A. Albagul and . Wahyudi, Dynamic modeling and adaptive traction control for mobile robots, 30th Annual Conference of IEEE Industrial Electronics Society, 2004. IECON 2004, pp.614-620, 2004.
DOI : 10.1109/IECON.2004.1433379

S. Alben, Passive and active bodies in vortex-street wakes, Journal of Fluid Mechanics, vol.204, pp.95-125, 2010.
DOI : 10.1038/241290a0

J. J. Allen and A. Smits, ENERGY HARVESTING EEL, Journal of Fluids and Structures, vol.15, issue.3-4, pp.3-4629, 2001.
DOI : 10.1006/jfls.2000.0355

J. M. Anderson, K. Streitlien, D. S. Barrett, and M. S. Et-triantafyllou, Oscillating foils of high propulsive efficiency, Journal of Fluid Mechanics, vol.360, pp.41-72, 1998.
DOI : 10.1017/S0022112097008392

D. S. Barett, Propulsive efficiency of a flexible hull underwater vehicule, Thèse de doctorat, Massachussets Institute of Technology, 1996.

D. N. Beal, F. S. Hover, M. S. Triantafyllou, J. C. Liao, and G. V. Et-lauder, Passive propulsion in vortex wakes, Journal of Fluid Mechanics, vol.549, issue.-1, pp.385-402, 2006.
DOI : 10.1017/S0022112005007925

M. Bergmann and A. Et-iollo, Modeling and simulation of fish-like swimming, Journal of Computational Physics, vol.230, issue.2, pp.329-348, 2011.
DOI : 10.1016/j.jcp.2010.09.017

URL : https://hal.archives-ouvertes.fr/inria-00546358

R. W. Blake, Fish locomotion, 1991.

R. W. Blake, Fish functional design and swimming performance, Journal of Fish Biology, vol.46, issue.5, pp.1193-1222, 2004.
DOI : 10.1146/annurev.fl.01.010169.002213

R. Blickhan, C. Krick, D. Zehren, W. Nachtigall, and T. Et-breithaupt, Generation of a vortex chain in the wake of a Suhundulatory swimmer, Naturwissenschaften, vol.79, issue.5, pp.220-221, 1992.
DOI : 10.1007/BF01227131

F. Boyer, D. Chablat, P. Lemoine, and P. Et-wenger, The Eel-Like Robot, Volume 7: 33rd Mechanisms and Robotics Conference, Parts A and B, 2009.
DOI : 10.1115/DETC2009-86328

URL : https://hal.archives-ouvertes.fr/hal-00411844

C. M. Breder, The locomotion fishes, Zoologica, vol.4, pp.159-256, 1926.

F. Candelier, F. Boyer, and A. Et-leroyer, Three-dimensional extension of Lighthill's large-amplitude elongated-body theory of fish locomotion, Journal of Fluid Mechanics, vol.10, pp.196-226, 2011.
DOI : 10.1017/S002211201000649X

F. Candelier, M. Porez, and F. Et-boyer, Note on the swimming of an elongated body in a non-uniform flow, Journal of Fluid Mechanics, vol.36, pp.616-637, 2012.
DOI : 10.1242/jeb.01125

URL : https://hal.archives-ouvertes.fr/hal-00862276

J. Colgate and K. Et-lynch, Mechanics and Control of Swimming: A Review, IEEE Journal of Oceanic Engineering, vol.29, issue.3, pp.660-673, 2004.
DOI : 10.1109/JOE.2004.833208

S. B. Colombier, V. Bolliet, P. Lambert, and A. Bardonnet, Energy and migratory behavior in glass eels (Anguilla anguilla), Physiology & Behavior, vol.92, issue.4, pp.684-690, 2007.
DOI : 10.1016/j.physbeh.2007.05.013

A. Crespi and A. J. Et-ijspeert, Online Optimization of Swimming and Crawling in an Amphibious Snake Robot, IEEE Transactions on Robotics, vol.24, issue.1, pp.75-87, 2008.
DOI : 10.1109/TRO.2008.915426

D. 'aout, K. Et-aerts, and P. , A kinematic comparison of forward and backward swimming in the eel anguilla anguilla, Journal of Experimental Biology, vol.202, issue.11, pp.1511-1521, 1999.

P. Domenici and R. Et-blake, The kinematics and performance of fish fast-start swimming, Journal of Experimental Biology, vol.200, issue.8, pp.1165-78, 1997.

J. M. Donley and K. A. Et-dickson, Swimming kinematics of juvenile kawakawa tuna (euthynnus affinis) and chub mackerel (scomber japonicus), Journal of Experimental Biology, issue.20, pp.2033103-3116, 2000.

