L. Différentes-variétés-allotropiques-du-carbone and .. , 16 1.1.2. Le graphite

L. Carbones-dérivés-de-carbures and .. , 33 2.1. Une nouvelle méthode d'obtention, Chloration de carbures, p.37

.. La-fluoration, 48 2.3.1. Réactivité du fluor vis-à-vis, p.51

.. Préalable-À-la-fluoration-du-carbure-de-titane, 61 1.1. Simulation thermodynamique du système TiC, p.65

.. Le-carbure-de-titane-tic and .. Le-fluor, 65 1.2.2, p.67

.. Mise-en-oeuvre-expérimentale, 74 2.2. Analyses physicochimiques des produits formés, Résonance magnétique nucléaire, p.82

.. Mise-en-oeuvre-expérimentale, 180 1.2. Comparaison générale en fluorations statiques des carbures de titane, silicium, p.181

.. Réactivité-du-carbure-de-titane-tic-sous-fluor-gazeux, 186 3.1. Effet de la granulométrie sur la fluoration statique de TiC 189 3.2. Détermination de la température minimale de réaction de particules de TiC micrométriques sous 1 atm de fluor gazeux

M. Inagaki, K. Kaneko, and T. Nishizawa, Nanocarbons??????recent research in Japan, Carbon, vol.42, issue.8-9, pp.1401-1418, 2004.
DOI : 10.1016/j.carbon.2004.02.032

R. Diefendorf, The deposition of pyrolytic graphite, J Chim Phys Phys-Chim Biol, vol.57, issue.10, pp.815-836, 1960.

J. Kaae, D. Stevens, and J. Bokros, Dimensional changes induced in poorly crystalline isotropic carbons by radiation, Carbon, vol.10, issue.3, p.348, 1972.
DOI : 10.1016/0008-6223(72)90471-X

M. Endo, T. Koyama, and Y. Hishiyama, Structural Improvement of Carbon Fibers Prepared from Benzene, Japanese Journal of Applied Physics, vol.15, issue.11, pp.15-2073, 1976.
DOI : 10.1143/JJAP.15.2073

S. Iijima and T. Ichihashi, Single-shell carbon nanotubes of 1-nm diameter, Nature, vol.363, issue.6430, pp.363-603, 1993.
DOI : 10.1038/363603a0

H. Tamon, H. Ishizaka, M. Mikami, and M. Okazaki, Porous structure of organic and carbon aerogels synthesized by sol-gel polycondensation of resorcinol with formaldehyde, Carbon, vol.35, issue.6, pp.35-791, 1997.
DOI : 10.1016/S0008-6223(97)00024-9

Y. Gogotsi, I. Jeon, and M. Mcnallan, Carbon coatings on silicon carbide by reaction with chlorine-containing gases, Journal of Materials Chemistry, vol.7, issue.9, pp.1841-1849, 1997.
DOI : 10.1039/a701126a

J. Donnet, E. Papirer, and W. Wang, The observation of active carbons by scanning-tunnelingmicroscopy , Carbon, pp.183-187, 1994.

K. Oshida, K. Kogiso, K. Matsubayashi, K. Takeuchi, S. Kobayashi et al., Analysis of pore structure of activated carbon fibers using high resolution transmission electron microscopy and image processing, Journal of Materials Research, vol.10, issue.10, pp.10-2507, 1995.
DOI : 10.1557/JMR.1995.2507

O. Tanaike, N. Yoshizawa, H. Hatori, Y. Yamada, S. Shiraishi et al., Mesoporous carbon from poly(tetrafluoroethylene) defluorinated by sodium metal, Carbon, vol.40, issue.3, pp.40-457, 2002.
DOI : 10.1016/S0008-6223(01)00289-5

O. Tanaike, H. Hatori, Y. Yamada, S. Shiraishi, and A. Oya, Preparation and pore control of highly mesoporous carbon from defluorinated PTFE, Carbon, vol.41, issue.9, pp.41-1759, 2003.
DOI : 10.1016/S0008-6223(03)00146-5

S. Shiraishi, Y. Aoyama, H. Kurihara, A. Oya, and Y. Yamada, Double Layer Capacitance Of Porous Carbons Derived From Defluorination Of Ptfe, Molecular Crystals and Liquid Crystals, vol.388, issue.1, pp.543-552, 2002.
DOI : 10.1080/10587250215272

T. Kyotani, N. Sonobe, and A. Tomita, Formation of highly orientated graphite from polyacrylonitrile by using a two-dimensional space between montmorillonite lamellae, Nature, issue.6154, pp.331-331, 1988.

