
HAL Id: tel-00824860
https://theses.hal.science/tel-00824860

Submitted on 22 May 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Inverse problems in networks
Bruno Kauffmann

To cite this version:
Bruno Kauffmann. Inverse problems in networks. Networking and Internet Architecture [cs.NI].
Université Pierre et Marie Curie - Paris VI, 2011. English. �NNT : 2011PA066026�. �tel-00824860�

https://theses.hal.science/tel-00824860
https://hal.archives-ouvertes.fr

THÈSE DE DOCTORAT DE

L’UNIVERSITÉ PIERRE ET MARIE CURIE

Spécialité : Informatique

(Ecole doctorale : Informatique, télécommunications et électronique (ED 130))

présentée par

Bruno KAUFFMANN

pour obtenir le grade de

Docteur de l’université Pierre et Marie Curie

Problèmes inverses dans les réseaux

Inverse problems in Networks

Rapporteurs :

Prof. Michel MANDJES

Prof. Mathew ROUGHAN

soutenue le 24/03/2011, devant le jury composé de :

Prof. François BACCELLI Directeur de thèse

Prof. Jean BOLOT Examinateur

Prof. Serge FDIDA Examinateur

Prof. Paulo GON CALVES Examinateur

Prof. Michel MANDJES Examinateur

Prof. Darryl VEITCH Examinateur

ii

Acknowledgement / Remerciements

I would like to thank François Baccelli, my PhD advisor, for his guidance and support for

these years. Despite a heavily-loaded agenda, François always took time to discuss difficult

points or help me whenever it was needed. The fact that he allies a great kindness to his

scientific knowledge and deep creativity made this experience more joyful. His dedication

to research, his curiosity and enthusiasm when we were exploring a new idea and close to

find a new result is an example of how thrilling research can be, even after years of practice.

It is my good fortune to have Michel Mandjes and Matthew Roughan who have devoted

considerable time and effort in reviewing my thesis. Their comments have been valuable

to improve the quality of this document. It was an honour and a motivation to write this

dissertation for their examination. Thanks also to Serge Fdida, Paulo Gonçalves and Jean

Bolot to accept to be part of the committee of my PhD examination.

The journey that lead me to complete this PhD has been enlightened by some great

people I met along the way. Darryl Veitch has been for me an unofficial co-advisor, and I

thoroughly enjoyed exchanging ideas with him. I learned from him the attention to details

and importance of thoroughness. During discussions, he would quickly point the most

challenging points, and propose ideas to tackle these difficulties. It is natural that he is also

a member of the committee.

I am particularly thankful to Christophe Diot, Augustin Chaintreau, Konstantina Papa-

giannaki, Vivek Mhatre and all the colleagues from the former Intel Research lab in Cam-

bridge. They are part of my decision to start a PhD, and their guidance made what was

my first experience of research a fruitful experience. Thanks also to Steve Uhlig and the

members of the Cambridge University Scout and Guide Club, for making this semester also

a rich experience on a personal aspect. The years I spent at INRIA and ENS in the TREC

team have been rich in meetings with faculty members. Bartek Blaszczyszyn, Pierre Bre-

maud, Alexandre Proutiere, Thomas Bonald, Ana Bušić and Anne Bouillard all contributed

to the richness of the TREC environment. My thanks to them. Many students, including

Giovanna, Yogesh, Justin, Frédéric, Furcy, Ahmed, Émilie, Omid, Florence, Mathieu, Van

Minh, Calvin, Tien Viet, François-Xavier, Min Ahn, Nadir, Prasanna and Martha also had

a key role in this PhD. The joyful discussions we had, both on mathematical and personal

subjects, fed me with interests on many topics.

I am thankful to Orange Labs in general, and to the Traffic and Resources Manage-

ment team in particular, for welcoming me when my dissertation writing was finished. The

knowledge that I had a position after my PhD was a comfort that I really appreciated, and

the warm welcome I received there has been refreshing after the brunt work and stress of

writing this dissertation. On top of that, they made sure that I have the flexibility and time

needed to write the final version of this dissertation and prepare serenely my defense.

D’un point de vue personnel, je tiens à remercier les nombreux amis qui m’ont soutenu

de façon constante tout au long de mon doctorat, en particulier le groupe des “rôlistes” de

l’École Normale Supérieure (et d’ailleurs). Les “soirées bloquées” qui nous réunissent de

façon quasi-hebdomadaire, autour d’un repas et d’un jeu de rôle, d’un jeu de société ou

d’un film, furent autant d’occasions de discuter de n’importe quel sujet, y compris de nos

bonheurs et malheurs dans la recherche — la majorité faisait, ou avait fini leur doctorat,

chacun dans son domaine.

Mes remerciements vont également à Alice, dont le rôle, bien que non scientifique, aura

été crucial pour l’aboutissement de ce doctorat. Sa motivation et son enthousiame com-

municatifs, sa compréhension de mes frustrations et moments difficiles ont été un facteur

discret mais décisif.

Enfin, cette thèse n’aurait pas vu le jour sans ma famille. Un grand merci à mes frères et

ma sœur (et leurs familles), dont les visites régulières ont été autant de bols d’air. Un merci

encore plus grand à mes parents, qui m’ont transmis depuis l’enfance le goût de savoir et

de comprendre. Les valeurs et la confiance en soi que je tiens de leur éducation ont été

des outils très précieux au cours de ces années, et leur amour parental un socle sur lequel

m’appuyer.

ii

iii

Abstract

The recent impressive growth of Internet in the last two decades lead to an increased

need of techniques to measure its structure and its performance. Network measurement

methods can broadly be classified into passive methods that rely on data collected at routers,

and active methods based on observations of actively-injected probe packets. Active mea-

surement, which are the motivation of this dissertation, are attractive to end-users who,

under the current Internet architecture, cannot access any measurement data collected at

routers.

On another side, network theory has been developed for over one century, and many

tools are available to predict the performance of a system, depending on a few key parame-

ters. Queueing theory emerges as one particularly fruitful network theory both for telephone

services and wired packet-switching networks. In the latter case, queuing theory focuses on

the packet-level mechanisms and predicts packet-level statistics. At the flow-level view-

point, the theory of bandwidth sharing networks is a powerful abstraction of any bandwidth

allocation scheme, including the implicit bandwidth sharing performed by the Transfer Con-

trol Protocol. There has been many works showing how the results stemming from these

theories can be applied to real networks, in particular to the Internet, and in which aspects

real network behaviour differs from the theoretical prediction.

However, there has been up to now very few works linking this theoretical viewpoint of

networks and the practical problem of network measurement. In this dissertation, we aim

at building a few bridges between the world of network active probing techniques and the

world of network theory. We adopt the approach of inverse problems. Inverse problems are

best seen in opposition to direct problems. A direct problem predicts the evolution of some

specified systems, depending on the initial conditions and some known evolution equation.

An inverse problem observes part of the trajectory of the system, and aims at estimating the

initial condition or parameters that can lead to such an evolution . Active probing technique

inputs are the delay and loss time series of the probes, which are precisely a part of the

trajectory of the network. Hence, active probing techniques can be seen as inverse problems

for some network theory which could predict correctly the evolution of networks.

In this dissertation, we show how active probing techniques are linked to inverse prob-

lems in queueing theory. We specify how the active probing constraint can be added to

the inverse problems, what are the observables, and detail the different steps for an inverse

problem in queueing theory. We classify these problems in three different categories, de-

pending on their output and their generality, and give some simple examples to illustrate

their different properties.

We then investigate in detail one specific inverse problem, where the network behaves as

a Kelly network with K servers in tandem. In this specific case, we are able to compute the

explicit distribution of the probe end-to-end delays, depending on the residual capacities

on each server and the probing intensity. We show that the set of residual capacities can

be inferred from the mean end-to-end probe delay for K different probe intensities. We

provide an alternative inversion technique, based on the distribution of the probe delays for

a single probing intensity. In the case of two servers, we give an explicit characterization of

the maximum likelihood estimator of the residual capacities. In the general case, we use the

Expectation-Maximization algorithm (E-M). We prove that in the case of two servers, the

estimation of E-M converges to a finite limit, which is a solution of the likelihood equation.

We provide an explicit formula for the computation of the iteration step when K = 2 or

K = 3, and show that the formula stays tractable for any number of servers. We evaluate

these techniques numerically. Based on simulations fed with real network traces, we study

independently the impact of the assumptions of a Kelly network on the performance of the

estimator, and provide simple correction factors when they are needed.

We also extend the previous example to the case of a tree-shaped network. The probes

are multicast, originated from the root and destined to the leaves. They experience an ex-

ponentially distributed waiting time at each node. We show how this model is related to the

model of a tree-shaped Kelly network with unicast cross-traffic and multicast probes, and

provide an explicit formula for the likelihood of the joint delays. We use the E-M algorithm

to compute the maximum likelihood estimators of the mean delay in each node, and derive

explicit solutions for the combined E and M steps. Numerical simulations illustrate the con-

vergence properties of the estimator. As E-M is slow in this case, we provide a technique for

convergence acceleration of the algorithm, allowing much larger trees to be considered as

would otherwise be the case. This technique has some novel features and may be of broader

interest.

Finally, we explore the case of inverse problems in the theory of bandwidth sharing

networks. Using two simple examples of networks, we show how a prober can measure

the network by varying the number of probing flows and measure the associated bandwidth

allocated to each probing flow. In particular, when the bandwidth allocation maximizes an

α-fair utility function, the set of server capacities and their associated flow numbers can be

uniquely identified in most cases. We provide an explicit algorithm for this inversion, with

some cases illustrating the numerical properties of the technique.

Keywords: inverse problems — Internet tomography — active probing measurement —

statistics — queueing theory —- Expectation-Maximization algorithm

Résumé

La croissance récente d’Internet lors deux dernières décennies a conduit à un besoin crois-

sant de techniques permettant de mesurer la structure et la performance d’Internet. Les tech-

niques de mesures de réseaux peuvent être classifiées en méthodes passives qui utilisent des

données collectées au niveau des routeurs, et les méthodes actives, reposant sur l’injection

active et l’observation de paquets-sondes. Les méthodes actives, qui sont la motivation prin-

cipale de ce doctorat, sont particulièrement adaptées aux utilisateurs finaux, qui ne peuvent

pas accéder aux données mesurées par les routeurs avec l’architecture actuelle d’Internet.

Sur un autre plan, la théorie des réseaux se développe depuis un siècle, et de nom-

breux outils permettent de prédire la performance d’un système, en fonction de quelques

paramètres clés. La théorie des files d’attentes émerge comme une solution particulière-

ment fructueuse, que ce soit pour les réseaux téléphoniques ou pour les réseaux filaires à

commutation de paquet. Dans ce dernier cas, elle s’intéresse au mécanisme à l’échelle des

paquets, et prédit des statistiques à ce niveau. À l’échelle des flots de paquets, la théorie des

réseaux à partage de bande passante permet une abstraction de tout schéma d’allocation

de bande passante, y compris le partage implicite résultant du protocole TCP. De nombreux

travaux ont montré comment les résultats provenant de ces théories peuvent s’appliquer aux

réseaux réels, et en particulier à Internet, et dans quels aspects le comportement de réseaux

réels diffère des prédictions théoriques.

Cependant, il y a eu peu de travaux établissant des liens entre le point de vue théorique

d’un réseau et le problème pratique consistant à le mesurer. Le but de ce manuscrit est de

bâtir quelques ponts entre le monde des méthodes de mesure par sondes actives et le monde

de la théorie des réseaux. Nous adoptons l’approche des problèmes inverses, qui peuvent

être vus en opposition aux problèmes directs. Un problème direct prédit l’évolution d’un

système défini, en fonction des conditions initiales et d’une équation d’évolution connue.

Un problème inverse observe une partie de la trajectoire d’un système défini, et cherche

à estimer les conditions initiales ou paramètres pouvant conduire à cette trajectoire. Les

données des méthodes de mesure par sondes actives sont les séries temporelles des pertes et

délais des sondes, c’est-à-dire précisément une partie de la “trajectoire” d’un réseau. Ainsi,

les méthodes de mesures par sondes actives peuvent être considérées comme des problèmes

inverses pour une théorie des réseaux qui permettrait une prédiction exacte de l’évolution

des réseaux.

Nous montrons dans ce document comment les méthodes de mesures par sondes actives

sont reliées aux problèmes inverses dans la théories des files d’attentes. Nous spécifions

comment les contraintes de mesures peuvent être incluses dans les problèmes inverses, quels

sont les observables, et détaillons les étapes successives pour un problème inverse dans la

théorie des files d’attentes. Nous classifions les problèmes en trois catégories différentes, en

fonction de la nature de leur résultat et de leur généralité, et donnons des exemples simples

pour illustrer leurs différentes propriétés.

Nous étudions en détail un problème inverse spécifique, où le réseau se comporte

comme un réseau dit “de Kelly” avecK serveurs en tandem. Dans ce cas précis, nous calcu-

lons explicitement la distribution des délais de bout en bout des sondes, en fonction des ca-

pacités résiduelles des serveurs et de l’intensité des sondes. Nous montrons que l’ensemble

des capacités résiduelles peut être estimé à partir du délai moyen des sondes pour K inten-

sités de sondes différentes. Nous proposons une méthodes d’inversion alternative, à partir

de la distribution des délais des sondes pour une seule intensité de sonde. Dans le cas à

deux serveurs, nous donnons une caractérisation directe de l’estimateur du maximum de

vraisemblance des capacités résiduelles. Dans le cas général, nous utilisons l’algorithme

Espérance-Maximisation (E-M). Nous prouvons que dans le cas à deux serveurs, la suite

des estimations de E-M converge vers une limite finie, qui est une solution de l’équation de

vraisemblance. Nous proposons une formule explicite pour le calcul de l’itération quand

K = 2 ou K = 3, et prouvons que la formule reste calculable quelque soit le nombre

de serveurs. Nous évaluons ces techniques numériquement. À partir de simulations util-

isant des traces d’un réseau réel, nous étudions indépendamment l’impact de chacune des

hypothèses d’un réseau de Kelly sur les performances de l’estimateur, et proposons des

facteurs de correction simples si besoin.

Nous étendons l’exemple précédant au cas des réseaux en forme d’arbre. Les sondes

sont multicast, envoyées depuis la racine et à destination des feuilles. À chaque nœud,

elles attendent un temps aléatoire distribué de façon exponentielle. Nous montrons que

ce modèle est relié au modèle des réseaux de Kelly sur une topologie d’arbre, avec du

trafic transverse unicast et des sondes multicast, et calculons une formule explicite pour la

vraisemblance des délais joints. Nous utilisons l’algorithme E-M pour calculer l’estimateur

de vraisemblance du délai moyen à chaque nœud, et calculons une formule explicite pour

la combinaison des étapes E et M. Des simulations numériques illustrent la convergence de

l’estimateur et ses propriétés. Face à la complexité de l’algorithme, nous proposons une

technique d’accélération de convergence, permettant ainsi de considérer des arbres beau-

coup plus grands. Cette technique contient des aspects innovant dont l’intérêt peut dépasser

le cadre de ces travaux.

Finalement, nous explorons le cas des problèmes inverses dans la théorie des réseaux à

partage de bande passante. À partir de deux exemples simples, nous montrons comment un

sondeur peut mesurer le réseau en faisant varier le nombre de flots de sondes, et en mesurant

le débit associé aux flots dans chaque cas. En particulier, si l’allocation de bande passante

maximise une fonction d’utilité α-équitable, l’ensemble des capacités des réseaux et leur

nombre de connections associé peut être identifié de manière unique dans la plupart des cas.

Nous proposons un algorithme pour effectuer cette inversion, avec des exemples illustrant

ses propriétés numériques.

Mots-clés : Problèmes inverses — tomographie d’Internet — mesure par sondes actives —

statistique — théorie des files d’attentes — algorithme Espérance-Maximisation

Organization of the dissertation

This dissertation lies at the crossroad of several fields: queueing theory, active network

measurement, statistics and the theory of bandwidth sharing networks. The presentation

aims at making the manuscript readable by anyone knowledgeable in probability theory.

This leads to a large introduction in the first chapter, covering the needed notions of the

different fields. The operation of real networks, in particular of Internet, is explored in

section 1.1. Section 1.2 covers basic notions of queueing theory. Section 1.3 introduces the

theory of bandwidth sharing networks. The relevant definitions and theorems of statistics

are presented in section 1.4. Knowledgeable readers can easily skip the corresponding

sections, and read directly section 1.5, which is the “classical PhD introduction”. For those

whose interest lies mostly in the philosophy and aims of this work in particular, and active

probing in general, it is possible to have a quick overview by reading sections 1.1.1, 1.1.2,

1.1.3, and then directly section 1.5.

ix

x

Contents

Abstract iv

Résumé vi

Organization of the dissertation ix

1 Introduction 1

1.1 Networks . 1

1.1.1 What are networks . 1

1.1.2 Network applications . 3

1.1.3 Functionalities of networks . 14

1.1.4 Abstraction of networks . 18

1.2 Queueing theory: a microscopic model for networks 25

1.2.1 A single queue . 26

1.2.2 The M/M/1 queue . 29

1.2.3 Network of queues . 33

1.2.4 The M/GI/1 queue . 41

1.3 Bandwidth sharing networks: a macroscopic model 46

1.3.1 Bandwidth sharing networks . 46

1.3.2 Bandwidth sharing networks are useful outside communication net-

works . 50

1.3.3 One single path . 51

1.3.4 The triangle network . 54

1.4 Statistics . 56

1.4.1 Parametric estimation and estimators 56

1.4.2 A few classical results . 57

1.4.3 Maximum likelihood estimator . 61

1.4.4 Expectation-Maximization (E-M) algorithm 66

1.4.5 Design of Experiment . 70

1.5 Network measurements . 71

xi

1.5.1 Communication networks measurement 71

1.5.2 Internet Tomography . 74

1.5.3 Inverse problems . 76

1.5.4 Bibliography . 79

1.6 Contribution of this dissertation . 84

2 Inverse Problems in Queueing Networks 89

2.1 Introduction . 89

2.2 Inverse problems in queueing theory . 91

2.2.1 Direct equations of queueing theory 91

2.2.2 Noise . 92

2.2.3 Probing actions . 93

2.2.4 Observables . 94

2.2.5 Unknown parameters and performance metrics 95

2.2.6 Intrusiveness, bias and restitution 95

2.2.7 Identifiability, ambiguity . 95

2.2.8 Estimation problems . 96

2.2.9 The prober’s path(s) to Ground Truth 96

2.2.10 ISP-centric inverse queueing problems 97

2.3 Noiseless Inverse Queueing Problems . 97

2.3.1 The M/G/1 Queue . 98

2.3.2 The M/M/1 Queue . 99

2.3.3 The M/M/1/B Queue . 100

2.3.4 The Erlang loss system . 102

2.4 Optimal Probing Strategies . 103

2.4.1 Sampling bias . 104

2.4.2 Variance . 106

2.4.3 Maximum Likelihood . 110

2.5 Summary . 110

2.6 Appendix . 111

2.6.1 Packet pairs in the M/M/1 queue 111

2.6.2 Proof of Lemma 2.4.2 . 111

3 The Single-path Kelly Network 113

3.1 Introduction . 113

3.2 The parametric model . 114

3.2.1 The system . 114

3.2.2 Model Limitations . 115

3.2.3 The direct equation . 116

xii

3.3 An analytical solution . 119

3.4 Noise Aware moment-based solution . 120

3.5 Maximum likelihood estimators . 122

3.5.1 The one station case . 123

3.5.2 The two stations case . 124

3.5.3 Expectation-Maximization Algorithm 130

3.5.4 Additive measurement noise . 135

3.6 Experimental Validation . 136

3.6.1 Data Sets and Traces . 136

3.6.2 Semi-Experimental Methodology 138

3.6.3 Challenge: Router Model . 139

3.6.4 Challenge: Exponential Sizes . 140

3.6.5 Challenge: Equality of Distribution 142

3.6.6 Challenge: Poisson Arrivals . 143

3.6.7 The Two Station Case . 145

3.7 Summary . 147

3.8 Appendix . 148

3.8.1 Proof of Lemma 3.5.3 . 148

3.8.2 Proof of Lemma 3.5.4 . 150

4 Extension to Kelly Networks 153

4.1 Introduction . 153

4.2 A Delay Tomographic Queueing Inverse Problem 155

4.3 E-M for Exponential Tomography . 158

4.3.1 Specialization of the Iterative Formula 159

4.4 Explicit Formula for IE(l|d) . 160

4.4.1 Notations . 161

4.4.2 Some simple examples . 161

4.4.3 Inductive Expression . 162

4.4.4 More Examples . 164

4.4.5 Explicit Expression . 166

4.4.6 Implementation . 170

4.4.7 Size of the expression and Complexity of the EM step 171

4.5 Results . 171

4.5.1 Unary Tree Case . 172

4.5.2 General Case . 173

4.5.3 Speed of convergence . 174

4.5.4 Comparison to the Least Squares Method 175

xiii

4.5.5 Resilience to measurement noise and imperfect models 175

4.6 Steered Jumping for EM . 176

4.6.1 Analysis of the iteration . 176

4.6.2 The Sampling Method . 178

4.6.3 The Steered Jumping Method . 179

4.7 Summary . 186

4.8 Appendix . 188

4.8.1 Proof of the Density Formula . 188

5 Inverse Problems in Bandwidth Sharing Networks 195

5.1 Introduction . 195

5.2 The static single path case . 197

5.2.1 Direct equation . 198

5.2.2 The inverse problem . 199

5.2.3 Numerical application . 204

5.3 The static triangle network . 206

5.4 Summary . 209

Bibliography 211

xiv

Chapter 1

Introduction

1.1 Networks

This dissertation has a strong focus on measurement based inverse problems in communica-

tion networks. Whilst many readers are already familiar with communication networks and

their theoretical side, we will introduce very succinctly, in a simple manner, the necessary

concepts in this section.

1.1.1 What are networks

Throughout this dissertation, a network will be considered as a set of vertices (or locations),

and a set of edges (or links) between these vertices. Hence, the network is connecting the

different vertices with the edges. Depending on the nature of the network considered, the

vertices and edges can have different incarnations.

Example 1.1.1 (Different examples of networks): The first natural example of network is

the Internet. The Internet vertices are the home computers of Internet users, the routers

and switches ensuring the connectivity of the network, and the servers that store the data of

interest to users. These vertices are not identical, and do not have any symmetrical role for

the network; however, each of these classes of nodes has a vital role for the network. In this

example, edges are a lot more similar. They consist of any physical connection between

any pair of these locations, be it using copper wires, coaxial cables, fiber optics or radio

spectrum links. They all carry the data between different locations. The network as a whole

is focused on carrying information between data servers and end-users. The Internet is of

specific interest because it is one of the dominant network today, which use has become

vital for the economy. Additionnally, the Internet is by its very nature dynamical in the

middle and long term: new wired links are connected regularly, and some are shut-down, the

wireless connections are by their nature not permanent, and most importantly, the content

on the Internet and the usage of the network vary significantly along the years. This leads

to a strong need of measuring and understanding this network.

A second interesting example is the almost static network of the streets and roads of a

1

city or country. The edges are easy to identify: they are the roads and streets. The vertices

are by definition the extremities of the edges, i.e. the crossroads, squares and junctions.

Even if they have a natural definition, they do not have any specific role in this network.

In fact, this network aims at allowing vehicle movement, and our interest in it lies in the

edges, which have a natural definition of weight, corresponding to the capacity (in vehicle

per minutes) of the road. Such a graph (or network) is said to be weighted, and a primary

metric of interest is the maximum flow from one source to one destination, i.e. the maximum

number of vehicles per second that the road network can carry between both locations.

The third example of network we will present here is called social network: it is a

different kind of network, and is a common object of study in social and computer sciences.

It arises as a model for the interactions of human beings. Its vertices are the human beings

themselves, or the groups of human beings, and edges appear between two vertices when

both vertices are in contact. The canonical example for this kind of network is the friendship

relation network on the Facebook website: each Facebook profile corresponds (in theory)

to one human being, and is a vertex of the social network. Each profile has a list of friend

profiles, and to each of these friendships corresponds one edge between both friend profiles

in the social graph. Studies of social graphs aim at recovering the different communities

from these friendship connections, or at quantifying the diffusion of information due to

gossips in a social network. Such networks differ from the two previous example in that

there is no physical reality for the edges: the links are not physical connections ensuring

that data or vehicles can be transported, but are a formal understanding of relation between

people. In fact, in some examples, there is no unique answer whether an edge is present or

not: friendship between human beings (except on online social networks as Facebook) is

not a binary question, and being someone’s friend does not mean you see him regularly, or

exchange any piece of information immediately.

Considering that no edge is removed from or added to the network at the time scales we

are interested in, we will limit ourselves to static networks, which can then be considered as

a graph (V, E), where V is the (finite) set of vertices and E the (finite) set of edges. Because

of this equivalence, we will use both the terminology of graphs and networks in this thesis.

As shown in Example 1.1.1, networks are of broader interest than only communication

networks, and most of the results presented here can be generalized to other kinds of net-

works: in particular, we will see in section 1.3 that networks can be a good model for and

give insight into objects that have no obvious connections with them. However, commu-

nication networks will be the connecting thread of this document, and we will now spend

some time presenting key concepts concerning them.

The aim of communication networks can be described in a very general way as carrying

data between nodes. The specific meaning of “data” and the way to carry them depends on

the nature of the network and the technology chosen to operate it. The former can vary from

binary packets to real-time streaming, and the latter is for instance chosen among wireless

connections, copper links and optical fiber connections1.
1A technology usually includes much more precise information about the encryption and communications

2

1.1.2 Network applications

Before going into a more detailed study of networks, it is useful to start with a few examples

of network applications, and how they impact the design of a network. As the Internet is

the main focus of this dissertation, the remaining part of this section (up to section 1.2) will

be dedicated to introducing the key concepts and mechanisms of the Internet, and in which

aspects it is similar to or different from other networks.

In the computer science terminology, a network application is a sequence of “unitary”

tasks, which uses the network in order to perform a global task. As such, applications run

at the end-point (or edges, or host, or end-system) of the connection, and are by nature

distributed over several nodes.

Internet applications

We will start with four Internet killer applications, which are responsible for most of today’s

traffic [BDF+09, MFPA09]:

1. The World Wide Web (WWW);

2. E-mail, including web-accessible e-mail and attachments;

3. Peer-to-peer file sharing, pioneered by Napster, and now dominated by BitTorrent;

4. Live streaming, including radio and television broadcasts on the Internet, but also

Skype phone calls or Youtube video watching.

The World Wide Web The Web is composed of two main components:

• the HyperText Markup Language (HTML), which is a common language to all web-

sites and web browsers, used to specify the content and presentation of any web page;

• the HyperText Transfer Protocol (HTTP), which is a communication protocol, ruling

how web-servers and browser exchange their data.

HTML is outside the scope of communication networks. It will be enough to know that

it is a structured language, which allows one to write plain text documents and add tags

to structure the text, include images, links or other objects. An HTML document can then

be interpreted by a web browser (e.g. Internet Explorer or Firefox) in order to display its

content on a screen. The different tags and the language syntax is specified by the World

Wide Web Consortium (W3C, [W3C]), such that new browsers and new web sites can be

easily designed.

protocol (both GSM and 802.11 networks are wireless communication, but they are for some aspects much
more different than 802.11 and ADSL connections) and similar details, but this is outside the scope of this
thesis.

3

HTTP is the network application used to transfer the HTML objects between web

servers and browsers. Is is a distributed application, with 2 different pieces of soft-

ware, called HTTP server (e.g. Apache) and HTTP client (e.g. web browsers). These

software run respectively on the web servers and the client end-hosts (e.g. desktops,

laptops, smart phones, etc.). HTTP has public specifications, which one can find in

[BLFF96, FGM+97, FGM+99].

Now, what happens when one wants to see a webpage? Let us consider for example that

Alice wants to learn more about HTTP, and consults the wikipedia page about HTTP2. Alice

launches her favorite browser Mozilla Firefox, and in the URL bar, types the URL. Her

browser, formally a HTTP client with a graphical user interface, tries to open a connection

with the node en.wikipedia.org. If successful, it then sends a message, which could read3:

GET /wiki/Http HTTP/1.1

Host: en.wikipedia.org

User-Agent: Mozilla/5.0 (Windows; U; Windows NT 6.0; fr;

rv:1.9.0.1) Gecko/2008070208 Firefox/3.0.1

[blank line]

The server then answers a message, which could be:

HTTP/1.0 200 OK

Date: Fri, 27 Aug 2010 21:32:09 GMT

Server: Apache

Last-Modified: Fri, 27 Aug 2010 20:06:40 GMT

Content-Length: 114962

Content-Type: text/html; charset=UTF-8

Connection: close

[blank line]

(data...data...data... ...data)

In a human fashion, this dialogue would read:

Client: - Hello, en.wikipedia.org. Can we talk? (Ask connection)

Server: - I’m listening to you. (Accept connection)

Client: - Could you send me a file (request GET)? This is the

file /wiki/Http. I’m using the protocol HTTP/1.1. By

the way, in case several of you live at the same

address, I’m speaking to en.wikipedia.org (this is the

line Host:...). In case you are interested, my web

browser is currently Firefox, version 3.0.1 for

2 http://en.wikipedia.org/wiki/Http
3In fact, many options would most likely be included in the message, making it much longer. However, they

do not impact directly at the heart of the protocol, and its principles can be explained and understood with a
short message.

4

Windows Vista (line User-Agent:...).

Server: - I prefer protocol HTTP/1.0. I’m sending you the

required file at the end of this paragraph (code 200

OK). My current time is 21:32:09 GMT, on Friday

08/27/2010 (line Date:...). I’m running the Apache

version of HTTP server (line Server:...). The file I’m

sending you was last modified on 08/27/2010, at

20:06:40 GMT. It is 114 962 bytes long (line

Content-Length...). Is an HTML file, encoding in UTF-8

characters (line Content-Type:...). And just to let you

know, I’ll break contact as soon as I’ve sent the file

(line Connection:close).

[File here]

This dialogue is repeated for every web page that Alice wants to display. Some web

pages consist of several objects: the main object is the HTML file, which can include other

objects (e.g. images), designated by their own URL. When trying to display this page, the

browser will realize that other objects are required, and hence will ask the hosting servers

to send the corresponding files.

GET is the easiest and most-used request for HTTP clients. On a broad scale, it works

via exchanging a few “messages” (either the headers, i.e. the lines preceding the HTML

object, or the HTML object itself) between the HTTP client and the HTTP server. Other

requests are defined, for the cases where one wants to fill an online form, or delete a file on

a online server, etc. These requests contain more data and more messages, but the protocol

stays based on the exchange of specific messages.

We will finish this brief HTTP introduction with its consequences on network design.

Which functionalities are required from the network, in order to let HTTP run on it? The

list is short, but meaningful:

1. A naming functionality, which ensures that there is only one node with a given name;

the difficulty here is that no server or organization on the Internet has a global view

of the set of connected nodes, and the allocation of names hence can’t be centralized.

Additionnally, somes nodes need to have a fixed static unique name (in particular, web

servers, such as www.google.com), whereas other nodes don’t have this requirement

(a end-host PC usually acts only as a client, and can deal with a different name each

time it connects to the Internet).

2. A transport functionality, which can deliver messages from one node to any other

node specified with its address;

3. A reliability-checking functionality, which ensures that the message was not altered

during the transport;

5

4. A delivery-checking mechanism, which verifies that the message arrived at destina-

tion, and raises an alert if needed.

In theory, the fourth requirement could be dealt with in the HTTP application itself.

However, this requirement is common, and it is easier to add this functionality to the net-

work than to redesign it for every new application.

E-mail The application architecture is more complicated here. We will explain first how

web-based mail servers work, and then see how mail user agents (e.g. Thunderbird or Out-

look) can interact with them.

Consider that Alice (alice@gmail.com) wants to send an email to Bob

(bob@yahoo.com). Alice starts her web browser, loads the gmail.com web page,

and logs onto her Gmail account. This is for the moment pure HTTP exchange. She’s

quickly on the “compose Email” web page, she writes her email and the address of Bob,

then pushes the “Send Mail” button. This button triggers a special HTTP request called

POST, which allows a web client to send data to the web server. Here, the data consists of

the email and the order to send it.

Each mail server runs two Simple Mail Transfer Protocol (SMTP) [Kle08, Res08] pro-

grams: one SMTP client program, which is responsible for sending mails to other servers,

and one SMTP server program, which listens for incoming mails. In our case, the Gmail

web server will pass Alice’s email to the Gmail SMTP client. Looking at Bob’s address,

the Gmail SMTP client realizes that Bob’s address is not from Gmail, and that he needs to

contact the Yahoo SMTP server. The Gmail SMTP client then requests a connection to the

Yahoo SMTP server, and starts a connection that looks like (in human presentation):

[Gmail requests a connection to Yahoo]

Yahoo: - I’m listening, and my name is smtp.yahoo.com.

Gmail: - Hello! I’m smtp.gmail.com.

Yahoo: - Hello smtp.gmail.com. Glad to hear from you.

Gmail: - I’ve an email from <alice@gmail.com>.

Yahoo: - OK

Gmail: - It’s destinated to <bob@yahoo.com>.

Yahoo: - That’s fine: I know Bob.

Gmail: - I’m sending the email.

Yahoo: - I’m ready to copy it. Just signal the end with a "." line.

Gmail: - From: "Alice <alice@gmail.com>"

To: "Bob <bob@yahoo.com>"

Date: Mon, 30 Aug 2010, 10:13:42 GMT

Subject: Weather

Hello Bob,

Can you tell me what the weather is at your home? I’m

6

hesitating about taking my umbrella.

Looking forward to visiting you,

Alice.

.

Yahoo: - I’ve got it, and I’ll give it to Bob.

Gmail: - Thanks. Bye!

Yahoo: - Bye!

[Yahoo closes the connection].

After reception, the Yahoo SMTP server will copy the email onto its file system, and

add it to Bob’s inbox. Later that day, Bob eventually connects via the web interface, asks

for new mails, and the Yahoo web server will send him an HTML file that lists his mails,

including the one from Alice.

We presented the simple case where everything works without any problem. The Simple

Mail Transfer Protocol covers many more situations. If, for example, the client SMTP

application (the sender) cannot find the server SMTP application (the destination), the client

will repeatedly try to send Alice’s mail to Bob’s mail server, let us say every 30 minutes,

until successful. These retries are also specified in the SMTP protocol.

SMTP shares a lot of similarities with HTTP. Both rely on a server-client architecture,

and reliable network connections between both hosts. Both use headers as a way to agree

on their operations. The main difference is that HTTP is principally a pull protocol, where

the client requests the data it needs, and the server then sends this data. On the opposite,

SMTP is a push protocol: the client pushes its data to the server, and the server accepts it.

Our presentation would not be complete if we did not cover the case of non web-based

emails. If Alice or Bob do not want to use a web-based email, they can use a mail user

agent, such as Outlook or Thunderbird. The advantage of mail user agents is that they

work on one’s own end-host, and hence are more reactive to user inputs, and allow to work

offline. But this adds two new links in the email chain, between Alice’s mail user agent

and her mail server, and Bob’s mail server and his mail user agent. The case of Alice has

an easy solution. After all, she must be connected in any case when she wants to send an

email: hence, her mail user agent can act as an SMTP client and push her mail directly to

her mail server, which will forward it to Bob’s mail server4. If Bob’s mail server is not

available, Alice’s mail server will retry regularly to send the mail, following the protocol.

Hence, Alice can no go offline, and be confident in the fact that her mail will eventually

arrive at destination. If Alice’s mail server is not available, the case is more complicated.

But since she is a client for her mail server, she has a way to complain if her mail server is

not available, where as she cannot do anything if Bob’s mail server is unreachable.

The last link of the chain, from Bob’s mail server to Bob’s mail user agent, is more

4One might try to remove one step and have Alice’s mail user agent push directly her mail on Bob’s mail
server, but this does not allow to identify Alice, and things become more complex if Bob’s server is temporary
not available.

7

complicated. SMTP cannot be used here: remember that SMTP is a push protocol, where

the destination server is assumed to be (nearly) always reachable, and Bob might sometimes

turn off his computer, have no wifi connection, etc. To solve this issue, new protocols,

called Post Office Protocol (POP3) and Internet Mail Access Protocol (IMAP), have been

developed. POP3 is the simplest: it is a pull protocol, with a client-server architecture. The

mail user agent runs the client side, and asks for the data (i.e. the mail list and mail contents)

from the POP3 server side, which runs on the mail server. The detailed design of POP3 is

fairly similar to HTTP. IMAP is slightly more complex, because it is able to synchronize

the mail user agent side and the web server side, and allows mails to be stored in folders on

the server side. It acts both as a pull and push protocol in that manner.

To summarize this part, the network requirements to run an email application are again:

1. A naming functionality, enabling one to identify the mail server for any email address;

2. A transport functionality, which allows messages to be sent from one node to another

node;

3. A reliability-checking functionality, which ensures that any message sent was not

altered during its journey in the network;

4. A delivery-checking mechanism, which notifies whether the message arrived at des-

tination.

To understand in fact the real first requirement, we must signal here that a specific appli-

cation, called Domain Name System (DNS) has been developed and deployed on the whole

Internet. The purpose of DNS is to keep and publish lists of human readable host names,

such as en.wikipedia.org, and the corresponding more binary IP addresses. Hence, when

Alice wants to consult a web page on en.wikipedia.org, Alice will type the URL in her

favorite browser, and the browser will then send a DNS request to know the IP address

corresponding to the specified host. After the DNS server answers, the browser can then

send its HTTP request to the en.wikipedia.org HTTP server, specifying to the network the

correct IP address. Similarly, DNS keeps track of mail domains and their associated mail

servers. In our previous example, when Alice’s Gmail mail client wants to forward Alice’s

mail to Bob’s Yahoo mail server, it will ask a DNS server about which node is responsible

for @yahoo.com mails, and get the address of Yahoo mail server. Hence, the first require-

ment now becomes “A naming functionality, which ensures that there is only one node with

a given name”, similarly to the HTTP requirement.

Peer-to-peer file sharing This is maybe the most debated application of the Internet, for

legal copyright reasons. However, from a technical measurement point of view, one cannot

dismiss peer-to-peer (P2P) file sharing applications, as they are responsible for a significant

part of today’s traffic [BDF+09, MFPA09].

There is no single protocol or application for P2P file sharing: many different ap-

proaches have been used by different programs. However, from Napster to Kazaa to the

8

currently prevailing BitTorrent, any P2P file sharing system relies on the same few princi-

ples. Any P2P application is by definition a distributed application, where the same code

runs on most end-hosts. The fact that all hosts belonging to the network run the same code,

and hence are “equal” or “peers” is indeed the origin of the name “peer-to-peer”.

Assume, for example, that Alice wants to download the song Yesterday by The Beatles.

Alice launches her P2P client, and starts searching for the song. Her client contacts the

index of the peer-to-peer system5, and simultaneously, asks for peers with the Yesterday

song and publishes on the index the list of files that Alice can share. The index answers

with a list of peers that Alice’s client can contact, including Bob’s peer-to-peer client, and

Alice’s client can then start to ask Bob’s client for the song. This request for the song is

then similar to the HTTP case and many other pull protocols: Alice’s client wants a specific

object, knows where this object is hosted, and contacts that host directly. In fact, many

peer-to-peer systems use the HTTP protocol for the download of files. Simultaneously,

Carla might be searching for Hello, Dolly by Louis Armstrong, and Alice indicated earlier

that she made that file available for download. Carla’s client will then contact Alice’s client,

and ask for the file. Alice’s client will then simultaneously act as a client downloading

from Bob’s host and as a server, delivering an object at Carla’s client request. When Alice

decides to switch her computer off, her P2P client will inform the index, and Carla’s client

will ask another host with Hello, Dolly to send the remaining part of the file.

There are many more details that would need to be specified for the peer-to-peer system

to be complete. In particular, the implementation of the index and the request and answer

templates must be fully specified. The number of peers one client might contact for the

download, as well as the choice of these peers can be the object of optimization. However,

any peer-to-peer file sharing system will rely on these three principles:

1. Maintain and use a (centralized or decentralized) index for localizing the content of

the system;

2. Peers contact directly other peers in order to download the files they are interested in;

3. Reciprocally, peers answer to other peers’ requests for file download, and act hence

as servers.

The main advantage of peer-to-peer systems is their scalability. The more peers there are

in the system, the more requests are made, but simultaneously, the more hosts can answer

these requests. Both numbers grow at the same rate. This means that, outside an eventual

centralized index, there is no bottleneck in the system, and the performance should be the

same with a thousand members or a million members. At the opposite, the world wide web

architecture is not scalable: a single (or a few) hosts have to answer all requests about a web

5We are voluntarily not precise here: the index can be either a centralized index on a server, or a fully-
distributed index on the peers, which Alice’s client can access thanks to a few peers it knows, or some hybrid
solution. Different peer-to-peer systems have used different solutions, but these make very little difference to
the network requirements.

9

site. If the web server is not quick enough, requests will have to queue before being served,

or can be lost.

The network requirements here are once again identical to the web and email cases: the

network needs to be able to name hosts, transport messages between any pair of hosts, and

ensure these messages are delivered and not altered.

Live streaming It is possible today to listen to radio broadcasts or watch TV on the In-

ternet. Although the current quality is not as high as one can get with classical radio spec-

trum or dedicated cable transmission, Internet based radio and television do not require a

heavy infrastructure to broadcast. Additionally, because radio or television on the Internet

are broadcast at the request of users, there is (nearly) no limit to the number of available

channels, whereas the radio spectrum is limited, and hence can support a finite number of

channels. Finally, as the Internet is deployed all over the world today, it allows anyone to

access his favorite broadcast from anywhere.

There are many different protocols for live streaming, suited to different cases. Some are

used for radio or television on the Internet, others are more dedicated to phone on Internet

systems, such as Skype, and some have been designed for audio or video conferences.

We will present here only, and briefly, the Real-time Transfer Protocol (RTP) [HFGC98,

SCFJ03], but other protocols are similar. As its name suggests, RTP is a real-time protocol,

and this will lead to significant differences for network requirements compared to the three

previous cases we studied.

The RTP protocol is designed to work in pair with the Real-time Transfer Control Pro-

tocol (RTCP). In short, RTP is responsible for the transfer of the media content, whereas

RTCP takes charge of the control of the broadcast, i.e. the specification of requests, quality

feedback and similar details. The RTCP protocol relies on a reliable exchange of messages,

in a close way to previous protocols.

Live streaming starts with a digital copy of the media broadcast. This digital real-time

encoding step is not specified by the protocol itself, and any encoding / decoding scheme

can be used, as long as the broadcasting source and the final user agree on it. Once a new

“chunk” (we will call these chunks frames) of the broadcast is available, the source will

add a header that specifies when to play this chunk and append a sequence number, then

send it to the source. The sequence number is increased by one for each frame, and will

allow the destination to reorder the frames if needed, and detect lost frames. Lost frames

will not be sent again, as they would possibly arrive too late, but intelligent software try

to minimize as much as possible the impact of such losses. The timestamp in the header

allows the destination to replay the frames at the correct speed.

Taking a look at what is required for the network here, one can list:

1. A naming functionality, which allows to designate uniquely hosts;

2. A transport functionality, which carries messages between any pair of hosts;

10

3. A low loss rate between the source and the destination;

4. Ideally, a bound (or at default, a low variation) on the delay between the hosts;

5. A low delay between hosts.

We can see here the impact of real-time on the design: the fact that one has no time

for retransmission makes reliability-checking and delivery-checking functionalities useless.

On the other side, one must ensure or hope that enough messages will go through for the

broadcast to be correctly decoded, and that the message will arrive in time.

Postal network

We will present here another network, and three among its potential applications. The

postal network is composed of the union of all postal companies or administrations all over

the world. The vertices of this network are the letter boxes, the post boxes, as well as

any internal center for grouping, sorting, dispatching mails. The edges are the rounds of

postmen and the exchanges between different centers.

Bank statement monthly sending Banks often propose6 a free bank statement each

month. Internal procedures allow the bank to establish these bank statements. The question

then arises about how to make them available to the client. Several solution are of course

possible, including Internet access or email for electronic statements, or letting the client

fetch the statement from his local bank.

A common if not universal solution is to send these statements directly to the client

home using postal mail. Every account holder has some postal address, even if he has no

regular Internet access, and many people still prefer to store paper-based archives rather

than electronic archives.

What is needed for such an application of postal networks to be possible ? First, the

communication must be asynchronous, i.e. it must not require the client to be available

personally to take delivery of the statement. The sending happens at regular times, but as

for most push protocols, these are not controlled by the user, and most people have a regular

activity during working hours, such as a job or studies. Second, the bank must be able to

send each report privately to the correct client, hence needs to be able to name precisely and

uniquely each client. Third, the network delays must be reasonably low compared to the

monthly frequency of sending. Finally, the network must be able to transport the message

at a sufficiently low cost for this solution to be economically feasible.

We did not put the delivery-control functionality as a requirement here, because the

client knows that he is to be sent a bank statement, and can ask for another one if needed.

6At least in France, by law, it must be proposed for free to any client.

11

Summoning to appear in court Courts conduct trials, as they should. The norm in

democracy is for the defendant to attend the trial, in order to be able to defend himself.

If for some reason, he is already in custody, the court can make sure that he will be there.

However, in many cases, the defendant is not in custody before the trial, and the court must

inform him of the date and place of the trial, and eventually even that he has been brought

suit.

This expresses the need for the court to be able to send a summoning message to precise

people. Let us list the requirement for a network transporting such messages:

1. It needs to uniquely identify and name any human being in the country;

2. It must keep the message private, to preserve the presumption of innocence;

3. It must be reliable, as one cannot be accused of non-appearance before the court if

the message was not received;

4. It must not assume that the addressee is available at the moment of delivery, since he

might not be aware that he will be delivered a summoning to appear in court;

5. It must be reasonably fast, so that the court can plan trials with a reasonable delay.

Urgent parcel periodic delivery The previous example of court summoning introduced

the constraint of reliability for postal networks. This last example will present the need for

speed in some cases. Consider the case of a hospital, which periodically requires new drugs.

Some of these drugs must be kept cool in a specific state, which necessitates an upper bound

on the time it spends in the network. As they are crucially needed for the good running of

the hospital, these deliveries cannot be significantly delayed: the hospital needs a minimum

amount of drugs per week. Contrary to the previous cases, the hospital is in fact requesting

these drugs, and they have significant value for it: it is hence possible for it to make sure

that someone is available for reception either permanently or at specific delivery times.

The case of hospital drugs deliveries might seem really restricted. It however appears

(slightly modified) in many other fresh-product trading situations. The list of functionalities

required from the network is as follows:

1. A naming functionality, allowing to designate uniquely the addressee of the message;

2. A transport functionality, which carries messages between any pair of hosts;

3. Ideally a bounded low delay, between the source and the destination;

4. A guaranteed transport capacity, which ensures that enough deliveries can be made

per unit of time to meet the required (daily or weekly) demand on drugs. One do

not only need to deliver drugs, but also to deliver reliably enough drugs for the good

running of the hospital.

12

Social networks

We take here a last example of network and applications that can be run on it. Social

networks have already been presented in example 1.1.1, and we will consider them here

with the specific incarnation of Facebook in mind. Recall here that we consider only the

social network of Facebook profiles, and not the specific Facebook Internet application,

based on HTTP exchange between profile owner and the Facebook web server.

Social networks in general allow two main applications: private message exchange, and

public opinion or news release. Private message can of course be destined to a direct friend.

However, the power of some social networks is that one can ask friends to forward a mes-

sage (for example, a request for favor), or to present the sender to the next friend in the path.

Since these forwarded messages or presentations come from personal acquaintances, they

are often better received than when they come from an unknown person. Private messages

can of course include direct requests for favor, but also opinions and requests for advice

about some project in a professional network, reform proposition, personal application or

government composition in political networks. A public opinion or a news release corre-

sponds to cases where one wants everybody, in the long term, to know that one has moved

to another city, had a child, or is looking for a job opportunity, or expresses a global opinion

on a subject that affects many people. Whilst this is mostly not urgent, any acquaintance

can access the information, and is free to forward it.

In the Facebook website, private messages are called, well, private messages, and are

basically similar to web-based emails. Public opinion or news releases are a lot more de-

veloped. All the following actions fall into that category:

• personal status update: Facebook personal status usually indicates the current mood

of the profile owner;

• personal information update, such as email, city, hobbies or job;

• public comment, on one’s profile wall: a profile wall is a place where every friend

of this profile can write public comments, which can then be consulted by any other

friend of this profile. It is often used for some casual group discussion, or comments

about the personal status updates.

We have here two applications. One is point-to-point, i.e. from a single source to a

single destination, and requires a non-obvious task of addressing and routing to reach the

intended destination: one needs to be aware of who knows who. It also requires a reasonable

reliability in the message forwards, or a delivery-checking mechanism (which can be just

a simple acknowledgment). The other one is point-to-multipoint, i.e. has multiple (here

anyone who is interested in the message) destination. It does not require fast or reliable

transmission, and low-cost opportunistic transmission seems ideal for it.

13

Elastic and streaming applications

Most of the applications we have presented have no delay or bandwidth constraints. They

can work with and adapt to low bandwidth. More is always better, but emails can still be

used if they need one hour to be sent, and in principle (outside the human user comfort),

nothing prevents the world wide web usage if one hour is needed to display a web page. We

will call such applications elastic, because their bandwidth allocation can grow or shrink.

Elastic applications have this interesting particularity that they usually do not use the net-

work for a specific time, but for a specific number of messages. The time of connection

then depends on the bandwidth used by the application, and the higher the bandwidth is,

the shorter the time of connection is, and the faster the web page is displayed on the screen.

Most of the elastic applications use or prefer a reliable transfer protocol. These applica-

tions are based on the exchange of many messages: what could be considered as only one

network operation by the user (for example, the download of one single web page, or the

sending of one email to one addressee) often requires the exchange of several messages

between end-hosts. These messages are hence generated in a bursty non-fluid manner.

Some applications require a minimum bandwidth or a maximum latency to function:

this is the case of live streaming and urgent parcel delivery in the example we presented.

These constraints are usually originated by the real-time nature of the system: one cannot

delay the sending of a new message in case of insufficient bandwidth, and this messages

must arrive in time. A side-effect of these time and bandwidth constraints is that these

applications usually neither require nor use reliable transfer protocols, because they cannot

afford the time to resend lost messages. They rely on error-correcting codes to be able to

recover from the losses. Such applications will be called inelastic, bandwidth-sensitive or

streaming applications. Compared to elastic applications, streaming application are less

bursty: they also rely on the exchange of several messages, but these are generated on a

regular, almost periodic basis.

1.1.3 Functionalities of networks

We have seen in the previous section that several functionalities are required from the net-

work, in order to be able to run applications. We will here list the main functionalities. In

two examples of networks, we will provide additional insight on how these functionalities

are provided, which will be useful in section 1.1.4, where we will present mathematical

models of networks based (in part) on these functionalities.

There are five broad requirements stemming from applications for any communication

network:

1. An addressing functionality, which allows one to designate precisely the nodes of the

network;

2. A localizing and routing functionality, which determines a route from any node to

any address;

14

3. A transport functionality, which can carry messages over a network;

4. A reliability-checking functionality, which ensures that the message transmitted over

the network have not been altered;

5. A (non-mandatory) delivery-checking functionality, which ensures that the message

has been received, and raises an alert if needed.

One must add a sixth requirement, in order to keep a network operational:

6. A congestion-control functionality, which ensures that the network load does not in-

crease too much, and prevents network collapse.

Functionalities 3 and 4 are highly dependent on the specific network, or even on the

technology used for a specific link. Transportation over a link is not the same between a

post box and the local center and between the Paris city postal center and New-York city

postal center. The reliability-checking functionality usually involves either error-checking

codes (e.g. parity check bits), or a more materiel process such as a closed envelope. As it

is highly dependent on specific implementations, we will not cover details, and assume that

the network provides it.

In the specific case of packet-switching networks, including the Internet, the transport

functionality divides any message in little chunks, called packets. Small messages can be

a single packet, but large messages will be composed of many packets, possibly millions

of packets for large files of size in the order of giga-bytes. This allow to interleave packets

belonging different messages, and hence serve simultaneously several messages (with a

lower rate).

The congestion control functionality is critical to keep networks efficient. It’s aim is to

keep the loss rates low. As losses in communication networks are mostly due to temporary

buffer overflows7, a side effect of congestion control is to also decrease the network delays.

To understand the importance of this functionality, consider a heavily loaded network where

most routes have several links. If at each link, each packet has the same probability to be

dropped, this means that some packets will be lost close to their destination. If they already

went through a bottleneck, part of this precious limited capacity of the network will have

been lost to transport messages that do not reach their destination. The throughput of the

network can drop to low levels, because of these losses.

Congestion control is often implemented in two different ways. For elastic traffic, the

most common solution is rate control, i.e. every application is accepted and can send

traffic, but the rate at which it can send traffic is limited (either directly, or in an indirect

way). This works well with elastic traffic, which has by definition no bandwidth constraint.

On the other hand, streaming traffic is bandwidth sensitive, and it makes no sense to require

a bandwidth sensitive application to send messages at a lower rate than their minimal rate.

7This means that locally on a server, packets arrive suddenly and the number of packets to be stored before
being sent further on their route exceeds the storage capacity (called buffer): the exceeding packets are then
dropped.

15

Hence, the usual solution is admission control, i.e. new applications are refused access to

the network when they would induce overload. In phone networks, this corresponds to the

message “All circuits are currently busy. Please try again in a few moments.”

The other functionalities are covered in the following examples:

Example 1.1.2 (Postal network): The addressing functionality of this network is easy to

identify. It’s the postal addresses, which identifies a unique box.

The localization and routing is also quite natural. Postal addresses are (partially) recur-

sive: they include the country, which is unique, and cover a small and (usually) connected

part of the world. The state (or French departement, etc.) is then the next division, again

in small and (usually) connected parts. Cities often come next, once again division is in to

smaller and connected sets. Most systems then use different post codes for smaller areas,

and finally the street, the number and the name for the precise letter box. This hierarchical

addressing leads to a natural easy solution for routing. To make it more concrete, consider

a letter posted from somewhere in Los Angeles, California, USA, to somewhere in Mar-

seille, in France. Starting from the first post box, the next node is automatically the local

grouping and sorting center. This center will (usually, detailed organization differs between

companies) determine whether the letter is to be sent within the same city or not. If this is

the case, the letter is then forwarded to the right part of the city. Here, this is not the case,

hence it will be forwarded to the state postal center (which might in fact be the same). In

the state center, the letter will then be sent to some “foreign outgoing center”, for letters to

be sent abroad. The next node is then some French incoming center, which receives letters

from abroad (likely in Paris). The Parisian center will then realize that the destination is

in France, and forward the letter to the department Bouches-du-Rhône center. This center

will then use the detailed post code and forward the letter to the post office closest to the

destination, where it will be sorted and handed to the postman who will put it in the correct

letter box. To generalize this example, one can divide the postal network into layers: post

boxes and letter boxes belongs to the layer 0. The local post offices, grouping letters from

or to a small area of the city are the layer 1, and cities centers, which centralize everything

leaving or entering a city are layer 2, and so forth. Edges between nodes occur only between

two nodes of neighboring layers, or in the same layer8. Usually, one node would have only

one (or a very few) links with nodes of higher layers (this is the hierarchical part), a few

links with nodes of the same layer, and lots of links with nodes of lower layer. Each node

then forwards a letter to:

1. one of its children nodes (a node from a lower layer), if the destination belongs to the

area covered by that node;

2. a peer node (a node from the same layer), if the destination belongs to the area covered

by that node;

8In fact, if two companies have a different number of layers, this would be true only if we were numbering
from the highest layer. But we can assume without any loss of generality that all companies have the same
number of layers.

16

3. its parent node (or one of its parent nodes, depending on the country or state of the

destination), if the destination does not belong to its area, or to the area of any peering

node.

The hierarchical structure makes it easy to determine the cases 1 and 2, since one only needs

to read a specific part of the address.

Most letters have no explicit delivery-checking functionality. Whilst almost all letters

arrive correctly at destination, there is no guarantee that a typical letter is not lost, and no

“specific” warning if it is (but one may realize it because of the absence of an answer, or

during a discussion with the receiver). For important mails, there is a reliability-checking

option, which lets you know when the receiver actually received your letter: these are reg-

istered letters with recorded delivery.

Finally, there is no specific congestion-control mechanism in postal networks. However,

they can have only a finite number of letters entering the network each day: the post boxes

have a finite size, and they are emptied only a few times a day. Once a post box is full,

clients cannot post their letters, and hence the total load is bounded. To ensure that the

networks do not collapse, it is then enough to increase the capacity of the postal network

until it is higher than this upper bound9.

Example 1.1.3 (the Internet): The second example we take is our main focus: the Internet.

The addressing functionality of the Internet are the well-known Internet Protocol (IP) ad-

dresses. Each IP address is a succession of four eight-bits numbers10 separated by periods,

often written in decimal manner (hence the addresses like 125.84.3.247, where each number

is lower than 256). IP addresses are allocated by the Internet Assigned Numbers Author-

ity (IANA), usually in “blocks” to the Regional Internet Registries (RIR), which further

allocate lower blocks to Internet Service Providers (ISP) and other entities. Hence, for ex-

ample, all IP addresses whose first group of 8 bits is 41, 154, 196 or 197 are allocated to the

African Regional Internet Registry (the African Network Information Center, or AfriNIC),

which will further allocate it in smaller blocks (usually blocks of 1024 IP addresses, which

will share the same prefix of 22 bits) to African ISPs. Whilst this is not an absolute require-

ment, ISPs tend to also allocate their IP addresses to their end-users following a hierarchical

pattern.

This hierarchical addressing leads to the same natural localizing and routing techniques,

which are also part of the Internet Protocol, as in postal networks. Looking at the first 8 bits

of the IP address is enough to localize the RIR managing this address. Looking at the

next 14 bits (for the AfriNIC case, the number might change for other RIRs) allows one to

determine the ISPs providing this IP address. Similarly, these prefixes allow ISPs to forward

9In practice, it is likely that post companies only set their capacity in order to match the empirical load
observed on busy days. GSM networks, which are in a similar situation (antennas can serve a finite number of
calls simultaneously), serve most calls during the year. However, they are known to collapse at midnight for
New Year, because the load is exceptionally high at this time.

10For the sake of simplicity, we consider only IPv4 addresses. The details of IP protocol are far beyond the
scope of this thesis.

17

an IP packet to the correct node, depending on whether the prefix indicates they belong in

the area they cover or not. A property of this routing scheme is that the sender is not aware

of the route that its packets will follow. At each hop, the router locally decide what the

next hop of the packet will be, based on the single destination address (which is stored in

the packet header) and its routing table (which is stored on the router, and is independent

of the incoming packets). This allow to limit strongly the need of information exchanges

(a local end-user computer needs very little routing information, for example, since most

packets will go to the contracting ISP). A second consequence is that the servers do not

need to know to which message a packet belongs, they do not need to maintain “a state” of

the connections, but only a routing table.

The Internet has two main “transport” protocols, whose main difference is their reliabil-

ity. Transmission Control Protocol (TCP) is a relatively slow protocol, where the destination

acknowledges each received packet to the source. In case of absence of acknowledgement,

the source can resend the packet to the destination, hence ensuring a reliable transmission.

It is used mostly for elastic traffic, where there is no prerequisite rate. User Data Protocol

(UDP), on the other side, sends packets, and does not care (or verify) whether the destina-

tion received them. Its use consists mainly in real-time streaming traffic.

1.1.4 Abstraction of networks

From managing networks to provisioning new links to designing new protocols to trou-

bleshooting networks, it is useful to have key insights of what happens in a network. It is

possible to (re)play step by step the sequence of events in a lab experience with a real net-

work. However, this solution is not really practical, and any result will be strongly specific

to this particular network and traffic. There has hence been a strong effort to model both

networks and their traffic, in the hope of having reliable but general solutions or guidelines

for networks. This effort can be divided in two parts:

1. An effort to model networks, and in particular, routers behaviour. Most of the “in-

teresting” events in wired networks appear at the routers and switches11, and links

usually lead to constant delays and no loss. With a good network model, it is then

possible to simulate a network. The simulation of “big” networks requires plenty of

computation power and time, but this is easier to perform than real measurements;

2. An effort to have a probabilistic description of traffic, depending on a few parameters

and which has the same properties as real traffic. Full traces of traffic (i.e. the

sequence of messages, specified by their arrival time, source, destination, and size)

are difficult to measure with precision, and require lots of space to store, and are not

easy to manipulate. A quick number might give a rough idea here: Cisco’s CRS-1,

one of today’s Internet “best” routers, can scale up to 92Tb/s, or 11.5 terabytes per

11The distinction between routers and switches is beyond the scope of this dissertation. It is enough to know
that both can forward messages to their next node in the path, looking at their address in the message headers.
They just look at different kinds of address.

18

Discipline processor

Switching device
In
Out

In

In

In

In
Out

Out

Out

Out

Router

Linecard

Linecard
Linecard

Linecard

Linecard

Figure 1.1: A diagram of a router.

second (a byte is 8 bits); the maximal size of an Ethernet packet being 1500 bytes,

this means that this router can serve up to 7.6 billions of packet per second. It is

hence useful to be able to characterize traffic with only a few parameters. Simulation

can then be handled by sampling random traffic, and this allows also to tune the load

finely to see the impact of different parameters, instead of being limited to the (few)

cases of actual traffic measurement.

Router model

We will study here routers of the store & forward type, which are the majority of today’s

routers in the Internet. Other networks have of course different routers, and this model

might not be valid outside the Internet12. But the Internet is our main focus. As depicted

in figure 1.1, a router of the store & forward type is composed of mainly three different

elements: a switching fabric, controlled by a centralized scheduler, and linecards (also

called interfaces). Each linecard controls two links: one input and one output.

A typical packet will cross the router as follows. When it arrives at the input link of

a linecard, it is stored (hence the store part of store & forward) in the linecard’s memory

(called buffer). After the packet has fully left the input link and is stored in the buffer, its

destination address is looked up in the forwarding table, in order to determine to which

output link it must be forwarded. The packet is then stored in the First In First Out (FIFO)

queue corresponding to that output interface. When it reaches the head of this queue, it is

transmitted to the output linecard, possibly in different separated chunks (cells), where it is

reassembled and handed to the output link scheduler (that’s the forward part). It might then

experience some queueing time, and eventually is serialised without interruption onto the

output link. In the ’queueing’ terminology, the packet is said to be served at a rate equal to

the bandwidth of the output link, and the output process is said to be of fluid type, because

12In fact, it will not be valid for many different networks, such as the postal network.

19

packets flow out gradually, instead of leaving instantaneously.

The delay experienced by such a packet, defined as the difference between the time

when the last bit of the packet left the router and the time when the last bit of the packet

arrived in the router, can be decomposed in 6 parts:

1. the time needed to cross the input linecard;

2. the queueing delay in the input linecard queue, before being transmitted by the

switching fabric;

3. the time needed to cross the switching fabric;

4. the time needed to cross the output linecard;

5. the queueing delay at the output link;

6. the service time to be serialized at the output link.

Losses appear when a queue is full, and a new packet has to be stored in it: it is then dropped

by the server.

In practice, the delay structure can be simplified. First, the switching fabric is usually (at

least for core network routers) overprovisioned, meaning that there is no queueing time (nor

loss) at the input linecard queue. Second, the first, third and fourth components of the total

delay will depend only on the specific implementation of the switching fabric and linecards,

and on the size of the packet. They can hence be merged in a single router-crossing time,

which is a function of the router, input and output linecards, and packet size.

In [HVPD04], Hohn et al. monitored all the traffic going through a core network router

for 13 hours, and got detailed delay statistics. They proposed a further simplified model,

which was shown in their case to match the actual delay for packets. To the best of our

knowledge, very few detailed studies have been conducted that validate or refute this model.

In [CFS08], Chertov et al. proposed a more complete model for routers. However, they

stated that their model performs better only for routers that are (nearly) overloaded, at the

edge on the Internet. We will keep the simplified model of Hohn and his coauthors, which

is as follows:

1. Fully arrived packets at the input linecard are instantaneously transported to the out-

put linecard; hence, in particular, packets stemming from different links but going to

the same output link are multiplexed according to their arrival time;

2. Packets at the linecard first experience a minimum crossing delay ∆j(S), depending

on their size S and the output linecard j. This delay represents the time needed for a

packet to cross the input line card, the switching fabric and output line card, before

finally reaching the output queue. Packets cannot overtake each other at this stage,

hence they might be blocked behind another packet;

20

In
In
In
In
In

Out

(a)
(b)

(c)
Δ(S)

Figure 1.2: A diagram of a path in a simplified router: a multiplexer (a), an internal mini-
mum delay (b) and an output queue (c).

3. Packets then join a fluid queue (see section 1.2 for a complete definition of queues),

where they wait before being serialized. The rate of service is µj and the service time

is proportional to the size of the packet, hence a packet of size S will require S
µj

time

to be serialized. Any order of service (called discipline) can be considered here, but

we will mostly stick to the First In First Out (FIFO) case, i.e. packets are served in

their order of arrival.

Hence, from the point of view of a single output link (i.e. ignoring all traffic that

does not exit the router through this link), the router can be modeled as in figure 1.2. In

[HVPD04], the authors plot ∆(S) as a function of the size S, for the specific case of the

router they monitored. The shape is roughly affine:∆(S) = a + bS, with a = 18.8µs and

b = 1.8125 [ns/bit]. This internal delay is hence (at least in that case) of the order of dozens

of microseconds: if the queuing delay or service time is larger than this order, it makes

sense to ignore this internal delay as a first approximation13.

