R. Bakas and N. A. , Mechanisms underlying transient growth of planar perturbations in unbounded compressible shear flow, Journal of Fluid Mechanics, vol.27, pp.479-507
DOI : 10.1063/1.858153

G. K. Batchelor and I. Proudman, THE EFFECT OF RAPID DISTORTION OF A FLUID IN TURBULENT MOTION, The Quarterly Journal of Mechanics and Applied Mathematics, vol.7, issue.1, pp.83-103, 1954.
DOI : 10.1093/qjmam/7.1.83

M. V. Berry, Histories of Adiabatic Quantum Transitions, Proc. R. Soc. Lond. A 429, pp.61-72, 1990.
DOI : 10.1098/rspa.1990.0051

A. Bonnet-bendhia, E. Duclairoir, G. Legendre, and J. Mercier, Time-harmonic acoustic propagation in the presence of a shear flow, Journal of Computational and Applied Mathematics, vol.204, issue.2, pp.428-439, 2007.
DOI : 10.1016/j.cam.2006.02.048

F. P. Bretherton and C. J. Garrett, Wavetrains in Inhomogeneous Moving Media, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.302, issue.1471, pp.529-554, 1968.
DOI : 10.1098/rspa.1968.0034

O. Buhler, Waves and mean flows, 2009.
DOI : 10.1017/cbo9780511605499

K. M. Butler and B. F. Farrell, Three-dimensional optimal perturbations in viscous shear flow. Phys. Fluids A : Fluid Dyn, pp.1637-1650, 1992.

C. Cambon, J. Benoit, L. Shao, and L. Jacquin, Stability analysis and large-eddy simulation of rotating turbulence with organized eddies, Journal of Fluid Mechanics, vol.93, issue.-1, pp.175-200, 1994.
DOI : 10.1063/1.1694822

C. Cambon and J. F. Scott, LINEAR AND NONLINEAR MODELS OF ANISOTROPIC TURBULENCE, Annual Review of Fluid Mechanics, vol.31, issue.1, pp.1-53, 1999.
DOI : 10.1146/annurev.fluid.31.1.1

G. D. Chagelishvili, New linear mechanisms of acoustic wave generation in smooth shear flows -(Nonmodal study) In Sound-flow interactions, pp.210-237, 2002.

G. D. Chagelishvili, T. S. Hristov, R. G. Chanishvili, and J. G. Lominadze, Mechanism of energy transformations in shear magnetohydrodynamic flows, Physical Review E, vol.47, issue.1, pp.366-374, 1993.
DOI : 10.1103/PhysRevE.47.366

G. D. Chagelishvili, G. R. Khujadze, J. G. Lominadze, and A. Rogava, Acoustic waves in unbounded shear flows, Physics of Fluids, vol.9, issue.7, pp.1955-1962, 1997.
DOI : 10.1063/1.869314

G. D. Chagelishvili, A. D. Rogava, and I. N. Segal, Hydrodynamic stability of compressible plane Couette flow, Physical Review E, vol.50, issue.6, pp.4283-4285, 1994.
DOI : 10.1103/PhysRevE.50.R4283

G. D. Chagelishvili, A. G. Tevzadze, G. Bodo, and S. S. Moiseev, Linear Mechanism of Wave Emergence from Vortices in Smooth Shear Flows, Physical Review Letters, vol.79, issue.17, pp.3178-3181, 1997.
DOI : 10.1103/PhysRevLett.79.3178

A. D. Couplages-acoustique-vorticité-craik and W. Criminale, Evolution of wavelike disturbances in shear flows : A class of exact solutions of the navier-stokes equations, Proc. R. Soc. Lond. A 406, pp.13-26, 1986.

W. O. Criminale and P. G. Drazin, The Evolution of Linearized Perturbations of Parallel Flows, Studies in Applied Mathematics, vol.128, issue.2, pp.123-157, 1990.
DOI : 10.1002/sapm1990832123

J. P. Davis and P. Pechukas, Nonadiabatic transitions induced by a time-dependent Hamiltonian in the semiclassical/adiabatic limit: The two-state case, The Journal of Chemical Physics, vol.64, issue.8, pp.3129-3137, 1976.
DOI : 10.1063/1.432648

A. Folguera and J. Harris, Coupled rayleigh surface waves in a slowly varying elastic waveguide, Proc. R. Soc. Lond. A 455, pp.917-931, 1999.