G. Che, B. Lakshmi, C. Martin, E. Fisher, and R. Ruoff, Chemical Vapor Deposition Based Synthesis of Carbon Nanotubes and Nanofibers Using a Template Method, Chemistry of Materials, vol.10, issue.1, pp.260-267, 1998.
DOI : 10.1021/cm970412f

B. Lebeau, J. Parmentier, M. Soulard, C. Fowler, R. Zana et al., Organized mesoporous solids: mechanism of formation and use as host materials to prepare carbon and oxide replicas, Comptes Rendus Chimie, vol.8, issue.3-4, pp.3-4, 2005.
DOI : 10.1016/j.crci.2004.10.001

D. Kawashima, T. Aihara, Y. Kobayashi, T. Kyotani, and A. Tomita, Preparation of Mesoporous Carbon from Organic Polymer/Silica Nanocomposite, Chemistry of Materials, vol.12, issue.11, pp.12-3397, 2000.
DOI : 10.1021/cm000435l

T. Bandosz, J. Jagiello, K. Putyera, and J. Schwarz, Pore Structure of Carbon???Mineral Nanocomposites and Derived Carbons Obtained by Template Carbonization, Chemistry of Materials, vol.8, issue.8, pp.2023-2032, 1996.
DOI : 10.1021/cm960233i

T. Kyotani, T. Nagai, S. Inoue, and A. Tomita, Formation of New Type of Porous Carbon by Carbonization in Zeolite Nanochannels, Chemistry of Materials, vol.9, issue.2, pp.609-624, 1997.
DOI : 10.1021/cm960430h

F. Béguin and E. Fr?ckowiak, Carbons for electrochemical energy storage and conversion systems, 2009.
DOI : 10.1201/9781420055405

M. Toyoda, Y. Nishi, N. Iwashio, and M. Inagaki, Sorption and recovery of heavy oils using exfoliated graphite Part IV: Discussion of high oil sorption of exfoliated graphite, Desalination, vol.151, issue.2, pp.151-139, 2003.
DOI : 10.1016/S0011-9164(02)00992-X

G. Gerrit, Soft matter between soft solids. Sorption-induced pore deformation and fluid phase behaviour, 2011.

A. Neimark, Y. Lin, and P. Ravikovitch, Thommes M; Quenched solid density functional theory and pore size analysis of micro-mesoporous carbons, Carbon, pp.47-1617, 2009.

Y. Gogotsi, Nanomaterials handbook: CRC/Taylor & Francis, 2006.
DOI : 10.1201/9781420004014

A. Vanbommel and J. Crombeen, Vantooren A; Leed and auger-electron observations of SiC (0001) surface, Surf Sci, issue.2, pp.48-463, 1975.

Y. Gogotsi and M. Yoshimura, Formation of carbon films on carbides under hydrothermal conditions, Nature, vol.367, issue.6464, pp.628-658, 1994.
DOI : 10.1038/367628a0

N. Jacobson, Y. Gogotsi, and M. Yoshimura, Thermodynamic and experimental study of carbon formation on carbides under hydrothermal conditions, Journal of Materials Chemistry, vol.5, issue.4, pp.595-601, 1995.
DOI : 10.1039/jm9950500595

B. Basavalingu, P. Madhusudan, A. Dayananda, K. Lal, K. Byrappa et al., Formation of filamentous carbon through dissociation of chromium carbide under hydrothermal conditions, Journal of Materials Science, vol.4, issue.7, pp.43-2153, 2008.
DOI : 10.1007/s10853-007-1927-9

L. Foster, G. Long, and H. Stumpf, Production of graphite single crystals by the thermal decomposition of aluminum carbide, Am Mineral, pp.43-46, 1958.

D. Badami, Graphitization of alpha-silicon carbide, Nature, issue.4815, pp.193-569, 1962.

O. Hutchins, I. U. Us-patent, H. Boehm, and H. Warnecke, Structural parameters and molecular-sieve properties of carbons prepared from metal carbides, Carbon, vol.35, issue.6, pp.13-548, 1918.

E. Hoffman, G. Yushin, M. Barsoum, and Y. Gogotsi, Synthesis of carbide-derived carbon by chlorination of Ti 2 AlC, Chem Mater, issue.9, pp.17-2317, 2005.

E. Hoffman, G. Yushin, T. El-raghy, Y. Gogotsi, and M. Barsoum, Micro and mesoporosity of carbon derived from ternary and binary metal carbides, Microporous and Mesoporous Materials, vol.112, issue.1-3, pp.1-3, 2008.
DOI : 10.1016/j.micromeso.2007.10.033

Z. Cambaz, G. Yushin, Y. Gogotsi, K. Vyshnyakova, and L. Pereselentseva, Formation of Carbide-Derived Carbon on beta-Silicon Carbide Whiskers, Journal of the American Ceramic Society, vol.1, issue.1, pp.509-523, 2006.
DOI : 10.1016/0008-6223(94)00173-W

C. Dai, X. Wang, Y. Wang, N. Li, and J. Wei, Synthesis of nanostructured carbon by chlorination of calcium carbide at moderate temperatures and its performance evaluation, Materials Chemistry and Physics, vol.112, issue.2, pp.461-466, 2008.
DOI : 10.1016/j.matchemphys.2008.05.093

S. Dimovski, A. Nikitin, H. Ye, and Y. Gogotsi, Synthesis of graphite by chlorination of iron carbide at moderate temperatures, Journal of Materials Chemistry, vol.14, issue.2, pp.14-238, 2004.
DOI : 10.1039/b311938f

J. Leis, A. Perkson, M. Arulepp, M. Käärik, and G. Svensson, Carbon nanostructures produced by chlorinating aluminium carbide, Carbon, vol.39, issue.13, pp.39-2043, 2001.
DOI : 10.1016/S0008-6223(01)00020-3

R. Dash, G. Yushin, and Y. Gogotsi, Synthesis, structure and porosity analysis of microporous and mesoporous carbon derived from zirconium carbide, Microporous and Mesoporous Materials, vol.86, issue.1-3, pp.1-3, 2005.
DOI : 10.1016/j.micromeso.2005.05.047

J. Chmiola, V. Orekhov, G. Seryakov, A. Zelikman, T. Starobina et al., Pore-size ion-size correlations for carbon supercapacitors, Thèse, Drexel, pp.42-230, 1969.

