H. S. Shulman, M. L. Fall, P. Strickland-]-s, F. Saunier, and . Valdivieso, Ceramic Processing Using Microwave Assist Technology Modification of Mass Transport during Sintering Induced by Thermal Gradient Committee on Microwave Processing of Materials: An Emerging Industrial Technology. Microwave processing of materials Understanding Microwave Heating Cavities, American Ceramic Society Bulletin Advances in Sintering Science and Technology, Willey, vol.875, issue.209, pp.34-36, 1994.

J. Wang, Evidence for the microwave effect during hybrid sintering and annealing of ceramics Dielectrics and Waves. Artech House Print on Demand, Thèse, 2005. [6] A. R. V. Hippel, 1995.

L. Martin, M. Rosen, R. Hutcheon, Y. Carmel, A. Birnboim et al., Comparative Study of Microwave Sintering of Zinc Oxide at 2.45, 30, and 83 GHz ESA Portal The European Space Agency Temperature Measurements during Microwave Processing: The Significance of Thermocouple Effects, Journal of the American Ceramic Society Journal of the American Ceramic Society, vol.8110, issue.849, pp.1493-1501, 1998.

J. Wang, J. Binner, B. Vaidhyanathan, N. Joomun, J. Kilner et al., Evidence for the Microwave Effect During Hybrid Sintering, situ measurement of the shrinkage during microwave sintering, pp.1977-1984, 2006.
DOI : 10.1016/S0955-2219(98)00203-9

F. G. Raether, Current State of In Situ Measuring Methods for the Control of Firing Processes, Journal of the American Ceramic Society, vol.9213, pp.146-152, 2009.

F. Raether, In situ measurement and simulation of temperature and stress gradients during sintering of large ceramic components, Ceramics International, vol.34, issue.2, pp.385-389, 2008.
DOI : 10.1016/j.ceramint.2006.10.025

J. Baber, A. Klimera, and F. Raether, In situ measurement of dimensional changes and temperature fields during sintering with a novel thermooptical measuring device, Journal of the European Ceramic Society, vol.27, issue.2-3, pp.701-705, 2007.
DOI : 10.1016/j.jeurceramsoc.2006.04.043

T. Olorunyolemi, R. Tolbert, O. W. Jr, Y. Carmel, I. Lloyd et al., Measurement of Densification of Zinc Oxide Compacts Using an Optical, Noncontact, Noninvasive Extensometer, Journal of the American Ceramic Society, vol.11, issue.11, pp.974-976, 2000.
DOI : 10.1111/j.1151-2916.2000.tb01309.x

J. Orteu, Y. Rotrou, T. Sentenac, and L. Robert, An Innovative Method for 3-D Shape, Strain and Temperature Full-Field Measurement Using a Single Type of Camera: Principle and Preliminary Results, Experimental Mechanics, vol.36, issue.1, pp.163-179, 2007.
DOI : 10.1007/s11340-007-9071-7

URL : https://hal.archives-ouvertes.fr/hal-01170373

R. M. German, Sintering Theory and Practice, 1996.

D. Lance, F. Valdivieso, and P. Goeuriot, Correlation between densification rate and microstructural evolution for pure alpha alumina, Journal of the European Ceramic Society, vol.24, issue.9, pp.2749-2761, 2004.
DOI : 10.1016/j.jeurceramsoc.2003.09.010

J. Wang, R. Raj, J. D. Hansen, R. P. Rusin, M. Teng et al., Estimate of the Activation Energies for Boundary Diffusion from Rate-Controlled Sintering of Pure Alumina, and Alumina Doped with Zirconia or Titania, Journal of the American Ceramic Society, vol.8, issue.9, pp.1172-1175, 1990.
DOI : 10.1111/j.1151-2916.1990.tb05175.x

T. R. Kutty, Development of a master sintering curve for ThO 2, Journal of Nuclear Materials, vol.32724, issue.2-3, pp.211-219, 2004.

J. Cheng, D. Agrawal, R. Roy, and P. S. Jayan, Continuous microwave sintering of alumina abrasive grits, Journal of Materials Processing Technology, vol.108, issue.1, pp.26-29, 2000.
DOI : 10.1016/S0924-0136(00)00653-1

Z. Xie, J. Yang, and Y. Huang, Densification and grain growth of alumina by microwave processing, Materials Letters, vol.37, issue.4-5, pp.215-220, 1998.
DOI : 10.1016/S0167-577X(98)00094-9

M. A. Janney and H. D. Kimrey, Diffusion-Controlled Processes in Microwave-Fired Oxide Ceramics, MRS Proceedings, vol.18, pp.215-227, 1991.
DOI : 10.1111/j.1151-2916.1985.tb16161.x