Traffic model

It is difficult to exhibit a “good” traffic model: traffic varies highly between different points

in the networks (for example, there are many differences between the traffic on an ADSL

line linking the client ADSL box to the DSLAM14 and the highly aggregated traffic on high-

speed links in the core Internet network). Moreover, traffic varies highly in time [BDF+09,

HcJS03]: bandwidth increases and new applications can have significant impact. Hence,

any traffic model will be valid only for a specific time span and at a specific set of network

locations. However, due to the crucial need of both understanding traffic characteristics

for better network management and of allowing easier simulation, a considerable effort

has been devoted to this issue in the last two decades. Most of this work models traffic

arrivals as a one-dimensional marked point process. This choice is natural: the traffic can

be characterized by the sequence of message arrival times, with a label being added to each

specifying the nature of this message (its source, destination, nature, size, etc.). This is

precisely what the marked point processes model is.

13For comparison, on a 1 Gbps link, the service time of a 1500 bytes packet is 12 µs. The links used on the
server in that experiment were had respective bandwidth of 150 Mbps, 600 Mbps and 2.4 Gbps.

14A DSLAM is the first router in ADSL access networks, making the connection between the ADSL line and
the “classical Internet IP” network.

21

Plain old telephone heritage: the Poisson assumption Teletraffic engineering and the-

ory started with the design and development of a circuit-based telephone service in the early

20th century. A communication required then a dedicated circuit, and blocked call events

occurred when it was not possible to book a circuit between the source and the destination

of the call.

In order to better provision and manage these networks, Agner K. Erlang studied em-

pirical traffic traces. Erlang found that call arrivals were correctly modeled by a non-

homogeneous Poisson process. Retrospectively, this could be expected: new calls are gen-

erated by a large set of users, in a cross-user independent manner. If the set of users is large

enough for self-dependence to be negligible, there is nearly no auto-correlation in the arrival

process at most time scales, and this is a characteristic feature of Poisson point processes.

Additionnally, Poisson processes, due to the independence of points or so-called memo-

ryless property, are particularly tractable for a mathematical analysis. Hence, Poissonian

models for call arrivals are still considered as valid today and used in telephonic networks

models, and lead to accurate results [WP98].

Self-similarity and long range dependence: the fall of Poisson Due to this early work

and success, Poisson processes have been an obvious choice for traffic model when the

Internet and other packet-switching networks have been designed (see [Kle75]). However,

contrary to telephonic networks, the actual performance of these new networks has been

repeatedly below the model expectation [ENW96]. In [LTWW94] Leland et al. showed

that Ethernet15 traffic and packet arrivals exhibited self-similar property16 and in [PF95],

Paxson and his coauthors found a long range dependence17 in traffic. These properties are

incompatible with simple Poisson point process. This was considered as “The failure of

Poisson modeling”, and was the starting point of intensive research, both to understand why

Internet traffic had these properties, and to find better traffic models.

Flows, heavy tails, mice and elephants A brief return to the physical meaning of traf-

fic is now useful. How do the Internet and other packet-switching networks work ? Old

telephonic networks were circuit based: a physical circuit (with relays) is booked between

both end-hosts for each call, and physical coding-decoding happens at end-hosts. As we

have seen in section 1.1.3, packet-switching networks have a different approach and divide

messages into (smaller) packets. There are hence two levels of viewpoints for the network

15Without going into details, Ethernet is one of the main technologies for the transport of messages and the
share of the media on the physical layer. This self-similar property is not particular to Ethernet, and was found
on many other traces in the following years.

16Without going into details which are of little relevance for this dissertation, a random process is said
self-similar if it is similar to a part of itself (in a fractal-like way). In mathematical notations, a process Xn is
self-similar if for all m and k, 1

mH (Xkm+1+. . .+Xkm+m) has the same distribution as X for some parameter
H . In contrast to self-similarity, Poisson processes are known to “smooth” when one zooms out.

17Unformally, a process X(t) is said to have a long-range dependence if the value of X(t) has a “significant
impact” in the future for a long time. Formally, long-range dependence processes are characterized with an
autocorrelation function IE [X(t)X(t+ τ)]−IE [X(t)] IE [X(t+ τ)] whose decrease is slower than exponential
in τ .

22

traffic: the packet-level makes sense for the routers and links, which are aware only of

packets, and ignore to which “message” they belong. But from the application (or end-host)

point of view, packets do not really matter, and the whole message must be considered. For

better understanding, it is hence useful to try to classify together packets which belong to

the same message, although the network is unaware of it. That is what the notion of flow

does. There is no single definition of flows, but we will use here a common definition in the

literature: a flow is the set of packets which share common source address and port, com-

mon destination address and port, and common transport protocol (TCP or UDP), with no

interarrival time greater than a threshold (usually, of the order of a dozen seconds).18 Our

definition is network-centric (it uses information that is available to any network router),

but it is useful to imagine flows as the set of many different packets forming the same

application message, although this is not strictly equivalent.

A crucial discovery was that Internet flows have a heavy-tailed19 size ([Pax94] for Tel-

net, NNTP, SMTP and FTP flows, [CB97] for HTTP flows). In [CB97], Crovella and

Bestravos found that Internet files size distribution is also heavy-tailed, which explains why

flow sizes have a heavy-tailed distribution. This is often referred to as the elephant and mice

phenomenon, meaning that most flows are really short (mice), but most of traffic comes from

very few large flows (elephants).

In fact, phone calls most likely also have no exponentially distributed length. How-

ever, it has been shown ([Tak62]) that the actual performence (e.g. the blocking probability)

of plain old telephone service (or circuit-based networks) is insensitive to the precise dis-

tribution of call durations. Only their mean matters. The same results does not hold for

packet-switching networks (e.g. Internet), where these few huge flows will have a long

range impact on the system. In opposition to the previously assumed exponential distribu-

tion with a nice memoryless property, this was empirically explaining why Internet traffic

was not Poisson. Indeed, it can be shown that the superposition of many independent ON-

OFF sources20 with a heavy-tailed ON distribution leads to self-similar long range depen-

dent traffic [WTSW97, CB97, BMSV00]. The ON-OFF source model refers here to the

fact that an end-host sends (or receives) a (set of) message, then is idle for some time, until

the next connection is opened. ON periods corresponds to the transmission periods, with a

message fragmented in several packets.

18RFC 2722 defines traffic flow as "an artificial logical equivalent to a call or connection." RFC 3697 defines
traffic flow as "a sequence of packets sent from a particular source to a particular unicast, anycast, or multicast
destination that the source desires to label as a flow. A flow could consist of all packets in a specific transport
connection or a media stream." Note that our definition is in fact similar but not equivalent to the previous
definitions, nor to the definition of flows as the set of packets belonging to the same message: one client could
download several web pages or files simultaneously from the same server.

19A random variable X is said heavy-tail if the probability of having arbitrarily large values decreases slowly.
Formally, X is heavy-tail if P(X > τ) is a slower than exponential decreasing function for large τ .

20An ON-OFF source is a source that alternates between constant rate emission (ON periods) and silence
(OFF periods). The simplest model assumes that the ON periods are independent and identically distributed
(i.i.d.), that OFF periods are also i.i.d. (with a potentially different distribution), and that ON and OFF periods
are independent.

23

Looking for Poissonianity: human user and sessions Even if the packet arrivals are not

distributed according to a Poisson process, there are still two reasons to look for some Pois-

sonianity in the arrival process. First, Poisson processes and their variants are remarkably

amenable from a mathematical point of view, and hence provide of a natural first choice

for a model. Second, and more importantly, Internet traffic is in fine generated by human

impulses, and the human impulses are often by nature independent [PSHC+06]. Hence, the

question is more to find the right scale for Poissonian impulses to appear.

Poisson clusters processes (also called Bartlett-Lewis processes) are a natural choice

when looking for Poissonianity in a point process which is not Poisson. They consist of

seeds, distributed according to a Poisson process. Each seed then expands into a cluster

point process, which can have any independent and identically distributed (i.i.d.) distribu-

tion: a classic choice for these in-cluster processes is to take a renewal process with an

independent random number of points. In [HVA03], Hohn et al. showed that interaction

between flows is not significant. They hence proposed a model with a Poisson flow ar-

rival process, a Gamma renewal in-flow packet process and a heavy-tailed per flow number

of packet distribution. In particular, they exhibited a bi-scaling phenomenon. At small

(sub-second) time scale, the packet arrival process is nearly Poissonian (see [KMFB04]),

has little correlation (which is due to in-flow structure caused by feedback of TCP (see

[JD05])), and is mostly characterized by the number of competing flows and their rates. At

large time scale, a long range dependence effect is prevailing, originated by the heavy-tail

nature of the per flow packet number distribution. This model was validated with real data

in [HVY05], and its properties have been explored in [FGAMS06].

This model, whilst natural and fitting the data, failed to explain why flow arrivals also

exhibit a long range dependence [RCD+09, PSHC+06]. A first physical reason can be

proposed to explain why flows are not the right time scale for Poissonianity: first, files are

often transferred in batches21, leading to several simultaneous or close flows. In fact, flows

are not generated only by human impulses, and Poisson processes fail to reproduce this fact.

However, in [PSHC+06], it was shown that even web document downloads (i.e. all the flow

exchanges needed for a single webpage), which are in fine generated by human impulses, do

not follow a Poisson process. There is a human correlation between web page requests: web

surfers often request several web pages (or files) simultaneously, and then are idle (from the

network point of view) during the time needed to read (or analyze) these documents. The

correct time scale to look for Poissonianity is in fact the user session. Similar to how flows

group packets, a session is the set of flows initiated by the same user with inter-arrival time

lower than a threshold. Park et al. propose in [PSHC+06] a threshold between 12s and 30s.

Three different time scales, and a basic approximation From these works, we must

distinguish three different time scales. At a large time scale, a long range effect is prevailing,

paired with the self-similarity property. The real traffic does not smooth out as fast as

21To name a few reasons: protocols often rely on exchange of several messages, and webpages typically
consist of more than one object.

24

Poisson traffic when the time scale is increased. At the opposite, on a very small time scale,

the traffic is also not Poisson. Real traffic is highly bursty at a very small time scale, and

Poisson models are not adapted22. In an intermediate range, from dozens of milliseconds to

a few minutes, it seems that the traffic is somehow more similar to Poisson. This timescale is

large enough for the precise synchronisation of packet arrivals and their corresponding size

to be of little effect. On the other side, most of the traffic at this time scale is characterized

by the number of competiting flows (or messages) being exchanged at that time, and the

size of these flows has little impact at this time scale. In other words, the total number of

mice and elephants is more important than the size (i.e. mice or elephant specie) of each

animal.

Similarly, the addressing, localizing and routing functionalities of the network need in

practice the exchange of messages between different network elements, which will interfer

with data packets. But on this intermediate time scale, their effect can nearly be ignored,

and we will assume that they are provided in a transparent manner.

Finally, although we are aware of no recent work on this subject, the growth of streaming

applications can be imagined to increase the Poisson nature of the traffic. Whilst the heavy-

tail size distribution is valid for both type of traffic, streaming applications tend to send their

message in a more fluid regular way. Elastic applications mostly use TCP, which is in some

aspect “aggressive”, increasing repetitively its sending rate until it experiences losses, and

creating hence more variation in the traffic rate.

1.2 Queueing theory: a microscopic model for networks
Queueing theory is the mathematical study of waiting lines, or queues, which have to be

understood as classic “real-life” queues that one experiences everyday, when waiting at

the medical office, in any shop or at a taxi station (at least in certain countries). It aims

at deriving and computing performance metrics of queueing systems, such as the average

waiting time in the queue, the expected number of customers when a new customer arrives,

the stability of the system or the distribution of the total time spent in the system. Typical

incarnations of queueing systems include obviously plain old telephone service and packet-

switching networks (such as the Internet), but also healthcare emergency rooms, factories

or call-centers. Since the pioneering work of Erlang in 1909 [Erl09], it has been an active

research field, with numerous results and publications. We do not aim here at covering it

exhaustively: this would require a whole book, or even more. However, we present here

22There is no consensus for this effect, but several origins have been proposed. First, at a packet level, the
packet arrival times are obviously not independent of their size: for example, two packets can not be closer
than the service time of the first packet. Another proposition is the rate control mechanism of TCP, which
induces a self-clocking mechanism. TCP flows sharing the same bottleneck tend to share the loss periods, and
hence decrease their rate in a correlated manner and then slowly increase them. Finally, a third candidate is
the merging at the router of different link traffic flows, and the discrete nature of packet sizes. Link traffic is
composed of back-to-back packets period, followed by an idle period. The precise effect of merging several
such flows at a router is not well understood, but it is obvious that because packets size distribution is not
exponential but trimodal (with many packets at the maximum size, many at the minimum size, and some in a
intermediate range around 600 bytes), these back-to-back and idle period are far from Poisson.

25

briefly the key results that are needed in this dissertation. Queueing theory is of particular

interest for us because it models the behaviour of the system at the scale of customers (we

will also use interchangeably the terms of tasks, jobs or packets). This scale is natural when

dealing with packet-switching networks such as the Internet. We refer to [Kle75, BB03,

Kel79] for a more complete survey.

1.2.1 A single queue

The simplest queueing system is a single queue.

Definition 1.2.1 (Queue). A queue is defined by the following elements:

• A packet arrival process, i.e. an increasing sequence (tn)n∈Z where tn denotes the

arrival time of the nth customer;

• A service requirement distribution, i.e. a sequence of non-negative real values

(σn)n∈Z, where σn is the service time required by the nth customer before leaving

the queue. Alternatively, the service is specified in size (and not time), and the ca-

pacity or speed of the server is added. The service time of a packet is then its size

divided by the speed of the server;

• A service discipline, determining which packet(s) of the queue is (are) served when

there are several packets in the queue;

• A buffer size, indicated the maximum number of packets (in number, or sometimes

in total size) that can be stored in the queue, before additional packets are lost. When

this is not specified, it is assumed to be infinite, i.e. no packet is lost by the queue;

• A number of servers, indicating how many packets can be served simultaneously and

independently; this is usually assumed to be 1, unless otherwise specified.

Many disciplines can be imagined, and the proper definition of a discipline is somewhat

technical. However, many usual disciplines can be easily understood.

Example 1.2.1 (Common disciplines): We will list here the most common disciplines:

1. First In First Out (FIFO) discipline: the server serves its customers in their order of

arrival. This is the most common discipline in human waiting queues (at shops, taxi

stations, etc.). This is also the most common discipline in Internet routers, and is

assumed by default unless otherwise specified;

2. Last In First Out (LIFO) discipline: when a packet leaves, the last packet to have

arrived is served. This happens in the case of “stacks” (e.g. for washing-up or for

bills): the last element is on the top of the stack, and is the first one the be dealt with;

3. Processor Sharing (PS) discipline: the server capacity is evenly split among all the

customers, i.e. for all the customers remaining, remaining services decrease at rate 1
n

when there are n customers in the queue;

26

4. Uniform Random discipline: the next customer is chosen uniformly at random among

the waiting customers;

5. Priority discipline: the customers are divided in two (or more) different classes. When

a new customer is to be served, it is chosen first in the highest priority class. If no

packet belongs to the high priority class, then a customer of a lower priority class can

be served. This can be combined with any in-class priority discipline. Emergency

medical services apply a similar discipline, with classes depending on the degree of

emergency of each patient;

6. Preemptive Priority discipline: this is the same as above, but a higher priority cus-

tomer can interrupt the service of a lower priority customer23. Hence, low priority

customers can be served only when there is no high priority customer. In case of

interruption, it must be specified whether the interrupted service is resumed later (i.e.

no service is lost), or started afresh (i.e. the interrupted service is lost);

7. Shortest Remaining Processing Time (SRPT) discipline: this is a preemptive disci-

pline which serves the packet with the shortest remaining service time. When a new

packet arrives, it is served immediately if the server is idle or if the current packet has

a longer remaining service time. In the later case, the previously served packet is put

back at the head of the queue (its remaining service time is obviously shorter than any

other packet of the queue) , and its service will be resumed later. If the arriving packet

has a longer service time than what remains for the packet being currently served, the

new packet is put at the right place in the queue. This discipline is known to minimize

the mean waiting time per packet and the mean number of packets in the queue, but

is highly unfair for large packets.

We will call conservative any discipline which does not “lose” any service. This in-

cludes all non-preemptive disciplines, but also all preemptive disciplines which later resume

the interrupted service at the time of interruption (in contrast to fresh restart).

The Kendall notation, proposed by D. G. Kendall, allows for a compact description of

most queues. It reads as A/S/Ns/B/D, where A denotes the arrival process, S the service

requirements, Ns the number of servers, B the capacity of the system, or the maximum

number of customers allowed in the system including those in service, andD the discipline.

B and D are often not specified, and have then default value of ∞ and FIFO. The arrival

process is specified with the distribution of inter-arrival times. A few letters cover most

classical distribution:

• M denotes an exponential distribution;

• D denotes a deterministic distribution, i.e. a fixed value;

23Other preemptive disciplines obviously exists, such as preemptive LIFO discipline. We do not present them
here for simplicity.

27

• GI means any i.i.d. distribution;

• G covers any other case.

Hence, an M/M/1 queue denotes a queue with Poisson arrival process of intensity λ (the

interarrivals of a point process are exponentially i.i.d. if and only if the process is a Poisson

stream), exponentially distributed service times (of mean 1
µ), a single server and an infinite

buffer. The GI/G/K/K+2/PS queue is a queue with a renewal arrival process, any service

distribution, K servers, a buffer limited to only 2 packets and a processor-sharing discipline.

The next example presents a typical result of queueing theory. It was shown in 1917 by

Agner K. Erlang [Erl17], and is furthermore considered to be one of the very first queueing

theory results.

Example 1.2.2 (Erlang blocking formula): Consider an M/M/K/K queue, i.e. a queue

where customers arrive according to a Poisson point process of intensity λ and have i.i.d.

exponentially distributed service times of mean µ−1. Up to K customers can be served

simultaneously, but no customer can be queued. New customers arriving when all the K

servers are busy are rejected and lost forever. What is the proportion of rejected customers,

or equivalently, what is the probability for a new customer to be rejected?

This probability is called the blocking probability, and has interesting application in

industrial systems. Before presenting its proof, let us spend a few lines to explain why

this is an meaningful quantity to estimate. Erlang was an engineer and mathematician at the

Copenhagen Telephone Exchange. He had already shown that calls were initiated according

to a Poisson process, and that calls duration could be approximated with an exponential

random variable [Erl09]. In Plain Old Telephone Service, a call required booking a circuit

between both end points. If the service exchange has a capacity of K circuits, the blocking

probability is exactly the probability for a new call to be rejected because all circuits are

busy. Hence, this quantity is one measure of the performance of the telephone network, and

can be used to estimate the eventual gain in performance of increasing the service exchange

capacity.

Erlang established that the blocking probability PB is

PB =
ρK

K!∑K
i=0

ρi

i!

.

To prove this result, let N(t) denote the number of calls being served at time t. N(t) is

a birth-and-death process. The birth rate λi when the call population is i is:

λi =

{
λ if 0 ≤ i < K

0 if i = K
.

The death rate µi is µi = i× µ.

Indeed, just after a new arrival, the inter-arrival is distributed with an exponential distri-

bution of parameter λ. But due to the memoryless property of exponential distribution, this

28

is also the case when a call leaves the system. If the current population is K, this new call

will be rejected, and the birth rate is hence 0.

Similarly, at any time, the residual service time of any call is an exponential random

variable of parameter µ, thanks to the same memoryless property of exponential random

variables. The next departure happens at the minimum of the residual service times. As the

minimum of i i.i.d. exponential random variables of same parameter µ is an exponential

random variable of parameter i× µ, we get the death rates.

Denoting by ρ = λ
µ the load of the system and by π = (π0, π1, . . . , πK) the station-

ary distribution of the population N(t), we have from the detailed balance equations that

λπi−1 = iµπi, for 1 ≤ i ≤ K, and hence:

∀0 ≤ i ≤ K, πi =
ρi

i!
π0 .

By normalisation, we get that

πi =
ρi

i!∑K
j=0

ρj

j!

.

Calls arrives according to a Poisson process, and see the system at the equilibrium state.

They are blocked if the population is already K. Hence, the blocking probability is πK .

Erlang’s formula is a typical (and historical) example of the many fruits of queueing

theory. It is today still widely used, for example in the case of inventory stocks and lost

sales.

1.2.2 The M/M/1 queue

In this section, we will present succinctly a few results about the M/M/1 queue. Recall that

an M/M/1 queue is the queue with Poisson arrivals, i.i.d. exponential service times, 1 server,

an infinite buffer and a FIFO discipline. Throughout this section, λ will be the intensity of

the arrival process and µ the inverse of the mean service time.

Stability and steady-state population distribution The first result we establish is

whether the population of the queue diverges or converges to a steady-state distribution.

Proposition 1.2.2 (Stability and population distribution). Let N(t) denote the total popu-

lation of the queue at time t, and ρ = λ
µ its load. Then:

1. If ρ < 1, then N(t) admits a single state steady distribution;

2. If ρ ≥ 1, N(t) admits no steady state distribution.

Additionally, in the first case, the steady state distribution π will be:

πk = P (N(t) = k) = (1− ρ)ρk . (1.1)

29

Proof. Let Q denote any steady-state measure of N(t), and consider N(t) at the arrival

times. The inter-arrival time is an exponential random variable of parameter λ. Due to the

memoryless property of exponential distribution, the residual service time is also an expo-

nential random variable, of parameter µ. Similarly, at departure time, the next packet service

time is an exponential r.v. of parameter µ, and the time to next arrival is still exponentially

distributed with parameter λ (thanks to the same memoryless property).

Hence, N(t) is a birth and death process with birth (resp. death) rate λ (resp. µ), and

for all non-negative k, we have λQ(k) = µQ(k + 1). The following then holds:

∀k ≥ 0, Q(k) = ρkQ(0) . (1.2)

If there exists any steady-state distribution π, its mass is 1, and from (1.2), it satisfies

π0 ×
∑

k≥0

ρk = 1 .

When ρ ≥ 1, as the series
∑

k≥0 ρ
k diverges, there is no steady-state distribution. When

ρ < 1, we have
∑

k≥0 ρ
k = 1

1−ρ , and hence (1.1).

From (1.1), we can find that the mean number of customers in the queue is

N =
ρ

1− ρ =
λ

µ− λ . (1.3)

For birth-and-death processes, the global balance equations are equivalent to the de-

tailed balance equation, and hence, any stationary birth-and-death process, including the

M/M/1 queue when ρ < 1, is reversible. This leads to the following theorem:

Theorem 1.2.3. The departure of an M/M/1 queue form a Poisson point process of intensity

λ. Moreover, the state of the queue N(t) at time t is independent of the departure process

prior to time t.

Proof. Both parts are direct application of the reversibility of the M/M/1 queue. Indeed,

the departures in the forward process correspond to the arrivals in the reversed process.

They hence have the same distribution, which is by assumption a Poisson point process of

intensity λ. Similarly, the state at time t has the same distribution as the state of the reversed

process at time −t, and the departures prior to time t in the direct process correspond to

arrivals in the reversed process past time −t. It is enough to conclude by realizing that

in the reversed process, the state at time −t is obviously independent of arrivals past time

−t.

The departure process is the mixture of a Poisson process of intensity µ when the queue

is busy, and null when the queue is empty. Theorem 1.2.3 shows that despite this “bi-

scaling” nature, the output of the queue has the same shape as the input, when the latter is

Poisson. This will allows us to easily build networks of queues in section 1.2.3. The second

30

part might seem of little interest for the moment. It will however be crucial in section 1.2.3

to compute the steady-state distribution of such networks.

Continuous-time process and discrete-time chain Up to now, we have considered the

continuous-time Markov process N(t). It expresses which state the Markov process is in

at time t, and its steady state distribution expresses the fraction of time that the process

spends in any state. However, we might have a special interest in the queue at times when a

packet arrives, since these are the times which will determine what packets experiences. Is

the distribution identical ? Let(Nn)n∈N be the discrete time Markov chain where Nn is the

value of N(t) just before the arrival time of the nth packet. Because the arrival process is

Poisson, it verifies the Poisson Arrivals See Time Average (PASTA) rule, and the distribution

of the queue size Nn just before the nth packet arrives is also:

P(Nn = k) = (1− ρ)ρk .

Due to reversibility, the same holds for the Markov chain at times just after the departure of

a packet.

Finally, we must quickly mention that the embedded Markov chain of the process N(t)

does not have the same distribution. The embedded Markov chain of a continuous-time

Markov process is the Markov chain obtained by observing the process just after any jump.

Compared to the continuous-time process, it focuses only on the sequence of states, and

does not include any information about how much time the process spends in each state.

Its steady state distribution expresses fraction of the jumps which go into a specific state.

Because the holding time in a given state can depend on the state, this is not equivalent to

the continuous-time process. Here, when the jump is a departure, we have seen that station-

ary distribution after the jump is the same as the stationary continuous-time distribution.

However, when the jump is an arrival, we know that the distribution just before the arrival

is also identical to the continuous-time distribution. Hence, after the arrival, we do not have

the same distribution (e.g. there is no chance of having no customer in the system, since

one just arrived), and the embedded Markov chain does not have the same distribution.

Note that up to now, the results we have presented did not assume that the discipline was

FIFO. In fact, they hold for any conservative discipline independent of the service times.

The discipline will be important when we study the delay of individual packets.

Delay and waiting-time How long does a packet need to wait before being served? How

much time elapsed between its arrival and its departure from the queue? These questions

are natural when trying to predict the performance of a queue.

In this dissertation, we will call the waiting time the time spent by a packet in the queue

before its service start. The delay24 will be the total time spent in the queue, including the

24Other terms are also used in the literature. In particular, the delay is sometimes called system time or
sojourn time.

31

service time. Hence, the delay is equal to the waiting time plus the service time.

Using the previous result on the mean number of packets in the system, it is easy to

get the mean waiting time and delay of an M/M/1 queue. Indeed, the service times of

packets waiting to be served are i.i.d., with mean σ = 1
µ . Additionally, at any customer

arrival (or at any time), the remaining service time of the currently served packet has the

same distribution, thanks to the memoryless property of exponential distribution. Hence,

assuming from this point that the discipline is FIFO25, the mean waiting time W is:

W =
∞∑

k=0

P (k)× k × σ = N × σ =
ρ

µ− λ . (1.4)

To compute the mean delayD, we just need to add the service time of the packet, which

is independent of the number of packets in the queue at arrival time and the service times of

these packets. Hence, we also have that

D =W + σ =
1

(µ− λ) . (1.5)

Using the distribution of the queue size at packet arrivals, it is also possible to compute

the whole queuing time and delay distributions.

The probability density function (p.d.f.) fW (t) of the waiting time can be computed by

conditioning on the number of packets N(0−) in the queue before arrival. The waiting time

is either 0 if N(0−) = 0, or the sum of k i.i.d. exponential of parameter µ, i.e. a gamma

distribution random variable of parameters (k, µ) if N(0−) = k. Hence, we have:

fW (t) =
∞∑

k=0

fW
(
t|N(0−) = k

)
P
(
N(0−) = k

)

= (1− ρ)δ0(t) +
∞∑

k=1

µktk−1e−µt

Γ(k)
(1− ρ)ρk

= (1− ρ)δ0(t) + (1− ρ)e−µt
∞∑

k=1

λktk−1

(k − 1)!

= (1− ρ)δ0(t) + ρ(µ− λ)e−µt
∞∑

k=0

(λt)k

k!

fW (t) = (1− ρ)δ0(t) + ρ(µ− λ)e−(µ−λ)t , (1.6)

where δ0(t) denotes the Dirac function centered at t = 0.

This can be summarized as follows: the waiting time distribution for a typical packet in

an M/M/1 queue is the mixture of an atom at 0 with probability 1− ρ, and an exponentially

distributed random variable of parameter µ− λ with probability ρ.

25In fact, the mean delay and waiting time formula hold for any conservative discipline, but they are more
complicated to establish when the discipline is not FIFO. The delay and waiting time distributions given here
are valid only for FIFO discipline.

32

Similarly, the p.d.f. fD(t) of the delay of a new packet can be computed as follows:

fD(t) =

∞∑

k=0

fD
(
t|N(0−) = k

)
P
(
N(0−) = k

)

=

∞∑

k=0

µk+1tke−µt

Γ(k + 1)
(1− ρ)ρk

= (1− ρ)µe−µt
∞∑

k=0

λktk

k!

fD(t) = (µ− λ)e−(µ−λ)t. (1.7)

Hence, the delay is an exponential random variable of parameter equal to the residual band-

width µ− λ.

1.2.3 Network of queues

We have currently presented only models of a single queue. How can one combine queues

in order to build a network? We will present here 3 models for network, each model gener-

alizing the previous one.

Queues in series

We will first present the notion of queues in tandem, that is on a line, where each queue

departure process is the arrival process of the next queue. Hence, packets arrive in the

system only at the first queue, and leave the system only after the last queue. An example

of such a network is given in Figure 1.3.

μ1 μ2λ

N1 = 4 N2 = 2

Figure 1.3: Two queues in tandem.

More formally, consider a series of K single-server queues. Assume that all packets

at queue i require an i.i.d. exponential service time of parameter µi (hence, the average

capacity of queue i is µi packets per second), and that these service times are independent

for different queues. Assume that the first queue see an “external” arrival process intensity

λ. Assume finally that when a packet leaves queue i, it immediately enters the next queue

i + 1, unless i = K, in which case it leaves the system. Let Ni(t) denote the number

of packets in the queue i at time t, and N(t) = (N1(t), . . . , NK(t)) be the state of the

whole system. What is the distribution of N(t0) at a given time t0? A network of M/M/1

queues in tandem is a product form network, because its steady-state distribution is equal to

the product of the steady-states distribution of each queue, as it is shown by the following

theorem:

33

Theorem 1.2.4. Let N(t) denote the state at time t of a system of a series ofK single-server

queues, with exponentially distributed independent service times with rates (µ1, . . . , µK),

and Poisson arrivals of rate λ at the first queue. Let ρi =
λ
µi

denote the load of the queue

i. If ∃i, ρi ≥ 1, then N(t) admits no steady-state distribution. Otherwise, N(t) admits a

steady state distribution π, with

π(n1, . . . , nK) =

K∏

i=1

(1− ρi)ρni

i .

Proof. Consider the first queue only. This is an M/M/1 queue with arrival rate λ and service

rate µ1. Hence, if λ ≥ µ, this queue, and hence the whole system, do not admit any steady

state distribution. If λ < µ, the previous results apply here, and we have that N1(t0) admits

a geometric steady-state distribution of parameter ρ1 = λ
µ1

.

Using the first part of theorem 1.2.3, we know that the output of queue 1, and hence the

input of queue 2, is a Poisson process of intensity λ. Hence, queue 2 is also an M/M/1 queue,

andN2(t0) admits a geometric steady-state distribution of parameter ρ2 = λ
µ2

, provided that

λ < µ2. If ρ2 ≥ 1, the second queue, and hence the whole system admits no steady-state

solution. The similar reasoning extends recursively for all queues.

However, before concluding for the whole distribution, we must prove that

(N1(t0), . . . , NK(t0)) are independent random variables, or study their correlation. Us-

ing the second part of theorem 1.2.3, we know that N1(t0) is independent of the departure

of queue 1 prior to t0. But (N2(t0), . . . , NK(t0)) depends only on the arrivals in queue 2 (or

departures from queue 1) prior to t0 (and on their service requirements). Hence, N1(t0) is

independent of (N2(t0), . . . , NK(t0)). Using the same recursion, we can show that N2(t0)

is independent of (N3(t0), . . . , NK(t0)), and hence, the steady-state distribution of N(t) is

the product of the steady-states distributions of N1(t), . . . , NK(t).

These line networks can easily be generalized to any acyclic topologies where every

queue has a single output, including possible external arrivals at different queues. This

leads to tree topologies, where the packets flow from the leaves down to the root. It relies

on the fact that the superposition of Poisson point processes is still a Poisson point process.

The acyclic assumption implies that Theorem 1.2.3 can be applied recursively to queues

where all arrivals are Poisson point processes, starting from queues with external arrivals.

Theorem 1.2.4 does not assume that the queue disciplines are FIFO. It holds for any

discipline which leads to the single queue steady-state distribution and theorem 1.2.3, that is

any conservative independent of the service times discipline. When the disciplines are such

that no packet can overtake other packets, it is possible to compute the delay distribution of

packets. This is done for the specific cases of FIFO discipline in chapter 3 for line-shaped

networks and chapter 4 for tree-shaped networks.

34

Jackson network

Networks of queues in tandem can not deal with any topology including a loop, or with

different destinations for packets in the same queue. We present here a more general class

of networks, called Jackson networks or open migration networks, which covers all possible

topologies.

μ1 μ2 μ3

μ4
λ

0.7

0.3
0.5

0.5

0.8

0.2

Figure 1.4: An example of Jackson network.

Consider a set of K queues. Packets in queue i have i.i.d. exponential size of mean 1,

and are served at a global rate of µi26. When leaving queue i, each packet has a probability

pi,j to join queue j, and probability pi,0 = 1 −∑j pi,j to exit the system. We can assume

without loss of generality that pi,i = 0. Packets arrive from outside to queue i according

to a Poisson point process of rate λi. We shall require additionally that there be a path of

positive rates from any queue to an exit, either directly or indirectly through other queues.

We shall assume also, without any loss of generality, that there is a path to any queue from

an external arrival (otherwise this queue will receive no new customer, and after some time,

be endlessly empty). Queues in tandem are a Jackson network, with pi,j = 1 if and only if

j = i+ 1 or i = K and j = 0, and pi,j = 0 otherwise.

Proposition 1.2.5 (Total arrival rates in Jackson networks). Given a Jackson network of

K queues, with services rates µi, external arrival rates λi, and transition probabilities pij

from queue i to queue j, there exists a unique vector λ̃ =
(
λ̃1, . . . , λ̃K

)
of positive weights,

such that

∀1 ≤ i ≤ K, λ̃i = λi +

K∑

j=1

λ̃jpj,i . (1.8)

This vector represents the total arrival rate in the queues.

Proof. Consider a continuous-time Markov process of K + 1 states {0, 1, . . . ,K}, with

transition rates Q = (qi,j)0≤(i,j)≤K,, where q0,i = λi and Qi,j = pi,j . This process is irre-

ducible (there is a path from any state to 0 and from 0 to any state) and time-homogeneous,

with a finite state space. It hence admits an unique steady-state distribution π, which verifies

26We do not specify here how this global rate is shared among the packets, or, more generally, the discipline.
It does not matter, as long as the discipline is conservative. It is also possible to let the global rate vary with the
queue size, but for the sake of simplicity, we consider here constant rate: the generalization is straightforward.

35

the equilibrium equations:

∀0 ≤ i ≤ K, π(i)
K∑

j=0

qi,j =
k∑

j=0

π(j)qj,i .

Dividing each equation by π(0) and replacing the qi,j by their value, we get the equations

(1.8), and hence the existence and uniqueness of the solution λ̃i =
π(i)
π(0) in the proposition.

By definition, the arrival rate in queue i is the sum of the external arrival rate λi and the

arrival rate from other queues j. The total arrival rate of queue j is λj , and a proportion pj,i
of it go to queue i just after leaving queue j. Hence, λ̃i = λi +

∑K
j=1 λ̃jpj,i is the total

arrival rate at queue i.

Let Ni(t) denote the state of queue i, i.e. the number of customers in queue i, and

N(t) = (N1(t), . . . , NK(t)) the state of the whole networks. Knowing the total arrival

rates of the queues in the network, it is easy to compute the steady-state π distribution of

the network:

Theorem 1.2.6. Consider a Jackson network of K queues, with services rates µi, ex-

ternal arrival rates λi, and transition probabilities pij from queue i to queue j. Let

λ̃ =
(
λ̃1, . . . , λ̃K

)
be the total arrival rate vector, as defined in proposition 1.2.5. Let

ρ̃i = λ̃i
µi

be the total load of queue i, and assume that ρ̃i < 1 for all 1 ≤ i ≤ K. Let

N(t) = (N1(t), . . . , NK(t)) denote the state of the network.

Then the Jackson network admits an equilibrium distribution. In equilibrium,

N1, N2, . . . , NK are independent and

∀1 ≤ i ≤ K, πi(ni) = (1− ρ̃i)ρ̃ni

i .

Proof. It is sufficient (and straightforward) to verify that π(N) =
∏K
i=1 πi(ni) satisfies the

partial balance equations. The independence of N1, N2, . . . , NK follows from the fact that

both π(N) and the state space have a product form.

The independence established in theorem 1.2.6 is the independence of the random

variables N1, . . . , NK , observed at a fixed point t0 in time. The stochastic processes

(N1(t), . . . , NK(t)) are clearly not independent. Interestingly, the equilibrium distribu-

tion for queue i in isolation is just what it would be if it were the only colony in the system,

with customers arriving in a Poisson stream of rate λ̃i and leaving at rate µi. This is even

more interesting when one realize that, because of the eventual loops in the network, the

combined arrivals at queue i, from outside and other queues, is in general not a Poisson

process.

The process is in general not reversible. In fact, the process is reversible iff λ̃ satisfies

∀1 ≤ (i, k) ≤ K, λ̃ipi,k = λ̃kpk,i

∀1 ≤ i ≤ K, λi = λ̃ipi,0 . (1.9)

36

However, even when (1.9) does not hold, the reversed process is of a similar form:

Theorem 1.2.7. Let N(t) be a process corresponding to a Jackson network. Then the

reversed process N(−t) corresponds also to a Jackson network on the same queues with

the same topology. In particular, the reversed process has transition probabilities p′i,k and

external arrival rates λ′i such that:

p′i,0 =
λi

λ̃i

p′i,k =
λ̃kpk,i

λ̃i

λ′i = pi,0λ̃i .

Proof. It is easy to verify that such a Jackson network process is indeed the reversed process

of N(t).

We will call the exit process the points in time at which customers leaves the whole

network. The arrival processes in the reversed process are the exit processes in the original

process. Hence, we have the following corollary, similar to theorem 1.2.3:

Corollary 1.2.8. If N(t) is a Jackson network process, then the exit process from queue i

is a Poisson process of rate λ̃ipi,0. Additionally, the exit processes from queues 1, . . . ,K

are independent and N(t0) is independent of the exit processes prior to time t0.

In general, the delay in Jackson networks is difficult to compute. A specific case how-

ever occurs when the topology is loopless and queues discipline are such that no packet may

overtake another one. Since the thinning of a Poisson point process and the superposition of

Poisson point processes are Poisson point processes, the repetitive use of theorem 1.2.3 al-

lows us to consider each queue as an M/M/1 queue independent of the state of prior queues,

and hence compute the delay in each queue.

Kelly network

Jackson networks do not allow us to specify specific routes. When leaving a queue, each

packet can go to any following queue of the network, with a probability which depends

only on the topology and not on the packet. Therefore, some situations cannot be described

with Jackson networks. For example, consider the example depicted in Figure 1.5. This

is a networks with fives nodes. Two streams of packet arrive respectively at node 1 (with

intensity λ1) and node 2 (with intensity λ2). Both streams then cross server 3. However,

their exit point of the network is different. Packets stemming from the stream of queue

1 (resp. queue 2) go to queue 4 (resp. queue 5), and then exit the network. Whilst on

average, a proportion λ1
λ1+λ2

of the packets that leave queue 3 go to queue 4, this choice

is not independent of their past. We will present here a more general model of network,

introduced by F. Kelly in [Kel79], that allows such networks.

37

μ1

μ2
μ3

μ4λ1

μ2 μ5λ2

Path 1

Path 2

Figure 1.5: An example of Kelly network.

Assume that there are |I| different type of packets, and that the packets of class i ∈ I
arrive according to a Poisson point process of rate λi. |I| might be infinite, but the total

arrival rate
∑

i∈I λi must be finite. Packets from the same class i follow a predefined finite

path. Let Si denote the length of the path for class i, and r(i, s) with s ≤ Si denote the sth

queue visited by packets of class i. Packets may visit the same queue several times. We will

denote ri = (r(i, 1), . . . , r(i, Si)) the path of class i.

This can obviously deal with any queues in series. It is also simple to see how to

represent a loopless Jackson networks as a Kelly network: it is sufficient to create one class

for each possible path in the Jackson network, and adapt the arrival rate of the class such

that the rate of the path correspond to the arrival rate at the first queue, multiplied by all

transition probabilities. If there are possible loops in the Jackson network, it is a little bit

more tricky to represent it as a Kelly network: the number of visits to the same queue by a

packet is not bounded, and packets in Kelly networks have a predetermined path. It is hence

necessary to use an infinite number of classes, so as to represent any possible path.

Example 1.2.3: Consider for example the simple network depicted in figure 1.6. It’s a two-

server network. Packets arrive in the network at queue 1, according to a Poisson process

of intensity λ. They then go to queue 2. After completion of their service in queue 2, they

leave the network with probability 0.9, and go back to queue 1 with probability 0.1. How

to represent it as a Kelly network? Let the class 1 have the path r1 = (1, 2), and arrival rate

λ1 = 0.9λ. In a more general manner, for any positive integer i, let the class i have arrival

rate λi = 0.1i−1× 0.9λ, and have a path ri of length Si = 2i where r(i, s) = s mod 2. In

other words, the class i corresponds to packets which go exactly i times through queue 1.

By construction, the sum of the arrival rates is finite, and is exactly λ. Moreover, in

Jackson networks, the external arrival process of the packets which will visit queue 1 exactly

once (i.e. will leave the network as soon as possible) is a thinning with probability 0.9 of the

total external arrival process. As the thinning with probability p of a Poisson point process

of intensity λ is a Poisson point process of intensity pλ, traffic from class 1 in the Kelly

38

network corresponds exactly to these packets in the Jackson network. The same extends to

packets which visit queue 1 exactly i times.

μ1 μ2λ

0.1

0.9

Figure 1.6: A toy example of Jackson network.

Describing the state of the network in a Kelly network is more complicated than the

state of a Jackson network. In Jackson networks, all packets behave similarly, and hence,

we can just count the number of packets Nk(t) in each queue. Here, we have in the state

to include the class of each packet. In order to simplify the notations, we will restrict

ourselves here to networks of single server FIFO queues. This can be generalized to many

more disciplines (even with variable queue service rates which depend on the number of

packets in the queue), but we will not need it in this dissertation.

Let tk(l) (resp. sk(l)) denote the class (resp. the stage) of the packet in queue k at

position l. Hence, we have in particular r(tk(l), sk(l)) = k. Let ck(l) = (tk(l), sk(l))

denote the state of the packet at position l in queue k. If the packet visits queue k more than

once, its state contains more information than its class. The vector

ck = (ck(1), ck(2), . . . , ck(nk))

is the state of queue k, and

C = (c1, c2, . . . , cK)

is a Markov process which describes the state of the network, where K is the number of

queues.

To describe the transition rates of this process, let Tk(C) for 1 ≤ k ≤ K denote the

new state obtained from state C with Nk ≥ 1 when the packet currently served at queue k

leaves this queue, and either exits the network or joins the next queue of its path. Similarly,

let T i(C) for i ∈ I denote the new state obtained when a new packet of class i enters a

network of state C and joins the queue r(i, 1). The transition rates q(., .) are then:

q
(
C, T i(C)

)
= λi

q (C, Tk(C)) = µk (1.10)

q
(
C,C′

)
= 0 otherwise.

Compared to the case of Jackson networks, the total arrival rate and the load of each

queue are easier to compute: the routes are deterministic, and everything depends only on

the different classes. In fact, the total arrival rate at a queue k is the sum of class arrival rates,

multiplied by the number of times the class path goes through the queue. More formally,

39

one can define the total arrival rates λ̃k and load ρ̃k as follows:

λ̃k =
∑

i∈I

(
Si∑

s=1

1r(i,s)=k

)
λi

ρ̃k =
λ̃k
µk

. (1.11)

The Markov process is unstable if at least one of the queues is overloaded, which cor-

responds to ρ̃k ≥ 1 for some k. Assuming that this is not the case, it is stable and admits a

stationary distribution:

Theorem 1.2.9. The equilibrium distribution π for a Kelly networks with K queues of

capacities (µk)1≤k≤K and packet classes of arrival rates (λi)i∈I and path (ri)i∈I is:

π(C) =

K∏

k=1

(1− ρ̃k)
∏Nk

l=1 λtk(l)

µNk

k

.

Proof. We first prove that π sums to unity. By definition of λ̃k, we have that
∑
λtk(l) = λ̃k

when we sum over all possible packet states. Hence, when considering only the queue sizes

and forgetting packet states, we have that π(N1, N2, . . . , NK) =
∏K
i=1(1 − ρ̃k)

(
λ̃k
µk

)Nk

.

This sums to unity because by definition ρ̃k =
λ̃k
µk

.

The rest of the proof uses a reversed process. Consider that packets of class i still enter

the system as a Poisson stream of rate λi, but now follow a path

r′i =
(
r(i, Si), r(i, Si − 1), . . . , r(i, 1)

)

before leaving the network. This is still a Kelly network. For simplicity of the notation, we

will inverse the direction of the queue: packets in the reversed process join the head of the

queue, but the served packet is at the back of the queue. This is still a FIFO queue, but will

remove us some burden of notation. The transition rates q′ of the reversed process are as

follows:

q′(Tk(C),C) = λi if ck(1) = (i, Si)

q′(Tk(C),C) = µj if r (tk(1), sk(1) + 1) = j (1.12)

q′(T i(C),C) = µk if r(i, 1) = k

q′(C,C′) = 0 otherwise .

It is now straightforward to verify that for any states C and C′, we have

π(C)q(C,C′) = π(C′)q′(C′,C), which is enough to deduce that π is the equilibrium

distribution.

As for Jackson networks, we have several corollaries, similar to theorems 1.2.7 and

1.2.8.

40

Corollary 1.2.10. If C(t) is a Kelly networks as described in this section, then its reversed

process C(−t) is also a Kelly network.

Corollary 1.2.11. In equilibrium, packets of class i exit the network in a Poisson stream

at rate λi. These Poisson point processes are independent, and C(t0) is independent of

departures from the network prior to time t0.

Finally, define πk(ck) = (1 − ρ̃k)
∏Nk

l=1 λtk(l)

µ
Nk
k

as the steady-state measure of the queue

k. The network is then said to be of product form, and at a given time the steady-state

distribution is as if each queue behaved independently as an M/M/1 queue. Note that this

independence is valid only at a given time, and not for the continuous time process. The

following corollaries express this product form.

Corollary 1.2.12. In equilibrium, the state of queue k is independent of the rest of the

network and is ck with probability πk(ck). When forgetting the customer classes, the prob-

ability that queue k contains n packets is

P (Nk = n) = (1− ρ̃k)ρ̃nk .

Additionally, the probability that the customer at position l in queue k is of class i and at

stage s of its route is
λi

λ̃k
1r(i,s)=k.

Corollary 1.2.13. A customer of class i reaching the queue k at stage s of his path sees the

queue k in its equilibrium state distribution, i.e. the probability that the queue k is in state

ck just before its arrival is πk(ck).

This is trivial for networks with loopless topologies, as all packets arrival processes

are Poisson streams. In general, arrivals in a queue of a Kelly network are not a Pois-

son point process. However, the probability rate that a packet of class i at stage s of

his path leaves the queue k in state ck after his transition can be easily expressed. Let

c′k = ((i, s), ck(i), ck(2), . . . , ck(Nk)) be the state of queue k before the transition. The

probability flux is then

π(c′k)q(c
′

k, ck) = πk(ck)
λi
µk
× µk .

Hence, if a packet of class i at stage s just left the queue k, the probability that queue k is

now in state ck is πk(ck). But the departures of queue k in the direct process are the arrivals

in queue k in the reversed process, which is enough to conclude the corollary.

1.2.4 The M/GI/1 queue

We have presented up to now only queueing systems which are remarkably Markovian.

There are two reasons for this: first, Markovian systems are easier to analyze, and hence

more results are known about them. Second, these models exhibit memoryless properties

41

and low interaction between customers, which can be expected when dealing with a large

system with a large customer population.

However, queueing theory is not limited to Markovian systems, and many results are

known about other (albeit less complicated) systems. We shall present here a few results

about the M/GI/1 queue as an example, but since these systems are not central to this dis-

sertation and rather more difficult to study, we will limit ourself to the single M/GI/1 case.

Although we will not use it here, it should be noted that the Palm calculus approach, such

as presented in [BB03] is extremely powerful for non-Markovian systems.

For an M/M/1 queue, the queue size N(t) is a Markov process. However, this relies

on the fact that service times are exponential and i.i.d., and hence have a memoryless prop-

erty. Here, this memoryless property of services is no longer valid, and N(t) is no more a

Markov process: the probability of the next jump can depend on the past jumps27 through

the remaining service time.

It is possible to construct a Markov process for an M/GI/1 queue by adding to the state

the remaining service time. But the Markov chain is then a continuous state process, and

this leads to slight technical difficulties. A more elegant approach is to consider the specific

embedded chain of N(t) just after packet departures, which will be a Markov chain.

Let tn (resp. τn) denote the arrival (resp. departure) time of packet n, and σn its service

requirement. Let Ln denote the queue size just after the nth departure, i.e. Ln = N(τ+n).

Let A be the arrival point process. Ln then verifies the following relation:

Ln+1 =

{
Ln − 1 +A]τn, τn+1] if Ln ≥ 1

A]tn+1, τn+1] if Ln = 0
. (1.13)

Define An = A]τn+1 − σn+1, τn+1] as the number of arrivals during the service of

packet n, and define x+ = max(x, 0). The previous relation be rewritten as follows:

Ln+1 = (Ln − 1)+ +An+1 . (1.14)

Because the arrival process is Poisson, the arrivals prior to τn+1−σn+1 and the arrivals

after τn+1 − σn+1 are independent. Moreover, Ln depends only on the arrivals and service

times prior to τn ≤ τn+1 − σn+1. Hence, An+1 is independent of (Lk)k<n, and (Ln)n∈Z is

a Markov chain. Contrary to the previous cases we have presented, (Ln) is not a birth and

death process. Because we “stop” at each departure, downward jumps are limited to one,

27To give a rough intuition about this dependence on the past, consider the case where service times have a
bimodal distribution on (σ1, σ2) with equal probability for each case. Assume that σ1 (resp. σ2) is very low
(resp. large), and let λ denote the arrival intensity. Consider the jump probabilities P(Nn+1 = k|Nn = i)
of the embedded chain Nn, when the queue is not empty (the embedded chain will be a Markov chain if the
process is Markovian). If the last event was a departure of a packet, then the remaining service time is either
σ1 or σ2, and we have P(Nn+1 = i − 1|Nn = i, Nn−1 = i + 1) = 0.5 ∗ (e−λσ1 + e−λσ2) → 0.5 and
P(Nn+1 = i+1|Nn = i, Nn−1 = i+1) = 1− 0.5 ∗ (e−λσ1 + e−λσ2) → 0.5, where the limits corresponds
to σ1 → 0 and σ2 → ∞. However, if the last event was an arrival and the penultimate event was a departure, it
means that there was at least one arrival during the current service time, and the next event will be a departure
only if there is a single arrival in the current service time. Hence, P(Nn+1 = i− 1|Nn = i, Nn−1 = i+ 1) =
0.5λ ∗ (σ1e

−λσ1 + σ2e
−λσ2) → 0. This is enough to conclude that (Nn) does not have the Markov property.

42

but upward jumps can be arbitrarily large.

From (1.14), the transition probabilities p(n, i) of Ln are:

p(n, n+ k) =





P (A(]0, σ]) = k + 1) = IE
[
(λσ)k+1

(k+1)! e
−λσ
]

if k ≥ −1 and n ≥ 1

P (A(]0, σ]) = k) = IE
[
(λσ)k

(k)! e
−λσ
]

if k ≥ 0 and n = 0

0 if k < −1
.

(1.15)

We can now determine the stability region of the queue:

Theorem 1.2.14. An M/GI/1 queue is stable if its load ρ = λIE[σ] < 1 and the second

moment IE[σ2] of the service requirement is finite, and unstable otherwise. Additionally,

if the queue is stable, it’s size distribution π = (π0, π1, . . . , πk, . . .) has as characteristic

function

ψN (z) = IE[zN] =
(1− ρ)(1− z)IE

[
e−λσ(1−z)

]

IE
[
e−λσ(1−z)

]
− z .

Proof. From (1.14), Ln is a reflected random walk on Z+, with increments An− 1. Hence,

Ln is recurrent iff IE [An − 1] < 0 and the increment second moment is finite.

We have seen that P (An = k) = IE
[
(λσn)k

k! e−λσn
]
. Hence the following:

IE [An − 1] =
∞∑

k=0

(k − 1)P (An = k)

= IE

[∞∑

k=0

k
(λσn)

k

k!
e−λσn

]
− IE

[∞∑

k=0

(λσn)
k

k!
e−λσn

]

= IE
[
λσne

λσne−λσn
]
− IE

[
eλσne−λσn

]

IE [An − 1] = ρ− 1 .

Similarly, IE
[
(An − 1)2

]
= λ2IE[σ2] + 1 − ρ is also finite, and (Ln) admits a stable

distribution.

It remains to show that (Ln) andN(t) have the same distribution. SinceLn converges to

its equilibrium distribution, P (L = k) = limA→∞
∑A

n=0
1
A

∑A
i=n 1Ln=k. But since N(t)

has only increments of size 1, each upward jump has a corresponding downward jump, and

we have that |∑A
n=0 1N(tn)=k − 1N(τn)=k| ≤ 1. Taking the limit of this last inequality

leads to limA→∞
∑A

n=0
1
A

∑A
i=n 1N(tn)=k = P (L = k), which prove that the queue size

just before packet arrivals admits the same stationary distribution as (Ln). As the arrivals

are a Poisson stream, we can conclude using the PASTA property that (Ln) and N(t) have

the same equilibrium distribution.

43

This distribution π satisfies the balance equations, and the following holds:

∀k ≥ 0, πk =
∞∑

n=0

πnp(n, k)

πk =

k+1∑

n=1

πnIE

[
(λσ)k−n+1

(k − n+ 1)!
e−λσ

]
+ π0IE

[
(λσ)k

k!
e−λσ

]
.

By summation, we have

ψN (z) =

∞∑

k=0

πkz
k

=
∞∑

k=0

(
k+1∑

n=1

πnIE

[
(λσ)k−n+1

(k − n+ 1)!
e−λσ

]
+ π0IE

[
(λσ)k

k!
e−λσ

])
zk

=
∞∑

k=0

π0IE

[
(λσz)k

k!
e−λσ

]
+

∞∑

n=0

∞∑

k=n

πn+1IE

[
(λσ)k−nzk

(k − n)! e
−λσ
]

= π0IE
[
e−λσ(1−z)

]
+

∞∑

n=0

πn+1z
nIE
[
e−λσ(1−z)

]

ψN (z) =
ψN (z)− ψN (0)

z
IE
[
e−λσ(1−z)

]
+ π0IE

[
e−λσ(1−z)

]
.

Since ψN (0) = π0, we get that

ψN (z) = ψN (0)
(1− z)IE

[
e−λσ(1−z)

]

IE
[
e−λσ(1−z)

]
− z .

Using the normalization constraint ψN (1) = 1, we get that ψN (0) = π0 = 1 − ρ, and

the last part of the theorem is proven.

This theorem characterizes the stability and size distribution of the M/GI/1 queue. In

particular, the probability that the queue is empty is 1−ρ, which is a valid result for general

independent arrivals. Similarly, the GI/GI/1 queue is stable under the same conditions as

the M/GI/1 queue. The characteristic function of the queue size is however specific to the

M/GI/1 case.

Using this result, it is easy to deduce the Pollazcek-Khintchine formula:

Theorem 1.2.15 (Pollazcek-Khintchine formula). For an M/GI/1 queue with arrival inten-

sity λ and service requirement distribution fσ, the Laplace transform LW (s) of the waiting-

time distribution fW (t) is:

LW (s) = IE
[
e−sW

]
=

(1− ρ)s
s− λ(1− Lσ(s))

.

Proof. We will prove it28 by expressing the characteristic function of the queue size as a

28This result can be also proven directly, from the expression e−sW (t) = e−sW (0)+
∫ t

x=0
∂e−sW (z)

∂z

∣∣∣
z=x

dx+

44

function of the Laplace transform of the delay. Since the discipline is FIFO, the number of

packets in the queue just after a departure is equal to the number of packets during the delay

of this packet (i.e. between its arrival and its departure). Hence, we have:

ψN (z) =
∞∑

k=0

πkz
k

=
∞∑

k=0

∫ ∞

t=0
P (Ln = k|Dn = t) fD(t)dtz

k

=

∞∑

k=0

∫ ∞

t=0
e−λt

(λt)k

k!
fD(t)z

kdt

=

∫ ∞

t=0
e−λ(1−z)tfD(t)dt

ψN (z) = LD(λ(1− z)) .

Using theorem 1.2.14, we get that

LD(s) = ψN (1−
s

λ
) =

(1− ρ)sLσ(s)
s− λ(1− Lσ(s))

.

Finally, we conclude the proof by saying that for all packets, Dn = Wn + σn, and hence

LD(s) = LW (s)× Lσ(s).

Since IE [W] = −∂LW (s)
∂s

∣∣∣
s=0

, we can deduce the following Pollaczek-Khintchine

mean-value formulas:

IE [W] =
λIE
[
σ2
]

2(1− ρ) (1.16)

and

IE [D] =
λIE
[
σ2
]

2(1− ρ) + IE [σ] . (1.17)

We conclude this section by Little’s law. Little’s law is not restricted to M/GI/1 queue,

and is valid for any stable queueing system with non-preemptive discipline:

IE [N] = λIE [D] . (1.18)

As written here, Little’s law is easily deduced for M/GI/1 queue from the relation

∑
0<Tn≤t

(
e−sW (T+

n
) − e−sW (T−

n
)
)

, where (Tn) are the discontinuity points of W (t), i.e. the packets arrival

times. The result follows by taking the expectation and the limit t → ∞.

45

ψN (z) = LD(λ(1− z)) that we saw in the proof of theorem 1.2.15. Indeed, we have

IE [N] =
∂ψN (z)

∂z

∣∣∣∣
z=1

= IE
[
λDe−λ(1−z)D

]
z=1

IE [N] = λIE [D] .

Little’s law is valid for any system or even sub-system, as long as N is the law of the

number of customers in the (sub)system, and D the law of the time spent by customers in

the (sub)system. In particular, if Ñ is the number of customers in the buffer of a queue, we

have

IE
[
Ñ
]
= λIE [W] .

As N = Ñ = 0 when the queue is empty, and N = Ñ + 1 otherwise, we have that

IE [N] − IE
[
Ñ
]
= P (N ≥ 1), and using Little’s law for both the queue and the buffer

(excluding the server), we get once again the probability that the queue is busy (or empty):

P (N ≥ 1) = λ (IE [D]− IE [W]) = λIE [σ] = ρ .

1.3 Bandwidth sharing networks: a macroscopic model

1.3.1 Bandwidth sharing networks

Queueing theory focuses on the microscopic scale of networks. Mechanisms are solved

and explained at the packet level. However, as application messages correspond to many

packets, it makes sense to try to study the network performance as perceived by the user,

i.e. the performance of all packets stemming from the same user. In other words, we are

here more interested in the connection or flow point of view of the network than in its

packet-level analysis.

A natural question that arises in this context is for example to determine which share

of the network capacity should (or will) get a specific application or a specific user. In

the network community, this is usually called bandwidth sharing, and has been studied

for a long time. The objective of bandwidth sharing is usually to use all the available

bandwidth, whilst keeping the system stable and maintaining a kind of “fairness” in the

allocation to different users. Many algorithms, including most notably TCP, are meant to

allocate bandwidth to flows in a stable and fair way.

Fairness and utility

Stability is a well-defined notion, both from the mathematical and the engineering points of

view. Fairness is less natural. The first natural notion of fairness is the max-min fair allo-

cation, where bandwidth (or resources in general) is shared in the most equal possible way,

meaning that any individual bandwidth increase within the region of feasible allocations

46

must be at the cost of a decrease of some already smaller bandwidth. This natural inter-

pretation has been the definition of fairness for a long time. In [Kel97], Kelly questioned

the optimality of max-min allocation, and introduced the notion of proportional fairness. In

[MW00], Mo and Walrand generalized this allocation with the family of weighted α-fair

allocations, which is defined as follows:

Definition 1.3.1 (α-fairness). Let S be the set of users of a network, and let Γ ⊂ (R+)|S|

be a set of feasible allocations. Let w = (ws)s∈S ∈ (R+)|S| be a sequence on non-negative

weights. Let α ≥ 0 be a (possibly infinite) value.

An allocation γ = (γs)s∈S is said to be (w, α)-fair if it maximizes among all feasible

allocations the following (w, α)-utility Uα(γ):

Uα(γ) =





∑
s∈S ws log(γs) if α = 1

∑
s∈S ws

γ1−α
s

1−α otherwise .
(1.19)

The weights are often omitted, and assumed to be all equal to 1 in this case.

Remark. The max-min allocation is the limits of (w,α)-fair allocation when α goes to

infinity. Symmetrically, maximum-throughput allocation (which maximizes the sum of the

rates) is the limit of (w,α)-fair allocation when α goes to zero.

This notion of bandwidth sharing extends naturally to servers and networks. Consider

for example a single server with a limited capacity C, with clients of different classes. How

shall one share this capacity among the different clients? A natural answer is to do it in a

way maximizing a well-chosen utility function, whilst keeping the total allocated bandwidth

lower than C. We will not consider here the question of how to do such a sharing. Many

have proposed (distributed or centralized) algorithms that achieve some desired bandwidth

sharing. Such a goal is indeed important, but we will consider here as granted a way to do

an optimal bandwidth allocation that maximizes any utility function.

Static networks

Let us now generalize this approach to networks. Consider for example a network as de-

picted in figure 1.7 with three different servers S1, S2 and S3 of respective capacities C1,

C2 and C3, and for different class of users. Each class of users uses a fixed route, consisting

of a list of 1 or more servers, possibly with repetitions. For example, consider that route 1

of clients of class 1 consists of the path (S1, S2, S3) (meaning that users of class 1 first cross

S1, than S2 and finally S3 before exiting the network), route 2 is (S1, S3), route 3 crosses

only the server S2, and route 4 consists of (S1, S3, S2, S1). Let ni denote the number of

users of class i, and γs be the bandwidth allocated to user s.

Allocating a bandwidth γs to a client s of class i consumes γs resources on all servers

belong to the route i, multiplied by the multiplicity of the server in the route (in the example

above, a client s of class 4 would consume 2γs on S1). A bandwidth allocation is then said

feasible if on any server, the bandwidth consumption is less than the capacity of the server.

47

S1

S2

S3

Figure 1.7: An example of bandwidth sharing network.

Lemma 1.3.2. Assume that the utility function U is strictly concave. Then any bandwidth

allocation maximizing this utility among a compact set of feasible allocations allocates the

same bandwidth γi to all users of the class i.

Proof. Let γ = (γs)s∈S be a feasible utility maximizing U . Let i be a class, and ni the

number of clients of class i.

Let γ′ = (γ′s)s ∈ S be another allocation, defined by:

γ′s =





∑
u∈class(i) γu

ni
if s ∈ class(i)

γs otherwise
.

Then γ′ is a feasible allocation, since for any class, the total bandwidth allocated to the

class in γ′ is identical to the total bandwidth allocated to the same class in γ. Additionally,

by convexity of U , we have that

∑

s∈class (i)

U(γ′s) ≥
∑

s∈class (i)

U(γs)

with a strict inequality if there is at least one user s where γs 6= γ′s. Hence, since γ

maximizes U , we have that γ = γ′, and the result follows.

Remark. The (w,α)-fair utilities are concave utilities.

Example 1.3.1: With these notations, an allocation will be feasible in the above example if

it respects the following inequalities, called the capacity constraints:

n1γ1 + n2γ2 + 2n4γ4 ≤ C1

n1γ1 + n3γ3 + n4γ4 ≤ C2

n1γ1 + n2γ2 + n4γ4 ≤ C3 .

Dynamical networks

This allocation is defined for any set of users. When this set of clients and their routes, the

set of servers and their capacities does not evolve in time, the bandwidth sharing network

48

is said to be static: users cannot join or leave the network. However, today’s networks are

often dynamic: a small fraction of the potential users is actually using the network. Users

sometimes join the system (i.e. start using their web browser or initiate a file download for

example). As for queuing theory, in the simplest model, users of class i arrive at a fixed rate

λi, require a random amount of service and leave when their service is finished.

The instantaneous bandwidth allocation at any time is performed as if the network was

static with its current set of clients. This instantaneous bandwidth allocation hence deter-

mines the time needed for a client to have its required service finished. We do not give here

details about the detailed clients arrival process: it can be any point process with intensity

λi, meaning that in average, λi clients of class i join the system per unit of time. This ar-

rival process can be steady or bursty, the most canonical example being the Poisson process.

Similarly, one can imagine many service requirement distribution, including the canonical

exponential distribution. The only assumption is that the mean service requirement σi of

users of class i is finite.

How do such fair allocations work? For any strictly concave utility functions, includ-

ing the α-fairness family, it attributes a lower bandwidth to classes with long route, since

they use more resource than shorter routes for the same bandwidth. In this aspect, they

differ from the max-min allocation, which can dramatically reduce the bandwidth allocated

to some users in order to gain a negligible increase in the allocation to a user who has a

lower bandwidth, and they have some global efficiency criteria. However, contrary to the

maximum-throughput, they do not allow starvation easily (in fact, α-fairnesses do not allow

any starvation), meaning that users will (nearly) always have a positive bandwidth alloca-

tion. This comes from the fact that these utility functions have some fairness criteria, which

value more bandwidth increases on lower-bandwidth users than on higher-bandwidth users.

