J. Crouzet, Arômes alimentaires

C. Salles, E. Guichard, C. Génot, and A. Voilley, Texture et flaveur des aliments: vers une conception maitrisée, 2012.

D. Hanig, Zur psychophysik des geschmacksinnes, Philosophische Studien, pp.576-623, 1901.

S. Yamaguchi and K. Ninomiya, The Use and Utility of Glutamates as Flavoring Agents in Food, J. Nutr, vol.130, pp.921-926, 2000.

K. Lkeda, Translation New Seasonings Translated and shortened to 75% by Yoko Ogiwara and Yuzo Ninomiya from, Chem. Senses Journal of Chemical Society of Tokyo, vol.27, issue.30, pp.847-849, 1909.

A. Riul, J. Santos, . Jr, R. Wohnrath, A. Tommazo et al., Artificial Taste Sensor:?? Efficient Combination of Sensors Made from Langmuir???Blodgett Films of Conducting Polymers and a Ruthenium Complex and Self-Assembled Films of an Azobenzene-Containing Polymer, Langmuir, vol.18, issue.1, pp.18-239, 2002.
DOI : 10.1021/la011017d

K. Toko, M. Habara, and T. Sensor, Taste Sensor, Chemical Senses, vol.30, issue.Supplement 1, pp.256-257, 2005.
DOI : 10.1093/chemse/bjh212

F. Jack, J. Piggott, and A. Paterson, Cheddar Cheese Texture Related to Salt Release During Chewing, Measured by Conductivity?Preliminary Study, Journal of Food Science, vol.28, issue.2, pp.213-217, 1995.
DOI : 10.1111/j.1365-2621.1985.tb13012.x

J. Davidson, R. Linforth, and A. Taylor, In-Mouth Measurement of pH and Conductivity during Eating, Journal of Agricultural and Food Chemistry, vol.46, issue.12, pp.5210-5214, 1998.
DOI : 10.1021/jf9806558

E. Neyraud, J. Prinz, and E. Dransfield, NaCl and sugar release, salivation and taste during mastication of salted chewing gum, Physiology & Behavior, vol.79, issue.4-5, pp.731-737, 2003.
DOI : 10.1016/S0031-9384(03)00187-2

M. Emorine, P. Mielle, J. Maratray, and C. Septier, Thierry Thomas-Danguin, and Christian Salles, Use of Sensors to Measure In-Mouth Salt Release During Food Chewing, Ieee Sensors Journal, vol.12, pp.2012-3124

C. Christophe, Intégration de microcapteurs électrochimiques en technologies Silicium et Polymères pour l'étude du stress oxydant. Application a la biochimie cutanée, Thèse doctorat, 2010.

H. Wiemhofer and K. Camman, Specific Features of Electrochemical Sensors, pp.160-189

B. Alp, S. Mutlu, and M. Multu, Glow-discharge-treated cellulose acetate (CA) membrane for a high linearity single-layer glucose electrode in the food industry, Food Research International, vol.33, issue.2, pp.107-112, 2000.
DOI : 10.1016/S0963-9969(00)00013-2

F. Mizutani and S. Yabuki, Rapid determination of glucose and sucrose by an amperometric glucose-sensing electrode combined with an invertase/mutarotase-attached measuring cell, Biosensors and Bioelectronics, vol.12, issue.9-10, pp.1013-1020, 1997.
DOI : 10.1016/S0956-5663(97)00057-2

F. Mizutani, Y. Sato, Y. Hirata, and S. Yabuki, High-throughput flow-injection analysis of glucose and glutamate in food and biological samples by using enzyme/polyion complex-bilayer membrane-based electrodes as the detectors, Biosensors and Bioelectronics, vol.13, issue.7-8, pp.809-815, 1998.
DOI : 10.1016/S0956-5663(98)00046-3

E. Palmisano, R. Centonze, and P. Zambonin, Simultaneous monitoring of glucose and lactate by an interference and cross-talk free dual electrode amperometric biosensor based on electropolymerized thin films, Biosensors and Bioelectronics, vol.15, issue.9-10, pp.531-539, 2000.
DOI : 10.1016/S0956-5663(00)00107-X

S. Marzouk, H. Sayour, A. Ragab, W. Cascio, and S. Hassan, A simple FIA-system for simultaneous measurements of glucose and lactate with amperometric detection, Electroanalysis, pp.12-1304, 2000.

J. Wang, P. Pamidi, and D. Park, Screen-Printable Sol???Gel Enzyme-Containing Carbon Inks, Analytical Chemistry, vol.68, issue.15, pp.2705-2708, 1996.
DOI : 10.1021/ac960159n

J. Wang and P. Pamidi, Sol???Gel-Derived Gold Composite Electrodes, Analytical Chemistry, vol.69, issue.21, pp.4490-4494, 1997.
DOI : 10.1021/ac970680x

X. Zhang, J. Wang, B. Ogorevc, and U. Spichiger, Glucose Nanosensor Based on Prussian- Blue Modified Carbon-Fiber Cone Nanoelectrode and an Integrated Reference Electrode, Electroanalysis, issue.11, pp.945-949, 1999.