L. Chen, G. Behlau, Y. Gogotsi, and M. Mcnallan, Carbide Derived Carbon (Cdc) Coatings for Tyranno Zmi Sic Fibers, pp.57-62, 2003.
DOI : 10.1002/9780470294802.ch8

J. Chmiola, G. Yushin, Y. Gogotsi, C. Portet, P. Simon et al., Anomalous Increase in Carbon Capacitance at Pore Sizes Less Than 1 Nanometer, Science, vol.313, issue.5794, pp.313-1760, 2006.
DOI : 10.1126/science.1132195

J. Palmer, A. Llobet, S. Yeon, J. Fischer, Y. Shi et al., Modeling the structural evolution of carbide-derived carbons using quenched molecular dynamics, Carbon, vol.48, issue.4, pp.48-1116, 2010.
DOI : 10.1016/j.carbon.2009.11.033

M. Kormann, H. Gerhard, and N. Popovska, Comparative study of carbide-derived carbons obtained from biomorphic TiC and TiC structures, Carbon, pp.47-242, 2009.

J. Palmer, S. Jain, K. Gubbins, N. Cohaut, J. Fischer et al., Hybrid reverse monte carlo simulations of microporous carbons Characterisation of porous solids viii, pp.56-63, 2009.

S. Welz, M. Mcnallan, and Y. Gogotsi, Carbon structures in silicon carbide derived carbon, Journal of Materials Processing Technology, vol.179, issue.1-3, pp.11-22, 2006.
DOI : 10.1016/j.jmatprotec.2006.03.103

O. Babkin, G. Ivakhnyuk, Y. Lukin, and N. Fedorov, Esca study of the structure of carbon liberated from carbides, Journal of Applied Chemistry of the Ussr, issue.8, pp.57-1587, 1984.

G. Yushin, E. Hoffman, A. Nikitin, H. Ye, M. Barsoum et al., Synthesis of nanoporous carbide-derived carbon by chlorination of titanium silicon carbide, Carbon, vol.43, issue.10, pp.43-2075, 2005.
DOI : 10.1016/j.carbon.2005.03.014

J. Leis, A. Perkson, M. Arulepp, P. Nigu, and G. Svensson, Catalytic effects of metals of the iron subgroup on the chlorination of titanium carbide to form nanostructural carbon, Carbon, vol.40, issue.9, pp.40-1559, 2002.
DOI : 10.1016/S0008-6223(02)00019-2

C. Portet, D. Kazachkin, S. Osswald, Y. Gogotsi, and E. Borguet, Impact of synthesis conditions on surface chemistry and structure of carbide-derived carbons, Thermochimica Acta, vol.497, issue.1-2, pp.137-179, 2010.
DOI : 10.1016/j.tca.2009.09.002

E. Johansson, B. Hjorvarsson, T. Ekstrom, and M. Jacob, Hydrogen in carbon nanostructures, Journal of Alloys and Compounds, vol.330, issue.332, pp.670-675, 2002.
DOI : 10.1016/S0925-8388(01)01641-3

S. Yachamaneni, G. Yushin, S. Yeon, Y. Gogotsi, C. Howell et al., Mesoporous carbide-derived carbon for cytokine removal from blood plasma, Biomaterials, vol.31, issue.18, pp.31-4789, 2010.
DOI : 10.1016/j.biomaterials.2010.02.054

G. Yushin, E. Hoffman, M. Barsoum, Y. Gogotsi, C. Howell et al., Mesoporous carbide-derived carbon with porosity tuned for efficient adsorption of cytokines, Biomaterials, vol.27, issue.34, pp.27-5755, 2006.
DOI : 10.1016/j.biomaterials.2006.07.019

J. Fernández, M. Arulepp, J. Leis, F. Stoeckli, and T. Centeno, EDLC performance of carbidederived carbons in aprotic and acidic electrolytes, Electrochim Acta, issue.24, pp.53-7111, 2008.

J. Chmiola, G. Yushin, R. Dash, and Y. Gogotsi, Effect of pore size and surface area of carbide derived carbons on specific capacitance, Journal of Power Sources, vol.158, issue.1, pp.765-72, 2006.
DOI : 10.1016/j.jpowsour.2005.09.008

C. Portet, A. Lillo-rodenas, M. Linares-solano, A. Gogotsi, and Y. , Capacitance of KOH activated carbide-derived carbons, Physical Chemistry Chemical Physics, vol.43, issue.25, pp.11-4943, 2009.
DOI : 10.1039/b816514a

M. Heon, S. Lofland, J. Applegate, R. Nolte, E. Cortes et al., Continuous carbide-derived carbon films with high volumetric capacitance, Energy Environ. Sci., vol.156, issue.134, pp.135-143, 2011.
DOI : 10.1039/C0EE00404A

A. Tressaud, E. Durand, C. Labrugère, A. Kharitonov, and L. Kharitonova, Modification of surface properties of carbon-based and polymeric materials through fluorination routes: From fundamental research to industrial applications, Journal of Fluorine Chemistry, vol.128, issue.4, pp.378-91, 2007.
DOI : 10.1016/j.jfluchem.2006.12.015

URL : https://hal.archives-ouvertes.fr/hal-00144747

S. Yeon, I. Knoke, Y. Gogotsi, and J. Fischer, Enhanced volumetric hydrogen and methane storage capacity of monolithic carbide-derived carbon, Microporous and Mesoporous Materials, vol.131, issue.1-3, pp.1-3, 2010.
DOI : 10.1016/j.micromeso.2010.02.002

S. Gordeev and A. Vartanova, Variations of porosity during preparation of carbide materials and production of compact carbon adsorbents from these compounds, Russ J Appl Chem, issue.7, pp.67-955, 1994.