For α-fairnesses, this trade-off between efficiency and fairness (or social care) is controlled

by the value of α: the lower α is, the more efficient the allocation is, and the higher α is,

the fairer the allocation is.

Bandwidth sharing networks were introduced by Kelly in [KMT98], in order to dis-

cuss the optimality of max-min bandwidth sharing. Their main advantage is that, ignor-

ing the microscopic interaction of packets, they capture well the macroscopic behaviour

of networks. Hence, they provide a useful tool to compare the global performance (such

as the mean delay for service completion) of different bandwidth allocations and utilities.

They can be used also to compare different routing schemes, including multipath routing.

Bandwidth sharing networks are a good approximation of the steady state distribution of

queuing networks: This is best illustrated by the following result, proved by Kelly et al. in

[KMT98]: in a stable regime of a static network, (a simplified version of) TCP-algorithm

leads to a bandwidth allocation which is a random process whose stable point is a weighted

proportionally-fair allocation. This result was generalized in the following years by many

people, in order to include some additional properties of TCP. The generalization to dy-

namical networks was mostly introduced by Bonald, Massoulié, Proutière and Roberts, and

lead to important results. In [BM00], Bonald and Massoulié established the crucial result

49

that (w,α)-fair allocations achieve stability under the necessary condition that no individ-

ual link is overloaded, and α ∈ (0,∞). In [BJP04], Bonald et al. stated that bandwidth

allocation should be insensitive, meaning that the stable state of the system should depend

only on the networks topology and capacities, and on the traffic intensities. The precise ar-

rival processes and service distributions should not matter. These insensitive (or balanced)

bandwidth allocations have a very specific stationary flow distribution, which leaves little

room to inverse problems.

1.3.2 Bandwidth sharing networks are useful outside communication net-

works

We have introduced bandwidth sharing networks as a model for communication networks.

However, their applications are much broader than communication networks. Bandwidth

sharing networks can model any system with known utility and (linearly) limited resources,

as shown in the two following examples.

Example 1.3.2 (Factory production): Consider the case of a factory, with production con-

straints. The servers are then limited resources, such as manpower, periodic supplies or

equipment. Classes are then product that need to be produced, and require part of the re-

sources. The “route” of a product determines which and how much of the resources are

needed. A resource can be heavily needed for a product, and hence appear several times

in the route. The bandwidth allocation corresponds to the total production per unit of time.

The utility function expresses the global gain of the production. Two specific utility func-

tions must be mentioned here: first, the weighted maximum throughput allocation, which

corresponds to the global gain if all products can be sold independently at fixed prices equal

to their weights ; second, the max-min allocation, which express the global gain if one need

to assemble together one of each product to product the final good. (w,α)-fairness is an

intermediate step, where the price of goods decreases when the number of available goods

increases. The bigger α is, the sharper the decrease is. The limiting case is α = ∞, as

described above, where additional goods have no value if you cannot assemble them. This

example of bandwidth sharing networks as production constraints will be later referred as

the production example, or production context.

Example 1.3.3 (Budget allocation): Another example of application of bandwidth sharing

networks outside communication networks is social care and governmental (or association)

budgets, which we will refer to as the budget allocation example or context. Assume that

one can divide the population in different groups with distinct characteristics, which one

could call classes. Consider that the government (or association) has different levers at its

disposal, all of which needs some budget, and have inhomogeneous efficiency in increas-

ing the “condition” of different classes. This levers could be for example public education,

public universities, public transport, family welfare, unemployment security, economic de-

velopment aid, taxes reduction, etc. More precisely, assume that in order to increase the

50

wealth of one person of one class i of γi, the government needs to spend at least γi × ai,k
of the lever k, where those values ai,k are known integer values.29 What are the constraints

of feasible budgets in this case? Denote respectively by Ck, N and ni the budget allocated

to lever k, the total number of classes, and the number of persons in class i. Then for any

lever k, the expenses must be lower than the budget, which in mathematical form, reads

as: ∀k,∑N
i=1 niai,kγi ≤ Ck. This is equivalent to the capacities constraints for bandwidth

sharing networks, where users of class iwould cross the server k ai,k times. Now, one needs

to evaluate the benefits of budget decisions. Let us assume that there is a known function

fi, that indicates the global benefit fi(γi) of ensuring a wealth increase γi to class i. The

global aim of budget decision is then to find the class wealth increases that maximize the

global benefit, i.e. find argmaxγ
∑N

i=1 nifi(γi). This is equivalent to the global utility that

is maximized by the bandwidth allocation in bandwidth sharing networks. The same utility

function could of course be used here: for example, maximum throughput utility would

mean here that one tries to maximize, as in the capitalism theory, the global wealth of the

country. Max-min allocation is a lot more social, up to the point of being communist: it

aims at giving the best situation to the poorest, in spite of having to dramatically cut the

wealth of richer people. α-fairnesses are somewhere between maximum throughput and

max-min, and are strictly concave (meaning that one more dollar is more valuated for poor

people than for rich people, but has a positive value for all people). In contrast to communi-

cation networks, we have here allowed different utility functions for different classes, since

their “starting situation” might be different. What would be the aim of modelling welfare as

such a bandwidth sharing network? It provides an easy way to compare the global gain of

different budget allocations, as can be shown in the following example: assume that the total

budget for welfare is known, and that one has to split it among the different levers. Then, if

the utility functions and class populations are known, it is easy to estimate the global effect

of splitting the total budget C in (C1, C2, . . . , CK) for the different levers, and one can try

to find the best splitting.

1.3.3 One single path

This section provides a first example of bandwidth sharing network and detailed computa-

tion for its bandwidth allocation in the case of α-fair allocation. The network is the most

simple example we can imagine, that is a single path from a source to a destination. We

consider only the static network, where the number of users in each class is fixed. Users

may not enter or leave the system. This section aims both at giving a first concrete example

of bandwidth sharing network and their bandwidth allocations, and providing preliminary

results we will use in chapter 5 of this dissertation.

Consider a single static path, as depicted in Fig. 1.8. The path consists of K servers

(S1, . . . , SK) in series, where the server Sj has capacity Cj . There are K+1 class of users:

29This assumption is not restricting: rational case is easily extended by multiplication of costs and budgets
by a common constant, and real case as limit of the rational case.

51

S1 S2 Skn0 γ0

n1 γ1 n2 γ2 nk γk

Figure 1.8: An example of path.

users of class 0 use the whole path, and users of class i (1 ≤ i ≤ K) enter the path just

before server Si, and exit the path after server Si. Each class i has ni users, and each of

these users receives a bandwidth equal to γi.

According to the settings, the capacity constraints are:

∀1 ≤ i ≤ K, n0γ0 + niγi ≤ Ci .

Because users of class i (assuming their existence) have no other limits on their bandwidth

than these capacity constraints, the constraints must be tight, and we get the following:

∀1 ≤ i ≤ K, n0γ0 + niγi = Ci . (1.20)

Considering the α-fairness30 defined in (1.19), and using (1.20), we get the following utility:

Uα(γ) =

K∑

i=0

niwi
γ1−αi

1− α

=
1

1− α

(
n0w0γ

1−α
0 +

K∑

i=1

niwi

(
Ci − n0γ0

ni

)1−α)
, (1.21)

where for simplicity of notation, when ni = 0 we abusively define

ni

(
Ci − n0γ0

ni

)1−α
=




0 if Ci − n0γ0 ≥ 0

−∞ otherwise
.

Maximum throughput

The bandwidth allocation chosen here is one of those that maximize the (weighted) global

throughput, i.e. the (weighted) sum of all individual bandwidth31. It corresponds to the case

α = 0. The utility is then

U0(γ) =
K∑

i=1

niwi
Ci
ni

+ n0γ0

(
w0 −

K∑

i=1

wi1ni>0

)
.

30We will abusively write U1(γ) =
∑

s∈S

γ1−α

s

1−α
with α = 1, instead of U1(γ) =

∑
s∈S log(γs). This

is not correct formally, but computations (and in particular differentiation) remains valid, as well as the final
results.

31In the case of maximum throughput, it is often implicitely assumed that all weights are equal.

52

Its derivative with regards to γ0 depends on the sign of the expression(
w0 −

∑K
i=1wi1ni>0

)
.

Hence, if w0 <
∑K

i=1wi1ni>0, the maximum utility allocation in such a case is




γ0 = 0

γi = 1ni>0
Ci

ni

. (1.22)

Otherwise, the maximum utility is




γ0 = min1≤j≤K

Cj

n0+x

γi =
Ci−min1≤j≤K Cj

ni
.

(1.23)

Max-min allocation

A bandwidth allocation is said to be max-min fair if and only if any individual bandwidth

increase within the region of feasible allocations must be at the cost of a decrease of some

already smaller bandwidth. It corresponds to the case α→∞. The only max-min allocation

in our case is 


γ0 = min1≤i≤K fi(C1, n0, ni)

γi =
Ci−n0γ0

ni
,

(1.24)

where we define for all i, fi(Ci, n0, ni) =
Ci

n0+ni
.

Other α-fair allocations

The parameter α is now strictly positive and finite. Taking the derivative of (1.21) leads to

the following:

∂Uα(γ)

∂γ0
= n0

(
w0γ

−α
0 −

K∑

i=1

wi1ni>0

(
Ci − n0γ0

ni

)−α)
. (1.25)

Since Uα is continuously differentiable on the region of feasible allocations, and as the

limit of the derivative when γ0 tends to 0 by positive values is +∞ and the limit when γ0
tends to min1≤i≤K

Ci

n0
is −∞ (assuming that the corresponding ni is not null), we know

that the maximum of the function on the feasible region is in the interior of the region, and

is a stationary point of Uα. The α-fair allocation hence verifies the following stationary

equation:

w0

γα0
=

K∑

i=1

wi1ni>0

(
ni

Ci − n0γ0

)α
. (1.26)

We are not able to solve the stationary equation in a general case.

53

Identical capacity along the path

However, a solution can be found in the particular case when all servers have the same

capacity C. The equation then reads

(C − n0γ0)αw0 = γα0

K∑

i=1

win
α
i ⇔ C − n0γ0 = γ0 × ñ

⇔ γ0 =
C

n0 + ñ
, (1.27)

where we define the “weighted α sum” as ñ =

(∑K
i=1win

α
i

w0

) 1
α

. Using the capacity

constraints (1.20), we get that γi = ñ
ñ+n0

C
ni

.

1.3.4 The triangle network

The previous example was the single source-destination path, which can hardly be called

a network. We extend here the results to a non-trivial (but small) network topology: a

“triangle network”, as depicted in Fig. 1.9. Similar to the single path network, we will use

this network in chapter 5. However, in contrast to the previous case, we will see here that

there is no closed-form formula for the bandwidth allocation. This situation is in fact the

most common for bandwidth sharing network: bandwidth allocations are implicitly defined.

They can be approximated numerically for a given set of parameters, but no closed form

formula exists for most networks.

S1

S2 S3

k1 η1

n2 n3

k2

η2γ3

n1

k3

η3

γ2

γ1

Figure 1.9: The triangle network.

The triangle network consists of 3 servers, each server being connected to both other

servers. Server Si has a capacity Ci. ki flows cross the server Si, and each of them gets

an allocated bandwidth ηi. There are also flows using two servers: n3 (resp. n2 and n1)

54

flows use the route (S1, S2) (resp. (S1, S3) and (S2, S3)) and each of them gets an allocated

bandwidth γ3 (resp. γ2 and γ1). For simplicity, we will call flows that use the route (S2, S3)

(resp. (S1, S3) and (S1, S2)) of class 1 (resp. 2 and 3), and the flows that have route (Si) of

class i′.

The capacity constraints read as follows:

k1η1 + n2γ2 + n3γ3 ≤ C1

k2η2 + n2γ1 + n3γ3 ≤ C2

k3η3 + n1γ1 + n2γ2 ≤ C3 . (1.28)

Assuming that k1, k2 and k3 are positive, these constraints are tight, and we get:

η1 =
C1 − n2γ2 − n3γ3

k1

η2 =
C2 − n1γ1 − n3γ3

k2

η3 =
C3 − n1γ1 − n2γ2

k3
. (1.29)

Assume also that the bandwidth allocation maximizes the α-fairness utility in the ca-

pacity region, with weights wi (resp. vi) for flows of class i (resp. i′):

Uα(γ,η) =

3∑

i=1

kivi
η1−αi

1− α + (xi + ni)wi
γ1−αi

1− α

= (x1 + n1)w1
γ1−α1

1− α + (x2 + n2)w2
γ1−α2

1− α + (x3 + n3)w3
γ1−α3

1− α

+ k1v1
(C1 − (x2 + n2)γ2 − (x3 + n3)γ3)

1−α

(1− α)k1−α1

+ k2v2
(C2 − (x1 + n1)γ1 − (x3 + n3)γ3)

1−α

(1− α)k1−α2

+ k3v3
(C3 − (x1 + n1)γ1 − (x2 + n2)γ2)

1−α

(1− α)k1−α3

. (1.30)

Except in very specific cases (max-min and maximum throughput fairnesses), there

is no explicit solution (γ,η) maximizing the utility, even in the simple case where

C1 = C2 = C3. This situation is representative of the general case for bandwidth allo-

cation in bandwidth sharing networks. The bandwidth allocation is defined implicitly, and

numerical approximation, e.g. through convex optimization, is the most common way to

compute them.

55

1.4 Statistics

The previous sections were devoted to explain the behaviour of networks, and introduce

the theoretical tools used to model them. This section aims at presenting basic notions of

measurement and statistics, which are the other basis of this dissertation. Statistics is the

branch of mathematics concerned with collecting and interpreting data. The theory is rich,

and our presentation is far from complete. We refer to [She95, Bor98] for additional results.

1.4.1 Parametric estimation and estimators

Assume that you have access to empirical measurement (X1, . . . , XN) of some quantity

which has a physical meaning in your system. For example, the samples could be delays

of individuals packets, or loss events of the system. Assume also that you can guess, e.g.

through theoretical modeling, the shape of the distribution of these samples, depending on

a few parameters. Taking the example of delays and guessing that the system behaves as an

M/M/1 queue, the distribution of the sample should follow an exponential random variable

of parameter µ − λ. Is it possible then, from this empirical sample and the guessed shape,

to guess the value of the unknown parameter? This is exactly what parametric estimators

aim at doing.

More formally, consider a family Dθ of probability distributions fθ (.), where θ is a pa-

rameter, possibly a vector. fθ (.) can denote here a probability mass function in the discrete

case, or a probability density function in the continuous case (the latter will be used in this

presentation).

If X = (X1, . . . , XN) is distributed according fθ0 (.) for some θ0, an estimator θ̂ is a

function of the observation data X = (X1, . . . , XN) to the parameter space that aims at

recovering the value of some function g (θ0) of the real parameter θ0. In most cases, g(.) is

the identity function or some “simple” function . As X is a random vector, θ̂ (X) is also a

random variable or vector.

Remark. A given estimator should formally always use samples of the same size. However,

in practice, we will often consider a class of estimators, one for each sample size, and denote

them as a single estimator.

Example 1.4.1: Assume for example that the family of considered parametric distributions

Dθ = {fθ} =
{
U [θ, θ + 1[

∣∣θ ∈ R
}

is the family of uniform distributions on an interval of

length 1, and the N samples X = (X1, . . . , XN) are uniformly distributed and i.i.d. with

distribution fθ0 with θ0 ∈ R.

An estimator of θ0 is for example

θ̂1(X) = min
1≤i≤N

Xi .

56

This estimator returns the maximum possible value for θ0. Symmetrically,

θ̂2(X) = max
1≤i≤N

Xi − 1

is also an estimator, but θ2 minimizes the estimation. A median estimator could for example

be

θ̂3(X) =
min1≤i≤N Xi +max1≤i≤N Xi − 1

2
.

θ̂3 is the estimator which puts equal distance between θ̂3 and the lowest sample and between

the highest sample and θ̂3 + 1.

The previous example showed that one can design many different estimators for the

same problem. This raises a natural question: which estimator should one choose ? And

how to measure the quality of an estimator? If building estimators is the primary objec-

tive of parametric inference (the branch of statistics which studies the estimators based on

parametric distribution families), the second task is to quantify their performance. We will

present a few classical definitions and results about this in the following section.

1.4.2 A few classical results

Definition 1.4.1. The bias B
(
θ̂
)

of an estimator θ̂ is defined as

B
(
θ̂
)
= IEfθ0

[
θ̂ (X)

]
− g (θ0) ,

where IEf [h(Y)] denotes the expectation of h(Y) when Y is sampled with distribution f .

Remark. The bias depends only on the estimator, and not on the observed data (in contrast to

the error for a given sampleX , which would be θ̂ (X) −g (θ0) and depend on the estimator

and the sample).

Definition 1.4.2. The variance of an estimator is defined as

Var
(
θ̂
)
= IEfθ0

[(
θ̂ (X)− IEfθ0

[
θ̂ (X)

])2
]

.

As θ̂ (X) is in itself a random variable, this definition is precisely the definition of variance

for any random variable.

Definition 1.4.3. The mean squared error of an estimator is defined as

MSE
(
θ̂
)
= IEfθ0

[(
θ̂ (X)− g (θ0)

)2
]

def
= Var

(
θ̂
)
+ B

(
θ̂
)2

.

Definition 1.4.4. An estimator θ̂ is said to be unbiased if its bias is 0.

57

Remark. For finite size samples, as shown in the example 1.4.2, unbiased estimators per-

form often poorly. The problem is that bias speaks only about the mean of the error, and not

the mean squared error or the mean absolute error.

Example 1.4.2: Assume that X is distributed according to a Poisson law of mean θ0. We

wish to estimate g (θ0) = P (X = 0)2 = e−2θ0 with only one observation on X . In partic-

ular, this is the probability to have no arrival during two units of time for any network with

Poisson arrivals of intensity θ0.

If θ̂ (X) is an unbiased estimator, then we have

g (θ0) =
∞∑

k=0

θ̂ (k)P (X = k)

e−2θ0 = e−θ0
∞∑

k=0

θ̂ (k)
θk0
k!

e−θ0 =

∞∑

k=0

θ̂ (k)
θk0
k!

.

By the uniqueness of Taylor series, we know that

θ̂ (k) = (−1)k .

The estimator is unbiased, and indeed, if X1, . . . , XN are i.i.d. with a Poisson distribu-

tion, we have

lim
N→∞

1

N

N∑

i=1

θ̂(Xi) = g(θ0) = e−2θ0 .

However, if one wants to use this estimator on a single sample X , it gives no valuable

information about g(θ0). For even k, the unbiased estimator states that it is almost sure

that no arrivals will occur during any time interval of length 2. Clearly, that probability is

strongly over-estimated. But for odd k, the result is a non-sense, since a probability cannot

be negative!

Finally, the mean squared error of the unbiased estimator is

MSE
(
θ̂
)
=

∞∑

k=0

(
e−2θ0 − (−1)k

)2 θk0
k!
e−θ0

= 1− e−4θ0 .

For θ0 ≥ ln 2
4 , the mean squared error of the unbiased estimator is larger than the mean

squared error of the very crude estimator which always returns 1
2 (its mean squared error is

obviously
∣∣1
2 − e−2θ0

∣∣, hence less than 1
2).

58

We are therefore sometimes interested in estimators32 that are biased for any finite size

samples, but whose bias tends to 0 as the sample size tends grows. Such an estimator will

be called consistent.

Definition 1.4.5. An estimator sequence
(
θ̂n

)
n∈N

is called weakly (resp. strongly) consis-

tent if limn→∞ θ̂n (X) = g (θ0) in probability (resp. almost surely).

This interest for finitely-biased consistent estimator is increased by the Cramer-Rao

lower bound on variance of (unbiased) estimators. This means than if we can find a biased

estimator that has a mean squared error equal to the Cramer-Rao lower bound, we know

that it is as efficient as any unbiased estimator can be.

Definition 1.4.6. Let us denote θ = (θ1, . . . , θN) as the parameter vector. The Fisher

information matrix If (θ) for the density fθ is the N ×N matrix defined by (If (θ))(i,j) =
IEfθ

[
∂
∂θi

ln fθ(X) ∂
∂θj

ln fθ(X)
]
.

Remark. Under suitable regularity conditions, the Fisher information matrix is also the co-

variance matrix of the vector (∂
∂θi

ln fθ)1≤i≤N . This holds because when one can exchange

the differentiation and integral signs, we have

IEfθ

[
∂

∂θi
ln fθ(X)

]
def
=

∫ (
∂

∂θi
ln fθ(X)

)
fθ(X)dX

=

∫
∂

∂θi
fθ(X)dX

=
∂

∂θi

∫
fθ(X)dX

IEfθ

[
∂

∂θi
ln fθ(X)

]
= 0 . (1.31)

This last relation will be also useful later.

Theorem 1.4.7 (Cramer-Rao lower bound). LetX be a random variable according to some

density fθ0 , where θ0 is a (1×N) vector. Let θ̂ (X) ∈ RK be an estimator of g (θ0). Let

h (θ0) ∈ RK be the mean of θ̂ (X). Let H ′ (θ) denote the derivative (K ×N) matrix of

h (θ), that is (H ′ (θ))(i,j) =
∂hi(θ)
∂θj

. Assume that:

1. The Fisher information matrix is always defined, or equivalently, for all X such that

fθ0 (X) > 0 and all i < N , ∂
∂θi

ln fθ0(X) exists and is finite.

2. One can differentiate under the integral sign, i.e. for any i and j:
∂
∂θj
hi (θ0)

def
= ∂

∂θj

(∫
θ̂i (X) fθ0(X) dX

)
= 33

∫
θ̂i (X)

(
∂
∂θj
fθ0 (X)

)
dX

Then

Cov fθ0

[
θ̂ (X)

]
≥ H ′ (θ0) (If (θ0))−1 t

(
H ′ (θ0)

)

where ≥ is defined by positive-definite matrix ordering.

32Formally, these are families of different estimators, one for each sample size.
33Recall that θ̂(X) is a function which depends only on X , and not on θ.

59

Proof. From assumption 2, we have

∂hi (θ0)

∂θj
=

∫
θ̂i (X)

(
∂fθ0 (X)

∂θj

)
dX

=

∫
θ̂i (X)

(
∂ ln fθ0 (X)

∂θj
fθ0 (X)

)
dX

∂hi (θ0)

∂θj
= IEfθ0

[
θ̂i (X)

∂ ln fθ0 (X)

∂θj

]
.

Considering the vector K =
(
θ̂ (X) ,

∂ ln fθ0 (X)

θ1
, . . . ,

∂ ln fθ0 (X)

θN

)
, we have thanks to

(1.31) that

Cov fθ0 (X) (K) =

(
Cov

(
θ̂ (X)

)
H ′ (θ0)

tH ′ (θ0) If (θ0)

)
.

Using z =
(
t,−tH ′(θ0) (If (θ0))−1

)
and the fact that covariance matrix is positive semi-

definite, we have that for any vector t in RK :

0 ≤z Cov (K)tz

≤
(
t, −tH ′(θ0) (If (θ0))−1

)(Cov
(
θ̂ (X)

)
H ′ (θ0)

tH ′ (θ0) If (θ0)

)(
tt

− (If (θ0))−1 tH ′(θ0)tt

)

0 ≤tCov
(
θ̂ (X)

)
tt− tH ′(θ0) (If (θ0))−1 tH ′(θ0)tt

− tH ′(θ0) (If (θ0))−1 tH ′(θ0)tt+ tH ′(θ0) (If (θ0))−1 tH ′(θ0)tt

0 ≤tCov
(
θ̂ (X)

)
tt− tH ′(θ0) (If (θ0))−1 tH ′(θ0)tt .

Example 1.4.3: This formula may seem complicated, but in most cases, H ′ will be quite

simple. If g is the identity function and θ̂ is unbiased, then h(θ) = θ, and the lower bound

reads Cov
(
θ̂ (X)

)
≥ (If (θ0))−1.

Example 1.4.4: Assume now g is the identity, θ is a scalar and θ̂ is biased. We have

h(θ) = θ +B
(
θ̂
)

. Then Var
(
θ̂
)
≥

(
1+

∂B(θ̂)
∂θ0

)2

If (θ0) .

Definition 1.4.8. An estimator is said to be efficient if it is unbiased and if it achieves the

Cramer-Rao lower bound.

Remark. Note that we require an efficient estimator to be unbiased. Therefore, the mean

squared error of any efficient estimator is Tr (If (θ0))−1 when g is the identity. There can

be some biased estimators that have a lower mean squared error.

Definition 1.4.9. An estimator sequence
(
θ̂n

)
n∈N

is called asymptotically normal if
√
n
(
θ̂n − g (θ0)

)
converges in distribution to N (0, V) for some V > 0.

60

1.4.3 Maximum likelihood estimator

In this section, we will introduce a class of estimators called Maximum likelihood estima-

tors (MLE). A MLE infers parameters by finding the parameter values that maximize the

likelihood of the observation data. For the remaining part of this dissertation, all estimators

will be MLEs, unless otherwise specified.

Definition 1.4.10. Given observations X = (X1, . . . , XN) distributed according to a

density fθ0 , the likelihood function LX (α) of α ∈ Im(g) is defined by LX (α) =

fg(θ)=α (X)
def
= maxθ s.t. g(θ)=α fθ (X).

Remark. We will often use the log-likelihood function L∗ (.) = log (L(.)) when the loga-

rithm simplifies computations.

Remark. If (X1, . . . , XN) are i.i.d. distributed, then LX (α) =
∏N
i=1 fg(θ)=α (Xi) and

L∗
X
(α) =

∑N
i=1 log fg(θ)=α (Xi).

Definition 1.4.11. Let Dθ a family of probability distribution fθ (.). Given observa-

tions X = (X1, . . . , XN), the maximum likelihood estimator is defined by θ̂ (X) =

argmaxθ LX (θ) = argmaxθ L∗X (θ).

Remark. We will often denote by θ̂k the maximum likelihood estimator given k i.i.d. ob-

servations. This defines a sequence of estimators as the sample size grows.

Lemma 1.4.12. The maximum likelihood estimator is function invariant, i.e. ĝ(θ) = g(θ̂).

Example 1.4.5: We consider again the case of example 1.4.2. We want in a first stage to

estimate θ0 (i.e. g is the identity). For one observationX , the MLE estimator θ̂ (X) verifies:

0 =
∂P

θ̂(X)
(X)

∂θ̂

0 =
Xe−θ̂(X)

(
θ̂(X)

)X−1

X!
−
e−θ̂(X)

(
θ̂(X)

)X

X!

θ̂(X) =X .

In a second stage, we estimate e−2θ0 , and hence consider g(θ) = e−2θ. Thanks to the

function invariance of MLE, ĝ(θ) = g(θ̂) = e−2X .

Note that the MLE is biased in this case. We have

IEfθ0

[
θ̂(X)

]
=

∞∑

X=0

e−2Xe−θ0
θX0
X!

= e−θ0(1−
1
e2

) 6= e−2θ0 .

The mean squared error is

MSE
(
θ̂
)
= e−4θ0 − 2e−θ0(3−e−2) + e−θ0(1−e−4) ,

which has to be compared to the mean squared error (1− e−4θ0) of the unbiased estimator.

61

In fact, this situation is representative of the general case: the MLE is often biased for

finite sample sizes, but has low mean squared error.

Remark. MLE need not exist, or can exist and not be unique.

Example 1.4.6: Consider random variables sampled uniformly in [θ; θ + 1]. Any value

between maxXi − 1 and minXi is a maximum likelihood estimator. The MLE is not

unique in such a case.

Similarly, consider random variables sampled uniformly in [0, θ[. A maximum likeli-

hood estimator would be the lowest value strictly greater than maxXi, which do not exist

for any finite sample. MLE is not defined in such a case.

We now give two fundamental theorems. The first one states that under mild conditions,

maximum likelihood estimators are consistent when the sample size grows. In practice, this

convergence is quite fast, meaning that the bias for finite samples is not a real problem. We

do not have however any results to “guarantee” that the convergence is indeed fast.

The second result is that maximum likelihood estimators are asymptotically normal and

asymptotically efficient. This means that we know the variance of maximum likelihood

estimators, and we can control easily the deviation between one estimation and the true

parameter. Once again, mild conditions will be necessary.

Theorem 1.4.13. Let X = (X1, . . . , XN) are i.i.d. observations with density fθ0 , where θ0

belongs to the parameter space Ω. Define for every M ⊆ Ω and every observation X ∈ X

Z (M,X)
def
= inf

θ∈M
log

fθ0(X)

fθ(X)
.

Assume that for each θ 6= θ0 ∈ Ω, there is an open set Nθ including θ such that

IEfθ0 (X) [Z(Nθ, X)] > 0. Assume further that there is a compact set C such that

IEfθ0
[Z(Ω\C,X)] > 0. Then

lim θ̂n = θ0 almost surely (a.s.).

Proof. We want to prove that

∀ǫ > 0,Pθ0

(
lim sup
n→∞

‖θ̂n − θ0‖ ≥ ǫ
)

= 0 .

Let ǫ > 0 and N0 be the open ball of radius ǫ around θ0. Since the open

sets {Nθ : θ ∈ C\N0)} cover the compact set C\N0, we can extract a finite subcover

(N1, . . . , NK−1). Rename Ω\C as NK . Then Ω = N0 ∪
(⋃K

i=1Ni

)
, and ∀i ≥

1, IEfθ0 (X) [Z(Ni, X)] > 0.

62

Let us denote by X∞ an infinite sequence of observations (X1, X2, . . .). Then

{
X∞

∣∣∣ lim sup
n→∞

‖θ̂n (X1, . . . , Xn)− θ0‖ ≥ ǫ
}

⊆
K⋃

i=1

{
X∞

∣∣∣θ̂n (X1, . . . , Xn) ∈ Ni infinitely often
}

⊆
K⋃

i=1



X∞

∣∣∣ inf
θ∈Ni

1

n

n∑

j=1

log
fθ0(Xj)

fθ(Xj)
≤ 0 infinitely often





⊆
K⋃

i=1



X∞

∣∣∣ 1
n

n∑

j=1

Z(Ni, Xj) ≤ 0 infinitely often



 .

But ∀i ≥ 1, IEfθ0 (X) [Z(Ni, X)] > 0. Therefore, by the strong law of large number,

∀i,P





X∞

∣∣∣ 1
n

n∑

j=1

Z(Ni, Xj) ≤ 0 infinitely often






 = 0 , and

P




K⋃

i=1



X∞

∣∣∣ 1
n

n∑

j=1

Z(Ni, Xj) ≤ 0 infinitely often






 = 0 .

Lemma 1.4.14. Assume that fθ(X) is continuous at θ for every θ, almost surely for every

X according to fθ0(X). Then the condition IEfθ0
[Z(Nθ, X)] > 0 in Theorem 1.4.13 can

be changed to IEfθ0
[Z(Nθ, X)] > −∞.

Proof. Let N (k)
θ be a closed ball with radius at most 1

k included in Nθ.We therefore have

N
(k+1)
θ ⊆ N

(k)
θ ⊆ Nθ,

⋂∞
i=1N

(k)
θ = {θ} and Z

(
N

(k)
θ , X

)
is increasing with k for every

X . Since N (k)
θ is a compact set, and fθ(X) is continuous at θ for every θ, there is a

θk ∈ N (k)
θ such that Z

(
N

(k)
θ , X

)
=

fθ0 (X)

fθk (X) . As θk → θ,

lim
k→∞

Z(N
(k)
θ , X) = log

fθ0(X)

fθ(X)
.

63

If IEfθ0 [Z(Nθ, X)] < 0, we use Fatou’s lemma for every θ 6= θ0 to get

lim inf
k→∞

IEfθ0

[
Z(N

(k)
θ , X)

]
≥IEfθ0

[
lim
k→∞

Z(N
(k)
θ , X)

]

≥IEfθ0

[
log

fθ0(X)

fθ(X)

]

≥−
∫

log

(
fθ(X)

fθ0(X)

)
fθ0(X)dX

>− log

(∫
fθ(X)

fθ0(X)
fθ0(X)dX

)

> log(1)

lim inf
k→∞

IEfθ0 (X)

[
Z(N

(k)
θ , X)

]
>0

We can now choose k∗ (θ) and take the open ball of center θ and radius at most 1
k∗(θ)

such that IEfθ0 (X)

[
Z(N

(k∗(θ))
θ , X)

]
> 0.

Example 1.4.7: Let Xj be a random variable with an exponential law of parameter θ0. We

want to show that the MLE is consistent in such a case. The hard work to use Theorem

1.4.13 is to verify the assumptions.

fθ(X) = θe−Xθ is continuous for every θ and X .

Let N ∈ N and θ 6= θ0. We set Nθ =
[
θ − 1

N ; θ + 1
N

]
. Then

Z (Nθ, X) =





log(θ0)−Xθ0 − log
(
θ + 1

N

)
+X

(
θ + 1

N

)
if x ≤ 1

θ+ 1
N

log(θ0)−Xθ0 − log
(
1
X

)
+X 1

X if 1
θ+ 1

N

≤ x ≤ 1
θ− 1

N

log(θ0)−Xθ0 − log
(
θ − 1

N

)
+X

(
θ − 1

N

)
if 1

θ− 1
N

≤ x

and

IEfθ0 [Z(Nθ, X)] ≥ log(θ0)− θ0IEfθ0 [X]− log

(
θ +

1

N

)
+

(
θ − 1

N

)
IEfθ0 [X]

≥ log(θ0)− 1− log

(
θ +

1

N

)
+
θ − 1

N

θ0

IEfθ0 [Z(Nθ, X)] ≥−∞ for N big enough.

Finally, let C =
[
1
N ;N

]
. Then:

Z (Ω\C,X) =





log(θ0)−Xθ0 − log 1
X +X 1

X if x ≤ 1
N

log(θ0)−Xθ0 − logN +XN if 1
N ≤ x ≤

2N logN
N2−1

log(θ0)−Xθ0 − log 1
N +X 1

N if 2N logN
N2−1

≤ x ≤ N
log(θ0)−Xθ0 − log 1

X +X 1
X if N ≤ x

64

and

IEfθ0 [Z(Ω\C,X)] ≥ log(θ0)− θ0IEfθ0 [X]

+

∫ 1
N

0
log(X)θ0e

−θ0XdX − logN

∫ 2N logN

N2−1

1
N

θ0e
−θ0XdX

+ logN

∫ N

2N logN

N2−1

θ0e
−θ0XdX + logN

∫ ∞

N
θ0e

−θ0XdX

≥ log(θ0)− 1 + θ0e
− θ0

N

∫ 1
N

0
logXdX − θ0 logN

∫ 2N logN

N2−1

1
N

dX

+ logNPθ0

(
X ≥ 2N logN

N2 − 1

)

IEfθ0 [Z(Ω\C,X)] ≥ log(θ0)− 1 + θ0

(
1

N
log(

1

N
)− 1

N

)

− θ0 log(N)

(
2N logN

N2 − 1
− 1

N

)

+ logNPθ0

(
X ≥ 2N logN

N2 − 1

)

IEfθ0 [Z(Nθ, X)] ≥ log(θ0)− 1− θ0
(

1

N
+

2N logN

N2 − 1

)

+ logNPθ0

(
X ≥ 2N logN

N2 − 1

)

IEfθ0 [Z(Nθ, X)] ≥0 for N big enough.

We have verified the conditions of Theorem 1.4.13.

We know state the following theorem, showing that under some mild regularity condi-

tions, maximum likelihood estimators are asymptotically normal, with a covariance matrix

equal to the inverse of the Fisher information matrix. We will give no rigorous proof of the

theorem, as it is quite long and complicated and can be found in most textbooks. But we

will give the flow of ideas.

Theorem 1.4.15. Let (X1, . . . , XN) be i.i.d. random variables, each with density fθ0 , and

let θ̂N be an MLE. Assume that θ̂n is consistent, and that the density fθ(X) has continuous

second partial derivatives with respect to θ, and that differentiation can be passed under the

integral sign. Assume that the Fisher information matrix If (θ) is finite and non-singular.

Assume that there exists Kr(X, θ) such that

1. ∀φ, k, j sup‖θ−φ‖≤r
∣∣∣ ∂2

∂φj∂φk
log (fφ(X))− ∂2

∂θj∂θk
log (fθ(X))

)
| ≤ Kr(X,φ)

2. ∀φ limr→0 IEfφ(X) [Kr(X,φ)] = 0

Then under Pθ0 ,
√
n
(
θ̂n − θ0

)
converges in distribution to N

(
0, I−1

f (θ0)
)

.

65

Sketch of the proof Let X = (X1, . . . , XN) and l
′

θ(X) denote the gradient of L∗(X)
N . Then

one can show that l
′

θ̂N
(X) = oP

(
1√
N

)
.

Using a first-order Taylor expansion, we can get that

l
′

θ0(X) +BN

(
θ̂N − θ0

)
= oP

(
1√
N

)
,

where the column j of BN is

(
∂l

′

θ(X)
∂θj

∣∣∣∣
θ=θ∗N,j

)
for some θ∗N,j between (θ0)j and (θ̂N)j .

Next step is to show that IEfθ0

[
l
′

θ0
(X)

]
= 0,

√
Nl

′

θ0
(X)

D→ N (0, If (θ0)) and
√
Nl

′

θ0
(X) = OP (1). Similarly, BN = −If (θ0) + CN , with CN = op(1).

Then CN (θ̂N − θ0) = op(
1√
N
). It is enough to see that

√
Nl

′

θ0(X)− If (θ0)
√
N(θ̂N − θ0) = op(1) ,

and we get that

−If (θ0)
√
N(θ̂N − θ0) D→ N (0, If (θ0)) ,

which is enough to conclude since multiplication by a matrix is a continuous function.

1.4.4 Expectation-Maximization (E-M) algorithm

Heuristic idea and toy example

The Expectation-Maximisation algorithm is one of the algorithms that allows one to numer-

ically compute the maximum likelihood estimator when a straightforward maximization is

difficult. The E-M algorithm is especially powerful when some data is missing or unob-

served and the likelihood of the whole data, including the missing part, is easy to maximise.

The heuristic idea is then to estimate (estimation step) the missing data based on current

parameter estimation and the observed data, and to update the parameters (maximisation

step) according to the observed data and the estimated missing data. In most cases, iterating

these two steps can be proved to converge to some stationary point of the likelihood. A

more complete presentation can been found in [MK08].

Example 1.4.8: Let us take a simple model taken from genetic studies, where four out-

comes (phenotypes) are possible for each observation (organism), with respective i.i.d.

probabilities of θ
4 , 1−θ

4 , 1−θ
4 and 1

2 + θ
4 , for some parameter θ (representing the proba-

bility of one gene to be expressed). Let xi denote the number of observations of type i, and

x = (x1, x2, x3, x4).

Then the likelihood of observation x is

Lθ(x) =
(x1 + x2 + x3 + x4)!

x1!x2!x3!x4!

(
θ

4

)x1 (1− θ
4

)x2+x3 (1

2
+
θ

4

)x4
.

This expression is simple enough and could be directly maximised over θ. But we will

66

apply however the E-M algorithm, for a better understanding.

Let us divide the last case in two different cases, with probability θ
4 and 1

2 . If yi denotes

the number of observations of type i after this division, then x = (x1, x2, x3, x4) is a

reduced data of y = (y1, y2, y3, y4, y5), where x4 = y4 + y5 and xi = yi otherwise.

The log-likelihood of the total data y is

L∗θ(y) = log ((y1 + y2 + y3 + y4 + y5)!)−
5∑

i=1

log (yi!)

+ (y1 + y4) log
θ

4
+ (y2 + y3) log

1− θ
4
− y5 log 2 .

If one knows the full data y, it is easy to maximise the likelihood:

∂L∗θ(y)
∂θ

= 0

⇒ y1 + y4
θ

− y2 + y3
1− θ = 0

⇒ θ =
y1 + y4

y1 + y2 + y3 + y4
.

All what is left to do is now to estimate y4 and y5. If we know x4 = y4 + y5, and

we currently estimate the parameter to be θ(p), then the natural (and maximum likelihood)

estimate for y(p)4 is y(p)4 = x4
θ(p)

4

θ(p)

4
+ 1

2

.

In this example, the E-M algorithm is the following:

1. Choose one random value θ(0) ;

2. Compute y(p)4 = x4
θ(p)

4

θ(p)

4
+ 1

2

;

3. Compute θ(p+1) =
y1+y

(p)
4

y1+y2+y3+y
(p)
4

;

4. Loop to step 2 until convergence.

For the numerical example, assume we have 197 observations, and the following data

x = (34, 18, 20, 125). The maximum likelihood estimator is θ̂ = 0.6268214980.

Starting from θ(0) = 0.5, and using E-M algorithm, we get:

67

p θ(p) θ(p) − θ̂ θ(p+1)−θ̂
θ(p)−θ̂

0 0.5 0.126821498 0.1465

1 0.608247423 0.018574075 0.1346

2 0.624321051 0.002500447 0.1330

3 0.626488879 0.000332619 0.1328

4 0.626777323 0.000044176 0.1328

5 0.626815632 0.000005866 0.1328

6 0.626820719 0.000000779 0.1335

7 0.626821395 0.000000104 0.1346

8 0.626821484 0.000000014

Algorithm

Let X = (X1, . . . , XN) be i.i.d. observations according to a density fθ0 ∈ Dθ. X will

be called the incomplete data. Let Y = (y1, . . . , yK) denote additional data. Assume that

for each θ, there is a density fθ (X,Y) such that fθ (X) =
∫
fθ (X,Y) dY , and let of

density fθ (Y|X) = fθ(X,Y)
fθ(X) denote the conditional density of the missing data given the

incomplete data, for any parameter θ.

Then one can approximate the log-likelihood L∗φ (X) with the expected complete log-

likelihood QX (φ|θ) = IEfθ(Y |X) [log fφ (X,Y)].

The E-M algorithm is the following:

E-M Algorithm: Take any random value for θ(0) and iterate the following for each step k:

• Expectation Step: Compute QX

(
θ|θ(k)

)

• Maximisation Step: Compute θ(k+1) = argmaxθQX

(
θ|θ(k)

)

Properties

The E-M algorithm has several useful properties, ensuring that the likelihood can only in-

crease at each step, that any fixed point of the algorithm is a stationary point of the likeli-

hood, and that under some mild conditions, the algorithm will converge.

Theorem 1.4.16. Let X = (X1, . . . , XN) be i.i.d. observations according to a density

fθ0 ∈ Dθ . Let Y = (y1, . . . , yK) denote the additional data. Let
(
θ(k)
)
k∈N denote the

sequence of parameter estimations from the E-M algorithm.

Then Lθ(k+1) (X) ≥ Lθ(k) (X), with equality iff QX

(
θ(k+1)|θ(k)

)
= QX

(
θ(k)|θ(k)

)

and fθ(k+1) (Y |X) = fθ(k) (Y |X) almost everywhere.

Proof. For any parameter value φ and data X and Y , we have

fφ (X,Y) = fφ (Y |X)× fφ (X) . (1.32)

68

Taking the log, then the expectation with respect to the density fθ(k) (Y |X), we get that:

L∗φ (X) = QX

(
φ|θ(k)

)
− IEf

θ(k)
(Y |X) [log fφ (Y |X)] (1.33)

and

L∗
θ(k+1) (X)− L∗

θ(k)
(X) = QX

(
θ(k+1)|θ(k)

)
−QX

(
θ(k)|θ(k)

)

+ IEf
θ(k)

(Y |X) [log fθ(k) (Y |X)]− IEf
θ(k)

(Y |X) [log fθ(k+1) (Y |X)] .

By definition of θ(k+1), QX

(
θ(k+1)|θ(k)

)
≥ QX

(
θ(k)|θ(k)

)
. And Jensen’s inequality is

sufficient to prove that IEf
θ(k)

(Y |X) [log fθ(k) (Y |X)] ≥ IEf
θ(k)

(Y |X) [log fφ (Y |X)] for

any φ, with equality only if both densities are equal almost everywhere.

Corollary 1.4.17. If the likelihood of the data X can be bounded above, then the sequence(
LX

(
θ(k+1)

))
k∈N converges.

Corollary 1.4.18. Assume that X admits a unique maximum likelihood θ̂. Then θ̂ is a fixed

point for E-M algorithm.

Theorem 1.4.19. We use the same notations and assumptions as in theorem 1.4.16. Let

θ∗ denote a fixed point of E-M algorithm. Assume that the functions φ → QX (φ|θ∗) and

φ → IEfθ∗ (Y |X) [log fφ (Y |X)] are differentiable. Then φ → L∗φ (X) is differentiable at

θ∗ and every partial derivative is zero at this point.

Proof. Equation (1.33) proves that the log-likelihood is differentiable at θ∗. As θ∗ is a

maximum for both φ → QX (φ|θ∗) and φ → IEfθ∗ (Y |X) [log fφ (Y |X)], both functions

have partial derivatives equal to zero at that point, and it is the same for the log-likelihood.

Theorem 1.4.20. We use the same notations and assumptions as in theorem 1.4.16. Assume

further that LX(θ(k)) is bounded or converges, and that there is α > 0 such that for any k,

QX

(
θ(k+1)|θ(k)

)
−QX

(
θ(k)|θ(k)

)
≥ α‖θ(k+1)−θ(k)‖. Then the sequence θ(k) converges.

Proof. LX(θ(k)) is an increasing bounded sequence, therefore converging.

Let ǫ > 0. ∃N , such that ∀n ≥ N , ∀p ≥ 0, LX(θ(n+p)) − LX(θ(n)) =∑p
i=1 LX(θ(n+i))− LX(θ(n+i−1)) < ǫ.

Theorem 1.4.16 shows that for any k, LX(θ(k+1)) − LX(θ(k)) ≥ QX

(
θ(k+1)|θ(k)

)
−

QX

(
θ(k)|θ(k)

)
. We get then that

∑p
i=1QX

(
θ(k+1)|θ(n+i)

)
− QX

(
θ(k)|θ(n+i−1)

)
< ǫ,

which leads to α
∑p

i=1 ‖θ(n+i) − θ(n+i−1)‖ < ǫ and ‖θ(n+p) − θ(n)‖ < ǫ
α .

The sequence θ(k) is Cauchy, therefore converging.

The last theorem we present here specifies at which speed the sequence of estimated pa-

rameters converges to the final value. More specifically, it shows that the difference between

the current estimation and the limit is multiplied by a constant at each step: convergence is

exponentially fast. We refer to [MK08] for the proof.

69

Theorem 1.4.21 (Speed of convergence). We keep the same notations. Assume further

that the sequence θ(k) converges toward some value θ∗. Assume also that each matrix
∂2QX(φ|ψ)

∂φ2

∣∣∣
(θ(k+1),θ(k))

is definite negative, bounded away from zero uniformly in k.

Then we have that
∂2QX(φ|ψ)

∂φ2

∣∣∣
(θ∗,θ∗)

is definite negative, and that

θ(k+1) − θ∗ =
∂2IEfφ(Y |X) [log fψ (Y |X)]

∂ψ2

∣∣∣∣∣
(θ∗,θ∗)

[
∂2QX (φ|ψ)

∂φ2

∣∣∣∣
(θ∗,θ∗)

]−1 (
θ(k) − θ∗

)

+ o
(
θ(k) − θ∗

)
+ o

(
θ(k+1) − θ∗

)
.

1.4.5 Design of Experiment

Given a parametric distribution family and a sample, parametric inference focuses on, deter-

mining the “true” parameters that match the sample. Design of experiment (or, depending

on the context, survey of sampling) is a complementary approach. It aims at characterizing

experiments which, within some constraints, will lead to the best samples and parametric

distribution families for inference. Here, the quality is measured in terms of bias and vari-

ance of the final estimator. In other words, design of experiments studies how one can shift

a little bit an experiment in order to get more exploitable results. There is little theory of

design of experiment, outside the theory of inference. This is more a case by case practice,

where each case depends on the particular constraints and objectives of the experiment.

However, the following elements are often useful:

• repetition: repeating independently the experiences allows one to reduce the bias of

the measurements;

• blocking: this corresponds to grouping some elements, in order to remove unneeded

random effects;

• factorization: exploring the effect of different factors can usually lead to better results

than methods that explore one factor at the time. This effect is particularly clear in

the example that follows.

The subject of design of experiment for communication networks has been partially ex-

plored in [Par09].

Design of experiment can be illustrated by the following example:

Example 1.4.9: Consider eight objects of weights (w1, w2, . . . , w8), that have to be esti-

mated using a pan balance. One might use the balance only eight times, and each weighing

has a normal random error, of null mean and variance σ2. It is possible to put any combi-

nation of objects on each pan, provided that no object is present simultaneously on the two

pans. A natural way to proceed would be to use the weighting i to measure wi, leading to an

estimation with independent white Gaussian error of variance σ2 on each weight. Another

possibility is to use combination of objects, as follows:

70

Experiment Left pan Right pan

1 (1 2 3 4 5 6 7 8) Empty

2 (1 3 4 8) (2 5 6 7)

3 (1 2 5 8) (3 4 6 7)

4 (1 6 7 8) (2 3 4 5)

5 (2 3 7 8) (1 4 5 6)

6 (3 5 6 8) (1 2 4 7)

7 (2 4 6 8) (1 3 5 7)

8 (4 5 7 8) (1 2 3 6)

Let Xi denote the (possibly negative) result of experiment i, i.e. the weight that must

be added to the right pan to obtain balance. We then have the following estimators:

ŵ1 =
X1 +X2 +X3 +X4 −X5 −X6 −X7 −X8

8

ŵ2 =
X1 −X2 +X3 −X4 +X5 −X6 +X7 −X8

8

. . .

ŵ8 =
X1 +X2 +X3 +X4 +X5 +X6 +X7 +X8

8
.

They are unbiased estimator, and their variance is σ2

8 . This means that using a new com-

bination of objects, we have been able to reduce the estimation error. However, it must be

said that the error for different objects is no more independent.

1.5 Network measurements

1.5.1 Communication networks measurement

The ability to measure any computer system is vital for a variety of functions including

troubleshooting, managing, optimizing and forecasting, and communication networks are

no exception for it. The impressive growth of communication networks in general and of

the Internet in particular in the last two decades, paired with the globalization of economy

and cultural exchange, has lead to an increasing need of networks measurement. This need

is shared by most actors of today’s network:

• network operators: these are the companies which run the networks. They need to

manage their network, and detect and localize possible faulty links to repair them

(ideally before they impact client service). They also need to evaluate the load on

their network, in order to provision it and eventually upgrade links. Finally, knowing

the main features of the traffic on their network allows them to optimize the network

for these features.

• online service providers: we mean here the many organizations that either propose

services that make sense only on a network (e.g. Google), or heavily rely on a net-

71

work to propose a service that is not intrinsically needing a network (e.g. Amazon).

Note that this may include vital service for a country, such as the bank system or pub-

lic administration. These organizations need to be able to measure both qualitatively

and quantitatively their access to the network, in order to make sure that they are

available on their target network or can use the network on which they rely on. The

massive cyberattack in 2007 on Estonia 34 is a clear example of the impact that a net-

work collapse can have on a broad scale, and why organizations or countries reliant

on a network need to measure it. The rise of business over the Internet in the re-

cent years and the deployment of cloud computing and distributed network services35

used by big companies increase the need to watch and measure the Internet, and in

a more general manner, the development of the current society of information and

communication extends this need to many other networks. Communication networks

in general, and the Internet in particular, now play a vital role in western countries

economy and administration, and the recent history suggests that the importance of

this role will still increase in the coming years.

• individual end clients: these are the users of the Internet in a non professional way,

including all the families that pay for ADSL (or similar) lines. Whilst they usually

do not absolutely need the network, they pay for it, and are often in a situation where

it is difficult for them to evaluate what they get in exchange of their fee, or even to

determine whether their problems of connection are related to their Internet Service

Provider (ISP) or not.

The distributed nature of the Internet makes it even more difficult to measure it: the In-

ternet is the interconnection of many independent networks, and most paths involve several

different sub-networks. In addition, the operators managing these different networks are

often competing firms, and hence do not always cooperate above the required minimum.

Finally, from the fundamental design of the Internet, Internet routers are not aware about

which data they carry, and the endhosts ignore which routers are responsible of their mes-

sages, or even where or precisely when losses or queueing delays occur. All these factors

contribute to the fundamental difficulty of Internet measurements. In [LC06], Laskowsky

and Chuang claim that the distributed nature of the Internet also increases the need of mea-

surement: the fact that network operators are collectively and inseparably responsible of bad

performance incites them to free-ride on the others’ investment. This lack of incentive to

invest (or ensure high performance paths) can be countered only with strong measurement

techniques, which are able to precisely localize the faulty links and network operators.

34Estonia had adopted a paperless operation system based on the Internet for many of its administration, and
hence was highly vulnerable to such an attack.

35Many companies now do not anymore store their data on local servers, but use servers from server farms
that are located kilometers away from their offices. Applications may even be run on these far-away servers,
and the local computer are used just as distant input and output terminals. Google services, such as Gmail,
Google docs and Picasa are a similar concept, applied to individuals.

72

The question of network (and Internet) measurement is not a new one. Some com-

munities have arisen to discuss these questions, including the ACM Internet Measurement

Conference (IMC) and the IP Performance Metrics (ippm) working group of the Internet

Engineering Task Force (IETF, [iet]). These communities are not an exclusivity of scientists

or network operators. There are also user associations or communities, such as Grenouille

[gre] in France which has about one hundred of thousands of members, which rely on end-

to-end measurement to determine the service levels and fairness of access actually provided

by ISPs. Grenouille is particularly relevant for us because it’s a case where people have

actually felt the need of measurement and organized themselves to provide it in a primitive

way. They did not subscribe to a service: they created their own (free) service because

nobody was offering it.

The need for accurate and efficient network measurements is increased by the fact that

measurement techniques are already deployed today on operational systems. The network

operator Sprint (and many other operators) use passive measurements to monitor their net-

work [FDL+01], they can be used in overlays [FM05] or sensor networks [MKLP05, HL04]

or to predict the expected performance of connections [MIP+06].

Internet measurement techniques can be broadly classified in two different approaches:

passive measurement techniques and active probing tools. Passive measurement techniques

rely on link-level statistics, either measured by derivation directly on the link (e.g. using a

DAG card [dag]) or exported by the router or network card36. Due to the high number of

packets per second crossing any link or server today, packet sampling is often necessary (i.e.

only a fixed proportion of packets are counted). The main difficulties of this approach are

(1) the inversion of the sampling scheme, such as to recover the whole statistic of the data;

(2) the reconstruction of the whole network performance (or network anomalies), based on

link-level measurements; (3) the estimation from the network performance (or link-level

statistics) of user-perceived performance.

On the other hand, active probing techniques send test packets, called probes, across

the network between a set of sources and a set of receivers. The network is unaware of the

probe nature of these packets, and transports them just like any other packet. The analysis

of the probe data, mainly the loss and delay time series, aims to estimate network charac-

teristics such as link capacities and server loads, to provide path bottleneck localization and

characterization, and to remotely measure traffic characteristics. The interaction between

the probes, the network and the rest of the traffic is crucial here.

In any measurement schemes, it is useful to distinguish the primary metrics and the sec-

ondary metrics. A primary metric is a quantity that can be directly measured. A secondary

metric is a quantity that can be deduced from primary metrics measurement. Consider for

example a cook who wants to determine whether a chocolate cake is baked or not. A clas-

sical method is to stab a knife into the cake, and observe whether (or how much, or how

it looks) the cake dough stays on the knife. The primary metric is the presence or absence

36Most of today’s Internet router support this function.

73

of dough on the knife. This is what one can observe directly. The secondary metric is to

know whether the cake is baked or not. This is deduced from the primary metrics, because

the cook knows that for this kind of cakes, both are equivalent. He can even maybe deduce

the remaining baking time from the aspect of the dough if there is any. That is again a

secondary metric. Note that this equivalence, or the inversion from a primary metric to a

secondary metric, is valid only for specific cakes. It does not work for apple pies or boiled

potatoes. In the case of active Internet probing, the primary metrics are easy to identify:

these are the loss and delay time series37. They are the only quantities can directly measure,

and from these, we must deduce any other quantity (e.g. capacity, available bandwidth or

path lengths).

1.5.2 Internet Tomography

This end-to-end probing approach is particularly adapted to measurements from individ-

ual clients or online service providers, which do not have access to the internal networks

statistics and hence can perform only very limited passive measurements. In particular, this

allows us to evaluate the performance of whole paths which cross several independent net-

works, as this is the case in the Internet. Even if there was a contract between the Internet

Service Provider and its client which would allow the client to access passive measurements,

these would be limited on the contracting ISP, and would not include the whole path.

A particularly interesting paradigm is the use of the path diversity in the network. When

the set of measurement points is more than a single source–destination pair, it is possible to

conduct measurements on different paths and use the joint measurements to leverage quan-

tities on the sub-paths, or even at the link level if enough path measurements are available.

We will call network tomography any technique which uses path diversity and exclusively

end-to-end measurements to leverage per-link characteristics of the network: in particu-

lar, we exclude here techniques that require that the internal routers send an ICMP echo

message38.

Except for the direct estimation of path loss rates and delays, Internet tomography uses

in most cases a parametric inference approach, as seen in section 1.4.1. A model for the

delay or loss series is postulated, with a few parameters allowing a “fine” tuning of the

shape. This model is often postulated “a priori”, based on the analysis of a few actual

measurements.

Example 1.5.1 (Medical Imaging): The tomography approach can be compared to medical

imaging39. For a long time, the only way to have a precise image of what is happening

37Other metrics, e.g. connectivity, are sometimes considered as primary metric. Whislt the distinction is not
vital, we argue here that they are in fine in fact deduced from loss and delay time series. Two nodes are for
example said to be not connected if all probe messages between them are lost, and to be connected if at least
one probe message is not lost.

38This last requirement is sometimes omitted in the definition of tomography. Tomography is also sometimes
used to denote methods that estimate per-link characteristics, as opposed to per-path characteristics.

39In fact, Internet tomography was named as such precisely because of this similarity with medical tomogra-
phy.

74

inside a human body was to open it and observe directly. This is similar to the passive

measurement case for networks: direct access to the location of the anomaly is needed40.

Radiography, ultrasonography and Magnetic Resonance Imaging (MRI) use a different

approach. Without going into technical details, all run on the same principles: some signal

(X-rays or ultrasound waves) is sent, and interact with the human body. The modified

signal is then measured at the output. Using known models for the human body41 and the

interaction it should have with the signal, it is possible to deduce whether there is something

anormal or everything is sane, and the precise location of an eventual anomaly. Note that in

particular, these techniques, except the basic radiography approach, use the spatial diversity

to leverage more signal and get more precise information. There are more than one source

and one destination, and more than one signal is sent.

Active probing techniques often suffer from two difficulties. First, except for delay or

loss rate estimation, there is an inversion step, that is an estimator of the (aimed) secondary

metric, from the input of the measured primary metric. When the measure of the primary

metric is deterministic, inversion is sometimes tricky due to the numerical instability of the

estimator. When the primary measurements are random variables, such as the delays of

individual probe packets in a queueing network, as seen in section 1.2, the difficulty can

then be increased by the randomness of the input. It then becomes impossible to find the

groundtruth in each case, as we have seen in theorem 1.4.7 of section 1.4. There is an in-

trinsic imprecision for any estimator, due to the nature of the random system. In [Rou05],

Roughan shows for example that even with perfect sampling with an infinite number of

stealth non-intrusive probes of a M/M/1 queue during a time interval of size T , the esti-

mation of (for example) the delay has a minimal variance. This is due to the fact that the

system has a strong correlation in time, and hence, one might be “stuck” into a unlikely

excursion which is far from the steady state.

The second difficulty is what we call in this dissertation restitution. Active probing is

often described as injecting test packets into the network. These packets are intrusive: they

will be forwarded by the routers, and as any packet, require time to be served. They hence

perturb the observed system, where one is interested in the state of the unperturbed system.

There is a need to remove the impact of the probes on the system. This step can be removed

if the impact of the probes on the system is minimal42. This is particularly the case when the

probing rate is rare enough compared to the system load, but this puts hence a strong limit

on the number of probes one can use, and on their spacing. The impact is even null when,

instead of adding specific probes packets, one tags some already present packets as probes,

40We do not mean here to say that passive measurement tools are obsolete, or anything similar to that. They
are useful in some cases. But they do require a direct access to the links or servers, which is (sometimes)
possible in the networking context. For medical imaging, this direct access is sometimes impossible, in most
cases very intrusive, hence the method has been (nearly) abandoned in this context. We just strengthen here the
fact that in both cases, the direct access to the anomaly is needed.

41This includes the fact that doctors empirically know the signal (or images) of sane bodies, and the images
of most classical anomalies, and are capable also, based on this knowledge, to interpret many unknown images.

42In this case, the probing scheme will often be said uninstrusive, even if this is not formally the case.

75

and measures their delay and loss time series. As these packets would have been anyway

sent at these precise times, the system is unperturbed. However, the prober is strongly

restricted in the choice of the probe patterns, or in their precise timing.

1.5.3 Inverse problems

The notion of inverse problem stems from physics. Consider a dynamical system governed

by some known evolution equation. In a direct problem, the parameters of this dynami-

cal system are known and the goal is to calculate the associated ’trajectory’. This is the

most classical approach in physics and many other sciences. In an inverse problem, one or

more trajectories are observed and, using the evolution equations of the system, one tries to

deduce (some of) the parameters which gave rise to those trajectories.

A typical example of an inverse problem is in acoustics. In the direct problem, the pa-

rameters could be the location and shape of some obstacle as well as some input signals

with a given spatial and temporal structure. These parameters, when used together with the

theory of wave propagation and scattering, allow one to determine the acoustic signal at

any location and time. A classical inverse problem consists in selecting appropriate input

signals, measuring the resulting acoustic signal at certain locations where such measure-

ments are possible, and then leveraging the shape of the solution of the direct problem to

determine the unknown location and shape of the obstacle.

Inverse problems are in fact ubiquitous in physics, and have well established incarna-

tions in many other fields such as fluid dynamics and electromagnetism. They have major

applications in seismology, oil detection, geophysics, medical imaging, and industrial pro-

cess monitoring to quote just a few.

Example 1.5.2 (gravity): The following toy example exhibits many of the key features of

inverse problems which we consider in this paper, and allows us to introduce some termi-

nology.

A mass initially at height y0 and with vertical speed v0 has a trajectory given by the di-

rect equation y(t) = y0+v0t−gt2 . Assume that the initial conditions y0 and v0 are hidden

to some observer, who can only glimpse the trajectory at n different epochs, and assume

each glimpse allows the observer to make an accurate measurement, an observation, of the

mass’s location. Our inverse problem consists in determining the unknown parameters y0
and v0 from the observations. It is easy to see that if n ≥ 2 and if the observer knows

this direct evolution equation, then the observations are enough for him to determine the

unknown parameters unambiguously. If n = 1 the observer can only infer a linear relation-

ship between y0 and v0, and the inverse problem is ill posed or ambiguous, lacking a unique

solution. Furthermore, if g is unknown then the triple (y0, v0, g) can also be determined

from such observations, and this is in fact one of the ways for estimating local values of g.

Our toy example is deterministic. One obtains stochastic scenarios if random measure-

ment errors are considered, or more fundamentally, when replacing the direct equation by

76

a stochastic evolution equation. The inversion problem now becomes one of statistical esti-

mation of the unknown parameters from the observable time series.

Note that the direct equation of our toy system lives in continuous time (and space). A

natural inverse problem is to determine the parameters given observations over continuous

time. Instead, we consider a more difficult problem which consists in inverting for the

parameters based only on a finite number of observations. Part of the great richness of

inverse problems in general is that the nature of the observations may be constrained in

many different ways, often corresponding to practical limitations from applications, each

case demanding different solution methods. Here we will focus on discrete observations,

and we distinguish two subcases:

• passive observations where the glimpse times are not controlled by the observer;

• active observations where the observer can choose when the process is glimpsed.

In the latter setting certain constraints still apply, for example often there is a fixed budget n

of available glimpses, or n may be infinite but a fixed average observation rate is imposed.

A natural question is then that of an optimal spacing of the glimpse times, for example in

the sense of minimal estimation bias and variance.

Our toy example and its stochastic versions are non-intrusive in that the act of making

observations did not perturb the system. A natural extension is to examine the associated

intrusive or perturbation problem, for example each glimpse could add a random impulse

to the motion. Would it still be possible to measure the parameters even in this case? What

would the optimal trade-off between the accuracy of the estimation and the disturbance of

the system? In the particular case of network active probing, probes will add load to the

system, and hence increase loss rates and delays, or lower the quality of service. Whilst

disturbing slightly the system is feasible, it is desirable to limit the perturbation, and even

better to have an almost non-intrusive method.

Finally, the richness of inverse problems also lies in part in the fact that one might have

only a partial knowledge of the direct problem. Newtonian physics is a well-known theory,

which is nearly fully-solved43. In many cases, when systems are non-linear with a high

degree, only qualitative answers can be given, or quantitative answers for only a part of the

solution. It may be the case also that even if the explicit solution is not known, one can

say that it satisfies a specific relation. When the problem is stochastic, full distributions or

time series may not be computed in the direct problem, but specific transition of the system

may however specified. In some cases, this partial knowledge will be enough for an inverse

problem.

Inverse problem theory can be applied to network measurement. The direct problem

is to predict the evolution of the network. In this dissertation, we will use two network

theory: the queueing theory, as presented in section 1.2 and the theory of bandwidth sharing

43Some problems, such as the n-body problem for n greater than 3, are not solved (or even unsolvable). But
much is known is Newtonian physics.

77

networks, which we presented in section 1.3. However, any other theory predicting the

evolution of networks can be used.