J. Eldredge and D. Et-pisani, Passive locomotion of a simple articulated fish-like system in the wake of an obstacle, Journal of Fluid Mechanics, vol.201, issue.17, pp.279-288, 2008.
DOI : 10.1242/jeb.00209

C. Eloy, Optimal Strouhal number for swimming animals, Journal of Fluids and Structures, vol.30, pp.205-218, 2012.
DOI : 10.1016/j.jfluidstructs.2012.02.008

URL : https://hal.archives-ouvertes.fr/hal-00712270

C. Eloy and L. Et-schouveiler, Optimisation of two-dimensional undulatory swimming at high Reynolds number, International Journal of Non-Linear Mechanics, vol.46, issue.4, pp.568-576, 2011.
DOI : 10.1016/j.ijnonlinmec.2010.12.007

URL : https://hal.archives-ouvertes.fr/hal-00712260

K. D. Fausch, ) for Positions in a Michigan Stream, Canadian Journal of Fisheries and Aquatic Sciences, vol.38, issue.10, pp.1220-1227, 1996.
DOI : 10.1139/f81-164

K. D. Fausch and R. J. Et-white, ) for Positions in a Michigan Stream, Canadian Journal of Fisheries and Aquatic Sciences, vol.38, issue.10, pp.1220-1227, 1981.
DOI : 10.1139/f81-164

T. Fossen, Guidance and Control of Ocean Vehicles, 1994.

G. B. Gillis, Undulatory Locomotion in Elongate Aquatic Vertebrates: Anguilliform Swimming since Sir James Gray, American Zoologist, vol.36, issue.6, pp.279-290, 1996.
DOI : 10.1093/icb/36.6.656

G. B. Gillis, Environmental effects on undulatory locomotion in the american eel anguilla rostrata : kinematics in water and on land, Journal of Experimental Biology, vol.201, issue.7, pp.949-961, 1998.

R. Godoy-diana, J. Aider, and J. E. Et-wesfreid, Transitions in the wake of a flapping foil, Physical Review E, vol.77, issue.1, p.16308, 2008.
DOI : 10.1103/PhysRevE.77.016308

URL : https://hal.archives-ouvertes.fr/hal-00154131

J. B. Graham and K. A. Et-dickson, Tuna comparative physiology, Journal of Experimental Biology, vol.207, issue.23, pp.4015-4024, 2004.
DOI : 10.1242/jeb.01267

J. Gray, Studies in animal locomotion, i.the movement of fish with special reference to the eel, Journal of Experimental Biology, vol.10, pp.88-104, 1933.

J. Gray, Studies in animal locomotion, vi. the propulsive powers of the dolphin, Journal of Experimental Biology, vol.13, pp.170-199, 1935.

J. Herskin and J. F. Et-steffensen, Energy savings in sea bass swimming in a school: measurements of tail beat frequency and oxygen consumption at different swimming speeds, Journal of Fish Biology, vol.10, issue.2, pp.366-376, 1998.
DOI : 10.1577/1548-8659(1992)121<0385:NGMRRI>2.3.CO;2

B. Jayne, Kinematics of Terrestrial Snake Locomotion, Copeia, vol.1986, issue.4, pp.195-208, 1986.
DOI : 10.2307/1445288

S. Kern and P. Et-koumoutsakos, Simulations of optimized anguilliform swimming, Journal of Experimental Biology, vol.209, issue.24, pp.4841-4857, 2006.
DOI : 10.1242/jeb.02526

H. Lamb, Hydrodynamics, 1932.

G. V. Lauder and E. D. Et-tytell, Hydrodynamics of undulatory propulsion. Fish Physiology, pp.425-468, 2005.

N. Leonard, Stability of a bottom-heavy underwater vehicle, Automatica, vol.33, issue.3, pp.331-346, 1997.
DOI : 10.1016/S0005-1098(96)00176-8

J. Liao, A review of fish swimming mechanics and behaviour in altered flows, Philosophical Transactions of the Royal Society B: Biological Sciences, vol.2, issue.18, pp.1973-1993, 1487.
DOI : 10.1242/jeb.00854

J. C. Liao, D. N. Beal, G. V. Lauder, and M. S. Et-triantafyllou, Fish Exploiting Vortices Decrease Muscle Activity, Science, vol.302, issue.5650, pp.3021566-1569, 2003.
DOI : 10.1126/science.1088295

J. C. Liao, D. N. Beal, G. V. Lauder, and M. S. Et-triantafyllou, The Karman gait: novel body kinematics of rainbow trout swimming in a vortex street, Journal of Experimental Biology, vol.206, issue.6, pp.1059-1073, 2003.
DOI : 10.1242/jeb.00209

M. J. Lighthill, Large-amplitude elongated-body theory of fish locomotion, Proceedings of the Royal Society of London. Series B. Biological Sciences, pp.125-138, 1055.

