G. S. Manning, Limiting Laws and Counterion Condensation in Polyelectrolyte Solutions I. Colligative Properties, The Journal of Chemical Physics, vol.51, issue.3, pp.924-933, 1969.
DOI : 10.1063/1.1672157

J. Goyon, A. Colin, G. Ovarlez, A. Ajdari, and L. Bocquet, Spatial cooperativity in soft glassy flows, Nature, vol.96, issue.7200, pp.45484-87, 2008.
DOI : 10.1038/nature07026

L. Almenar and M. Rauscher, Dynamics of colloids in confined geometries, Journal of Physics: Condensed Matter, vol.23, issue.18, 2011.
DOI : 10.1088/0953-8984/23/18/184115

R. Besseling, L. Isa, P. Ballesta, G. Petekidis, M. E. Cates et al., Shear Banding and Flow-Concentration Coupling in Colloidal Glasses, Physical Review Letters, vol.105, issue.26, p.105, 2010.
DOI : 10.1103/PhysRevLett.105.268301

K. V. Edmond, C. R. Nugent, and E. R. Weeks, Influence of confinement on dynamical heterogeneities in dense colloidal samples, Physical Review E, vol.85, issue.4, p.2012
DOI : 10.1103/PhysRevE.85.041401

L. Isa, R. Besseling, A. N. Morozov, and W. C. Poon, Velocity Oscillations in Microfluidic Flows of Concentrated Colloidal Suspensions, Physical Review Letters, vol.102, issue.5, 2009.
DOI : 10.1103/PhysRevLett.102.058302

C. R. Nugent, K. V. Edmond, H. N. Patel, and E. R. Weeks, Colloidal Glass Transition Observed in Confinement, Physical Review Letters, vol.99, issue.2, p.99, 2007.
DOI : 10.1103/PhysRevLett.99.025702

B. Kaoui, T. Kruger, and J. Harting, How does confinement affect the dynamics of viscous vesicles and red blood cells?, Soft Matter, vol.94, issue.7, pp.9246-9252, 2012.
DOI : 10.1039/c2sm26289d

M. Cromer, L. Cook, and G. H. Mckinley, Pressure-driven flow of wormlike micellar solutions in rectilinear microchannels, Journal of Non-Newtonian Fluid Mechanics, vol.166, issue.3-4, pp.3-4180, 2011.
DOI : 10.1016/j.jnnfm.2010.11.007

C. Masselon, J. B. Salmon, and A. Colin, Nonlocal Effects in Flows of Wormlike Micellar Solutions, Physical Review Letters, vol.100, issue.3, 2008.
DOI : 10.1103/PhysRevLett.100.038301

L. Bocquet and E. Charlaix, Nanofluidics, from bulk to interfaces, Chem. Soc. Rev., vol.318, issue.3, pp.1073-1095, 2010.
DOI : 10.1039/B909366B

A. Noy, H. G. Park, F. Fornasiero, J. K. Holt, C. P. Grigoropoulos et al., Nanofluidics in carbon nanotubes, Nano Today, vol.2, issue.6, pp.22-29, 2007.
DOI : 10.1016/S1748-0132(07)70170-6

N. F. Durand, E. Saveriades, and P. Renaud, Detecting proteins complex formation using steady-state diffusion in a nanochannel, Analytical and Bioanalytical Chemistry, vol.91, issue.2, pp.421-425, 2009.
DOI : 10.1007/s00216-008-2550-6

J. B. Edel and A. Mello, Nanofluidics : nanoscience and nanotechnology, Royal Society of Chemistry, 2009.
DOI : 10.1039/9781849735230

L. W. Lake, Enhanced Oil Recovery, 1989.

R. Lenormand, C. Zarcone, and A. Sarr, Mechanisms of the displacement of one fluid by another in a network of capillary ducts, Journal of Fluid Mechanics, vol.210, issue.-1, pp.337-353, 1983.
DOI : 10.1016/0009-2509(81)80048-6

F. C. Krebs, S. A. Gevorgyan, and J. Alstrup, A roll-to-roll process to flexible polymer solar cells: model studies, manufacture and operational stability studies, Journal of Materials Chemistry, vol.92, issue.452, pp.5442-5451, 2009.
DOI : 10.1039/b823001c

A. J. Moulé, J. B. Bonekamp, and K. Meerholz, The effect of active layer thickness and composition on the performance of bulk-heterojunction solar cells, Journal of Applied Physics, vol.100, issue.9, pp.94503-094503, 2006.
DOI : 10.1063/1.2360780

L. Beguin, B. Grassl, F. Brochard-wyart, M. Rakib, and H. Duval, Suction of hydrosoluble polymers into nanopores, Soft Matter, vol.132, issue.197, pp.96-103, 2011.
DOI : 10.1039/C0SM00443J

URL : https://hal.archives-ouvertes.fr/hal-01240973

G. Chauveteau and A. Zaitoun, Xanthan polymer solutions in porous media : effects of pore size, Proceeding of European Symposium on EOR, 1981.