The observables, i.e. the trajectories that one can measure, are the results of the direct

problem. In the case of bandwidth sharing networks, these are the (eventually dynamical)

bandwidth allocations, or any statistic based on them. In the case of queueing theory, the

observables are the delay and loss series (or statistics of these, such as their moments,

distribution, etc.) and buffer occupancy statistics. In this dissertation, we will focus on the

Internet active probing paradigm, and hence restrict ourselves to observables that can be

measured from an end-to-end point of view. However, within the IP network framework,

there are many meaningful ISP-centric inverse problems, which can use internal network

observables.

It is important to realize that the application of inverse problems to network measure-

ment is not a direct measurement of the quantities we aim to estimate. Inverse problems

theory estimates the parameters of the model, and not the parameters of the actual sys-

tem. Furthermore, the trajectories one will observe are not trajectories of the theoretical

model, but trajectories of the real network. Since neither queueing theory nor the theory of

bandwidth sharing networks are perfect model for actual networks, there will be a (small)

difference between the modelled and the observed trajectories. However, it the modeled tra-

jectories used for inverse problems are “close to” the real system behaviour, the imprecision

of inverse problem theory might also be small.

Inverse problems could be seen as yet another name for parametric inference of network

characteristics. There are two main difference between “basic” parametric inference and

network inverse problems. First, inverse problem theory is based on classical theoretical

model results. The parametric distribution families on which the inference is based on

corresponds to the prediction of theoretical models. This is clearly possible to state this

a priori for classical inference, but many of the current tomography results are not based

on theoretical model prediction. The inverse problem approach is based on this proximity

between inference and direct theory, and using this name strengthens this fact. As such, it

is a bridge between classical network theory and practical network measurement. Whilst

the (slight) difference of behaviour between actual networks and theoretical models might

lead to the fact that some of the results are not directly applicable to real networks, classical

theoretical models share many key properties with real networks, and hence, the inverse

problems approach can be fruitful and give interesting insight about network measurement.

Second, inverse problem theory is larger than parametric inference and includes the

design of (probing) experiment. A natural question is how to get the “best” observations

within some constraints, be it through a careful design of the probing signal (for example in

oil detection or in medical imaging, where one can control the signal that will be sent and

will interact with the probed object), or through the control of the sampling times (in the

case of the gravity example, or for passive probing of a network). In the case of interest for

us, both aspect will be used. Trains of probe packets can be sent to measure the network,

78

and their design can improve the quality of the measurement44. On another side, when the

number of observations (or probes) is limited, the timing of probe packets or probe trains

is crucial to the quality of the observation. Finally, a prober needs to take into account the

effect of the probe packets onto the network, in order to both not be make it collapse and to

take this perturbation into account, as the quantities that one aims to estimate are the network

characteristics in absence of probes. They are tradeoff here between the increased accuracy

of the estimation that additional probes will most likely allow and the increased perturbation

of the system they will be responsible for. In all these aspects, inverse problem theory

also aims at providing not only estimators of network characteristics, but also guidelines

about how to efficiently probe a network, and which characteristics will be accessible or not

through active network probing.

1.5.4 Bibliography

We end this introduction with a brief bibliography of known results about active network

measurements. The first part quickly goes through the main steps of the active probing his-

tory, and presents existing tools for active probing. The second part focuses on the literature

of active network tomography and the use of path diversity to infer network characteris-

tics. Finally, the third section presents results that we classify as inverse problems, in that

that they don’t aim at providing estimators of network characteristics, but rather guidelines

about what can be inferred or how one can optimally try to infer these quantities.

A brief history of active network measurements The very first beginning of active mea-

surement tools is the ping program [Muu83], which uses ICMP Echo request45 to measure

whether an host is alive or not, and the round-trip time to this host. Van Jacobson’s tracer-

oute [Jac87] is another widely-used tool that sends a stream of packets with increasing

Time-To-Live value to a destination host. The resulting ICMP echos allow to determine

the route from the source to the destination, coupled with rough estimates of the round-trip

times to each of the intermediate hops. Both of these tools are used in a daily manner by

network administrators.

In [Bol93], Bolot conducted in 1993 one of the first systematic study of packet delays

and losses on a single path. He used periodic UDP probes sent with the tool NetDyn [SB93],

to characterize the behaviour of the Internet. Paxson also performed a large-scale study

of routing and packet dynamics on the Internet, deploying measurement tools on many

host over the Internet. In [Pax97], he used repetitive Traceroute measurement between 37

Internet sites to analyze the routing behaviour for pathological conditions, routing stability,

44Common examples are the use of a large train to ensure (or at least increase the likelihood) that the buffers
are non-empty, or the use of back-to-back packets of different sizes, in order to explore the effect of the packet
size on the delay.

45The Internet Control Message Protocol (ICMP) is a transport protocol, similar to TCP and UDP. It is used
to carry control messages, such as error reports (in particular when a packet has exceeded its maximum number
of hops, called Time-To-Live) or (in the case of ping) a request to generate a “host-alive” answer. Contrary to
UDP and TCP, ICMP is not used to carry data, but to exchange information about the state of the network.

79

and routing symmetry. In [Pax99], he studied the packet dynamics of TCP transfers between

35 Internet sites.

Infrastructures have been developed in order to allow the deployment of measurement

tools on many different sites. Traceroute.org [tra] maintains a list of servers which accept

to conduct traceroute or ping measurement from their server to any destination address.

The Internet End-to-End Performance Monitoring (IEPM) group, at Stanford, is monitoring

connectivity and end-to-end performance for sites and universities involved in High En-

ergy physics. These sites also allow to conduct network experiments between their sites.

PlanetLab [Pla] is an overlay of Internet hosts, where institution members can develop and

run their own distributed software. It has become popular to conduct Internet measurement

experiences.

Many tools have been developed in the recent years with the use of active probes to

measure the loss rates of links. Loss rates are difficult to measure, because losses are caused

in batch by short and infrequent buffer overflows. Sting [Sav99] allows to measure the

loss rates on a TCP path between a node and a web servers, and to distinguish between

losses on the forward path and the return path. Zing [MPAM98] evaluates the loss rate on a

single one-way path, between any pair of nodes, with user-specified probe sizes and probes

rate. Badabing [SBDR05] and its slightly modified version Slam [SBDR07] use trains of

probe packets to estimate the loss rates and congestion episodes. The precision of these

tools can be increased with the use of longer (and more) trains, at the cost of a greater

intrusiveness. Tulip [MSWA03] allows in addition to localize the lossy links on a one-way

path, but requires 10 to 30 minutes to run, which is longer than most other tools. It does so

by estimating the loss rates between the source and any node in the path.

Bandwidth also received considerable interest. The initial approach [Kes95] was to

send two back-to-back probe packets, and measure their dispersion, i.e. the difference in

their arrival time, to deduce the minimum capacity, called bottleneck along the path. bprobe

[CC96], Nettimer [LB01] and pipechar [JYCA01] use such an approach. Pathchar [Jac97]

and its variant Bing [Bey95] and Pchar [Mah99] analyze packets’ Round Trip Time linearity

with respect to their size, and deduce the capacity of the hop. Repetitive use of this approach

allows to deduce the capacity of all links along a path. In [PV02a], Pásztor and Veitch use

a similar idea on carefully constructed sequence of packets, which allows to reduce the

probing overhead.

Packet pair method was also extended to trains of packets46, in order to estimate the

available bandwidth (that is the space capacity on the link) along a path. Many tools use this

approach, with careful constructed trains and a slightly different analysis of the delay series.

We must mention here Cprobe [CC96], Pathrate [DRM01, DRM04], Pathload [JD02], PTR

[HS03], Pathchirp [RRB+03], TOPP [MBG00], Spruce [SKK03], Delphi [RCR+00] and

IGI [HS02]. Depending on the train construction and the delay analysis, they allow to

estimate either the cross-traffic intensity, the available (or sometimes achievable) bandwidth

46By a packet train, we mean a set of more than 2 closely spaced probe packets.

80

or the load (defined as the ratio between the cross-traffic intensity and the capacity) of the

path.

Internet tomography literature The tomography literature can be broadly divided into

three parts: literature speaking about loss inference, literature whose subject is the delay

inference, and finally literature which focus on topology inference.

The first tomography paper [CDHT99] used multicast probes to infer the internal loss

characteristics in a tree. The correlation of losses for different receivers allowed to distin-

guish the contribution of each link to the end-to-end loss rates. The method was evaluated on

a large scale in [ABC+00], and generalized to the case of partial information (where some

data points are unknown) by the use of the E-M algorithm in [DHT+02]. In [BDLPT02],

it was generalized to no tree-shaped topologies, and sufficient and necessary conditions for

identifiability of individual link loss rates are given. Losses are in practice not independent,

and the Bernoulli model is an approximation. This weakness is studied in [ADV07], where

the temporal loss characteristics are infered from multicast probes.

As multicast is not always feasible, unicast alternatives have been considered. Coates

and Nowak et al. in [CN00] use pairs of closely spaced unicast packets, exploiting the strong

correlation of the losses of packets in the same pair. Duffield et al. use a same approach

in [DPPT01], with stripes of packets that can be larger than pairs. In [ZCB09], the authors

identify the loss rates of minimal identifiable link sequences in a general topology, using as

little assumption as possible.

Finally, loss rates have a particular pattern on the Internet: most links have a (near) zero

loss rate, and losses are concentrated on a few links only. It hence makes sense to try to infer

which links have a positive (or a null) loss rate, without focusing on the value of the loss

rates. This is known as the binary (loss) tomography, and has been proposed in [Duf06].

Using the assumption that faulty links are few, they propose a smallest consistent failure

set algorithm to identify these faulty links. [PQW02] propose 3 different algorithms for the

same problem based on web-server measurement: random sampling and linear optimization

algorithm also operates on the assumption that the failure probability are identical and that

lossy links are uncommon, but the Bayesian inference they propose can work with any prior

distribution of loss rates. Nguyen and Thiran have relaxed these assumptions: in [NT07b],

they estimates prior distribution for failure rates using special properties of the boolean

algebra, and localize congested links based on this prior. In [NT07a], they first estimates

the variance of the link loss rates, and using the fact that in practice on the Internet, the

variance increases with the loss rates and that many links have a low loss rates, they remove

these un-congested links from the system until they have a full rank linear system that they

can solve.

Delay tomography followed a similar path: the first delay tomography paper [DP00] ex-

ploited probe multicasting. It used non-parametric estimators, but only recovered the delay

variance at each node rather than the full delay distribution. The related work [PDHT02]

extended the approach to the entire distribution by discretizing delay, effectively introduc-

81

ing a multinomial model for each node delay, and therefore a large number of parameters.

The non-parametric estimators described were based on recursive conditional independence

of child subtrees and deconvolution, and have no direct link to the MLE. In [LY03] a similar

multinomial delay model was taken, but a pseudo MLE approach was employed . A full

MLE was avoided in order to reduce complexity.

Since multicasting is not always practically feasible, a number of works, including

[CN01, TCN03, SH03] examined unicast alternatives based on a packet-pair scheme where

probes are sent in as closely spaced pairs so that they will experience similar delays until

a branch point is reached, after which they follow different paths. Here the likelihood is

simpler as probes approximately ‘multicast’ over two paths only, but the packet-pair as-

sumption introduces additional noise and a much higher probing overhead. In [LMN06],

hybrid ‘flexicast’ combinations of unicast and multicast probing are explored in order to

tradeoff estimation accuracy against computational and probing costs.

The use of discretized node delay models make tradeoffs between computational cost

and accuracy difficult. A small number of papers address this, as we do, by using parametric

approaches involving continuous distributions. Using unicast probing, [SH03] proposes a

mixture model for node delays including Gaussian densities and an atom representing the

minimum propagation delay. A penalized likelihood was adopted to control the number of

Gaussians in the mixture which is maximized using an associated E-M algorithm. More

recently, using multicast probing [CCB07] also employs a mixture model including a single

atom, this time combined with multiple uniform and exponential densities. The analysis is

performed in the transform domain with sampled characteristic functions and performs an

L2 based optimization using quadratic programming, which scales better than E-M to large

trees. In [LMN07] a mixture model, consisting of an atom combined with a continuous

density satisfying certain conditions, is considered for flexicast probing. Based on examples

on simple trees, MLE based approaches are considered but then discarded as intractable in

favour of moment based methods using least squares. The study is preliminary but the

observations on identifiability are important.

Finally, the actual (multicast or unicast) topology is not always known or accessible.

This has been considered in different papers: in [RM99], Ratsanamy et al. infer the multi-

cast topology from the correlation of losses experienced by multicast probes. The bottleneck

of the path is also identified from the delays. The inference is also made from delays of mul-

ticast probes in [DHPT00], and generalized to any mark (including significant delay, loss, or

any flag) that can be added to the probes by the server they cross on their path. The covari-

ance of multicast of probes is used in [DP04] to estimate the variance of link delays and the

multicast topology. Thess different approaches are merged in a single efficient method in

[DHLP01]. An penalized MLE approach is proposed in [DHPT02] based on the delay mea-

surement of careful construct sandwich unicast probes, and a Markov Chain Monte Carlo

algorithm is used to perform the maximization. Rabbat et al. in [RNC04] use probes sent

from a pair of sources to a pair of destinations and their order of arrival to estimate (part

of) the topology of a general network. An overview can be found in [CCL+04], where the

82

authors presents an interesting focus on the scalability of the algorithms and cover mostly

pseudo-likelihood approaches.

Inverse problems in networks related work A main question about active (and passive)

probing is how one should sample a network. The first active measurements used periodic

probing. The ease of sending periodic streams made it a natural choice. Paxson in [Pax97,

Pax99] addressed explicitly the issue of when probes packets should be sent. He applied the

“Poisson Arrivals See Time Averages (PASTA)” principle of the classical queueing theory,

and advocated to use exponentially distributed interprobing time such as to have a sampling

at Poisson epochs. Since then, Poisson probing has become part of the conventional wisdom

of active network measurements. [MACM05] showed that in their particular experiments,

Poisson probing and periodic sampling are both yielding estimations with no significant

difference. The authors also note that the Poisson structure of the probe stream may not be

preserved through the network. [BMVB06] proved that Poisson probing is adapted mostly

when the probes perturb significantly the network. In the case of rare (or stealth) probes,

they propose the “Non Intrusive Mixing Arrivals See Time Averages (NIMASTA)” rule,

and advocate for a probes with interarrival uniformly distributed on a small interval around

the mean, in order to avoid eventual phase locks but stay “close to” periodic sampling. In

[BMVB07], the authors show that an optimal probing strategy (in terms of mean-squarred

error) when the probes do not perturb the network is to use the family of Gamma renewal

probing processes. In [Rou06], Roughan compares periodic and Poisson probing and shows

that (near) periodic sampling usually is slightly more accurate for estimating first order

statistics , but that Poisson (or irregular) sampling can be (at least in some cases) efficiently

used to estimate time series properties, such as auto-correlation functions or periodicities.

[HST07] use a simple two states Markov chain to show that the number of probes needed

to reach a given accuracy threshold in the loss rate estimation is much higher than what a

naive approach would suggest. Parker et al. in [PGS09] study the impact of the probing

rate, using the same model.

The link with (linear) inverse problems is well explained in [CHNY02]. The complex-

ity of the estimation algorithm is considered in [LMN06, XMN06, LMN07]. The main

suggestion is to use “flexicast” experiments, that is probes sent with multicast protocol to

a small set of receivers (instead of all receivers). When using enough (and well designed)

experiments, this flexicast approach allows to keep the needed correlation in measurements

for the same total number of probes, but allows quicker computation of estimators. The

Maximum Likelihood estimator is computed, and an alternative less accurate but quicker to

compute moment-based estimator is proposed. [DLM+07] follows the same approach, and

considers also optimal design of experiment. In particular, the question of probe allocation

(with a total budget) is raised (but not solved). The authors also suggests an interesting tech-

nique to merge “expensive” but accurate measurements (probes) and cheap but error-prone

measurements (traceroute) in a single estimator.

The identifiability of particular metrics is a classical question in inverse problems. Many

83

articles provide results in a particular case. To the best of our knowledge, the most general

identifiability results can be found in [LMN06] for discrete delay distributions and [CCB07]

for general delay distributions. In the particular case of binary tomography, a related ques-

tion is to determine the minimal number of paths to monitor and the associated optimal

placement of measurement points called beacons such as to ensure identifiability. [HA03]

for example shows that the problem is usually NP-hard, and propose an efficient heuristic

for its particular model. [NT04] consider a similar problem with a slightly different model:

the placement of beacons remains a NP-hard problem.

Finally, there has been recently some work that aims at doing a link between classi-

cal queuing theory models and network measurements. [Rou05] uses a M/M/1 model to

assess fundamental bounds on the accuracy of network performance measurement. When

measurements are limited in a finite time frame, they can at best sample the exact trajec-

tory of the network during that time frame, but there is always a chance that the network is

not in that time frame in its stationary distribution. Liu et al. [LRLL04, LRL05] evaluates

with a queueing-theoretic rigourous approach the dispersion of probe trains caused by the

cross-traffic, and show the simplified fluid approach, on which most tools evaluating the

cross-traffic intensity are based, is biaised in many cases. Machiraju et al. in [MVBB07]

study rigorously the case of a single queue with a probabilistic queuing-theoretic treatment,

and provide identifiability results for the cross-traffic distribution and proven estimators

when this is possible. In [NTV06], the authors computes the distribution of the number

of arrival in a M/D/1 queue between two consecutive probe packets, conditionned on the

event that both belong to the same busy period, and use this distribution to evaluate the

cross-traffic intensity on the queue. In a different more ISP-centric framework, [MvdM09]

provides carefully justified guidelines for link dimensioning, based on measurement of the

buffer occupancy. [MZ09] proposes statistical tests based on a M/G/∞ model to detect

changepoints in the load of a voice call system.

1.6 Contribution of this dissertation

Chapter 2 We formulate extensively the end-to-end active probing techniques as inverse

problems in queueing theory. Whilst this connection has been stated for a long time, we

are the first as far as we know to explore it thouroughly. This formulation connects the

active measurement field and queueing theory field, and is aimed mostly at the part of the

community of queueing theory which is not aware of the end-to-end probing paradigm. The

constraints of active probing are formulated in a queueing theoretical manner.

The different steps of active problems in queueing theory are enumerated, and we iden-

tify the main potential difficulties. We classify these inverse problems into three different

categories:

1. Analytical inverse problems, where we assume that the traffic arrivals and the network

behave as a given queueing model, use queueing theory to predict some statistics

84

(e.g. moments, distribution or series of loss events and individual delays) about the

observables, and propose an analytical formula or algorithm providing the desired

parameters from the observation. The particularity here is that we assume a perfect

noiseless statistic of the primary metric, which could be obtained for example with

infinite time series.

2. Statistical inverse problems, which are similar, but take into account the intrisic ran-

domness of the queueing system; the output in this case is a statistical estimator, such

as presented in section 1.4.

3. Optimal probing strategies, where the aim is to find inversion techniques that work or

are optimal for a large class of queueing systems; the output are general guidelines,

bounds, feasibility or impossibility results about inverse problems in queueing theory.

We give examples for the first and third cases, based on simple classical queueing mod-

els, and illustrate through them some properties of these inverse problems.

This chapter is based on results which have been published in [BKV09].

Chapter 3 In this chapter, we consider in details the specific queueing model of a single

path in a Kelly-type network. We first compute the mean and the distribution of probe end-

to-end delays in such a network. We then show that the set of residual bandwidths (i.e. the

difference between the capacity of a link and the sum of the cross-traffic intensities on this

link) is identifiable from the mean end-to-end delays for K different probing intensities,

where K is the length of the path. We propose an algorithm to compute this set of residual

bandwidths, and give numerical applications that show that the algorithm is exact for perfect

end-to-end mean delays, but is intrisically unstable when the empirical mean delays do not

match perfectly the theoretical mean delays.

We then study the maximum likelihood estimator of the set of residual bandwidths,

based on the family of theoretical delay distribution for each set of residual bandwidths. For

K = 2, we present a method to compute it based on a fixed-point equation, and show that

the maximum likelihood estimator is asymptotically consistent in this case. For larger paths,

we compute explicitely the E-M algorithm, and show that it will converge for K = 247.

Numerical examples for different path lengths are given, on which the estimator seems to

perform well and converge in a small confidence set for reasonnable number of probes.

Finally, we present preliminary simulations that empirically study the difference be-

tween this model and real networks, for networks of length K = 1 and K = 2. The

simulation is based on real traffic traces from the core network of a Tier-1 ISP. We study

independently the impact of each assumption of Kelly networks, compared to real networks

case, and propose simple correction factor or techniques when this is needed.

47The classical result is the convergence of the likelihood of E-M estimates. The convergence of the estimates
of the E-M algorithm usually happens in practice, but is difficult to prove theoretically. The general assumptions
are restrictive, and can not be applied in our case. The proof we propose in this chapter is specific to the studied
case.

85

The key result in this chapter is the identification of the whole set of available bandwidth

based on pure end-to-end measurements. As far as we are aware of, previous techniques for

the estimation of available bandwidth were:

• either relying on the cooperation of the internal servers of the networks, e.g. using

ICMP echo replies or ICMP Time Exceeded error messages;

• either are based on dispersion techniques (or packet pairs/trains techniques48), which

can accurately estimate the bottleneck link or the tight link of the path, but are

(mostly) silent about other nodes.

The results of this chapter have been published in [BKV09] and [KBV09].

Chapter 4 This chapter extends the results of chapter 3 to the case of a Kelly tree, with

unicast cross-traffic and multicast probes from the root to the leaves of the tree. Whilst

multicast is not fully deployed, the recent development of television and radio on Internet

increases the realism of this model.

Using combinatorial arguments, we compute the distribution of the joint delays at all

leaves for a general tree. We then propose explicit formulas for E-M algorithm, and give

numerical applications on a few different trees. As one could expect, the estimation is less

precise for nodes that have relative higher available bandwidth. It is also clear (at least on

these examples) that the case of a single path (or more generally, of a few successice nodes

with a single child) leads to less accurate estimation: the reason is that because each branch-

ing point replicates the multicast probes, it becomes “easier” to distinguish the contribution

of each node to the end-to-end delay for (part of) the trees with many branching points.

The E-M algorithm is known to suffer from its low speed. This weakness is not critical

for the case of a single path, but it strongly limits the size of the trees where one can real-

istically computes the maximum likelihood estimator. We propose hence three acceleration

techniques, which decrease the computation time by a large factor (up to 103). First, for

computability reasons, the E-M algorithm does not maximize at each step the (complete)

likelihood, but the difference between the likelihood and a Kullback-Leibler distance. For

this reason, E-M steps are smaller that what would be “optimal”, and we increase their size

in order to decrease the number of steps. More precisely, we double the step size as long

as this operation increases the likelihood of the estimate. We hence keep the convergence

properties of E-M, and find quickly an right-order estimate of the optimal step size. Second,

on a few examples, it appears that E-M trajectories are roughly piecewise linear. Hence, at

each step, we compute, in addition of the classical step, two steps with a slightly modi-

fied direction in order to increase this linearity with previous steps, and execute only the

step which performs the best in terms of likelihood. Paired with the previous size increase

48Packet trains technique send carefully constructed trains of packet with precise departure time, and measure
the arrival times of the packets at destination. By analizing the difference in their arrival times with respect to
their size, it is possible to deduce either the service time on the tight link or the available bandwidth of the
bottleneck link.

86

heuristic, this direction correction allows to have larger steps, and the computation time

is greatly reduced. Finally, the E-M algorithm can start from any (random) point. From

this start, we first find a rough estimate of the MLE by performing a few quick steps with

only a (random) part of the data, before running the full precision algorithm. This allows

to quickly reach the neighbourhood of the maximum likelihood estimate, and reduces the

computation time.

We believe that the acceleration techniques presented in this chapter are useful outside

this precise case. They can be adapted to any iterative algorithm whose trajectory is ap-

proximately piecewise linear. In the case we studied here, the key points are the agressive

algorithm used to find quickly a correct order for the ideal step size, and the fact that the

objective function is much quicker to compute than one algorithm step, hence allowing to

check the objective value for different step sizes.

This chapter is based on the results published in [PVK10].

Chapter 5 In this chapter, we consider inverse problems in bandwidth sharing theory,

such as presented in section 1.3. Bandwidth sharing theory is less developped than queue-

ing theory, and fewer results can be exploited. In particular, there is no explicit bandwidth

allocation formula in most (including some simple) cases49. We show that however, given

an α-fair utility function, it is possible for two simple but generic networks (a single path

with arbitrary number of hops, and a “triangle” network with 3 servers) to infer the server

capacities and number of competiting flows from the allocation with different probe flows

number. We conjecture that this method can be applied to any given topology. As it has been

shown that for specific parameters, bandwidth sharing networks allocation corresponds to

the mean allocation performed by TCP on the equivalent network, it means that in theory,

it should be possible to infer the capacity of the different links and the number of competit-

ing flows on a network, when one measure the bandwidth allocated by TCP to the (TCP)

probing flows for different flow numbers. Numerical applications show that this inversion

is numerically highly unstable, even with very little error in the measured bandwidth allo-

cation.

Bandwidth sharing networks can be used to represent other objects that communica-

tion networks. The formulation is general, and can be adapted to many cases with linear

constraints and general utility maximization. In a few different examples, we also examine

what an inverse problem would mean in this context, and how our proposed technique could

be applied.

These results have not been published yet outside this dissertation.

49We mean here that the bandwidth is implicitely and uniquely defined as maximizing some function, but
that there is no explicit closed-form formula which corresponds to the bandwidth allocation that performs this
maximization. For any concave utility function, the maximization is then a convex optimization problem with
linear constraints, and many techniques exist to approximately compute an optimal solution.

87

88

Chapter 2

Inverse Problems in Queueing

Networks

2.1 Introduction

The general aim of this chapter is to discuss a class of inverse problems of queueing theory

which find their origin in Internet probing. It is our belief that much of what is attempted

in the Internet active probing area can be cast into the framework of inverse problems in

queueing theory, or more generally, of inverse problems in discrete event dynamical systems

theory. The present chapter contains new and recent results in this connection and proposes

a classification of questions and problems within this setting. The choice of queueing theory

as direct theory for inverse problems is a natural choice, due to its historical interaction with

the design of telephone networks and its fundamental role in the design of Internet, to its

proximity with the actual behaviour of communication networks, and to the richness of its

many results. A small number of recent works provide rigorous results of this type. The

great majority of the literature however is focussed on heuristic inversion methods.

This theoretical approach for a practical problem is motivated by the following:

1. the (hidden) assumptions about the behaviour of the network are systematically stated

here, due to the specification of the considered direct problem;

2. the connections between network theory and network measurement is explored in

a structured way; in particular, inverse problem terminology allows one to take into

account the natural constraints of network active probing; in this aspect, inverse prob-

lems theory is a fundamental theoretical approach to the practical problem of mea-

suring networks;

3. it is suited to provide general recommendations about network measurement, such as

optimal probe sequences; the design of experiment is a useful resource for this aim.

Additionally, we will see in chapter 3 that although queueing theory does not model per-

fectly the Internet, it is possible to adapt the inverse problem technique to real networks.

89

In this dissertation, we focused on the settings of end-to-end active probing, as a partic-

ular case of great interest for Internet measurement. In particular, the primary metrics will

be restricted to quantities that can be measured in an end-to-end setting, and no cooperation

from the network will be assumed. This excludes techniques that rely on the clever use of

ICMP messages for example. Some of the constraints we put here can be removed in a

second step, and it is possible to consider inverse problems related to ISP-centric (or server-

centric) measurement, or that include limited cooperation from the network. We however

think that it is useful to start with the most restrictive (and hence general) case first.

This chapter is organized as follows: section 2.2 describes the main concepts of inverse

problems in queueing theory and gives a first classification of these problems. The chapter

is then structured into sections with increasing levels of realism. Section 2.3 focuses on the

case where the observations provide noiseless estimates of certain stationary distributions

or moments. This leads to a class of analytical inverse problems, where the main output of

the method is a closed form formula or a terminating algorithm providing the exact value of

the unknown parameters from the observations.

Although it does not belong to this chapter, we mention here that the case of statistical

inverse problems, where observations are finite time series and where the need is therefore

for robust inversion methods taking the noise into account, deserves great attention, and is

the subject of chapters 3 and 4. The main outputs of the method are 1) a set of estimators

that are shown to be asymptotically consistent and 2) recursive algorithms allowing one to

implement the estimation of the unknown parameters from the time series.

Both analytical and statistical inverse problems are based on rather specific parametric

models which may not be realistic for representing IP networks. The drawback of such

parametric methods is that they have to be checked on testbeds and adapted using heuristic

modifications in order to cope with real IP networks and traffic (as amply exemplified in

e.g. the papers published in the proceedings of the IMC conference). We will not pursue

this line of thought here. We will rather investigate methods which do not suffer from this

weakness. This is the object of section 2.4 which is centered on inversion techniques that

work for general classes of models. For these more general systems, we will limit our-

selves to the non intrusive case, as defined in section 1.5.2. In this case, we show that there

exist probing strategies leading to asymptotically consistent and minimal variance estima-

tors of the unknown parameters, and this regardless of the specific instance of model taken

from this class. These examples are taken from the literature, and have been published in

[BMVB06, BMVB07]. The conclusions of section 2.4 are guidelines and recommendations

on how to ’optimally’ act in this more general setting. This is linked to the general frame-

work of the design of experiments in statistics (see the thesis of B. Parker for the application

of this methodology to packet networks). Section 2.5 concludes this chapter.

90

2.2 Inverse problems in queueing theory

Our discussion of inverse problems in queueing theory will be from the viewpoint of an

Internet prober. That is, an entity whose network observations are derived from probes

which are inserted into the network, where the latter is modelled as a queueing system. The

default assumption is that only end-to-end measurements on probes are available, that is

that the network does not cooperate in any way and so must be treated as a ‘black box’. The

reason for this are that Internet service providers are generally either unable, or unwilling,

to provide information on their network or the traffic flowing on it. In addition, a route

may traverse several Autonomous Systems (administrative domains), implying the need

for cooperation across multiple, and competing, providers. Probing is one of the main

ways in which knowledge of the growth and performance of the Intenet, for example its

interconnection graph or topology, is known today. Indeed, service providers themselves

use probing, despite the fact that they have the option of making measurements directly on

their switching infrastructure. The flexible nature of probing, and its direct access to end-

to-end metrics important for network applications, makes it an important tool for providers

to learn about their own networks. For the end user, it is perhaps their only option. Due

to its practical importance, and a considerable and growing literature, we focus on this

end-to-end probing viewpoint, although of course there exist many other types of inverse

problems pertaining to queueing theory. Within the IP network framework, there are for

instance many interesting ISP-centric inverse problems too, which will be briefly discussed

in section 2.2.10. There are also interesting problems in connection with other domains of

applications of queueing theory. Let us quote for instance the queue inference engine of R.

Larson [Lar90]. This inference engine was designed for ATM machines where the operator

of the (cash) machine wants to evaluate the distribution of the customer queue size. The

observables are here the epochs of the beginning and the end of all transactions (as recorded

by the machine). The busy periods of the single server queue representing the ATM machine

can hence be reconstructed from these observations; from this, the law of the queue size can

then be evaluated. As we see, the nature of the problem is quite different from what was

described above because the observables are quite different (the beginning and end of each

service time in the latter case, the arrival times to and the departure times from the queue in

the Internet probing case, assuming that one represents the IP path as a single server queue).

2.2.1 Direct equations of queueing theory

Queueing theory studies the dynamics of stochastic processes in a network of queueing

stations, such as queue sizes, losses and delays, as a function of certain parameters. These

parameters can be related to the structure of the stations (the number of servers, buffer

sizes, service disciplines) or can be the distribution of the stochastic processes driving the

queueing network (e.g. the rate of some exogenous Poisson arrival point process, or the law

of the service times in a given station). The associated direct equations may bear either on

the joint law of these stochastic processes (e.g. the queue sizes form a Markov chain in a

91

Jackson network), or on the recursions satisfied by the random variables themselves (e.g.

Lindley’s equation for the end-to-end delays for ./GI/1 FIFO queues in series).

The solution of the direct equation bears on the law of these stochastic processes and

might be the steady state or the transient distribution. The solution in the recursion view-

point might be the steady state or the transient random state random variable.

In the network probing setting, there are two types of customers in the network: the

customers (or packets) sent by regular users, often referred to as cross–traffic, and the cus-

tomers (or probes) sent by the prober performing the measurement experiment. The former

are typically fixed, namely the prober has no way to act on the cross–traffic offered to the

network, whereas the latter can be sent at will, at least in the case of active probes.

Note that probes are themselves packets. In the active measurement case, their sizes

may be chosen at will within a range of values. In the case of the Internet, all IP packets

contain a header carrying essential information such as the IP address of the destination, so

that 0 size probes are not possible. The maximal size of an IP packet is also fixed, which

translates to an upper bound on probe size. In the passive measurement case, probes are just

normal packets sent as part of a given application, for instance the packets of a Transport

Control Protocol (TCP) flow in charge of a file transfer. The probe sizes are then determined

by the selected application and associated network protocol.

A key question within this setting is whether the chosen parametric queueing model is

an acceptable approximation of the concrete communication network with its cross–traffic

and its probes. One most often needs a solution for the direct equation in order to solve

the inverse problem. There is hence a crucial tradeoff between the realism of the queueing

model and the mathematical tractability of its direct equation.

2.2.2 Noise

Deviations from ideal assumptions, which we denote generically by ‘noise’, are present at

several levels within this setting:

• Most queueing problems are random by nature: for instance cross–traffic is best rep-

resented as a random process. A key question here is whether the underlying random

processes are stationary or not. Since stationarity is most often desirable for tractabil-

ity, this will lead to upper-bounds on the probing period which should not exceed the

time scale at which macroscopic, for example diurnal, changes occur.

• There may also be actual measurement noise in the data. In the probing framework,

most raw measurements consist of probe departure and arrival timestamps. Neither

timestamping, nor the clocks that underlie them, are perfect, and high precision is

important in order to resolve small differences in latencies (system times) arising

from high capacity links (high service rates). The probability law of the measurement

errors can however be well approximated in many cases.

• Finally, there may be noise stemming from the nature of the data itself: all practical

92

time series obtained from measurement experiments are finite, and so the resulting

estimators for parameters are non-degenerate random variables. In other words, there

are statistical errors in the parameter estimates.

In spite of all these random phenomena, it may still make sense to consider deterministic

direct equations. For instance, the law of a stationary and ergodic stochastic process is a

deterministic object, and the pointwise ergodic theorem shows that when the observables

contain an infinite time series of samples of such a process, these allow one to reconstruct

the stationary law in question with arbitrary precision. In what follows, we will distinguish

between noiseless inverse problems, which correspond to a kind of mathematical idealiza-

tion of reality (e.g. obtained with infinite stationary and ergodic time series, which allow

one to determine the exact value of all mean quantities), and noise-aware or robust inverse

problems where the intrinsic randomness of the problem is faced.

2.2.3 Probing actions

The observables are generated through certain actions of the network prober. We below

describe what actions are allowed.

Choice of topology Whenever probes traverse more than a single station, the route they

follow must be specified. We have seen in section1.1.3), and that the routes on the Internet

are determined by the network functionalities, based on the addresses of the origin and des-

tination, and that the sender has no control on (or even knowledge about) that route. Hence,

a route is here an input-output/origin-destination pair. Within the IP network setting these

end points correspond to interfaces in IP routers. In queueing theory, a natural incarnation

is that of a route in the sense of Kelly-type networks as presented in section 1.2.3. The chief

scenarios are as follows. The network probing is:

• point-to-point when probes are sent from a single source to a single destination;

• point-to-multipoint when probes are sent from a single source to multiple destinations

(the network of queues traversed then has a tree-like topology);

• multipoint-to-point in the case of multiple sources to a single destination;

• multipoint-to-multipoint in the case of multiple sources to multiple destinations.

In the point-to-multipoint case the actual IP network experiment may differ depending on

whether the network has native IP multicast available or not. In the former case, probes fork-

out at each node of the network with a degree larger than 1, and this is well represented by

what happens in a Fork-Join queueing network [BMT89]; in the latter case, the experiment

will in fact consist of a collection of coordinated point-to-point schemes. In the other cases,

the only possibility directly supported by the current Internet is that of a collection of point-

to-point schemes. Note that it is generally assumed that all probes traveling from a given

93

source to a given destination pass by the same sequence of internal stations (routers), though

this can be generalized.

Passive probing actions Purely passive probing is in fact monitoring, and the only free-

dom the experimenter enjoys is an ability to filter packets according to various criteria, for

example to only take note of TCP packets, and to decide which of these to ‘baptise’ or tag

as probes. A less restrictive case is when the prober can in addition control certain overall

parameters of probing traffic. In the IP setting, he could for instance select an HTTP appli-

cation which would initiate several TCP connections whose packets would act as probes, or

alternatively a UDP based application like Voice over IP (VoIP) could be used to generate

a probe stream. Here the prober can nsure that probes of the desired transport and applica-

tion type are present, and also decide on when to start and end the flow(s), but there is still

no control at the level of individual packet timing. This is for example the approach taken

in Grenouille [gre], where FTP downloads and uploads are initiated, and their bandwidth

measured.

Active probing actions Active probing consists in sending a set of probes at carefully

selected epochs and with carefully chosen sizes. Complete control is possible subject only

to constraints on probe size and/or rate as noted above. We include in this category the im-

portant case where the probe sizes and their emission times are defined through stochastic

processes with fully controlled parameters. Because the network functionalities of sec-

tion 1.1.3 require some exchange of data and identification of packets, the size of a packet

has a lower bound. For example, a TCP/IP packet is at least 40 bytes long: the Internet

Protocol (IP), the routing protocol over Internet, adds a (minimum) 20 bytes header to any

packet, and TCP, the transfert protocol which provides reliable transfert and congestion

control via acknowledgements, also adds its own header of at least 20 bytes. For this rea-

son, it is impossible to send perfect ’stealth’ probes. Active probing techniques impact the

network, and this (possibly negligible) impact will be considered in section 2.2.6.

2.2.4 Observables

Observables are the raw data quantities available to the prober through conducting a prob-

ing experiment, and derive from the probing actions just described. In the end-to-end view-

point, for each route, this data consists of probe packet sizes and departure timestamps at

the origin, and loss indication and arriving timestamps (if applicable) at the destination.

Effectively therefore, the information is of two types for each route: a loss indication for

each probe marking whether it arrived at the destination or not, and if applicable, the probe

latency or delay in traversing the route.

In the case of active observations, the packet sizes and departure times are in fact con-

trolled by the prober and therefore already known. For simplicity we nonetheless refer to

these as observables.

94

2.2.5 Unknown parameters and performance metrics

In the context of communication network probing, typical parameters to be identified would

be:

• structure parameters of the nodes/queueing stations traversed by the probes such as

the speed of the link/server, the buffer size, the service discipline used (e.g. to check

neutrality, an important requirement of the IETF that packets should not be discrimi-

nated against on the basis of the application they stem from);

• cross–traffic parameters at a given node if the law of the cross–traffic is in a known

parametric class, or otherwise its full distribution.

It is often desirable to estimate certain performance metrics such as the packet loss proba-

bility, or the distribution of packet latency, along a route or at a given node, in the context

of incomplete knowledge of the system parameters.

2.2.6 Intrusiveness, bias and restitution

Since probes are processed as customers by the queueing system, and moreover have a min-

imum size which is positive, they interact with cross–traffic and so are inherently intrusive.

At first glance, this seems to make the inverse problems more difficult. In fact, as we shall

see, intrusiveness may be useful and can be leveraged in many cases (for example see the

poly-phase methods introduced below).

As a result of intrusiveness, in general, the performance metrics of the system with

cross–traffic and probes differ from those of the system with cross–traffic only. The perfor-

mance metrics (or the parameters) of the system "without the probes" are often referred to as

the ground truth in the network probing literature. For instance the probability that a typical

packet of the cross–traffic on a given route will be lost if there were no probes, or the mean

cross–traffic load at the k-th router on a route, belong to the ground truth. More generally,

the parameters listed above (structural or pertaining to cross–traffic) are by definition part

of the ground truth.

An important question is the reconstruction of some ground truth metric from the ob-

servation or the estimation of the metric for the perturbed system. This will be referred to

as restitution below.

Restitution may even be needed even in the non-intrusive case (for example when probes

have zero size and system time is the metric of interest) because of the sampling bias prob-

lem: a typical example is when the ground truth can be evaluated from certain time-averages

and where probe-averages do not coincide with time-averages.

2.2.7 Identifiability, ambiguity

The observables, either implicitly or explicitly, carry information regarding a spatio-

temporal slice of the network experienced by the probes. This information is clearly partial,

95

which gives rise to a set of system identifiability questions. For example, in the context

of intrusive probing, it is not clear whether the restitution of many ground truth metrics is

possible even in principle.

We shall see below that some parameters or performance metrics of a queueing system

are not always identifiable from the observables. In some cases, different parameters can

lead to the same observations.

2.2.8 Estimation problems

As mentioned above in 2.2.2, in practice the duration of a probing experiment compatible

with stationarity is finite, and the number of probes that can be sent during a finite time

interval is likewise finite. As a result, in practice the observables consist of time series of

finite length, and inversion for the unknown parameters based on them is no longer a deter-

ministic problem, but one of statistical estimation. This leads to a new class of problems

in the design of such estimators, and the establishment of their properties, in particular the

classical ones of bias, variance, asymptotic consistency and asymptotic normality.

In the case of active probing, the degrees of freedom in how probes are sent allows for

another level of problems built on optimizing the statistical properties above. For example

a natural question is to ask how probes should be spaced so as to minimize estimation

variance.

2.2.9 The prober’s path(s) to Ground Truth

Let us summarize by stressing that all paths to a given ground truth or performance metric

require the following series of steps:

1. a tractable and yet realistic direct equation for the dynamics of the observables;

2. a proof of the identifiability of the perturbed metric from the observables;

3. the definition (and possibly the optimization) of estimators for these metrics;

4. the design of a restitution mechanism allowing one to reconstruct the ground truth

from the perturbed or biased metrics.

The aim of the following sections is to illustrate the above in a few fundamental scenarios.

Fortunately enough, some of the requirements may be relaxed in some cases, one may for

instance

• idealize step 3, by assuming an infinite time series and therefore, for example, a full

knowledge of the stationary distribution of some observable; this leads to determin-

istic problems that will be illustrated in section 2.3.

• avoid step 4, by selecting an active probing strategy involving probes rare and small

enough to have almost no impact, which justifies a claim that the perturbed and un-

perturbed systems are the same in practice.

96

Of course, the validity of such simplifications will have to be discussed in detail.

2.2.10 ISP-centric inverse queueing problems

The scenarios considered in the remainder of the chapter focus on point-to-point inverse

problems (which are often more challenging than their multipoint counterparts) arising in

active Internet probing with end-to-end observables. For the sake of completeness, we now

add a few words on other practical incarnations of inverse problems in queueing theory

stemming from the ISP viewpoint.

The simplest observables for an ISP are time series of individual queue sizes and traffic

(service times and packet sizes and arrival times) at the input or output ports of its own

routers. The ISP has the privileged option of directly and non-intrusively monitoring these.

Its actions then primarily consist in choosing when and what queues or traffic processes

to monitor. The parameters and metrics of interest are quite different from, in some sense

inverse to, those alluded to above. An elegant example is that of the reconstruction of end-

to-end metrics, such as the packet loss point process or the fluctuations of end-to-end delays

(jitter) experienced by a typical user whose packets pass by the monitored router, given the

node based observables.

Other aspects of the problem, such as the direct equations to be used, their random

nature, the resulting need for estimators of the metrics of interest, are all quite similar to

what was described above in the Internet prober case.

2.3 Noiseless Inverse Queueing Problems

As mentioned above, in this section we assume that the availability of an infinite time series

has provided perfect knowledge of the distribution function of the end-to-end stationary

observables, so that step 3 from section 2.2.9 may be skipped. This is an idealization of the

noise-aware case, which we study in chapters 3 and 4.

Within this context, we discuss three types of classical models of queueing theory on

which Internet probing type inversion is possible: M/G/1, M/M/1 and M/M/1/B. The meth-

ods described in this section all leverage the fact that probes are intrusive. They consist in

varying the probing rate and in observing how the system reacts to this variation. There are

again various levels of realism: one can either assume, as in section 2.3.1, that the map-

ping that describes the variation of the observation as a function of the probing rate can be

deduced from the observations, or pursue a more realistic scenario (considered in the other

subsections) where one knows the value of this variation at some finite number of points

(probing rates), as in the ‘finite number of glimpses’ scenario of the introduction.

There is a small literature on this analytic approach, scattered in the communication net-

work literature, particularly the proceedings of venues with a strong Internet focus. Among

these the first seems to be [SM98]. Another early paper advocating an analytical inversion

for the estimation of loss processes in networks is [ANT01]. The approach in the latter is

97

moment based (see below).

2.3.1 The M/G/1 Queue

Before probes are injected, the system consists of a FIFO M/G/1 queue with a single server

with speed 1. The service distribution G is the unknown parameter of cross–traffic, but the

input rate λ is known. The sizes of probes obey a law K (this is the service time for probes)

and arrive according to a Poisson point process with rate x. The active prober only has

access to the distribution of end-to-end delays of probes. Can he reconstruct the unknown

parameter G?

The direct equation is the Pollaczek-Khinchin (PK) formula of theorem 1.2.15 which

stipulates that the stationary waiting times of probes have for Laplace Transform (LT)

LW (s) =
(1− xK − λG))s

s− x(1− LK(s))− λ(1− LG(s))
,

where LK(.) and LG(.) denote the LT of K and G respectively, and K and G their means.

We assume that

xK + λG < 1

which is necessary and sufficient for the existence of a stationary regime. Since G is un-

known, it is impossible to check this condition without prior knowledge. Most Internet

resources have a moderate utilization factor (i.e. λG rarely exceeds 3/4 or even 1/2) and

if xK ≪ 1, then the last condition is quite likely to hold. Note that as a general principle

probing overhead should be kept small, in order to avoid consuming network bandwidth, to

reduce intrusiveness, and to prevent probes being confused with network attacks, so assum-

ing xK ≪ 1 is quite reasonable.

From our infinite time series assumption, we have access to any function of the sta-

tionary end-to-end delay process of probes. In particular, the function LW (s) is indirectly

observable (i.e. can be obtained from the direct delay observable) for all values of x and

K since the waiting time of a probe is obtained by subtracting its service time – which is

known to the prober – from its end-to-end delay.

We now proceed to invert the direct equation. By letting s go to infinity, we have

LW (∞) = Px(W = 0) = 1− xK − λG = κ(x)

which is also indirectly observable. Hence for all x, 1 − κ(x) = xK + λG, and one can

determine G, which, substituting into the PK transform,

LG(s) =
(1− xK − λG)s
LW (s)λ

− s− x− λ+ xLK(s))

λ
(2.1)

determines the transform of the entire law G. Therefore, our unknown parameter can be

unambiguously estimated from such observables.

98

This approach also allows us to estimate the ground truth stationary end-to-end delay

distribution. The restitution formula consists in again applying the PK formula for waiting

time, but this time without the probe traffic, which is possible since λ andG are now known.

The main weakness of the present approach should be clear: it requires the estimation of

distribution functions (here LTs) rather than moments; it may be desirable to have moment-

based methods (see section 2.3.2 and 2.3.3 below);

2.3.2 The M/M/1 Queue

The setting of this section is slightly different from that of the last section. The system

is a M/M/1 FIFO queue with a server of unknown speed µ. Cross–traffic is Poisson with

unknown intensity λ and exponential packets with mean 1. The active prober sends Poisson

probes with rate x to the system. All probes have exponential size of mean 1. Can one

reconstruct λ and µwhen observing only the mean stationary end-to-end delays experienced

by the probes?

The stationary mean number of packets and probes in the station is

N(x) =
λ+ x

µ− λ− x,

under the condition λ + x < µ. From Little’s formula the mean end-to-end delay D of

probes (or packets) is

D(x) =
N

λ+ x
=

1

µ− λ− x . (2.2)

This formula, which is our direct equation, shows that the constant µ − λ, which carries

the interpretation of residual bandwidth, can be reconstructed from the observation of D

associated with the value of x. However, the individual constants µ and λ cannot be recon-

structed individually from this alone. Fortunately enough, this mean residual bandwidth is

sufficient for the restitution of the ground truth cross–traffic delay D(0) = 1
µ−λ .

Let us summarize our conclusions on this case: we have here a first-moment based

probing strategy allowing one to determine unambiguously the mean residual bandwidth

of an M/M/1 queue solely from the measurement of the empirical mean end-to-end delays

experienced by probes. Within this context, the problem of identifying the intensity of

cross–traffic or the speed of the server is however ill-posed.

When adding second order estimates, one obtain the additional information needed to

resolve the two parameters. For instance, when sending packet pairs with size y at the same

time, one gets that their system times, D and D′ are such that D′ − D = y/µ so that µ

can be determined (this packet pair method actually holds for all G/G/1 FIFO queues). In

reality, two packets cannot arrive exactly at the same time. It is shown in Appendix 2.6.1

that in the M/M/1 queue, two packets with size y sent t seconds apart have system times D

99

and D′ which are such that, as t goes to 0,

IE(DD′) = K(y)− t
(
(1− ρ)y + ρ

µ

)
+ o(t)

whereK(y) is some constant. The slope w.r.t. t of the function t→ IE(DD′) is (1−ρ)y+ ρ
µ

and it can be estimated, so that 1 − ρ and ρ
µ can also be estimated to arbitrary precision,

using different values of y. This determines both λ and µ unambiguously.

There are other practical methods to evaluate µ not based on moments. The simplest one

consists in sending probes with constant size y and in looking for the probes with minimal

delay. This minimal delay of course allows one to determine µ unambiguously.

2.3.3 The M/M/1/B Queue

The setting is the following: the prober sends Poisson probes with rate x into a system

which, without the probes, would be an M/M/1/B queue with Poisson (cross–traffic) input

point process of unknown intensity λ. Cross–traffic packets are assumed to have exponential

sizes of parameter 1, and the prober emulates this by choosing to send probes with the same

size distribution.

Under natural independence assumptions, the full system (with cross–traffic and probes)

is an M/M/1/B queue with arrival rate λ + x and service rate µ. The direct equation is

the following classical expression for the stationary loss probability p(x) (see for example

[Tak62]):

p(x) =

(
λ+x
µ

)B
−
(
λ+x
µ

)B+1

1−
(
λ+x
µ

)B+1
. (2.3)

Similarly, the probability q(x) that the queue is empty is

q(x) =
1− λ+x

µ

1−
(
λ+x
µ

)B+1
. (2.4)

Can one determine λ, µ and B, assuming that these parameters (or some of them) are

unknown?

From our infinite time series assumption, we have access to the loss rate p(x) as well as

to the sequence of end-to-end delays for each probe. Using packet pair techniques [PV02b],

or alternatively by observing delay minima when probes are chosen of constant size, it is

possible to extract the server speed µ. We therefore assume that µ is known. One key

consequence of knowing µ is that the prober then knows the service time of each probe,

and he can therefore measure the empirical probability q(x) that the queue is empty, since

for probes which encounter an empty queue the observed end-to-end delay is equal to the

service time.

Assume a poly-phase probing scheme with N different probe intensities xi, i =

100

1, . . . , N . Within our noiseless setting, the prober’s measurements allow him to determine

the associated loss rate pi and empty queue probability qi, and hence to compute the ratio

ri =
pi
qi

. From (2.3) and (2.4), the following should hold for all measured ratios:

∀1 ≤ i ≤ N, ri = r(xi) =
p(xi)

q(xi)
=

(
λ+ xi
µ

)B
,

where r(x) is the polynomial (λ+ x)B/µB . For all N ≥ 1 let LN (x) denote the Lagrange

polynomial interpolating the points (xi, ri), i = 1, . . . , N , namely the polynomial in x of

degree at most N − 1 defined by the formula

LN (x) =
N∑

i=1

ri
∏

j 6=i

x− xj
xi − xj

. (2.5)

For N ≥ B + 1, we have LN (x) = r(x) for all x. Hence λ and B can be determined as

follows:

• B is the degree of LN (x);

• (λµ)
B is the constant term of LN (x) (or −λ is the unique real root of LN (x)).

The main limitation of this characterization is that we don’t know when N ≥ B + 1,

i.e. how many phases are needed. In other words, we have an algorithm which converges

to the correct values when letting N go to infinity, but we have no termination criterion for

this algorithm. The following lemma and theorem provide such a termination criterion.

Lemma 2.3.1. Consider the set of polynomials rλ,µ,B(x) with B ranging over the positive

integers and λ and µ over the positive real line. Two different polynomials of this family

intersect in at most 2 points of the positive real line.

Proof. Consider the polynomials P1(x) = rλ1,µ1,B1 and P2(x) = rλ2,µ2,B2 . One can

assume without loss of generality that λ1 > λ2. Let δ = λ1 − λ2. Setting y = x+ λ2, the

equality P1(x) = P2(x) now reads

(y + δ)B1 =
µB1
1

µB2
2

yB2 .

If B1 ≤ B2, let k = B2 −B1. The equality is equivalent to

(
1 +

δ

y

)B1

y−k =
µB1
1

µB2
2

.

The left hand term is a decreasing function of y for positive y, and the right hand term is

constant. There is therefore at most 1 solution for positive y and hence for positive x.

101

If B1 > B2, let k = B1 −B2. The equality is equivalent to

(
1 +

δ

y

)B1

yk =
µB1
1

µB2
2

.

Assume there exists at least 3 positive solutions 0 < y1 < y2 < y3. Then applying Rolle’s

theorem to the function f(y) =
(
1 + δ

y

)B1

yk, we get that there are two points y4 ∈]y1; y2[
and y5 ∈]y2; y3[such that ∂f(y4)∂y = 0 and ∂f(y5)

∂y = 0. Now, note that the derivative

∂f

∂y
= yk−1(1 +

δ

y
)B1−1

(
k(1 +

δ

y
)− B1δ

y

)

admits only one zero y = δB2
k , which contradicts the existence of 3 solutions y1 < y2 <

y3.

Theorem 2.3.2. Assume we have a set of observation points (xi, ri), i = 1, . . . , N , stem-

ming from an M/M/1/B queue with parameters λ and µ. If N > 2 and if the Lagrange poly-

nomial LN (x) interpolating the points (xi, ri), i = 1, . . . , N , can be written as
(
λ̂+x
µ̂

)B̂

for some positive integer B̂ and some positive numbers λ̂ and µ̂, then B = B̂ and λ̂ = λ.

Proof. This is a consequence of Lemma 2.3.1. The polynomials LN (x) and rλ,µ,B(x)

intersect in N > 2 points, and therefore are equal.

We have hence a termination rule: increase the cardinal N of the set of points (xi, ri),

i = 1, . . . , N until the Lagrange polynomial LN (x) interpolating these points is of the form
(
λ̂+x
µ̂

)B̂
.

We can hence reconstruct the ground truth (on the intensity of cross–traffic and on the

loss probability for cross–traffic packets in the absence of probes) by using the formulas for

the M/M/1/B queue again, since all the missing parameters are now determined.

2.3.4 The Erlang loss system

The same method can be easily applied to an Erlang loss system, i.e. an M/G/B/B queue,

where the service time distribution G and the arrival intensity λ are unknown. The probe

packets arrive according to a Poisson point process with rate x, and their sizes obey a law

K.

From example 1.2.2, we know that when the service time distribution is exponential,

the steady-state blocking probability is

PB(x) =
ρ(x)B

B!∑B
i=0

ρ(x)i

i!

, (2.6)

where ρ(x) = λG+ xλK is the load of the system. Similarly, the empty queue probability

102

is

P0(x) =
1

∑B
i=0

ρ(x)i

i!

. (2.7)

A remarkable property of Erlang loss systems (see [Tak62] for example) is that they

are insensitive to the precise distribution of service times: the empty queue and blocking

probabilities depend only on the total load ρ(x) and the number of servers B.

For any probing intensity xi, the prober can easily measure the loss rate PB(xi). Simi-

larly, using fixed size packets, the prober can measure the empty queue probability P0(xi)

(this corresponds to the proportion of packets which experiences a minimal delay). Hence,

the ratio ri = r(xi) = PB(xi)
P0(xi)

= (λG+xiK)B

B! is indirectly measurable, and the method

developped in section 2.3.3 can be used to estimate the capacity B and load λG of the sys-

tem in absence of probes. Due to the insensivity of Erlang loss system to the service time

distribution, it is clear that these are the only parameters that one can be inferred.

A main weakness of this inversion scheme is that it in fact requires several infinite

time series, one per value of x; for instance, the successive interpolations of (2.5) would

in practice require N successive phases: for each 1 ≤ i ≤ N , a phase where the prober

sends probes at rate xi and collects enough samples to have a precise enough estimate of

the stationary probability ratio r(xi) =
p(xi)
q(xi)

, which is a new system requiring a new time

series for each i. It would be desirable to have mono-phase inversion techniques.

More elaborate questions can be addressed along similar lines, for example concerning

the determination of the parameters when µ is unknown, but we will not pursue this line of

thought here as our aim is more to illustrate of the set of problems and solution methods

than to provide an exhaustive set of solutions.

2.4 Optimal Probing Strategies

We have already pointed out that in the error-prone case, once statistical estimators of pa-

rameters have been derived based on a given probing stream, one could consider going

further by asking how their performance can be optimized by taking advantage of the free

parameters of active probing. The difficulty here is that exploring richer probing streams,

for example moving away from Poisson probing, implies dealing with more complex direct

equations.

In this section we show how taking a more general point of view can lead to insight into

the nature of probing streams which are likely to lead to good properties for the associated

estimators, such as low estimation variance. To simplify the problem, we focus on the case

of non-intrusive probes which have no impact on the system, namely the network and its

cross–traffic.

Section 2.4.1, which builds upon ideas discussed in [BMVB06], bears on a question

which is often referred to as the sampling bias problem and which in fact addresses the

issue of the asymptotic consistency of empirical mean estimators.

Section 2.4.2 bears on the minimization of variance within this context. The main ideas

103

stem from [BMVB07].

Section 2.4.3 discusses a few open problems in the case of maximum likelihood estima-

tors.

2.4.1 Sampling bias

Consider the following non-intrusive variant of the problem considered in section 2.3.2. The

network consists of a single station with cross–traffic consisting in a Poisson point process

(with intensity λ) of exponentially sized packets (with mean service time µ). One wants to

estimate the residual bandwidth µ− λ.

For this, one sends probes of zero size to this system according to some stationary point

process which is not necessary Poisson. Let N = {Tn}n∈N denote the points of this point

process and let {W (t)}t∈R denote the stationary workload process in the station (since

probes have 0 size, this workload is also the ground truth workload). We will assume this

stochastic process to be right continuous. For all n, let Dn = W (Tn). Since the system is

FIFO and all probes have 0 size, Dn is the end-to-end delay measured from probe n. If N

and {W (t)} are jointly stationary, then the sequence {Dn} is stationary too. If in addition

N and {W (t)} are jointly ergodic, then the pointwise ergodic theorem implies that

lim
n→∞

1

n

n∑

i=1

Dn = IE0
N [W (0)] a.s. . (2.8)

In the last equation, E0
N denotes expectation w.r.t. the Palm probability P 0

N of the point pro-

cess N (see [BB03]). But if N and {W (t)}t are independent, then E0
N [W (0)] = E[W (0)],

namely probe averages see time averages. Hence, under our assumptions,

lim
n→∞

1

n

n∑

i=1

Dn =
1

µ− λ a.s. , (2.9)

so that we then always have an asymptotically consistent estimator for the residual band-

width.

Assume now that the network and its cross–traffic form a G/G/1 queue with a server

with speed 1 and packets with size distributed according to some probability law F on the

positive real line. Let {W (t)} denote the workload process in this queue. Assume one

sends non intrusive probes according to the point process N . If we have joint stationarity

and ergodicity of the two last processes, then

lim
n→∞

1

n

n∑

i=1

1(Dn = 0) = P 0
N [W (0) = 0] a.s. . (2.10)

If N and {W (t)} are independent, then P 0
N [W (0) = 0] = P [W (0) = 0]. But for all G/G/1

queues, P [W (0) = 0] = 1 − ρ, where ρ is the load factor of the queue. Hence, under the

foregoing assumptions, we have an asymptotically consistent estimator for the load factor,

104

which holds for all G/G/1 systems.

Until relatively recently, whenever the ground truth was some time average (or some

function of a time average as above where the available bandwidth is the inverse of the mean

stationary workload), it was recommended to use Poisson probes, namely probes sent at the

epochs of a Poisson point process50. The rationale for that was that since Poisson Arrivals

See Time Averages [BB03], the samples of the metrics estimated by Poisson probes allow

one to estimate this ground truth.

The arguments used above show that that there is in fact no fundamental reason for using

Poisson probes in the non intrusive case and that a wide variety of other probing strategies

share the same ‘lack of sampling bias’ or more precisely asymptotic consistency property.

Let us list and discuss the key assumptions of the last derivation so as to reach a general

statement. We consider some system with a continuous time state {W (t)}t∈R assumed to

be stationary and ergodic and where the unknown parameters can be determined from the

knowledge of E[W (0)]. If the prober chooses some probing point process N = {Tn}n∈N
which is

1. non intrusive;

2. stationary;

3. independent of {W (t)};

4. jointly ergodic with {W (t)},

and if he can observe the quantities Dn = W (Tn), then the empirical mean of the obser-

vations is an asymptotically consistent estimator of E[W (0)] and hence of the unknown

parameters.

All the above assumptions are necessary. For instance, in the G/G/1 queue example, 3

does not hold whenN is the point process of all or some selected arrivals of the cross–traffic.

In this case (which could be seen as an incarnation of passive measurement), the empirical

mean converges but to E0
N [W (0)] which is then different from E[W (0)] in general. As for

4, if for instance N and {W (t)} are both periodic, then there is no joint ergodicity (we have

a phase lock) and empirical averages converge to a random variables that depends on some

random phase. In none of theses cases do we have an asymptotically consistent estimator

of E[W (0)].

It is easy for the prober to build a stationary point process independent of {W (t)}, for

instance by making use of a stationary renewal process. A simple way to guarantee 4 is to

require that this point process be mixing. Indeed, the product of a mixing and an ergodic

shift is ergodic [Pet83].

Hence the general NIMASTA recommendation: Non Intrusive and Mixing probing Ar-

rivals See Time Averages. Poisson processes are mixing and there is no harm using such

50See the paragraph “Inverse problems in network related work” of section 1.5.4 for a quick literature review.

105

processes within this setting. But the class of ‘good’ probing point processes is much larger

as we see.

The property that the sampling of an ergodic stochastic process at the epochs of a mixing

and independent point process leads to no sampling bias was first proved in [GS98].

We conclude this section with a few observations:

• Consider the above framework. If {W (t)} is known to be mixing, then all stationary

ergodic point processes which are independent of {W (t)} lead to an empirical mean

estimator of the mean value E[W (0)] which is asymptotic consistent.

• In the intrusive case and when the inversion method is based on the empirical mean

estimator of the mean value E[Dx(0)] of some characteristic of the system with

its cross–traffic and its probes, Poisson probing is a natural choice as it guarantees

asymptotic consistency, as a consequence of the PASTA property.

• NIMASTA is valid only when the system state {W (t)} is independent of the probes.

If the network experiences self-synchronization with the probes, or if a network op-

erator unethically perturbs the system just before probe arrivals (e.g. to increase the

apparente performence), the indepence holds no more, and PASTA is a sure fallback.

This raises interesting questions, with another framework where one needs to include

either the self-synchronization effect of the probes or the malicious behaviour of the

network operator. We also argue here that if the probes are rare and small enough,

the self-synchronization effects will most likely be negligible, and that network oper-

ators are more likely to change the apparente performance through different routing

policies or priority queues (which will be valid whatever the timing of the probes)

than throught attempting to empty the buffers just before a probe arrives (which is a

technically difficult operation).

2.4.2 Variance

The setting is the same as that of the last subsection, with N a stationary point process with

intensity µ. We denote the mean value to be estimated by p = E[W (0)] and we denote the

auto-covariance function of {W (t)}t∈R by

R(τ) = IE[W (t)W (t+ τ)]− p2.

We assume that the function τ → R(τ) exists and is convex for τ ≥ 0.

The sample mean estimator of p using K samples is

p̂1 =
1

K

∑

i

W (Ti) . (2.11)

The underlying probability is the Palm probability of N . So T0 = 0 by convention and Ti is

the sum of i inter-sample times, which due to stationarity, each have law F with mean µ−1.

106

Hence Ti has mean iµ−1, and we denote its law by fi.

Using the independence assumptions, we get that the variance of p̂1 (which coincides

with its mean square error as the estimator is unbiased) is given by

Var[p̂1] =
1

K2


KIE[W (0)2] + 2

K∑

i=1

K∑

j=i+1

IE[W (Ti)W (Tj)]


− p2

=
1

K2


KIE[W (0)2] + 2

K∑

i=1

K∑

j=i+1

∫
R(τ)f|i−j|(dτ)


− p2

K
.

(2.12)

As a special case of Equation (2.11), we pick out the estimator based on periodic samples

of period µ−1, namely

p̂2 =
1

K

∑

i

W (iµ−1) , (2.13)

for which the integral
∫
R(τ)f|i−j|(dτ) in Equation (2.12) degenerates to R(|i− j|µ−1).

Theorem 2.4.1. Under the above convexity assumption, Var[p̂1] ≥ Var[p̂2].

Proof. Equation (2.12) holds for all processes. So, to compare the variances it is enough to

compare, for all i 6= j, the cross terms, namely
∫
R(τ)f|i−j|(dτ) and R(|i − j|µ−1). But,

if R(τ) is convex, Jensen’s inequality says that

∫
R(τ)fk(dτ) ≥ R

(∫
τfk(dτ)

)
= R(kµ−1) , (2.14)

for all k.