J. Wang, M. Chatrathi, and B. Tian, Microseparation Chips for Performing Multienzymatic Dehydrogenase/Oxidase Assays: Simultaneous Electrochemical Measurement of Ethanol and Glucose, Analytical Chemistry, vol.73, issue.6, pp.1296-1300, 2001.
DOI : 10.1021/ac001205t

A. Maines, A. Cambiaso, L. Delfino, G. Verreschi, I. Christie et al., Use of surfactant-modified cellulose acetate for a high-linearity and pH-resistant glucose electrode, Analytical Communications, vol.33, issue.1, pp.33-60, 1996.
DOI : 10.1039/ac9963300027

B. Appleton, T. Gibson, and J. Woodward, High temperature stabilisation of immobilised glucose oxidase: potential applications in biosensors, Sensors and Actuators B: Chemical, vol.43, issue.1-3, pp.65-69, 1997.
DOI : 10.1016/S0925-4005(97)00135-4

Y. Pomeranz and C. Meloan, Food Analysis, Theory and Practice, 1994.

K. Kinnear and H. Monbouquette, An Amperometric Fructose Biosensor Based on Fructose Dehydrogenase Immobilized in a Membrane Mimetic Layer on Gold, Analytical Chemistry, vol.69, issue.9, pp.1771-1775, 1997.
DOI : 10.1021/ac960665c

J. Parellada, E. Dominquez, and V. Fernandez, Amperometric flow injection determination of fructose in honey with a carbon paste sensor based on fructose dehydrogenase, Analytica Chimica Acta, vol.330, issue.1, pp.71-77, 1996.
DOI : 10.1016/0003-2670(96)87686-0

C. Garcia, N. Graciliano-de-oliveira, L. Kubota, and L. Grandin, A new amperometric biosensor for fructose using a carbon paste electrode modified with silica gel coated with Meldola's Blue and fructose 5-dehydrogenase, Journal of Electroanalytical Chemistry, vol.418, issue.1-2, pp.418-147, 1996.
DOI : 10.1016/S0022-0728(96)04775-4

A. Bassi, E. Lee, and J. Zhu, Carbon paste mediated, amperometric, thin film biosensors for fructose monitoring in honey, Food Research International, vol.31, issue.2, pp.119-127, 1998.
DOI : 10.1016/S0963-9969(98)00071-4

W. Surareungchai, S. Worasing, P. Sritongkum, M. Tanticharoen, and K. Kirtikara, Dual electrode signal-subtracted biosensor for simultaneous flow injection determination of sucrose and glucose, Analytica Chimica Acta, vol.380, issue.1, pp.7-15, 1999.
DOI : 10.1016/S0003-2670(98)00710-7

M. Kogure, H. Mori, H. Ariki, C. Kojima, and H. Yamamoto, Determination of sucrose using sucrose phosphorylase in a flow-injection system, Analytica Chimica Acta, vol.337, issue.1, pp.107-111, 1997.
DOI : 10.1016/S0003-2670(96)00393-5

E. Maestre, I. Katakis, and E. Dominguez, Amperometric flow-injection determination of sucrose with a mediated tri-enzyme electrode based on sucrose phosphorylase and electrocatalytic oxidation of NADH, Biosensors and Bioelectronics, vol.16, issue.1-2, pp.61-68, 2001.
DOI : 10.1016/S0956-5663(00)00139-1

J. Tkac, E. Sturdik, and P. Gemeiner, Novel glucose non-interference biosensor for lactose detection based on galactose oxidase-peroxidase with and without co-immobilised betagalactosidase, Analyst, pp.125-1285, 2000.

C. Janarthanan and H. Mottola, Enzymatic determinations with rotating bioreactors: Determination of glutamate in food products, Analytica Chimica Acta, vol.369, issue.1-2, pp.147-155, 1998.
DOI : 10.1016/S0003-2670(98)00202-5

A. Kwong, B. Grundig, J. Hu, and R. Renneberg, Comparative study of hydrogel immobilized l-glutamate oxidases for a novel thick-film biosensor and its application in food samples, Biotechnology Letters, vol.22, issue.4, pp.267-172, 2000.
DOI : 10.1023/A:1005694704872

A. Basu, P. Chattopadhyay, U. Roychudhuri, and R. Chakraborty, A biosensor based on co-immobilized l-glutamate oxidase and l-glutamate dehydrogenase for analysis of monosodium glutamate in food, Biosensors and Bioelectronics, vol.21, issue.10, pp.1968-1972, 2006.
DOI : 10.1016/j.bios.2005.09.011

K. Changa, C. Changa, S. Choua, H. Hana, and C. Chena, Characterization of a planar lglutamate amperometric biosensor immobilized with a photo-crosslinkable polymer membrane, Sensors and Actuators, pp.195-203, 2007.

