFO queue with service time given I8=C, whereS is the packet

size in bits (including the 9 HDLC bytes) a@ithe capacity (overhead-corrected as above)

in bps.

Two Stage Model: Packets must remain in a “front end' FIFO system for at least a time

( S) = a+ bSpriorto entering the output FIFO queue (a more precise description is given
below). This models the time for a packet to cross the switch fabric and enter the output
buffer. The values of, b, depend on the output interface type and capacity. For OC-3
output here for example, we uae= 18:8 s andb = 1:8125[ns/bit] from [HYPDO4].

As noted in Sectioh 3.2.2, there are several strong technical assumptions underlying our
MLE based inversion for available bandwidths along a path. The exibility of simulation
can also be employed to explore the impact of these separately. We use the methodology
known as the “semi-experimental method', fram [HVAO3], which was used to investigate
the underlying causes of key statistical traf ¢ features, and thereby to select meaningful
traf c models. Here we use it to determine which of the technical assumptions is most cru-
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cial/least valid, and to test corrections which we derive below. Speci cally, in the following
sections we systematically explore the impact of the errors in assuming the
(i) One stage router model,
(i) Exponential nature of packet size;
(iii) Equality of probe and cross traf ¢ distributions;
(iv) Poisson nature of packet arrivals;
(v) Independence of packet size over multiple stations.
Typically results will be given using 1200 probes for 1 station, and 120000 for 2. In Sec-
tion[3.6.T the case of two node will be treated.

3.6.3 Challenge: Router Model

A naive model, almost universally employed in the active probing literature, assumes that
the delays experienced by packet streams destined for a particular output link obeys that of
a single server FIFO queue. The single stage model above from [HVPDO04] justi ed this
using Expl data. Here (for the rst time) we use Exp2 to test the same models. Using the
Q1 time period we study all input streams (in fact only Q1-BB1 and Q1-BB2) headed for
C2-out. Figurd 3J5 shows the true versus surrogate delays of BB1-in packets using both
models (histograms for BB2-in packets are similar). The one stage model histogram has
a very similar shape to the true one, but is visibly offset from it by $0r so. This error

could play havoc with inversion methods under light loads.

Traces
1 stage simulation --------—
2 stages simulation -

T

100000 £
10000

1000 |

Occurence

100 |

10 |

0 200 400 600 800 1000 1200 1400
Delay (in us)

Figure 3.5: Comparison of true and model delays: histograms for BB1-in packets for a
single station fed with Q1-BB1 and Q1-BB2 inputs (other inputs negligible), against true
delays. The two stage and true distributions overlap almost perfecily.

Response part 1: Two stage model correction
The correction in this case is given by the time spent in the rst stage of the two stage model
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given above. For tha-th packet of sizes,, this is given by , = max( » 1 ni n)
where j is the inter-arrival time (in other words, when sentenced toseconds of hard
waiting, time in court is counted).

The impact of the correction is seen in Figfire] 3.5 where the agreement with the true
delay is extremely close.

In practice, the relevant router delay functioisS) must be identi ed and known for
each hop, however it is feasible for these to be tabulated and made available, at least for
network operators.

Response part 2: Estimation correction for two stage model

With an appropriate model chosen, the next task is to account for the impact on the es-
timation algorithm itself. To test this, we follow the semi-experimental methodology
and replace almost all aspects of the real experiment by surrogates. Thus in this case,
arrivals are made to be Poisson, and service times exponential (with the same mean)
for both cross traf c and probes. The router is replaced by a two stage model which
represents a simpli ed but accurate ground truth. As seen in Table 3.6, the errors in

| Input Traces [ Output | | b [ bcorrected|

P1-BB1+P1-BB2| OC-3 || 425] 346] 42.0
Q1-BB1+Q1-BB2| OC-3 | 89.5|55.0| 77.7

Table 3.6: Impact of approximate two-stage correction.

a Kelly based E-M estimate are large, however a simple correction based on replacing
b = E[S]=E[D] by b = E[S]=(E[D] E[( S)]), that is multiplying by a correction
factorFy = E[D]=(E[D] E[( S)]), largely succeeds in correcting it.

3.6.4 Challenge: Exponential Sizes

Following the semi-experimental methodology, we investigate the impact of service times
(packet sizes) which are not exponentially distributed by nulling all other effects: we use
the one stage model, Poisson arrivals, and as before we inject a Poisson probe stream, also
with exponential packet sizes with a matched mean. The only non-ideal components left
are the non-exponential service times of the cross traf c packet streams. Two examples
are given in Tabl¢ 3|7, each of which exhibit small errors. Although this is good news

| InputTraces | Output]| | b [ bcorrected|

P1-BB1, P1-BB2| OC-3 | 42.5] 42.1] 38.7
Q1-BB1,Q1-BB2| OC-3 | 89.5|85.7| 865

Table 3.7: Impact of Exponential Size assumption, (1200 probes).

for our E-M estimator, it is not the strongest test since the packet sizes, although highly
non-exponential, have a coef cient of variation close to 1 (recall Teble 3.5). We according
signi cantly modify the true packet size distribution of the P1 trace in two ways (keeping the
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mean constant at 675 bytes): (i) constant packet sizes (top line in[Taple 3.8), (ii) bimodal
distribution on(40; 3000) bytes with probability(0:785; 0:215) (bottom line). The E-M
estimates are now signi cantly different.

| Input Traces | Output | | | b [ bcorrected|

P1-BB1, P1-BB2| OC-3 05 || 425] 70.3 44.9
P1-BB1, P1-BB2| OC-3 | 0:215| 42.5| 25.5 45.9

Table 3.8: Experiment with modi cation packet sizes.

Response: Variance correction factor
We can relax the exponential packet size assumption in our M/M/1 model by considering
the M/G/1 queue, where the service times are i.i.d. with general distribution. Let the arrival
and service rates be given byand packets per second respectively. The load factor is

= = . If S denotes a random packet size &the server capacity (in bits per second),
thenC = E[S], the service time for any packet is= S=C, and the average service time
isE[ ]= E[S][=C=1= .

According to the Pollaczek—Khinchin formula, the expected value of the systendtime

(just the end-to-end delay) for M/G/1 is:

2+E[]=1+ :

_E
E[D] = 20 )
where we have introduced the constantie ned by E S2 =21+ )E [S]2 or equiva-
lenty E 2 =21+ )E] ]2, to help compare the general M/G/1 against M/M/1SlIf
is exponentially distributed then= 0, and > 0 corresponds to greater variability than
exponential, increasing delay (note thais just a rewriting of the coef cient of variation
of S: = (Cov[S]? 1)=2).
By de nition, the true available bandwidth@ E[S] = ( )JE[S], and in practice
we will estimate it using the maximume-likelihood estimator

_E[S]_ 1 :
which differs from the desired value by a facte¢ =1+ . Inthe M/M/1 case =0,

soFs = 1 and we recover the correct value. Otherwisdsd4f> 1 we obtain a value that

is too small because the larger delays fool the estimator into thinking there is more offered
load. To approximately compensate, we propose modifying the estimator by multiplying it
by the corrective factofs.

The impact of the correction is not large in the examples of Tabje 3.7, as expected, since
the errors were already small. On the other hand, the large errors of[Taple 3.8 have been
successfully corrected.

In practice, can be estimated by using representative values from packets collected
at the receiver as it is not expected to vary much in the Internet core (se€ Tgble 3.5). To
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measure , probes of xed size can be sent, and a measurement made of the proportion
which experience the minimum delay. This is just the probability of experiencing zero
waiting time, which is equal td for a broad class of queueing systems including
M/G/1.

3.6.5 Challenge: Equality of Distribution

In this case we again use the one stage model, make all arrivals Poisson, and all packet sizes
exponential, however the mean size of probes and cross traf ¢ packets differ. [Table 3.7
shows that this one factor is enough to induce a systematic error of around 50% in an
example where probes are 200 bytes compared to 675 bytes for cross traf c.

| InputTraces | Output]| | b [ bcorrected|

P1-BB1, P1-BB2| OC-3 || 42.5| 17.4 45.8
Q1-BB1, Q1-BB2| OC-3 || 89.5| 47.8 86.0

Table 3.9: Impact of Equality of Distribution assumption.

Response: Mean correction factor
Under the assumptions given above, the system is a M/G/1 queue where the service time is
not distributed as an exponential but as an exponential mixture. We now derive a correction
which will cover the more general case where the probes may not even be exponential,
provided they are “rare' compared to cross traf c.
We de ne 2 different classes of packets, 1: cross traf c, 2; probes. Each arrive accord-
ing a Poisson process of intensity, i = 1, 2. Packets of classhave a siz&; with mean
Aj, have a service timeg; = S;=C with expected value E;] = 1= ; = A;=C, experience
a waiting timeW; and a system tim®; = W; + ;, and collectively contribute a load
i= 0T
We assume tha$; is exponentially distributed where&s is general. On the other
hand, we assume that probes are rare, so that the total arrival rate can be expressed as
= 1+ 5 1, from which it follows that the mean service time obeyp E=
—*—E[ 1]+ —*E[ 2] E[ 1], andsimilarly § ?] E[ £]. SinceS; is exponential,
this implies that E 2]  2E[ ]?. The Pollaczek—Khinchin formula for waiting time then

reads
E[2 _ E[]

@ ) 1

EW]=

We introduce the constant to express the difference in mean packet sizes through
E[S2] = (1+ )E[S]. Since arrivals are Poisson, queueing delays are independent of packet
class. In particular, 2] = E[W]+ E[ »], and using the rare probing approximations
E[ ] 1 E[S]

Tt DE[]= T+

E[D:] =
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By de nition, the true available bandwidth (& )C, whereas the likelihood estimator

yields
E[S;] _ 1+

ED2] 1+(1 )
which differs by a factoFg = (1+(1 ) )=(1+ ) from the desired value. In the M/M/1

case =0, soFg =1 and we recover the correct value. If probes are smallerfizgen 1

and we obtain a value that is too small because the delays are larger than they would be
under M/M/1 since cross traf ¢ packets are actually larger. To approximately compensate,
we propose modifying the estimator by multiplying it by the corrective faEtor

As seen in Tablg 3]9 using small probes, the corrected value is very close to the actual
available bandwidths, to within what we would expect from statistical variability given 1200
probes.