G. Yushin, R. Dash, J. Jagiello, J. Fischer, and Y. Gogotsi, Carbide-Derived Carbons: Effect of Pore Size on Hydrogen Uptake and Heat of Adsorption, Advanced Functional Materials, vol.179, issue.188, pp.16-2288, 2006.
DOI : 10.1002/adfm.200500830

]. A. Erdemir, A. Kovalchenko, C. White, R. Zhu, A. Lee et al., Synthesis and tribology of carbide-derived carbon films, Int J Appl Ceram Technol, issue.3, pp.3-236, 2006.

A. Erdemir, A. Kovalchenko, M. Mcnallan, S. Welz, A. Lee et al., Effects of hightemperature hydrogenation treatment on sliding friction and wear behavior of carbide-derived carbon films, Surf Coat Technol, pp.188-189, 2004.

W. Schumb and J. Aronson, The Fluorination of Carbides, Journal of the American Chemical Society, vol.81, issue.4, pp.806-813, 1959.
DOI : 10.1021/ja01513a013

A. Kuriakose and J. Margrave, Kinetics of the Reactions of Elemental Fluorine with Zirconium Carbide and Zirconium Diboride at High Temperatures, The Journal of Physical Chemistry, vol.68, issue.2, pp.290-295, 1964.
DOI : 10.1021/j100784a013

A. Kuriakose and J. Margrave, Kinetics of Reaction of Elemental Fluorine. II. The Fluorination of Hafnium Carbide and Hafnium Boride, The Journal of Physical Chemistry, vol.68, issue.8, pp.68-2343, 1964.
DOI : 10.1021/j100790a053

O. Ruff and O. Bretschneider, Die Reaktionsprodukte der verschiedenen Kohlenstoffformen mit Fluor II (Kohlenstoff-monofluorid), Zeitschrift f???r anorganische und allgemeine Chemie, vol.198, issue.1, pp.1-18, 1934.
DOI : 10.1002/zaac.19342170102

O. Ruff and O. Bretschneider, The composition and the formation heat of carbon-fluoride mixtures formed from norit and SiC (as well as information on the formation heat of CF4 and SiC), Z Anorg Allg Chem, issue.1, pp.217-236, 1934.

. Kuriakose, . Ak, and J. Margrave, Kinetics of the Reactions of Elemental Fluorine. IV. Fluorination of Graphite, The Journal of Physical Chemistry, vol.69, issue.8, pp.69-2772, 1965.
DOI : 10.1021/j100892a049

A. Hamwi, K. Guérin, and M. Dubois, Fluorine-intercalated graphite for lithium batteries Fluorinated materials for energy conversion, pp.369-95, 2005.

N. Chilingarov, J. Rau, L. Sidorov, L. Bencze, A. Popovic et al., Atomic fluorine in thermal reactions involving solid TbF4, Journal of Fluorine Chemistry, vol.104, issue.2, pp.291-296, 2000.
DOI : 10.1016/S0022-1139(00)00259-1

K. Guerin, La fluoration du carbone au service du stockage électrochimique de l'énergie, 2008.

A. Goryunkov, V. Markov, O. Boltalina, B. Zemva, A. Abdul-sada et al., Reaction of silver(i) and (ii) fluorides with C-60: Thermodynamic control over fluorination level, J Fluorine Chem, vol.87, issue.2, pp.112-191, 2001.

S. Mouras, A. Hamwi, D. Djurado, and J. Cousseins, Synthesis of 1st stage graphite-intercalation compounds with fluorides, pp.24-572, 1987.

A. Hamwi, M. Daoud, and J. Cousseins, Graphite fluorides prepared at room temperature 1. Synthesis and characterization, Synthetic Metals, vol.26, issue.1, pp.89-98, 1988.
DOI : 10.1016/0379-6779(88)90338-4

G. Chingas, J. Milliken, H. Resing, and T. Tsang, Graphite-AsF5 intercalation kinetics and diffusion by NMR imaging, Synthetic Metals, vol.12, issue.1-2, pp.131-137, 1985.
DOI : 10.1016/0379-6779(85)90099-2

K. Nakamura, M. Yashima, . Ti, and T. Nb, Crystal structure of NaCl-type transition metal monocarbides MC (M=V, Ti, Nb, Ta, Hf, Zr), a neutron powder diffraction study, Materials Science and Engineering: B, vol.148, issue.1-3, pp.1-3, 2008.
DOI : 10.1016/j.mseb.2007.09.040

D. Meshri, Fluorine Compounds, Inorganic, Titanium, 2000.
DOI : 10.1002/0471238961.2009200113051908.a01

B. ?en and T. Büyükyilmaz, The effect of 4% titanium tetrafluoride solution on root canal walls???A preliminary investigation, Journal of Endodontics, vol.24, issue.4, pp.239-282, 1998.
DOI : 10.1016/S0099-2399(98)80104-0

L. Skartveit, K. Selvig, S. Myklebust, and A. Tveit, Effect of TiF 4 solutions on bacterial growth in vitro and on tooth surfaces, Acta Odontol Scand, issue.3, pp.48-169, 1990.