Y. Fang, J. Cheng, and D. K. , Effect of powder reactivity on microwave sintering of alumina, Materials Letters, vol.58, issue.3-4, pp.498-501, 2004.
DOI : 10.1016/S0167-577X(03)00533-0

M. A. Janney, H. D. Kimrey, M. A. Schmidt, and J. O. Kiggans, Grain Growth in Microwave-Annealed Alumina, Journal of the American Ceramic Society, vol.51, issue.1, pp.1675-1681, 1991.
DOI : 10.1007/BF01770909

C. Zhao, J. Vleugels, C. Groffils, P. J. Luypaert, O. Van-der-biest et al., Hybrid sintering with a tubular susceptor in a cylindrical single-mode microwave furnace Microwave processing and properties of ceramics with different dielectric loss Microwave Sintering of Alumina at 2.45 GHz Microwave sintering of transparent alumina Microwave-enhanced densification of sol-gel alumina films Processing materials with microwave energy, Acta Materialia Journal of the European Ceramic Society Journal of the American Ceramic Society Materials Letters Thin Solid Films Materials Science and Engineering A, vol.4835, issue.2872, pp.3795-3801, 1999.

M. Mizuno, Sintering of alumina by 2.45 GHz microwave heating, Journal of the European Ceramic Society, vol.24, issue.2, pp.387-391, 2000.
DOI : 10.1016/S0955-2219(03)00217-6

R. D. Bagley and D. L. Johnson, Effect of magnesia on Gain Growth in Alumina, Advances in Ceramics, vol.10, pp.666-678, 1984.

F. Van-craeynest, W. Maenhout?van-der-vorst, and W. Dekeyser, Interpretation of the Yellow Colour of Heat Treated ZnO Powder, physica status solidi (b), vol.65, issue.3, pp.841-846, 1965.
DOI : 10.1002/pssb.19650080322

T. R. Kutty, N. J. Raghu41-]-t, and . Gray, Characterisation of chemically prepared ZnO powders in relation to the nonlinear resistors Sintering of Zinc Oxide, Journal of the European Ceramic Society Journal of the American Ceramic Society, vol.1142, issue.3711, pp.161-170, 1954.

M. N. Rahaman, L. C. Jonghe, and M. Chu, Effect of Green Density on Densification and Creep During Sintering, Journal of the American Ceramic Society, vol.51, issue.9, pp.514-519, 1991.
DOI : 10.1111/j.1151-2916.1991.tb04053.x

M. Chu, M. N. Rahaman, L. C. Jonghe, and R. J. Brook, Effect of Heating Rate on Sintering and Coarsening, Effect of Heating Rate on Sintering and Coarsening, pp.1217-1225, 1991.
DOI : 10.1016/0001-6160(75)90047-4

T. Senda and R. C. Bradt, Grain Growth in Sintered ZnO and ZnO-Bi2O3 Ceramics, Journal of the American Ceramic Society, vol.92, issue.10, pp.106-114, 1990.
DOI : 10.1007/BF01132965

T. Senda and R. C. Bradt, Grain Growth of Zinc Oxide During the Sintering of Zinc Oxide-Antimony Oxide Ceramics, Journal of the American Ceramic Society, vol.175, issue.11, pp.1296-1302, 1991.
DOI : 10.1007/BF01132965

G. Xu, I. K. Lloyd, Y. Carmel, T. Olorunyolemi, and O. C. Wilson, Microwave Sintering of ZnO at Ultra High Heating Rates On the microwave sintering technology for improving the properties of semiconducting electronic ceramics, Journal of Materials Research Journal of the European Ceramic Society, vol.1649, issue.21, pp.2850-285810, 2001.

E. Savary, S. Marinel, F. Gascoin, Y. Kinemuchi, J. Pansiot et al., Peculiar effects of microwave sintering on ZnO based varistors properties, Journal of Alloys and Compounds, vol.509, issue.21, pp.6163-61691, 2009.
DOI : 10.1016/j.jallcom.2011.03.048

R. Subasri, M. Asha, K. Hembram, G. V. Rao, and T. N. Rao, Microwave sintering of doped nanocrystalline ZnO and characterization for varistor applications, Materials Chemistry and Physics, vol.115, issue.2-3, pp.2-3, 2009.
DOI : 10.1016/j.matchemphys.2009.02.015

E. Savary, S. Marinel, H. Colder, C. Harnois, F. X. Lefevre et al., Microwave sintering of nano-sized ZnO synthesized by a liquid route, Powder Technology, vol.208, issue.2, pp.521-525, 2011.
DOI : 10.1016/j.powtec.2010.08.053

]. D. ?yme?ka, S. Saunier, J. Molimard, D. E. Goeuriot54-]-a, N. Porter et al., Contactless Monitoring of Shrinkage and Temperature Distribution during Hybrid Microwave Sintering Comparison of in vivo dissolution processes in hydroxyapatite and silicon-substituted hydroxyapatite bioceramics Enhanced in vitro cell activity and surface apatite layer formation on novel silicon-substituted hydroxyapatites In vivo requirement for silicon in articular cartilage and connective tissue formation in the chick, The 12th International Symposium on Ceramics in Medicine, pp.901-905, 1976.