In practice, can be estimated by using representative packet size distributions, which
should be very stable in the Internet core. We can measasadescribed in sectipn 3.5.4.

3.6.6 Challenge: Poisson Arrivals

In this section we again use the one stage model, we replace true packet sizes with i.i.d. ex-
ponentials (with mea® matched to the average over all inputs), and inject a Poisson probe
stream, also with exponential sizes of the same mean. Thus, in this semi-experiment the
only non-ideal components left are the original non-Poisson arrival processes of the cross
traf ¢ packet streams. Three example impacts are given in 3.10, one quite large (-
34%) and the others relatively small (<-10%).

| InputTraces | Output|| | b | bcorrected|
P1-BB1, P1-BB2 | OC-3 || 42.5| 33.8 44.6
Q1-BB1,Q1-BB2 | OC-3 || 89.5| 87.8 100.1
Q4-BB1 + Q4-BB2| OC-3 || 95.0| 92.3 98.4

Table 3.10: Impact of Poisson assumption, (1200 probes).

Response: Poisson batch correction
The correction in this case is based on the idea that packets arrive at the input in batches of
back to back packets, due to the queueing at the upstream hop.
Assume that rather than a Poisson point process of packet arrivals, we have batch arrivals
with the following structure: batches arrive according to a Poisson point process with inten-
sity and batch contains a random numbkiof packets, which have the same i.i.d. sizes

i. Assume batch sizes are independent of everything else. The workload in a single server
queue fed with such a process is the same as that in a M/G/1 queue with arrivalarade
service timesS = = 1, .

We now show that one can identify the second mome® b measuring the rst and

the second moments &, the workload brought by such a point process in an interval of

143



lengtht. It is not dif cult to see thalCt(l) = E(S) = E(S)t, whereas
c? = E(s) = tE(S)+( t E(S)?

Hence @ W
G~ (C¢)?

E(S?) = n

@
C
T t(E(S)?=
We now show that we can identify by measuring the rst and the second moment of

the packet inter-arrival time. It is not dif cult to see that £ ) = Tl(lT) and H ?) =

2 _~ E().
ZENY Hence —Zm,so that

c? (c)2E( )
2t E()

E(S?) =

ch
t

Using then the same method as for the Challenge entitled 'Exponential Sizes', we get
that the correction coef cient is

It is also straightforward to note that(E) =

_ E(S)

"~ 2E(S)?

_tE()c?  (cP)?
CE() (e

Note that the mean batch siz€NE) can be estimated with the formulg E) = EE((?Z))Z

As seen in Tablg 3.]0, the correction succeeds in reducing the 10% error, but increased
others. As in the previous section here the traf c is close to Poisson so the correction factors
are small.

Response: Extension to more routers
The correction of interest here consists in transforming the delay samples in some M/G/1
gqueue to those that would have been experienced in an M/M/1 queue with the same arrival
rate and the same mean service time We use the ladder epoch representation for the
waiting time distribution in a M/G/1 queue (see [KIe75])

0 1

X
fw(@) =@  )@od)+ M)A
k 1

with f,gk) thek-fold convolution of the residual service time density

1 F (x)

fr(x) = ﬁ ;

whereF (x) is the CDF of the service times. The mean of the latter density gs =
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E( 2)=(2E( )). Two observations are in order (i) the density is exponential of parameter
in the case when is exponential of parameted; (i) we nd back that the mean waiting

time is

E(%_ E(?

X
EW)=( ) ke T an )

k 1

which is the mean value of the Pollaczek—Khinchin formula. In order to proceed with the
announced correction, we argue that if we have a sample waitingwintieen it is likely

that the number of ladder epochs wdsv) = ,\)I”—R and that a natural sample for the M/M/1
gqueue waiting time is then

E() _ 2E()2_ w
Mg E(2) 1+

w=w KWMr E()=w w1

where is de ned in sectiof 3.6]6. If the sample one has access to is the deleg probe
of service time rather than its waiting time, then the correction formula is
d d+

=1t T

It is easy to check that this correction of the sample leads to a correction of the mean which
is precisely that proposed from the Pollaczek—Khinchin mean value formula above.
For the case with several stations, when assuming tiethe same in all stations, we
propose the correction formula
d+ P

§= — L (3.37)

where ; now denotes the service time of the probe overittterouter of the path. Various
heuristic extensions can be contemplated to handle the case with diffeparameters
(mean, weighted mean, etc.).

3.6.7 The Two Station Case

In the previous section we showed how to correct, approximately but with considerable
effectiveness, deviations from each of the core assumptions in the case of a single station.
We now brie y consider two aspects of the two station correction problem. In each cross
traf ¢ will be non-persistent, with exponentially distributed packets, Poisson probe streams,
and OC-3 output capacities for each hop.

Challenge: Size Independence

In a Kelly network, service times at different stations are independent. This is not the case
in real networks for any packet which traverses more than one path, as its packet size is
constant. As ground truth we set probe sizes to be independent at each hop, and compare
against the practical case when they are not. Three scenarios are considered: 1: input traces
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(Q1-BB1, Q1-BB2) and (P1-BB1, P1-BB2) on stations 1 and 2 respectively, 2: input traces
(Q1-BB1, Q1-BB2, P2-BB2) and (P1-BB1, P1-BB2, P3-BB1), 3: input traces (Q4-BB1,
Q4-BB2) and (P4-BB1, P4-BB2). Taljle 3]11 shows that the impact can be quite large.

| | load [ (12 | (bihp) [ (b1;bp) corr]
1| (0.42,0.70)| (45.5,87.5) (33.9, 166,4) (42.7, 88.2)
21(0.77,096)| (5.4,33.7)| (55,347 | (6.4,35.8)
31 (0.36,0.38)| (92.7,96) | (50.6, 748.0) (94.4, 94.4)

Table 3.11: Impact of Service Time assumption.

Response: Random Probe Split

We emulate a probe which is of exponential size and different at each hop by sending a
back-to-back probe pair, the rst of which will drop out after hop 1. The key observation is
that if A, B are independent exponential random variables with paramedaed respec-

tively, thenC = min( A;B) andD = max(A;B) min(A;B) are also independent and
exponential random variables with parameterss and2 = ( + ) respectively. If the

two probes sent back to back meet no cross traf ¢, the aggregate probe has a service time
of max(A; B) on router 1, and the surviving proli= min( A; B) on router 2, and so the
end-to-end delay of the surviving probeGs+ D = A + B, the sum of two independent
exponential random variables with parameterand as expected! Of course, this is only

a heuristic: for instance the load brought by the probe is always larger on the rst station,
and furthermore in practice cross traf ¢ packets can split the pair. We argue that if probes
are rare enough to not perturb the system, then this does not matter too much and that this
trick allows one to emulate the appropriate behavior when it is most important, namely for
probes meeting no cross traf c.

As seenin Table 3.11, the dual probe technique corrects most of the large error due to the
probe size dependence. The improvement is largest at higher load (scenario 2), since there
the remaining dependence in probe service times will be small compared to their waiting
times.

Challenge: Poisson Arrivals

We test the extension of the Poisson batch correcfion|(3.37) using true traf ¢ arrivals and
probes with sizes chosen independently at each hop. We examine: 1. input traces (Q1-
BB1,Q1-BB2) and (P1-BB1,P1-BB2) on stations 1 and 2 respectively, 2: inputs (Q4-
BB1,Q4-BB2) then (P4-BB1,P4-BB2), after removing the largest 1%of delays, as these
outliers disrupt the batch tting process, which is based primarily on means. [Table 3.12
shows that the impact is large in the rst case, and that the correction manages to correct
most, but not all of it (delay histograms showed good agreement after correction) In case 2
the error, and correction, are small.
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| Scenario| (1; 2) | (bi;bp) | (by;by) corrected|
Q1-P1 || (455,875) | (27:8,1479) | (436,97:3)
Q4—P4 | (92:7:96) | (95:0,950) | (10L5;10L5)

Table 3.12: Impact of Service Time assumption.