S. Friedlander and A. Lipton-lifschitz, Localized Instabilities in Fluids, Handbook of mathematical fluid dynamics, pp.289-353, 2003.
DOI : 10.1016/S1874-5792(03)80010-1

J. George and R. I. Sujith, Emergence of acoustic waves from vorticity fluctuations: Impact of non-normality, Physical Review E, vol.80, issue.4, p.321, 2009.
DOI : 10.1103/PhysRevE.80.046321

G. Gogoberidze, G. D. Chagelishvili, R. Z. Sagdeev, and D. G. Lominadze, Linear coupling and overreflection phenomena of magnetohydrodynamic waves in smooth shear flows, Physics of Plasmas, vol.11, issue.10, pp.4672-4685, 2004.
DOI : 10.1063/1.1789998

M. E. Goldstein, Unsteady vortical and entropic distortions of potential flows round arbitrary obstacles, Journal of Fluid Mechanics, vol.49, issue.03, pp.433-468, 1978.
DOI : 10.1017/S0022112078002682

D. Gridin and R. V. Craster, Quasi-modes of a weakly curved waveguide, Proc. R. Soc. Lond. A 459, 2003.
DOI : 10.1098/rspa.2003.1141

G. A. Hagedorn and A. Joye, Time Development of Exponentially Small Non-Adiabatic Transitions, Communications in Mathematical Physics, vol.137, issue.2, pp.393-413, 2004.
DOI : 10.1007/s00220-004-1124-5

URL : https://hal.archives-ouvertes.fr/hal-00348757

E. J. Hinch, Perturbation methods. Cambridge texts in applied mathematics, 1991.

M. H. Holmes, Introduction to perturbation methods. Texts in applied mathematics, 1995.

P. Huerre and P. Monkewitz, Local and Global Instabilities in Spatially Developing Flows, Annual Review of Fluid Mechanics, vol.22, issue.1, pp.473-537
DOI : 10.1146/annurev.fl.22.010190.002353

P. Huerre and M. Rossi, Hydrodynamic instabilities in open flows, Hydrodynamics and nonlinear instabilities, pp.81-294, 1998.
DOI : 10.1017/CBO9780511524608.004

A. Iserles, A. Marthinsen, and S. P. Nørsett, On the implementation of the method of magnus series for linear differential equations, Bit Numerical Mathematics, vol.39, issue.2, pp.281-304, 1999.
DOI : 10.1023/A:1022393913721

R. Lim and M. V. Berry, Superadiabatic tracking of quantum evolution, Journal of Physics A: Mathematical and General, vol.24, issue.14, pp.3255-3264, 1991.
DOI : 10.1088/0305-4470/24/14/014

S. M. Mahajan and A. D. Rogava, What Can the Kinematic Complexity of Astrophysical Shear Flows Lead To?, The Astrophysical Journal, vol.518, issue.2, pp.814-820, 1999.
DOI : 10.1086/307319

W. Mohring, E. Muller, and F. Obermeier, Problems in flow acoustics, Reviews of Modern Physics, vol.55, issue.3, pp.707-724, 1983.
DOI : 10.1103/RevModPhys.55.707

V. Pagneux, Multimodal admittance method in waveguides and singularity behavior at high frequencies, Journal of Computational and Applied Mathematics, vol.234, issue.6, pp.1834-1841, 2010.
DOI : 10.1016/j.cam.2009.08.034

V. Pagneux and A. Maurel, Lamb wave propagation in elastic waveguides with variable thickness, Proc. R. Soc. A 462, pp.1315-1339, 2006.
DOI : 10.1098/rspa.2005.1612

S. C. Reddy, P. J. Schmid, and D. S. Henningson, Pseudospectra of the Orr???Sommerfeld Operator, SIAM Journal on Applied Mathematics, vol.53, issue.1, pp.15-47, 1993.
DOI : 10.1137/0153002

A. Rogava, S. Poedts, and S. Mahajan, ACOUSTICS OF KINEMATICALLY COMPLEX SHEAR FLOWS, Journal of Computational Acoustics, vol.09, issue.03, pp.869-888, 2001.
DOI : 10.1142/S0218396X01001078

A. D. Rogava and S. M. Mahajan, Coupling of sound and internal waves in shear flows, Physical Review E, vol.55, issue.1, 1997.
DOI : 10.1103/PhysRevE.55.1185