R. Jugdaohsingh, Silicon and bone health, The Journal of Nutrition Health & Aging, vol.11, issue.2, pp.99-110, 2007.

]. S. Nath, B. Basu, A. M. Sinha, M. Roy, and . Roy, A comparative study of conventional sintering with microwave sintering of hydroxyapatite synthesized by chemical route Fabrication of hydroxyapatite ceramics by microwave processing, Microwave Processing of Materials III, pp.93-98, 1992.

Y. Fang, D. K. Agrawal, D. M. Roy, and R. Roy, Fabrication of porous hydroxyapatite ceramics by microwave processing, Journal of Materials Research, vol.68, issue.02, pp.490-494, 1992.
DOI : 10.1038/247220a0

]. A. Chanda, S. Dasgupta, S. Bose, and A. Bandyopadhyay, Microwave sintering of calcium phosphate ceramics, Materials Science and Engineering: C, vol.29, issue.4, pp.1144-1149, 2009.
DOI : 10.1016/j.msec.2008.09.008

D. Veljovi?, I. Zalite, E. Palcevskis, I. Smiciklas, R. Petrovi? et al., Microwave sintering of fine grained HAP and HAP/TCP bioceramics, Ceramics International, vol.36, issue.2, pp.595-603, 2010.
DOI : 10.1016/j.ceramint.2009.09.038

Y. Fang, D. K. Agrawal, D. M. Roy, R. Rustum, S. Vijayan et al., Microwave sintering of hydroxyapatite ceramics Microwave sintering of nanosized hydroxyapatite powder compacts, Journal of Materials Research. Materials Letters, vol.965, issue.565, pp.180-187, 1994.

Y. Yang, J. L. Ong, and J. Tian, Rapid sintering of hydroxyapatite by microwave processing, Journal of Materials Science Letters, vol.21, issue.1, pp.67-69, 2002.
DOI : 10.1023/A:1014250813564

M. Palard, Synthese et frittage d'hydroxyapatites phosphocalciques silicatees, Thèse, p.72, 2007.

V. Putlayev, A. Veresov, M. Pulkin, A. Soin, V. Kuznetsov et al., Silicon-substituted hydroxyapatite ceramics (Si-HAp): densification and grain growth through the prism of sintering theories, Materialwissenschaft und Werkstofftechnik, vol.10, issue.6, pp.416-421164, 2006.
DOI : 10.1002/mawe.200600007

K. I. Rybakov and V. E. Semenov, Possibility of plastic deformation of an ionic crystal due to the nonthermal influence of a high-frequency electric field, Physical Review B, vol.49, issue.1, pp.64-68, 1994.
DOI : 10.1103/PhysRevB.49.64

K. I. Rybakov, V. E. Semenov, J. H. Booske, R. F. Cooper, S. A. Freeman et al., Mass transport in ionic crystals induced by the ponderomotive action of a high-frequency electric field, Physical Review B, vol.52, issue.5, pp.3030-3033, 1995.
DOI : 10.1103/PhysRevB.52.3030

R. Raj, M. Cologna, J. S. Francis73-]-d, . A. Johnson, J. P. Birnboim et al., Influence of Externally Imposed and Internally Generated Electrical Fields on Grain Growth, Diffusional Creep, Sintering and Related Phenomena in Ceramics Microwave Heating of Grain Boundaries in Ceramics Microfocusing and polarization effects in spherical neck ceramic microstructures during microwave processing Grain boundary chemistry of alumina by high-resolution imaging SIMS, Journal of the American Ceramic Society Journal of the American Ceramic Society Journal of Applied Physics Acta Materialia, vol.9476, issue.47, pp.1941-1965, 1991.

C. Carry and P. Bowen, Grain boundary segregation and precipitation map: application to doped alumina

R. M. Hutcheon, M. S. De-jong, and F. P. Adams, What Is The Best Microwave Absorber?, Microwaves: Theory and Application in Materials Processing III, Ceramic Transactions, pp.215-225, 1995.