M. Oliveira, M. Pimentel, M. Montenegro, A. Ara´ujo, M. Pimentel et al., l-Glutamate determination in food samples by flow-injection analysis, Analytica Chimica Acta, vol.448, issue.1-2, pp.448-207, 2001.
DOI : 10.1016/S0003-2670(01)01326-5

W. Khampha, J. Yakovleva, D. Isarangkul, S. Wiyakrutta, V. Meevootisom et al., Specific detection of l-glutamate in food using flow-injection analysis and enzymatic recycling of substrate, Analytica Chimica Acta, vol.518, issue.1-2, pp.127-135, 2004.
DOI : 10.1016/j.aca.2004.05.048

T. Tsukatani and K. Matsumoto, Sequential fluorometric quantification of ??-aminobutyrate and l-glutamate using a single line flow-injection system with immobilized-enzyme reactors, Analytica Chimica Acta, vol.546, issue.2, pp.154-160, 2005.
DOI : 10.1016/j.aca.2005.05.053

W. Khampha, V. Meevootisom, and S. Wiyakrutta, Spectrophotometric enzymatic cycling method using l-glutamate dehydrogenase and d-phenylglycine aminotransferase for determination of l-glutamate in foods, Analytica Chimica Acta, vol.520, issue.1-2, pp.133-139, 2004.
DOI : 10.1016/j.aca.2004.05.044

B. Ye, Q. Li, Y. Li, X. Li, and J. Yu, L-Glutamate biosensor using a novel L-glutamate oxidase and its amplification to flow injection analysis system, J. Biotechnol, pp.42-45, 1995.

K. Matsumoto, K. Sakoda, and Y. Osajima, Determination of l-glutamate by amperometric flow-injection analysis using immobilized glutamate oxidase: manifold for simultaneous detection of component signal and blank signal, Analytica Chimica Acta, vol.261, issue.1-2, pp.261-155, 1992.
DOI : 10.1016/0003-2670(92)80186-B

G. Durand, Potentiométrie, traité Analyse et Caractérisation, 1983.

P. Bergveld, Thirty years of ISFETOLOGY, Sensors and Actuators B: Chemical, vol.88, issue.1, pp.1-20, 2003.
DOI : 10.1016/S0925-4005(02)00301-5

A. Amari, Etude de la réponse au pH de structures microelectroniques a membranes de nitrure de silicium fabriqué par LPCVD, Thèse de doctorat de l'UPS de Toulouse, 1984.

A. J. Bard and L. R. Faulkner, Electrochimie, principes, méthodes et application, p.Masson, 1983.

K. Toko, Taste Sensor, Sensors and Actuators, pp.205-215, 2000.

K. Hayashi, M. Yamanaka, K. Toko, and K. Yamafuji, Multichannel taste sensor using lipid membranes, Sensors and Actuators B: Chemical, vol.2, issue.3, pp.205-213, 1990.
DOI : 10.1016/0925-4005(90)85006-K

S. Liyama, M. Yahiro, and K. Toko, Quantitative sensing of mineral water with multichannel taste sensor, pp.191-201, 1995.

S. Iiyama, Y. Suzuki, S. Ezaki, Y. Arikawa, and K. Toko, Objective scaling of taste of sake using taste sensor and glucose sensor, Materials Science and Engineering: C, vol.4, issue.1, pp.45-49, 1996.
DOI : 10.1016/0928-4931(95)00128-X

Y. Kikkawa, K. Toko, T. Matsuno, and K. Yamafuji, Discrimination of Taste of Amino Acids with a Multichannel Taste Sensor, Japanese Journal of Applied Physics, vol.32, issue.Part 1, No. 12A, pp.5731-5736, 1993.
DOI : 10.1143/JJAP.32.5731

K. Toko, Taste sensor with global selectivity, Materials Science and Engineering: C, vol.4, issue.2, pp.69-82, 1996.
DOI : 10.1016/0928-4931(96)00134-8

P. Bergveld, Development of an Ion-Sensitive Solid-State Device for Neurophysiological Measurements, IEEE Transactions on Biomedical Engineering, vol.17, issue.1, pp.70-71, 1970.
DOI : 10.1109/TBME.1970.4502688

W. Sant, Développement des microcapteurs chimiques CHEMFETs pour des applications à l'hémodialyse, Thèse de doctorat, 2004.

A. Benyahia, Conception, réalisation et modélisation de microcapteurs pour l'analyse biochimique Application à la détection de l'urée, thèse de doctorat à l, 2010.

M. Henry, Physique des semiconducteurs et des composants électroniques (édition Dunod), 2001.

Y. Tsividis, Operation and Modeling of the MOS Transistor, 1987.

I. Humenyuk, Développement des microcapteurs chimiques CHEMFETs pour l'analyse de l'eau, Thèse de doctorat, 2005.

L. Bousse, N. De-rooij, and P. , Bergveld : Operation of Chemically Sensitive Field-Effect Sensor as a function of the Insulator-Electrolyte Interface, Ieee Trans.Electron Devices, pp.30-1263, 1983.

L. Bousse, The chemical sensitivity of electrolyte/insulator/silicon structures: fundamentals of ISFET operation, Thèse de doctorat, 1982.