P. J. Schmid, Nonmodal Stability Theory, Nonmodal stability theory, pp.129-162, 2007.
DOI : 10.1146/annurev.fluid.38.050304.092139

URL : https://hal.archives-ouvertes.fr/hal-01023333

R. Smith, Propagation in Slowly-Varying Wave-Guides, SIAM Journal on Applied Mathematics, vol.33, issue.1, pp.39-50, 1977.
DOI : 10.1137/0133004

C. Zener, Non-Adiabatic Crossing of Energy Levels, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.137, issue.833, pp.696-702, 1932.
DOI : 10.1098/rspa.1932.0165

M. V. Berry, Histories of Adiabatic Quantum Transitions, Proc. R. Soc. Lond. A 429, pp.61-72, 1990.
DOI : 10.1098/rspa.1990.0051

V. Betz, B. D. Goddard, and S. Teufel, Superadiabatic transitions in quantum molecular dynamics, Proc. R. Soc. A 465, 2009.
DOI : 10.1098/rspa.2009.0337

J. P. Boyd, The devil's invention : Asymptotic, superasymptotic and hyperasymptotic series, Acta Applicandae Mathematicae, vol.56, issue.1, pp.1-98, 1999.
DOI : 10.1023/A:1006145903624

G. D. Chagelishvili, New linear mechanisms of acoustic wave generation in smooth shear flows -(Nonmodal study) In Sound-flow interactions, pp.210-237, 2002.

G. D. Chagelishvili, T. S. Hristov, R. G. Chanishvili, and J. G. Lominadze, Mechanism of energy transformations in shear magnetohydrodynamic flows, Physical Review E, vol.47, issue.1, pp.366-374, 1993.
DOI : 10.1103/PhysRevE.47.366

G. D. Chagelishvili, G. R. Khujadze, J. G. Lominadze, and A. Rogava, Acoustic waves in unbounded shear flows, Physics of Fluids, vol.9, issue.7, pp.1955-1962, 1997.
DOI : 10.1063/1.869314

G. D. Chagelishvili, A. D. Rogava, and I. N. Segal, Hydrodynamic stability of compressible plane Couette flow, Physical Review E, vol.50, issue.6, pp.4283-4285, 1994.
DOI : 10.1103/PhysRevE.50.R4283

G. D. Chagelishvili, A. D. Rogava, and D. G. Tsiklauri, Effect of coupling and linear transformation of waves in shear flows, Physical Review E, vol.53, issue.6, pp.6028-6031, 1996.
DOI : 10.1103/PhysRevE.53.6028

G. D. Chagelishvili, A. G. Tevzadze, G. Bodo, and S. S. Moiseev, Linear Mechanism of Wave Emergence from Vortices in Smooth Shear Flows, Physical Review Letters, vol.79, issue.17, pp.3178-3181, 1997.
DOI : 10.1103/PhysRevLett.79.3178

J. P. Davis and P. Pechukas, Nonadiabatic transitions induced by a time-dependent Hamiltonian in the semiclassical/adiabatic limit: The two-state case, The Journal of Chemical Physics, vol.64, issue.8, pp.3129-3137, 1976.
DOI : 10.1063/1.432648

A. Dykhne, Adiabatic perturbation of discrete spectrum states. Sov. Phys, pp.941-943, 1962.

M. Elk, Adiabatic transition histories of population transfer in the ?? system, Physical Review A, vol.52, issue.5, pp.4017-4022, 1995.
DOI : 10.1103/PhysRevA.52.4017

G. Favraud and V. Pagneux, Acoustic-vorticity coupling in linearly varying shear flows using the WKB method (Revised manuscript submitted for publication to, Proc. R. Soc. A, Chapter, 2012.

J. George and R. I. Sujith, Emergence of acoustic waves from vorticity fluctuations: Impact of non-normality, Physical Review E, vol.80, issue.4, p.321, 2009.
DOI : 10.1103/PhysRevE.80.046321

G. Gogoberidze, G. D. Chagelishvili, R. Z. Sagdeev, and D. G. Lominadze, Linear coupling and overreflection phenomena of magnetohydrodynamic waves in smooth shear flows, Physics of Plasmas, vol.11, issue.10, pp.4672-4685, 2004.
DOI : 10.1063/1.1789998

G. A. Hagedorn and A. Joye, Time Development of Exponentially Small Non-Adiabatic Transitions, Communications in Mathematical Physics, vol.137, issue.2, pp.393-413, 2004.
DOI : 10.1007/s00220-004-1124-5