We see that under the foregoing assumptions, no other sampling process has a variance

which is lower than that of periodic sampling. As just one example, by taking F to be

exponential in p̂1 and inter-sample times to be independent, we learn that Poisson sampling

yields a higher variance than periodic. However, the result is much more powerful than

this. It shows that, if R(τ) is convex, no kind of train or other structure, no matter how

sophisticated, can do better than periodic.

Unfortunately periodic sampling has a disadvantage already discussed: it is not mixing,

which makes it vulnerable to phase locking effects. Assuming that R(τ) is convex, we

now determine sampling schemes that offer the best of both worlds: mixing to guarantee

asymptotic consistency, but with variance close to that offered by periodic sampling.

For this, we will consider sampling using renewal processes with inter-probe times that

are Gamma distributed, namely with density

Γα,λ(x) =
λ

Γ(α)
(λx)α−1 e−λx , (2.15)

on x > 0, where Γ(·) is the familiar Gamma function. Its mean is µ−1 = α/λ and its

107

variance σ2 = α/λ2. Gamma laws are well known to be stable with respect to the shape

parameter α, that is, if {Ti ∼ Γαi,λ} are independent, then
∑

i Ti ∼ Γ∑
i αi,λ. The expo-

nential law corresponds to the 1-parameter sub-family Γ1,λ. Another special sub-family are

distributions with the Erlang law. These have only integral shape values.

We will need one more technical result regarding Gamma laws, the proof of which we

leave to the appendix in section 2.6.

Lemma 2.4.2. Let T ∼ Γα,λ, Z ∼ Γβ,λ be independent, and set Y = T + Z. Then

C = IE[T |Y] = αY/(α+ β) has density Γα+β,(α+β)λ/α, with mean IE[C] = a/λ = IE[T].

We can now prove

Theorem 2.4.3. The family of renewal sampling processes G(β), parameterized by β >

0, with inter-sample time density Γβ,βλ(x), provides, at constant mean sampling rate λ,

sampling variance for p̂1 that monotonically decreases with β. The variance is larger (equal

or smaller) than Poisson sampling as β is smaller (equal or larger respectively) than 1, and

tends to that of periodic sampling in the limit β →∞.

Proof. We assume an underlying probability space on which the family of inter-sample

variables are defined for each β > 0. Equation (2.12) holds for each inter-sample law

G(β). As the means for each are equal to µ = β/(βλ) = 1/λ, proving the variance result

reduces to showing that, for each k > 0,
∫
R(τ)fk,1(dτ) ≥

∫
R(τ)fk,2(dτ) for any β

values β1, β2 satisfying β2 > β1, where fk,i is the density of the sum Tk,i of k inter-sample

times, each with law G(βi). We can apply Jensen’s inequality to show that

IE[IE[R(Tk,1)|Yk,1]] ≥ IE[R(IE[Tk,1|Yk,1)] = IE[R(Tk,2)] =
∫
R(τ)fk,2(dτ)

where to show IE[Tk,1|Yk,1] = Tk,2, we identified (T, Y, α, β, λ) with

(Tk,1, Yk,1, kβ1, k(β2 − β1), β1λ)

and used Lemma 2.4.2. Since this holds for any β1, β2 with β2 > β1, we have monotonicity

of the variance in β. As β tends to infinity, there is weak convergence of Γβ,βλ(x)(dx) to

a Dirac measure at 1/λ, as is easily seen using Laplace transforms. Since the function R is

convex, it is continuous, and as it is also bounded (as a second order process), the property

lim
β→∞

∫
R(x)Γβ,βλ(x)(dx) =

∫
R(x)δ1/λ(dx)

follows from the very definition of weak convergence. This shows that the limit of the

variances of the Gamma renewal estimators is that of the deterministic probe case, namely

the optimal variance.

This result provides a family of sampling processes with the desired properties. By

selecting β > 1, we can ensure lower (more precisely, no higher) variance than Poisson

108

sampling. By selecting β large, we obtain sampling variance close to the lowest possible,

whilst still using a mixing process. The important point is that the parameter β can be used

to continuously tune for any desired trade-off, and to set the sampling variance arbitrarily

close to the optimal case. Note that this optimality is only valid for the expectation of a

primary (directly observable) metric IE [W (0)]: if the metric of interest is deduced from

IE [W (0)], the inversion step can increase the variance of the secondary metric. The ampli-

tude of this increase depends on the inversion step and on the distribution of the error.

There is therefore a need to better understand what classes of queueing sys-

tems/networks lead to second order state processes enjoying the above convexity property

beyond the few classes quoted below.

Known convex examples

A natural question is, how likely is it that networks of interest satisfy the convexity property

for delay and/or loss? There are simple systems for which exact results are known. For

example, Ott [Ott77] showed that convexity holds for the virtual work process (equal to the

delay of probes with x = 0) of the M/G/1 queue. Mandjes and Es-Saghouani [ESM09]

extended this result to the case of queues fed by a spectrally positive Lévy process, and this

was extended to the case of spectrally negative Lévy processes in [GM09].

We now show that the loss process I(t) of the M/M/1/B queue, (namely the indicator

function that the number of customers isB, i.e. the set of periods where arriving packets are

lost) has a convex auto-covariance function. Denote by λ and µ the arrival and the service

rates and by ρ = λ/µ the load factor. From [Tak62] (p.13, Theorem 1), the probability that

the number of customers in the queue is B at time t, given that it is B at time 0, is

PB,B(t) =
1− ρ

1− ρB+1
ρB+

2

B + 1

B∑

j=1

e−(λ+µ)t+2t
√
λµ cos(πj

B+1)

1− 2
√
ρ cos

(
πj
B+1

)
+ ρ
·
(
sin

(
Bjπ

B + 1

)
−√ρ sin(jπ)

)2

(2.16)

in the case when ρ 6= 1 and

PB,B(t) =
1

1 +B
+

1

B + 1

B∑

j=1

e−2λt+2λt cos(πj
B+1)

1− cos
(

πj
B+1

) ·
(
sin

(
Bjπ

B + 1

)
− sin(jπ)

)2

(2.17)

in the case ρ = 1. In both cases, the auto-covariance function of Ix(t), which is equal

to π(B)PB,B(t) (with π(B) the stationary probability that the queue has B customers) is

a convex combination of convex decreasing functions of t and is hence itself convex and

decreasing in t.

109

2.4.3 Maximum Likelihood

Consider some network with a non-intrusive probing process N where the unknown pa-

rameters are obtained by some maximal likelihood method. An example of such a system

would be that of sections 2.4.1 and 2.4.2 when the output is an estimator γ̂ (W1, . . . ,Wm)

depending on the sequence {Wn} = {W (Tn)} , whereW (t) is the virtual end-to-end delay

in the network at time t. Hence W (Tn) is the end-to-end delay seen by the n-th (stealthly)

probe. Here, {W (t)} is a continuous time Markov chain and if N is an independent re-

newal process, then the sequence {Wn} is Markov. If one knows the transition kernel Pt of

the continuous time Markov chain {W (t)}, then one can compute the likelihood function

associated with the samples Wn, 1 ≤ n ≤ m through a formula that involves Pt and the

stationary law of {W (t)}. Here are a few open problems within this setting:

• What renewal point processes are asymptotically efficient within this setting? We

conjecture that if {W (t)} is mixing, then all renewal point processes are asymptoti-

cally efficient.

• For m fixed, what renewal point process gives the MLE with the smallest variance

among the set of all renewal point processes with intensity µ? Is the determinis-

tic point process again optimal in terms of variance? These questions are deeply

correlated with the interaction between the sampling of the primary metric and the

inversion from the primary metric to the secondary metric.

2.5 Summary

In this chapter, we have seen how Internet end-to-end probing techniques can be seen as

inverse problems on queueing theory. The specific constraints of active probing can be

easily integrated in the inverse problem framework. The main steps of such problems have

been identified, and difficulties that can arise and some of their potential workarounds are

examined. We have classified the inverse problems in different classes, depending on their

properties. Simple examples have been used to illustrate these different properties in the

case of analytical inverse problems. Two known results are cited as examples of optimal

probing strategies, and a few open questions on this topic are finally formulated in a general

setting.

The (important) question to determine which system is being measured is not tackled

here. The answer could come from an a priory knowledge of the nature of the network.

Alternatively, it may be possible to try a few measurement techniques and determine which

technique leads to meaningful results, hence identifying the corresponding system. These

are no general solutions, and the development of specific techniques to determine to which

class a network belongs, or of description which can accurately describe most of the net-

works (e.g. the Gaussian assumption for aggregated traffic bit rate in Internet links) is left

as an open question.

110

2.6 Appendix

2.6.1 Packet pairs in the M/M/1 queue

Consider an M/M/1 queue in steady state with the usual notation. Assume one sends to this

system two additional customers at time 0 and t > 0 respectively, both with size x. Below

we assume that t is small and that x > t. Let us denote by V0 the system time of the first

customer and by Wt that of the second. We are interested in the quantity IE(V0Wt). Let S

be an exponential random variable with parameter µ. Conditioned on the fact that the first

customer finds an empty system, the latter is

(1− λt)(x(2x− t)) + λtIE(x(2x+ S − t)) + o(t) = x(2x− t) + txρ+ o(t).

Let A(n) be the sum of n independent random variables, all exponential with parameter µ.

Conditioned on the fact that the first customer finds n customers in the system, the quantity

of interest is

(1− λt)IE[(A(n) + x)(A(n) + 2x− t)] + λtIE[(A(n) + x)(A(n) + 2x+ S − t)] + o(t)

= x(2x− t) + IE[A(n)2] + (3x− t)n
µ
+ λt

(
n

µ
+ x

)
1

µ
+ o(t)

= x(2x− t) + n
2

µ2
+ n(n− 1)

1

µ2
+ (3x− t)n

µ
+ λt

(
n

µ
+ x

)
1

µ
+ o(t) .

Hence

IE(V0Wt) = x(2x− t) + txρ+
1

µ2

(
2ρ2

(1− ρ)2 +
ρ

1− ρ

)
+

+
ρ

1− ρ

(
3x− t
µ

+
1

µ2
+ ρt

1

µ

)
+ o(t)

= IE(V0W0)− t
(
(1− ρ)x+ ρ

1

µ

)
,

with

IE(V0W0) = 2x2 +
1

µ2

(
2ρ2

(1− ρ)2 +
ρ

1− ρ

)
+

ρ

1− ρ

(
3x

µ
+

1

µ2

)
.

2.6.2 Proof of Lemma 2.4.2

Let T ∼ Γα,λ, Z ∼ Γβ,λ be independent, and set Y = T + Z. Then C = IE[T |Y] =

αY/(α+ β) has density Γα+β,(α+β)λ/α, with mean IE[C] = a/λ = IE[T].

Proof. From the scaling property of Gamma, Y ∼ Γα+β,λ. Since T and Z are independent,

111

the density of (T |Y =y) is

P (T =x|Y =y) =
P (T =x, Y =y)

P (Y =y)
=
P (T =x, Z=y − x)

P (Y =y)

=
Γα,λ(x)Γβ,λ(y − x)

Γα+β,λ(y)

=
Γ(α+ β)

Γ(α)Γ(β)
xα−1(y − x)β−1y1−(α+β) .

Recall the Beta function B(x, y) = Γ(α)Γ(β)/Γ(α+ β). The required conditional expec-

tation is given by

IE[T |Y = y] =
y1−(α+β)

B(α, β)

∫ y

0
xα(y − x)β−1 dx

=
y1−(α+β)

B(α, β)
yα+βB(α+ 1, β)

=
α y

α+ β
(2.18)

using the integral identity 3.191(1) from [GR00]. Now viewing y as a sample of Y , we have

C = IE[T |Y] = αY/(α+ β), which is Gamma as stated by the scaling property.

112

Chapter 3

The Single-path Kelly Network

3.1 Introduction

The examples treated in chapter 2 were hardly networks. In the present chapter, we focus

on delay based available bandwidth estimation in a point-to-point tomography context. In

other words, our problem is to determine, based on the end-to-end delays experienced by

probes along a single path, the residual capacity at each node (router) along it. This problem

is of particular interest in practice, because it is the simplest measurement scheme one can

imagine. It requires neither cooperation from the network nor large scale deployment on

a large set of users and coordination between these many end-hosts. In fact, a single pair

of end-hosts can measure the path connecting them, provided they have a reliable way to

measure the (one-way)51 probe delays on this path.

There are very few published works in this area. Recently Liu et al. [LRLL04, LRL05]

provided a rigorous result for available bandwidth of the path, however they focused on

the convergence of average available bandwidth estimates to certain simplified fluid model

limits, which is of limited practical use, and do not attempt to recover bandwidths for each

node. As for parametric approaches, we are aware only of [NTV06, SM98, ANT01] which

treat only a single node, and do not attempt any validation on network data. As far as we

aware of, there is currently no work that aims at estimating the residual bandwidth on each

node of a path, using pure point-to-point end-to-end delays, without any cooperation from

the network nor any path diversity.

This last point is possible because of the (rather strong) assumption that we know the

(exponential) parametric family for the probe delay distribution, and hence, our work will

be valid only when this assumption (nearly) holds. On a theoretical side, the model we use

in this chapter is one of the canonical models in queueing theory. Whilst it is known not to

be perfect, it is surprising given the accepted queueing origin of network delays that such a

choice has escaped attention until now. One can also note that this approach can most likely

51One-way delays are difficult to measure, because it requires a precise clock synchronisation between end-
hosts. But the techniques we propose in this chapter obviously work for measuring the round-trip path, using
round-trip time of probe packets.

113

be adapted (with some likely computation difficulties) to most other parametric families for

the delay distribution, if one is able to exhibit a “good” parametric model for the delays

in a network. For both reasons, one of the main insights in this chapter that we expect to

stay valid in practice is the statement that probe delay distribution is sufficient to determine

the set of available bandwidth along a path. The exact procedure to estimate it might differ

from what is presented here, but this work suggest that the distribution of end-to-end delays

contains enough “information” to estimate the available bandwidth on each node.

In additional to our theoretical contributions based on an idealised network model lead-

ing to a parametric estimation problem, we investigate both theoretically and using real data

the errors induced by deviations from that model. This validation is based on simulations of

network using traces from the core network of a tier 1 ISP. Whilst it is clearly simplistic in

some aspects and can’t be considered as a thoroughly validation, these preliminary results

suggest that the proposed technique could be adapted in practice with little modification, at

least in the core networks.

The chapter is organized as follows. Section 3.2 is primarily probabilistic. It describes

the parametric model, discusses its limitations, and gives its stationary solution leveraging

classical results. A first analytical mean-based poly-phase inversion technique, based on is

presented in section 3.3. It relies on the interpolation of the expected mean delay, for dif-

ferent probing intensities. Whilst having “good” theoretical results, this method is unstable

in presence of error-prone measurement. In section 3.4, we propose an adaptation of the

previous technique that takes into account the randomness of the system. This technique

is still moment-based and poly-phase. Section 3.5 is primarily statistical, and use an al-

ternative distribution-based mono-phase path for the inversion. Multihop inverse problems

are posed in relation to the parametric model, and rigorously solved using maximum like-

lihood estimators and Expectation-Maximization algorithm. We prove that the associated

estimators are asymptotically efficient, and illustrate this using discrete event simulation.

Section 3.6 is experimental and queueing theoretic. It uses traces from a core network

router to drive experiments exploring estimator accuracy, to determine the influence of the

different modelling assumptions, and to test corresponding correction factors which we de-

rive. Section 3.7 concludes this chapter.

3.2 The parametric model

3.2.1 The system

We first describe the system without its probes. It consists of a Kelly network with K

stations S = s1, . . . , sK = D and K + 1 routes. Route 0 has an exogenous arrival point

process which is Poisson of intensity λ0 and follows the path s1, . . . , sK . Route i, for i 6= 0

has an exogenous Poisson arrival process of intensity λi and its path is the singleton si. All

packets have exponential size with mean 1. The service rate (or the speed) of si is µi. An

instance of the basic setting with a two router path is depicted on Figure 3.1.

114

Switch 2Switch 1

S
L1

L2

D

Figure 3.1: Example of path with two routers with non-persistent cross traffic streams,
whereas the probes (blue) pass end-to-end.

The prober sends probes according to a Poisson point process with rate x and with

exponential sizes with mean 1. Probes follow the same path as flow 0 (namely from S to

D). We are hence within the context of point-to-point probing.

The unknown parameters are λ0, λ1, . . . , λK , µ1, . . . , µK . The observables are the sta-

tionary end-to-end delays experienced by the probes.

3.2.2 Model Limitations

The adoption of a Kelly network model gives us parametric access to each hop of the path,

however it comes at the price of a number of strong assumptions on traffic structure. Some

of the most important of these, each of which has the potential to make a large impact on

packet delays, are:

• Routers as FIFO queues Actual routers may follow complex scheduling disciplines,

and real packets experience delays on the incoming side, and contention across the

backplane, in addition to the output buffer queueing that the commonly used FIFO

model nominally represents.

• Poisson cross traffic It is of course well known that Internet traffic is not Poisson (see

section 1.1.4), for example both the packet and TCP flow arrival processes exhibit

long-range dependence. Although Poisson may nonetheless be a good assumption

below some timescale (say 1 second) due to the ‘noising’ effect of multiplexing tens

of thousands of largely independent flows, practical probing schemes will in many

cases exceed this timescale due to the need to control the impact on the network, and

to collect sufficient samples for reasonable estimation variance.

• Exponential packet size It is well known (e.g. [CMT98]) that this distribution

is strongly discrete, and can even be modelled as trimodal. For example S ∈
{40, 576, 1500} bytes, with probabilities (0.5, 0.1, 0.4), captured its rough shape well

in many cases. This is very far from exponential, however its coefficient to mean ratio

Cov [S] =
√

Var[S]/IE[S] ≈ 1.05, which is very close to the 1 of the exponential

case.

115

• Independence of service times In real networks packets have a size which, in terms

of bytes (ignoring effects like changes in encapsulation), does not change as it tra-

verses the network. In Kelly networks, packet sizes are modelled by service times

which are chosen independently at each station.

The errors induced by ignoring the above effects will be explored, challenged, and cor-

rected one by one in section 3.6.

3.2.3 The direct equation

Let us first give the stationary distribution of the end-to-end delays of probes, our direct

equation within this setting.

Let us denote by N j
i and Xj the number of packets of class i, and the number of probes

respectively, in station j in steady state. From the product form of Kelly networks (theo-

rem 1.2.9), we know that if x+ λ0 + λj < µj for all j, then

P(Xj = kj , N j
0 = nj0, N

j
j = njj , j = 1, . . . ,K) =

K∏

j=1

(nj0 + njj + kj)!

nj0!n
j
j !k

j !

λ
nj
0

0 λ
nj
j

j x
kj

µ
nj
0+n

j
j+k

j

j

µj − λ0 − λj − x
µj

. (3.1)

Let γj = µj −λ0−λj denote the residual bandwidth on station j. Direct calculations show

that the marginal distribution of the number of probes is

P(Xj = kj , j = 1, . . . ,K)

=
∑

n1
1≥0

· · ·
∑

nK
K≥0

∑

n1
0≥0

· · ·
∑

nK
0 ≥0

P(Xj = kj , N j
0 = nj0, N

j
j = njj , j = 1, . . . ,K)

=
∑

n1
1≥0

· · ·
∑

nK
K≥0

∑

n1
0≥0

· · ·
∑

nK
0 ≥0

K∏

j=1

(nj0 + njj + kj)!

nj0!n
j
j !k

j !

λ
nj
0

0 λ
nj
j

j x
kj

µ
nj
0+n

j
j+k

j

j

γj − x
µj

=
K∏

j=1

∑

nj
j≥0

∑

nj
0≥0

(nj0 + njj + kj)!

nj0!n
j
j !k

j

λ
nj
0

0 λ
nj
j

j x
kj

µ
nj
0+n

j
j+k

j

j

γj − x
µj

=

K∏

j=1

(
x

µj

)kj γj − x
µj

×
∑

nj
0≥0

(
λ0
µj

)nj
0
(
nj0 + kj

nj0

)
×

∑

nj
j≥0

(
nj0 + njj + kj

njj

)(
λj
µj

)nj
j

. (3.2)

As there is exactly
(
n+k
n

)
k+1-tuple of non-negative integers which sum exactly to n52,

52To show this, realize that such a k + 1-tuple can be coded as a sequence of n + k binary symbols with n

0s and k 1s. The first integer is the number of 0s before the first 1, and recursively, the ith integer is the number
of 0s between the i− 1th and the ith 1.

116

one can realize that

∑

n≥0

(
n+ k

n

)
xn =


∑

n≥0

xn



k+1

.

Hence, (3.2) reads:

P(Xj = kj , j = 1, . . . ,K)

=

K∏

j=1

(
x

µj

)kj γj − x
µj

×
∑

nj
0≥0

(
λ0
µj

)nj
0
(
nj0 + kj

nj0

)
∑

k≥0

(
λj
µj

)k


nj
0+k

j+1

=
K∏

j=1

(
x

µj

)kj γj − x
µj

×
∑

nj
0≥0

(
λ0
µj

)nj
0
(
nj0 + kj

nj0

)
 1

1− λj
µj



nj
0+k

j+1

=
K∏

j=1

(
x

µj − λj

)kj γj − x
µj − λj

×
∑

nj
0≥0

(
λ0

µj − λj

)nj
0
(
nj0 + kj

nj0

)

=
K∏

j=1

(
x

µj − λj

)kj γj − x
µj − λj

(
1

1− λ0
µj−λj

)kj+1

=

K∏

j=1

(
x

µj − λj − λ0

)kj γj − x
µj − λj − λ0

P(Xj = kj , j ∈ [0;K]) =

K∏

j=1

(
x

γj

)kj γj − x
γj

. (3.3)

These equations tell us that our system is equivalent, from the point of view of the probes,

to a new system with K M/M/1 stations in series, without any cross–traffic, and where the

server of station j has speed γj = µj − λj − λ0, namely the residual bandwidth on station

j in the initial system. From this point on, we will therefore consider such a network. The

fact that residual bandwidths are sufficient to characterize (as well as the best one can hope

to determine from) stationary end-to-end delays is in line with what was already observed

in the 1 station case considered in section 2.3.2.

The generating function of the total number of probes in the (reduced) system in equi-

librium is:

ψN (z) =
K∏

j=1

γj − x
γj − xz

. (3.4)

Since probe arrivals are Poisson, PASTA tells us that the distribution of the total number of

probes in the system in steady state as given by (3.3) is the same as that just before a probe

arrives. The latter also coincides with the probability distribution of the number of probes

in the system just after a probe leaves it.

This allows us to state the following lemma:

Lemma 3.2.1. Let φ(t) denote the density at t ≥ 0 of the stationary delay D of a probe in

117

the system. Then

φ(t) =

(
K∏

i=1

γ′i

)
K∑

i=1

e−γ
′
it∏

j 6=i γj − γi
, (3.5)

with γ′i = γi − x.

In addition, the mean value of D(x) of the stationary end-to-end delay of a probe in the

network is

D(x) =
K∑

i=1

1

γi − x
. (3.6)

Proof. Let us now consider the system when a tagged probe leaves the system. Since the

queueing discipline is FIFO, the number of probes N in the system at that time is equal to

the number of probes arrived during the time D the probe spent in the system. So denoting

by φ(t) the density of D at t ≥ 0, we get:

P(N = k)=

∞∫

0

φ(t)P(N = k|D = t) dt=

∞∫

0

φ(t)e−xt
(xt)k

k!
dt .

So the generating function ψN (z) of the number of probes in the system at a probe departure

epoch verifies:

ψN (z) =
∑

k≥0

zkP(N = k) =
∑

k≥0

∫ ∞

0
φ(t)e−xt

(xtz)k

k!
dt

=

∫ ∞

0
φ(t)e−x(1−z)t dt = LD (x(1− z)) ,

where LD(z) is the Laplace transform of D. Hence, setting s = x(1 − z) the Laplace

transform of the end-to-end delay D is:

LD(s) = ψN

(
1− s

x

)
=

K∏

j=1

γj − x
γj − x+ s

, (3.7)

where we used the fact that ψN coincides with the steady state distribution of the number

of probes in the system (3.3), so that ψN (z) is given by (3.4).

Note that (3.7) is the product of the Laplace transform of exponential variables of pa-

rameters γj − x. By injectivity of the Laplace transform of random variables admitting a

density, this proves that the end-to-end delay of probes is the sum of independent exponen-

tial random variables of parameters γj − x. The mean value is hence D =
∑

j
1

γj−x . Using

the Laplace inversion formula and the residue theorem, and setting γ′i = γi − x,

φ(t) =
1

2πi

∫ α+i·∞

α−i·∞
estLD(s) ds =

∑
Res

(
est

K∏

i=1

γ′i
γ′i + s

)
,

so that using α = 0 and then the curve going from −i∞ to i∞ and back on a half circle of

118

infinite radius in the left half-plane, we get (3.5).

Remark. Note that both the mean delay and the delay distribution of the probes are a func-

tion of residual capacities, but not the service or arrival rates, showing that only the γj are

accessible by this technique from the stationary delay distribution.

Remark. More general classes of cross–traffic paths can also be considered within this

framework. In such an extension, there are as many traffic paths as there are pairs of integers

(i, j) with 1 ≤ i ≤ j ≤ K. A path of type (i, j) brings cross–traffic which is Poisson and

enters the network on station i and leaves it from station K. The methodology described

above works in this more general setting. It is easy to show that the final result is exactly

the same as above, namely (3.4) and (3.6) still hold with γi now equal to µi − ξi where ξi
denotes the sum of the intensities on all paths traversing node i.

3.3 An analytical solution

Linear system inversion

In this case, we use a first-moment poly-phase inversion technique, under the following

assumption: the prober can measure the mean end-to-end delay of probes for each phase,

and the number of stations is known (in real IP networks the latter can be measured by tools

such as traceroute). We will explain how the prober can compute the coefficients of the

polynomial whose roots are the residual bandwidths of each station on the path.

From (3.6) the mean end-to-end delay can be expressed as follows:

D(x) =
K∑

i=1

1

γi − x
=

∑K−1
k=0 akx

k

∑K
k=0 bkx

k
, (3.8)

where ak, bk are real numbers defined by

K∑

k=0

bkx
k =

K∏

i=1

(γi − x) ,
K−1∑

k=0

akx
k =

K∑

i=1

∏

j 6=i
(γj − x).

So

bk = (−1)k
∑

(i1,...,iK−k),ij 6=il
γi1 · · · γiK−k

,

ak = (−1)k(k + 1)
∑

(i1,...,iK−1−k),ij 6=il
γi1 · · · γiK−1−k

= (−1)(k + 1)bk+1 .

The γis are the roots of the denominator polynomial
∑K

i=0 bkx
k. Therefore, if we identify

the bk variables, we have solved the inverse problem that consists in determining all residual

bandwidths from the observations.

119

We now show how to find the coefficients of the polynomial. Assume we have K

perfect measurements dj = D(xj) of the mean delays for K different values x1, . . . , xK
of the probe rate (we will consider the situation with a number of phases larger than K

in section 3.4.0.0). The method is hence moment-based and poly-phase. We want to find

(bk)k=0,··· ,K such that:

∀j = 1, . . . ,K, dj =

∑K−1
k=0 akx

k
j∑K

k=0 bkx
k
j

=

∑K−1
k=0 −(k + 1)bk+1x

k
j∑K

k=0 bkx
k
j

. (3.9)

Rational fractions are defined up to a multiplicative factor: we can hence always assume

that bK = 1. The system is now equivalent to:

∀j = 1, . . . ,K,
K−1∑

k=0

djx
k
j bk +

K−1∑

k=1

kxk−1
j bk = −djxKj −KxK−1

j , (3.10)

which can be written as the matrix equation Y = XB, whereX is theK×K square matrix

Xj,k = ((k − 1)xk−2
j + djx

k−1
j), j, k = 1, . . . ,K

and Y (resp. B) the column vector Yj = −KxK−1
j − djxKj (resp. Bj = bj−1). When X is

invertible, there is only one solution B = X−1Y .

We lack sufficient conditions for X to be invertible. The prober will therefore have to

continue adding phases until X becomes invertible.

Numerical illustration Table 3.1 gives some numerical results for this method. The first

column indicates the ground truth, i.e. the real values of (γ1, . . . , γK). The second column

specifies the probing intensities that were used, that is the vector (x1, . . . , xK). The third

column consists of the coefficients of the polynomial
∑K

i=0 bix
i, which we write as the

vector Bt = (b0, . . . , bK−1). Finally, the last column gives the estimation of our method,

i.e. the values of (γ̂1, . . . , γ̂K). The technique was implemented using Maple, and provides

accurate results in all the cases we tried. However, with 7 (or even 5) stations, one can

already notice some rounding errors in the calculations. These errors, which stem both

from the inversion of the matrix X and the determination of the roots of the polynomial∑K
k=0 bkx

k, grow as the number of stations increases.

3.4 Noise Aware moment-based solution

Minimizing quadratic-like error in Kelly networks

The setting is that of section 3.3, but we now take into account the fact that the variable

dj in (3.9) is some error-prone measurement of the stationary mean delays of the probes of

phase j. Assuming that the linear system is of full rank, (3.10) has still one unique solution.

120

Ground truth Intensities vector B Estimation

(10, 30, 70) (1, 2, 7) (−21000, 3100, −110) (10, 30, 70)
(10, 25, (0.3, 1, (−3.15× 107, 6.43× 106, (10, 25,

30, 60, 70) 2, 4, 7) −4.49× 105, 1390, −195) 29.99, 60.08, 69.92)
(10, 12, (0.001, 0.3, (−6× 1010, 1.76× 1010, (10, 12,

25, 1, −1.97× 109, 25.05,
30, 60, 2, 4, 1.08× 108, −3.12× 106, 29.84, 62.72,

85, 130) 7, 9.7) 4.74× 104, −354) 78.78, 135.3)

Table 3.1: Linear inversion in Kelly networks: numerical results

However, as shown in Table 3.2, the method is extremely sensitive to the presence of noise,

and solutions are meaningless with as little as 1% error in the measurements.

This sensitivity to noise is due to several reasons: first, the algorithm finds one exact ra-

tional fraction, but this fraction interpolates the noised measurements (this is the overfitting

phenomenon). Second, the imprecision is multiplied when taking the inverse of X and then

when finding the roots of the polynomial. The concatenation of these operations is quite

unstable.

In order to prevent the overfitting phenomenon, we explored the classical solution con-

sisting in increasing the number of measurements. Let us assume we have N > K error-

prone measures dj = D(xj) of the mean delays for N different values x1, . . . , xN of the

probing rate.

Following the same lines as in the previous section, we arrive at the matrix equation

X̃B = Ỹ , where X̃ is the N ×K matrix with (i, k) entry equal to (k − 1)xk−2
i + dix

k−1
i ,

and where Ỹ is the N × 1 vector with i entry −KxK−1
i − dixKi .

This corresponds to a multiple linear regression, with more measurements than param-

eters. There is often no unique solution to such a system. A common way to circumvent

this difficulty is to select the value B̂ that minimizes the sum of the square errors in each

Ground truth Vector B Estimation

(10, 30, 70) (6564,−938, 19.9) (-44.4, 10.9, 13.6)
(10, 25, 30, (−14405, 3039, (−2.46− 5.22i,−2.46 + 5.22i,

60, 70) −358, 86,−15.82) 6.191− 3.66i, 6.191 + 3.66i, 8.35)

(10, 12, 25, (1.55× 106,−3.82× 105, (−3.42, 0.1− 4i, 0.1 + 4i,
30, 60, 3100, 1186, 5.31− 2.62i, 5.31 + 2.62i,

85, 130) −891, 232,−25.5) 8.21, 9.91)

Table 3.2: Numerical results for linear interpolation. Delays are measured with 1% error
(half with 1% more, half with 1% less). Intensities are similar to the ones used in Table 3.1.

121

equation:

B̂ = min
B

(Ỹ − X̃B)t(Ỹ − X̃B) = min
(b0,...,bK−1,1)

N∑

j=1

[
K∑

k=0

(kxk−1
j + djx

k
j)bk

]2
. (3.11)

The least squares error solution to (3.11) is B̂ = (X̃tX̃)−1X̃tỸ .

Notice that finding the coefficients bk which minimize the sum in (3.11) is not equivalent

to minimizing the square of the differences between the left hand side and the right hand side

of (3.9). We have in fact multiplied the j-th difference by
∑K

k=0 bkx
k
j =

∏K
i=1 (γi − xj)

before looking for the minimum. The last product is positive and decreasing as xj increases,

so that we put more weight on less intrusive measures. There are several other ways of

estimating B (e.g. through total least square methods [GL80]) and it would be interesting

to compare them. We will not pursue this line of thought as the last step of the inversion

method (that consisting in determining the zeros of a polynomial from its coefficients) is in

any case likely to be unstable, as illustrated by the following numerical example.

Numerical illustration A Maple implementation indicates that the overfitting correction

is not sufficient. We still get complex roots to the polynomial. We conjecture that this is

due to the instability when inverting the matrix X̃tX̃ and when finding the roots of the

polynomial. A small error in the measured delay is amplified by the matrix inversion, and

it is well-known that a small difference in the coefficients of a polynomial can have a huge

impact on its roots. Table 3.3 provides a few numerical results for the 3 station case. This

instability motivates the maximum likelihood methods studied in the next section.

N Intensities Vector B Estimation

3 (1, 2, 7) (6563,−938, 19.9) (-44.4, 10.9, 13.6)
5 (0.3, 1, 2, 4, 7) (−6075, 914,−39.8) (9.8, 14.99± 19.9i)

7
(0.001, 0.3, 1, 2,

4, 7, 9.7)
(−9583, 1417,−55.14) (9.88, 22.6± 21.4i)

10
(0.001, 0.3, 0.5, 1, 2,

4, 4.3, 7, 8.7, 9.7)
(−10766, 1610,−62.7) (9.9, 26.4± 19.8i)

Table 3.3: Least squares linear regression in the 3 servers case. The ground truth is (10, 30,
70). Error in mean delay is 1%.

3.5 Maximum likelihood estimators

The network and its probes are as in sections 3.3 and 3.4. The observables are now a

finite time series of probe end-to-end delays and not an exact moment or distribution as

in that section. In this section, we will assume that all samples are identically distributed

(i.e. we assume stationarity) and independent. The latter assumption is of course not true in

general as samples collected at two epochs with a finite time difference are in fact (Markov)

122

correlated. However, if inter-probe times are chosen larger in mean than the mixing time of

the system, then it is justified to assume independence.

Remark. It is a well-known that the mixing times of heavily loaded queues can be poten-

tially very large. We refer to the classical litterature (e.g. [AW87, AW94, Mor55, AW88])

for more details.

Lemma 3.2.1 showed that the probability density function φ(d) at d ≥ 0 of the station-

ary delay D of a probe in the system is,

φγ1,...,γK (d) =

(
K∏

i=1

γ′i

)
K∑

i=1

e−γ
′
id∏

j 6=i(γ
′
j − γ′i)

,

with γ′i = γi − x.

The problem can hence be viewed as a classical statistical problem, that of fitting distri-

butions of this class.

3.5.1 The one station case

For K = 1, one can somewhat simplify the notation: the speed of the link is µ; the cross–

traffic intensity is λ and the probe intensity is x. The system is a FIFO M/M/1 queue. The

distribution of the delay D of probes is exponential of parameter γ′ = µ − λ − x, namely

it admits the density φγ(d) = γ′e−γ
′d , for all d ≥ 0. Assume we have several independent

delay samples (d1, . . . , dn). Let d = (d1, . . . , dn). For independent probe delays, the

likelihood of the parameter γ is defined as:

fd(γ) =
n∏

i=1

φγ(di) = γ′ne−γ
′
∑n

i=1 di .

The maximum likelihood estimator of the parameter γ̂ is the maximum of the likelihood

function. This function is positive, and has 0 as a limit when γ′ tends to 0 or to∞. At any

local maximum, and therefore at γ̂, we have dfd(γ)
dγ = 0, which is equivalent to:

nγ̂′
n−1

e−γ̂
′
∑n

i=1 di − γ̂′n
n∑

i=1

die
−γ̂′ ∑n

i=1 di = 0 .

Hence

γ̂′ =
n∑n
i=1 di

=
1

d
. (3.12)

The maximum of likelihood for the available bandwidth is hence: µ̂ − λ̂ = γ̂ = 1
d
+ x.

This together with the strong law of large numbers show asymptotic consistency: i.e. the

estimator converges to the ground truth when the number of probes tends to infinity.

123

3.5.2 The two stations case

In what follows, we will use the notation γi to mean γ′i for the sake of notational simplifi-

cation.

We first evaluate the log likelihood function and then pose the likelihood equations

(3.15). The key results are (i) the fact that (3.15) allow one to determine the MLE estima-

tor and (ii) that the latter is asymptotically efficient (Theorem 3.5.1). This convergence is

illustrated by simulation results.

The end-to-end delay of a probe is the sum of two independent exponential random

variables of parameter γ1 and γ2 (see Eq. (3.5)). Its density at d > 0 is hence

φγ1,γ2(d) = γ1γ2
e−γ1d − e−γ2d

γ2 − γ1
. (3.13)

If γ2 = γ1 = γ (which has essentially no chance of occurring in practice) the density

becomes γ2de−γd, which coincides with the limit γ2 → γ1 of (3.13).

The likelihood function when we have n independent probe delays (d1, . . . , dn) = d is

fd(γ1, γ2) =
n∏

i=1

φγ1,γ2(di) . (3.14)

We proceed as above by determining the values of the residual capacities that maximize the

log-likelihood function log f :

log fd(γ1, γ2) = n (log(γ1) + log(γ2)− log(γ2 − γ1)) +
n∑

i=1

log
(
e−γ1di − e−γ2di

)
.

At any local extremum, therefore at (γ̂1, γ̂2), we have:

∂ log fd(γ1, γ2)

∂γ1

∣∣∣∣
γ̂1,γ̂2

= 0 =
nγ̂2

γ̂1(γ̂2 − γ̂1)
−

n∑

i=1

di

1− e−(γ̂2−γ̂1)di

∂ log fd(γ1, γ2)

∂γ2

∣∣∣∣
γ̂1,γ̂2

= 0 =
−nγ̂1

γ̂2(γ̂2 − γ̂1)
+

n∑

i=1

di

e(γ̂2−γ̂1)di − 1
. (3.15)

These equations, which are instrumental in determining the MLE numerically, will be re-

ferred to as the likelihood equations in what follows. Here are important observations: under

the natural non degeneracy assumption satisfied here, the value of γ̂1, γ̂2 which maximizes

the likelihood is a stationary point, namely a solution of the likelihood equation. However,

even in this simple two station case, there may be spurious solutions to this equation, like

e.g. local maxima or minima or saddle points. So for locating the global maximum (i.e. the

ML estimator) one should first determine all the solutions of the likelihood equation and

then determine the solution with maximal likelihood. More can be said on the matter when

124

the number of samples is large. Setting X = γ̂1
γ̂2

and Y = (γ̂2 − γ̂1), (3.15) now read:

1

X
=
Y

n

n∑

i=1

di
1− e−diY , X =

Y

n

n∑

i=1

di
ediY − 1

. (3.16)

Note that this transformation is reversible, and we have

γ̂2 =
Y

1−X and

γ̂1 =
XY

1−X . (3.17)

Multiplying both equations, we get that Y is a solution of the fixed point equation

Y = g(Y) =
1√(

1
n

∑n
i=1

di
1−e−diY

)(
1
n

∑n
i=1

di
ediY −1

) . (3.18)

Notice that 0 is always a solution of (3.18), when extending the right hand side by continuity.

Once a non-zero solution Y of (3.18) is obtained, X is derived from (3.16) and this gives

a non degenerate solution to (3.15). In general (3.18) can have either no other solution

(than 0), or several other solutions, depending on n and on the sequence of random samples

which are chosen. However, the situation simplifies significantly when n is large. Assume

that γ2 > γ1. Then, by the strong law of large numbers, for all Y > 0,

lim
n→∞

1

n

n∑

i=1

di
1− e−diY =IE

(
D

1− e−DY
)

=
γ1γ2
γ2 − γ1

∫ ∞

0

t

1− e−Y t (e
−γ1t − e−γ2t)dt

=
γ1γ2
γ2 − γ1

∑

k≥0

(
1

(γ1 + kY)2
− 1

(γ2 + kY)2

)
.

Similarly

lim
n→∞

1

n

n∑

i=1

e−diY di
1− e−diY =

γ1γ2
γ2 − γ1

∑

k≥1

(
1

(γ1 + kY)2
− 1

(γ2 + kY)2

)
.

Hence, for n large, (3.18) is approximately equivalent to

1
γ1γ2
γ2−γ1

√
ξ(0)ξ(1)

− Y = 0 (3.19)

with ξ(i) =
∑

k≥i
(

1
(γ1+kY)2

− 1
(γ2+kY)2

)
. It is easy to show that (3.19) always admits 0

and γ2−γ1 as solutions. The function on the L.H.S of (3.19) is depicted in Figure 3.2 where

one sees that 0 and γ2− γ1 are the only solutions. Hence, we argue that for n large enough,

spurious solutions will concentrate around 0 so γ2 − γ1 will be the only other solution.

125

Figure 3.2: Shape of the fixed point equation: LHS of (3.19).

Remark. This techniques does not hold when γ1 = γ2. In particular, from equations (3.17),

we can see that the estimation in this case would be γ̂1 = γ̂2 = 0. However, this problem

can happen only when the vector of end-to-end delays is sampled exactly according to a

theoretical distribution with γ1 = γ2. This equality is unlikely to happen (as it substracts

traffic intensities, which is unlikely to be equal on different links), and the probability of

having a negligible noise in the measured data is low. Additionnally, this question is solved

with the technique proposed in section 3.5.3.

The main result on this MLE approach is:

Theorem 3.5.1. The MLE (γ̂1, γ̂2) is asymptotically consistent. That is, (γ̂1, γ̂2) almost

surely converges to the true parameters (γ1, γ2) when the number of samples n tends to

infinity.

Proof. The proof relies on Theorem 1.4.13 and Lemma 1.4.14 which state that if

1. φψ1,ψ2(d) is continuous in (ψ1, ψ2) for every d;

2. ∀θ 6= (γ1, γ2), ∃Nθ open set s.t. θ ∈ Nθ and

IEγ1,γ2

[
inf
ψ∈Nθ

log

(
φγ1,γ2(d)

φψ1,ψ2(d)

)]
> −∞;

3. The parameter space Ω is a compact set,

then the MLE estimator (γ̂1, γ̂2) converges almost surely to the true parameters (γ1, γ2). In

the last expression and below, IEγ1,γ2 [g(d)] means integration of the function g(d) w.r.t. the

density φγ1,γ2(.).

Let us show that our problem verifies the conditions of the theorem. The function:

φγ1,γ2(d) is continuous in (γ1, γ2), so that Property 1 is verified. By convexity of the ex-

ponential function, for all a < b real, (b − a)xe−bx ≤ e−ax − e−bx ≤ (b − a)xe−ax .

Therefore,

γ1γ2de
−γ2d ≤ φγ1,γ2(d) ≤ γ1γ2de−γ1d , (3.20)

126

up to a re-ordering of γ1 and γ2. Therefore, we have:

γ1γ2
ψ1ψ2

e(ψ1−γ2)d ≤ φγ1,γ2(d)

φψ1,ψ2(d)
.

This implies

inf
ψ∈Nθ

(
log

(
γ1γ2
ψ1ψ2

)
+ (ψ1 − γ2)d

)
≤ inf

ψ∈Nθ

log
φγ1,γ2(d)

φψ1,ψ2(d)
.

Since IEγ1,γ2 [d] =
(

1
γ1

+ 1
γ2

)
, we have

log

(
γ1γ2

supψ∈Nθ
ψ1 supψ∈Nθ

ψ2

)
− (γ2 − inf

ψ∈Nθ

ψ1)(γ
−1
1 + γ−1

2)

≤ IEγ1,γ2

[
inf
ψ∈Nθ

log

(
φγ1,γ2(d)

φψ1,ψ2(d)

)]
.

Hence for all bounded open sets Nθ,

IEγ1,γ2

[
inf
ψ∈Nθ

log

(
φγ1,γ2(d)

φψ1,ψ2(d)

)]
> −∞ ,

so that Property 2 is verified. Finally, remember that the parameters are residual bandwidth.

Therefore, without losing any meaningful solution, we can restrict the natural parameter

space]0;∞[2 to a space [ǫ, A]2, where ǫ is a very small capacity (for example, 1 packet per

year) and A is the highest capacity of existing routers.

Theorem 1.4.13 is in fact more general, and that Property 3 can be replaced by the

following: ∃C ⊆ Ω compact set s.t. (γ1, γ2) ∈ C and

IEγ1,γ2

[
inf

ψ∈Ω\C
log

(
φγ1,γ2(d)

φψ1,ψ2(d)

)]
> 0 ,

which would allow us to consider any positive value as an acceptable parameter. We are

confident that the general form of the theorem holds, and simulations were consistent with

this. We choose to use the restricted parameter space because when ǫ and A are well cho-

sen, the restricted parameter space includes all meaningful parameters for the system we

consider in practice. Therefore, restricting the parameter space is equivalent to rejecting

solutions that we know to be impossible. The question whether the result still holds when

taking Ω =]0;∞[2 is still open.

Numerical illustration

We now evaluate the MLE by simulation where delays are generated according to the theo-

retical law. Residual capacity estimates are obtained using the following technique inspired

by the above: we numerically locate the first zero of (3.18) which is not in the neighborhood

127

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 100 1000 10000 100000

V
al

ue
 e

st
im

at
ed

Number of probes

Estimation for γ1

Mean
10% percentile
90% percentile

real value

 1

 1.5

 2

 2.5

 3

 3.5

 4

 100 1000 10000 100000

V
al

ue
 e

st
im

at
ed

Number of probes

Estimation for γ2

Mean
10% percentile
90% percentile

real value

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 100 1000 10000 100000

V
ar

ia
nc

e

Number of probes

Variance of estimators

Variance of γ1
Variance of γ2

Figure 3.3: Precision of the estimated γ1 = 1 (left) and γ2 = 2.2 (middle), and variances
(right, note log scale) as a function of n

of the origin. We use a stopping precision of 10−4 in the procedure for finding this zero (a

value of 10−8 produced the same estimator). In each case results are averaged over 1000

independent experiments.

Figure 3.3 plots γ̂1 and γ̂2 when (γ1, γ2) = (1, 2.2) as a function of the number of

probes n. The results are quite satisfying: for 1000 samples 80% of estimates have error

below 10%, and this drops to 4% for 100000 probes. It is clear that the estimation variance

drops, and the right hand plot shows that it does so as O(1/n) as expected. Notice that

γ2− γ1 is underestimated. The bias decreases with n also, though this is less obvious in the

plots since the decay is much slower than the decay of variance. In other words, the MSE is

dominated by the bias for large n. If instead we use (γ1, γ2) = (1, 7.4) we approximately

obtain the same precision for γ̂2 and improved precision for γ̂1.

It is well known, and to be expected, that the maximum likelihood estimator can be

biased (although the consistency property implies that asymptotically it is not). For example

in the case of a single server of residual capacity γ and a single probe, the estimator γ̂ is

simply the inverse of the probe delay D. By convexity of the function f(x) = 1
x , we get:

IE [γ̂] = IE

[
1

D

]
>

1

IE[D]
= γ .

128

Remark. The bias depends obviously of the metric one wants to estimate. Say, for example,

that the prober is interested in the mean time αj spend in each station j. As each server

behaves as an M/M/1 queue, and from the function invariance of the maximum likelihood

estimator (see Lemma 1.4.12), we have that

αj =
1

γj
and α̂j =

1

γ̂j
.

It follows obviously in the same single server case that

IE [α̂] = IE [D] = α ,

which shows that, contrary to the residual bandwidth estimator, the MLE of the mean-time

spent in the server is unbiased.

More than two stations

This section is focused on the generalization to a path with K routers. We follow the same

approach as for the two station case. We still use γi in place of γ′i.

According to (3.5), the likelihood function for n independent end-to-end probe delays

d1, . . . , dn is

fd(γ1, . . . , γK) =

n∏

i=1

K∑

j=1


∏

k 6=j

γk
γk − γj


 γje

−γjdi

fd(γ1, . . . , γK) =




K∏

p=1

γnp




n∏

i=1

K∑

j=1


∏

k 6=j

1

γk − γj


 e−γjdi .

Therefore, we get the following expression for the log likelihood:

log (fd(γ1, . . . , γK)) =n

K∑

p=1

ln(γp)+
n∑

i=1

log




K∑

j=1


∏

k 6=j

1

γk − γj


 e−γjdi


 , (3.21)

so that the likelihood equation reads:

∂ log (fdγ1, . . . , γK))

∂γl
=
n

γl
+

n∑

i=1

1
∑K

j=1

(∏
k 6=j

1
γk−γj

)
e−γjdi

×




e−γldi

∏

k 6=l

1

(γk − γl)
∑

k 6=l

1

(γk − γl)


 −


die−γldi

∏

k 6=l

1

(γk − γl)


−


∑

j 6=l

e−γjdi

γl − γj
∏

k 6=j

1

γk − γj




 .

We found no closed form solution to this system of equation, and instead turn to the

129

Expectation-Maximization algorithm considered below.

3.5.3 Expectation-Maximization Algorithm

The Maximum Likelihood estimator is very often analytically difficult or even impossible

to derive. One way to overcome this difficulty is to use Expectation-Maximization (E-M),

which we presented in section 1.4.4. The use of E-M algorithm for fitting general phase-type

distributions was first described by Asmussen et al. in [ANO96]. The setting considered in

the present paper, namely the fitting of sums of independent exponential random variables,

is much more specific and this allows us to give explicit iteration formulas and also to

prove the convergence of the algorithm, which has not been done for general phase-type

distributions to the best of our knowledge.

The two station case

In the two link case, the incomplete data are the end-to-end delays di of probes, i =

1, . . . , n. We complete them by the delay on the first link li for all probes, i = 1, . . . , n,

and l = (l1, . . . , ln) denotes their vector. The section starts with the definition of the E-M

algorithm in this setting, and then shows that it converges to a solution of the likelihood

equation. This proof, which is one of the main mathematical results of this chapter, is

structured in two lemmas 3.5.2 and 3.5.3.

Let

Qd(θ1, θ2|γ1, γ2) = IEφγ1,γ2 (l|d) log
(
f̃l,d(θ1, θ2)

)
, (3.22)

where f̃l,d(θ1, θ2) = φθ1,θ2(d1, l1, . . . , dn, ln) is the complete likelihood of the complete

data and l̃i = di − li is the delay on the second link,

The E-M-algorithm can be defined as follows:

E-M Algorithm: Take any random (γ
(0)
1 , γ

(0)
2) and for each positive integer k, do the

following:

• Expectation step: compute Qd(θ1, θ2|γ(k)1 , γ
(k)
2) .

• Maximization step: compute

(γ
(k+1)
1 , γ

(k+1)
2) = argmax

(θ1,θ2)
Qd(θ1, θ2|γ(k)1 , γ

(k)
2) . (3.23)

The following lemma illustrates the tractability of this approach:

Lemma 3.5.2. In the two router case, for all k ≥ 0, (3.23) is equivalent to

1

γ
(k+1)
1

=
1

n

n∑

i=1

die
(γ

(k)
2 −γ(k)1)di

e(γ
(k)
2 −γ(k)1)di − 1

− 1

γ
(k)
2 − γ(k)1

, (3.24)

130

and
1

γ
(k+1)
2

=
1

γ
(k)
2 − γ(k)1

− 1

n

n∑

i=1

di

e(γ
(k)
2 −γ(k)1)di − 1

. (3.25)

Proof. We have

φγ1,γ2(l|d) =
φγ1,γ2(l, d)

φγ1,γ2(d)

=
γ1γ2e

−γ1le−γ2(d−l)

γ1γ2
e−γ1d−e−γ2d

γ2−γ1

φγ1,γ2(l|d) =
(γ2 − γ1)e(γ2−γ1)l
e(γ2−γ1)d − 1

, (3.26)

so that

φγ1,γ2(l|d) =
(γ2 − γ1)ne(γ2−γ1)

∑n
i=1 li

∏n
i=1(e

(γ2−γ1)di − 1)
. (3.27)

The expectation step gives:

Qd(θ1, θ2|γ1, γ2) =
n∑

i=1

∫ di

0
log
(
θ1θ2e

−θ2die(θ2−θ1)li
) (γ2 − γ1)e(γ2−γ1)li

e(γ2−γ1)di − 1
dli

=
n∑

i=1

log(θ1) + log(θ2)− θ2di −
θ2 − θ1
γ2 − γ1

+
(θ2 − θ1)die(γ2−γ1)di

e(γ2−γ1)di − 1
,

(3.28)

so that
∂Qd(θ1, θ2|γ1, γ2)

∂θ1
=

n

θ1
+

n

γ2 − γ1
−

n∑

i=1

die
(γ2−γ1)di

e(γ2−γ1)di − 1
,

and

∂Qd(θ1, θ2|γ1, γ2)
∂θ2

=
n

θ2
− n

γ2 − γ1
+

n∑

i=1

di

e(γ2−γ1)di − 1
.

The announced result then follows from the maximization step.

Three important remarks are in order:

• For all k, 1

γ
(k+1)
1

> 0 and 1

γ
(k+1)
2

> 0. This follows from the fact that

e(γ
(k)
2 −γ(k)1)di − 1 < (γ

(k)
2 − γ(k)1)die

(γ
(k)
2 −γ(k)1)di .

Therefore
die

(γ
(k)
2 −γ(k)1)di

e(γ
(k)
2 −γ(k)1)di − 1

>
1

γ
(k)
2 − γ(k)1

131

and (3.24) shows that 1

γ
(k+1)
1

> 0. Similarly,

e(γ
(k)
2 −γ(k)1)di − 1 > (γ

(k)
2 − γ(k)1)di .

Therefore
di

e(γ
(k)
2 −γ(k)1)di − 1

<
1

γ
(k)
2 − γ(k)1

and (3.25) implies 1

γ
(k+1)
2

> 0.

• For all k ≥ 0,
1

γ
(k+1)
1

+
1

γ
(k+1)
2

=
1

n

n∑

i=1

di . (3.29)

This is immediate when adding up (3.24) and (3.25).

• It can be shown that the limit of (3.24) and (3.25) when γ(k)2 − γ(k)1 → 0 is
∑n

i=1 di
2n

for both equations. Hence, the case γ1 = γ2 is not a problem with the E-M algorithm.

Here is now the main result on the E-M algorithm in this case. From Theorem 1.4.16

and Corollary 1.4.17, we know that the sequence log fd(γ
(k)
1 , γ

(k)
2) (and hence also the

sequence fd(γ
(k)
1 , γ

(k)
2)) is increasing and converges to a finite limit.

The fact that the sequence fd(γ
(k)
1 , γ

(k)
2) converges does not prove yet that (γ(k)1 , γ

(k)
2)

converges, and even if it does so, it could converge to some value which is not a solution of

the likelihood equation.

However, for this particular case:

Lemma 3.5.3. The sequence (γ
(k)
1 , γ

(k)
2) converges to a finite limit (γ∗1 , γ

∗
2) which is a

solution of the likelihood equation.

Proof. From theorem 1.4.19, the second part is obvious once the convergence has been

shown. The proof of the convergence appears in Appendix 3.8.1. Note that we provide

an original proof based on a continuity argument, because the natural sufficient conditions

from 1.4.20 for the convergence of (γ(k)1 , γ
(k)
2) do not hold here.

As a direct corollary of these lemmas, if the likelihood equation has a unique solution

which is a maximum, then this is the maximal likelihood estimator and the E-M algorithm

converges to it, which itself converges to the ground truth as n increases (Theorem 3.5.1).

132

More than two stations

Denote by lj,i the time spent by probe i on link j. If there is only one probe, we just write

lj for the time it spends on link j. Hence

φγ1,...,γK (l1, . . . , lK−1|d) =
φγ1,...,γK (l1, . . . , lK−1, d)

φγ1,...,γK (d)

=
γ1 · · · γKe−γ1l1 · · · e−γK−1lK−1e−γK(d−l1−···−lK−1)

γ1 · · · γK
∑K

j=1

(∏
k 6=j

1
γk−γj

)
e−γjd

=
e−γKd

∏K−1
j=1 e(γK−γj)lj

∑K
j=1

(∏
k 6=j

1
γk−γj

)
e−γjd

φγ1,...,γK (l1, . . . , lK−1|d) =
∏K−1
j=1 e(γK−γj)lj

∑K
j=1

(∏
k 6=j

1
γk−γj

)
e(γK−γj)d

. (3.30)

Then, for a sample of n independent probe delays, we have (with the same notation as

above):

Qd(θ1, . . . , θK |γ1, . . . , γK) =

n∑

i=1

IE
[
log
(
f̃(l(1,i),...,l(K−1,i),di)(θ1, . . . , θK)

)]
,

where the expectation bears on the variables l(1,i), . . . , l(K−1,i) and is with respect to the

conditional density

φγ1,...,γK (l(1,i), . . . , l(K−1,i)|di) .

This leads to the following integral expression

Qd(θ1, . . . , θK |γ1, . . . , γK)

=

n∑

i=1

∫ di

l(1,i)=0

· · ·
∫ di−

∑K−2
j=1 l(j,i)

l(K−1,i)=0

∏K−1
j=1 e(γK−γj)l(j,i)

∑K
j=1

(∏
k 6=j

1
γk−γj

)
e(γK−γj)di

log
(
θ1 · · · θKe−θKdi

K−1∏

j=1

e(θK−θj)l(j,i)
)
dl(1,i) · · · dl(K−1,i)

=

n∑

i=1

βi(di)

∫ di

l(1,i)=0

· · ·
∫ di−

∑K−2
j=1 l(j,i)

l(K−1,i)=0

K−1∏

j=1

e(γK−γj)l(j,i)


log(θK)− θKdi +

K−1∑

j=1

(
log(θj) + (θK − θj)l(j,i)

)

 dl(1,i) · · · dl(K−1,i) ,

with

βi(di) =
1

∑K
j=1

(∏
k 6=j

1
γk−γj

)
e(γK−γj)di

. (3.31)

133

These integrals show that Qd(θ1, . . . , θK |γ1, . . . , γK) is an affine function of the variables

θj and log θj ∀1 ≤ j ≤ K. This means that taking its partial derivative with regards of any

θj and setting it to zero will give a simple equation of the form a
θj

+ b = 0 to solve, which

will provide the solution of the maximization step in closed form. Let us illustrate this by:

Lemma 3.5.4. For the three router case, for all k ≥ 0, (3.23) is equivalent to

1

γ
(k+1)
1

= − 1

γ
(k)
2 − γ(k)1

+

(
γ
(k)
3 − γ(k)2

γ
(k)
3 − γ(k)1

×

1

n

n∑

i=1

(γ
(k)
3 − γ(k)1)die

−γ(k)1 di + e−γ
(k)
3 di − e−γ(k)1 di

(γ
(k)
3 − γ(k)2)e−γ

(k)
1 di − (γ

(k)
3 − γ(k)1)e−γ

(k)
2 di + (γ

(k)
2 − γ(k)1)e−γ

(k)
3 di

)
(3.32)

1

γ
(k+1)
2

=
1

γ
(k)
2 − γ(k)1

−
(
γ
(k)
3 − γ(k)1

γ
(k)
3 − γ(k)2

×

1

n

n∑

i=1

(γ
(k)
3 − γ(k)2)die

−γ(k)2 di + e−γ
(k)
3 di − e−γ(k)2 di

(γ
(k)
3 − γ(k)2)e−γ

(k)
1 di − (γ

(k)
3 − γ(k)1)e−γ

(k)
2 di + (γ

(k)
2 − γ(k)1)e−γ

(k)
3 di

)
(3.33)

and
1

γ
(k+1)
3

=
1

n

n∑

i=1

di −
1

γ
(k+1)
2

− 1

γ
(k+1)
1

. (3.34)

Proof. The proof (composed mostly of direct computation) can be found in Appendix 3.8.2.

.

Remark. In chapter 4, we will prove an explicit formula for general tree topologies. Applied

to the particular case of K servers in a line, we get that the E-M recursion is

∀k ≥ 0, ∀1 ≤ j ≤ K, 1

γ
(k+1)
j

=
1

N

N∑

i=1

ξγ(k) (lj |di)
φγ(k) (di)

,

where

φγ (d) = Γ×
K∑

j=1

e−γjd∏
k 6=j (γk − γj)

is the density of the delay distribution at d ≥ 0 given parameters γ = (γ1, . . . , γK), and

ξγ (lj |d) = Γ×


 e−γjd∏

k 6=j(γk − γj)


d−

∑

k 6=j

1

γk − γj


+

∑

i 6=j

e−γid

(γj − γi)2
∏
k 6=j
k 6=i

(γk − γi)




is such that the fraction represents the conditional expectation of the sojourn time in server

j, given that the total end-to-end delay d > 0 and the parameters γ, with Γ =
∏K
i=1 γi

being a multiplicative constant for both sides of the fraction.

Table 3.4 provides simulation results for the 3 station case.

134

Ground truth Mean 10% percentile 90% percentile Variance

(1, 10, 100) (1, 9.99, 101) (0.98, 9.11, 78.9) (1.02, 10.9, 129) (1.5 10−4, 0.43, 320)
(1, 10, 20) (1, 9.83, 22.2) (0.99 , 7.93, 15.7) (1.02, 11.9, 30.6) (1.5 10−4, 2.3, 35)
(1, 10, 11) (1, 8.35, 14.4) (0.99, 6.83, 11.02) (1.02, 9.87, 18.5) (1.5 10−4, 1.35, 9.43)

(1, 100, 110) (1, 68.7, 188) (0.99, 59.4, 165) (1.01, 77.7, 213) (1.1 10−4, 52.5, 418)
(1, 2, 100) (1, 2.01, 91.4) (0.97, 1.88, 72.1) (1.04, 2.15, 111) (7 10−4, 0.01, 223)

(1, 1.2, 100) (1, 1.2, 89,7) (0.93, 1.1, 72.2) (1.08, 1.32, 107) (3.3 10−3, 6.8 10−3, 212)
(1, 1.2, 10) (1.07, 1.09, 13) (1.05, 1.07, 9.85) (1.08, 1.1, 17.1) (1.4 10−4, 1.7 10−4, 8.19)
(1, 1.2, 1.4) (1.04, 1.105, 1.48) (1 , 1.04, 1.36) (1.1, 1.2, 1.67) (1.2 10−3, 3 10−3, 0.015)

Table 3.4: Precision of estimator (γ̂1, γ̂2, γ̂3) for various ground truths. Experiments have
104 probes and are repeated 200 times.

3.5.4 Additive measurement noise

We consider now the case with additive noise in measurements. We come back to the single

station case but we now assume that all delays have some measurement noise which consists

in adding an independent random variable which is uniform in [−b, a]. The density of the

noised delay D is then

φγ(d) =





∫ d
−b

1
a+bγ

′e−γ
′(d−x)dx = 1−e−γ′(d+b)

a+b if − b ≤ d < a
∫ a
−b

1
a+bγ

′e−γ
′(d−x)dx = e−γ′d(eγ

′a−e−γ′b)
a+b if d ≥ a

.

The likelihood to measure n delays d1 ≤ d2 ≤ . . . ≤ dk−1 < a ≤ dk ≤ . . . ≤ dn is:

fd(γ) =
1

(a+ b)n

k−1∏

i=1

(1− e−γ′(di+b))e
−γ′

n∑
i=k

di
(eγ

′a − e−γ′b)n−k+1 .

Direct calculations give that

∂ log fd(γ)

∂γ
= −

n∑

i=1

di − nb+
k−1∑

i=1

di + b

1− e−γ′(di+b) + (n− k + 1)
a+ b

1− e−γ′(a+b) .

Hence, the maximum likelihood estimator γ̂, which verifies the relation

∂ log fd(γ)

∂γ
(γ̂) = 0 ,

is such that

k−1∑

i=1

di + b

1− e−γ̂′(di+b) + (n− k + 1)
a+ b

1− e−γ̂′(a+b) − nb =
n∑

i=1

di . (3.35)

The function

γ̂′ →
k−1∑

i=1

di + b

1− e−γ̂′(di+b) + (n− k + 1)
a+ b

1− e−γ̂′(a+b) − nb

135

is decreasing. There is therefore only one solution to (3.35), which can easily be found

using numerical techniques. It is easy to check that

IEγ′
[

D + b

1− e−γ′D+b
1D<a

]
+

a+ b

1− e−γ′(a+b)Pγ′(D ≥ a)− b

=

∫ a

−b

t+ b

1− e−γ′(t+b)
1− e−γ′(t+b)

a+ b
dt+

a+ b

1− e−γ′(a+b)
∫ ∞

a

e−γ
′t(eγ

′a − e−γ′b)
a+ b

dt− b

=

∫ a

−b

t+ b

a+ b
dt+ e−γ

′a

∫ ∞

a
e−γ

′tdt− b

=
a2 − b2
2(a+ b)

+
1

γ′

=
a− b
2

+
1

γ′

= IEγ′ [D] . (3.36)

Hence (3.36) is equivalent to (3.35) when the number of probes n tends to infinity. This

shows the asymptotic consistency of MLE estimator for one station and uniform noise.

In practice, timestamps are measured at the departure and the arrival of packets. As-

suming that timestamps suffer from a uniformly distributed noise, the measured delay is

the real delay plus two independent uniform noise variables. The design of maximum like-

lihood techniques for such noise structures and working for several station in series is an

interesting open question.

3.6 Experimental Validation

We test our tomography method using an experimental methodology involving simulations

driven by traces collected on a core Internet router. Although such an approach has limi-

tations, it enables an examination of performance in a context where important real world

issues can be observed, evaluated and understood.