B. Torbiero, Développement de microcapteurs électrochimiques pour l'analyse en phase liquide, Thèse de doctorat, 2006.

L. Bousse, S. Mostarshed, B. Van-der-schoot, and N. De-rooij, Comparison of the hysteresis of Ta2O5 and Si3N4 pH-sensing insulators, Sensors and Actuators B: Chemical, vol.17, issue.2, pp.157-160, 1994.
DOI : 10.1016/0925-4005(94)87044-6

D. Harame, L. Bousse, J. Shott, and J. , Ion-sensing devices with silicon nitride and borosilicate glass insulators, IEEE Transactions on Electron Devices, vol.34, issue.8, pp.34-1700, 1987.
DOI : 10.1109/T-ED.1987.23140

B. Liu, Y. Su, and S. Chen, Ion-sensitive field-effect transistor with silicon nitride gate for pH sensing, International Journal of Electronics, vol.67, issue.1, pp.59-63, 1989.
DOI : 10.1016/0250-6874(81)80047-9

A. Ismail, T. Harada, T. Yoshinobu, H. Iwasaki, M. Schöning et al., Investigation of pulsed laser-deposited Al2O3 as a high pH-sensitive layer for LAPS-based biosensing applications, Sensors and Actuators B: Chemical, vol.71, issue.3, pp.169-172, 2000.
DOI : 10.1016/S0925-4005(99)00380-9

S. Caras and J. Janata, Field effect transistor sensitive to penicillin, Analytical Chemistry, vol.52, issue.12, pp.1935-1937, 1980.
DOI : 10.1021/ac50062a035

Y. Ito, Long-term drift mechanism of Ta 2 O 5 gate pH-ISFETs, Sensors and Actuators, pp.152-155, 2000.

J. Janata and S. Moss, Chemically-sensitive field-effect transistors, Analytica Chimica Acta, vol.180, p.241, 1976.
DOI : 10.1016/0003-2670(86)80014-9

C. Jaffrezic-renault and . Martelet, Glucose sensitive field effect transistor with additional Nafion membrane : reduction of influence of buffer capacity on the sensor response and extension of its dynamic range, Anal.Chem.Acta, vol.283, pp.695-701, 1993.

H. Seo, C. Kim, B. Sohn, T. Yeow, M. Son et al., ISFET glucose sensor based on a new principle using the electrolysis of hydrogen peroxide, Sensors and Actuators B: Chemical, vol.40, issue.1, pp.1-5, 1997.
DOI : 10.1016/S0925-4005(97)80191-8

J. Liu, L. Liang, G. Li, K. Han, and K. Chen, H+ISFET-based biosensor for determination of penicillin G, Biosensors and Bioelectronics, vol.13, issue.9, pp.1023-1028, 1998.
DOI : 10.1016/S0956-5663(98)00003-7

A. Poghossian, Method of fabrication of ISFET-based biosensors on an Si???SiO2???Si structure, Sensors and Actuators B: Chemical, vol.44, issue.1-3, pp.361-364, 1997.
DOI : 10.1016/S0925-4005(97)00202-5

L. Yin, J. Chou, W. Chung, T. Sun, K. Hsiung et al., Glucose ENFET doped with MnO2 powder, Glucose EnFET doped with MnO 2 powder, pp.187-192, 2001.
DOI : 10.1016/S0925-4005(01)00629-3

K. Park, S. Choi, M. Lee, B. Sohn, and S. Choi, ISFET glucose sensor system with fast recovery characteristics by employing electrolysis, Sensors and Actuators B: Chemical, vol.83, issue.1-3, pp.90-97, 2002.
DOI : 10.1016/S0925-4005(01)01049-8

V. Volotovsky and N. Kim, Ascorbic acid determination with an ion-sensitive field effect transistor-based peroxidase biosensor, Analytica Chimica Acta, vol.359, issue.1-2, pp.143-148, 1998.
DOI : 10.1016/S0003-2670(97)00653-3

A. Soldatkin, J. Montoriol, and W. Sant, Creatinine sensitive biosensor based on ISFETs and creatinine deiminase immobilised in BSA membrane, Talanta, vol.58, issue.2, pp.351-357, 2002.
DOI : 10.1016/S0039-9140(02)00283-7

. Chovelon, Development of tyrosinase biosensor based on pH-sensitive field-effect transistors for phenols determination in water solutions, Talanta, vol.56, pp.627-634, 2002.

A. Soldatkin, A. El-'skaya, A. Shul-'ga, L. Nctchiporouk, A. Nyamsi-hendji et al., Glucose-sensitive field-effect transistor with additional Nafion membrane, Analytica Chimica Acta, vol.283, issue.2, pp.695-701, 1993.
DOI : 10.1016/0003-2670(93)85284-Q

V. Volotovsky, A. Soldatkin, A. Shul-'ga, V. Rossokhaty, V. Strikha et al., Glucose-sensitive ion-sensitive field-effect transistor-based biosensor with additional positively charged membrane. Dynamic range extension and reduction of buffer concentration influence on the sensor response, Analytica Chimica Acta, vol.322, issue.1-2, pp.77-81, 1996.
DOI : 10.1016/0003-2670(95)00592-7

V. Volotovsky and N. Kim, Cyanide determination by an ISFET-based peroxidase biosensor, Biosensors and Bioelectronics, vol.13, issue.9, pp.1029-1033, 1998.
DOI : 10.1016/S0956-5663(98)00004-9

. Soldatkin, Application of enzyme field-effect transistor for determination of glucose concentrations in blood serum, Biosens. Bioelectron, vol.14, pp.283-287, 1999.