URL : https://hal.archives-ouvertes.fr/hal-00348757

R. Lim, Overlapping Stokes smoothings in adiabatic quantum transitions, Journal of Physics A: Mathematical and General, vol.26, issue.24, p.7615, 1993.
DOI : 10.1088/0305-4470/26/24/031

R. Lim and M. V. Berry, Superadiabatic tracking of quantum evolution, Journal of Physics A: Mathematical and General, vol.24, issue.14, pp.3255-3264, 1991.
DOI : 10.1088/0305-4470/24/14/014

S. M. Mahajan and A. D. Rogava, What Can the Kinematic Complexity of Astrophysical Shear Flows Lead To?, The Astrophysical Journal, vol.518, issue.2, pp.814-820, 1999.
DOI : 10.1086/307319

A. Rogava, S. Poedts, and S. Mahajan, ACOUSTICS OF KINEMATICALLY COMPLEX SHEAR FLOWS, Journal of Computational Acoustics, vol.09, issue.03, pp.869-888, 2001.
DOI : 10.1142/S0218396X01001078

A. D. Rogava and S. M. Mahajan, Coupling of sound and internal waves in shear flows, Physical Review E, vol.55, issue.1, 1997.
DOI : 10.1103/PhysRevE.55.1185

C. Zener, Non-Adiabatic Crossing of Energy Levels, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.137, issue.833, pp.696-702, 1932.
DOI : 10.1098/rspa.1932.0165

W. Bi, V. Pagneux, D. Lafarge, and Y. Auregan, Modelling of sound propagation in a non-uniform lined duct using a Multi-Modal Propagation Method, Journal of Sound and Vibration, vol.289, issue.4-5, 2006.
DOI : 10.1016/j.jsv.2005.03.021

W. Bi, V. Pagneux, D. Lafarge, and Y. Auregan, An improved multimodal method for sound propagation in nonuniform lined ducts, The Journal of the Acoustical Society of America, vol.122, issue.1, pp.280-290, 2007.
DOI : 10.1121/1.2736785

R. A. Depine and J. Simon, Diffraction Grating EfficienciesConformal Mapping Method for a Good Real Conductor, Optica Acta: International Journal of Optics, vol.22, issue.11, pp.1459-1473, 1982.
DOI : 10.1080/713820790

R. A. Depine and J. Simon, Surface Impedance Boundary Condition for Metallic Diffraction Gratings in the Optical and Infrared Range, Optica Acta: International Journal of Optics, vol.268, issue.3, pp.313-322, 1983.
DOI : 10.1080/713821187

S. Felix and V. Pagneux, Sound propagation in rigid bends: A multimodal approach, The Journal of the Acoustical Society of America, vol.110, issue.3, pp.1329-1337, 2001.
DOI : 10.1121/1.1391249

S. Felix and V. Pagneux, Multimodal analysis of acoustic propagation in three-dimensional bends, Wave Motion, vol.36, issue.2, pp.157-168, 2002.
DOI : 10.1016/S0165-2125(02)00009-4

J. Floryan, Conformal-mapping- based coordinate generation method for flows in periodic configurations, Journal of Computational Physics, vol.62, issue.1, pp.221-247, 1986.
DOI : 10.1016/0021-9991(86)90108-7

A. Iserles, A. Marthinsen, and S. P. Nørsett, On the implementation of the method of magnus series for linear differential equations, Bit Numerical Mathematics, vol.39, issue.2, pp.281-304, 1999.
DOI : 10.1023/A:1022393913721

A. Iserles and S. P. Norsett, On the solution of linear differential equations in lie group, Phil. Trans. R. Soc. A, vol.357, pp.983-1019, 1999.

V. Pagneux, Multimodal admittance method in waveguides and singularity behavior at high frequencies, Journal of Computational and Applied Mathematics, vol.234, issue.6, 2010.
DOI : 10.1016/j.cam.2009.08.034

V. Pagneux, N. Amir, and J. Kergomard, A study of wave propagation in varying cross???section waveguides by modal decomposition. Part I. Theory and validation, The Journal of the Acoustical Society of America, vol.100, issue.4, pp.2034-2048
DOI : 10.1121/1.417913

F. J. Sabina and V. M. Babich, Low-frequency scattering of acoustic waves by a bounded rough surface in a half-plane, The Journal of the Acoustical Society of America, vol.109, issue.3, pp.878-885, 2001.
DOI : 10.1121/1.1348297