A. Omari, M. Moan, and G. Chauveteau, Wall effects in the flow of flexible polymer solutions through small pores, Rheologica Acta, vol.23, issue.6, pp.520-526, 1989.
DOI : 10.1007/BF01332923

G. Chauveteau, M. Tirrel, and A. Omari, Concentration dependence of the effective viscosity of polymer solutions in small pores with repulsive or attractive walls, Journal of Colloid and Interface Science, vol.100, issue.1, pp.41-54, 1984.
DOI : 10.1016/0021-9797(84)90410-7

E. Lauga, M. P. Brenner, and H. A. Stone, Microfluidics: The No-Slip Boundary Condition, pp.1219-1240, 2007.
DOI : 10.1007/978-3-540-30299-5_19

L. A. Archer, D. Ternet, and R. G. Larson, ?Fracture? phenomena in shearing flow of viscous liquids, Rheologica Acta, vol.112, issue.5, pp.579-584, 1997.
DOI : 10.1007/BF00368135

H. A. Barnes, A review of the slip (wall depletion) of polymer solutions, emulsions and particle suspensions in viscometers: its cause, character, and cure, Journal of Non-Newtonian Fluid Mechanics, vol.56, issue.3, pp.221-251, 1995.
DOI : 10.1016/0377-0257(94)01282-M

F. Brochard and P. G. De-gennes, Shear-dependent slippage at a polymer/solid interface, Langmuir, vol.8, issue.12, pp.3033-3037, 1992.
DOI : 10.1021/la00048a030

H. Hervet and L. Léger, Flow with slip at the wall: from simple to complex fluids, Comptes Rendus Physique, vol.4, issue.2, pp.241-249, 2003.
DOI : 10.1016/S1631-0705(03)00047-1

M. D. Graham, Fluid Dynamics of Dissolved Polymer Molecules in Confined Geometries, Annual Review of Fluid Mechanics, vol.43, issue.1, pp.273-298, 2011.
DOI : 10.1146/annurev-fluid-121108-145523

Y. M. Joshi, A. K. Lele, and R. A. Mashelkar, Slipping fluids: a unified transient network model, Journal of Non-Newtonian Fluid Mechanics, vol.89, issue.3, pp.303-335, 2000.
DOI : 10.1016/S0377-0257(99)00046-4

S. C. Kohale and R. Khare, Cross stream chain migration in nanofluidic channels: Effects of chain length, channel height, and chain concentration, The Journal of Chemical Physics, vol.130, issue.10, p.130, 2009.
DOI : 10.1063/1.3078798

P. Mao and J. Y. Han, Fabrication and characterization of 20 nm planar nanofluidic channels by glass???glass and glass???silicon bonding, Lab on a Chip, vol.95, issue.8, pp.837-844, 2005.
DOI : 10.1021/ac050321z

P. Mao and J. Han, Massively-parallel ultra-high-aspect-ratio nanochannels as mesoporous membranes, Lab Chip, vol.7, issue.4, pp.586-591, 2009.
DOI : 10.1039/B809370A

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2743686

J. Gu, R. Gupta, C. F. Chou, Q. H. Wei, and F. Zenhausern, A simple polysilsesquioxane sealing of nanofluidic channels below 10 nm at room temperature, Lab on a Chip, vol.24, issue.9, pp.1198-1201, 2007.
DOI : 10.1039/b704851c

S. Marre, A. Adamo, S. Basak, C. Aymonier, and K. F. Jensen, Design and Packaging of Microreactors for High Pressure and High Temperature Applications, Industrial & Engineering Chemistry Research, vol.49, issue.22, pp.11310-11320, 2010.
DOI : 10.1021/ie101346u

URL : https://hal.archives-ouvertes.fr/hal-00545088

R. Chantiwas, S. Park, S. A. Soper, B. C. Kim, S. Takayama et al., Dispersion reduction in pressure-driven flow through microetched channels, Chemical Society Reviews, issue.7, pp.403677-3702, 2011.