X. Lin, A simplified dynamics modeling of a spherical underwater vehicle, International conference on Robotics and Biomimetics, pp.1140-1145, 2009.

U. K. Müller, B. L. Heuvel, E. J. Stamhuis, and J. J. Et-videler, Fish foot prints : morphology and energetics of the wake behind a continuously swimming mullet (chelon labrosus risso), Journal of Experimental Biology, issue.22, pp.2002893-906, 1997.

U. K. Müller, J. Smit, E. J. Stamhuis, and J. J. Et-videler, How the body contributes to the wake in undulatory fish swimming : Flow fields of a swimming eel, 2001.

Y. Munk, Kinematics of swimming garter snakes (thamnophis sirtalis) Comparative biochemistry and physiology a-molecular and integrative physiology, pp.131-135, 2008.

J. C. Nauen and G. V. Et-lauder, Quantification of the wake of rainbow trout (oncorhynchus mykiss) using three-dimensional stereoscopic digital particle image velocimetry, Journal of Experimental Biology, issue.21, pp.2053271-3279, 2002.

M. Porez, Modèle dynamique analytique de la nage tridimentionnelle anguilliforme pour la robotique, Thèse de doctorat, 2007.

J. Sakakibara, M. Nakagawa, and M. Et-yoshida, Stereo-PIV study of flow around a maneuvering fish, Experiments in Fluids, vol.36, issue.2, pp.282-293, 2004.
DOI : 10.1007/s00348-003-0720-z

T. Schnipper, A. Andersen, and T. Et-bohr, Vortex wakes of a flapping foil, Journal of Fluid Mechanics, vol.2773, pp.411-423, 2009.
DOI : 10.1146/annurev.fl.01.010169.002213

M. Sfakiotakis, D. Lane, and J. Et-davies, Review of fish swimming modes for aquatic locomotion, IEEE Journal of Oceanic Engineering, vol.24, issue.2, pp.237-252, 1999.
DOI : 10.1109/48.757275

J. Wang, éditeurs : Natural Locomotion in Fluids and on Surfaces, pp.255-262

J. Sparenberg, Survey of the mathematical theory of fish locomotion, Journal of Engineering Mathematics, vol.44, issue.4, pp.395-448, 2002.
DOI : 10.1023/A:1021256500244

C. Stefanini, A novel autonomous, bioinspired swimming robot developed by neuroscientists and bioengineers bioinspir, Biomim, issue.2, 2012.

K. Streitlien, Efficient foil propulsion through vortex control, AIAA Journal, vol.34, issue.11, pp.2315-2319, 1996.
DOI : 10.2514/3.13396

J. C. Svendsen, J. Skov, M. Bildsoe, and J. F. Et-steffensen, Intra-school positional preference and reduced tail beat frequency in trailing positions in schooling roach under experimental conditions, Journal of Fish Biology, vol.10, issue.4, pp.834-846, 2003.
DOI : 10.1046/j.0021-8790.2001.00571.x

M. S. Triantafyllou and G. S. Et-triantafyllou, An Efficient Swimming Machine, Scientific American, vol.272, issue.3, pp.64-70, 1995.
DOI : 10.1038/scientificamerican0395-64

M. S. Triantafyllou, G. S. Triantafyllou, and D. K. Et-yue, Hydrodynamics of Fishlike Swimming, Annual Review of Fluid Mechanics, vol.32, issue.1, pp.33-53, 2000.
DOI : 10.1146/annurev.fluid.32.1.33

E. D. Tytell, The hydrodynamics of eel swimming II. Effect of sZAwimming speed, Journal of Experimental Biology, vol.207, issue.19, pp.3265-3279, 2004.
DOI : 10.1242/jeb.01139

E. D. Tytell, Kinematics and hydrodynamics of linear acceleration in eels, Anguilla rostrata, Proceedings of the royal society B-biological sciences, pp.2712535-2540, 1557.
DOI : 10.1098/rspb.2004.2901

E. D. Tytell and G. V. Et-lauder, The hydrodynamics of eel swimming: I. Wake structure, Journal of Experimental Biology, vol.207, issue.11, pp.1825-1841, 2004.
DOI : 10.1242/jeb.00968

S. X. Wang, X. J. Sun, Y. H. Wang, J. G. Wu, and X. M. Wang, Dynamic modeling and motion simulation for a winged hybrid-driven underwater glider, China Ocean Engineering, vol.80, issue.7, pp.97-112, 2011.
DOI : 10.1007/s13344-011-0008-7

W. Wang and C. Clark, Modeling and simulation of the videoray pro iii underwater vehicle. OCEANS, Asia Pacific, vol.1, pp.1-7, 2006.