J. Schiff and S. Shinider, A Natural Approach to the Numerical Integration of Riccati Differential Equations, SIAM Journal on Numerical Analysis, vol.36, issue.5, pp.1392-1413, 1999.
DOI : 10.1137/S0036142996307946

Y. Takakura, Rigorous integral approach to the problem of scattering from a modulated periodic medium obtained through conformal mapping, Journal of the Optical Society of America A, vol.12, issue.6, 1995.
DOI : 10.1364/JOSAA.12.001283

L. N. Trefethen, The Chebfun Development Team, Chebfun Version, vol.4, issue.2, 2011.

D. Vandembroucq and S. Roux, Conformal mapping on rough boundaries.mI. Applications to harmonic problems, Physical Review E, vol.55, issue.5, pp.6171-6185, 1997.
DOI : 10.1103/PhysRevE.55.6171

URL : https://hal.archives-ouvertes.fr/hal-00002508

D. Vandembroucq and S. Roux, Conformal mapping on rough boundaries. II. Applications to biharmonic problems, Physical Review E, vol.55, issue.5, pp.6186-6196, 1997.
DOI : 10.1103/PhysRevE.55.6186

URL : https://hal.archives-ouvertes.fr/hal-00002508

A. Voronovich, A. Marthinsen, A. Nørsett, and S. P. , Wave scattering from rough surfaces Springer series on wave phenomena References Iserles On the implementation of the method of magnus series for linear differential equations, BIT, vol.39, pp.281-304, 1999.

A. Kaneko and H. Honji, Double structures of steady streaming in the oscillatory viscous flow over a wavy wall, Journal of Fluid Mechanics, vol.17, issue.04, 1979.
DOI : 10.1017/S0022112079001993

W. Lyne, Unsteady viscous flow over a wavy wall, Journal of Fluid Mechanics, vol.175, issue.01, pp.33-43, 1971.
DOI : 10.1017/S0022112071002441

H. K. Moffatt, Viscous and resistive eddies near a sharp corner, Journal of Fluid Mechanics, vol.6, issue.01, pp.1-18, 1964.
DOI : 10.1017/S0022112064000015

V. Pagneux, Multimodal admittance method in waveguides and singularity behavior at high frequencies, Journal of Computational and Applied Mathematics, vol.234, issue.6, pp.1834-1841, 2010.
DOI : 10.1016/j.cam.2009.08.034

V. Pagneux, N. Amir, and J. Kergomard, A study of wave propagation in varying cross???section waveguides by modal decomposition. Part I. Theory and validation, The Journal of the Acoustical Society of America, vol.100, issue.4, pp.2034-2048
DOI : 10.1121/1.417913

C. Pozrikidis, Unsteady viscous flow over irregular boundaries, Journal of Fluid Mechanics, vol.50, issue.-1, pp.11-34, 1993.
DOI : 10.1103/PhysRevLett.61.1595

J. Schiff and S. Shinider, A Natural Approach to the Numerical Integration of Riccati Differential Equations, SIAM Journal on Numerical Analysis, vol.36, issue.5, pp.1392-1413, 1999.
DOI : 10.1137/S0036142996307946

D. Vandembroucq and S. Roux, Conformal mapping on rough boundaries.mI. Applications to harmonic problems, Physical Review E, vol.55, issue.5, pp.6171-6185, 1997.
DOI : 10.1103/PhysRevE.55.6171

URL : https://hal.archives-ouvertes.fr/hal-00002508

D. Vandembroucq and S. Roux, Conformal mapping on rough boundaries. ii. applications to biharmonic problems. Phys. Rev, ) References References Berry, M. V. 1990 Histories of adiabatic quantum transitions. Proc. R. Soc. Lond. A 429, pp.6186-6196, 1997.
URL : https://hal.archives-ouvertes.fr/hal-00002508

J. P. Davis and P. Pechukas, Nonadiabatic transitions induced by a time-dependent Hamiltonian in the semiclassical/adiabatic limit: The two-state case, The Journal of Chemical Physics, vol.64, issue.8, pp.3129-3137, 1976.
DOI : 10.1063/1.432648

V. Pagneux, N. Amir, and J. Kergomard, A study of wave propagation in varying cross???section waveguides by modal decomposition. Part I. Theory and validation, The Journal of the Acoustical Society of America, vol.100, issue.4, pp.2034-2048
DOI : 10.1121/1.417913