3.7 Summary

The chapter opens two main new lines of thought. First, it showed that it is possible to pose
an effective Internet tomography problem as an inverse problem in queueing theory that uses
active probes as the external observation vehicle for the inversion method. A poly-phase
technique based on the interpolation of the expected mean delays has been investigated,
but it has been found to be numerically unstable, in addition to the practical constraint
of running several phases of measurement. The second proposed inversion methodology
leverages the stochastic nature of the system to be analyzed and is based on a rigorous
maximization of likelihood which we showed to be tractable in high dimension thanks to
the E-M algorithm. As standard approaches did not apply, our contribution includes original
proofs of the asymptotic ef ciency of the estimators and convergence of the E-M algorithm.
This methodology could in principle be extended to other network models (e.g. Whittle and
Max-Plus networks), and to other network metrics (e.g. loss rates, scheduling disciplines).
Finally, one could also explore the exibility offered by slowly varying probe intensity in
order to explore the set of stationary distributions over a wider range of intensities, which
could render the inversion methodology more robust. All this illustrates the approach of
inverse problems as the foundation of a comprehensive network tomography methodology.

Second, the chapter investigated the effectiveness of this tomographic method on what is
a dif cult problem, the estimation of the residual bandwidth on all links on a path, not only
the path bottleneck. Queuing theory together with traces from a core Internet router were
used in order to correct the errors associated with the use of the tractable parametric model
which is needed for the inversion step. It was shown that combined with the knowledge of a
few basic statistical properties of Internet traf ¢, the dominant corrections can in principle
be identi ed and processed so as to lead to an effective estimation scheme, which works
better in case of higher load. The design of a systematic construction allowing one to build
estimators combining all individual corrections would would work “out of the box' under
all load conditions is a signi cant challenge for which we have laid several promising rst
steps. On this more practical side, it would also be interesting to take the timestamping
‘noise’ into account in the estimation methodology. This is particularly important for high
speed links where such errors play a dominant role.
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3.8 Appendix

3.8.1 Proof of Lemmd3.5.83

The proof relies on the following lemmas, which will be proved at the end of this section.

Lemma[3.8.]L is technical and correspond to a classical property of limit points of a se-
quence. It will be used only to prove Lemina 3]8.2, which will be the basic block of the

result.

Lemma 3.8.1. Let(xn)n2n be a sequence with valuesi) s.t. (Xn+1  Xp) converges to
zero. Assume that andb are both limit points ofx,,). Then every point in [a; b] is also
a limit point of (Xp).

Lemma 3.8.2. Let(Xp) be a sequence with valueskhandf a continuous function from
R to R. Assume that the sequendgx,))n2n is convergent, and thaix,) is bounded.
Assume further that the following relation holds:

f(Xk+1)  F(Xk)  O(Xks1  Xk) s (3.38)

whereg(:) is a positive continuous function, null at and only at zero. Then the sequence
(xn) is also convergent.

First, using ), let expresék) as a function oh(:) of ik)), where
P 1
in=1 d

ho)= 5=

X |

Let us evaluate
k+1) . (k+1) . (k). (K K). (K): (K). (K)y.
(= Qu( I Yo 0, 09y qq( (0, (o) ;.

Using [3.28) we get that

« = nlog ¥ +niog Y niog ¥ niog &
A O R
(k+1) (k+1) (k) (k)
2 1 2 1
" ®© """ ®
2 1 2 1 X
k+1 k+1 K k di
(O S D N OF S ) |

k k
el g

in terms of gk); ék)
1

and "M and using|(3.29) to reexpress the sumdi in terms of ‘Y and V) direct

P
Using optimality (EQ.|(3.25)) to reexpress the sum W d

S
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calculations reduce this to
| I |

:(Lk) ’ gk) ) :(Lk) ’
K =M oTey TN ey M ey
1 2 1
withg(x)= x 1 log(x).
() — (k)
Let 7~ =log( ;). Hence

. g D (3.39)

withg (x) = n(e* 1 x): The last function is continuous, null at 0 and strictly positive
elsewhere.

Let de ne nowf (x) = log fq(€*;h(e*)). We can therefore rename the sequence
logfa( {; ) ast ( 19).
The sequence (1k) is convergent (as EM can only increase the likelihood at each
iteration, and the likelihood can be bounded in our case, this sequence is increasing and
bounded). The sequen¢e(1k)) can be bounded by construction (see the proof of Theo-

rem[3.5.1). Finally[(3.9) shows thiat( V) ¢ () g (¥  Pyn

andf are continuous at any point greater ttha@P”—di, which will be the case after the rst
. . b . é (k)y — (k)
iteration. Therefore, lem .2 can be applied, the sequengf‘ yand( ;77)=(e1)
converge. Ad is a continuous function, the sequencegk) = h( ék)) is also conver-
gent, and this will be the case for the seque(néé); g‘)).

We now prove that the limit is a solution of the likelihood equation. At any xed point

wehave (D = (0= and P = 9= Therefore, using (3.24) anld (3]25):

2 _ 1)@ die( 2 1)di
(2 1)1 n._; elz d 1

and
1 _ 1 X di

(2 1)2_nizle(2 L 1

’

the same equations as the likelihood equation, which means that any xed point of the E-M
algorithm is also a solution of the likelihood equation.

Proof of Lemma[3.8.1 Letcbe a point infa; b, and let construct a subsequencéxf)
that converges toward. By de nition, a andb are limit points of(x,), hence we can
assume that6é aandcé6 b.

Let = min &2, % be a positive numberx,+1  Xp) converges towards zero.
Hence,8k; 9Ny s.t.8] > N |;Xj+1 X} < ©- By de nition of a limit point, 9ig  Nj,
s.t. Xj, 2Ja  ;a + [. Similarly, 9jo > io, S.t. Xj, 2]b ;b + [. Recursively, we
can construct two integer sequen¢ag and(jk), such thaBk;Ng+1 ik <]k <ik+1,

ik 2la ;a+ [andjkx2]b ;b+ [
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We are now in position to conclude. For &ll we have thak;, < a + c ¢<
c+ ¢ b < X j,. Further morejy < j, and8n > iy;(Xn+1  Xn) «- This
is enough to conclude that there exigts< (k) < jk such thatx () 2]c  ¢;c+ ¢[.
Sincejk <ik+1,the function (:) is strictly growing, andx (n)) is a sub-sequence (f,,)
convergent towards. O

Proof of Lemma[3.8.2 By assumption, the sequenfe,) is bounded. Therefore, it con-
verges if and only if it admits one unique limit point.

Assume, by contradiction, that there is two distinct limit poiatandb, with a < b.
The sequencé(x,) is convergent, thereforef (xn+1) f (Xn)) converges toward zero.
Using (3.38), we get thag(x,+1  Xn) is convergent toward zero. By contradiction, if
(Xn+1  Xp) admits one limit point 6 0, then the sequenagxn+1  Xn) admitsg(c) > 0
as limit point, which contradicts the fact that it converges to 0. Hefigea  Xn) admits
no non-zero limit point, and as it is bounded, converges to O.

Using lemmd 3.8]1, we get th8t 2 [a;b], cis a limit point of (x,), and hencé (c)
is a limit point off (x,). Asf (x,) converges towards it admits one unique limit point,
and8c 2 [a;h;f(c) = f(a) = f(b) = I|I. Let = b—ga be a positive number, and let
now N be such thaBn N;jXns1 Xnj < . Asaandb are limit points of(xy),
there existan; N andns ni such thatx,, a < andjxp, B < . Then
9nszs.t.ngy n3<ns3z+1 N2, Xn; 6 Xnz+1, Xnsy 2]a; andxn,+1 2]a; . On one
hand, [(3.3B) leads tb(Xn,+1) > f (Xn,). On the other hand,(xn;) = f (Xny+1) = |. We
get a contradiction. O

3.8.2 Proof of Lemmd3.5.4

For the three router case, for &ll 0, (3.23) is equivalent to

Q( 15 25 3 15 25 3)=
X0 Zg Zg 1

(i) (log(123) 3di+( 3 Dli+( 3 2)2)
i=1 |1=0 |2=0

el 3 Vhels 2bqgdl, (3.40)

with de nedin (3.31). We have
Zg 24y,

L (a+ bl + cly) e' te' 2dl,dl; = ac, + bg, + dg
1=0 12=0
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with

(ed 1) (ed 1)

( )
( )de® (2 ed + e ( )?
Co = 2 2
( )
( 2)ed ( )ded + 2ed  ( )?
G = 2 2
( )
In order to evaluaté (3.40) we havetotake 3 1, = 3 z,a=log( 1 23) 3di,
b=(3 1)andc=( 3 ) (notethat = 2 1). Inaddition

@)= g g =

1
+ Ca
Finally

xXo
Q( 1 25 3 15 27 3)= (di)[calog( 1 23) C1 C2+(C+ C dica) 3]
i=1

N

d 3 —1 —2 ;

=nlo +
a( 12 3) o e e

i=1

and therefore:
@Q1; 253 15 23 _ N X [
@ 1 o G

The expressions given in Lemma are then directly obtained from
(k+1) . (k+1) . (k+1) . (k). (k). (k)
@Q, ;5 ’311’2’3)=0

@:(Lk+l)

and other relations of the same type.
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Chapter 4

Extension to Kelly Networks

4.1 Introduction

We have seen in chapigr 3 that the distribution of probe packet end-to-end delays is suf cient
to estimate the set of available bandwidths along a single path, when the delay distribution
at each node belongs to a known parametric family. The goal of this chapter is to extend
these results to the case of a network, exploiting the inherent path diversity.