B. Chernyshov, N. Didenko, B. Bukvetskii, and A. Gerasimenko, Kavun VY; Synthesis and structure of new peroxofluorotitanates, Zh Neorg Khim, issue.9, pp.34-2179, 1989.

K. Vorres and F. Dutton, The Fluorides of Titanium: X-Ray Powder Data and Some Other Observations, Journal of the American Chemical Society, vol.77, issue.7, pp.77-2019, 1955.
DOI : 10.1021/ja01612a098

R. Dash, J. Chmiola, G. Yushin, Y. Gogotsi, G. Laudisio et al., Titanium carbide derived nanoporous carbon for energy-related applications, Carbon, vol.44, issue.12, pp.44-2489, 2006.
DOI : 10.1016/j.carbon.2006.04.035

S. Urbonaite, L. Halldahl, and G. Svensson, Raman spectroscopy studies of carbide derived carbons, Carbon, vol.46, issue.14, pp.46-1942, 2008.
DOI : 10.1016/j.carbon.2008.08.004

J. Connolly, Introduction to quantitative x-ray diffraction methods. University of new mexico, 2007.

M. Duer, Introduction to solid-state nmr spectroscopy, 2004.

A. Panich, H. Vieth, P. Ummat, and W. Datars, Solid state 19F NMR study of acceptor-doped fullerenes (MF6)2C60 (M=As, Sb), Physica B: Condensed Matter, vol.327, issue.1, pp.102-109, 2003.
DOI : 10.1016/S0921-4526(02)01708-8

W. Zhang, M. Dubois, K. Guerin, A. Hamwi, and J. Giraudet, Masin F; Solid-state NMR and EPR study of fluorinated carbon nanofibers, J Solid State Chem, issue.8, pp.181-1915, 2008.

S. Sails, D. Gardiner, M. Bowden, J. Savage, and D. Rodway, Monitoring the quality of diamond films using Raman spectra excited at 514.5 nm and 633 nm, Diamond and Related Materials, vol.5, issue.6-8, pp.5-6, 1996.
DOI : 10.1016/0925-9635(96)90031-X

D. Mcculloch, S. Prawer, and A. Hoffman, Structural investigation of xenon-ion-beam-irradiated glassy carbon, Physical Review B, vol.50, issue.9, pp.50-5905, 1994.
DOI : 10.1103/PhysRevB.50.5905

F. Tuinstra and J. Koenig, Raman Spectrum of Graphite, The Journal of Chemical Physics, vol.53, issue.3, pp.1126-1156, 1970.
DOI : 10.1063/1.1674108

A. Ferrari, A. Libassi, B. Tanner, V. Stolojan, J. Yuan et al., Density, sp(3) fraction, and cross-sectional structure of amorphous carbon films determined by x-ray reflectivity and electron energy-loss spectroscopy, Physical Review B, issue.16, pp.62-11089, 2000.

F. Tai, S. Lee, J. Chen, C. Wei, and S. Chang, Multipeak fitting analysis of Raman spectra on DLCH film, Journal of Raman Spectroscopy, vol.9, issue.175, pp.40-1055, 2009.
DOI : 10.1002/jrs.2234

A. Ferrari and J. Robertson, Interpretation of Raman spectra of disordered and amorphous carbon, Physical Review B, vol.61, issue.20, pp.61-14095, 2000.
DOI : 10.1103/PhysRevB.61.14095

A. Ferrari and J. Robertson, Resonant Raman spectroscopy of disordered, amorphous, and diamondlike carbon, Physical Review B, vol.64, issue.7, pp.64-075414, 2001.
DOI : 10.1103/PhysRevB.64.075414

S. Urbonaite, S. Wachtmeister, C. Mirguet, E. Coronel, W. Zou et al., EELS studies of carbide derived carbons, Carbon, vol.45, issue.10, pp.45-2047, 2007.
DOI : 10.1016/j.carbon.2007.05.022

W. Zhang, M. Dubois, K. Guerin, P. Bonnet, H. Kharbache et al., Hamwi A; Effect of curvature on C-F bonding in fluorinated carbons: From fullerene and derivatives to graphite, Phys Chem Chem Phys, issue.6, pp.12-1388, 2010.

B. Park, C. Lokhande, H. Park, K. Jung, and O. Joo, Performance of supercapacitor with electrodeposited ruthenium oxide film electrodes???effect of film thickness, Journal of Power Sources, vol.134, issue.1, pp.148-52, 2004.
DOI : 10.1016/j.jpowsour.2004.02.027

H. Li and R. Wang, Cao R; Physical and electrochemical characterization of hydrous ruthenium oxide/ordered mesoporous carbon composites as supercapacitor, Microporous Mesoporous Mater, vol.111, pp.1-3, 2008.