3.6.1 Data Sets and Traces

The traces we use were collected at a gateway router of the Sprint IP backbone network.

The router had 4 linecards supporting 6 active interfaces: 1: OC-48 (BB1); 2: OC-48

(BB2); 3: OC-12 (C4); and 4: OC-3 (C1, C2, C3) as shown in Figure 3.4. The interfaces

BB1 and BB2 connect to backbone routers and carry the bulk of the traffic, while the others

connect customer links. Traffic on 11 links over the 6 interfaces was monitored, accounting

for more than 99.95% of all through-router traffic. DAG cards [dag], synchronized to a

common GPS signal, were used to capture a fixed length 64 byte record for each packet,

and record a timestamp accurate to 2.2µs on OC-3 links and below 1µs on others.

We use two ‘full-router’ datasets, Exp1 and Exp2, each collected with the experiment

over 24 hours, some 4 terabytes of data each. The first was taken in August 2003 and has

136

Trace Exp#: Input – Output # Packets Rate Mbps IE[S] bytes Cov [S] Cov [τ]

P1-BB1 Exp1: BB1-in – C2-out 2647128 47.1 658.0 0.90 1.16
P1-BB2 Exp1: BB2-in – C2-out 3221776 60.1 689.5 0.87 1.16
P2-BB2 Exp1: BB2-in – C2-out 2899816 53.8 686.7 0.89 1.15
P3-BB1 Exp1: BB1-in – C2-out 2130118 35.2 608.5 0.94 1.16

Q1-BB1 Exp2: BB1-in – C2-out 1557533 24.1 571.1 1.11 1.14
Q1-BB2 Exp2: BB2-in – C2-out 1957099 36.0 680.6 0.96 1.15
Q4-BB1 Exp2: BB1-in – C2-out 1583546 23.6 549.9 1.15 1.14
Q4-BB2 Exp2: BB2-in – C2-out 1864193 31.2 617.6 1.04 1.14

Table 3.5: Traces used to feed simulation, each 300 seconds long. The coefficients of vari-
ation of packet size Cov[S] =

√
Var[S]/IE[S] and inter-arrival time τ should be compared

with 1 (exponential case).

been used in several works including [KSC+02, HVPD04, MVBB07, BMVB07], and the

second, from January 2004, was used in [BMVB07].

A thorough description of the experimental setup including the issues involved in the

processing of the raw DAG timestamps into valid through-router delays, and the careful

management of header overhead effects, which we follow here, can be found in [HVPD04]

(in particular Section 3). Two points are relevant here concerning serialization times, which

equate to service times and therefore waiting times, of packets at the input and output of

the router. First, with SONET headers removed (the linecards use Packet over SONET

(PoS)), the raw (OC-3, OC-12, OC-48) bandwidths are effectively reduced from (155, 620,

2,480) Mbps to (149.76, 599.04, 2,396.16) Mbps. Second, the DAG records IP packet sizes

but they are transmitted with a 9 byte HDLC transport layer encapsulation (5 leading, 4

trailing). These modified capacities and packet sizes are used below.

The traces exhibit marked diurnal variation whereas we require stationary conditions.

We follow [BMVB07] in selecting from both experiments a number of time windows which

monitor

monitor

monitor

monitormonitor

monitor monitormonitor

GPS clock
signal

monitor

monitor monitor

monitor

in
out

in
out

in
out

out
in

out
in

out
in

OC48

OC48

OC3

OC3

OC3

OC12

BB1

BB2

C1

C2

C3

C4

Figure 3.4: Full-router experimental setup.

137

give variety in average link load, but within which stationarity approximately holds. Ta-

ble 3.5 describes the incoming subtraces. The traces used are from different links and/or

well separated in time and so are close to independent.

3.6.2 Semi-Experimental Methodology

Traces from the full-router experiments are static, a fixed web of packet delays spanning all

input and output interfaces. The only way to vary parameters in such a context is to search

through the trace hoping for interesting variations, which is not very flexible, and even more

seriously, probes cannot be added. One could try to ‘baptize’ selected packets as probes,

however such probes would observe Palm (self-conditional) probabilities rather than the

desired equilibrium probabilities, which introduces an inherent (strong) bias. Finally, with

the traces alone we would be restricted to single hop routes.

To gain the flexibility we need, we use trace driven simulation whereby selected traces

from incoming links are fed to a queueing system representing the router, to which we can

also add probes, and direct the output to subsequent hops fed by additional traces. It is

well known that a drawback of this approach is that in practice feedback mechanisms (in

particular TCP) would alter the traffic flows as a function of the experimental parameters.

Nonetheless, it enables us to study the effect of breaking the technical assumptions of Sec-

tion 3.5. A live experiment involving passive capture in the Internet core combined with

simultaneous active probing has been attempted before [MVBB07], but is very challenging

to put in place and could not be performed here.

A simulator depends crucially on the choice of system model. As presented in section

1.1.4, we follow [HVPD04] which investigated this issue in detail for Exp1 and is therefore

relevant for this router. Two models were described, the first of which was shown to predict

through-router delays very well, and the second extremely well (to within a few µs for

almost all packets):

One Stage Model: A FIFO queue with service time given by S/C, where S is the packet

size in bits (including the 9 HDLC bytes) and C the capacity (overhead-corrected as above)

in bps.

Two Stage Model: Packets must remain in a ‘front end’ FIFO system for at least a time

∆(S) = a+bS prior to entering the output FIFO queue (a more precise description is given

below). This models the time for a packet to cross the switch fabric and enter the output

buffer. The values of a, b, depend on the output interface type and capacity. For OC-3

output here for example, we use a = 18.8µs and b = 1.8125 [ns/bit] from [HVPD04].

As noted in Section 3.2.2, there are several strong technical assumptions underlying our

MLE based inversion for available bandwidths along a path. The flexibility of simulation

can also be employed to explore the impact of these separately. We use the methodology

known as the ‘semi-experimental method’, from [HVA03], which was used to investigate

the underlying causes of key statistical traffic features, and thereby to select meaningful

traffic models. Here we use it to determine which of the technical assumptions is most cru-

138

cial/least valid, and to test corrections which we derive below. Specifically, in the following

sections we systematically explore the impact of the errors in assuming the

(i) One stage router model;

(ii) Exponential nature of packet size;

(iii) Equality of probe and cross traffic distributions;

(iv) Poisson nature of packet arrivals;

(v) Independence of packet size over multiple stations.

Typically results will be given using 1200 probes for 1 station, and 120000 for 2. In Sec-

tion 3.6.7 the case of two node will be treated.

3.6.3 Challenge: Router Model

A naive model, almost universally employed in the active probing literature, assumes that

the delays experienced by packet streams destined for a particular output link obeys that of

a single server FIFO queue. The single stage model above from [HVPD04] justified this

using Exp1 data. Here (for the first time) we use Exp2 to test the same models. Using the

Q1 time period we study all input streams (in fact only Q1-BB1 and Q1-BB2) headed for

C2-out. Figure 3.5 shows the true versus surrogate delays of BB1-in packets using both

models (histograms for BB2-in packets are similar). The one stage model histogram has

a very similar shape to the true one, but is visibly offset from it by 50µs or so. This error

could play havoc with inversion methods under light loads.

 1

 10

 100

 1000

 10000

 100000

 0 200 400 600 800 1000 1200 1400

O
c
c
u
re

n
c
e

Delay (in µs)

Traces
1 stage simulation

2 stages simulation

Figure 3.5: Comparison of true and model delays: histograms for BB1-in packets for a
single station fed with Q1-BB1 and Q1-BB2 inputs (other inputs negligible), against true
delays. The two stage and true distributions overlap almost perfectly.

Response part 1: Two stage model correction

The correction in this case is given by the time spent in the first stage of the two stage model

139

given above. For the n-th packet of size Sn, this is given by ξn = max(ξn−1 − τn,∆n)

where τn is the inter-arrival time (in other words, when sentenced to ∆n seconds of hard

waiting, time in court is counted).

The impact of the correction is seen in Figure 3.5 where the agreement with the true

delay is extremely close.

In practice, the relevant router delay functions ∆(S) must be identified and known for

each hop, however it is feasible for these to be tabulated and made available, at least for

network operators.

Response part 2: Estimation correction for two stage model

With an appropriate model chosen, the next task is to account for the impact on the es-

timation algorithm itself. To test this, we follow the semi-experimental methodology

and replace almost all aspects of the real experiment by surrogates. Thus in this case,

arrivals are made to be Poisson, and service times exponential (with the same mean)

for both cross traffic and probes. The router is replaced by a two stage model which

represents a simplified but accurate ground truth. As seen in Table 3.6, the errors in

Input Traces Output γ γ̂ γ̂ corrected

P1-BB1 + P1-BB2 OC-3 42.5 34.6 42.0
Q1-BB1 + Q1-BB2 OC-3 89.5 55.0 77.7

Table 3.6: Impact of approximate two-stage correction.

a Kelly based E-M estimate are large, however a simple correction based on replacing

γ̂ = IE[S]/IE[D] by γ̂ = IE[S]/(IE[D] − IE[∆(S)]), that is multiplying by a correction

factor FM = IE[D]/(IE[D]− IE[∆(S)]), largely succeeds in correcting it.

3.6.4 Challenge: Exponential Sizes

Following the semi-experimental methodology, we investigate the impact of service times

(packet sizes) which are not exponentially distributed by nulling all other effects: we use

the one stage model, Poisson arrivals, and as before we inject a Poisson probe stream, also

with exponential packet sizes with a matched mean. The only non-ideal components left

are the non-exponential service times of the cross traffic packet streams. Two examples

are given in Table 3.7, each of which exhibit small errors. Although this is good news

Input Traces Output γ γ̂ γ̂ corrected

P1-BB1, P1-BB2 OC-3 42.5 42.1 38.7
Q1-BB1, Q1-BB2 OC-3 89.5 85.7 86.5

Table 3.7: Impact of Exponential Size assumption, (1200 probes).

for our E-M estimator, it is not the strongest test since the packet sizes, although highly

non-exponential, have a coefficient of variation close to 1 (recall Table 3.5). We according

significantly modify the true packet size distribution of the P1 trace in two ways (keeping the

140

mean constant at 675 bytes): (i) constant packet sizes (top line in Table 3.8), (ii) bimodal

distribution on (40, 3000) bytes with probability (0.785, 0.215) (bottom line). The E-M

estimates are now significantly different.

Input Traces Output κ γ γ̂ γ̂ corrected

P1-BB1, P1-BB2 OC-3 −0.5 42.5 70.3 44.9
P1-BB1, P1-BB2 OC-3 0.215 42.5 25.5 45.9

Table 3.8: Experiment with modification packet sizes.

Response: Variance correction factor

We can relax the exponential packet size assumption in our M/M/1 model by considering

the M/G/1 queue, where the service times are i.i.d. with general distribution. Let the arrival

and service rates be given by λ and µ packets per second respectively. The load factor is

ρ = λ/µ. If S denotes a random packet size and C the server capacity (in bits per second),

then C = µIE[S], the service time for any packet is σ = S/C, and the average service time

is IE[σ] = IE[S]/C = 1/µ.

According to the Pollaczek–Khinchin formula, the expected value of the system time D

(just the end-to-end delay) for M/G/1 is:

IE [D] =
λIE
[
σ2
]

2(1− ρ) + IE [σ] =
1 + κρ

µ− λ ,

where we have introduced the constant κ, defined by IE
[
S2
]
= 2(1 + κ)IE [S]2 or equiva-

lently IE
[
σ2
]
= 2(1 + κ)IE [σ]2, to help compare the general M/G/1 against M/M/1. If S

is exponentially distributed then κ = 0, and κ > 0 corresponds to greater variability than

exponential, increasing delay (note that κ is just a rewriting of the coefficient of variation

of S: κ = (Cov [S]2 − 1)/2).

By definition, the true available bandwidth isC−IE[S]λ = (µ−λ)IE [S], and in practice

we will estimate it using the maximum-likelihood estimator

γ̂ =
IE [S]

IE [D]
=

1

1 + κρ
(µ− λ)IE [S] ,

which differs from the desired value by a factor FS = 1 + κρ. In the M/M/1 case κ = 0,

so FS = 1 and we recover the correct value. Otherwise, if FS > 1 we obtain a value that

is too small because the larger delays fool the estimator into thinking there is more offered

load. To approximately compensate, we propose modifying the estimator by multiplying it

by the corrective factor FS .

The impact of the correction is not large in the examples of Table 3.7, as expected, since

the errors were already small. On the other hand, the large errors of Table 3.8 have been

successfully corrected.

In practice, κ can be estimated by using representative values from packets collected

at the receiver as it is not expected to vary much in the Internet core (see Table 3.5). To

141

measure ρ, probes of fixed size can be sent, and a measurement made of the proportion

which experience the minimum delay. This is just the probability of experiencing zero

waiting time, which is equal to 1 − ρ for a broad class of queueing systems including

M/G/1.

3.6.5 Challenge: Equality of Distribution

In this case we again use the one stage model, make all arrivals Poisson, and all packet sizes

exponential, however the mean size of probes and cross traffic packets differ. Table 3.7

shows that this one factor is enough to induce a systematic error of around 50% in an

example where probes are 200 bytes compared to 675 bytes for cross traffic.

Input Traces Output γ γ̂ γ̂ corrected

P1-BB1, P1-BB2 OC-3 42.5 17.4 45.8
Q1-BB1, Q1-BB2 OC-3 89.5 47.8 86.0

Table 3.9: Impact of Equality of Distribution assumption.

Response: Mean correction factor

Under the assumptions given above, the system is a M/G/1 queue where the service time is

not distributed as an exponential but as an exponential mixture. We now derive a correction

which will cover the more general case where the probes may not even be exponential,

provided they are ‘rare’ compared to cross traffic.

We define 2 different classes of packets, 1: cross traffic, 2; probes. Each arrive accord-

ing a Poisson process of intensity λi, i = 1, 2. Packets of class i have a size Si with mean

Ai, have a service time σi = Si/C with expected value IE[σi] = 1/µi = Ai/C, experience

a waiting time Wi and a system time Di = Wi + σi, and collectively contribute a load

ρi = λi/µi.

We assume that S1 is exponentially distributed whereas S2 is general. On the other

hand, we assume that probes are rare, so that the total arrival rate can be expressed as

λ = λ1 + λ2 ≈ λ1, from which it follows that the mean service time obeys IE[σ] =
λ1

λ1+λ2
IE[σ1] +

λ2
λ1+λ2

IE[σ2] ≈ IE[σ1], and similarly IE[σ2] ≈ IE[σ21]. Since S1 is exponential,

this implies that IE[σ2] ≈ 2IE[σ]2. The Pollaczek–Khinchin formula for waiting time then

reads

IE[W] =
λIE[σ2]
2(1− ρ) =

ρIE[σ]
1− ρ .

We introduce the constant κ to express the difference in mean packet sizes through

IE[S2] = (1+κ)IE[S]. Since arrivals are Poisson, queueing delays are independent of packet

class. In particular, IE[D2] = IE[W] + IE[σ2], and using the rare probing approximations

IE[D2] =
ρIE[σ]
1− ρ + (1 + κ)IE[σ] =

(
1

1− ρ + κ

)
IE[S]
C

.

142

By definition, the true available bandwidth is (1 − ρ)C, whereas the likelihood estimator

yields

γ̂ =
IE[S2]
IE[D2]

=
1 + κ

1 + (1− ρ)κ(1− ρ)C

which differs by a factor FE = (1+(1−ρ)κ)/(1+κ) from the desired value. In the M/M/1

case κ = 0, so FE = 1 and we recover the correct value. If probes are smaller then FE > 1

and we obtain a value that is too small because the delays are larger than they would be

under M/M/1 since cross traffic packets are actually larger. To approximately compensate,

we propose modifying the estimator by multiplying it by the corrective factor FE .

As seen in Table 3.9 using small probes, the corrected value is very close to the actual

available bandwidths, to within what we would expect from statistical variability given 1200

probes.

In practice, κ can be estimated by using representative packet size distributions, which

should be very stable in the Internet core. We can measure ρ as described in section 3.6.4.

3.6.6 Challenge: Poisson Arrivals

In this section we again use the one stage model, we replace true packet sizes with i.i.d. ex-

ponentials (with mean S̄ matched to the average over all inputs), and inject a Poisson probe

stream, also with exponential sizes of the same mean. Thus, in this semi-experiment the

only non-ideal components left are the original non-Poisson arrival processes of the cross

traffic packet streams. Three example impacts are given in Table 3.10, one quite large (-

34%) and the others relatively small (<-10%).

Input Traces Output γ γ̂ γ̂ corrected

P1-BB1, P1-BB2 OC-3 42.5 33.8 44.6
Q1-BB1, Q1-BB2 OC-3 89.5 87.8 100.1

Q4-BB1 + Q4-BB2 OC-3 95.0 92.3 98.4

Table 3.10: Impact of Poisson assumption, (1200 probes).

Response: Poisson batch correction

The correction in this case is based on the idea that packets arrive at the input in batches of

back to back packets, due to the queueing at the upstream hop.

Assume that rather than a Poisson point process of packet arrivals, we have batch arrivals

with the following structure: batches arrive according to a Poisson point process with inten-

sity β and batch contains a random number N of packets, which have the same i.i.d. sizes

σi. Assume batch sizes are independent of everything else. The workload in a single server

queue fed with such a process is the same as that in a M/G/1 queue with arrival rate β and

service times S =
∑N

i=1 σi.

We now show that one can identify the second moment of S by measuring the first and

the second moments of St, the workload brought by such a point process in an interval of

143

length t. It is not difficult to see that C(1)
t = IE(St) = βIE(S)t, whereas

C
(2)
t = IE(S2

t) = βtIE(S2) + (βtIE(S))2 .

Hence

IE(S2) =
C

(2)
t

βt
− βt(IE(S))2 = C

(2)
t − (C

(1)
t)2

βt
.

We now show that we can identify β by measuring the first and the second moment of

the packet inter-arrival time τ . It is not difficult to see that IE(τ) = 1
βIE(N)

and IE(τ2) =

2
β2IE(N)

. Hence β = 2 IE(τ)

IE(τ2)
, so that

IE(S2) =
C

(2)
t − (C

(1)
t)2

2t

IE(τ2)
IE(τ)

.

It is also straightforward to note that IE(S) = C
(1)
t

βt .

Using then the same method as for the Challenge entitled ’Exponential Sizes’, we get

that the correction coefficient is

1 + κρ =
IE(S2)

2IE(S)2
ρ+ 1− ρ

=
tIE(τ)
IE(τ2)

C
(2)
t − (C

(1)
t)2

(C
(1)
t)2

ρ+ 1− ρ .

Note that the mean batch size IE(N) can be estimated with the formula IE(N) = IE(τ2)

2IE(τ)2
.

As seen in Table 3.10, the correction succeeds in reducing the 10% error, but increased

others. As in the previous section here the traffic is close to Poisson so the correction factors

are small.

Response: Extension to more routers

The correction of interest here consists in transforming the delay samples in some M/G/1

queue to those that would have been experienced in an M/M/1 queue with the same arrival

rate λ and the same mean service time µ. We use the ladder epoch representation for the

waiting time distribution in a M/G/1 queue (see [Kle75])

fW (dx) = (1− ρ)


δ0(dx) +

∑

k≥1

ρkf
(k)
R (x)dx


 ,

with f (k)R the k-fold convolution of the residual service time density

fR(x) =
1− Fσ(x)

IE(σ)
,

where Fσ(x) is the CDF of the service times. The mean of the latter density is MR =

144

IE(σ2)/(2IE(σ)). Two observations are in order (i) the density is exponential of parameter

µ in the case when σ is exponential of parameter µ); (ii) we find back that the mean waiting

time is

IE(W) = (1− ρ)
∑

k≥1

ρkk
IE(σ2)
2IE(σ)

=
λIE(σ2)
2(1− ρ)

which is the mean value of the Pollaczek–Khinchin formula. In order to proceed with the

announced correction, we argue that if we have a sample waiting time w, then it is likely

that the number of ladder epochs was k(w) = w
MR

and that a natural sample for the M/M/1

queue waiting time is then

w̃ =w − k(w)(MR − IE(σ)) = w − w
(
1− IE(σ)

MR

)
= w

2IE(σ)2

IE(σ2)
=

w

1 + κ
,

where κ is defined in section 3.6.6. If the sample one has access to is the delay d of a probe

of service time σ rather than its waiting time, then the correction formula is

d̃ =
d− σ
1 + κ

+ σ =
d+ κσ

1 + κ
.

It is easy to check that this correction of the sample leads to a correction of the mean which

is precisely that proposed from the Pollaczek–Khinchin mean value formula above.

For the case with several stations, when assuming that κ is the same in all stations, we

propose the correction formula

d̃ =
d+ κ

∑
i σi

1 + κ
, (3.37)

where σi now denotes the service time of the probe over the i-th router of the path. Various

heuristic extensions can be contemplated to handle the case with different κ parameters

(mean, weighted mean, etc.).

3.6.7 The Two Station Case

In the previous section we showed how to correct, approximately but with considerable

effectiveness, deviations from each of the core assumptions in the case of a single station.

We now briefly consider two aspects of the two station correction problem. In each cross

traffic will be non-persistent, with exponentially distributed packets, Poisson probe streams,

and OC-3 output capacities for each hop.

Challenge: Size Independence

In a Kelly network, service times at different stations are independent. This is not the case

in real networks for any packet which traverses more than one path, as its packet size is

constant. As ground truth we set probe sizes to be independent at each hop, and compare

against the practical case when they are not. Three scenarios are considered: 1: input traces

145

(Q1-BB1, Q1-BB2) and (P1-BB1, P1-BB2) on stations 1 and 2 respectively, 2: input traces

(Q1-BB1, Q1-BB2, P2-BB2) and (P1-BB1, P1-BB2, P3-BB1), 3: input traces (Q4-BB1,

Q4-BB2) and (P4-BB1, P4-BB2). Table 3.11 shows that the impact can be quite large.

load (γ1, γ2) (γ̂1, γ̂2) (γ̂1, γ̂2) corr

1 (0.42, 0.70) (45.5 , 87.5) (33.9 , 166,4) (42.7 , 88.2)
2 (0.77 , 0.96) (5.4 , 33.7) (5.5 , 34.7) (6.4 , 35.8)
3 (0.36 , 0.38) (92.7 , 96) (50.6 , 748.0) (94.4 , 94.4)

Table 3.11: Impact of Service Time assumption.

Response: Random Probe Split

We emulate a probe which is of exponential size and different at each hop by sending a

back-to-back probe pair, the first of which will drop out after hop 1. The key observation is

that if A, B are independent exponential random variables with parameter α and β respec-

tively, then C = min(A,B) and D = max(A,B) −min(A,B) are also independent and

exponential random variables with parameters α+ β and 2αβ/(α+ β) respectively. If the

two probes sent back to back meet no cross traffic, the aggregate probe has a service time

of max(A,B) on router 1, and the surviving probe C = min(A,B) on router 2, and so the

end-to-end delay of the surviving probe is C + D = A + B, the sum of two independent

exponential random variables with parameters α and β as expected! Of course, this is only

a heuristic: for instance the load brought by the probe is always larger on the first station,

and furthermore in practice cross traffic packets can split the pair. We argue that if probes

are rare enough to not perturb the system, then this does not matter too much and that this

trick allows one to emulate the appropriate behavior when it is most important, namely for

probes meeting no cross traffic.

As seen in Table 3.11, the dual probe technique corrects most of the large error due to the

probe size dependence. The improvement is largest at higher load (scenario 2), since there

the remaining dependence in probe service times will be small compared to their waiting

times.

Challenge: Poisson Arrivals

We test the extension of the Poisson batch correction (3.37) using true traffic arrivals and

probes with sizes chosen independently at each hop. We examine: 1: input traces (Q1-

BB1,Q1-BB2) and (P1-BB1,P1-BB2) on stations 1 and 2 respectively, 2: inputs (Q4-

BB1,Q4-BB2) then (P4-BB1,P4-BB2), after removing the largest 1%of delays, as these

outliers disrupt the batch fitting process, which is based primarily on means. Table 3.12

shows that the impact is large in the first case, and that the correction manages to correct

most, but not all of it (delay histograms showed good agreement after correction) In case 2

the error, and correction, are small.

146

Scenario (γ1, γ2) (γ̂1, γ̂2) (γ̂1, γ̂2) corrected

Q1–P1 (45.5, 87.5) (27.8, 147.9) (43.6, 97.3)

Q4–P4 (92.7, 96) (95.0, 95.0) (101.5, 101.5)

Table 3.12: Impact of Service Time assumption.

3.7 Summary

The chapter opens two main new lines of thought. First, it showed that it is possible to pose

an effective Internet tomography problem as an inverse problem in queueing theory that uses

active probes as the external observation vehicle for the inversion method. A poly-phase

technique based on the interpolation of the expected mean delays has been investigated,

but it has been found to be numerically unstable, in addition to the practical constraint

of running several phases of measurement. The second proposed inversion methodology

leverages the stochastic nature of the system to be analyzed and is based on a rigorous

maximization of likelihood which we showed to be tractable in high dimension thanks to

the E-M algorithm. As standard approaches did not apply, our contribution includes original

proofs of the asymptotic efficiency of the estimators and convergence of the E-M algorithm.

This methodology could in principle be extended to other network models (e.g. Whittle and

Max-Plus networks), and to other network metrics (e.g. loss rates, scheduling disciplines).

Finally, one could also explore the flexibility offered by slowly varying probe intensity in

order to explore the set of stationary distributions over a wider range of intensities, which

could render the inversion methodology more robust. All this illustrates the approach of

inverse problems as the foundation of a comprehensive network tomography methodology.

Second, the chapter investigated the effectiveness of this tomographic method on what is

a difficult problem, the estimation of the residual bandwidth on all links on a path, not only

the path bottleneck. Queuing theory together with traces from a core Internet router were

used in order to correct the errors associated with the use of the tractable parametric model

which is needed for the inversion step. It was shown that combined with the knowledge of a

few basic statistical properties of Internet traffic, the dominant corrections can in principle

be identified and processed so as to lead to an effective estimation scheme, which works

better in case of higher load. The design of a systematic construction allowing one to build

estimators combining all individual corrections would would work ‘out of the box’ under

all load conditions is a significant challenge for which we have laid several promising first

steps. On this more practical side, it would also be interesting to take the timestamping

‘noise’ into account in the estimation methodology. This is particularly important for high

speed links where such errors play a dominant role.

147

3.8 Appendix

3.8.1 Proof of Lemma 3.5.3

The proof relies on the following lemmas, which will be proved at the end of this section.

Lemma 3.8.1 is technical and correspond to a classical property of limit points of a se-

quence. It will be used only to prove Lemma 3.8.2, which will be the basic block of the

result.

Lemma 3.8.1. Let (xn)n∈N be a sequence with values in R, s.t. (xn+1 − xn) converges to

zero. Assume that a and b are both limit points of (xn). Then every point c in [a, b] is also

a limit point of (xn).

Lemma 3.8.2. Let (xn) be a sequence with values in R and f a continuous function from

R to R. Assume that the sequence (f(xn))n∈N is convergent, and that (xn) is bounded.

Assume further that the following relation holds:

f(xk+1)− f(xk) ≥ g(xk+1 − xk) , (3.38)

where g(.) is a positive continuous function, null at and only at zero. Then the sequence

(xn) is also convergent.

First, using (3.29), let express γ(k)2 as a function of h(.) of γ(k)1), where

h(x) =

(∑n
i=1 di
n

− 1

x

)−1

.

Let us evaluate

∆k = Qd(γ
(k+1)
1 , γ

(k+1)
2 |γ(k)1 , γ

(k)
2)−Qd(γ

(k)
1 , γ

(k)
2 |γ

(k)
1 , γ

(k)
2).

Using (3.28) we get that

∆k = n log γ
(k+1)
1 + n log γ

(k+1)
2 − n log γ(k)1 − n log γ(k)2

−γ(k+1)
1

∑
di + γ

(k)
1

∑
di

−nγ
(k+1)
2 − γ(k+1)

1

γ
(k)
2 − γ(k)1

+ n
γ
(k)
2 − γ(k)1

γ
(k)
2 − γ(k)1

+((γ
(k+1)
2 − γ(k+1)

1)− (γ
(k)
2 − γ(k)1))

∑

i

di

e(γ
(k)
2 −γ(k)1)di − 1

.

Using optimality (Eq. (3.25)) to reexpress the sum
∑

i
di

e(γ
(k)
2 −γ

(k)
1)di−1

in terms of γ(k)1 , γ
(k)
2

and γ(k+1)
2 and using (3.29) to reexpress the sum

∑
i di in terms of γ(k+1)

1 and γ(k+1)
2 , direct

148

calculations reduce this to

∆k = ng

(
γ
(k)
1

γ
(k+1)
1

)
+ ng

(
γ
(k)
2

γ
(k+1)
2

)
≥ ng

(
γ
(k)
1

γ
(k+1)
1

)
,

with g(x) = x− 1− log(x).
Let µ(k)1 = log(γ

(k)
1). Hence

∆k ≥ g∗
(
µ
(k)
1 − µ

(k+1)
1

)
(3.39)

with g∗(x) = n(ex − 1− x). The last function is continuous, null at 0 and strictly positive

elsewhere.

Let define now f∗(x) = log fd(e
x, h(ex)). We can therefore rename the sequence

log fd(γ
(k)
1 , γ

(k)
2) as f∗(µ(k)1).

The sequence f∗
(
µ
(k)
1

)
is convergent (as EM can only increase the likelihood at each

iteration, and the likelihood can be bounded in our case, this sequence is increasing and

bounded). The sequence (µ
(k)
1) can be bounded by construction (see the proof of Theo-

rem 3.5.1). Finally, (3.39) shows that f∗(µ(k+1)
1)− f∗(µ(k)1) ≥ ∆k ≥ g∗(µ(k)1 −µ

(k+1)
1). h

and f∗ are continuous at any point greater than log n∑
di

, which will be the case after the first

iteration. Therefore, lemma 3.8.2 can be applied, the sequences (µ(k)1) and (γ
(k)
1) = (eµ

(k)
1)

converge. As h is a continuous function, the sequence
(
γ
(k)
2

)
=
(
h(γ

(k)
2)
)

is also conver-

gent, and this will be the case for the sequence (γ
(k)
1 , γ

(k)
2).

We now prove that the limit is a solution of the likelihood equation. At any fixed point

we have γ(k+1)
1 = γ

(k)
1 = γ∗1 and γ(k+1)

2 = γ
(k)
2 = γ∗2 . Therefore, using (3.24) and (3.25):

γ∗2
(γ∗2 − γ∗1)γ∗1

=
1

n

n∑

i=1

die
(γ∗2−γ∗1)di

e(γ
∗
2−γ∗1)di − 1

and
γ∗1

(γ∗2 − γ∗1)γ∗2
=

1

n

n∑

i=1

di

e(γ
∗
2−γ∗1)di − 1

,

the same equations as the likelihood equation, which means that any fixed point of the E-M

algorithm is also a solution of the likelihood equation.

Proof of Lemma 3.8.1 Let c be a point in [a, b], and let construct a subsequence of (xn)

that converges toward c. By definition, a and b are limit points of (xn), hence we can

assume that c 6= a and c 6= b.

Let ǫ = min
(
c−a
2 , b−c2

)
be a positive number. (xn+1 − xn) converges towards zero.

Hence, ∀k, ∃Nk s.t. ∀j > Nk, xj+1 − xj < ǫ
k . By definition of a limit point, ∃i0 ≤ N1,

s.t. xi0 ∈]a − ǫ, a + ǫ[. Similarly, ∃j0 > i0, s.t. xj0 ∈]b − ǫ, b + ǫ[. Recursively, we

can construct two integer sequences (ik) and (jk), such that ∀k,Nk+1 ≤ ik < jk < ik+1,

ik ∈]a− ǫ, a+ ǫ[and jk ∈]b− ǫ, b+ ǫ[.

149

We are now in position to conclude. For all k, we have that xik < a + ǫ ≤ c − ǫ
k <

c + ǫ
k ≤ b − ǫ < xjk . Further more, ik < jk, and ∀n > ik, (xn+1 − xn) ≤ ǫ

k . This

is enough to conclude that there exists ik < φ(k) < jk such that xφ(k) ∈]c − ǫ
k , c +

ǫ
k [.

Since jk < ik+1, the function φ(.) is strictly growing, and (xφ(n)) is a sub-sequence of (xn)

convergent towards c.

Proof of Lemma 3.8.2 By assumption, the sequence (xn) is bounded. Therefore, it con-

verges if and only if it admits one unique limit point.

Assume, by contradiction, that there is two distinct limit points a and b, with a < b.

The sequence f(xn) is convergent, therefore (f(xn+1)− f(xn)) converges toward zero.

Using (3.38), we get that g(xn+1 − xn) is convergent toward zero. By contradiction, if

(xn+1−xn) admits one limit point c 6= 0, then the sequence g(xn+1−xn) admits g(c) > 0

as limit point, which contradicts the fact that it converges to 0. Hence, (xn+1 − xn) admits

no non-zero limit point, and as it is bounded, converges to 0.

Using lemma 3.8.1, we get that ∀c ∈ [a, b], c is a limit point of (xn), and hence f(c)

is a limit point of f(xn). As f(xn) converges towards l, it admits one unique limit point,

and ∀c ∈ [a, b], f(c) = f(a) = f(b) = l. Let ǫ = b−a
3 be a positive number, and let

now N be such that ∀n ≥ N, |xn+1 − xn| < ǫ. As a and b are limit points of (xn),

there exists n1 ≥ N and n2 ≥ n1 such that |xn1 − a| < ǫ and |xn2 − b| < ǫ. Then

∃n3 s.t. n1 ≤ n3 < n3 + 1 ≤ n2, xn3 6= xn3+1, xn3 ∈]a, b[and xn3+1 ∈]a, b[. On one

hand, (3.38) leads to f(xn3+1) > f(xn3). On the other hand, f(xn3) = f(xn3+1) = l. We

get a contradiction.

3.8.2 Proof of Lemma 3.5.4

For the three router case, for all k ≥ 0, (3.23) is equivalent to

Q(θ1, θ2, θ3|γ1, γ2, γ3) =
n∑

i=1

β(di)

∫ di

l1=0

∫ di−l1

l2=0
(log(θ1θ2θ3)− θ3di + (θ3 − θ1)l1 + (θ3 − θ2)l2)

e(γ3−γ1)l1e(γ3−γ2)l2dl2dl1 (3.40)

with β defined in (3.31). We have

∫ d

l1=0

∫ d−l1

l2=0
(a+ bl1 + cl2) e

αl1eβl2dl2dl1 = aca + bcb + dcd

150

with

ca =
β(eαd − 1)− α(eβd − 1)

αβ(α− β)

cb =
αβ(α− β)deαd − β(2α− β)eαd + α2eβd − (α− β)2

α2β(α− β)2

cc =
α(α− 2β)eβd − αβ(α− β)deβd + β2eαd − (α− β)2

αβ2(α− β)2 .

In order to evaluate (3.40) we have to take α = γ3−γ1, β = γ3−γ2, a = log(θ1θ2θ3)−θ3di,
b = (θ3 − θ1) and c = (θ3 − θ2) (note that α− β = γ2 − γ1). In addition

β(di) =
αβ(α− β)

βeαd − αeβd + β − α =
1

ca
.

Finally

Q(θ1, θ2, θ3|γ1, γ2, γ3) =
n∑

i=1

α(di) [ca log(θ1θ2θ3)− cbθ1 − ccθ2 + (cb + cc − dica)θ3]

=n log(θ1θ2θ3) +

n∑

i=1

(
cb + cc
ca

− di
)
θ3 −

cb
ca
θ1 −

cc
ca
θ2 ,

and therefore:
∂Q(θ1, θ2, θ3|γ1, γ2, γ3)

∂θ1
=

n

θ1
−

n∑

i=1

cb
ca

.

The expressions given in Lemma are then directly obtained from

∂Q(γ
(k+1)
1 , γ

(k+1)
2 , γ

(k+1)
3 |γ(k)1 , γ

(k)
2 , γ

(k)
3)

∂γ
(k+1)
1

= 0

and other relations of the same type.

151

152

Chapter 4

Extension to Kelly Networks

4.1 Introduction

We have seen in chapter 3 that the distribution of probe packet end-to-end delays is sufficient

to estimate the set of available bandwidths along a single path, when the delay distribution

at each node belongs to a known parametric family. The goal of this chapter is to extend

these results to the case of a network, exploiting the inherent path diversity.

In other words, we study a network inference problem with a firm foundation in queue-

ing networks, thereby contributing simultaneously to network tomography, and to the area

of inverse problems in queueing. We focus to the particular case of point-to-multipoint in-

verse problems, where a single source sends probe packets to multiple destinations over a

feedforward network of nodes. The network can hence be considered as a tree, whose root

is the sender and whose leaves are the receivers. We consider multicast trees, where each

node of the tree copies its departing probes over all of its child links. Hence each probe sent

from the root node effectively broadcasts over the entire tree until copies arrive at each leaf.

Timestamps at the root and leaves can be compared, so that each multicast probe gives rise

to a vector of delay values. Multicasting is supported by today’s Internet protocols and rep-

resents an economical way to reach many receivers, and most works on delay tomography

exploit it.

A typical delay model used in tomography over multicast trees is given as follows.

To each node there is a random process controlling the delays imparted to packets. The

node processes53 are mutually independent (spatial independence) and are each individu-

ally i.i.d. (temporal independence). Thus the end-to-end delay of each probe at a given leaf

is the sum of independent random variables, with (in general) different distributions, cor-

responding to its ancestor nodes in the tree, as shown in the example of Figure 4.1. The

normal or cross-traffic packets in the network are taken to be responsible for the build up

of node queues and hence the delays which are experienced by probes, however they do

not enter explicitly in the description. Cross traffic is not assumed to be multicast, indeed

53Note that usually the processes are associated to links, not nodes, but as these are in 1-1 correspondence
this is not essential.

153

the multicast tree is a construct of the probing experiment, whereas cross traffic traverses

the full network and simply intersects the tree. Finally, it is assumed that probes are rare

enough so as not to significantly perturb the normal traffic over the tree.

l0

l2 l5 d3

l1

l4 d2

l3 d1

Figure 4.1: Example of a delay tomography problem over a tree: to estimate the means
of the six internal random variables l0, l1, l2, l3, l4 and l5, just by observing samples of the
three end-to-end delay variables d1, d2 and d3, where d1 = l0 + l1 + l3, d2 = l0 + l1 + l4,
and d3 = l0 + l2 + l5.

In this chapter we study the tomography problem as above in the case where the node

delay variables are each exponentially distributed. We formulate a Maximum Likelihood

Estimation problem for their parameters, implemented using the Expectation-Maximization

algorithm. Our contributions are as follows. First we show how the tomography model

described above corresponds to the delays experienced by probes in an appropriately defined

queueing network also carrying cross traffic, thereby justifying the assumptions of a delay

tomography problem over a tree in terms of queueing networks for the first time. Second,

as a delay tomography problem, it is novel in that (see below for details) we do not focus

on non-parametric estimation or alternatively with general but discretized delay, but instead

work with the full MLE of a continuous density. In particular this involves dealing, both

theoretically and practically, with the non-trivial combinatorics inherent in the conditional

expectations over a general tree topology. We derive explicit solutions for the combined

E and M steps. Finally, we provide a technique for convergence acceleration of the E-

M algorithm, which is notoriously slow, allowing much larger trees to be considered than

would otherwise be the case. The technique has some novel features and may be of broader

interest.

Our work is the first to propose a delay tomography model based on exponential de-

lays (see however [LMN07]). Given the accepted queueing origins of network delays, it is

surprising that such a canonical choice has escaped attention until now. The chief reason

for this omission, as argued for example in [PDHT02], is that there is no generally accepted

model for the delays in Internet routers, so that flexibility is essential to match reality. While

this point is well taken, our view is that realism also requires that node models be consis-

tent with their purported queueing underpinnings, something which has never been shown

previously, even in models which introduce, a priori, atomic components in an attempt to

reproduce queue-like features [SH03, LMN07]. Although the exponential distribution is not

considered to be a close fit to packet delays in the Internet today, is it a natural first choice

when making a rigorous connection to queueing networks.

154

It is well known that the convergence of the E-M algorithm can be slow, and there is

a considerable literature devoted to speed-up techniques. An element of our technique in-

volves over-relaxation, that is inflating the jump size recommended by E-M. This idea is not

new, for example it figures in [JJ93, SR03], and was explored by Lange and others in the

context of E-M Gradient Algorithms (see §4.13, [MK08]). However, our jump size update

rule, which does not bound the allowed increase at any step, is extremely aggressive, and

qualitatively different to those we have seen elsewhere, although it shares with [HYH05] the

principle that if a candidate step proves too aggressive, in particular if it leads to a decrease

in likelihood, then a safer ‘fallback’ position can be taken (see also ‘step decrementing’

§4.14.1, [MK08]). The other core element of our technique involves using Principal Com-

ponent Analysis (PCA) to efficiently exploit the information contained in prior evaluations

of the likelihood, and to help counter the instability inherent in aggressive updates. This

approach was inspired by recent work in robotics [DL08] in the quite different context of

automated path finding. We know of no work which uses similar ideas to accelerate E-M or

related algorithms.

To give an example of applications, our techniques could be used by service providers

in order to monitor the quality of real-time services. In the case of ADSL ‘triple-play boxes’

providing IP TV services today, service providers own the end-user equipment, and so can

run measurement software as well as operate the backbone and access networks. They

therefore have the incentive and the ability to use multicast protocols.

The chapter is structured as follows. Section 4.2 describes the queueing inverse problem

and how it maps to the delay tomography problem. Section 4.3 shows how these apply in

the present case. Section 4.4 is a technical one showing how expressions for the conditional

expectations over the tree which arise can be calculated explicitly. Section 4.5 exploits these

solutions to provide the MLE for a number of example trees, using our E-M acceleration

technique, which itself is described (and further illustrated) in Section 4.6. We conclude

and comment on future work in Section 4.7.

4.2 A Delay Tomographic Queueing Inverse Problem

We begin with the model for cross-traffic only, and then consider how probes can be intro-

duced.

Consider an open Kelly network of single server FCFS queueing stations connected in

a tree topology. Routes corresponding to a given customer class can only move away from

the root station (and are not multicast), but are otherwise general, entering the tree at any

station and exiting either that same station, or any other further down the tree. The arrival

process to route (or class) r is Poisson of intensity λr. All packets have exponential size

with mean 1, and the service rate of station j is µj . We consider only parameter values

consistent with a stationary regime.

We first consider the special case of a tandem network of K stations that we studied in

the previous chapter, as it serves as a building block for what follows. Assume that route

155

r = 0 traverses the network from root to leaf, so that for each customer in class 0 we can

associate an end-to-end system time, or delay d. We will call such a route a path. From (3.3)

the marginal distribution for the numberN j
0 of customers of class 0 in station j, 1 ≤ j ≤ K,

at a given time instant is

P(N j
0 = nj0, j = 1, . . . ,K) =

K∏

j=1

(
λ0
γj

)nj
0
(
1− λ0

γj

)
,

where γj = µj −
∑

r 6=0,j∈r λr is the residual service capacity of station j available to

class 0. From lemma 3.2.1 (and its proof), we know that d is the sum of K independent

exponential variables, one per station, where the mean parameter for station j is just the

reciprocal of the residual service capacity γj − λ0. Furthermore, from corollary 1.2.11, we

know that the departure processes of the classes exiting the system at station K are Poisson

and mutually independent, and that departures from any of these prior to some time t are

independent of the system state at time t.

Now consider a tree network. The above result for a tandem applies directly to any path,

that is the end-to-end delay of each customer of a path is given by the sum of independent

exponentials. Note however that this does not imply that the delays seen over different

paths are independent. Now the set of stations in any two paths can be partitioned into three

tandem subnetworks: a shared portion S from the root down to some last shared station A,

and two unshared portions U1 and U2 beginning from children of A, each terminating at a

leaf.

The independence properties given above for the tandem network apply to customers

exiting A. They imply that the arrival processes to each of U1 and U2 are independent

not only of each other, but also of the states of U1 and U2, since the latter are functions

only of the prior departures from S, which as noted above are independent of the state of

S at the departure instant of each probe. Since the service times of the stations in U1 and

U2 are also mutually independent, it follows that the delays incurred over U1 and U2 are

likewise independent both of each other, and of the delays incurred (by the customers of

either path) over S. In summary, delays over the tandem subnetworks S, U1, and U2 are

mutually independent, and inside each of these, delays experienced by customers of a given

class (i.e. path) are given by a sum of independent exponentials. This argument extends

naturally to the entire tree.

We now introduce multicast probe customers into the system, which behave as follows.

The probes arrive as a Poisson process of intensity Λ to the root station. Once a probe has

arrived to a station it is treated exactly like a normal customer, but upon exiting, copies are

instantaneously made which arrive simultaneously to each of its child stations. Hence each

multicast probe traverses all paths (end-to-end routes) but no other routes.

Clearly the system consisting of cross-traffic classes plus the multicast probe class over

the tree is not a Kelly network. However, as before the tandem analysis above applies,

showing not only that probe delays over each path are distributed as a sum of independent

156

exponentials, but also that the probe delays on a given path can be analyzed as if the cross-

traffic were absent, provided the appropriate reduced capacities are used. Furthermore,

the above arguments concerning the decoupling of the delays experienced over the shared

portion of paths from those below it continue to hold. However, the relationship between

delays seen by customers of different paths within the shared or the un-shared portions is

now substantially different.

To examine this question we revisit our two path example, but now consider the cus-

tomers on each path to belong to the same multicast probe class.

Shared part: there is now only a single probe customer process rather than two. This

can be interpreted as perfect station-by-station dependence of the delay components from

each path, in contrast to the situation for cross traffic where the service times of customers,

for example, were independent.

Unshared part: the arrival processes fromA to U1 due to path 1, andA to U2 due to path

2, remain Poisson, but are now identical rather than independent, resulting in dependence

between the delays of probes (and cross traffic) seen over U1 and U2.

To see why the delays of probes are now dependent on the unshared part, consider

the following simple example without cross-traffic, where U1 and U2 each consist of a

single node of capacity µ. In other words, U1 and U2 are M/M/1 queues with independent

service times, fed by the same Poisson Process of intensity Λ. Each queue has a marginal

probability (1− ρ) = (1− Λ
µ) to be empty. Now U1 (resp. U2) is empty at the arrival time

tN of the N th probe packet if and only if the previous probe had a delay D1 (resp. D2)

which is less than the inter-arrival time tN − tN−1. Assume for contradiction that spatial

independence holds between D1 and D2, this leads to:

P[both queues empty] =
∫ ∞

0
P[D1 ≤ τ,D2 ≤ τ]P[tN−tN−1 = τ]dτ = 1−2ρ+ ρ2

2ρ− ρ2

which is not equal to (1−ρ)2 (unless ρ = 1), the result one would obtain if the waiting times

were independent. But this is a contradiction, because the assumptions of independence

between D1 and D2, and on the service times, clearly implies independence of waiting

times. It follows that the delays must in fact be dependent.

Although multicast probes break the strict spatial independence property of path delays,

we expect this dependence to be weak in most cases, since the arrival processes to U1 and

U2 remain independent of the states ofU1 andU2 (at arrival instants), the service times inU1

and U2 remain independent, and furthermore the cross-traffic arrivals (from paths or other

routes) are independent as before. In particular, if we assume that Λ is small, so that with

high probability there is no more than a single probe in any given station, then the states of

U1 and U2 are only slightly perturbed by probes and are thus approximately independent,

and so the delays over U1 are U2 are likewise close to independent.

It is a general principle of network probing that Λ be kept small, in order to avoid

consuming network bandwidth, perturbing the system to be measured, and to prevent probes

157

being confused with network attacks. Since Λ is under the control of the prober, it is quite

reasonable to assume it is small. This same rare probing assumption justifies the assumption

of temporal independence in the time series of probe delays associated to each path, used in

the MLE formulation below.

In conclusion, the delays of rare multicast probes sent over a Kelly tree network of

cross traffic closely hew to the assumptions of a spatially and temporally independent delay

tomography problem over a tree with exponential delays. Namely, per-station delays expe-

rienced by probes obey a simple structure: perfect dependence over stations on the shared

part of the path, and independence between the unshared parts. Cross traffic appears only

through the values of the residual capacity parameters {γj − Λ} to be estimated. Since Λ

is known, the residual capacities {γj} relating to cross traffic only can subsequently be re-

covered. The actual intensities {λr} and the server rates {µj} are not identifiable, however

they can be recovered in principle by other means, for example using a prior measurement

phase with fixed packet sizes, as discussed in the tandem case in chapter 254.

4.3 E-M for Exponential Tomography

In this section we apply the E-M algorithm to our delay tomographic problem.

Consider a tree T , and call T the set of its nodes and V ⊂ T the set of its leaves.

We introduce the fixed parameter vector α = (αj)j∈T and the variable parameter vectors

α̂(k) = (α̂
(k)
j)j∈T . The complete data random vector of the E-M algorithm will correspond

to the vector l ∈ RT of the delays of each node, which are supposed independent and expo-

nentially distributed with expected value α, and the observed data vector y will correspond

to d ∈ RV , the vector of all end-to-end delays from the root to each leaf. We will have

d = f(l) for some linear function f depending on the topology of the tree. We recall that

the probability density function of an exponentially distributed variable of mean value αj is

pαj
(z) = 1

αj
e−z/αj .

The fixed vector α will be referred as the ground truth, and the variables vectors α̂(k) as

the current estimates (of E-M). We wish to estimate α via α̂(k), hoping that this last sequence

will converge ‘close to’ α. In networks context, αj corresponds to the mean sojourn time

of probes in server j.

Remark. Note that in Kelly networks, the mean sojourn time αj on node j is the inverse of

the residual capacity γj on this node. Both quantities are relevant in practice, and it is equiv-

alent to estimate one or the other on a single occurence, due to the function invariance of

maximum likelihood estimators. In this chapter, using the mean delays instead of available

bandwidth leads to simpler equations to write. Recall however that, as the inverse function

is not linear, the mean estimation of the mean delay is not the inverse of the mean estimate

of the available bandwidth.

54An interesting discussion, in the context of a priori node models, of how the addition of atoms can assist in
identifiability is given in [SH03].

158

The results given in this section actually hold more generally, for any set T and V

with any random exponential vector l ∈ RT (with independent coordinates) and any linear

function f : RT → RV . In particular they hold for delay tomography problems where the

network topology is not tree-like.

4.3.1 Specialization of the Iterative Formula

Usually, each iteration of E-M can be computed in two steps: the E-step, where we compute

the conditional expectation of the log-likelihood, and the M-step where we maximize it. But

when the hidden data belongs to the regular exponential family, as it is the case here, it is

well known [MK08] that the E- and M-steps can be solved directly in one step. In other

words, the iteration can be made more explicit. Indeed, we have:

α̂(k+1) := argmax
θ

1

N

N∑

i=1

IEα̂(k)(log pθ(l)|f(l) = d(i))

= argmax
θ

N∑

i=1

∫
{l|f(l)=d(i)} log(pθ(l))pα̂(k)(l)dl∫

{l|f(l)=d(i)} pα̂(k)(l)dl
, (4.1)

where in our case pθ(l) =
∏

j∈T

1

θj
e
− lj

θj , and log pθ(l) =
∑

j∈T
(log

1

θj
− lj
θj
) for every θ.

We notice that log pθ(l) is easily differentiable according to θ, giving:

∂ log pθ(l)

∂θj
= − 1

θj
+
lj
θ2j

= − 1

θ2j
(θj − lj) ,

and therefore, IEα̂(k)(log pθ(l)|f(l) = d(i)) is also differentiable, with:

∂IEα̂(k)(log pθ(l)|f(l) = d(i))

∂θj
= − 1

θ2j

∫
{l|f(l)=d(i)}(θj − lj)pα̂(k)(l)dl

qα̂(k)(d(i))

= − 1

θ2j
IEα̂(k)(θj − lj |d(i)) = −

1

θ2j
(θj − IEα̂(k)(lj |d(i))) .

We then have:

∂
∑N

i=1 IEα̂(k)(log pθ(l)|f(l) = d(i))

N∂θj
= − 1

θ2j

(
θj −

1

N

N∑

i=1

IEα̂(k)(lj |d(i))
)

.

Thus, setting this derivative to zero leads to θ =
1

N

N∑

i=1

IEα̂(k)(l|d(i)), and so

α̂(k+1) =
1

N

N∑

i=1

IEα̂(k)(l|d(i)) . (4.2)

Remark. Here we have generalized the conditional expectation to the multivariate case.

159

That is, in IEα̂(k)(l|d(i)), l is a vector, where we have defined IEα̂(k)(l|d(i)) :=

(IEα̂(k)(lj |d(i)))j∈T , and the sum
∑N

i=1 IEα̂(k)(l|d(i)) is to be understood as a component-

wise addition.

We just reduced the E- and M-steps to one, a significant simplification which in many

contexts would almost constitute a ‘solution’ to the problem. However, computing the

conditional expectation IEα̂(k)(l|d) remains a challenge as it involves dealing with combina-

torics over the tree, and is in fact a main part of our work. In the next section, we explain

how it can be computed efficiently. First, we point out an interesting property which will be

useful later.

Proposition 4.3.1. Let l ∈ RT be the vector of the delays of each node, and d ∈ RV the

vector of all end-to-end delays from the root to each leaf. Assume that for some linear

function f depending on the topology of the tree, we will have d = f(l) for some . Assume

finally that l is an exponentially distributed random vector with mean α ∈ RT , and that

(l1, . . . , lN) are N i.i.d. random vectors (with the same distribution as l).

Let (d(i))1≤i≤N = (f(l(i)))1≤i≤N be the measured end-to-end delays, α̂
(k)
k∈N be the

sequence of successive estimates of α by the E-M algorithm based on these delays. We then

have for all k:

f(α̂(k+1)) = d̄ =
1

N

N∑

i=1

d(i) , (4.3)

where again d̄ is a vector defined by averaging component-wise.

Proof. Thanks to the linearity of the conditional expectation and the linearity of f , we have

in our case that IEα̂(k)(f(l)|d) = f(IEα̂(k)(l|d)). Therefore,

f(α̂(k+1)) =
1

N

N∑

i=1

IEα̂(k)(f(l)|d(i)) = 1

N

N∑

i=1

IEα̂(k)(d|d(i)) = 1

N

N∑

i=1

d(i) .

Because of this relation, we know that each term of the EM sequence (α̂(k)) except the

first will satisfy f(α̂(k)) = d̄. Therefore, the sequence stays in f−1(d̄) which, since f is

linear, is a linear subspace of RT .

4.4 Explicit Formula for IE(l|d)

In this section we compute the conditional expectation IEα̂(k)(l|d), which is the key to the

evaluation of the step function (4.2). Since

IEα̂(k)(l|d) =
∫
f−1(d) lpα̂(k)(l)dl∫
f−1(d) pα̂(k)(l)dl

:=
ξα̂(k)(l|d)
qα̂(k)(d)

, (4.4)

the calculation can be divided in the computation of the two terms qα̂(k)(d) and ξα̂(k)(l|d).

160

By their nature these calculations are detailed. This section is self-contained and could

be skipped on a first reading.

4.4.1 Notations

In this section, we are interested in a single iteration of the EM algorithm. In order to

simplify notations, we will therefore here (and only here) write α instead of α̂(k). Similarly,

in order to have another point of view and nicer notations, we will also introduce the rate

γj :=
1
αj

and use the notation pαj
(z) = γje

−gjz instead.

We recall that T , T , V ⊂ T , l = (lj)j∈T ∈ RT and d = (dj)j∈V ∈ RV denotes

respectively the tree we consider, the set of its node, the set of its leaves, the vector of

delays on each nodes and the vector of end-to-end delays in the tree. The variable vectors

α = (αj)j∈T and γ = (γj)j∈T is the current estimate of EM.

As in Section 4.3, the observed data are the end-to-end delay vectors d(1), . . . , d(N),

and are the images under some linear function fT of the unknown complete data

l(1), . . . , l(N), where fT captures the details of the tree topology.

We provide T with the order ≺ defined by: for all i, j in T , i ≺ j if i is an ancestor

of j. With these notations, the function fT : RT → RV such that fT (l) = d is given by

∀k ∈ V, (fT (l))k = dk =
∑

j∈T
j�k

lj , and the two terms of the fraction (4.4) can be written:

qα(T , d) =
∫

f−1
T

(d)

∏

j∈T
γje

−γj ljdl and ξα(T , l|d) =
∫

f−1
T

(d)
l
∏

j∈T
γje

−γj ljdl . (4.5)

4.4.2 Some simple examples

a) 2 Nodes Tree

l0 l1 d

In this simple case from chapter 3, since l0 and l1 are linked to d by l0 + l1 = d, there

is only one unknown. Therefore qα can be expressed as an integral over l0 only.

qα(T , d) = γ0γ1

∫ d

l0=0
e−γ0l0e−γ1(d−l0)dl0 = γ0γ1

(
e−γ0d

γ1 − γ0
+

e−γ1d

γ0 − γ1

)
,

and similarly:

ξα(T , l0|d) = γ0γ1

(
e−γ0d

γ1 − γ0

(
d− 1

γ1 − γ0

)
+

e−γ1d

(γ0 − γ1)2
)

.

Although the figure does not suggest it, the problem is actually symmetric in the nodes

0 and 1. Indeed, what we observe being the sum of two delays, the tree 0→ 1 is equivalent

161

to the tree 1→ 0. Therefore, we have by symmetry:

ξα(T , l1|d) = γ0γ1

(
e−γ0d

(γ1 − γ0)2
+

e−γ1d

γ0 − γ1

(
d− 1

γ0 − γ1

))
.

b) Root with 2 Leaves

l0

l2 d2

l1 d1

In this case, since l0 + l1 = d1 and l0 + l2 = d2, we can consider as before only one

unknown l0, and express qα as an integral over l0 between 0 and d0 := min {d1, d2}. Since

l0, l1 and l2 are nonnegative, l0 has to be smaller than d1 and d2. We have:

qα(T , d) = γ0γ1γ2

∫ d0

l0=0
e−γ0l0e−γ1(d1−l0)e−γ2(d2−l0)dl0

= γ0γ1γ2

(
e−γ0d0

e−γ1(d1−d0)e−γ2(d2−d0)

γ1 + γ2 − γ0
+
e−γ1d1e−γ2d2

γ0 − γ1 − γ2

)
,

and similarly:

ξα(T , l0|d) = γ0γ1γ2

(
e−γ0d0

e−γ1(d1−d0)e−γ2(d2−d0)

γ1 + γ2 − γ0

(
d0 −

1

γ1 + γ2 − γ0

)

+
e−γ1d1e−γ2d2

(γ0 − γ1 − γ2)2

)
,

ξα(T , l1|d) = γ0γ1γ2

(
e−γ0d0

e−γ1(d1−d0)e−γ2(d2−d0)

(γ1 + γ2 − γ0)

(
d1 − d0 −

1

γ0 − γ1 − γ2

)

+
e−γ1d1e−γ2d2

γ0 − γ1 − γ2

(
d1 −

1

γ0 − γ1 − γ2

))
,

and ξα(T , l2|d) can be deduced from ξα(T , l1|d) by symmetry between nodes 1 and 2.

4.4.3 Inductive Expression

The last example above can readily be extended to more than two leaves. More generally, it

suggests that it be possible to express qα (resp. ξα) for any tree as an integral over the delay

in the root node from 0 to the minimum of the end-to-end delays, of some term using qα
(resp. ξα and qα) inductively applied to the child subtrees of the root. We now show how

this can be done.

Let 0 denote the root of the tree, and p the number of its children. In the case where the

tree is a single node, i.e. p = 0, we have obviously qα(d) = γ0e
−γ0d0 . When p ≥ 1 we

162

denote by T (1), T (2), . . . , T (p) the associated child subtrees. Subtree T (i) has nodes T (i)

and leaves V (i) ⊂ T (i).

We notice that (V (1), V (2), . . . , V (p)) forms a partition of V , and therefore any vector

d in RV can be identified with a vector d = (d(1), d(2), . . . , d(p)) in RV
(1) × RV

(2) × · · · ×
RV

(p)
. Similarly, any vector l in RT can be identified with a vector l = (l0, l

(1), . . . , l(p)) in

R× RT
(1) × · · · × RT

(p)
.

l0

lp

l1 T1

Tp

d(1)

d(p)

Theorem 4.4.1. Define d0 := min{dj | j ∈ V }. The following inductive relation holds:

qα(T , d) =
∫ d0

l0=0
γ0e

−γ0l0
[

p∏

i=1

qα(T (i), d(i) − (l0))

]
dl0 , (4.6)

where the slightly abusive notation d(i) − (l0) denotes the vector (d
(i)
j − l0)j∈V (i) ∈ RV

(i)
.

Proof. For a more convenient notation, we introduce for each i ∈ {1, . . . , p} the function

f (i) := fT (i) which is to the tree T (i) what the function fT is to the tree T .

We notice that the following relation holds: for all l in RT , let d = f(l), then for all

k ∈ V , there exist one unique i ∈ {1, . . . , p} such that k ∈ V (i), and:

d
(i)
k = dk =

∑

j∈T
j�k

lj = l0 +
∑

j∈T (i)

j�k

l
(i)
j = l0 +

(
f (i)(l(i))

)
k

.

Which gives for all i ∈ {1, . . . , p}, d(i) = (l0) + f (i)(l(i)), and therefore:

l(i) ∈ (f (i))−1(d(i) − (l0)) .

Therefore, the integral in (4.5) over l ∈ f (−1)
T (d) can be sliced as an external integral

over l0 ∈ [0, d0] where d0 = min{dk | k ∈ V }, and a product of internal integrals over

l(i) ∈ (f (i))−1(d(i) − (l0)) for each i, which gives

qα(T , d) =
∫ d0

l0=0
γ0e

−γ0l0




p∏

i=1

∫

(f (i))−1(d(i)−(l0))

∏

j∈Ti
γje

−γj(l(i)j)dl(i)


 dl0 .

As we can see, the inner integral looks very similar to the initial integral in (4.5), and

163

indeed, we can finally write:

qα(T , d) =
∫ d0

l0=0
γ0e

−γ0l0
[

p∏

i=1

qα(T (i), d(i) − (l0))

]
dl0 .

The function ξα(T , l|d) also satisfies an inductive relation, but its expression is slightly

more complicated. From (4.5), a similar reasoning shows that the following inductive for-

mula holds. For the root:

ξα(T , l0|d) =
∫ d0

l0=0
γ0l0e

−γ0l0
[

p∏

i=1

qα(T (i), d(i) − (l0))

]
dl0 , (4.7)

and for any node j ∈ T \ {0}, let i ∈ {1, . . . , p} be the unique child of the root such that

j ∈ T (i), we have:

ξα(T , lj |d) =
∫ d0

l0=0
γ0e

−γ0l0
[
ξα(T (i), l

(i)
j |d(i)−l0)

∏

k 6=i
qα(T (k), d(k)−(l0))

]
dl0 . (4.8)

Using this inductive formula, it is possible to deduce a recursive algorithm computing

the expanded symbolic expression for the terms qα and ξα. However, we prefer to derive an

alternative expression which, as we will see presently, is simpler.