In other words, we study a network inference problem with a rm foundation in queue-
ing networks, thereby contributing simultaneously to network tomography, and to the area
of inverse problems in queueing. We focus to the particular capeiof-to-multipointin-
verse problems, where a single source sends probe packets to multiple destinations over a
feedforward network of nodes. The network can hence be considered as a tree, whose root
is the sender and whose leaves are the receivers. We conuidiarast treeswhere each
node of the tree copies its departing probes over all of its child links. Hence each probe sent
from the root node effectively broadcasts over the entire tree until copies arrive at each leaf.
Timestamps at the root and leaves can be compared, so that each multicast probe gives rise
to a vector of delay values. Multicasting is supported by today's Internet protocols and rep-
resents an economical way to reach many receivers, and most works on delay tomography
exploit it.

A typical delay model used in tomography over multicast trees is given as follows.
To each node there is a random process controlling the delays imparted to packets. The
node process@are mutually independent (spatial independence) and are each individu-
ally i.i.d. (temporal independence). Thus the end-to-end delay of each probe at a given leaf
is the sum of independent random variables, with (in general) different distributions, cor-
responding to its ancestor nodes in the tree, as shown in the example of [Figure 4.1. The
normal orcross-traf ¢ packets in the network are taken to be responsible for the build up
of node gqueues and hence the delays which are experienced by probes, however they do
not enter explicitly in the description. Cross traf ¢ is not assumed to be multicast, indeed

53Note that usually the processes are associated to links, not nodes, but as these are in 1-1 correspondence
this is not essential.
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the multicast tree is a construct of the probing experiment, whereas cross traf ¢ traverses
the full network and simply intersects the tree. Finally, it is assumed that probes are rare
enough so as not to signi cantly perturb the normal traf c over the tree.

d

> T
0

Figure 4.1: Example of a delay tomography problem over a tree: to estimate the means
of the six internal random variablég |1;12;13; |4 andls, just by observing samples of the
three end-to-end delay variablég d, andds, whered; = lg+ 11+ I3, do = lg+ 11+ |4,

andds = lg+ |7 + Is.

In this chapter we study the tomography problem as above in the case where the node
delay variables are each exponentially distributed. We formulate a Maximum Likelihood
Estimation problem for their parameters, implemented using the Expectation-Maximization
algorithm. Our contributions are as follows. First we show how the tomography model
described above corresponds to the delays experienced by probes in an appropriately de ned
queueing network also carrying cross traf ¢, thereby justifying the assumptions of a delay
tomography problem over a tree in terms of queueing networks for the rst time. Second,
as a delay tomography problem, it is novel in that (see below for details) we do not focus
on non-parametric estimation or alternatively with general but discretized delay, but instead
work with the full MLE of a continuous density. In particular this involves dealing, both
theoretically and practically, with the non-trivial combinatorics inherent in the conditional
expectations over a general tree topology. We derive explicit solutions for the combined
E and M steps. Finally, we provide a technique for convergence acceleration of the E-
M algorithm, which is notoriously slow, allowing much larger trees to be considered than
would otherwise be the case. The technique has some novel features and may be of broader
interest.

Our work is the rst to propose a delay tomography model based on exponential de-
lays (see however [LMNO7]). Given the accepted queueing origins of network delays, it is
surprising that such a canonical choice has escaped attention until now. The chief reason
for this omission, as argued for examplelin [PDHIT02], is that there is no generally accepted
model for the delays in Internet routers, so that exibility is essential to match reality. While
this point is well taken, our view is that realism also requires that node models be consis-
tent with their purported queueing underpinnings, something which has never been shown
previously, even in models which introduce, a priori, atomic components in an attempt to
reproduce queue-like featurés [SH03, LMNO7]. Although the exponential distribution is not
considered to be a close t to packet delays in the Internet today, is it a natural rst choice
when making a rigorous connection to queueing networks.
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It is well known that the convergence of the E-M algorithm can be slow, and there is
a considerable literature devoted to speed-up techniques. An element of our technique in-
volves over-relaxation, that is in ating the jump size recommended by E-M. This idea is not
new, for example it gures in[[JJ93, SRO3], and was explored by Lange and others in the
context of E-M Gradient Algorithms (see 84.13, [MK08]). However, our jump size update
rule, which does not bound the allowed increase at any step, is extremely aggressive, and
qualitatively different to those we have seen elsewhere, although it shares with [[HYHO5] the
principle that if a candidate step proves too aggressive, in particular if it leads to a decrease
in likelihood, then a safer “fallback' position can be taken (see also “step decrementing'
84.14.1,[MKO08]). The other core element of our technigue involves using Principal Com-
ponent Analysis (PCA) to ef ciently exploit the information contained in prior evaluations
of the likelihood, and to help counter the instability inherent in aggressive updates. This
approach was inspired by recent work in robotics [DIL08] in the quite different context of
automated path nding. We know of no work which uses similar ideas to accelerate E-M or
related algorithms.

To give an example of applications, our techniques could be used by service providers
in order to monitor the quality of real-time services. In the case of ADSL “triple-play boxes'
providing IP TV services today, service providers own the end-user equipment, and so can
run measurement software as well as operate the backbone and access networks. They
therefore have the incentive and the ability to use multicast protocols.

The chapter is structured as follows. Secfion 4.2 describes the queueing inverse problem
and how it maps to the delay tomography problem. Se¢tion 4.3 shows how these apply in
the present case. Sectjon|4.4 is a technical one showing how expressions for the conditional
expectations over the tree which arise can be calculated explicitly. Spctjon 4.5 exploits these
solutions to provide the MLE for a number of example trees, using our E-M acceleration
technique, which itself is described (and further illustrated) in Setign 4.6. We conclude
and comment on future work in Sectionl4.7.

4.2 A Delay Tomographic Queueing Inverse Problem

We begin with the model for cross-traf ¢ only, and then consider how probes can be intro-
duced.

Consider an open Kelly network of single server FCFS queueing stations connected in
a tree topology. Routes corresponding to a given customer class can only move away from
the root station (and are not multicast), but are otherwise general, entering the tree at any
station and exiting either that same station, or any other further down the tree. The arrival
process to route (or clase)is Poisson of intensity .. All packets have exponential size
with mean 1, and the service rate of statjors ;. We consider only parameter values
consistent with a stationary regime.

We rst consider the special case of a tandem networK atations that we studied in
the previous chapter, as it serves as a building block for what follows. Assume that route
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r = 0 traverses the network from root to leaf, so that for each customer in@lasscan
associate an end-to-end system timejelayd. We will call such a route path From [3.3)
the marginal distribution for the numbNré of customers of class O instatipnl | K,
at a given time instant is

o K nj
PNy =nl;j =1;:::;K) = —_0 1 —_O :
i j j

where j = re0;2r r Is the residual service capacity of statipravailable to
class0. From lemmg 3.2]1 (and its proof), we know tlthis the sum oK independent
exponential variables, one per station, where the mean parameter for $téigust the
reciprocal of the residual service capacify  o. Furthermore, from corollafy 1.2.]11, we
know that the departure processes of the classes exiting the system atitatierPoisson
and mutually independent, and that departures from any of these prior to somedime
independent of the system state at time

Now consider a tree network. The above result for a tandem applies directly to any path,
that is the end-to-end delay of each customer of a path is given by the sum of independent
exponentials. Note however that this does not imply that the delays seen over different
paths are independent. Now the set of stations in any two paths can be patrtitioned into three
tandem subnetworks: a shared port®from the root down to some last shared statign
and two unshared portion$; andU, beginning from children oA\, each terminating at a
leaf.

The independence properties given above for the tandem network apply to customers
exiting A. They imply that the arrival processes to eachUgfand U, are independent
not only of each other, but also of the statedJafandU,, since the latter are functions
only of the prior departures fror8, which as noted above are independent of the state of
S at the departure instant of each probe. Since the service times of the statidnaria
U, are also mutually independent, it follows that the delays incurred Oyeand U, are
likewise independent both of each other, and of the delays incurred (by the customers of
either path) ovefS. In summary, delays over the tandem subnetw&kg);, andU, are
mutually independent, and inside each of these, delays experienced by customers of a given
class (i.e. path) are given by a sum of independent exponentials. This argument extends
naturally to the entire tree.

We now introduce multicast probe customers into the system, which behave as follows.
The probes arrive as a Poisson process of intensity the root station. Once a probe has
arrived to a station it is treated exactly like a normal customer, but upon exiting, copies are
instantaneously made which arrive simultaneously to each of its child stations. Hence each
multicast probe traverses all paths (end-to-end routes) but no other routes.

Clearly the system consisting of cross-traf ¢ classes plus the multicast probe class over
the tree is not a Kelly network. However, as before the tandem analysis above applies,
showing not only that probe delays over each path are distributed as a sum of independent
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exponentials, but also that the probe delays on a given path can be analyzed as if the cross-
traf c were absent, provided the appropriate reduced capacities are used. Furthermore,
the above arguments concerning the decoupling of the delays experienced over the shared
portion of paths from those below it continue to hold. However, the relationship between
delays seen by customers of different paththin the shared or the un-shared portions is

now substantially different.

To examine this question we revisit our two path example, but now consider the cus-
tomers on each path to belong to the same multicast probe class.
Shared part:  there is now only a single probe customer process rather than two. This
can be interpreted as perfect station-by-station dependence of the delay components from
each path, in contrast to the situation for cross traf ¢ where the service times of customers,
for example, were independent.
Unshared part: the arrival processes froAto U; due to path 1, and to U, due to path
2, remain Poisson, but are now identical rather than independent, resulting in dependence
between the delays of probes (and cross traf ¢) seen OyemdUs.