R. Reddy and R. Reddy, Porous structured vanadium oxide electrode material for electrochemical capacitors, Journal of Power Sources, vol.156, issue.2, pp.700-704, 2006.
DOI : 10.1016/j.jpowsour.2005.05.071

M. Mastragostino, C. Arbizzani, and F. Soavi, Conducting polymers as electrode materials in supercapacitors, Solid State Ionics, vol.148, issue.3-4, pp.3-4, 2002.
DOI : 10.1016/S0167-2738(02)00093-0

H. Helmholtz, Studien ??ber electrische Grenzschichten, Annalen der Physik und Chemie, vol.22, issue.5, pp.337-82, 1879.
DOI : 10.1002/andp.18792430702

M. Endo, T. Maeda, T. Takeda, Y. Kim, K. Koshiba et al., Capacitance and Pore-Size Distribution in Aqueous and Nonaqueous Electrolytes Using Various Activated Carbon Electrodes, Journal of The Electrochemical Society, vol.148, issue.8, pp.148-910, 2001.
DOI : 10.1149/1.1382589

K. Yang, T. Ying, S. Yiacoumi, C. Tsouris, and E. Vittoratos, Electrosorption of Ions from Aqueous Solutions by Carbon Aerogel:?? An Electrical Double-Layer Model, Langmuir, vol.17, issue.6, pp.17-1961, 2001.
DOI : 10.1021/la001527s

C. Lin, J. Ritter, and B. Popov, Correlation of Double-Layer Capacitance with the Pore Structure of Sol-Gel Derived Carbon Xerogels, Journal of The Electrochemical Society, vol.146, issue.10, pp.146-3639, 1999.
DOI : 10.1149/1.1392526

E. Frackowiak, G. Lota, J. Machnikowski, C. Vix-guterl, and F. Beguin, Optimisation of supercapacitors using carbons with controlled nanotexture and nitrogen content, Electrochimica Acta, vol.51, issue.11, pp.51-2209, 2006.
DOI : 10.1016/j.electacta.2005.04.080

D. Wang, F. Li, M. Liu, and G. Lu, Cheng HM; 3d aperiodic hierarchical porous graphitic carbon material for high-rate electrochemical capacitive energy storage, Angewandte Chemie- International Edition, issue.2, pp.47-373, 2008.

G. Salitra, A. Soffer, L. Eliad, and Y. Cohen, Aurbach D; Carbon electrodes for double-layer capacitors -i. Relations between ion and pore dimensions, J Electrochem Soc, issue.7, pp.147-2486, 2000.

J. Gamby, P. Taberna, P. Simon, and J. Fauvarque, Studies and characterisations of various activated carbons used for carbon/carbon supercapacitors, Journal of Power Sources, vol.101, issue.1, pp.109-125, 2001.
DOI : 10.1016/S0378-7753(01)00707-8

C. Vix-guterl, E. Frackowiak, K. Jurewicz, M. Friebe, J. Parmentier et al., Electrochemical energy storage in ordered porous carbon materials, Carbon, vol.43, issue.6, pp.43-1293, 2005.
DOI : 10.1016/j.carbon.2004.12.028

URL : https://hal.archives-ouvertes.fr/hal-00295012

C. Largeot, Développement de supercondensateurs carbone/carbone : Relation entre la taille des ions de l'électrolyte et la taille des pores de la matière active, Thèse, Paul Sabatier, 2009.

E. Raymundo-pinero, F. Leroux, and F. Beguin, A High-Performance Carbon for Supercapacitors Obtained by Carbonization of a Seaweed Biopolymer, Advanced Materials, vol.42, issue.14, pp.18-1877, 2006.
DOI : 10.1002/adma.200501905

E. Raymundo-pinero, M. Cadek, and F. Beguin, Tuning Carbon Materials for Supercapacitors by Direct Pyrolysis of Seaweeds, Advanced Functional Materials, vol.47, issue.7, pp.19-1032, 2009.
DOI : 10.1002/adfm.200801057

H. Li, G. Richter, and J. Maier, Reversible Formation and Decomposition of LiF Clusters Using Transition Metal Fluorides as Precursors and Their Application in Rechargeable Li Batteries, Advanced Materials, vol.15, issue.9, pp.15-736, 2003.
DOI : 10.1002/adma.200304574

G. Amatucci and N. Pereira, Fluoride based electrode materials for advanced energy storage devices, Journal of Fluorine Chemistry, vol.128, issue.4, pp.243-62, 2007.
DOI : 10.1016/j.jfluchem.2006.11.016

F. Badway, F. Cosandey, N. Pereira, and G. Amatucci, Carbon metal fluoride nanocomposites high-capacity reversible metal fluoride conversion materials as rechargeable positive electrodes for Li batteries, J Electrochem Soc, issue.10, pp.150-1318, 2003.