S. Leea, K. Sawadaa, H. Takaoa, and M. Ishidaa, An enhanced glucose biosensor using charge transfer techniques, Biosensors and Bioelectronics, vol.24, issue.4, pp.650-656, 2008.
DOI : 10.1016/j.bios.2008.06.014

D. Braekena, D. Randa, A. Andrei, R. Huys, M. Spirac et al., Glutamate sensing with enzyme-modified floating-gate field effect transistors, Biosensors and Bioelectronics, vol.24, issue.8, pp.2384-2389, 2009.
DOI : 10.1016/j.bios.2008.12.012

W. Kondrat, K. Kanamori, and D. Ross, In vivo microdialysis and gas-chromatography/mass-spectrometry for 13C-enrichment measurement of extracellular glutamate in rat brain, Journal of Neuroscience Methods, vol.120, issue.2, pp.179-192, 2002.
DOI : 10.1016/S0165-0270(02)00201-7

P. Hanko, V. Rohrer, and S. Jeffrey, Determination of amino acids in cell culture and fermentation broth media using anion-exchange chromatography with integrated pulsed amperometric detection, Analytical Biochemistry, vol.324, issue.1, pp.29-38, 2004.
DOI : 10.1016/j.ab.2003.09.028

E. Coppola, S. Christie, and J. Hanna, Fast, short-column separation and fluorometric determination of monosodium glutamate in foods, pp.58-61, 1975.

O. Orwar, K. Jardemark, I. Jacobson, A. Moscho, H. Fishman et al., Patch-Clamp Detection of Neurotransmitters in Capillary Electrophoresis, Science, vol.272, issue.5269, pp.272-1779, 1996.
DOI : 10.1126/science.272.5269.1779

T. Gündüz, N. Gündüz, E. Kiliç, F. Köseo?glu, and S. Öztas, Titrations in non-aqueous media. Part X. Potentiometric and conductimetric titrations of amino acids with tetrabutylammonium hydroxide in pyridine and acetonitrile solvents, The Analyst, vol.113, issue.5, pp.715-719, 1988.
DOI : 10.1039/AN9881300715

R. Shi and K. Stein, Flow injection methods for determination of L-glutamate using glutamate decarboxylase and glutamate dehydrogenase reactors with spectrophotometric detection, The Analyst, pp.1305-1309, 1996.

Z. Liu, O. Niwa, T. Horiuchi, R. Kurita, and K. Torimitsu, NADH and glutamate on-line sensors using Os-gel-HRP/GC electrodes modified with NADH oxidase and glutamate dehydrogenase, Biosensors and Bioelectronics, vol.14, issue.7, pp.631-638, 1999.
DOI : 10.1016/S0956-5663(99)00041-X

D. Ling, G. Wu, C. Wang, F. Wang, and G. Song, The preparation and characterization of an immobilized l-glutamic decarboxylase and its application for determination of l-glutamic acid, Enzyme and Microbial Technology, vol.27, issue.7, pp.516-521, 2000.
DOI : 10.1016/S0141-0229(00)00242-8

M. Oliveira, C. Pimentel, C. Montenegro, A. Araujo, F. Pimentel et al., l-Glutamate determination in food samples by flow-injection analysis, Analytica Chimica Acta, vol.448, issue.1-2, pp.207-213, 2001.
DOI : 10.1016/S0003-2670(01)01326-5

M. Qhobosheane, D. Wu, Y. Gu, and W. Tan, A two-dimensional imaging biosensor to monitor enhanced brain glutamate release stimulated by nicotine, Journal of Neuroscience Methods, vol.135, issue.1-2, pp.71-78, 2004.
DOI : 10.1016/j.jneumeth.2003.12.005

B. Rodriguez, J. Bolbot, and I. , Development of urease and glutamic dehydrogenase amperometric assay for heavy metals screening in polluted samples, Biosensors and Bioelectronics, vol.19, issue.10, pp.1157-1167, 2004.
DOI : 10.1016/j.bios.2003.11.002

H. Kusakabe, Y. Midorikawa, T. Fujishima, A. Kuninaka, and H. Yoshino, Purification and properties of a new enzyme, L-glutamate oxidase, from Streptomyces sp. X-119-6 grown on wheat bran., Agricultural and Biological Chemistry, vol.47, issue.6, pp.47-1323, 1983.
DOI : 10.1271/bbb1961.47.1323

S. Fukunaga, S. Yuno, M. Takahashi, S. Taguchi, Y. Kera et al., Purification and properties of d-glutamate oxidase from Candida boidinii 2201, Journal of Fermentation and Bioengineering, vol.85, issue.6, pp.579-583, 1998.
DOI : 10.1016/S0922-338X(98)80008-1

A. Bohmer, A. Muller, M. Passarge, P. Liebs, H. Honeck et al., A novel l-glutamate oxidase from Streptomyces endus. Purification and properties, European Journal of Biochemistry, vol.147, issue.2, pp.327-332, 1989.
DOI : 10.1016/0076-6879(71)22040-1

R. Villarta, D. Cunningham, and G. Guilbault, Amperometric enzyme electrodes for the determination of l-glutamate, Talanta, vol.38, issue.1, pp.49-55, 1991.
DOI : 10.1016/0039-9140(91)80008-N

N. Almeida and A. Mulchandani, A mediated amperometric enzyme electrode using tetrathiafulvalene and l-glutamate oxidase for the determination of l-glutamic acid, Analytica Chimica Acta, vol.282, issue.2, pp.353-361, 1993.
DOI : 10.1016/0003-2670(93)80221-6

E. Zilkha, T. Obrenovitch, A. Koshy, H. Kusakabe, and H. Bennetto, Extracellular glutamate: on-line monitoring using microdialysis coupled to enzyme-amperometric analysis, Journal of Neuroscience Methods, vol.60, issue.1-2, pp.1-9, 1995.
DOI : 10.1016/0165-0270(94)00214-2