To see why the delays of probes are now dependent on the unshared part, consider
the following simple example without cross-traf ¢, whety and U, each consist of a
single node of capacity. In other wordsU; andU, are M/M/1 queues with independent
service times, fed by the same Poisson Process of intensiBach queue has a marginal
probability(1 )=(1 -) to be empty. NowJ; (resp.U,) is empty at the arrival time
ty of the N™ probe packet if and only if the previous probe had a d@ay(resp. D»)
which is less than the inter-arrival timlQ  ty 1. Assume for contradiction that spatial
independence holds betwebn andD ,, this leads to:

Z, 2
P[both queues emply PI[D; ;D> Pty ity 2= Jd =1 2 +
0

2 2

whichis notequalt¢l )? (unless = 1), the result one would obtain if the waiting times
were independent. But this is a contradiction, because the assumptions of independence
betweenD; andD,, and on the service times, clearly implies independence of waiting
times. It follows that the delays must in fact be dependent.

Although multicast probes break the strict spatial independence property of path delays,
we expect this dependence to be weak in most cases, since the arrival procéssaado
U, remain independent of the stated afandU, (at arrival instants), the service timedin
andU, remain independent, and furthermore the cross-traf ¢ arrivals (from paths or other
routes) are independent as before. In particular, if we assume tisasmall, so that with
high probability there is no more than a single probe in any given station, then the states of
U; andU; are only slightly perturbed by probes and are thus approximately independent,
and so the delays ovél areU, are likewise close to independent.

It is a general principle of network probing thatbe kept small, in order to avoid
consuming network bandwidth, perturbing the system to be measured, and to prevent probes
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being confused with network attacks. Sincés under the control of the prober, it is quite
reasonable to assume itis small. This saane probingassumption justi es the assumption

of temporal independence in the time series of probe delays associated to each path, used in
the MLE formulation below.

In conclusion, the delays of rare multicast probes sent over a Kelly tree network of
cross traf ¢ closely hew to the assumptions of a spatially and temporally independent delay
tomography problem over a tree with exponential delays. Namely, per-station delays expe-
rienced by probes obey a simple structure: perfect dependence over stations on the shared
part of the path, and independence between the unshared parts. Cross traf ¢ appears only
through the values of the residual capacity paramétgrs g to be estimated. Since
is known, the residual capacitiés; g relating to cross traf ¢ only can subsequently be re-
covered. The actual intensitiés, g and the server ratds ; g are not identi able, however
they can be recovered in principle by other means, for example using a prior measurement
phase with xed packet sizes, as discussed in the tandem case in @ter 2

4.3 E-M for Exponential Tomography

In this section we apply the E-M algorithm to our delay tomographic problem.

Consider a tred , and callT the set of its nodes and T the set of its leaves.
We introduce the xed parameter vector= ( j)j2t and the variable parameter vectors
AK) = (A j(k))j »7. The complete data random vector of the E-M algorithm will correspond
to the vectot 2 R of the delays of each node, which are supposed independent and expo-
nentially distributed with expected value and the observed data vectowill correspond
tod 2 RY, the vector of all end-to-end delays from the root to each leaf. We will have
d = f (1) for some linear functiori depending on the topology of the tree. We recall that
the probability density function of an exponentially distributed variable of mean valise
p,(2)= Lte .

The xed vector will be referred as thground truth and the variables vectorsk) as
the current estimates (of E-M). We wish to estimatéa ~(¥), hoping that this last sequence
will converge “close to' . In networks context, ; corresponds to the mean sojourn time
of probes in server.

Remark.Note that in Kelly networks, the mean sojourn timegon nodg is the inverse of

the residual capacity, on this node. Both quantities are relevant in practice, and it is equiv-
alent to estimate one or the other on a single occurence, due to the function invariance of
maximum likelihood estimators. In this chapter, using the mean delays instead of available
bandwidth leads to simpler equations to write. Recall however that, as the inverse function
is not linear, the mean estimation of the mean delay is not the inverse of the mean estimate
of the available bandwidth.

4An interesting discussion, in the context of a priori node models, of how the addition of atoms can assist in
identi ability is given in [SHOS3].
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The results given in this section actually hold more generally, for anyl sahd V
with any random exponential vectb® R (with independent coordinates) and any linear
functionf : RT I RY. In particular they hold for delay tomography problems where the
network topology is not tree-like.

4.3.1 Specialization of the Iterative Formula

Usually, each iteration of E-M can be computed in two steps: the E-step, where we compute
the conditional expectation of the log-likelihood, and the M-step where we maximize it. But
when the hidden data belongs to the regular exponential family, as it is the case here, it is
well known [MKO08] that the E- and M-steps can be solved directly in one step. In other
words, the iteration can be made more explicit. Indeed, we have:

1 X
argmax N Erx (logp (Djf (1) = d(i))

Ak+1) o

Xt g ag109P ()Pro (Dl

= argmax
i=1 F1jf (1)= d(iyg Paco (Ddl

; (4.2)

Y o1 b X 1

—e 1,andlogp ()=  (log= -L)forevery .
j2T ! j2T J J
We notice thatogp (1) is easily differentiable according tq giving:

where in our casp (I)

@ogp (1) 1. 1 :
B
and therefore, Ex«) (logp (1)jf (1) = d(i)) is also differentiable, with:
R
@nw(logp (Dif (1) = d(i) _ 1 rijrq)= diygl i 11)Paco (dl

@; ¢ Onc (d(i))
1 _ 1 o
ZEno (o hid) = (5 Eao(lid(i))
i j

We then have:

P !

@ ,N= E.x(logp (Djf (1) = d(i)) 1 1 X _—
1 (k) N@J = ? i ﬁ ~ E,\(k)(ljjd(|))

o 1 X .
Thus, setting this derivative to zero leads to N E~u« (1jd(i)), and so

i=1
1 X .
A(k+l) = N Eeo(d() (4.2)
i=1
Remark.Here we have generalized the conditional expectation to the multivariate case.
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That is, in E.x(ljd(i)), | is a vector, where we have de ned .k (ljd(i)) :=
(Exw (1jjd(i)))j27, and the sum iNzl E.« (1jd(i)) is to be understood as a component-
wise addition.

We just reduced the E- and M-steps to one, a signi cant simpli cation which in many
contexts would almost constitute a “solution' to the problem. However, computing the
conditional expectation Ex (1jd) remains a challenge as it involves dealing with combina-
torics over the tree, and is in fact a main part of our work. In the next section, we explain
how it can be computed ef ciently. First, we point out an interesting property which will be
useful later.

Proposition 4.3.1. Letl 2 RT be the vector of the delays of each node, dr@él RV the
vector of all end-to-end delays from the root to each leaf. Assume that for some linear
functionf depending on the topology of the tree, we will hdwe f (1) for some . Assume
nally that | is an exponentially distributed random vector with mear2 RT, and that

Let (d(i)); ; n = (F(I())); ; y be the measured end-to-end dela§sy,, be the
sequence of successive estimates loy the E-M algorithm based on these delays. We then
have for allk:

1 X
f(rktDy=d= 5 di) (4.3)
1

where agaird is a vector de ned by averaging component-wise.

Proof. Thanks to the linearity of the conditional expectation and the linearity, @fe have
in our case that k, (f (1)jd) = f (Ea (1jd)). Therefore,

X X!

f (A(k+1) ) =

R o1 .
EAm(f(l)Jd(l))—ﬁ Ewo (djd(i)) = N d(i)

1
N i=1 i=1 i=1
O

Because of this relation, we know that each term of the EM sequ@nits except the
rst will satisfy f (*(K)) = d. Therefore, the sequence stayd in'(d) which, sincef is
linear, is a linear subspace Bf' .

4.4 Explicit Formula for E (1jd)

In this section we compute the conditional expectationljd), which is the key to the
evaluation of the step functiop (4.2). Since

Ipaco (1)dll ,
Eno(ljd) = B @ Paco (DAl (ljdl)

= 4.4
g P Gw(d @4

the calculation can be divided in the computation of the two tegms(d) and . (1jd).
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By their nature these calculations are detailed. This section is self-contained and could
be skipped on a rst reading.

4.4.1 Notations

In this section, we are interested in a single iteration of the EM algorithm. In order to
simplify notations, we will therefore here (and only here) writmstead of*(K). Similarly,

in order to have another point of view and nicer notations, we will also introduceatbe

i = ij and use the notatiom ; (z) = je 97 instead.

We recall thatT, T,V T, 1 = (lj)j21 2 RT andd = (dj)j2v 2 RY denotes
respectively the tree we consider, the set of its node, the set of its leaves, the vector of
delays on each nodes and the vector of end-to-end delays in the tree. The variable vectors

=( j)jzrand =( j)j27 isthe current estimate of EM.

As in Sectio, the observed data are the end-to-end delay veigrs::;d(N),
and are the images under some linear functfgn of the unknown complete data

I1(1);:::;1(N), wheref t captures the details of the tree topology.