S. Park, Y. S. Huh, H. G. Craighead, and D. Erickson, A method for nanofluidic device prototyping using elastomeric collapse, Proceedings of the National Academy of Sciences, vol.106, issue.37, pp.15549-15554, 2009.
DOI : 10.1073/pnas.0904004106

C. Cottin, Drainage dans des micromodèles de milieux poreux, 2010.

V. N. Phan, N. Nguyen, C. Yang, P. Joseph, L. Djeghlaf et al., Capillary Filling in Closed End Nanochannels, Langmuir, vol.26, issue.16, pp.2613251-13255, 2010.
DOI : 10.1021/la1010902

R. Karnik, K. Castelino, R. Fan, P. Yang, and A. Majumdar, Effects of Biological Reactions and Modifications on Conductance of Nanofluidic Channels, Nano Letters, vol.5, issue.9, pp.1638-1642, 2005.
DOI : 10.1021/nl050966e

Z. Xu, J. K. Wen, C. Liu, J. S. Liu, L. Q. Du et al., Research on forming and application of U-form glass micro-nanofluidic chip with long nanochannels, Microfluidics and Nanofluidics, vol.77, issue.3, pp.423-429, 2009.
DOI : 10.1007/s10404-009-0407-8

M. J. Madou, Fundamentals of Microfabrication : The Science of Miniaturization, 2002.

G. Wallis and D. Pomerantz, Field Assisted Glass???Metal Sealing, Journal of Applied Physics, vol.40, issue.10, pp.3946-3949, 1969.
DOI : 10.1063/1.1657121

M. Despont, H. Gross, F. Arrouy, C. Stebler, and U. Staufer, Fabrication of a siliconpyrex-silicon stack by ac anodic bonding. Sensors and Actuators a-Physical, pp.219-224, 1996.

M. A. Schmidt, Wafer-to-wafer bonding for microstructure formation, Proceedings of the Ieee, pp.1575-1585, 1998.
DOI : 10.1109/5.704262

A. Datta, S. Gangopadhyay, H. Temkin, Q. S. Pu, and S. R. Liu, Nanofluidic channels by anodic bonding of amorphous silicon to glass to study ion-accumulation and ion-depletion effect, Talanta, vol.68, issue.3, pp.659-665, 2006.
DOI : 10.1016/j.talanta.2005.05.011

A. Cuenca and H. Bodiguel, Fluorescence photobleaching to evaluate flow velocity and hydrodynamic dispersion in nanoslits, Lab on a Chip, vol.19, issue.9, pp.1672-1679, 2012.
DOI : 10.1039/c2lc21232c

W. Sparreboom, A. Van-den, and J. C. Berg, Transport in nanofluidic systems: a review of theory and applications, New Journal of Physics, vol.12, issue.1, p.15004, 2010.
DOI : 10.1088/1367-2630/12/1/015004

D. Sinton, Microscale flow visualization, Microfluidics and Nanofluidics, vol.34, issue.1, pp.2-21, 2004.
DOI : 10.1007/s10404-004-0009-4

C. M. Zettner and M. Yoda, Particle velocity field measurements in a near-wall flow using evanescent wave illumination. Experiment in Fluids, pp.115-121, 2003.

S. Pouya, M. Koochesfahani, P. Snee, M. Bawendi, and D. Nocera, Single quantum dot (QD) imaging of fluid flow near surfaces, Experiments in Fluids, vol.34, issue.4, pp.784-786, 2005.
DOI : 10.1007/s00348-005-0004-x

H. F. Li, R. Sadr, and M. Yoda, Multilayer nano-particle image velocimetry, Experiments in Fluids, vol.34, issue.2, pp.185-194, 2006.
DOI : 10.1007/s00348-006-0155-4

C. I. Bouzigues, P. Tabeling, and L. Bocquet, Nanofluidics in the Debye Layer at Hydrophilic and Hydrophobic Surfaces, Physical Review Letters, vol.101, issue.11, 2008.
DOI : 10.1103/PhysRevLett.101.114503

URL : https://hal.archives-ouvertes.fr/hal-00324233

S. Pouya, M. M. Koochesfahani, A. B. Greytak, M. G. Bawendi, and D. G. Nocera, Experimental evidence of diffusion-induced bias in near-wall velocimetry using quantum dot measurements, Experiments in Fluids, vol.34, issue.6, pp.1035-1038, 2008.
DOI : 10.1007/s00348-008-0491-7

T. J. Arbour and J. Enderlein, Application of dual-focus fluorescence correlation spectroscopy to microfluidic flow-velocity measurement, Lab on a Chip, vol.19, issue.10, pp.1286-1292, 2010.
DOI : 10.1039/b924594d

C. F. Kuang and G. R. Wang, A novel far-field nanoscopic velocimetry for nanofluidics, Lab Chip, vol.81, issue.9, pp.240-245, 2010.
DOI : 10.1039/B917584A

B. Flamion, P. M. Bungay, C. C. Gibson, and K. R. Spring, Flow rate measurements in isolated perfused kidney tubules by fluorescence photobleaching recovery, Biophysical Journal, vol.60, issue.5, pp.1229-1242, 1991.
DOI : 10.1016/S0006-3495(91)82157-9

G. Wang, Laser induced fluorescence photobleaching anemometer for microfluidic devices, Lab on a Chip, vol.20, issue.Suppl., pp.450-456, 2005.
DOI : 10.1039/b416209a