O. Niwa, T. Horiuchi, and K. Torimitsu, Continuous monitoring of L-glutamate released from cultured nerve cells by an online sensor coupled with micro-capillary sampling, Biosensors and Bioelectronics, vol.12, issue.4, pp.311-319, 1997.
DOI : 10.1016/S0956-5663(96)00072-3

K. Chang, W. Hsu, H. Chen, C. Chang, and C. Chen, Determination of glutamate pyruvate transaminase activity in clinical specimens using a biosensor composed of immobilizedglutamate oxidase in a photo-crosslinkable polymer membrane on a palladium-deposited screenprinted carbon electrode, Analytica Chimica Acta, pp.481-199, 2003.

C. Chen and Y. Su, Amperometric L-glutamate sensor using a novel L-glutamate oxidase from Streptomyces platensis NTU 3304, Analytica Chimica Acta, vol.243, pp.9-15, 1991.
DOI : 10.1016/S0003-2670(00)82534-9

Y. Bang-ce, L. Qing-shan, L. You-rong, L. Xiao-bo, and Y. Jun-tang, L-glutamate oxidase and its application to flow injection analysis system, Journal of Biotechnology, vol.42, pp.45-52, 1995.

K. Matsumoto, W. Asada, and R. Murai, Simultaneous biosensing of inosine monophosphate and glutamate by use of immobilized enzyme reactors, Analytica Chimica Acta, vol.358, issue.2, pp.127-136, 1998.
DOI : 10.1016/S0003-2670(97)00629-6

S. Udomsopagit, M. Suphantharika, W. Kunnecke, U. Bilitewski, and A. Bhumiratana, Determination of L-glutamate in various commercial soy sauce products using flow injection analysis with a modified electrode, World Journal of Microbiology and Biotechnology, vol.14, issue.4, pp.543-549, 1998.
DOI : 10.1023/A:1008836315098

S. Franssila, Introduction to microfabrication, 2004.
DOI : 10.1002/9781119990413

B. Hernandez, Anisotropie magnétique induite par modulation de surface et étude de la propagation de parois de domaines dans des nanostructures magnétiques Thèse de doctorat, 2008.

A. Benyahia, Réalisation et modélisation de microcapteurs pour l'analyse biochimique Application à la détection de l'urée, Thèse de doctorat, 2010.

W. Sant, Développement des microcapteurs chimiques CHEMFETs pour des applications à l'hémodialyse, Thèse de doctorat, 2004.

M. J. Madou, Fundamentals of microfabrication, The science of miniaturization, CRC, 2002.

W. Kern, The Evolution of Silicon Wafer Cleaning Technology, Journal of The Electrochemical Society, vol.137, issue.6, pp.1887-1892, 1990.
DOI : 10.1149/1.2086825

I. Humenyuk, Développement des microcapteurs chimiques ChemFETs pour l'analyse de l'eau, Thèse de doctorat, 2005.

G. Janz and H. Taniguchi, The Silver-Silver Halide Electrodes. Preparation, Stability, and Standard Potentials in Aqueous and non-Aqueous Media., Chemical Reviews, vol.53, issue.3, pp.397-437, 1953.
DOI : 10.1021/cr60166a002

L. Michaelis and . Menten, Kinetics of invertase action, Biochem, Z, vol.49, pp.333-369, 1913.

J. Cooper, P. Foreman, A. Glidle, T. Ling, and D. Pritchard, Glutamate oxidase enzyme electrodes: microsensors for neurotransmitter determination using electrochemically polymerized permselective films, Journal of Electroanalytical Chemistry, vol.388, issue.1-2, pp.143-149, 1995.
DOI : 10.1016/0022-0728(95)03846-9

P. Nakorn, M. Suphantharika, S. Udomsopagit, and W. Surareungchai, Poly(vinylferrocene)?poly(ethylene glycol) glutamate oxidase electrode for determination of L-glutamate in commercial soy sauces, World Journal of Microbiology and Biotechnology, vol.19, issue.5, pp.479-485, 2003.
DOI : 10.1023/A:1025181317237

A. Basu, P. Chattopadhyay, U. Roychudhuri, and R. Chakraborty, A biosensor based on co-immobilized l-glutamate oxidase and l-glutamate dehydrogenase for analysis of monosodium glutamate in food, Biosensors and Bioelectronics, vol.21, issue.10, pp.1968-1972, 2006.
DOI : 10.1016/j.bios.2005.09.011

I. Isa and S. Ghani, A non-plasticized chitosan based solid state electrode for flow injection analysis of glutamate in food samples, Food Chemistry, vol.112, issue.3, pp.756-759, 2009.
DOI : 10.1016/j.foodchem.2008.06.043

I. Moser, G. Jobst, and G. Urban, Biosensor arrays for simultaneous measurement of glucose, lactate, glutamate, and glutamine, Biosensors and Bioelectronics, vol.17, issue.4, pp.297-302, 2002.
DOI : 10.1016/S0956-5663(01)00298-6

J. Castillo, A. Blochl, S. Dennison, W. Schuhmann, and E. Csoregi, Glutamate detection from nerve cells using a planar electrodes array integrated in a microtiter plate, Biosensors and Bioelectronics, vol.20, issue.10, pp.2116-2119, 2005.
DOI : 10.1016/j.bios.2004.09.013

S. Upadhyay, N. Ohgami, H. Kusakabe, H. Mizuno, J. Arima et al., Performance characterization of recombinant L-glutamate oxidase in a micro GOT/GPT sensing system, Sensors and Actuators, pp.119-570, 2006.