We provideT with the order de ned by: foralli;j inT,i | if i is an ancestor
of j . With these notationg, the functids RT 1| RY such thaf 1 (I) = dis given by
8k2V; (fr(N)k=dk = lj, and the two terms of the fraction (4.4) can be written:

j2T
ik
N z Y
q (T;d)= je ilidl and  (T;ljd) = | je ilidl : (4.5)
fr 1@ jor fr 1@ jar

4.4.2 Some simple examples

a) 2 Nodes Tree

(D) ;

In this simple case from chapfelr 3, sirlgeandl; are linked tod by Io + 11 = d, there
is only one unknown. Therefoie can be expressed as an integral dyeanly.

Z 4 e od o 1d
q(T;d)= o1 e ooeg 1dlogy= 4, + ;
|O=0 1 0 0 1
and similarly:
. e od 1 e
(Tilojd)= 01 d + 5
10 1 0 (o 1)

Although the gure does not suggest it, the problem is actually symmetric in the nodes
0 andl. Indeed, what we observe being the sum of two delays, thétreel is equivalent
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tothetreel! 0. Therefore, we have by symmetry:

g od e ud 1
> +
(1 o) 0o 1 0o 1

(Tihjd)= o1
b) Root with 2 Leaves
d
— O
2
In this case, sinclky + |1 = di andlg + |, = d», we can consider as before only one

unknownlg, and expresg as an integral ovdg betweerD anddg := min fds; d>g. Since
lo; I1 andl, are nonnegativdg has to be smaller thah andd,. We have:

Z do
q (T,d) - 012 e 0|0e 1(d1 |0)e 2(d2 |O)d|0
1p=0 |
e 1(d1 do)e 2(d2 do) e 1d1e 2d2
= 012 € °° + ?
1+t 2 0 0 1 2
and similarly:
_ @ 1(d1 do)g 2(d2 do) 1
(T;lojd)= o 12 € 0% do ——
1+ 2.0 1t 2 o
e 1d1e 2dy
+ - - :
0 1 2
( )2
1(d1 do) 2(dz do) 1
e 4o € e
(Tiljd)= o012 € °% 1 do
(1+ 2 o) o012
d d '
e 101g 202 1
- d, — ;
0 1 2 0 1 2

and (T;l,jd) can be deduced from (T ;l1jd) by symmetry between nodésand?2.

4.4.3 Inductive Expression

The last example above can readily be extended to more than two leaves. More generally, it
suggests that it be possible to exprgsgresp. ) for any tree as an integral over the delay
in the root node fron® to the minimum of the end-to-end delays, of some term uging
(resp. andq ) inductively applied to the child subtrees of the root. We now show how
this can be done.

Let 0 denote the root of the tree, apdhe number of its children. In the case where the
tree is a single nodé.e. p = 0, we have obviously] (d) = e °%. Whenp 1we
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We notice tha(V®;Vv@:::::Vv({P) forms a partition oV, and therefore any vector
din RY can be identi ed with a vectod = (d®;d®@::::;d®) inRV®Y RV®
RY® . Similarly, any vectot in RT can be identi ed with a vector= (1o;1®;:::;1®Y in
R RT(l) RT(p)

Ly ey
: 1
FEOSEL

——(lo_]

) LR

Theorem 4.4.1.De nedp :=minfd; jj 2 Vg. The following inductive relation holds:

" #
Z do Y . .
q(T;d)= oe ol q (TO;dD  (lg)) dlp ; (4.6)
lo=0 i=1

where the slightly abusive notatialf)  (l) denotes the vectc(ldj(i) 10)j 2v () 2 RV®.

f () := f;) which is to the tred () what the functiorf 1 is to the tre€T .
We notice that the following relation holds: for &lin RT, letd = f (1), then for all

. X X ) o
dV=de= I =1lo+ 1D =15+ £O0)
j2T j2T® k
ik ik

102 (F®) 1 (lo))

Therefore, the integral i.5) over2 f§ l)(d) can be sliced as an external integral

overlg 2 [0;do] wheredp = minfdy j k 2 Vg, and a product of internal integrals over

1D 2 (F®) 1(d® (lg)) for eachi, which gives

2 3
Zdo sz Y

1M ;
q(T;d)= oe o4 e 1005 gig
lo=0 =1 (F0) 2(dD (o)) o,

As we can see, the inner integral looks very similar to the initial integrdl in (4.5), and
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indeed, we can nally write:

Z g Y o #

q(T;d)= e g (T0dY (l) dio : O
lo=0 i=1
The function (T ;ljd) also satis es an inductive relation, but its expression is slightly

more complicated. Fronj (4.5), a similar reasoning shows that the following inductive for-
mula holds. For the root:

Z " #

Y ) )
(T ; lojd) = | oloe °° g (TM;dD  (lg)) dlp ; (4.7)
0=0 i=1

i 2 TO, we have:
Z do ) #

o Y
(T:ljjd) = L, %€ oo (TO05dD 10) g (T®;d® (lg) dlo : (4.8)
0= k6 i

Using this inductive formula, it is possible to deduce a recursive algorithm computing
the expanded symbolic expression for the tegmand . However, we prefer to derive an
alternative expression which, as we will see presently, is simpler.

4.4.4 More Examples

The following examples can be derived using the inductive expressions above. The rst
generalizes the case of a unary tree to any number of nodes, and the second is a simple tree
for which the expanded expressionsgpfand  are already quite complicated. Here and
below we recommend that the reader rst focus on the expressiomgs for

c¢) Unary Tree with K Nodes

We have: [
q (T;d)= i Q——— .and
s e Ckoi)
K6
| |
% . e id X 1 X e ]d '
(T;lijd) = i Qﬁ d + C .)2Q( 5
j=1 wi kei KT gein !t 1 K
K6

d) One Root with two 2-Server Leaves

164



dh
:

As we did in Exampld), we introducedy := min fdy; d>g. We have:
q(T;d)= 01234

" e 1d do)g 2(d do) o 1d dog adz do)
e +
(2+ 2 o3 )(a 2 (1+ 4 o3z )2 4
@ 3(d1 do)g 2(d2 do) @ 3(d1 do)g a(d2 do)
+ +
(3+ 2 o)1 3(a 20 (3 a2 o1 332 a)
e 1d1e 2d2 e 1d1e 402
+ +
(o 1 2(3 1(a 20 (o 1 43 (2 4,
e 3dig 20 g 3tig ade .

+ + :
(o 3 21 3(a 20 (o 3 A1 A2 4 '

and (lojd)= 012 34

odo e 1(d1 do)g 2(d2 do) d 1
e
(1+ 2 o3z (4 2 O (1+ 2 o
@ 1(di do)g 4(d2 do) d 1
+ 0
(2+ 4 o3 D2 4) (1+ 24 0
@ 3(d1 do)g 2(d2 do) q 1
+
(3+ 2 o1 34 2 O (3* 2 o
e 3(di do)g 4(d2 do) q 1
+ 0
(3+ 4 o1 32 4 (s+ 4 o)
e 1dig 20 e 1dig ad
+ +
(o 1 2%s 4 2 (o 1 4%(s 2 4,
e 3dle 2d2 e 3dle 402 .

+ +
(o 3 221 3)(a 20 (o 3 A1 3)(2 4
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and (I4Jd)= 0123 4

e 1(di do)g 2(d2 do) 1 1
e 0do d]_ do
(1+ 2 o(3 (a2 (o 1 2 (3 1)
e 1(di do)g 4(d2 do) 1 1
+ di do
(1+ 2 o(3 (2 4 (o 1 4 (3 1)
@ 3(d1 do)g 2(d2 do) e 3(d1 do)g 4(d2 do)
+
(3+ 2 o)(1 23%(a 2) (3+ a4 o1 233%(2 4
e 1die 20 d 1 1
+
(o0 1 203 (4 2 - (o 1 2 (3 1
g 1dig 4l 4 1 1
+
(o 1 (s (2 o = (o 1 & (3 1 |,
e 3dig 2t e 3dig 4l .

+ +
(o 3 2(1 3%(a 2) (o 3 a1 2332 4

(I2jd), (Izjd) and (l4jd) can be deduced by symmetry.

4.4.5 Explicit Expression

One could use the previous inductive formulae with algebraic computation to generate the
expressions off and . However such a method is not ef cient, since terms have to be
merged for optimization. For instance, the inductive formulg ofpplied to Example)

would lead before simpli cation to a sum @< terms, while the simpli ed expression has
only K summands. We therefore give here explicit, already simpli ed formulae.

Vocabulary for Tree Combinatorics

Exampled) shows that the formulae faf and can be expressed as a sum of terms with
a distinct structure. These in fact correspond to particular “slices' or “cuts' of the tree. In
this section we de ne cuts and related nomenclature (illustrated in Figure 4.2) which will
be subsequently used to provide simpli ed symbolic expressiong fand

The following de nitions are given in the context ofteee, but they extend naturally to
aforest that is a set of trees.

De nition 4.4.2. A cutof a tree is a maximal unordered set of nodes for the ordée ned
above. In other word<; is a cut of a tred if it satis es:

1) 8i;j 2C;i jand] .
2)8i2TnC;9)2C;i jorj .

Example 4.4.1: In Exampled) above, the tree has ve possible cuts which d1@g, f 1; 2g,
f1;4g,f3; 29 andf 3; 4g.
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Every tree can then be visualized as a trelerahcheseach having at least two children.
However, acut as de ned above will still be a set afodes notbranches See Figuré 4]2
for an example.