J. Mcmullen, A Review of Patents on Silicon Carbide Furnacing, Journal of The Electrochemical Society, vol.104, issue.7, pp.462-467, 1957.
DOI : 10.1149/1.2428627

R. Divakar, K. Chia, S. Kunz, and S. Lau, Silicon carbide. Kirk-othmer encyclopedia of chemical technology, 2000.

W. Collins, Silicon compounds, silicon halides. Kirk-othmer encyclopedia of chemical technology, 2000.

A. Lee, R. Zhu, and M. Mcnallan, Kinetics of conversion of silicon carbide to carbide derived carbon, Journal of Physics: Condensed Matter, vol.18, issue.32, pp.18-1763, 2006.
DOI : 10.1088/0953-8984/18/32/S07

J. Leis, M. Arulepp, A. Kuura, M. Latt, and E. Lust, Electrical double-layer characteristics of novel carbide-derived carbon materials, Carbon, vol.44, issue.11, pp.44-2122, 2006.
DOI : 10.1016/j.carbon.2006.04.022

R. B. Labview, Advanced programming techniques, 2006.

K. Guerin, J. Pinheiro, M. Dubois, Z. Fawal, F. Masin et al., Synthesis and characterization of highly fluorinated graphite containing sp(2) and sp(3) carbon, Chem Mater, issue.9, pp.16-1786, 2004.
URL : https://hal.archives-ouvertes.fr/hal-00417851

S. Nakashima and H. , Raman investigation of SiC polytypes, physica status solidi, pp.39-64, 1997.

M. Gorman and S. Solin, Direct evidence for homonuclear bonds in amorphous SiC, Solid State Communications, vol.15, issue.4, pp.761-766, 1974.
DOI : 10.1016/0038-1098(74)90256-7

L. Nistor, J. Landuyt, V. Ralchenko, T. Kononenko, E. Obraztsova et al., Direct observation of laser-induced crystallization of a-C:H films, Applied Physics A Solids and Surfaces, vol.8, issue.2, pp.58-137, 1994.
DOI : 10.1007/BF00332170

P. Huong, Structural studies of diamond films and ultrahard materials by Raman and micro-Raman spectroscopies, Diamond and Related Materials, vol.1, issue.1, pp.33-41, 1991.
DOI : 10.1016/0925-9635(91)90009-Y

K. Holmberg and A. Mathews, Coatings tribology -a concept, critical aspects and future-directions, Thin Solid Films, pp.173-181, 1994.

K. Kato and N. Umehara, Adachi K; Friction, wear and N 2 -lubrication of carbon nitride coatings: A review, Wear, issue.11, pp.254-1062, 2003.

A. Erdemir and C. Donnet, Tribology of diamond-like carbon films: recent progress and future prospects, Journal of Physics D: Applied Physics, vol.39, issue.18, pp.39-311, 2006.
DOI : 10.1088/0022-3727/39/18/R01

C. Weissmantel, K. Bewilogua, K. Breuer, D. Dietrich, U. Ebersbach et al., Preparation and properties of hard i-C and i-BN coatings, Thin Solid Films, vol.96, issue.1, pp.96-127, 1982.
DOI : 10.1016/0040-6090(82)90210-3

A. Bubenzer, B. Dischler, G. Brandt, and P. Koidl, rf???plasma deposited amorphous hydrogenated hard carbon thin films: Preparation, properties, and applications, Journal of Applied Physics, vol.54, issue.8, pp.54-4590, 1983.
DOI : 10.1063/1.332613

R. Fusaro, Mechanisms of graphite fluoride [(CF x ) n ] lubrication, Wear, pp.303-318, 1979.

R. Fusaro and H. Sliney, ???A New Solid Lubricant, A S L E Transactions, vol.19, issue.1, p.56, 1970.
DOI : 10.1111/j.1749-6632.1951.tb54242.x

P. Thomas, D. Himmel, J. Mansot, M. Dubois, K. Guerin et al., Tribological Properties of Fluorinated Carbon Nanofibres, Tribology Letters, vol.120, issue.1, pp.49-59, 2009.
DOI : 10.1007/s11249-008-9406-2

A. Hamwi, M. Dubois, K. Guérin, and R. Yazami, Utilisation de carbones sous fluorés en tant que lubrifiant solide, 2008.

P. Thomas, D. Himmel, J. Mansot, W. Zhang, M. Dubois et al., Friction Properties of Fluorinated Carbon Nanodiscs and Nanocones, Tribology Letters, vol.37, issue.2, pp.41-353, 2011.
DOI : 10.1007/s11249-010-9719-9

A. Erdemir, O. Eryilmaz, and G. Fenske, Synthesis of diamondlike carbon films with superlow friction and wear properties, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol.18, issue.4, pp.1987-92, 2000.
DOI : 10.1116/1.582459

B. Carroll, Y. Gogotsi, A. Kovalchenko, A. Erdemir, and M. Mcnallan, Tribological Characterization of Carbide-Derived Carbon Layers on Silicon Carbide for Dry Friction Applications, Euro ceramics viii, pp.1-3, 2004.
DOI : 10.4028/www.scientific.net/KEM.264-268.465

R. Johnson and R. Dettre, Contact Angle Hysteresis. III. Study of an Idealized Heterogeneous Surface, The Journal of Physical Chemistry, vol.68, issue.7, pp.68-1744, 1964.
DOI : 10.1021/j100789a012

A. Cassie and S. Baxter, Wettability of porous surfaces, Transactions of the Faraday Society, pp.546-50, 1944.

R. Furstner, W. Barthlott, C. Neinhuis, and P. Walzel, Wetting and Self-Cleaning Properties of Artificial Superhydrophobic Surfaces, Langmuir, vol.21, issue.3, pp.956-61, 2005.
DOI : 10.1021/la0401011

J. Pacifico, K. Endo, S. Morgan, and P. Mulvaney, Superhydrophobic Effects of Self-Assembled Monolayers on Micropatterned Surfaces:?? 3-D Arrays Mimicking the Lotus Leaf, Langmuir, vol.22, issue.26, pp.22-11072, 2006.
DOI : 10.1021/la060925d

T. Sun, L. Feng, X. Gao, and L. Jiang, Bioinspired surfaces with special wettability, Acc Chem Res, issue.8, pp.38-644, 2005.