K. Chang, C. Chang, S. Chou, H. Han, and C. Chen, Characterization of a planar Lglutamate amperometric biosensor immobilized with a photo-crosslinkinable polymer membrane, Sensors and Actuators, pp.122-195, 2007.

E. Mclamore, S. Mohanty, J. Shi, J. Claussen, S. Jeddicka et al., A self-referencing glutamate biosensor for measuring real time neuronal glutamate flux, Journal of Neuroscience Methods, vol.189, issue.1, pp.14-22, 2010.
DOI : 10.1016/j.jneumeth.2010.03.001

D. Rand, D. Braken, Y. Mulla, G. Borghs, and C. Bartic, Surface Amplification of L-Glutamate Using a Patterned Bienzymatic System for Biosensing Applications, IEEE Transactions on Nanotechnology, vol.10, issue.1, pp.102-110, 2011.
DOI : 10.1109/TNANO.2009.2032237

D. Braken, D. Rand, A. Andrei, R. Huys, M. Spira et al., Glutamate sensing with enzyme-modified floating-gate field effect transistors, Biosensors and Bioelectronics, vol.24, issue.8, pp.2384-2389, 2009.
DOI : 10.1016/j.bios.2008.12.012

A. Benyahia, Conception, réalisation et modélisation de microcapteurs pour l'analyse biochimique Application à la détection de l'urée, Thèse de doctorat, 2010.

R. David and . Lide, CRC Handbook of Chemistry and Physics, 1993.

M. Moritsuka, Y. Kitasako, M. Burrow, M. Ikeda, and J. Tagami, The pH change after HCl titration into resting and stimulated saliva for a buffering capacity test, Australian Dental Journal, vol.64, issue.2, pp.170-174, 2006.
DOI : 10.1016/0003-9969(74)90051-X

L. Bousse, The chemical sensitivity of electrolyte/insulator/silicon structures: fundamentals of ISFET operation, Thèse de doctorat, 1982.

L. Bousse, N. De-rooij, and P. Bergveld, Operation of chemically sensitive field-effect sensors as a function of the insulator-electrolyte interface, IEEE Transactions on Electron Devices, vol.30, issue.10, pp.30-1263, 1983.
DOI : 10.1109/T-ED.1983.21284

A. Poghossian, Determination of the pHpzc of insulators surface from capacitancevoltage characteristics of MIS and EIS structures, pp.551-553, 1997.

M. Grattarola, G. Massobrio, and S. Martinoia, Modelling H+-sensitive FETs with SPICE, Ieee Trans. Electron Devices, pp.813-819, 1992.

J. M. Cooper, P. L. Foreman, A. Glidle, T. W. Ling, and D. J. Pritchard, Glutamate oxidase enzyme electrodes: microsensors for neurotransmitter determination using electrochemically polymerized permselective films, Journal of Electroanalytical Chemistry, vol.388, issue.1-2, pp.143-149, 1995.
DOI : 10.1016/0022-0728(95)03846-9

M. J. Schöning and A. Poghossian, Recent advances in biologically sensitive field-effect transistors (BioFETs), The Analyst, vol.4576, issue.27, pp.1137-1151, 2002.
DOI : 10.1039/B204444G

P. Bergveld, Sensors and Actuators, pp.1-20, 2003.

A. Benyahia, Conception, réalisation et modélisation de microcapteurs pour l'analyse biochimique Application à la détection de l'urée, Thèse de doctorat, 2010.

R. Wilson, Glucose oxidase: an ideal enzyme, Biosensors and Bioelectronics, vol.7, issue.3, pp.165-185, 1992.
DOI : 10.1016/0956-5663(92)87013-F

J. Burmeister, K. Moxon, and G. Gerhadt, Ceramic-Based Multisite Microelectrodes for Electrochemical Recordings, Analytical Chemistry, vol.72, issue.1, pp.187-192, 2000.
DOI : 10.1021/ac9907991

L. Netchiporouk, A. Shul-'ga, N. Jaffrezic-renault, R. Olier, and R. Cespuglio, Properties of carbon fibre microelectrodes as a basis for enzyme biosensors, Analytica Chimica Acta, vol.303, issue.2-3, pp.275-283, 1995.
DOI : 10.1016/0003-2670(94)00538-W

D. Strike, N. Derooji, and M. Koudelkahep, Electrodeposition of glucose oxidase for the fabrication of miniature sensors, Sensors and Actuators B: Chemical, vol.13, issue.1-3, pp.61-64, 1993.
DOI : 10.1016/0925-4005(93)85323-3

O. Frey, T. Holtzman, R. Mcnamara, D. Theobald, P. Van-der-wal et al., Enzyme-based choline and l-glutamate biosensor electrodes on silicon microprobe arrays, Biosensors and Bioelectronics, vol.26, issue.2, pp.477-484, 2010.
DOI : 10.1016/j.bios.2010.07.073