Finally, as shown in the gure, we will talk about the “past”, the “present” and the
“future” of a cut as follows: The “present” of a cut is the set of all nodes in the branches
intersected by the cut. The “past” is the set of their ancestors in different branches, and the
“future” the set of their descendants in different branches. More formally, we will adopt the
following notations:

De nition 4.4.4. For each pair of noddgs;j ) in T, we write:

a) i j if i andj belongs to the same branch and we say jhatlongs to the present
of i andi belongs to the present pf

byi jifi jandi j,andwe saythatbelongs to the past ¢fandj belongs to
the future ofi.

The past, (resp. present, future) of a node will be the set of all nodes belonging to the
past (resp. present, future) of this node, and by extension, the past (resp. present, future) of a
cut will be the set of all the nodes belonging to the past (resp. present, future) of at least one
of the nodes of the cut. We will denote thesepast(i), present(i), future (i) for a node
andPas{C), Presen(C), Future(C) for a cutC. Itis important not to confuseodesand
branches

Remark.The past, present and future of a cut forms a partition .of

PAST 3 PRESENT 3 FUTURE

O NODE

: i
: l
BRANCH j 1
. I
. |
' |

Figure 4.2: Atree with its branches and one of its cuts, with the corresponding past, present,

and future of the cut.
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Finally, we extend the vectat = (d;)j2v 2 RY tod = (dj)j2t 2 RT by introducing
foreachj inTnV,d; :=min fdcjk 2 V andj kg.

The Explicit Form of q

In this section we use the cut vocabulary to de ne an expressioq fevhich is not only
closer to closed form, but is also more compact and more ef cient to evaluate than that
produced by the inductive formula. The validity of this forml,slg is proved in the appendix.

For any xed treeT and delayd, we haveq (T;d)= 7 h (T;d;C), where

Q C cutofT
T o7 i and where each tertm (T ;d; C) can be expressed as a product of three

factors:
h (T;d;C):= r(C)s(C)t(C) ;

wherer (C) depends only on the c@ and its pasts(C) depends only o and its present,
andt(C) depends only o€ and its future.

i) Past and Present The factorg (C) ands(c) are given by

Y Y id
r(C):= 41F’7 and s(C):= Qi

kzPastc) © | ,c j2c j( ko)
Kk j k6 j
i) Future The factort(C) = t(T ;d; C) is more complicated as itinvolves a recursion.

To describe it, we regard (T ;d; C) as functions of all its arguments to allow it to apply
to subtrees with modi ed delays, and also extend its de nition from a Trde a forest- .
The set of nodes of a foreBt is denoted by .

If the future of each cu€ of T is empty,i.e.if the treeT is reduced to a single branch,
we havet(T ;d;C) = 1. Recursively, we can then de ne:

Y
t(T;d;C):=  (T;d;C) ;
j2C

where X
h (Fi;d (4):C)

Cj cut of F; kag; k ]

tj(T;d;C) := ;
whereF; is the subforest o containing all the nodes belonging to the future of j, and
thereforeF; := fk 2 Tjj kg, whered  (d;) is the vector(dk  dj)xzF, -

We can interpretd  (d;) as the best information we have about the delay betyeen
and the leaves, since we know only that the delay between the rojtlzamito be smaller
than any delay between the root and the leaves in the futyre of
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The formulaq (T ;d) is now entirely de ned. One can verify that it gives the correct
expressions for the examples in the paper.

The Explicit Form of  (ljd)

As we can see in the previous examples, the ter@hjd) has globally the same structure
asq (d) with additional factors. Therefore it is relatively easy to modify any algorithm
computingg (d) to compute (l;jd).
For any non- xed tre€l' and any nodé in T, we have:
X .
(ijd = = h' (T;d;C;0) ;
C cutof T

where for any real number:
h' (T;d;C;x) = r'(C)s (C)'(T:d;C;x)

wherer!(C) (resp.s'(C)) depends only from the cu® and its past (resp. present), and
wheret! (T ; d; C: x) involves a recursion.

a) Past and Present

S 1 PR e i .

r'(C) := P— and s'(C):= Q T
k2pasc) ( k )k j2c (k )7«

k K6 |
8
o Slifk=i
where | = is the Kronecker delta.

- Oelse

b) Future

As for t(T;d; C), the de nition oft‘()1(';d; C;x) induce a recursion w)i(th the whole
1

formula. First we introduce;(C) := 41F’7 and {(C) :=

k2pasti) © i2¢ ! i
kK j !

These are terms corresponding respectively to the past and the present of néde
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Q

t(T:d;C;x) := i2c t! (T d; C; ), where:
t'(T;d;C;x) :=
8
di i(C) i(C) X if future(j)=; andj =i
1 if future(j)=; andj 6 i
X i (- Ny
h (E”d (d’)’C”O)u'(T;d;C;Cj;x) if future(j) 6 ; andj = i
%cj C)létofFj o kg Kk ]
M (Fid (@):iC i (G)) if future(j) 6 ; andj 6 i
' Cj cut of F; kac; Kk J

whereu (T ; d; C; G,x):= d i(C) i(C) x+ i(Cj) ,andwhere for any node
. 1
jandcutC, ;(C):= —P—.
j k2c k

Remark.It is important to remember in which tree each term is computed. When it is not
speci ed, it is implicitly the tree called on the current level of recursion.

We notice that the termr is used only in the cases whgre= i. Therefore, the term
i(Cj)in h! (Fj;d (di);Cj; j(Cy)) above is used only when2 C;.

In order to understand the different cases in the de nitiotj 6T ; d; C; x), we can have

a look at the exampld). In this example, the terifdy = 12 O) in  (lgjd) comes from
(di + i(Cj)) in U'(C;Cj;x), while the term(d;  do . 11 . 31 -) in - (l1jd)
comes from(d; x i(C)) withx = ;(Cj) andC = C; (recursive call), and the term
(i —L— —E+-)comesfrom(di i(C) i(C)).

Alternative Informal Description

A less formal way to describe (l;jd) is to consider each term in the expanded expression
of g (d), and each time écw'fd appears, multiply it byd coef9, wherecoef®is the sum

of each multiplicative factor appearing@oef and containing in its expression, and each
factor being multiplied by 1) when ; appears in it with a positive sign. Further, when a
term in the expanded expressiongpfd) is of the forme”igi(ﬁj”d, replacecoef with
coef% being equal t@oef where all the factors containing are squared.

4.4.6 Implementation

(lijd)
- (d)
languageObjective CamlOnly the standard packages of the language were used.

We need to compute( ) = Ni iN=1 E (ljd(i)) at each step of the EM algorithm.
Therefore, the formula E1jd) has to be ef ciently calculated for a xed trekE and xed
, but for N distinct values ofd, N being the number of probes used in the experiment

We can nally compute E(l;jd) =

. Our implementation is in the programming

which may not be xed in advance. It follows that the best way to compute this formula
ef ciently is to generate the symbolic expression of(l§d) with  known andd unknown

170



parameters, to simplify it as most as possible and then to compute it for each\oftilees
dgi).

Ef ciency is further improved ifd = ( d; ) is precomputed for ajl 2 T, and also if the
differencesd;  d; are precomputed and kept easy to access, since they appear frequently
and keep the same value at each different step.

Our program generated the symbolic expression ofl @) as a symbolic tree. The
factors depending only on were evaluated and simpli ed during the generation of the
tree. The tree was then reduced as much as possible and was nally evaluated fdfigach
using the precomputed mati (i).

A rst sanity check forporogram correctness, which is easy to perform, is to exploit the
relationdy = E (dgjd) = i E (ljjd) forall k in V. If the program is correct, this has
to be veri ed for any value ofl and any treeg .

4.4.7 Size of the expression and Complexity of the EM step

We will only consider the size of the explicit expressiongofin the particular cases of a
unary tree and of a binary tree. In the former case, the size is clearly linear, while in the
latter it is exponential in the number of nodes, and thus doubly exponential in the height
of the tree. Here, we measure the size of the expression in the number of exponentials
appearing in it after reduction, since all the other factors, especially those involyoan
be precomputed.

For a unary tree witl nodes, the number of exponentials is exabtlyand the size is
then linear. For a binary tree of height1, the sizeS is given byS(h+1) = 2 S(h)?, since
the terms of the two subtrees of heighare multiplied (givingS(h)?) and are integrated,
giving twice as many terms. Sin&1) = 1, we deduce tha®(h) = 22" * 1. Since the
number of node in a binary tree of heights 2"*1 1, the size is then exponential in the
number of nodes.

We get the complexity of one step of EM by multiplication of this size by the number
of nodes in the tree and the length of data, since we need to compqkgdgi)) for all |

exponentials shared by the expressions, but the number of multiplications will still be the
same.

Finally, the number of steps to convergence is likely to grow with the number of nodes
as well, which increase further the global complexity of the EM algorithm. This motivates
the speed-up technique presented in Se¢tign 4.6.

45 Results

We conducted series of experiments on different kinds of trees. The data were generated by
simulating random delays in a tree using the known ground truth. Except in Sectign 4.5.3,
each experiment was conducted on a data shit 6f104 samples and repeated 200 times.
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4.5.1 Unary Tree Case

This case was studied in the previous chapter, where two and three nodes cases were tested.

a) Two Node Case: In the simple case of a tree with two nodes, we have some additional
results on the convergence of the E-M sequence. Pr 43.1 beﬁfih”ﬁ]és# A (2k+1) =
d. This relation implies that there is only one unknown value, and thanks to this, it is
possible to prove the following result by using the intermediate value theorem.