A. Parker and C. Lawrence, Water capture by a desert beetle, Nature, issue.6859, pp.414-447, 2001.

X. Gao and L. Jiang, Water-repellent legs of water striders, Nature, issue.7013, pp.432-468, 2004.

N. Shirtcliffe, F. Pyatt, M. Newton, and G. Mchale, A lichen protected by a super-hydrophobic and breathable structure, Journal of Plant Physiology, vol.163, issue.11, pp.163-1193, 2006.
DOI : 10.1016/j.jplph.2005.11.007

Z. Gu, H. Wei, R. Zhang, G. Han, C. Pan et al., Artificial silver ragwort surface, Applied Physics Letters, vol.86, issue.20, p.86, 2005.
DOI : 10.1063/1.1931054

Y. Zheng, X. Gao, and L. Jiang, Directional adhesion of superhydrophobic butterfly wings, Soft Matter, vol.15, issue.2, pp.178-82, 2007.
DOI : 10.1039/B612667G

W. Lee, M. Jin, W. Yoo, and J. Lee, Nanostructuring of a Polymeric Substrate with Well-Defined Nanometer-Scale Topography and Tailored Surface Wettability, Langmuir, vol.20, issue.18, pp.20-7665, 2004.
DOI : 10.1021/la049411+

T. Darmanin and F. Guittard, Fluorophobic Effect for Building up the Surface Morphology of Electrodeposited Substituted Conductive Polymers, Langmuir, vol.25, issue.10, pp.25-5463, 2009.
DOI : 10.1021/la901193g

T. Darmanin, E. De-givenchy, S. Amigoni, and F. Guittard, Hydrocarbon versus Fluorocarbon in the Electrodeposition of Superhydrophobic Polymer Films, Langmuir, vol.26, issue.22, pp.26-17596, 2010.
DOI : 10.1021/la103310m

S. Amigoni, E. De-givenchy, M. Dufay, and F. Guittard, Covalent Layer-by-Layer Assembled Superhydrophobic Organic???Inorganic Hybrid Films, Langmuir, vol.25, issue.18, pp.25-11073, 2009.
DOI : 10.1021/la901369f

E. De-givenchy, S. Amigoni, C. Martin, G. Andrada, L. Caillier et al., Fabrication of Superhydrophobic PDMS Surfaces by Combining Acidic Treatment and Perfluorinated Monolayers, Langmuir, vol.25, issue.11, pp.25-6448, 2009.
DOI : 10.1021/la900064m

D. Oner and T. Mccarthy, Ultrahydrophobic Surfaces. Effects of Topography Length Scales on Wettability, Langmuir, vol.16, issue.20, pp.7777-82, 2000.
DOI : 10.1021/la000598o

K. Yeh, L. Chen, and J. Chang, Contact Angle Hysteresis on Regular Pillar-like Hydrophobic Surfaces, Langmuir, vol.24, issue.1, pp.245-51, 2008.
DOI : 10.1021/la7020337

E. Martines, K. Seunarine, H. Morgan, N. Gadegaard, C. Wilkinson et al., Superhydrophobicity and Superhydrophilicity of Regular Nanopatterns, Nano Letters, vol.5, issue.10, pp.2097-103, 2005.
DOI : 10.1021/nl051435t

A. Pozzato, D. Zilio, S. Fois, G. Vendramin, D. Mistura et al., Superhydrophobic surfaces fabricated by nanoimprint lithography, Microelectronic Engineering, vol.83, issue.4-9, pp.4-9, 2006.
DOI : 10.1016/j.mee.2006.01.012

J. Shiu, C. Kuo, P. Chen, and C. Mou, Fabrication of Tunable Superhydrophobic Surfaces by Nanosphere Lithography, Chemistry of Materials, vol.16, issue.4, pp.561-565, 2004.
DOI : 10.1021/cm034696h

N. Zhao, F. Shi, Z. Wang, and X. Zhang, Combining Layer-by-Layer Assembly with Electrodeposition of Silver Aggregates for Fabricating Superhydrophobic Surfaces, Langmuir, vol.21, issue.10, pp.4713-4719, 2005.
DOI : 10.1021/la0469194

M. Sun, C. Luo, L. Xu, H. Ji, O. Qi et al., Artificial Lotus Leaf by Nanocasting, Langmuir, vol.21, issue.19, pp.8978-81, 2005.
DOI : 10.1021/la050316q

L. Feng, S. Li, Y. Li, H. Li, L. Zhang et al., Superhydrophobic surfaces: From natural to artificial, Adv Mater, issue.24, pp.14-1857, 2002.

J. Lim, G. Yi, J. Moon, C. Heo, and S. Yang, Superhydrophobic Films of Electrospun Fibers with Multiple-Scale Surface Morphology, Langmuir, vol.23, issue.15, pp.23-7981, 2007.
DOI : 10.1021/la700392w

P. Becker, F. Glenk, M. Kormann, N. Popovska, and B. Etzold, Chlorination of titanium carbide for the processing of nanoporous carbon: A kinetic study, Chemical Engineering Journal, vol.159, issue.1-3, pp.1-3, 2010.
DOI : 10.1016/j.cej.2010.02.011