C. Mcmahon, S. Killoran, and R. O. Neil, Design variations of a polymer???enzyme composite biosensor for glucose: Enhanced analyte sensitivity without increased oxygen dependence, Journal of Electroanalytical Chemistry, vol.580, issue.2, pp.193-202, 2005.
DOI : 10.1016/j.jelechem.2005.03.026

F. Tian, A. Gourine, R. Huckstepp, and N. Dale, A microelectrode biosensor for real time monitoring of l-glutamate release, Analytica Chimica Acta, vol.645, issue.1-2, pp.86-91, 2009.
DOI : 10.1016/j.aca.2009.04.048

L. Coche-guerente, S. Cosnier, C. Innocent, and P. Mailley, Developement of amperometric biosensors based on the immobilization of enzymes in polymer films electrogenerated from a series of amphiphilic pyrrole derivatives, Analytica Chimica Acta, pp.311-334, 1995.

E. Liaudet, N. Botting, J. Crayston, and N. Dale, A three-enzyme microelectrode sensor for detecting purine release from central nervous system, Biosensors and Bioelectronics, vol.18, issue.1, pp.43-52, 2003.
DOI : 10.1016/S0956-5663(02)00106-9

Y. Okahata, T. Tsuruta, K. Ijiro, and K. Ariga, Preparations of Langmuir-Blodgett films of enzyme-lipid complexes: A glucose sensor membrane, Thin Solid Films, vol.180, issue.1-2, pp.65-72, 1989.
DOI : 10.1016/0040-6090(89)90055-2

R. Singhal, W. Takashima, K. Kaneto, S. Samanta, S. Annapoorni et al., Langmuir???Blodgett films of poly(3-dodecyl thiophene) for application to glucose biosensor, Sensors and Actuators B: Chemical, vol.86, issue.1, pp.42-48, 2002.
DOI : 10.1016/S0925-4005(02)00145-4

A. Soldatkin, V. Volotovsky, A. El?skaya, N. Jaffrezic-renault, and C. Martelet, Improvement of urease based biosensor characteristics using additional layers of charged polymers, Analytica Chimica Acta, vol.403, issue.1-2, pp.25-29, 2000.
DOI : 10.1016/S0003-2670(99)00660-1

M. Hamlaoui, K. Reybier, M. Marrakchi, N. Jaffrezic-renault, C. Martelet et al., Development of a urea biosensor based on a polymeric membrane including zeolite, Analytica Chimica Acta, vol.466, issue.1, pp.39-45, 2002.
DOI : 10.1016/S0003-2670(02)00548-2

A. Diallo, L. Djeghlaf, L. Mazenq, T. Nguyen-boisse, F. Lagarde et al., Development of pH-chemFET-based biosensors for the lactic acid detection, Biosensors 22nd World Congress on Biosensors, pp.15-18, 2012.

Y. B. Hu, K. M. Mitchell, F. N. Albahadily, E. K. Michaelis, and G. S. Wilson, Direct measurement of glutamate release in the brain using a dual enzyme-based electrochemical sensor, Brain Research, vol.659, issue.1-2, pp.117-125, 1994.
DOI : 10.1016/0006-8993(94)90870-2

I. Migneault, C. Dartiguenave, M. Bertrand, and K. Waldron, Glutaraldehyde: behavior in aqueous solution, reaction with proteins, and application to enzyme crosslinking, Biotechniques, pp.37-790, 2004.

M. Stephens, F. Pomerlau, P. Huett, G. Gerhadt, and Z. Zhang, Real-time glutamate measurements in the putamen of awake rhesus monkeys using an enzyme-based human microelectrode array prototype, Journal of Neuroscience Methods, vol.185, issue.2, pp.264-272, 2010.
DOI : 10.1016/j.jneumeth.2009.10.008

B. Sohn and C. Kim, A new pH-ISFET based dissolved oxygen sensor by employing electrolysis of oxygen, Sensors and Actuators, pp.435-440, 1996.

H. Seo, C. Kim, B. Sohn, T. Yeow, M. Son et al., ISFET glucose sensor based on a new principle using the electrolysis of hydrogen peroxide, Sensors and Actuators B: Chemical, vol.40, issue.1, pp.1-5, 1997.
DOI : 10.1016/S0925-4005(97)80191-8

B. Sohn, B. Cho, C. Kim, and D. Kwon, ISFET glucose and sucrose sensors by using platinum electrode and photo-crosslinkable polymers, Sensors and Actuators B: Chemical, vol.41, issue.1-3, pp.7-11, 1997.
DOI : 10.1016/S0925-4005(97)80271-7

W. Sant, P. Temple-boyer, E. Chanié, J. Launay, and A. Martinez, On-line monitoring of urea using enzymatic field effect transistors, Sensors and Actuators B: Chemical, vol.160, issue.1, pp.160-59, 2011.
DOI : 10.1016/j.snb.2011.07.012

URL : https://hal.archives-ouvertes.fr/hal-01511364

A. Bard and L. Faulkner, Electrochemical methods: fundamental and applications, second edition, 2001.

B. Sohn and C. Kim, A new pH-ISFET based dissolved oxygen sensor by employing electrolysis of oxygen, Sensors and Actuators B: Chemical, vol.34, issue.1-3, pp.435-440, 1996.
DOI : 10.1016/S0925-4005(97)80017-2