4.4.4 More Examples

The following examples can be derived using the inductive expressions above. The first

generalizes the case of a unary tree to any number of nodes, and the second is a simple tree

for which the expanded expressions of qα and ξα are already quite complicated. Here and

below we recommend that the reader first focus on the expressions for qα.

c) Unary Tree with K Nodes

l0 l1 l2 lK d

We have:

qα(T , d) =
(

K∏

j=1

γj

)
K∑

j=1

e−γjd∏
k 6=j

(γk − γj)
,and

ξα(T , li|d) =
(

K∏

j=1

γj

)(
e−γid∏

k 6=i
(γk − γi)

(
d−
∑

k 6=i

1

γk − γi

)
+
∑

j 6=i

e−γjd

(γi − γj)2
∏
k 6=i
k 6=j

(γk − γj)

)
.

d) One Root with two 2-Server Leaves

164

l0

l2 l4 d2

l1 l3 d1

As we did in Example b), we introduce d0 := min {d1, d2}. We have:

qα(T , d) = γ0γ1γ2γ3γ4(
e−γ0d0

(
e−γ1(d1−d0)e−γ2(d2−d0)

(γ1 + γ2 − γ0)(γ3 − γ1)(γ4 − γ2)
+

e−γ1(d1−d0)e−γ4(d2−d0)

(γ1 + γ4 − γ0)(γ3 − γ1)(γ2 − γ4)

+
e−γ3(d1−d0)e−γ2(d2−d0)

(γ3 + γ2 − γ0)(γ1 − γ3)(γ4 − γ2)
+

e−γ3(d1−d0)e−γ4(d2−d0)

(γ3 + γ4 − γ0)(γ1 − γ3)(γ2 − γ4)

)

+
e−γ1d1e−γ2d2

(γ0 − γ1 − γ2)(γ3 − γ1)(γ4 − γ2)
+

e−γ1d1e−γ4d2

(γ0 − γ1 − γ4)(γ3 − γ1)(γ2 − γ4)

+
e−γ3d1e−γ2d2

(γ0 − γ3 − γ2)(γ1 − γ3)(γ4 − γ2)
+

e−γ3d1e−γ4d2

(γ0 − γ3 − γ4)(γ1 − γ3)(γ2 − γ4)

)
,

and ξα(l0|d) = γ0γ1γ2γ3γ4(
e−γ0d0

(
e−γ1(d1−d0)e−γ2(d2−d0)

(γ1 + γ2 − γ0)(γ3 − γ1)(γ4 − γ2)
(
d0 −

1

(γ1 + γ2 − γ0)
)

+
e−γ1(d1−d0)e−γ4(d2−d0)

(γ1 + γ4 − γ0)(γ3 − γ1)(γ2 − γ4)
(
d0 −

1

(γ1 + γ4 − γ0)
)

+
e−γ3(d1−d0)e−γ2(d2−d0)

(γ3 + γ2 − γ0)(γ1 − γ3)(γ4 − γ2)
(
d0 −

1

(γ3 + γ2 − γ0)
)

+
e−γ3(d1−d0)e−γ4(d2−d0)

(γ3 + γ4 − γ0)(γ1 − γ3)(γ2 − γ4)
(
d0 −

1

(γ3 + γ4 − γ0)
))

+
e−γ1d1e−γ2d2

(γ0 − γ1 − γ2)2(γ3 − γ1)(γ4 − γ2)
+

e−γ1d1e−γ4d2

(γ0 − γ1 − γ4)2(γ3 − γ1)(γ2 − γ4)

+
e−γ3d1e−γ2d2

(γ0 − γ3 − γ2)2(γ1 − γ3)(γ4 − γ2)
+

e−γ3d1e−γ4d2

(γ0 − γ3 − γ4)2(γ1 − γ3)(γ2 − γ4)

)
,

165

and ξα(l1|d) = γ0γ1γ2γ3γ4(
e−γ0d0

(
e−γ1(d1−d0)e−γ2(d2−d0)

(γ1 + γ2 − γ0)(γ3 − γ1)(γ4 − γ2)
(
d1 − d0 −

1

(γ0 − γ1 − γ2)
− 1

(γ3 − γ1)
)

+
e−γ1(d1−d0)e−γ4(d2−d0)

(γ1 + γ4 − γ0)(γ3 − γ1)(γ2 − γ4)
(
d1 − d0 −

1

(γ0 − γ1 − γ4)
− 1

(γ3 − γ1)
)

+
e−γ3(d1−d0)e−γ2(d2−d0)

(γ3 + γ2 − γ0)(γ1 − γ3)2(γ4 − γ2)
+

e−γ3(d1−d0)e−γ4(d2−d0)

(γ3 + γ4 − γ0)(γ1 − γ3)2(γ2 − γ4)

)

+
e−γ1d1e−γ2d2

(γ0 − γ1 − γ2)(γ3 − γ1)(γ4 − γ2)
(
d1 −

1

(γ0 − γ1 − γ2)
− 1

(γ3 − γ1)
)

+
e−γ1d1e−γ4d2

(γ0 − γ1 − γ4)(γ3 − γ1)(γ2 − γ4)
(
d1 −

1

(γ0 − γ1 − γ4)
− 1

(γ3 − γ1)
)

+
e−γ3d1e−γ2d2

(γ0 − γ3 − γ2)(γ1 − γ3)2(γ4 − γ2)
+

e−γ3d1e−γ4d2

(γ0 − γ3 − γ4)(γ1 − γ3)2(γ2 − γ4)

)
.

ξα(l2|d),ξα(l3|d) and ξα(l4|d) can be deduced by symmetry.

4.4.5 Explicit Expression

One could use the previous inductive formulae with algebraic computation to generate the

expressions of qα and ξα. However such a method is not efficient, since terms have to be

merged for optimization. For instance, the inductive formula of qα applied to Example c)

would lead before simplification to a sum of 2K terms, while the simplified expression has

only K summands. We therefore give here explicit, already simplified formulae.

Vocabulary for Tree Combinatorics

Example d) shows that the formulae for qα and ξα can be expressed as a sum of terms with

a distinct structure. These in fact correspond to particular ‘slices’ or ‘cuts’ of the tree. In

this section we define cuts and related nomenclature (illustrated in Figure 4.2) which will

be subsequently used to provide simplified symbolic expressions for qα and ξα.

The following definitions are given in the context of a tree, but they extend naturally to

a forest, that is a set of trees.

Definition 4.4.2. A cut of a tree is a maximal unordered set of nodes for the order≺ defined

above. In other words, C is a cut of a tree T if it satisfies:

1) ∀ i, j ∈ C, i ⊀ j and j ⊀ i.

2) ∀ i ∈ T \ C, ∃ j ∈ C, i ≺ j or j ≺ i.

Example 4.4.1: In Example d) above, the tree has five possible cuts which are: {0}, {1; 2},
{1; 4}, {3; 2} and {3; 4}.

166

Definition 4.4.3. We call branch every maximal sequence of nodes (i1, . . . , in) such that

for all k ∈ {1, . . . , n− 1}, the node ik+1 is the unique child of ik.

Every tree can then be visualized as a tree of branches, each having at least two children.

However, a cut as defined above will still be a set of nodes, not branches. See Figure 4.2

for an example.

Finally, as shown in the figure, we will talk about the “past”, the “present” and the

“future” of a cut as follows: The “present” of a cut is the set of all nodes in the branches

intersected by the cut. The “past” is the set of their ancestors in different branches, and the

“future” the set of their descendants in different branches. More formally, we will adopt the

following notations:

Definition 4.4.4. For each pair of nodes (i, j) in T , we write:

a) i ∼ j if i and j belongs to the same branch and we say that j belongs to the present

of i and i belongs to the present of j.

b) i ≪ j if i ≺ j and i ≁ j, and we say that i belongs to the past of j and j belongs to

the future of i.

The past, (resp. present, future) of a node will be the set of all nodes belonging to the

past (resp. present, future) of this node, and by extension, the past (resp. present, future) of a

cut will be the set of all the nodes belonging to the past (resp. present, future) of at least one

of the nodes of the cut. We will denote these by past(i), present(i), future(i) for a node i

and Past(C), Present(C), Future(C) for a cut C. It is important not to confuse nodes and

branches.

Remark. The past, present and future of a cut forms a partition of T .

PAST PRESENT FUTURE

BRANCH

NODE

CUT

Figure 4.2: A tree with its branches and one of its cuts, with the corresponding past, present,

and future of the cut.

167

Finally, we extend the vector d = (dj)j∈V ∈ RV to d = (dj)j∈T ∈ RT by introducing

for each j in T \ V , dj := min {dk | k ∈ V and j ≺ k}.

The Explicit Form of qα

In this section we use the cut vocabulary to define an expression for qα which is not only

closer to closed form, but is also more compact and more efficient to evaluate than that

produced by the inductive formula. The validity of this formula is proved in the appendix.

For any fixed tree T and delay d, we have qα(T , d) = ΓT
∑

C cut of T
hα(T , d, C), where

ΓT :=
∏
j∈T γj and where each term hα(T , d, C) can be expressed as a product of three

factors:

hα(T , d, C) := r(C)s(C)t(C) ,

where r(C) depends only on the cut C and its past, s(C) depends only on C and its present,

and t(C) depends only on C and its future.

i) Past and Present The factors r(C) and s(c) are given by

r(C) :=
∏

k∈Past(C)

1

γk −
∑
j∈C
k≪j

γj
and s(C) :=

∏

j∈C

e−γjdj∏
k∼j
k 6=j

(γk − γj)
.

ii) Future The factor t(C) = t(T , d, C) is more complicated as it involves a recursion.

To describe it, we regard hα(T , d, C) as functions of all its arguments to allow it to apply

to subtrees with modified delays, and also extend its definition from a tree T to a forest F .

The set of nodes of a forest F is denoted by F .

If the future of each cut C of T is empty, i.e. if the tree T is reduced to a single branch,

we have t(T , d, C) = 1. Recursively, we can then define:

t(T , d, C) :=
∏

j∈C
tj(T , d, C) ,

where

tj(T , d, C) :=
∑

Cj cut of Fj

hα(Fj , d− (dj), Cj)(∑
k∈Cj

γk
)
− γj

,

where Fj is the subforest of T containing all the nodes belonging to the future of j, and

therefore Fj := {k ∈ T |j ≪ k}, where d− (dj) is the vector (dk − dj)k∈Fj
.

We can interpret d − (dj) as the best information we have about the delay between j

and the leaves, since we know only that the delay between the root and j has to be smaller

than any delay between the root and the leaves in the future of j.

168

The formula qα(T , d) is now entirely defined. One can verify that it gives the correct

expressions for the examples in the paper.

The Explicit Form of ξα(l|d)

As we can see in the previous examples, the term ξα(li|d) has globally the same structure

as qα(d) with additional factors. Therefore it is relatively easy to modify any algorithm

computing qα(d) to compute ξα(li|d).

For any non-fixed tree T and any node i in T , we have:

ξα(li|d) = ΓT
∑

C cut of T
hiα(T , d, C, 0) ,

where for any real number x:

hiα(T , d, C, x) := ri(C)si(C)ti(T , d, C, x) ,

where ri(C) (resp. si(C)) depends only from the cut C and its past (resp. present), and

where ti(T , d, C, x) involves a recursion.

a) Past and Present

ri(C) :=
∏

k∈Past(C)

1

(γk −
∑
j∈C
k≪j

γj)
1+δi

k

and si(C) :=
∏

j∈C

e−γjdj
∏
k∼j
k 6=j

(γk − γj)1+δ
i
k

,

where δik =




1 if k = i

0 else
is the Kronecker delta.

b) Future

As for t(T , d, C), the definition of ti(T , d, C, x) induce a recursion with the whole

formula. First we introduce ρi(C) :=
∑

k∈past(i)

1

γk −
∑
j∈C
k≪j

γj
and σi(C) :=

∑

k∼i
k 6=i

1

γk − γi
.

These are terms corresponding respectively to the past and the present of node i. Now

169

ti(T , d, C, x) :=∏j∈C t
i
j(T , d, C, x), where:

tij(T , d, C, x) :=



(
di − σi(C)− ρi(C)− x

)
if future(j) = ∅ and j = i

1 if future(j) = ∅ and j 6= i
∑

Cj cut of Fj

hiα(Fj , d− (dj), Cj , 0)(∑
k∈Cj

γk
)
− γj

ui(T , d, C, Cj , x) if future(j) 6= ∅ and j = i

∑

Cj cut of Fj

hiα(Fj , d− (dj), Cj , τj(Cj))(∑
k∈Cj

γk
)
− γj

if future(j) 6= ∅ and j 6= i,

where ui(T , d, C, Cj , x) :=
(
di − σi(C)− ρi(C)− x+ τi(Cj)

)
, and where for any node

j and cut C, τj(C) :=
1

γj −
∑

k∈C γk
.

Remark. It is important to remember in which tree each term is computed. When it is not

specified, it is implicitly the tree called T on the current level of recursion.

We notice that the term x is used only in the cases where j = i. Therefore, the term

τj(Cj) in hiα(Fj , d− (dj), Cj , τj(Cj)) above is used only when i ∈ Cj .
In order to understand the different cases in the definition of tij(T , d, C, x), we can have

a look at the example d). In this example, the term (d0− 1
γ1+γ2−γ0) in ξα(l0|d) comes from

(di + τi(Cj)) in ui(C,Cj , x), while the term (d1 − d0 − 1
γ0−γ1−γ2 −

1
γ3−γ1) in ξα(l1|d)

comes from (di − x − σi(C)) with x = τj(Cj) and C = Cj (recursive call), and the term

(d1 − 1
γ0−γ1−γ2 −

1
γ3−γ1) comes from (di − ρi(C)− σi(C)).

Alternative Informal Description

A less formal way to describe ξα(li|d) is to consider each term in the expanded expression

of qα(d), and each time a e−γid

coef appears, multiply it by (d− coef ′), where coef ′ is the sum

of each multiplicative factor appearing in coef and containing γi in its expression, and each

factor being multiplied by (−1) when γi appears in it with a positive sign. Further, when a

term in the expanded expression of qα(d) is of the form e
−γj1

d
...e−γjn

d

coef , replace coef with

coef ′′, being equal to coef where all the factors containing γi are squared.

4.4.6 Implementation

We can finally compute IEα(li|d) =
ξα(li|d)
qα(d)

. Our implementation is in the programming

language Objective Caml. Only the standard packages of the language were used.

We need to compute ϕ(α) = 1
N

∑N
i=1 IEα(l|d(i)) at each step of the EM algorithm.

Therefore, the formula IEα(l|d) has to be efficiently calculated for a fixed tree T and fixed

α, but for N distinct values of d, N being the number of probes used in the experiment

which may not be fixed in advance. It follows that the best way to compute this formula

efficiently is to generate the symbolic expression of IEα(l|d) with α known and d unknown

170

parameters, to simplify it as most as possible and then to compute it for each of theN values

d(i).

Efficiency is further improved if d = (dj) is precomputed for all j ∈ T , and also if the

differences di − dj are precomputed and kept easy to access, since they appear frequently

and keep the same value at each different step.

Our program generated the symbolic expression of IEα(l|d) as a symbolic tree. The

factors depending only on α were evaluated and simplified during the generation of the

tree. The tree was then reduced as much as possible and was finally evaluated for each d(i)

using the precomputed matrix M(i).

A first sanity check for program correctness, which is easy to perform, is to exploit the

relation dk = IEα(dk|d) =
∑

j�k IEα(lj |d) for all k in V . If the program is correct, this has

to be verified for any value of d and any trees T .

4.4.7 Size of the expression and Complexity of the EM step

We will only consider the size of the explicit expression of qα in the particular cases of a

unary tree and of a binary tree. In the former case, the size is clearly linear, while in the

latter it is exponential in the number of nodes, and thus doubly exponential in the height

of the tree. Here, we measure the size of the expression in the number of exponentials

appearing in it after reduction, since all the other factors, especially those involving γ, can

be precomputed.

For a unary tree with K nodes, the number of exponentials is exactly K, and the size is

then linear. For a binary tree of height h+1, the size S is given by S(h+1) = 2∗S(h)2, since

the terms of the two subtrees of height h are multiplied (giving S(h)2) and are integrated,

giving twice as many terms. Since S(1) = 1, we deduce that S(h) = 22
h−1−1. Since the

number of node in a binary tree of height h is 2h+1 − 1, the size is then exponential in the

number of nodes.

We get the complexity of one step of EM by multiplication of this size by the number

of nodes in the tree and the length of data, since we need to compute IEα(lj |d(i)) for all j

in T and all i in {1, . . . , N}. It is, however, possible to factorize the computation of the

exponentials shared by the expressions, but the number of multiplications will still be the

same.

Finally, the number of steps to convergence is likely to grow with the number of nodes

as well, which increase further the global complexity of the EM algorithm. This motivates

the speed-up technique presented in Section 4.6.

4.5 Results

We conducted series of experiments on different kinds of trees. The data were generated by

simulating random delays in a tree using the known ground truth. Except in Section 4.5.3,

each experiment was conducted on a data set of N = 104 samples and repeated 200 times.

171

4.5.1 Unary Tree Case

This case was studied in the previous chapter, where two and three nodes cases were tested.

a) Two Node Case: In the simple case of a tree with two nodes, we have some additional

results on the convergence of the E-M sequence. Property 4.3.1 becomes α̂(k+1)
1 +α̂

(k+1)
2 =

d̄. This relation implies that there is only one unknown value, and thanks to this, it is

possible to prove the following result by using the intermediate value theorem.

We recall lemma 3.5.3, which is specific of the two node case:

Lemma 4.5.1. In the two node case, the sequence (α̂
(k)
1 , α̂

(k)
2) converges to a finite limit

which is a solution of the likelihood equation.

The proof uses the fact that, since (for all k ≥ 1) α̂(k)
1 + α̂

(k)
2 = d̄, the likelihood

Ld(α̂
(k)) can be expressed as a function of α̂(k)

1 alone. Therefore, the proof cannot be

generalized to more than two nodes. The following table gives some results obtained in this

case.

Gr. truth Mean 10% percentile 90% percentile Variance1/2/Mean

(1.1, 1) (1.114, 0.987) (1.044, 0.881) (1.220, 1.057) (0.0644, 0.0725)

(2, 1) (1.999, 1.003) (1.933, 0.946) (2.063, 1.063) (0.0244, 0.0446)

(10, 1) (10.003, 1.003) (9.866, 0.942) (10.148, 1.070) (0.0115, 0.0501)

(100, 1) (100.044, 1.015) (98.782, 0.827) (101.368, 1.214) (0.0104, 0.1514)

Table 4.1: Experimental results of the EM estimator (α̂1, α̂2) for various ground truths in

the 2-node case.

b) Nine Nodes Case (U9)

Table 4.2 shows the results for the following unary tree with 9 nodes.

500 200 100 50 20 10 5 2 1

Gr. truth 500 200 100 50 20 10 5 2 1

Mean 498.42 194.98 99.59 49.88 26.10 10.55 5.38 4.25 3.79

10%-tile 481.47 150.08 48.31 13.93 5.78 1.54 0.099 0.087 0.077

90%-tile 512.30 236.78 155.35 79.58 56.20 24.94 12.19 10.86 9.99

σ/Mean 0.025 0.175 0.428 0.486 0.769 0.990 0.897 0.904 0.974

Table 4.2: Experimental results obtained for a unary tree with 9-nodes.

The main difficulty for estimating such unary trees comes from the fact that we get the

same information for all the nodes. In particular, the estimation can only give the values of

the mean delays modulo an unknown permutation. We will also see in Section 4.6 that the

convergence of EM for this tree is very slow.

172

4.5.2 General Case

We present here some results obtained for other different trees.

a) Binary Tree of Height 3 (B1H3)

100

25
75

15

4
1

30

Ground truth 100 4 30 1 25 15 75

Mean 100.03 4.01 29.99 0.9999 25.007 14.996 74.995

10% percentile 99.62 3.95 29.86 0.98 24.85 14.88 74.70

90% percentile 100.42 4.04 30.12 1.02 25.14 15.11 75.35

Var1/2/Mean 0.0032 0.0092 0.0031 0.012 0.0045 0.0060 0.0034

Table 4.3: Experimental results obtained for a binary tree of height 3.

In the case of a binary tree, the estimation are accurate too. with again a slight bias on

the smallest values. The estimations are in a sense easier for this tree than for the unary ones

because we get more information and also because each node can be discriminated from the

others, while in the unary trees all the nodes are equivalent.

b) Binary Tree of Height 4 (B1H4)

10

100

30
12

8

11
20

60

7

8
0.1

1

14
150

20

173

Ground truth 10 7 14 20 150 8 1 0.1

Mean 10.01 6.99 13.99 20.03 149.95 7.999 1.0004 0.0999

10% percentile 9.67 6.66 13.52 19.50 147.77 7.80 0.99 0.096

90% percentile 10.35 8.14 15.32 20.98 152.17 8.29 1.71 0.28

Variance1/2/Mean 0.03 0.04 0.03 0.02 0.01 0.02 0.01 0.01

Ground truth 100 11 60 20 30 8 12

Mean 100.09 11.30 60.13 20.01 30.03 8.002 12.01

10% percentile 99.83 10.56 59.8 19.59 29.58 7.86 11.85

90% percentile 102.16 13.13 61.47 21.31 31.65 10.27 14.19

Variance1/2/Mean 0.01 0.03 0.01 0.01 0.01 0.01 0.01

Table 4.4: Experimental results obtained for a binary tree of height 4.

For this tree, the estimations are still very good. The difficulty for bigger binary trees

arise from the complexity of the EM step computation rather than the accuracy of the esti-

mation. We made some simulation on a tree of height 5 and obtained good estimations too,

but they were very long to compute.

c) Tree With Branches (B3H2)

20 2 1

80 60 3

6 5 4

Ground truth 20 2 1 6 5 4 80 60 3

Mean 19.86 2.63 1.79 6.30 4.79 2.63 78.80 61.34 1.63

10% percentile 19.40 1.50 0.68 5.18 3.09 0.62 70.31 54.70 0.0052

90% percentile 20.35 3.92 2.98 7.58 6.03 4.86 84.89 70.28 3.74

Var1/2/Mean 0.021 0.36 0.48 0.15 0.24 0.59 0.088 0.012 0.096

Table 4.5: Experimental results obtained with the tree above.

Trees such as the last one, with several parallel branches, are the hardest to estimate

because they combine both difficulties seen in unary and binary trees: A difficult estimation

in each branch where we have the same information for all nodes, and a high complexity of

the EM step because of the multiple parallel subtrees.

4.5.3 Speed of convergence

All previous results were conducted with sample sizeN = 104. Figure 4.3 studies the speed

of convergence of the maximum likelihood estimator with respect to N . We present results

174

 0

 0.2

 0.4

 0.6

 0.8

 1

 27 28 29 30 31 32 33

C
df

Estimation

500
1000
5000

104

105

 0.01

 0.1

 1000 10000 100000

V
ar

1/
2 /M

ea
n

Sample size

1
4

15
25
30
75

100

Figure 4.3: Left plot: the cumulative distribution function of the maximum likelihood esti-
mator of node 30 for different sample sizes. The right-side shows the relative standard error
for all nodes on the same tree B1H3, depending on the sample size.

only for the tree B1H3, but results are similar for the other nodes and trees. One might

notice that smaller sample size can lead to good results: with as few as 1000 probes, 90%

of the experiments estimate node 30 with less than 10% error. On the right plot, the relative

standard error (ie. the square root of the variance, divided by the mean) are parallel lines of

slope −1
2 , which means that the standard error decreases as 1√

N
and the variance as 1

N .

4.5.4 Comparison to the Least Squares Method

In [LMN07], Lawrence et al. discard MLE based approaches due to their computation

time in favour of moment based methods using least squares. Table 4.6 presents the results

obtained by their method for 200 independent experiments with the same sample size N =

104, for the tree B1H3. This shall be compared with the results of MLE in Table 4.3. Other

trees lead to similar results. As expected, the MLE approach yields better results, especially

for nodes that have a small delay. However, the main advantage of moment based methods

is their speed. The simulation of the 200 experiments took only about one minute for the

least squares approach, whereas our algorithm needed 45 minutes. This difference increases

for larger trees.

The complexity of an estimation technique can be expressed in two ways: the number

of independent probes needed to reach a given precision, and the time needed to compute

the estimator based on those probes. The relative interest of each method will depend on

which of these two steps is the most crucial for the specific application considered.

4.5.5 Resilience to measurement noise and imperfect models

They are many ways to introduce model or measurement errors: a full chapter could be

written on this topic. We will present only one case, which we hope is representative.

Table 4.7 presents the results of the accelerated EM algorithm, when each end-to-end delay

175

Ground truth 100 4 30 1 25 15 75
Mean 99.98 4.04 29.93 0.93 24.77 15.18 75.07
10% percentile 98.22 2.42 28.73 -0.19 22.58 13.92 73.54
90% percentile 101.91 5.46 31.20 2.21 26.77 16.31 76.65
Var1/2/Mean 0.014 0.32 0.033 1.009 0.060 0.062 0.017

Table 4.6: Experimental results obtained for B1H3, using the least squares method from
[LMN07].

was sampled according to the model distribution, then multiplied by a i.i.d. uniform value

between 0.95 and 1.05. The results are worse: the standard error is about three times higher

for most nodes. However, the errors stay in a reasonable level, which might indicate that

the algorithm is resilient to errors.

Ground truth 100 4 30 1 25 15 75

Mean 98.1 3.6 32.3 3.3 25.8 16.1 76.1

10% percentile 96.7 3.4 31.9 3.2 25.4 15.8 75.2

90% percentile 99.3 3.9 32.8 3.5 26.2 16.5 77.1

Var1/2/Mean 0.01 0.05 0.01 0.04 0.01 0.02 0.01

Table 4.7: Experimental results obtained for the tree B1H3, with imperfect measurements.

4.6 Steered Jumping for EM

In a number of cases, especially when the tree has long branches, the number of steps

before converging to a fixed point can be very large, and since the complexity of each step

is proportional to the length of data, the EM algorithm becomes very slow whenN becomes

large. The complexity of each step rises also very quickly with the size of the tree, since

the growth is quadratic in the number of nodes for an unary tree, but can be exponential for

a binary tree (see Section 4.4.7). It is therefore important for this problem to significantly

improve the convergence speed of the EM algorithm. We present a novel such method

below.

4.6.1 Analysis of the iteration

We first illustrate some characteristics of the iteration through two examples.

Example One Consider a unary tree with ground truth α = (0.1, 1, 10). From Prop-

erty 4.3.1, α̂(k) = (α̂
(k)
1 , α̂

(k)
2 , α̂

(k)
3) obeys α̂(k)

1 + α̂
(k)
2 + α̂

(k)
3 = d̄, so that the system has

only two independent variables. We therefore plot the trajectories of the EM algorithm in a

(α̂
(k)
2 , α̂

(k)
3) plot.

Figure 4.4 shows some sequences of iterations of the algorithm from different ini-

tial conditions. We see that the trajectories all converge towards the same point, α̂ =

(0.83, 0.83, 8.07). During this experiment, the mean delay was d̄ = 9.73, and Property 4.3.1

176

was respected. We also observe that the trajectories seems to converge quickly toward a

straight line of equation x = 1.7 − y, and once on this line, the steps becomes very small

and the convergence is much slower.

Figure 4.4: Plot of some trajectories of the step function for the ground truth α =

(0.1, 1, 10) and for a sample of N = 1000 data. The sequences of point are sequences

of iterations of the algorithm. The small arrows represents the directions of α̂(k+1) − α̂(k).

 0.01

 0.012

 0.014

 0.016

 0.018

 0.02

 0.065 0.07 0.075 0.08 0.085 0.09 0.095 0.1

α 4

α3

01000

10000

39112

Figure 4.5: Plot of the values of the two

smallest coordinate of each α̂(k) for the

ground truth α = (1, 1/3, 0.1, 0.01).

number of steps log-likelihood

0 −1.240947
1 −1.240910
10 −1.240870
100 −1.240831
1000 −1.240803
10000 −1.240787
20000 −1.240783
39113 −1.240782

Table 4.8: Evolution of the log-likelihood cor-

responding to the trajectory on the left side, it

increases extremely slowly with k.

Example Two In this case α = (1, 1/3, 0.1, 0.01).

Figure 4.5 shows the trajectory of the two smallest coordinates of the sequence α̂(k) for

a sample of N = 10000 data, with initial condition the ground truth itself. The algorithm

stopped after 39113 steps. The red points show the trajectory after 0 steps (starting point),

1000 steps, 10000 steps and 39113 steps when the algorithm finally stopped.

As we can see, the trajectory again mostly falls on a straight line, and not unexpectedly,

the size of each step drops while the trajectory approaches the final point. Table 4.8 shows

177

the evolution of the log-likelihood — it increases extremely slowly.

The extremely small rate of increase in likelihood as a function of α̂(k) along

the trajectories means that the usual termination criteria, consisting in stopping when

‖α̂(k+1) − α̂(k)‖ < ε, or Ld(α̂(k+1)) − Ld(α̂
(k)) < ε for some small ε, or after a fixed

number of iterations, can result in significant errors. The criterion we used to avoid these

traps was to stop when Ld(α̂(k+1)) ≤ Ld(α̂
(k)), which in theory never happens but occurs

in practice because of numerical errors very close to the fixed point.

These two examples illustrate two key characteristics of the EM algorithm (for this

problem). First, the trajectory reaches an area relatively close to the final point relatively

quickly, where it enters a ‘glide path’ which is relatively linear, corresponding in a sense

to a valley of the function − logLd(θ), or ‘reversed valley’ of logLd(θ) (for the sake of

simplicity, we will abusively refer to it as a ‘valley’). Second, once in the ‘valley’, the speed

of the trajectory becomes particularly slow. These two observations inspire the following

strategy to accelerate EM: (i) reach a good first approximation as quickly as possible, (ii)

once near the ‘valley’, increase the size of the steps to go faster.

4.6.2 The Sampling Method

This section addresses point (i) above. Our objective is to reach the ‘valley’ leading to the

fixed point extremely quickly, using the intuition that even a rough method should be able

to achieve this objective.

 0.013

 0.014

 0.015

 0.016

 0.017

 0.018

 0.019

 0.02

 0.021

 0.022

 0.1 0.2 0.3 0.4 0.5 0.6

α 4

α3

Normal
sampling

normal after sampling

Figure 4.6: Comparison of the first 100 steps of a normal trajectory (“normal”, every
fifth step is shown) with 100 steps of the sampling method (“sampling”), followed by 10
normal steps (“normal after sampling”), from a random starting point. The ground truth
α = (1, 1/3, 0.1, 0.01) and data length N = 10000 is as in Figure 4.5, but the data set is
different.

The method consists in cutting the data (of length N) into N/k subsets of equal length

k (for simplicity we assume that k divides N). We then compute some iterations of the EM

178

algorithm using only one of the subsets as data, the subset being chosen randomly at each

iteration.

More precisely, at each step, instead of computing the usual iteration α̂(k+1) =
1
N

∑N
i=1 IEα̂(k)(l|d(i)) we compute one of the following iterations:

α̂(k+1) =
1

k

(j+1)k∑

i=jk+1

IEα̂(k)(l|d(i)) ,

where at each step, j is uniformly at random chosen among {0, . . . , N/k − 1}.
The advantage of this method is that N/k steps based on subsets will cost only as much

as 1 step using the full data, and yet gives a fair first approximation of the fixed point. This

is a way to sacrifice precision for speed, but since we only want a first approximation here,

low precision is acceptable. In particular, during these cheap steps, the likelihood of the

parameters does not necessarily increase, but the parameters does get closer from the final

point.

Several choices of k are possible: in this paper, we used k =
√
N (N = 10000 and

k = 100), which worked well in practice. Any other choice (as long as k is “large enough

to be representative, but not too large to gain computation time” makes sense.

As a non-rigorous intuition that these cheap steps will still go in the right direction, note

that since the integer j is randomly chosen, the expectation of each random step is:

IEj(α̂
(k+1)) =

k

N

N/k−1∑

j=0

1

k

(j+1)k∑

i=jk+1

IEα̂(k)(l|d(i)) = 1

N

N∑

i=1

IEα̂(k)(l|d(i)) .

So, in average, each cheap step goes in the same direction as a normal step.

Figure 4.6 shows an example of this method. As we can see the first iterations move in

the same direction as the normal EM steps, and 100 iterations of the sampling method leads

to a point close to the one obtained after 100 normal steps, but costing only as much as one

normal step to get there.

4.6.3 The Steered Jumping Method

This section addresses point (ii) above. Namely, once we get a first approximation of the

fixed point which is close to or within the ‘valley’, the steps usually become very small

but the trajectory is linear. Our strategy is to exploit this linearity to increase step size

dramatically. We will present the method in a more general context, since we believe it

could be applied to other cases where the same kind of convergence issues are encountered.

General Context

We are given a function F and we want to find a local maximum by using an iterative algo-

rithm (e.g. the EM algorithm, gradient ascent) which can be expressed as follows: Starting

179

from some point α̂(0), construct the sequence (α̂(0), α̂(1), . . .) defined by the recursive for-

mula

α̂(k+1) = α̂(k) +∆k , (4.9)

where the parameter ∆k is chosen such that F (α̂(k)) ≤ F (α̂(k+1)), with equality if and

only if α̂(k) is a stationary point of F . The algorithm stops when the equality is reached.

The way to compute the parameter ∆k depends on the chosen algorithm. In the case of

the EM algorithm, we have ∆k = 1
N

∑N
i=1 IEα̂(k)(l|d(i)) − α̂(k). In the case of a gradient

ascent, we have ∆k = δk∇F (α̂(k)), where ∇F is the gradient of F , and where δk is some

well chosen positive scalar number.

Jumping method

In a case where the behaviour of such an algorithm is as in Figure 4.5, namely linear and

very slow, we would like to take much larger steps. More precisely, we would like to replace

the last equation (4.9) by

α̂(k+1) = α̂(k) + βk∆k , (4.10)

with βk ≥ 1 and hopefully much bigger than 1, such that the relation F (α̂(k)) ≤ F (α̂(k+1))

still holds at each iteration. In some sense, if βk = n ∈ N we can interpret this as assuming

that ∆k ≃ ∆k+1 ≃ · · · ≃ ∆k+n and approximating all of them by ∆k, and then computing

n steps in one. We then say that we “jump” with a factor βk. Figure 4.7 shows an example

of this method applied to the example of Figure 4.5.

This idea is not new as such, and it has been applied to the EM algorithm in [JJ93] as a

generalized conjugate gradient algorithm, and in [SR03] as an overrelaxed bound optimiza-

tion.

The method as described above has two main flaws. First, we do not know how to

choose the values of βk efficiently at each step. Second, and most importantly, it sometimes

results in a behaviour similar to the one visible on Figure 4.7. If we try to jump too far from

one side of the ‘valley’, we end up on the other side rather than reaching and tracking the

‘valley’ floor, resulting in an inefficient zigzag trajectory. In other words, increasing step

size can cause instability. To counter this, we next modify not only the size of the steps, but

also their direction.

Steered Jumping Method

We modify slightly the formula (4.10) of the jumping method to read:

α̂(k+1) = α̂(k) + βkCk∆k , (4.11)

where Ck will be a well chosen matrix such that F (α̂(k)) ≤ F (α̂(k+1)) still holds. The

choice of Ck can depend on many parameters, like the current state of the algorithm but also

its past iterations. It is important to notice that it is always possible to try different choices

180

 0.01

 0.012

 0.014

 0.016

 0.018

 0.02

 0.065 0.07 0.075 0.08 0.085 0.09 0.095 0.1

α 4

α3

 0.01

 0.012

 0.014

 0.016

 0.018

 0.02

 0.065 0.07 0.075 0.08 0.085 0.09 0.095 0.1

α 4

α3

Figure 4.7: Trajectory using the jumping method, projected onto the two smallest coordi-
nates of α̂(k), for the ground truth α = (1, 1/3, 0.1, 0.01) using the same data as in Fig-
ure 4.5. In this case we tried to jump every 100 steps, i.e. we had βk = 1 except when
k = 0 (mod 100) where we set βk = 1000 if F (α̂(k)) ≤ F (α̂(k) + βk∆k), or βk = 1
otherwise. The visible gaps between points reveal where jumps actually occurred. The total
number of iterations before reaching the minimum was 14684, compared to 39112 for the
normal EM.

of Ck and βk and chose the one which gives the highest value of F (α̂(k) + βkCk∆k).

In our case, we would like the jumps to be in the same direction as the ‘valley’. For

this, we use at each step the information given by the previous iterations of the algorithm

about the global shape of the ‘valley’ to compute the matrix Ck, via Principal Component

Analysis (PCA). This was inspired by a method recently developed in robotics to accelerate

the growth of Rapidly-exploring Random Trees (RRT) for path finding [DL08].

A Short Introduction to PCA

Principal Component Analysis is a method used to find the main axes of concentration of a

set of points in a high dimensional space.

Consider a set of points X = (x1, . . . , xn), each xi being a point of Rd. We construct

the d× d matrix C called the covariance matrix of the set of points X, whose element (i, j)

is (xi− x̄)(xj − x̄), where x̄
def
= 1

N

∑N
i=1 xi is the mean point of the set. The matrix is sym-

metric positive semi-definite, and has the property that it captures very well the repartition

of the points xi in the space, since it is diagonalizable by the Cayley-Hamilton theorem.

The eigenvectors (e1, . . . , ek) associated to its biggest eigenvalues (λ1, . . . , λk) (k ≤ d) are

the axes where the points are the most dispersed.

PCA usually consist in the computation of the (e1, . . . , ek), in order to restrict the space

Rd to the subspace Vect{e1, . . . , ek} with k much smaller than d. To avoid the cost of

computing these eigenvectors, we instead multiply directly by the covariance matrix, which

181

naturally flattens vectors along the main eigenvector axis.

The PCA-jumping method

We now define the specific method we used based on the principles outlined above. Other

variants are clearly possible, and we discuss some of these later.

The matrix Ck is constructed as the covariance matrix of the set of the last pk iterations

of the algorithm: (α̂(k−1), . . . , α̂(k−pk)) for some well chosen pk. For each iteration, we try

three possible values forCk: C1
k = Id the identity matrix, C2

k = Cov(α̂(k−1), . . . , α̂(k−10))

the covariance matrix of the 10 last points, and C3
k the matrix of the 100 last points. We

will say that C1
k corresponds to using no memory, C2

k to a short memory, and C3
k to a long

memory. When there are insufficient points to fill the memory, we take as many as are

available, for example when k ≤ 100 we use C3
k = Cov(α̂(k−1), . . . , α̂(1)).

So that the matrices control the direction but not the size of jumps, at each step k we

renormalize to form the steered direction vectors dik =
Cik∆k

‖Cik∆k‖
‖∆k‖, i = 1, 2, 3.

We use the following aggressive algorithm to select the step size βik for each i:

0) Initialize with βik = 1 ;

1) If F (α̂(k) + βikd
i
k) < F (α̂(k) + 2βikd

i
k) then βik ← 2βik and repeat 1)

else return βik .

In other words, as long as doubling the jump size improves F , we double again.

Finally, we combine the step size and direction into three candidates: α̂i = α̂(k)+βikd
i
k

for i = 1, 2, 3, and set α̂(k+1) to the one giving the highest value of F .

It is important to note that despite the opportunistic character of this algorithm, the

crucial inequality F (α̂(k)) < F (α̂(k+1)) when a maximum is not yet reached is guaranteed,

since F (α̂(k)) < F (α̂(k)+∆k) is guaranteed by the definition of ∆k, and because F (α̂(k)+

∆k) = F (α̂(k) + 1× C1
k∆k) ≤ F (α̂(k+1)).

The Cost of PCA-Jumping

Figure 4.8 gives an example of the EM algorithm with no speed-up, with the jumping

method alone, and with PCA-jumping. Figure 4.9 shows the corresponding evolution of

the log-likelihood for these trajectories.

The effect of the multiplication by the covariance matrix is that the direction of the

basic EM step ∆k is steered towards the axis where the previous iterations are concentrated.

Thanks to this, the unwanted oscillation effect of Figure 4.7 is avoided, and the size of the

jumps (i.e. the values of βk) can become much larger.

We used three levels of memory to capture the shape of the trajectory on different ‘spa-

tial’ scales. We noticed that usually all three alternatives are employed by the algorithm,

and that on average the biggest jumps were made with the short memory.

182

 0.01

 0.012

 0.014

 0.016

 0.018

 0.02

 0.065 0.07 0.075 0.08 0.085 0.09 0.095 0.1

α 4

α3

 0.01

 0.012

 0.014

 0.016

 0.018

 0.02

 0.065 0.07 0.075 0.08 0.085 0.09 0.095 0.1

α 4

α3

Figure 4.8: Trajectories of the two smallest coordinates of α̂(k), starting from the ground
truth α = (1, 1/3, 0.1, 0.01) but with a different data set than that of Figure 4.5, using
different methods. The “normal” trajectory (1 point per 1000 shown) is the EM algorithm
without any speed-up, “jump” trajectory is the jumping method without PCA (choosing
always i = 1), and “jump+PCA” uses the complete method. The “normal” trajectory has
47073 steps, “jump” has 1215, and “jump+PCA” only 59.

Each level of memory involves computing F , however the cost of this is not larger

than that of computing the initial ∆k. In our problem, computing one normal EM

step costs more than computing the log-likelihood |T | times, since we need to compute
1
N

∑N
i=1 IEα̂(k)(lj |d(i)) for each j ∈ T , each IEα̂(k)(lj |d(i)) being more complicated to

compute than the likelihood. Therefore a single step of the PCA-jumping algorithm usually

costs no more than 2 or 3 times a normal EM step, while the total number of steps is greatly

reduced. The computation of the covariance matrices is, again for this problem, very cheap

compared to the time needed to compute F or ∆k.

Clearly, the above strategy has parameters which could be optimized. In particular the

number of memory levels, and their durations, could be altered. It would also be possible to

use the power Cn of a covariance matrix instead of C to increase the steering effect, or even

to use alternative matrices. In [DL08], PCA (even the eigenvectors) was computed by using

a recursive method allowing points to be added successively until the number of principal

dimensions ceased dropping. Such a method could be employed here too.

More elaborate methods will always come at increased cost. The advantage of our

particular strategy within the PCA-jumping class is its simplicity, since by selecting from

only three possible steps, we capture the essence of traditional EM, as well as knowledge

of the local and global trajectory shape, and by multiplying by the covariance matrix, we

employ PCA without the usual costs of eigenvector evaluation. As for the choice of βk, our

strategy has the advantage of being both simple and very aggressive, allowing large values

183

 0

 1

 2

 3

 4

 5

 6

 7

 8

 1 10 100 1000 10000 100000

lo
g-

lik
el

ih
oo

d

Number of iterations

Normal
Jump

PCA-Jump

 10 100
 6.6

 6.7

 6.8

 6.9

 7

 7.1

Number of iterations

Jump
PCA-Jump

Figure 4.9: Evolution of the log-likelihood as a function of the number of iterations, corre-
sponding to the trajectories of Figure 4.8. The right-side shows a zoom of the left-side.

of βk to be found quickly and in a single iteration, with no arbitrary upper limit imposed.

(We investigated the possibility of selecting βk based on maximizing F (α̂(k) + βkCk∆k),

through a binary search, however, the overhead of the search was not compensated by the

gain in jump size.)

PCA-Jumping with Sampling Initialization: Results

Our final method consists of using a number of steps of the sampling method to get a rough

approximation, which is then used to initialize the PCA-jumping method. To control the

resources used by the sampling method phase, we set the number of sampling steps to be

equivalent computationally to a single step of normal EM. This method was used for most

of the experiments presented in Section 4.5.

Figure 4.10 shows a comparison against the normal EM, using the same ground truth

and data as Figures 4.6 and 4.8, starting from a random point. The speed-up due to the

method is very significant in this case. Table 4.9 shows a speed comparison against normal

EM for one experiment for each of the 4 main examples of Section 4.5, starting from the

ground truth. All simulations were made on the same Intel Core2 Duo 2.40GHz laptop, but

using only one CPU. Under the iterations column, "100 + x" means 100 sampling method

steps followed by x steps of PCA-jumping. In all cases these 100 steps cost as much as one

normal step. The cost of the sampling steps was omitted when computing the average step

time for PCA-jumping (last column).

We see that the acceleration method was particularly effective for the trees U9 and

B3H2, where the convergence of the normal algorithm is extremely slow, but still produces

a substantial gain for the binary trees B1H3 and B1H4 where the convergence of the nor-

mal EM was however already fairly good. The reason for such a difference is, we believe,

the fact that U9 and B3H2 each contain long branches. The reason might be that we get

exactly the same information for all the nodes in one same branch, and it becomes thus

184

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

 0.1

 0.1 0.2 0.3 0.4 0.5 0.6

α 4

α3

Normal
sampling

PCA-jump

Figure 4.10: Trajectories of the two smallest coordinates of α̂(k), for the ground truth α =
(1, 1/3, 0.1, 0.01), starting from a random point. The “normal” trajectory (1 point per 5
shown) is the EM algorithm without any speed-up. The “sampling” trajectory correspond
to 100 iterations of the sampling method, (with cost equal to 1 step of the normal EM), and
the “jump+PCA” trajectory was obtained by initializing the PCA-jumping method from the
final point of the “sampling” trajectory. The “normal” trajectory has 58034 steps, while
the “jump+PCA” has only 78. The computing time for the “sampling” and “jump+PCA”
trajectories together was 195 times less than for “normal”.

much harder to discriminate between them, resulting in slow convergence. This tendency

has been also observed on other trees.

Tree Method Final Log-L # Iterations CPU time Av. step

Normal EM −7.517 341845 1373m24s 0.24s
U9

PCA-jump −7.517 100 + 699 6m46s 0.58s

Normal EM −20.107 153 1m21s 0.53s
B1H3

PCA-jump −20.107 100 + 14 20s 1.42s

Normal EM −35.614 207 62m20s 18.07s
B1H4

PCA-jump −35.614 100 + 28 14m12s 30.4s

Normal EM −10.155 122941 2853m16s 1.4s
B3H2

PCA-jump −10.155 100 + 429 21m40s 3.0s

Table 4.9: Comparison between the normal EM and the sampling + PCA-jumping method

for one estimation on the 4 trees in Section 4.5, starting from the ground truth.

185

Tree Method Final Log-L # Iterations CPU time Av. step

Normal −7.570 3933 19m26s 0.29s
U9

PCA-jump −7.517 100 + 755 6m53s 0.55s

Normal EM −20.107 216 1m57s 0.54s
B1H3

PCA-jump −20.107 100 + 14 20s 1.42s

Normal EM −35.614 315 89m25s 17.03s
B1H4

PCA-jump −35.614 100 + 26 12m44s 29.38s

Normal EM −10.255 2043 62m10s 1.8s
B3H2

PCA-jump −10.155 100 + 676 41m41s 3.7s

Table 4.10: Comparison between the normal EM and the PCA-jumping method for one

estimation on the 4 trees in Section 4.5, starting from a random point.

We used the ground truth as the initial condition here as we noticed that, in some cases,

the normal EM converged towards a local maximum with a likelihood much lower than the

one found by the accelerated method. When starting both methods from the ground truth

they converged to the same fixed point, facilitating a direct speed comparison. Table 4.10

shows the comparison when starting from a random point. For the trees U9 and H3B2

the normal EM converged quite quickly to the final point (thought still less quickly than

the accelerated EM), but more importantly, this point was not the MLE as its likelihood

was smaller than the fixed point found by the accelerated EM. In all the experiments we

performed starting from the same initial conditions, our method converged quicker than the

normal EM, and always gave a likelihood as good as the normal method, if not better.

4.7 Summary

We have considered a network tomography problem based on a finite number of end-to-

end delay measurements made of multicast probes sent over a tree, where each node of

the tree imparts an exponentially distributed delay to each passing probe. We showed how

its assumptions of spatial independence, and sum-of-exponentials delay marginals, follow

naturally from the properties of Kelly networks in the case of rare probing, thereby firmly

establishing for the first time a connection between a delay tomography problem and an

inverse queueing problem over a network with non-trivial topology.

The problem was formulated as the search for a maximum likelihood estimator for

the parameter, being the vector of mean delays for each node in the tree, which due to

its complexity was solved using the E-M algorithm. We showed how the E and M steps

could be solved explicitly and combined, reducing the problem to the evaluation of a set

of conditional probabilities of internal node states, given the observed delays. We provided

two solution methods for these with formal proofs, one based on a recursion beginning from

the root node, the other an explicit expression (though with some recursive components).

186

The latter has far fewer terms and is amenable to efficient implementation, and was used to

provide solutions for a number of examples.

The E-M algorithm is notoriously slow to converge, and moreover since the combina-

torics of the tree make each step very expensive, only trivial trees can be solved in practice

without acceleration techniques. We developed a new technique, PCA-jumping with Sam-

pling Initialization, which provided a speed-up of between one and three orders of magni-

tude for our problem. Its novel features include the use of Principal Component Analysis

(yet without the need to calculate eigenvectors) to efficiently mine local and global infor-

mation about the E-M trajectory in order to control jump direction, and an efficient and

aggressive geometric rule for the size of jumps which allows large steps to be made when

profitable, as is the case for our problem. Initialization is performed using a ‘Sampling’

method which has very low and bounded cost, yet is capable of finding a starting point

from which PCA-jumping can be effective. The speed of the method is compared to stan-

dard E-M in a variety of examples, and was also shown to provide better estimates in some

cases.

The main directions for future work lie in a more formal analysis of the acceleration

technique, its optimization with respect to a number of parameters, generalizations, and

comparison against alternatives. Of particular interest is to understand to what extent the

‘valley’ phenomenon which inspired the technique holds for other problems, in particular

non-linear ones where fixed points have small basins of attraction.

187

4.8 Appendix

We recall here that we use the notation simplification from Section 4.4. In particular, we use

α in place of α̂(k) (as a single iteration is considered), and we set γ = (γj)j∈T = (1/αj)j∈T .

4.8.1 Proof of the Density Formula

We will now prove that the description we gave for the expanded expression of qα(T , d) is

correct. For this, we will show that the following equality holds:

qα(T , d) = ΓT
∑

C cut of T
hα(T , d, C) , (4.12)

for qα(T , d) defined by its integral expression (4.5) and for the right-side terms as defined

previously in 4.4.5.0. For this we will have an inductive reasoning over the tree T , and we

will use the inductive relation of Theorem 4.4.1.

Initialization of the Induction

l1 D

It is obvious that the formula holds for a single-node tree. In this case, we have qα(d) =

γ1e
−γ1d, and it is easy to verify that it correspond to the formula given previously, since

there is only one cut C = {1} with no past nor future. Therefore, we have: qα(d) =

γ1r(C)s(C)t(C) with r(C) = 1, t(C) = 1, and s(C) = e−γ1d1 , which proves the initial

step of the induction.

Induction Step

We consider a general tree, assume by induction that the formula is true for each subtree

of the root, and then prove that the formula is also true for the whole tree.

For this we will have to make a distinction between two cases: if the root has only one

child and if it has at least two children. This distinction will explain why we introduced

the notion of branch, since in the one-child case, some terms from the same branch can be

combined.

a) Root with only one Child

l0 l1 T (1) d(1)

We have T (1) = T \ {0}, V (1) = V , and d(1) = d and the inductive formula (4.6)

188

becomes:

qα(T , d) =
∫ d0

l0=0
γ0e

−γ0l0qα(T (1), d− (l0))dl0 .

By induction, we suppose the formula true for the subtree T (1), therefore:

qα(T (1), d− (l0)) = ΓT (1)

∑

C cut of T (1)

hα(T (1), d− (l0), C) ,

and since ΓT = γ0ΓT (1) :

qα(T , d) = ΓT
∑

C cut of T (1)

∫ d0

l0=0
e−γ0l0hα(T (1), d− (l0), C)dl0 . (4.13)

Let us consider a cut C of T (1). We have:

hα(T (1), d− (l0), C) = r(T (1), d− (l0), C) s(T (1), d− (l0), C) t(T (1), d− (l0), C) .

Remark. For more convenient notations, we will denote h(1)α (C) := hα(T (1), d − (l0), C)

and for r, s, t as well, such that the last relation becomes h(1)α (C) = r(1)(C)s(1)(C)t(1)(C)

.

We now want to compute this integral:
∫ d0
l0=0 e

−γ0l0r(1)(C)s(1)(C)t(1)(C)dl0. As we

can see in their definition, the variable l0 does not appear in the terms r(1)(C) and t(1)(C).

This fact is obvious for r, but the recursive nature of t make it a little more difficult to see.

But looking back at the definition, we notice that the recursion is made with “d − (dj) :=

(dk − dj)k∈Fj
”. Since here our whole formula is applied to d′ = d − (l0), we see that the

term l0 is annihilated in the expression of d′ − (d′j) = ((dk − l0) − (dj − l0))k∈Fj
. And

therefore, l0 does not appear in t(1)(C).

Thanks to this, we have r(1)(C) = r(T (1), d, C) and t(1)(C) = t(T (1), d, C) and we

can take r(1)(C) and t(1)(C) out of the integral, leaving us with this integral to expand:

∫ d0

l0=0
e−γ0l0s(1)(C)dl0 =

∫ d0

l0=0
e−γ0l0

∏

j∈C

e−γj(dj−l0)∏
k∼j
k 6=j

(γk − γj)
dl0

=

[
1(∑

j∈C γj
)
− γ0

∏

j∈C
e−γ0l0

e−γj(dj−l0)∏
k∼j
k 6=j

(γk − γj)

]d0

l0=0

=
1(∑

j∈C γj
)
− γ0

∏

j∈C
e−γ0d0

e−γj(dj−d0)∏
k∼j
k 6=j

(γk − γj)
+

1

γ0 −
∑

j∈C γj

∏

j∈C

e−γjdj∏
k∼j
k 6=j

(γk − γj)

= e−γ0d0
s(T (1), d− (d0), C)(∑

j∈C γj
)
− γ0

+
s(T (1), d, C)

γ0 −
∑

j∈C γj
= e−γ0d0K(C) +

s(T (1), d, C)

γ0 −
∑

j∈C γj
.

189

As we will see, the exact value of K(C) is in fact not really important for the proof.

Once here, the hardest part remains: we have to put all these terms together to prove that

the formula is true for the whole tree T .

Putting the last equation back in (4.13), we get

qα(T , d) = ΓT


e−γ0d0K ′ +

∑

C cut of T (1)

r(1)(C)s(T (1), d, C)

γ0 −
∑

j∈C γj
t(1)(C)


 , (4.14)

where K ′ =
∑

C cut of T (1)

r(1)(C)t(1)(C)K(C).

As we noticed already, we have r(1)(C) = r(T (1), d, C) and t(1)(C) = t(T (1), d, C).

But, since the term t(T (1), d, C) is a term depending only from the cut C and its future in

the tree T (i), which are the same in the tree T , we have t(T (1), d, C) = t(T , d, C).

We will now prove that:

r(T (1), d, C)s(T (1), d, C)

γ0 −
∑

j∈C γj
= r(T , d, C)s(T , d, C) .

It is relatively easy to see by looking at the definitions of r and s, but two cases must be

distinguished: when C is a singleton, like C = {1} here, or when C contains 2 nodes

or more. Indeed, if C is a singleton, say C = {i}, then i belongs to the present of 0

and 1 (note that here 0 ∼ 1), and we have s(T , d, C) =
s(T (1), d, C)

γ0 − γi
and r(T , d, C) =

r(T (1), d, C) = 1 since the past of C is empty in this case. In the other case where C has 2

nodes or more, then we see that 0 and 1 belong to the past of C and we have s(T , d, C) =
s(T (1), d, C) and r(T , d, C) = r(T (1), d, C)

γ0 −
∑

j∈C γj
. In both cases, the identity is then proved.

This results in:

qα(T , d) = ΓT


e

−γ0d0K ′ +
∑

C cut of T
C 6={0}

hα(T , d, C)


 , (4.15)

since we notice that all the cuts of T (1) plus the cut {0} forms exactly all the cuts of T .

Finally, in order to show that the formula is true for the tree T , all we have to do left is

to show that the term e−γ0d0K ′ is equal to hα(T , d, {0}). If we look back at the expression

ofK ′ =
∑

C cut of T (1)

r(1)(C)t(1)(C)K(C), it seems difficult to show directly that this sum of

terms combine into just one and is equal to hα(T , d, {0}). Luckily, we will not have to do

this, since a simple argument of symmetry will suffice. All we have to do is to notice that

the function qα(T , d) stays the same if we exchange the nodes 0 and 1, i.e. if we exchange

the values of γ0 and γ1. This becomes obvious if we take a look at the two station case,

since l1 + l2 = l2 + l1, the two following trees are equivalent:

190

l1 l2 D l2 l1 D

More generally, no permutation inside a branch of T will change qα(T , d). Thanks to

this, we see that by exchanging the nodes 0 and 1, we get from (4.15):

qα(T , d) = ΓT


e

−γ1d1K ′′ +
∑

C cut of T
C 6={1}

hα(T , d, C)


 , (4.16)

and by combining (4.15) and (4.16), we get e−γ0d0K ′ + hα(T , d, {1}) = e−γ1d1K ′′ +

hα(T , d, {0}), and we can finally identify the two terms e−γ0d0K ′ and hα(T , d, {0})
since the term hα(T , d, {0}) contains an exponential function of the form e−γ0d0 and

hα(T , d, {1}) does not.

Finally, we proved that in this first case the formula (4.12) is also true for the tree T .

b) Root with two Children or more

l0

lp

l1 T1

Tp

d(1)

d(p)

F0

The idea here is roughly the same as in the previous case, but the symmetry argument is

no longer required, since here the new terms in e−γ0d0 will not combine as they did earlier.

By induction, we suppose the formula true for all the subtrees T (1), . . . , T (p). We

therefore have for all i ∈ {1, . . . , p}:

qα(T (i), d− (l0)) = ΓT (i)

∑

C cut of T (i)

hα(T (i), d(i) − (l0), C) .

In this case, the inductive formula (4.6) gives

qα(T , d) =
∫ d0

l0=0
γ0e

−γ0l0
[

p∏

i=1

qα(T (i), d(i) − (l0))

]
dl0 .

191

We already have that γ0
∏p
i=1 ΓT (i) = ΓT . Therefore we get:

qα(T , d) = ΓT

∫ d0

l0=0
e−γ0l0

[
p∏

i=1

∑

C cut of T (i)

hα(T (i), d(i) − (l0), C)

]
dl0 .

The product of sums can be easily expanded by noticing that each p-tuple (C1, . . . , Cp) of

cuts of the trees T (1), . . . , T (p) forms exactly a partition of the cut C =
⋃p
i=1Ci of the

forest F0 = (T (1), . . . , T (p)). We therefore have a bijection between the cuts C of F0 and

the p-tuple of cuts (C1, . . . , Cp) of T (1), . . . , T (p). We can then write that:

qα(T , d) = ΓT

∫ d0

l0=0
e−γ0l0

[∑

C cut of F0

p∏

i=1

hα(T (i), d(i) − (l0), Ci)

]
dl0

= ΓT
∑

C cut of F0

∫ d0

l0=0
e−γ0l0

p∏

i=1

hα(T (i), d(i) − (l0), Ci)dl0 .

Let us then consider a cut C of F0. As we did in the first case, we introduce the

lighter notation h(i)α (Ci) = hα(T (i), d(i) − (l0), Ci) and for r, s and t as well, such that

h
(i)
α (Ci) = r(i)(Ci)s

(i)(Ci)t
(i)(Ci). Here again, we notice that the variable l0 does not

appear in r(i)(Ci) nor t(i)(Ci). We can then take these two terms out of the integral:

∫ d0

l0=0
e−γ0l0

p∏

i=1

h(i)α (Ci)dl0 =

p∏

i=1

r(i)(Ci)t
(i)(Ci)

∫ d0

l0=0
e−γ0l0

p∏

i=1

s(i)(Ci)dl0 .

By looking back at the definition of t, and since l0 does not appear in t(i)(Ci), we have

t(i)(Ci) = t(T (i), d(i) − (l0), Ci) = t(T (i), d(i), Ci), and therefore:

p∏

i=1

t(i)(Ci) =

p∏

i=1

∏

j∈Ci

tj(T (i), d(i), Ci) =

p∏

i=1

∏

j∈Ci

tj(F0, d, C)

=
∏

j∈C
tj(F0, d, C) = t(F0, d, C) .

The fact that tj(T (i), d(i), Ci) = tj(F0, d, C) comes from the fact that tj(F0, d, C) depends

only on the node j and its future.

By looking at the definition of r, we also deduce that:

p∏

i=1

r(i)(Ci) =

p∏

i=1

∏

j∈Past(T (i),Ci)

1

γj −
∑
k∈Ci

j≪k

γk
=

∏

j∈Past(F0,C)

1

γj −
∑
k∈C
j≪k

γk
= r(F0, d, C) ,

where we recall that Past(T (i), Ci) is the past of the cut Ci in the tree T (i), and Past(F0, C)

is the past of the cut C in the sub-forest F0. We especially pay attention to the fact that

indeed {k ∈ Ci | j ≪ k} = {k ∈ C | j ≪ k}.

192

We then focus on the integral:

∫ d0

l0=0
e−γ0l0

p∏

i=1

s(i)(Ci)dl0 =

∫ d0

l0=0
e−γ0l0

p∏

i=1

∏

j∈Ci

e−γj(dj−l0)∏
k∼j
k 6=j

(γk − γj)
dl0

=

∫ d0

l0=0
e−γ0l0

∏

j∈C

e−γj(dj−l0)∏
k∼j
k 6=j

(γk − γj)
dl0 = e−γ0d0

s(F0, d− (d0), C)(∑
j∈C γj

)
− γ0

+
s(F0, d, C)

γ0 −
∑

j∈C γj
,

the last equality having been already seen in the first case. Putting all back together we get

qα(T , d) = ΓT
∑

C cut of T
C 6={0}

[
e−γ0d0

hα(F0, d− (d0), C)(∑
j∈C γj

)
− γ0

+
r(F0, d, C)s(F0, d, C)t(F0, d, C)

γ0 −
∑

j∈C γj

]
.

since the cuts of T are the cuts ofF0 plus the cut {0}, and because we already noticed in the

first case that r(F0, d, C) = r(F0, d − (d0), C) and t(F0, d, C) = t(F0, d − (d0), C). We

then notice that for any cut C 6= {0}, we have
r(F0, d, C)

γ0 −
∑

j∈C γj
= r(T , d, C), s(F0, d, C) =

s(T , d, C), and t(F0, d, C) = t(T , d, C). Therefore:

qα(T , d) = ΓT

[
e−γ0d0

∑

C cut of F0

hα(F0, d− (d0), C)(∑
j∈C γj

)
− γ0

+
∑

C cut of T
C 6={0}

hα(T , d, C)
]

.

Finally, since s(T , d, {0}) = e−γ0d0 and r(T , d, {0}) = 1, we see that:

e−γ0d0
∑

C cut of F0

hα(F0, d− (d0), C)(∑
j∈C γj

)
− γ0

= e−γ0d0t(T , d, {0}) = hα(T , d, {0}) ,

and we finally prove that the formula (4.12) holds also for the tree T .

To conclude, the induction being now proved in both cases, we conclude that our for-

mula is true for any tree T . The proof of the expression of ξα(l|d) follows a similar but

slightly more complicated reasoning and is spared (or left) to the reader.

193

194

Chapter 5

Inverse Problems in Bandwidth

Sharing Networks

5.1 Introduction

The previous chapters studied some inverse problems in queueing theory. In this chapter,

we explore inverse problems in bandwidth sharing networks.

Queueing theory studies networks at a detailed packet level mechanism, and predicts

packet level statistics (e.g. the distribution of packet delays). When seen as inverse problems

in queueing theory, active Internet probing uses these predicted statistics to infer quantities

of interest. Whilst fruitful, this approach has two main weaknesses:

1. it requires to measure these packet level statistics, which (depending on the nature of

the statistic) can be difficult or require specific equipment (e.g. DAG cards);

2. it is difficult to introduce the natural feedback from TCP into queueing theory. This

means in particular that the sending of probes can’t follow the TCP protocol, and the

probes hence are packets dedicated to the measure, which carry no useful data on the

network.

From a practical point of view, it would be hence ideal to perform network tomography

based on TCP flow measurements. It would allow in some cases to use already existing TCP

flows, reaching hence the least intrusive possible measure. In the other case, the advantage

of TCP flows is that they are easy to set up, and that flow statistics are easier to collect than

packet level statistics.

In this chapter, we explore one possible way to perform such a tomography. We assume

that the network behaves as a bandwidth sharing network, allocating (in a distributed or

centralized way) the bandwidth to each flow such as to maximize a known utility function

(see section 1.3). In particular, it has been shown that the bandwidth sharing resulting from

TCP protocol is approximately an oscillation around the allocation of a bandwidth sharing

network with given parameters.

195

What can be an inverse problem in bandwidth sharing networks? In the communication

network context of bandwidth sharing networks, consider one user that starts downloading

a file. This user can measure its long-term bandwidth, which is proportionally fair. Is it

possible from this long-term bandwidth to estimate the server capacities along the path,

and the number of competitors, i.e. the number of competing flows? Assume that the user

knows the topology along the path (e.g. using Traceroute), and knows the utility function

used to share the bandwidth. The inversion is then possible, if the user is allowed to open

several TCP connections and measure the bandwidth allocated to individual connection for

any number of connections. In the context of governmental budget (see section 1.3.2), the

same question arises in a natural form: assume that you have some “union” of people of the

same class. This could of course be a union of workers or managers, but the model would

also make sense if some of your classes were firms or research labs, and one class could

then be the association of all firms of one type (as the Medef or UIMM in France, or the

association “Sauvons la Recherche”). Letting their class population change, this association

could observe the “wealth” increase its members have access to in each case. Its aim is then

to deduce the specific budget allocated to each levers (the capacities (C1, . . . , Ck), as well

as the population of competing classes for the welfare. The advantage in that context is that

one might consider rational population numbers: welfare has a long tradition of fractional

shares, where some people might have right to only half the allocation and count only as

half a person.

We restricted the prober actions in the two previous examples. He can only change his

population number (i.e. open new connection), and observe his allocated bandwidth (i.e.

measure his long-term rate). With these restrictions, there is no natural inverse problem for

some embodiment of bandwidth sharing networks. For example, considering the network

as in the production context, there is no analogy for class populations, which are considered

as 1 for all classes. However, one could consider different inverse problems in that case.

Assume that one might be able to change the resources (manpower, supplies and equip-

ment), and observe then the total production. Is it possible then to deduce the needs for

each class of production, i.e. the route of the class? Another inverse problem could be as

follows: assume that the “prober” is a client of one company, which keeps secret commer-

cial agreements with its clients, and has limited unknown resources for production. The

prober can then change the utility of different products by changing the prices he is willing

to pay for them, and can then observe how much “products” the company is willing to sell

him, i.e. his allocated rate. Assuming the the company maximizes its gains in all cases, is it

possible for the prober to deduce the resources of the company and the utility of other prod-

ucts (i.e. the prices that competitors are willing to pay)? These last two examples showed

that inverse problems for bandwidth sharing networks have a different meaning for differ-

ent models. In order to focus on our primary context of communication networks, we will

voluntarily restrict as above the allowed action of the prober, such as to keep a framework

that corresponds to end-to-end measurement in communication networks.

With this restriction in mind, we can describe inverse problems as follows: bandwidth

196

S1 S2 SK

n1

n0

γ1

x

n2 γ1 nK

γ0

γK

γ0

Figure 5.1: An example of path.

sharing networks describe the bandwidth allocation or the welfare allocation (which we

will denote as the evolution of the system), depending on the input of the problem (network

topology, utility function, capacities, flow numbers, etc.). Assume that one person, called

the “prober”, can observe (part of) the bandwidth allocation, possibly under different class

populations, the topology and utility being static and known by the prober. What can the

prober deduce about the system, from his only end-to-end observations? Is it possible to

infer the server capacities and flow numbers, without any knowledge of the internal network,

except the topology? When this is possible, how can the prober proceed? Is there a best

way to do it? What is the minimum set of measurement that are needed to proceed to

such an inference? Which are the needed observations? How many (and which repartition)

probing intensities are required? Which parameters can’t be deduced from observations?