P. W. Webb, Simple Physical Principles and Vertebrate Aquatic Locomotion, American Zoologist, vol.28, issue.2, pp.709-725, 1988.
DOI : 10.1093/icb/28.2.709

P. W. Webb, Entrainment by river chub nocomis micropogon and smallmouth bass micropterus dolomieu on cylinders, Journal of experimental biology, vol.201, pp.2403-2412, 1998.

D. Wheis, Hydromechanics of Fish Schooling, Nature, vol.10, issue.5387, pp.290-291, 1973.
DOI : 10.1038/241290a0

M. Wolfgang, M. Triantafyllou, and D. Et-yue, Visualization of complex near-body transport processes in flexible-body propulsion, Journal of Visualization, vol.10, issue.10, pp.143-151, 1999.
DOI : 10.1007/BF03181517

L. Xichuan, G. Shuxiang, H. Yanling, Y. Xiufen, Q. Chenguang et al., A simplified dynamics modeling of a spherical underwater vehicle, 2008 IEEE International Conference on Robotics and Biomimetics, pp.1140-1145, 2008.
DOI : 10.1109/ROBIO.2009.4913161

H. J. Xu, C. Y. Pan, H. B. Xie, and D. B. Et-zhang, Dynamics Modeling and Simulation of a Bionic Swim Bladder System in Underwater Robotics, Journal of Bionic Engineering, vol.5, pp.66-71, 2008.
DOI : 10.1016/S1672-6529(08)60074-8

H. Yamada, S. Chigisaki, M. Mori, K. Takita, K. Ogami et al., Developement of amphibious snake-like robot acm-r5, 36th InternationalSymposium on Robotics, 2005.

P. La, Exemple de couple d'images issu de la caméra CCD à partir duquel un champ de vitesse est calculé par la méthode de, p.15

L. Squelettes-de, anguille superposés pour une période de nage complète. (a) résultat expérimental et (b) résultat obtenu à partir du modèle cinématique décrit par Tytell (2004a) (équation 2.1), p.29

). La-nage-dans-une-allée-de-vortex-alternés, (a) une membrane piézoélectrique en synchronisation avec la fréquence des vortex (b) une truite vivante nageant dans une allée BvK (Liao et al. 2003a) (c) et une truite anesthésiée dans l'allée BvK, p.58, 2001.

?. Allée-de-vortex-de-bénard and . Von-kàrmàn, BvK) dans le sillage d'un cylindre (a) et allée de vortex de Bénard-von Kàrmàn inversée (BvK inversée) dans le sillage d'un poisson (b) Cette illustration a été présenté par, Eloy, p.58, 2012.

. Schémas-et-photographies-du-système, Vue de face, schéma (a 1 ) et photo (a 2 ) Vue de dessus, schémas des systèmes d'oscillation en phase et antiphase (b 1 ) et photo (b 2 ) Aileron rigide, schéma (c 1 ) et photo, p.61

L. Bvk-générée-dans-le-sillage-des-deux-ailerons and .. , À gauche, vecteurs vitesse (avec en arrière plan la norme des vitesses) À droite, le champs de vorticité correspondant. De haut vers le bas, les quatre clichés représentent le suivi temporel de l'allée pour une période d'oscillation, p.67

L. Bvk-inversée-générée-dans-le-sillage-d-'un-aileron and .. , À gauche, vecteurs vitesse (avec en arrière plan la norme des vitesses). À droite, le champs de vorticité correspondant. De haut vers le bas, les quatre clichés représentent le suivi temporel de l'allée pour une période d'oscillations, p.68

I. Photographies-du-robot-amphibot, À gauche, une vue de dessus. À droite, la nage du robot dans l'allée tourbillonnaire des ailerons (photo sous marine), p.69

.. Au-laboratoire, Schémas de configurations entre le robot et l'allée BvK : la configuration de référence (a), déphasage impliqué par la loi de commande et (c) déphasage par le déplacement du robot dans le référentiel lié, p.71

D. Schéma-représentatif, une séquence de demi-période d'ondulation du corps d'un poisson à courbure constante (selon l'approche théorique) au voisinage d'un vortex en rotation positive (a) et négative (b), p.89

. Vues-de-dessus, de côté (b) et de face (c) du prototype Angels, p.92