We recall lemma 3.5]3, which is speci ¢ of the two node case:

Lemma 4.5.1. In the two node case, the sequemcék); ’\(2")) converges to a nite limit
which is a solution of the likelihood equation.

The proof uses the fact that, since (for kll 1) ’\(1") + A (2") = d, the likelihood
La(*®) can be expressed as a function’df’ alone. Therefore, the proof cannot be
generalized to more than two nodes. The following table gives some results obtained in this
case.

Gr. truth Mean 10% percentile 90% percentile VariatideMean
(1:1;1) (1:1140:987)  (1:044 0:881) (2:220,1:057) (0:0644 0:0725)
(2;1) (1:999 1:003)  (1:933 0:946) (2063 1:063) (0:0244 0:0446)
(10;1) | (10:003 1:003)  (9:866,0:942) (10148 1:070) (0:01150:0501)
(100;1) | (100.:044;1:015) (98782 0:827) (101368 1:214) (0:0104 0:1514)

Table 4.1: Experimental results of the EM estimgtdy; ~2) for various ground truths in
the 2-node case.

b) Nine Nodes Cas€U9)
Table[4.2 shows the results for the following unary tree Witiodes.

-(500 (200 )~("100 )~ 50 )~ 20 »»( 10 »( 5 (2 »( 1 »

Gr. truth 500 200 100 50 20 10 5 2 L
Mean 498.42 19498 99.59 49.88 26.10 1055 538 425 3.79
10%tile | 481.47 150.08 4831 1393 5.78 154 0.099 0.087 0/077
90%tile | 512.30 236.78 155.35 79.58 56.20 24.94 12.19 10.86 D.99
=Mean| 0.025 0.175 0.428 0.486 0.769 0.990 0.897 0.904 04974

Table 4.2: Experimental results obtained for a unary tree with 9-nodes.

The main dif culty for estimating such unary trees comes from the fact that we get the
same information for all the nodes. In particular, the estimation can only give the values of
the mean delays modulo an unknown permutation. We will also see in Sectjon 4.6 that the
convergence of EM for this tree is very slow.
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45.2 General Case

We present here some results obtained for other different trees.

a) Binary Tree of Height 3 (B 1H 3)

——(200]
Ground truth | 100 4 30 1 25 15 75
Mean 100.03 4.01 29.99 0.9999 25.007 14.996 74.995

10%percentile| 99.62  3.95 29.86 0.98 24.85 14.88 74.70
90%percentile| 100.42 4.04 30.12 1.02 25.14 1511 75.35
Var’?=Mean | 0.0032 0.0092 0.0031 0.012 0.0045 0.0060 0.0034

Table 4.3: Experimental results obtained for a binary tree of height 3.

In the case of a binary tree, the estimation are accurate too. with again a slight bias on
the smallest values. The estimations are in a sense easier for this tree than for the unary ones
because we get more information and also because each node can be discriminated from the
others, while in the unary trees all the nodes are equivalent.

b) Binary Tree of Height 4 (B 1H 4)

150
o =i
&>
T
100
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Ground truth 10 7 14 20 150 8 1 0.1

Mean 10.01 6.99 13.99 20.03 149.95 7.999 1.0004 0.0099
10%percentile 9.67 6.66 13.52 1950 147.77 7.80 0.99 0.096
90% percentile 10.35 8.14 15.32 20.98 152.17 8.29 171 0.28
Variancé™=Mean | 0.03  0.04 0.03 0.02 0.01 0.02 0.01 0.01
Ground truth 100 11 60 20 30 8 12

Mean 100.09 11.30 60.13 20.01 30.03 8.002 12.01
10%percentile 99.83 1056 59.8 1959 2958 7.86 11.85
90% percentile 102.16 13.13 61.47 21.31 31.65 10.27 14.19
Variancé=2=Mean 0.01 0.03 0.01 o0.01 0.01 o0.01 0.01

Table 4.4:

Experimental results obtained for a binary tree of height 4.

For this tree, the estimations are still very good. The dif culty for bigger binary trees
arise from the complexity of the EM step computation rather than the accuracy of the esti-
mation. We made some simulation on a tree of hefiggabd obtained good estimations too,
but they were very long to compute.

c) Tree With Branches(B 3H 2)

(6 —(s )r—Ca)—

—( 20 ) (2 ) 1

(80 )—(60 )—(3 r—
Ground truth | 20 2 1 6 5 4 80 60 3
Mean 19.86 263 179 6.30 4.79 2.63 78.80 61.34 1.68
10%percentile| 19.40 150 0.68 5.18 3.09 0.62 70.31 54.70 0.0052
90%percentile| 20.35 3.92 298 7.58 6.03 4.86 84.89 70.28 3.74
Var'®2=Mean | 0.021 0.36 0.48 0.15 0.24 0.59 0.088 0.012 0.096

Table 4.5: Experimental results obtained with the tree above.

Trees such as the last one, with several parallel branches, are the hardest to estimate
because they combine both dif culties seen in unary and binary trees: A dif cult estimation
in each branch where we have the same information for all nodes, and a high complexity of
the EM step because of the multiple parallel subtrees.

4.5.3 Speed of convergence

Al previous results were conducted with sample $ize: 104. Figurd 4.3 studies the speed
of convergence of the maximum likelihood estimator with respebt t&\Ve present results
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Figure 4.3: Left plot: the cumulative distribution function of the maximum likelihood esti-
mator of node 30 for different sample sizes. The right-side shows the relative standard error
for all nodes on the same tree B1H3, depending on the sample size.

only for the tree B1H3, but results are similar for the other nodes and trees. One might
notice that smaller sample size can lead to good results: with as few as 1000 probes, 90%
of the experiments estimate node 30 with less than 10% error. On the right plot, the relative
standard error (ie. the square root of the variance, divided by the mean) are parallel lines of
slope % which means that the standard error decrease%aand the variance q%r

4.5.4 Comparison to the Least Squares Method

In [LMNO7Y], Lawrenceet al. discard MLE based approaches due to their computation
time in favour of moment based methods using least squares.[Taple 4.6 presents the results
obtained by their method for 200 independent experiments with the same sample=size

10%, for the tree B1H3. This shall be compared with the results of MLE in e 4.3. Other
trees lead to similar results. As expected, the MLE approach yields better results, especially
for nodes that have a small delay. However, the main advantage of moment based methods
is their speed. The simulation of the 200 experiments took only about one minute for the
least squares approach, whereas our algorithm needed 45 minutes. This difference increases
for larger trees.

The complexity of an estimation technique can be expressed in two ways: the number
of independent probes needed to reach a given precision, and the time needed to compute
the estimator based on those probes. The relative interest of each method will depend on
which of these two steps is the most crucial for the speci ¢ application considered.

4.5.5 Resilience to measurement noise and imperfect models

They are many ways to introduce model or measurement errors: a full chapter could be
written on this topic. We will present only one case, which we hope is representative.
Tableg/4.7 presents the results of the accelerated EM algorithm, when each end-to-end delay
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Ground truth | 100 4 30 1 25 15 75
Mean 9998 404 2993 0.93 2477 1518 75,7
10%percentile| 98.22 2.42 28.73 -0.19 2258 13.92 7354
90%percentile| 101.91 5.46 31.20 2.21 26.77 16.31 7665
Var'?=Mean | 0.014 0.32 0.033 1.009 0.060 0.062 0.017

Table 4.6: Experimental results obtained for B1H3, using the least squares method from
[LMNQ7].

was sampled according to the model distribution, then multiplied by a i.i.d. uniform value
between 0.95 and 1.05. The results are worse: the standard error is about three times higher
for most nodes. However, the errors stay in a reasonable level, which might indicate that
the algorithm is resilient to errors.

Ground truth | 100 4 30 1 25 15 75
Mean 98.1 36 323 33 258 16.1 76{1
10%percentile| 96.7 3.4 319 3.2 254 158 752
90%percentile| 99.3 39 328 35 26.2 165 77|11
vart?=Mean | 0.01 0.05 0.01 0.04 0.01 0.02 0.01

Table 4.7: Experimental results obtained for the tree B1H3, with imperfect measurements.

4.6 Steered Jumping for EM

In a number of cases, especially when the tree has long branches, the number of steps
before converging to a xed point can be very large, and since the complexity of each step
is proportional to the length of data, the EM algorithm becomes very slow Whieecomes

large. The complexity of each step rises also very quickly with the size of the tree, since
the growth is quadratic in the number of nodes for an unary tree, but can be exponential for
a binary tree (see Sectipn 44.7). It is therefore important for this problem to signi cantly
improve the convergence speed of the EM algorithm. We present a novel such method
below.

4.6.1 Analysis of the iteration

We rst illustrate some characteristics of the iteration through two examples.

Example One Consider a unary tree with ground truth= (0:1;1;10). From Prop-
erty,’\(") = (A Al Ay opeysnl) + A () 1 A0 = g 5o that the system has
only two independent variables. We therefore plot the trajectories of the EM algorithm in a
(*59;79) plot.

Figure[4.4 shows some sequences of iterations of the algorithm from different ini-
tial conditions. We see that the trajectories all converge towards the same point,
(0:83; 0:83; 8:07). During this experiment, the mean delay wias 9:73, and Propertl
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