They are many problems that arise. We won’t answer to all these questions, but focus on

the identifiability question: on two simple, but generic examples, we will specify which

quantities can be inferred, and present a method for the inference when it is possible.

This chapter is organized as follows: in section 5.2, we investigate the case of a network

with K servers in tandem. Section 5.3 studies the case of the simplest network that does

not consist of a single path. This “triangle” network consists of three servers, which are

pair-wise connected. Cross-traffic is considered in the most general way. We summarize

these early results in section 5.4.

5.2 The static single path case

In this section, we consider only static networks, where the number of users in each class is

fixed. Users may not enter or leave the system.

Consider a single static path, as depicted in Fig. 5.1. The path consists ofK servers (S1,

. . . , Sk) in series, where the server Sj has capacity Cj . There areK+1 class of users: users

of class 0 use the whole path, and users of class i (1 ≤ i ≤ K) enter the path just before

server Si, and exit the path after server Si. Each class i has ni users, and each of these users

receives a bandwidth equal to γi. In addition to this static system, there are x probes using

the whole path, which receive a bandwidth equal to γ0.

197

5.2.1 Direct equation

This setup is similar to the case of section 1.3.3, where the class 0 contains now n0 + x

users. We recall here briefly the results from section 1.3.3.

Denoting by Uw,α the (w, α) fairness55, as defined in (1.19), we have the following

utility:

Uα(γ) =
1

1− α

(
w0(n0 + x)γ1−α0 +

K∑

i=1

wini

(
Ci − (n0 + x)γ0

ni

)1−α)
, (5.1)

where for simplicity of notation, we abusively define when ni = 0

ni

(
Ci − (n0 + x)γ0

ni

)1−α
=




0 ifCi − (n0 + x)γ0 ≥ 0

−∞ otherwise
.

Maximum throughput

If
∑K

i=1wi1ni>0 > w0, the maximum utility allocation in such a case is




γ0 = 0

γi = 1ni>0
Ci

ni

. (5.2)

Otherwise, it is 


γ0 = min1≤j≤K

Cj

n0+x

γi =
Ci−min1≤j≤K Cj

ni

. (5.3)

Max-min allocation

The only max-min allocation for this network is




γ0 = min1≤i≤K fi(x)

γi =
Ci−(n0+x)γ0

ni

, (5.4)

where we define for all i fi(x) =
Ci

n0+x+ni
.

Other α-fair allocations

The parameter α is now strictly positive and finite. The (w, α)-fair allocation hence verifies

the following stationary equation:

w0

γα0
=

K∑

i=1

wi1ni>0

(
ni

Ci − (n0 + x)γ0

)α
, (5.5)

55We will abusively write U1(γ) =
∑

s∈S

γ1−α

s

1−α
with α = 1, instead of U1(γ) =

∑
s∈S log(γs). This

is not correct formally, but computations (and in particular differentiation) remains valid, as well as the final
results.

198

which we are not able to solve in a general case. However, a solution can be found in the

particular case when all servers have the same capacity C. The (w, α)-fair allocation then

reads 


γ0 =

C
n0+x+ñ

γi =
ñ

ñ+n0+x
C
ni

, (5.6)

where ñ is the “weighted α sum”

(∑K
i=1win

α
i

w0

) 1
α

.

5.2.2 The inverse problem

Maximum throughput allocation

If w0 <
∑

1≤i≤K wi1ni>0, the inverse problem in this case is severely ill-posed. The

bandwidth allocation is independent of the probing intensity, and the bandwidth allocated

to the probing path is null. Hence, it is easy to identify such an allocation policy, as it is

the only one among the considered policies that verifies any of the two above properties.

Unfortunately, the fact that the probing path gets a null bandwidth allocation doesn’t allow

to deduce any parameter. When observing the bandwidth allocated to users of class i, we

can deduce the ratio Ci

ni
, but we can’t identify individually these values. This is the worst

case scenario for inference: all allocated bandwidths are independent of each other and of

the probing intensity.

In the other case, the allocation is as in (5.3), and two observation points (xi, γ0(xi))

are sufficient to determine n0 and min1≤j≤K Cj as follows (assuming x1 < x2):

n0 =
x2γ0(x2)− x1γ0(x1)
γ0(x1)− γ0(x2)

min
1≤j≤K

Cj =
(x2 − x1)γ0(x1)γ0(x2)

γ0(x2)− γ0(x1)
.

Max-min allocation

One can observe γ0(x) = min1≤i≤K fi(x). Several quantities are therefore immediately

non-identifiable. First, one can identify only the sums n0 + ni, i ≥ 1, and not individually

all ni, i ≥ 0. Second, only the servers which are the bottleneck for some probing intensity

can have their capacity and cross-traffic intensity identified.

Before going further, it will be useful to state the two following lemmas:

Lemma 5.2.1. Two functions fi(x) and fj(x) intersecting in more than 2 points on the real

positive line are identical, and Ci = Cj and n0 + ni = n0 + nj .

Proof. Note that fi(x) − fj(x) = Ci(n0+nj)−Cj(n0+ni)+x(Ci−Cj)
(n0+ni+x)(n0+nj+x)

, hence fi(x) = fj(x) is

equivalent to Ci(n0 + nj) − Cj(n0 + ni) + x(Ci − Cj). This system admits at most one

solution unless it is degenerate, which means Ci = Cj and Ci(n0+nj)−Cj(n0+ni). The

last equality is easily deduced from these 2 last equations.

199

Lemma 5.2.2. Two functions fi(x) and fj(x) are tangent on the real positive line if and

only if they are identical.

Proof. Assume that fi and fj are tangent at x. Then fi(x) = fj(x) and f
′

i (x) = f
′

j(x),

which we can rewrite Ci

n0+ni+x
=

Cj

n0+nj+x
and −Ci

(n0+ni+x)2
=

−Cj

(n0+nj+x)2
. It follows

directly that n0 + ni + x = n0 + nj + x, hence n0 + ni = n0 + nj , Ci = Cj and both

functions are identical.

Assume now that server j is at the minimum when probing at the intensities belonging

to the “minimum set”Xj , i.e. ∀x ∈ Xj , γ0(x) = fj(x). Then straightforward computations

leads to

∀(x1, x2), (x1, x2) ∈ X2
j ⇔





x2γ0(x2)−x1γ0(x1)
γ0(x1)−γ0(x2) = n0 + nj and

(x2−x1)γ0(x1)γ0(x2)
γ0(x1)−γ0(x2) = Cj

. (5.7)

We can show that these minimum sets Xj are convex sets. Let x1 < x3 be two elements of

Xj . Let x2 ∈ [x1, x3]. Assume that x2 /∈ Xj . Then ∃k 6= j s.t.:

fj(x1) ≤fk(x1)
fj(x2) >fk(x2)

fj(x3) ≤fk(x3) .

The functions fj(.) and fk(.) are continuous, which implies from the intermediate value

theorem that ∃x1 ≤ x4 ≤ x2 and x2 ≤ x5 ≤ x3 such that fj(x4) = fk(x4) and

fj(x5) = fk(x5). This means that they intersect in two points and must be identical func-

tions according to lemma 5.2.1, and hence x2 ∈ Xj .

The following theorem finally allows us to conduct the inversion step:

Theorem 5.2.3. Assume a set of observation points (xi, γ0(xi)), i = 1, . . . , N , stemming

from a max-min bandwidth sharing path, with capacities (C1, . . . , CK) and number of flows

(n0, n1, . . . , nK). If there is a subset Y of X such that |Y | ≥ 3 and ∃(C, n) ∈ R2, ∀x ∈
Y, γ0(x) =

C
n+x , then there exists a server Sj such that Y ⊂ Xj , and hence Cj = C and

n0 + nj = n, and any observation point (xi, γ0(xi)) such that minY ≤ xi ≤ maxY

verifies also γ0(xi) = fj(x).

Proof. Let x1 < x2 < x3 be three points of Y . By assumption of the max-min allocation,

there exists a server j with capacity Cj and number of flows n0 + nj such that γ0(x2) =

fj(x2) and ∀i 6= j, fi(x2) ≥ γ0(x2). By Lemma 5.2.2, if the functions fj(.) and C
n+x

are tangent, the results is immediate. Otherwise, there exists a such that fj(x2 + a) <
C

n+x2+a
. Assume for simplicity that a > 0. But since x2 and x3 belongs to Y , we have by

definition that fj(x2) = γ0(x2) =
C

n+x2
and fj(x3) ≥ γ0(x3) =

C
n+x3

. It follows from the

intermediate value theorem that ∃x4 ∈ [x2 + a, x3] s.t. fj(x4) = C
n+x4

, and we have two

intersection points x2 and x4. Lemma 5.2.1 then concludes that C = Cj and n = n0 + nj .

200

The last part follows immediately from the fact that the minimum sets are convex.

The inversion step can hence be summarized as follows: increase the set of measure-

ments until you can find such subset Y of cardinality greater than 3 (C and n can be found

using (5.7)). It is useless to try additional probing intensities that are already bounded by

two elements of such a subset. Since there is a finite number of servers and an infinite num-

ber of available probing intensities, there will be finally at least one such set. Unfortunately,

we can’t know in advance whether there will more than one Y set, and we have no informa-

tion for measurement points that can’t be linked to at least two other measurement points.

Pairs of these “single” point might be two points belonging to the same minimum set Xj ,

and therefore allow us to retrieve the values of Cj and n0 + nj . But they could also belong

to two different minimum sets Xj and Xk.

Other α-fair allocations

Identical capacities along the path: We first consider the case where all servers have the

same capacityC, as it is the only “generic” case where we can fully solve the direct problem.

We recall the solution (5.6): γ0(x) = C
n0+ñ+x

, where ñ is defined as ñ =
(∑K

i=1 n
α
i

) 1
α

.

Using (5.7), we can fully inverse the problem iff we have two different measure intensities

x1 and x2, leading to:




n0 + ñ = x2γ0(x2)−x1γ0(x1)

γ0(x1)−γ0(x2)

C = (x2−x1)γ0(x1)γ0(x2)
γ0(x1)−γ0(x2)

. (5.8)

General capacities: In this case, we are not able to predict what the bandwidth allocation

is. However, the identifiability problems disappear, and we will be able to infer all capacities

and flow numbers with mild assumptions. Recall that (5.5) is valid in this case: we can

rewrite it as

w0

K∏

i=1

(Ci − (n0 + x)γ0(x))
α = γ0(x)

α
K∑

i=1

win
α
i

∏

j 6=i
(Cj − (n0 + x)γ0(x))

α . (5.9)

From this equation, it is obvious that the flow numbers ni and weights wi are not in-

dependently identifiable. They appear only within their product winαi , and as neither ni,

nor wi nor α can be changed by the prober, the best that one will be able to identify is this

product winαi . As weights are defined up to a (common) multiplicative constants, we can

assume without loss of generality that w0 = 1.

We assume that α is an integer, and we can define constant values (ai,j)0≤i≤j≤αK ,

which depend only on the capacities (C1, . . . , CK), the flow numbers (n0, n1, . . . , nK) and

the weights w, such that the equation now reads:

∑

0≤i≤j≤αK
ai,jx

iγ0(x)
j = 0 . (5.10)

201

There are strong relations between the capacities Ci and flow numbers ni on one side,

and the polynomial coefficients ai,j on the other side. We will see how the knowledge of the

polynomial coefficients determines the capacities and flow numbers. First, the right-hand

side of (5.9) can only have terms with degrees in γ0(x) strictly greater that degrees in x. On

the left-hand sides, the only terms that will have identical degrees in γ0(x) and x are the

one stemming from the expansion of
∏K
i=1(Ci − xγ0(x))α. Hence, we have that

K∏

i=1

(Ci − xγ0(x))α =

αK∑

i=0

ai,ix
iγ0(x)

i ,

and (C1, . . . , Cn) are the roots of the polynomial
∑αK

i=1 ai,iX
i. The (identical) weight of the

probes and flows of class 0 can then be identified (this is for example the leading coefficient

aαK,αK , or the ratio between a0,0 and
∏
Ci).

Second, one can realize with careful computations that:

al,l = (−1)l
∑

j1+j2+···+jK=l
jk≤α

K∏

k=1

(
α

jk

)
Cα−jkk

al,l+α = nα0

(
l + α

α

)
al+α,l+α

+ (−1)1+l
K∑

i=1

win
α
i

∑

j1+···+ji−1+ji+1+···+jK=l
jk≤α

∏

k 6=i

(
α

jk

)
Cα−jkk . (5.11)

Remark first that in the expansion of
∏
(Ci−(n0+x)γ0(x)), each term has a power in γ0(x)

greater (or equal) to the power in x. Hence, the contribution to al,l comes only from terms

in the left-hand side of (5.9). On top of that, we are interested only in terms that choose Ck
in all factors except l (which explains the sum, as each Ck can be not chosen only α times).

Now, there is
(

α
α−jk

)
=
(
α
jk

)
possibilities to choose α − jk times Cj among α. Similarly,

the contribution of the left-hand term of (5.9) to al,l+α contains only terms that choose l

times the factor xγ0(x), α times the factor n0γ0(x) and Ck the rest of the times. Hence,

there are al+α,l+α possibilities to choose all the Ck, and then
(
l+α
α

)
possibilities to choose

the n0γ0(x) terms among the remaining terms. The contribution of the right-hand terms of

(5.9) is as follows: xγ0(x) is chosen l times in the expansion, and all other choices are Ck.

Hence, the minus appears l times, and the sum is equivalent to the one for al,l, except that

the factor Ci − (n0 + x)γ0(x) is not present.

The set of equations (5.11) consists of αK−α+1 linear equations withK+1 unknown

values (nα0 , w1n
α
1 , . . . , wKn

α
K). For α > 1 andK > 1, it is hence possible to determine the

values of the flow numbers from these equations by solving the associated linear system. It

is easy to see that the system will be regular if all capacities are pairwise different. When

capacities of server Si and Sj are equal, the only information we will be allow to determine

will be the “weighted α-power sum”
(
win

α
i + wjn

α
j

)
, which is similar to the identical

202

capacities case. The case K = 1 falls into the “identical capacity” case. Finally, in the case

when α = 1, we have K equations with K + 1 unknowns. It allows us to express all the

flow capacities as an affine function of n0. We can then compute the coefficient a0,2 which

is:

a0,2 = n20
∑

{i,j}

∏

k 6=i
k 6=j

Ck +
K∑

i=1

wini
∑

j 6=i
n0
∏

k 6=i
k 6=j

Ck . (5.12)

Using the previous affine functions, we rewrite it as a second order polynomial, which we

can solve to determine n0, and hence all the flow numbers.

It remains to show how the polynomial coefficients ai,j can be estimated. Recall that

equation (5.10) holds, for all probing intensities. Assume now that we have access to N

measurement points (xi, γ0(xi))i=1,...,N for N different probing flow numbers x1, . . . , xN .

We can now rewrite (5.10) in a vector form, as follows:

P ×A = (−1)1+αKY , (5.13)

where P is the N ×
(
(αK+1)(αK+2)

2 − 1
)

matrix, whose element k, (i, j) is xikγ0(xk)
j ,

A the
(
(αK+1)(αK+2)

2 − 1
)
× 1 column matrix whose element of line (i, j) is ai,j (except

aK,K), and Y the N × 1 column matrix whose element k is xαKk γ0(xk)
αK (we force here

the normalization aK,K = 1). If N = (αK+1)(αK+2)
2 − 1 and P is full-rank, there is unique

solution A satisfying (5.13). We don’t have any proof that P is full-rank; however, in all

practical case we simulated, P was nearly-singular, but regular. If N > (αK+1)(αK+2)
2 − 1

and P is full-rank, one can have a more robust estimation of A by minimizing the error

‖P × A+ (−1)αKY ‖ for some well-chosen norm ‖.‖ (a classical choice is the norm ‖.‖2,

which minimizes the quadratic error and leads to linear regression).

Summary: The inversion is possible when enough measurement points are available:

1. If K = 1 or if all capacities are known to be identical, use (5.8) to identify the capac-

ity and the aggregated flow number. Individual flow numbers can’t be determined.

2. If α > 1, use (5.13) to determine the polynomial coefficient ai,j . Find (C1, . . . , Ck)

as the roots of the polynomial
∑αK

i=0 ai,ix
iγ0(x)

i. If all capacities are pairwise dif-

ferent, use (5.11) to estimate the individual flow numbers. Otherwise, estimate the

“aggregated” flow numbers
∑

i:Ci=C
nαi for identical capacities servers, and individ-

ual flows with (5.11).

3. If α = 1, use (5.13) to determine the polynomial coefficient ai,j . Find (C1, . . . , Ck)

as the roots of the polynomial
∑αK

i=0 ai,ix
iγ0(x)

i. Use then (5.11) to express all

cross-traffic flow numbers (n1, . . . , nK) (or their aggregated sum in case of iden-

tical capacities) as affine functions of n0. Use these functions and (5.12) to obtain a

second-degree equation, solve it to get n0, hence the other flow numbers as well.

203

5.2.3 Numerical application

In this section, we focus on the case of general integer α, which seems the most interesting

from a practical point of view and the simplest from a numerical point of view.

The simulation were performed using Matlab. For any number of flows, the bandwidth

allocation is computed using convex optimization tools. Based on these measurement points

(xk, γ0(xk)), we then estimate the coefficient ak,(i,j) (with a special care for the matrix

inversion step), then use the Matlab “root” routine to find the roots (C1, . . . , CK) of the

polynomial
∑K

i=0 ai,iX
i. For k > 1, the estimation of n is performed with the Matlab

right-side division, a routine designed for solving matrices equations of the type AX = B.

If α = 1, the system is not linear, and we use the “Fsolve” function, where the objective

function is the vector of the equations (5.11) and, for the α = 1 case, (5.12). In particular,

“Fsolve” finds the real variables that minimizes the absolute value of the objective function,

and it is not possible to restrict the solution space to integer variables (the problem is then

different, much more complicated, and most likely NP-hard).

To keep things simple, we will assume that all weightswi are equal to 1 (or equivalently,

that the flow population ni is rescaled).

Proportional fairness The case of proportional fairness is slightly singular, because the

system (5.11) is lacking one equation, and (5.12) is used to determine n0. Table 5.1 presents

a few numerical results.

C n # add. est. A est. C est. n
(
2
1

) 

0
3
1


 0



2.0001 −4.9996 −0.0015

0 −3.0001 3.9997
0 0 1




(
2.0001

1

) 

−0.0004
3.0001
1.0002




(
30
1

) 

2
5
1


 0



−1.1101 0.4909 8.8867

0 0.1102 5.8391
0 0 1




(
−1.1102

1

) 


2.97
−0.08
0.08




(
30
20

) 

2
5
1


 0



600.0258 −230.272 16.0772

0 −49.9989 10.0095
0 0 1




(
29.99
20.00

) 


2.01
4.99
0.997




(
30
1

) 


0
200
0


 0



51.82 −568.6 1487
0 −31.256 204.2
0 0 1




(
29.49
1.76

) 


7.56
189
−0.01




(
30
1

) 


0
200
0


 5



29.86 −199.16 0.25
0 −30.86 199.06
0 0 1




(
29.86
1.0001

) 


0.0013
199.06
−0.0001




(
30
1

) 


0
50
0


 5



0.3085 0.4756 0.0

0 −1.309 −0.4756
0 0 1




(
1.0
0.31

) 

−0.4756
0.4756
0.0000




Table 5.1: Proportional fairness: two-server cases. The two first columns show the
groundtruth. The third column indicates how many additional measurement points on top
on the minimum 5 required where. The column “est. A” is a matrix whose coefficient (i,j)
is the estimated ai,j . The fifth or sixth columns show the estimation using the technique
proposed.

204

The estimation is reasonable in the cases 1, 3, 4 and 5. It fails by a large margin in the

cases 2 and 6. Comparing cases 4 and 5, we can see that additional measurement points al-

low a better precision in some cases. In both “failed” cases, the matrix P of equation (5.13)

was nearly singular. For a simple intuition, these were also the cases where a single server

is the clear bottleneck for the probe path. This means that the bandwidth is shared almost

as γ0(x) = C
n+x , where C is the capacity bottleneck server and n the number of flows

(outside probes) which cross that server. As x grows large, the coefficient k, (i, j) of P is

xikγ0(xk)
j → Cj

xi−j , and the coefficients ak, (i, i) → Ci are almost independent of the line

index k. This means that the columns (i, i) are almost all equivalent, and the matrix P is

near singular.

As shown in table 5.2, the instability is worse for the three-server case. It is still possible

to get “correct” estimation as in the line 2, 3 or 4, but additional measurement points are

now required in order to correctly estimate the coefficient ai,j . The fact that the estimation

is harder when one server is the clear bottleneck or is clearly overprovisioned, remains.

C n # add. est. A est. C est. n


2
1
3







0
3
1
7


 0




−1.74 8.28 5.24 −22.68
0 5.04 −19.63 −3.68
0 0 −4.3 10.67
0 0 0 1







1.
0.66
2.64







−0.28
0.89
−0.29
9.22






2
1
3







0
3
1
7


 5




−5.72 25.5 10.39 −0.706
0 10.62 −33.87 −9.12
0 0 −5.896 10.17
0 0 0 1






1.93
1

2.97







−0.32
1.70
0.68
6.80






2
1
3







0
3
1
7


 10




−5.98 26.9 9.63 −0.005
0 10.98 −35.15 −8.46
0 0 −6 10.23
0 0 0 1






1.98
1

3.02







−0.29
2.25
0.7
6.4






2
5
3







0
3
1
7


 10




−25.68 99.76 18.52 −13.14
0 27.45 −67 −9.40
0 0 −69.31 10.23
0 0 0 1






2.01
4.39
2.91







−0.29
2.71
0.5
6.15







2
20
3







0
3
1
7


 10




−13.13 99.21 −147.9 −150.62
0 17.04 −85.15 62.77
0 0 −7.24 17.8
0 0 0 1






2.00
3.16
2.08







1.53
2.11
7.8
12.49




Table 5.2: Proportional fairness: three-server cases. The columns are organized as in ta-
ble 5.1.

Other fairnesses The method is absolutely unstable in that case and leads to meaningless

(complex) results. The reason is that it requires the at least (αK+1)(αK+2)
2 −1 measurement

points, and the inversion of a square matrix of the same size. Note that even for the smallest

case with K = 2 and α = 2, the minimum size is already 14! In all cases we have tried, the

matrix had a few near zero eigenvalues, and the inversion lead to unexploitable estimation

of the coefficient ai,j .

205

5.3 The static triangle network

Previous section focused, in a detailed manner, on the single source-destination path, which

can hardly be called a network. We extend here the results to a non-trivial (but small)

network topology: a “triangle network”, as depicted in Fig. 5.2.

S1

S2 S3

k1 η1

n2

x2
n3

x3

k2

η2γ3

γ3

n1

x1

k3

η3

γ2

γ2

γ1

γ1

Figure 5.2: The triangle network.

The networks consists of 3 servers, each server being connected to both other servers.

Server Si has a capacity Ci. ki flows cross the server Si, and each of them gets an allocated

bandwidth ηi. There are also flows using 2 servers: n3 (resp. n2 and n1) flows use the

route (S1, S2) (resp. (S1, S3) and (S2, S3)) and each of them gets an allocated bandwidth

γ3 (resp. γ2 and γ1).

Additionally, the prober can add x1 (resp. x2 and x3) flows on the route (S2, S3) (resp.

(S1, S3) and (S1, S2)). These flows get each the same bandwidth allocated to the route, i.e.

γ1 (resp. γ2 and γ3).

This is the setup of section 1.3.4: we recall equation (1.30), which reads:

Uα(γ,η) =(x1 + n1)w1
γ1−α1

1− α + (x2 + n2)w2
γ1−α2

1− α + (x3 + n3)w3
γ1−α3

1− α

+ k1v1
(C1 − (x2 + n2)γ2 − (x3 + n3)γ3)

1−α

(1− α)k1−α1

+ k2v2
(C2 − (x1 + n1)γ1 − (x3 + n3)γ3)

1−α

(1− α)k1−α2

+ k3v3
(C3 − (x1 + n1)γ1 − (x2 + n2)γ2)

1−α

(1− α)k1−α3

.

206

The partial derivatives of the utility with respect to γi are null at the maximum utility,

hence:

(x1 + n1)w1

γα1
− x1 + n1

k1−α2

k2v2
(C2 − (x1 + n1)γ1 − (x3 + n3)γ3)

α

− x1 + n1

k1−α3

k3v3
(C3 − (x1 + n1)γ1 − (x2 + n2)γ2)

α = 0

(x2 + n2)w2

γα2
− x2 + n2

k1−α1

k1v1
(C1 − (x2 + n2)γ2 − (x3 + n3)γ3)

α

− x2 + n2

k1−α3

k3v3
(C3 − (x1 + n1)γ1 − (x2 + n2)γ2)

α = 0

(x3 + n3)w3

γα3
− x3 + n3

k1−α1

k1v1
(C1 − (x2 + n2)γ2 − (x3 + n3)γ3)

α

− (x3 + n3)

k1−α2

k2v2
(C2 − (x1 + n1)γ1 − (x3 + n3)γ3)

α = 0

We can rewrite these as follows:

w1 (C2 − (x1 + n1)γ1 − (x3 + n3)γ3)
α (C3 − (x1 + n1)γ1 − (x2 + n2)γ2)

α−
γα1 × [kα2 v2 (C3 − (x1 + n1)γ1 − (x2 + n2)γ2)

α

+ kα3 v3 (C2 − (x1 + n1)γ1 − (x3 + n3)γ3)
α] = 0

w2 (C1 − (x2 + n2)γ2 − (x3 + n3)γ3)
α (C3 − (x1 + n1)γ1 − (x2 + n2)γ2)

α

− γα2 × [v1k
α
1 (C3 − (x1 + n1)γ1 − (x2 + n2)γ2)

α

+ v3k
α
3 (C1 − (x2 + n2)γ2 − (x3 + n3)γ3)

α] = 0 (5.14)

w3 (C1 − (x2 + n2)γ2 − (x3 + n3)γ3)
α (C2 − (x1 + n1)γ2 − (x3 + n3)γ3)

α

− γα3 × [kα1 v1 (C2 − (x1 + n1)γ1 − (x3 + n3)γ3)
α

+ kα2 v2 (C1 − (x2 + n2)γ2 − (x3 + n3)γ3)
α] = 0

From these equations, one can realize that only the products vikαi will be identifiable.

We show now how to identify these products, the server capacities C1, C2 and C3, and the

class population for the classes whose route crosses two servers.

Similarly to (5.10), it is possible to define constant values (bi,j,k,l,m,n) (resp.

(ci,j,k,l,m,n) and (di,j,k,l,m,n)), depending only on the flow numbers ni and ki, the weights

207

wi and vi and the capacities Ci, such that the first (resp. second and third) equation reads:

∑

i+j+k≤2α

∑

l≤i

∑

m≤j

∑

n≤k
bi,j,k,l,m,nγ

i
1γ
j
2γ

k
3x

l
1x
m
2 x

n
3 = 0 . (5.15)

The second and third equation are similar, with bi,j,k,l,m,n replaced by ci,j,k,l,m,n and

di,j,k,l,m,n.

The knowledge of these coefficients is sufficient to estimate the server capacities

(C1, C2, C3), the flow numbers (n1, n2, n3) and the products (v1kα1 , v2k
α
2 , v3k

α
3).

From (5.14), it is clear that

α∑

i=1

b0,0,i,0,0,iY
i = w1C

α
3 (C2 − Y)α .

and one can identify C2 as the root of the polynomial
∑α

i=1 b0,0,i,0,0,iY
i. As in the previous

section, the coefficient bi,j,k,l,m,n are defined up to a multiplicative shift. We can hence

always chose them such as the leading coefficient is Cα3 , and consider that w1 = 1.

Similarly, we have

α∑

i=1

b0,i,0,0,i,0Y
i =w1C

α
2 (C3 − Y)α ,

α∑

i=1

ci,0,0,i,0,0Y
i =w2C

α
1 (C3 − Y)α ,

α∑

i=1

c0,0,i,0,0,iY
i =w2C

α
3 (C1 − Y)α ,

α∑

i=1

di,0,0,i,0,0Y
i =w3C

α
1 (C2 − Y)α ,

α∑

i=1

d0,i,0,0,i,0Y
i =w3C

α
2 (C1 − Y)α ,

which are sufficient to identify the server capacities (C1, C2, C3).

Moreover, it is also clear that b0,1,0,0,0,0 = αw1 × Cα2 × Cα−1
3 n2, b0,0,1,0,0,0 = αw1 ×

Cα3 × Cα−1
2 n3 and c1,0,0,0,0,0 = αw2 × Cα1 × Cα−1

3 n1, hence

n1 =
bc1,0,0,0,0,0

α
C−α
1 C1−α

2

n2 =
b0,1,0,0,0,0

α
C−α
2 C1−α

3

n3 =
b0,0,1,0,0,0

α
C1−α
2 C−α

3 . (5.16)

208

Finally, we can also see that

bα,0,0,0,0,0 = w1

α∑

i=0

(
α

i

)2

Ci2C
α−i
3 nα1 − kα2 v2Cα3 − kα3 v3Cα2

c0,α,0,0,0,0 = w2

α∑

i=0

(
α

i

)2

Ci1C
α−i
3 nα2 − kα1 v1Cα3 − kα3 v3Cα1

d0,0,α,0,0,0 = w3

α∑

i=0

(
α

i

)2

Ci1C
α−i
2 nα3 − kα1 v1Cα2 − kα2 v2Cα1 .

The determinant of this linear system is 2C1C2C3, and the system is full-rank iff all capac-

ities are non-null. Hence, we get:



v1k

α
1

v2k
α
2

v3k
α
3


 =




0 Cα3 Cα2
Cα3 0 Cα1
Cα2 Cα2 0




−1

×




∑α
i=0

(
α
i

)2
Ci2C

α−i
3 nα1 − bα,0,0,0,0,0∑α

i=0

(
α
i

)2
Ci1C

α−i
3 nα2 − c0,α,0,0,0,0∑α

i=0

(
α
i

)2
Ci1C

α−i
2 nα3 − d0,0,α,0,0,0


 . (5.17)

Finally, it remains to show how one can estimate the polynomial coefficient values

(bi,j,k,l,m,n)j≤α,k≤α,i+j+k≤α,l≤i,m≤j,n≤k. There are

M = 5α6+51α5+209α4+441α3+506α2+300α+72
72 such coefficients for the single bi,j,k,l,m,n

collection. For example, we have M = 22 for α = 1 and M = 160 for

α = 2. Assume that the prober has access to N ≥ M − 1 measurement points

(x1(p), x2(p), x3(p), γ1(p), γ2(p), γ3(p))1≤p≤N , where for the ease of notations, we abu-

sively write γi(k) for γi(x1(k), x2(k), x3(k)). Recall that (5.15) is valid for all probing

intensities (x1, x2, x3), and that from (5.14), we have b2α,0,0,2α,0,0 = 1. (5.15) now defines

a linear system

X ×B = Y , (5.18)

whereB is theM−1×1 column vector with row (i, j, k, l,m, n) equal to bi,j,k,l,m,n, Y the

N × 1 column vector with row p equal to −x1(p)2αγ1(p)2α, and B the N ×M − 1 matrix

whose element p, (i, j, k, l,m, n) is

x1(p)
lx2(p)

mx3(p)
nγ1(p)

iγ2(p)
jγ3(p)

k. If N = M − 1 and X is invertible, we can esti-

mate B = X−1 × Y . Otherwise, we can add points until X is a full-rank matrix, and then

there is a single vector B which minimizes the distance ‖X×B−Y ‖2. In all cases that we

simulated, we were able to add enough points such that X is full-rank, and we conjecture

that it is possible in all non-degenerate cases. However, we don’t have any proof of it.

5.4 Summary

We have present two simple cases of bandwidth sharing networks, where the inference of

parameters is theoretically possible from measurement points. The practical interest of this

is not obvious: however, as bandwidth sharing networks are a common “simplified model”

for real networks, it remains interesting to know what can (and can not) be deduced from

209

measured bandwidth allocation. In this aspect, they are more a theoretical toy example from

which we might be able to deduce interesting conclusions than a rigorous analysis of the

practical problem.

Whenever inference is possible, we presented a way to conduct it. These methods are

most likely not the best efficient ones; they are numerically unstable , and it is obvious

that for α− fairness with finite positive α, they require too much measurement points (they

need at least K
2

2 measurement points in the single path network to determines only 2K + 1

unknowns). It remains to find better method, that would use less measurement points and

be more stable.

It is unexpected that inversion is less ambiguous in the cases where one can’t compute an

explicit formula for the bandwidth allocation. The “simplification” of having all capacities

equal, which allows one to compute an explicit bandwidth allocation, is responsible for the

ambiguity of the inverse problem.

Finally, this work is somehow preliminary. We conjecture that similar solution could

be found for other topologies, the best candidate being regular trees. A general formula

dealing with any network topology would be the best we can wish, but trees are a far-easier

candidates because their routes are easily described.

210

Bibliography

[ABC+00] A. Adams, T. Bu, T. Caceres, N.G. Duffield, T. Friedman, J. Horowitz, F. Lo

Presti, S.B. Moon, V. Paxson, and D. Towsley. The use of End-to-end Mul-

ticast Measurements for Characterising Internal Network Behavior. IEEE

Communications Magazine, special issue on "Network Traffic Measurements

and Experiments, 38(5):152–158, May 2000.

[ADV07] V. Arya, N.G. Duffield, and D. Veitch. Multicast Inference of Temporal Loss

Characteristics. In IFIP Performance, Special Issue, Performance Evaluation,

Oct. 2007.

[ANO96] S. Asmussen, O. Nerman, and M. Olsson. Fitting phase-type distributions via

the em algorithm. Scandinavian Journal of Statistics, 23(4):419–441, Dec

1996.

[ANT01] S. Alouf, P. Nain, and D. F. Towsley. Inferring Network Characteristics via

Moment-Based Estimators. In Proc. of IEEE INFOCOM, pages 1045–1054,

2001.

[AW87] J. Abate and W. Whitt. Transient behavior of the m/m/l queue: Starting at the

origin. Queueing Systems, 2:41–65, 1987. 10.1007/BF01182933.

[AW88] J. Abate and W. Whitt. Transient behavior of the m/m/1 queue via laplace

transforms. Advances in Applied Probability, 20(1):145–178, 1988.

[AW94] J. Abate and W. Whitt. Transient behavior of m/g/1 workload process. Oper-

ations Research, 42(4):750–764, 1994.

[BB03] F.B. Baccelli and P. Bremaud. Elements of Queueing Theory. Springer Verlag,

Applications of Mathematics, second edition, 2003.

[BDF+09] P. Borgnat, G. Dewaele, K. Fukuda, P. Abry, and K. Cho. Seven years and one

day: Sketching the evolution of internet traffic. In Proc. of IEEE INFOCOM,

pages 711–719, Apr. 2009.

[BDLPT02] T. Bu, N. Duffield, F. Lo Presti, and D. Towsley. Network tomography on

general topologies. SIGMETRICS Perform. Eval. Rev., 30(1):21–30, 2002.

211

[Bey95] P. Beyssac. Pchar. http://fgouget.free.fr/bing/index-en.

shtml, 1995.

[BJP04] T. Bonald, M. Jonckheere, and A. Proutiére. Insensitive load balancing. In

Proc. of ACM SIGMETRICS/Performance, pages 367–377, 2004.

[BKV09] F. Baccelli, B. Kauffmann, and D. Veitch. Inverse Problems in Queueing

Theory and Internet Probing. Queueing Systems, 63(1–4):59–107, 2009.

[BLFF96] T. Berners-Lee, R. Fielding, and H. Frystyk. Hypertext Transfer Protocol –

HTTP/1.0. RFC 1945 (Informational), May 1996.

[BM00] T. Bonald and L. Massoulié. Impact of fairness on internet performance. In

Proc. of ACM SIGMETRICS, pages 82–91, 2000.

[BMSV00] F. Brichet, L. Massoulié, A. Simonian, and D. Veitch. Heavy load queueing

analysis with lrd on/off sources. In K. Park and W. Willinger, editors, Self-

Similar Network Traffic and Performance Evaluation, pages 115–142. Wiley,

2000.

[BMT89] F. Baccelli, W. Massey, and D. Towsley. Acyclic fork-join queuing networks.

Journal of the ACM (JACM), 36(3):615–642, 1989.

[BMVB06] F. Baccelli, S. Machiraju, D. Veitch, and J. Bolot. The Role of PASTA in

Network Measurement. Proc. of ACM SIGCOMM, 36(4):231–242, 11-15

Sep 2006.

[BMVB07] F. Baccelli, S. Machiraju, D. Veitch, and J. Bolot. On Optimal Probing for

Delay and Loss Measurement. In Proc. of ACM SIGCOMM Internet Mea-

surement Conference (IMC), pages 291–302, 23–26 October 2007.

[Bol93] J.-C. Bolot. End to end packet delay and loss behavior in the Internet. In

Proc. of ACM SIGCOMM, pages 289–298, Sep. 1993.

[Bor98] Borovkov. Mathematical Statistics. Gordon and Breach, 1998.

[CB97] M. E. Crovella and A. Bestavros. Self-similarity in world wide web traffic:

Evidence and possible causes. IEEE/ACM Transactions on Networking, 1997.

[CC96] R. L. Carter and M. E. Crovella. Measuring bottleneck link speed in packet-

switched networks. Performance Evaluation, 27-28:297–318, 1996.

[CCB07] A. Chen, J. Cao, and T. Bu. Network Tomography: Identifiability and Fourier

Domain Estimation. In Proc. of IEEE INFOCOM, pages 1875–1883, 6-12

May 2007.

212

http://fgouget.free.fr/bing/index-en.shtml
http://fgouget.free.fr/bing/index-en.shtml

[CCL+04] R. Castro, M.J. Coates, G. Liang, R. Nowak, and B. Yu. Network Tomog-

raphy: Recent Developments. Statistical Science Magazine, 19(3):499–517,

August 2004.

[CDHT99] R. Caceres, N.G. Duffield, J. Horowitz, and D. Towsley. Multicast-Based

Inference of Network-Internal Loss Characteristics. IEEE Transactions on

Information Theory, 45:2462–2480, 1999.

[CFS08] R. Chertov, S. Fahmy, and N.B. Shroff. A device-independent router model.

In Proc. of IEEE INFOCOM, pages 1642–1650, Apr. 2008.

[CHNY02] M. Coates, A. Hero, R. Nowak, and B. Yu. Internet tomography. Signal

Processing Magazine, 19(3):47–65, May 2002.

[CMT98] K. Claffy, G. Miller, and K. Thompson. The nature of the beast: recent traffic

measurements from an Internet backbone. In INET 98. Internet Society, July

21–24 1998.

[CN00] M.J. Coates and R. Nowak. Network Loss Inference using Unicast End-to-

End Measurement. In ITC Conference on IP Traffic, Modelling and Manage-

ment, Sep. 2000.

[CN01] M.J. Coates and R. Nowak. Network Tomography for Internal Delay Estima-

tion. In Proc. of IEEE Int. Conf. Acoustics, Speech, and Signal Processing

(ICASSP), May 2001.

[dag] Endace Measurement Systems. http://www.endace.com/.

[DHLP01] N.G. Duffield, J. Horowitz, and F. Lo Prestis. Adaptive multicast topology

inference. In Proc. of IEEE INFOCOM, volume 3, pages 1636 –1645, 2001.

[DHPT00] N.G. Duffield, J. Horowitz, F. Lo Presti, and D. Towsley. Multicast topology

inference from end-to-end measurements. In In ITC Seminar on IP Traffic,

Measurement and Modelling, 2000.

[DHPT02] N.G. Duffield, J. Horowitz, F. Lo Presti, and D. Towsley. Multicast Topology

Inference from Measured End-to-End Loss. IEEE Transactions in Informa-

tion Theory, 48(1):26–45, 2002.

[DHT+02] N.G. Duffield, J. Horowitz, D. Towsley, W. Wei, and T. Friedman. Multicast-

based loss inference with missing data. IEEE Journal on Selected Areas of

Communications, 20(4):700–713, 2002.

[DL08] S. Dalibard and J-P. Laumond. Control of probabilistic diffusion in mo-

tion planning. 8th International Workshop on the Algorithmic Foundations

of Robotics (WAFR 2008), december 2008.

213

http://www.endace.com/

[DLM+07] L. Denbya, J. M. Landwehr, C. L. Mallows, J. Meloche, J. Tuck, B. Xi,

G. Michailidis, and V. N. Nair. Statistical Aspects of the Analysis of Data

Networks. Technometrics, 49(3):318–334, August 2007.

[DP00] N.G. Duffield and F. Lo Presti. Multicast Inference of Packet Delay Variance

at Interior Network Links. In Proc. of IEEE INFOCOM, pages 1351–1360,

March 2000.

[DP04] N. G. Duffield and F. Lo Presti. Network tomography from measured end-

to-end delay covariance. IEEE/ACM Transaction on Networking, 12(6):978–

992, 2004.

[DPPT01] N.G. Duffield, F. Lo Presti, V. Paxson, and D. Towsley. Inferring Link Loss

Using Striped Unicast Probes. In IEEE INFOCOM, pages 915–923, April

22–26 2001.

[DRM01] C. Dovrolis, P. Ramanathan, and D. Moore. What do packet dispersion tech-

niques measure? In Proc. of IEEE INFOCOM, pages 905–914, 2001.

[DRM04] C. Dovrolis, P. Ramanathan, and D. Moore. Packet-dispersion techniques and

a capacity-estimation methodology. IEEE/ACM Transaction on Networking,

12(6), Dec 2004.

[Duf06] N. Duffield. Network tomography of binary network performance character-

istics. IEEE Transactions on Information Theory, 52(12):5373 –5388, Dec.

2006.

[ENW96] A. Erramilli, O. Narayan, and W. Willinger. Experimental queueing anal-

ysis with long-range dependent packet traffic. IEEE/ACM Transactions on

Networking, 4:209–223, 1996.

[Erl09] A. K. Erlang. The theory of probabilities and telephone conversations. Nyt

Tidsskrift for Mathematik B, 20, 1909.

[Erl17] A. K. Erlang. Solution of some problems in the theory of probabilities of

significance in automatic telephone exchanges. Elektrotkeknikeren, 13, 1917.

[ESM09] A. Es-Saghouani and M. R. H. Mandjes. On The Correlation Structure Of A

Levy-Driven Queue. Journal of Applied Probability, 45:940 – 952, 2009.

[FDL+01] C. Fraleigh, C. Diot, B. Lyles, S. Moon, P. Owezarski, D. Papagiannakia, and

F. Tobagi. Design and deployment of a passive monitoring infrastructure. In

Sergio Palazzo, editor, Evolutionary Trends of the Internet, volume 2170 of

Lecture Notes in Computer Science, pages 556–575. Springer Berlin / Hei-

delberg, 2001.

214

[FGAMS06] G. Faÿ, B. González-Arévalo, T. Mikosch, and G. Samorodnitsky. Modeling

teletraffic arrivals by a poisson cluster process. Queueing Systems, 54(2):121–

140, 2006.

[FGM+97] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, and T. Berners-Lee. Hypertext

Transfer Protocol – HTTP/1.1. RFC 2068 (Proposed Standard), January 1997.

Obsoleted by RFC 2616.

[FGM+99] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and

T. Berners-Lee. Hypertext Transfer Protocol – HTTP/1.1. RFC 2616 (Draft

Standard), June 1999. Updated by RFCs 2817, 5785.

[FM05] C. Fragouli and A. Markopoulou. A network coding approach to overlay

network monitoring. In Proc. of Allerton, 2005.

[GL80] G. H. Golub and C. Van Loan. An Analysis of the Total Least Squares Prob-

lem. Technical report, Ithaca, NY, USA, 1980.

[GM09] P. Glynn and M. R. H. Mandjes. Simulation-Based Computation Of The

Workload Correlation Function In A Levy-Driven Queue. In Proceedings of

Winter Simulation Conference 2009, 2009.

[GR00] L.S. Gradshteyn and L.M. Ryzhik. Table of Integrals, Series and Products.

Academic Press, sixth edition, 2000.

[gre] grenouille. http://grenouille.com/cest_quoi.php.

[GS98] P. Glynn and K. Sigman. Independent sampling of a stochastic process.

Stochastic Processes and their Applications, 78:151–164, 1998.

[HA03] J. D. Horton and López-Ortiz A. On the number of distributed measurement

points for network tomography. In Proc. of ACM SIGCOMM Internet Mea-

surement Conference (IMC), pages 204–209, 2003.

[HcJS03] F. Hernández-campos, K. Jeffay, and F. Donelson Smith. Tracking the evolu-

tion of web traffic: 1995-2003. In Proc. of IEEE/ACM International Sympo-

sium on Modeling, Analysis and Simulation of Computer Telecommunication

Systems (MASCOTS), pages 16–25, 2003.

[HFGC98] D. Hoffman, G. Fernando, V. Goyal, and M. Civanlar. RTP Payload Format

for MPEG1/MPEG2 Video. RFC 2250 (Proposed Standard), January 1998.

[HL04] G. Hartl and B. Li. Loss inference in wireless sensor networks based on

data aggregation. In Proc. of the IEEE/ACM International Symposium on

Information Processing in Sensor Networks (IPSN, pages 396–404, 2004.

215

http://grenouille.com/cest_quoi.php

[HS02] N. Hu and P. Steenkiste. Estimating available bandwidth using packet pair

probing. Technical report, 2002.

[HS03] N. Hu and P. Steenkiste. Evaluation and characterization of available band-

width probing techniques. IEEE journal on Selected Areas in Communica-

tions, 21:879–894, 2003.

[HST07] M. Hasib, J. Schormans, and T. Timotijevic. Accuracy of packet loss moni-

toring over networked cpe. IET Communications, 1(3):507–513, june 2007.

[HVA03] N. Hohn, D. Veitch, and P. Abry. Cluster processes, a natural language for

network traffic. IEEE Transactions on Signal Processing, special issue “Sig-

nal Processing in Networking", 51(8):2229–2244, Aug. 2003.

[HVPD04] N. Hohn, D. Veitch, K. Papagiannaki, and C. Diot. Bridging router perfor-

mance and queuing theory. In Proc. of ACM SIGMETRICS, pages 355–366,

June 2004.

[HVY05] N. Hohn, D. Veitch, and T. Ye. Splitting and merging of packet traffic: Mea-

surement and modelling. Performance Evaluation, Proc. of IFIP Interna-

tional Symposium on Computer Performance, Modeling, Measurements, and

Evaluation, 62(1-4):164–177, Oct. 3-7 2005.

[HYH05] Han-Shen Huang, Bou-Ho Yang, and Chun-Nan Hsu. Triple jump accelera-

tion for the EM algorithm. IEEE International Conference on Data Mining

(ICDM’05), 2005.

[iet] Internet engineering task force. www.ietf.org.

[Jac87] V. Jacobson. Traceroute. ftp.ee.lbl.gov/traceroute.tar.gz,

1987.

[Jac97] V. Jacobson. Pathchar: A tool to infer characteristics of internet paths., 1997.

[JD02] M. Jain and C. Dovrolis. Pathload: A measurement tool for end-to-end avail-

able bandwidth. In Proc. of Passive and Active Measurements (PAM) Work-

shop, 2002.

[JD05] H. Jiang and C. Dovrolis. Why is the internet traffic bursty in short time

scales. In Proc. of ACM SIGMETRICS, pages 241–252, 2005.

[JJ93] Mortaza Jamshidian and Robert I. Jennrich. Conjugate gradient acceleration

of the EM algorithm. Journal of the American Statistical Association, 1993.

[JYCA01] G. Jin, G. Yang, B. Crowley, and D. Agarwal. Network characterization ser-

vice (NCS). In Proc. of IEEE Symposium on High Performance Distributed

Computing, 2001.

216

www.ietf.org
ftp.ee.lbl.gov/traceroute.tar.gz

[KBV09] Bruno Kauffmann, François Baccelli, and Darryl Veitch. Towards Multihop

Available Bandwidth Estimation. ACM SIGMETRICS Performance Evalua-

tion Review, 37(2):83,84, September 2009.

[Kel79] F. Kelly. Reversibility and Stochastic Networks. Wiley, New York, 1979.

[Kel97] F. Kelly. Charging and rate control for elastic traffic. European Transactions

on Telecommunications, 1997.

[Kes95] S. Keshav. A control-theoretic approach to flow control. SIGCOMM Comput.

Commun. Rev., 25(1):188–201, 1995.

[Kle75] L. Kleinrock. Queueing Systems, volume I: Theory, II: Computer Applica-

tions. John Wiley and Sons, 1975.

[Kle08] J. Klensin. Simple Mail Transfer Protocol. RFC 5321 (Draft Standard), Oc-

tober 2008.

[KMFB04] T. Karagiannis, M. Molle, M. Faloutsos, and A. Broido. A nonstationary

poisson view of internet traffic. In Proc. of IEEE INFOCOM, 2004.

[KMT98] F. P. Kelly, A. K. Maulloo, and D. K. H. Tan. Rate control for communication

networks:shadow prices, proportional fairness and stability. Journal of the

Operational Research Society, 49(3):237–252, 1998.

[KSC+02] K.Papagiannaki, S.Moon, C.Fraleigh, P.Thiran, F.Tobagi, and C.Diot. Anal-

ysis of Measured Single-Hop Delay from an Operational Backbone Network.

In Proc. IEEE Infocom, New York, June 2002.

[Lar90] R. Larson. The queue inference engine: deducing queue statistics from trans-

actional data. Management Science, 36(5):586–60, 1990.

[LB01] K. Lai and M. Baker. Nettimer: a tool for measuring bottleneck link, band-

width. In Proc. of USENIX Symposium on Internet Technologies and Systems,

pages 11–11, 2001.

[LC06] P. Laskowski and J. Chuang. Network monitors and contracting systems:

competition and innovation. In Proc. of ACM SIGCOMM, 2006.

[LMN06] E. Lawrence, G. Michailidis, and V. N.Nair. Network delay tomography using

flexicast experiments. J. Roy. Statist. Soc. (series B), 68:785–813, 2006.

[LMN07] E. Lawrence, G. Michailidis, and V. N.Nair. Statistical inverse problems in

active network tomography. In Complex Datasets and Inverse Problems: To-

mography, Networks and Beyond, IMS Lecture Notes-Monograph Series, vol-

ume 54, pages 24–44. IMS, 2007.

217

[LRL05] X. Liu, K. Ravindran, and D. Loguinov. Multi-Hop Probing Asymp-

totics in Available Bandwidth Estimation: Stochastic Analysis. In Proc. of

ACM/USENIX Internet Measurement Conference, October 2005.

[LRLL04] X. Liu, K. Ravindran, B. Liu, and D. Loguinov. Single-Hop Probing Asymp-

totics in Available Bandwidth Estimation: Sample-Path Analysis. In Proc. of

ACM Internet Measurement Conference (IMC), October 2004.

[LTWW94] W. E. Leland, M. S. Taqqu, W. Willinger, and D. V. Wilson. On the self-

similar nature of ethernet traffic (extended version). IEEE/ACM Transation

on Networking, 2(1):1–15, 1994.

[LY03] G. Liang and B. Yu. Maximum Pseudo Likelihood Estimation in Network

Tomography. IEEE Transaction on Signal Processing (Special Issue on Data

Networks), 51(8):2043–2053, 2003.

[MACM05] M.Tariq, A.Dhamdhere, C.Dovrolis, and M.Ammar. Poisson versus Periodic

Path Probing (or, Does PASTA Matter)? In Proc. of ACM Internet Measure-

ment Conference (IMC), pages 119–124, Oct. 2005.

[Mah99] B. A. Mah. Pchar. http://www.kitchenlab.org/www/bmah/

Software/pchar/, 1999.

[MBG00] B. Melander, M. Björkman, and P. Gunningberg. A new end-to-end prob-

ing and analysis method for estimating bandwidth bottlenecks. In Proc. of

Globecom, pages 415–421, Nov 2000.

[MFPA09] G. Maier, A. Feldmann, V. Paxson, and M. Allman. On dominant character-

istics of residential broadband internet traffic. In Proc. of ACM SIGCOMM

Internet measurement conference, pages 90–102, 2009.

[MIP+06] H. V. Madhyastha, T. Isdal, M. Piatek, C. Dixon, T. Anderson, A. Krishna-

murthy, and A. Venkataramani. iplane: an information plane for distributed

services. In Proc. of the symposium on Operating systems design and imple-

mentation (OSDI), pages 367–380. USENIX Association, 2006.

[MK08] G. J. McLachlan and T. Krishnan. The EM Algorithm and Extensions. Wi-

ley Series in Probability and Statistics. John Wiley and Sons, second edition,

2008.

[MKLP05] Y. Mao, F. R. Kschischang, B. Li, and S. Pasupathy. A factor graph approach

to link loss monitoring in wireless sensor networks. IEEE Journal on Selected

Areas in Communications, 23:820–829, 2005.

[Mor55] P. Morse. Stochastic properties of waiting lines. Journal of the Operations

Research Society of America, 3(3):255–261, 1955.

218

http://www.kitchenlab.org/www/bmah/Software/pchar/
http://www.kitchenlab.org/www/bmah/Software/pchar/

[MPAM98] J. Mahdavi, V. Paxson, A. Adams, and M. Mathis. Creating a scalable archi-

tecture for internet measurement. In Proc. of INET, July 1998.

[MSWA03] R. Mahajan, N. Spring, D. Wetherall, and T. Anderson. User-level internet

path diagnosis. SIGOPS Oper. Syst. Rev., 37(5):106–119, 2003.

[Muu83] M. Muus. Ping. http://ftp.arl.mil/~mike/ping.html, 1983.

[MVBB07] S. Machiraju, D. Veitch, F. Baccelli, and J. Bolot. Adding definition to active

probing. ACM Computer Communication Review, 37(2):17–28, April 2007.

[MvdM09] M. R. H. Mandjes and R. van de Meent. Resource Dimensioning Through

Buffer Sampling. IEEE/ACM Transactions on Networking, 17:1631 – 1644,

2009.

[MW00] J. Mo and J. Walrand. Fair end-to-end window-based congestion control.

IEEE/ACM Transaction on Networking, pages 556–567, 2000.

[MZ09] M. Mandjes and P. Zuraniewski. A queueing-based approach to overload de-

tection. In Network Control and Optimization, volume 5894 of Lecture Notes

in Computer Science, pages 91–106. Springer Berlin / Heidelberg, 2009.

[NT04] H. C. Nguyen and P. Thiran. Active measurement for multiple link failures di-

agnosis in ip networks. In Passive and Active Network Measurement, volume

3015 of Lecture Notes in Computer Science, pages 185–194. 2004.

[NT07a] H. X. Nguyen and P. Thiran. Network loss inference with second order statis-

tics of end-to-end flows. In ACM SIGCOMM Internet measurement confer-

ence (IMC), pages 227–240. ACM, 2007.

[NT07b] H.X. Nguyen and P. Thiran. The boolean solution to the congested ip link

location problem: Theory and practice. In IEEE INFOCOM, pages 2117

–2125, May 2007.

[NTV06] A. Novak, P. Taylor, and D. Veitch. The distribution of the number of arrivals

in a subinterval of a busy period in a single server queue. Queueing Systems,

53(3):105–114, 2006.

[Ott77] T. Ott. The covariance function of the virtual waiting time process in an

M/G/1 queue. Adv. App. Prob., 9, 1977.

[Par09] B. Parker. Design of Experiments for Packet Networks. PhD thesis, Queen

Mary, University of London, School of Mathematical Sciences, 2009.

[Pax94] V. Paxson. Empirically derived analytic models of wide-area tcp connections.

IEEE/ACM Transaction on Networking, 2(4):316–336, 1994.

219

http://ftp.arl.mil/~mike/ping.html

[Pax97] V. Paxson. End-to-end routing behavior in the internet. In Proc. of ACM

SIGCOMM, 1997.

[Pax99] V. Paxson. End-to-end Internet packet dynamics. IEEE/ACM Transactions

on Networking, 7(3):277–292, 1999.

[PDHT02] F. Lo Presti, N. G. Duffield, J. Horowitz, and D. Towsley. Multicast-based

inference of network-internal delay distributions. IEEE/ACM Transactions

on Networking, 10(6):761–775, 2002.

[Pet83] Karl Petersen. Ergodic Theory. Cambridge University Press, Cambridge

England, 1983.

[PF95] V. Paxson and S. Floyd. Wide-area traffic: The failure of poisson modeling.

IEEE/ACM Transactions on Networking, pages 226–244, 1995.

[PGS09] B.M. Parker, S.G. Gilmour, and J. Schormans. Measurement of packet loss

probability by optimal design of packet probing experiments. IET Communi-

cations, 3(6):979 –991, june 2009.

[Pla] Planetlab. http://www.planet-lab.org/about.

[PQW02] V. N. Padmanabhan, L. Qiu, and H. J. Wang. Server-based inference of inter-

net performance. In IEEE INFOCOM, 2002.

[PSHC+06] C. Park, H. Shen, F. Hernández-Campos, J. S. Marron, and D. Veitch. Captur-

ing the elusive poissonity in web traffic (extended version). In Proc. of IEEE

International Symposium on Modelling, Analysis and Simulation of Computer

and Telecommunication Systems (MASCOTS), Sep. 11-13 2006.

[PV02a] A. Pásztor and D. Veitch. Active Probing using Packet Quartets. In Proc.

ACM SIGCOMM Internet Measurement Workshop (IMW), pages 293–305,

Nov 6-8 2002.

[PV02b] A. Pásztor and D. Veitch. On the scope of end-to-end probing methods. IEEE

Communications Letters, 6(11):509–511, November 2002.

[PVK10] F. Pin, D. Veitch, and B. Kauffmann. Statistical estimation of delays in a

multicast tree using accelerated em. Queueing Systems, 66(4):369–412, 2010.

[RCD+09] F. Ricciato, A. Coluccia, A. D’Alconzo, D. Veitch, P. Borgnat, and P. Abry.

On the role of flows and sessions in internet traffic modeling: an explorative

toy-model. In Proc of. IEEE Globecom 2009, Nov. 30 - Dec. 4 2009.

[RCR+00] V. Ribeiro, M. Coates, R. Riedi, S. Sarvotham, and R. G. Baraniuk. Multi-

fractal cross-traffic estimation. In Proc. of ITC Specialist Seminar: IP Traffic

Measurement, Modelling and Management, Sep 2000.

220

http://www.planet-lab.org/about

[Res08] P. Resnick. Internet Message Format. RFC 5322 (Draft Standard), October

2008.

[RM99] S. Ratnasamy and S. McCanne. Inference of Multicast Routing Trees and

Bottleneck Bandwidths Using End-to-end Measurements. In IEEE INFO-

COM’99, pages 353–360, 1999.

[RNC04] M. Rabbat, R. Nowak, and M. Coates. Multiple source, multiple destination

network tomography. In Proc. of IEEE INFOCOM, 2004.

[Rou05] M. Roughan. Fundamental bounds on the accuracy of network performance

measurements. In Proc. of ACM SIGMETRICS, pages 253–264, 2005.

[Rou06] M. Roughan. A Comparison of Poisson and Uniform Sampling for Active

Measurements. IEEE J. Selected Areas in Communication, 24(12):2299–

2312, Dec 2006.

[RRB+03] V. Ribeiro, R. Riedi, R. Baraniuk, J. Navratil, and L. Cottrell. pathChirp:

Efficient available bandwidth estimation for network paths. In Passive and

Active Measurement Workshop, volume 4, 2003.

[Sav99] S. Savage. Sting: a TCP-based network measurement tool. In Proc. of

USENIX Symposium on Internet Technologies and Systems, pages 71–79,

1999.

[SB93] D. Sanghi and S. Banerjee. Netdyn. http://www.cs.umd.edu/

~suman/netdyn/index.html, 1993.

[SBDR05] J. Sommers, P. Barford, N. Duffield, and A. Ron. Improving accuracy in

end-to-end packet loss measurement. In Proc. of ACM SIGCOMM’05, pages

157–168, 2005.

[SBDR07] J. Sommers, P. Barford, N. Duffield, and A. Ron. Accurate and efficient sla

compliance monitoring. SIGCOMM Comput. Commun. Rev., 37(4):109–120,

2007.

[SCFJ03] H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson. RTP: A Trans-

port Protocol for Real-Time Applications. RFC 3550 (Standard), July 2003.

Updated by RFCs 5506, 5761.

[SH03] M.-F. Shih and A. O. Hero. Unicast-Based Inference of Network Link De-

lay Distributions With Finite Mixture Models. IEEE Transaction on Signal

Processing (Special Issue on Data Networks), 51(8):2219–2228, 2003.

[She95] M. J. Shervish. Theory of Statistics. Springer Series in Statistics. Springer

Verlag, first edition, 1995.

221

http://www.cs.umd.edu/~suman/netdyn/index.html
http://www.cs.umd.edu/~suman/netdyn/index.html

[SKK03] J. Strauss, D. Katabi, and F. Kaashoek. A measurement study of available

bandwidth estimation tools. In Proc. of ACM SIGCOMM Internet Measure-

ment Conference (IMC), pages 39–44, 2003.

[SM98] Vinod Sharma and Ravi Mazumdar. Estimating traffic parameters in queueing

systems with local information. Performance evaluation, 32:217–230, 1998.

[SR03] Ruslan Salakhutdinov and Sam Roweis. Adaptive overrelaxed bound opti-

mization methods. International Conference on Machine Learning (ICML-

2003), 2003.

[Tak62] L. Takács. Introduction to the Theory of Queues. Oxford University Press,

New York, 1962.

[TCN03] Y. Tsang, M. Coates, and R. Nowak. Network Delay Tomography.

IEEE Transaction on Signal Processing (Special Issue on Data Networks),

51(8):2125–2136, 2003.

[tra] Traceroute.org. http://traceroute.org/.

[W3C] World wide web consortium. http://www.w3.org/.

[WP98] W. Willinger and V. Paxson. Where mathematics meets the internet. Notices

of the American Mathematical Society, 45:961–970, 1998.

[WTSW97] W. Willinger, M. S. Taqqu, R. Sherman, and D. V. Wilson. Self-similarity

through high-variability: Statistical analysis of ethernet lan traffic at the

source level. IEEE/ACM Transaction on Networking, 5(1):71–86, 1997.

[XMN06] B. Xi, G. Michailidis, and V. N.Nair. Estimating Network Loss Rates Using

Active Tomography. Journal the American Statistical Association, 101:1430–

1448, 2006.

[ZCB09] Y. Zhao, Y. Chen, and D. Bindel. Towards unbiased end-to-end network di-

agnosis. IEEE/ACM Transactions on Networking, 17(6):1724 –1737, Dec.

2009.

222

http://traceroute.org/
http://www.w3.org/

	Abstract
	Résumé
	Organization of the dissertation
	Introduction
	Networks
	What are networks
	Network applications
	Functionalities of networks
	Abstraction of networks

	Queueing theory: a microscopic model for networks
	A single queue
	The M/M/1 queue
	Network of queues
	The M/GI/1 queue

	Bandwidth sharing networks: a macroscopic model
	Bandwidth sharing networks
	Bandwidth sharing networks are useful outside communication networks
	One single path
	The triangle network

	Statistics
	Parametric estimation and estimators
	A few classical results
	Maximum likelihood estimator
	Expectation-Maximization (E-M) algorithm
	Design of Experiment

	Network measurements
	Communication networks measurement
	Internet Tomography
	Inverse problems
	Bibliography

	Contribution of this dissertation

	Inverse Problems in Queueing Networks
	Introduction
	Inverse problems in queueing theory
	Direct equations of queueing theory
	Noise
	Probing actions
	Observables
	Unknown parameters and performance metrics
	Intrusiveness, bias and restitution
	Identifiability, ambiguity
	Estimation problems
	The prober's path(s) to Ground Truth
	ISP-centric inverse queueing problems

	Noiseless Inverse Queueing Problems
	The M/G/1 Queue
	The M/M/1 Queue
	The M/M/1/B Queue
	The Erlang loss system

	Optimal Probing Strategies
	Sampling bias
	Variance
	Maximum Likelihood

	Summary
	Appendix
	Packet pairs in the M/M/1 queue
	Proof of Lemma 2.4.2

	The Single-path Kelly Network
	Introduction
	The parametric model
	The system
	Model Limitations
	The direct equation

	An analytical solution
	Noise Aware moment-based solution
	Maximum likelihood estimators
	The one station case
	The two stations case
	Expectation-Maximization Algorithm
	Additive measurement noise

	Experimental Validation
	Data Sets and Traces
	Semi-Experimental Methodology
	Challenge: Router Model
	Challenge: Exponential Sizes
	Challenge: Equality of Distribution
	Challenge: Poisson Arrivals
	The Two Station Case

	Summary
	Appendix
	Proof of Lemma 3.5.3
	Proof of Lemma 3.5.4

	Extension to Kelly Networks
	Introduction
	A Delay Tomographic Queueing Inverse Problem
	E-M for Exponential Tomography
	Specialization of the Iterative Formula

	Explicit Formula for IE(l|d)
	Notations
	Some simple examples
	Inductive Expression
	More Examples
	Explicit Expression
	Implementation
	Size of the expression and Complexity of the EM step

	Results
	Unary Tree Case
	General Case
	Speed of convergence
	Comparison to the Least Squares Method
	Resilience to measurement noise and imperfect models

	Steered Jumping for EM
	Analysis of the iteration
	The Sampling Method
	The Steered Jumping Method

	Summary
	Appendix
	Proof of the Density Formula

	Inverse Problems in Bandwidth Sharing Networks
	Introduction
	The static single path case
	Direct equation
	The inverse problem
	Numerical application

	The static triangle network
	Summary

	Bibliography