G. R. Wang, I. Sas, H. Jiang, W. P. Janzen, and C. N. Hodge, Photobleaching-based flow measurement in a commercial capillary electrophoresis chip instrument, ELECTROPHORESIS, vol.987, issue.6, pp.1253-1263, 2008.
DOI : 10.1002/elps.200600855

K. F. Schrum, J. M. Lancaster, S. E. Johnston, and S. D. Gilman, Monitoring Electroosmotic Flow by Periodic Photobleaching of a Dilute, Neutral Fluorophore, Analytical Chemistry, vol.72, issue.18, pp.724317-4321, 2000.
DOI : 10.1021/ac0005114

B. P. Mosier, J. I. Molho, and J. G. Santiago, Photobleached-fluorescence imaging of microflows, Experiments in Fluids, vol.33, issue.4, pp.545-554, 2002.
DOI : 10.1007/s00348-002-0486-8

A. Ajdari, N. Bontoux, and H. A. Stone, Hydrodynamic Dispersion in Shallow Microchannels:?? the Effect of Cross-Sectional Shape, Analytical Chemistry, vol.78, issue.2, pp.387-392, 2006.
DOI : 10.1021/ac0508651

A. Cook and A. Le, The effect of solvent and ph, Journal of Physical Chemistry Lab, vol.10, pp.44-49, 2006.

G. Taylor, Conditions under Which Dispersion of a Solute in a Stream of Solvent can be Used to Measure Molecular Diffusion, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.225, issue.1163, pp.225473-477, 1163.
DOI : 10.1098/rspa.1954.0216

R. Aris, On the Dispersion of a Solute in a Fluid Flowing through a Tube, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.235, issue.1200, pp.67-77, 1200.
DOI : 10.1098/rspa.1956.0065

K. Dorfman and H. Brenner, , 4667 (2001)], Journal of Applied Physics, vol.90, issue.12, pp.6553-6554, 2001.
DOI : 10.1063/1.1417984

K. Pappaert, J. Biesemans, D. Clicq, S. Vankrunkelsven, and G. Desmet, Measurements of diffusion coefficients in 1-D micro- and nanochannels using shear-driven flows, Lab on a Chip, vol.72, issue.1, pp.1104-1110, 2005.
DOI : 10.1039/b505122c

D. Dutta and D. Leighton, Dispersion Reduction in Pressure-Driven Flow Through Microetched Channels, Analytical Chemistry, vol.73, issue.3, pp.504-513, 2001.
DOI : 10.1021/ac0008385

J. Sanchez-reyes and L. A. Archer, Interfacial Slip Violations in Polymer Solutions:?? Role of Microscale Surface Roughness, Langmuir, vol.19, issue.8, pp.3304-3312, 2003.
DOI : 10.1021/la0265326

D. Wever, F. Picchioni, and A. Broekhuis, Polymers for enhanced oil recovery: A paradigm for structure???property relationship in aqueous solution, Progress in Polymer Science, vol.36, issue.11, pp.1558-1628, 2011.
DOI : 10.1016/j.progpolymsci.2011.05.006

M. T. Ghannam, Interfacial properties of polyacrylamide solutions, Journal of Applied Polymer Science, vol.33, issue.1, pp.219-227, 1999.
DOI : 10.1002/(SICI)1097-4628(19991003)74:1<219::AID-APP27>3.0.CO;2-I

M. T. Ghannam, Rheological properties of aqueous polyacrylamide/NaCl solutions, Journal of Applied Polymer Science, vol.2, issue.14, pp.1905-1912, 1999.
DOI : 10.1002/(SICI)1097-4628(19990628)72:14<1905::AID-APP11>3.0.CO;2-P

M. T. Ghannam and M. N. , Rheological properties of aqueous polyacrylamide solutions, Journal of Applied Polymer Science, vol.69, issue.8, pp.1587-1597, 1998.
DOI : 10.1002/(SICI)1097-4628(19980822)69:8<1587::AID-APP13>3.0.CO;2-S

P. Bradna, O. Quadrat, and D. Dupuis, The influence of salt concentration on negative thixotropy in solutions of partially hydrolyzed polyacrylamide, Colloid & Polymer Science, vol.36, issue.5, pp.421-425, 1995.
DOI : 10.1007/BF00656885

O. Quadrat, P. Bradna, D. Dupuis, and C. Wolff, Negtive thixotropy of solutions of partially hydrolyzed polyacrylamide. Part I: The influence of shear rate on time changes of flow characteristics, Colloid & Polymer Science, vol.20, issue.5, pp.1057-1059, 1992.
DOI : 10.1007/BF00652867

J. Sukpisan, J. Kanatharana, A. Sirivat, and S. Q. Wang, The specific viscosity of partially hydrolyzed polyacrylamide solutions: Effects of degree of hydrolysis, molecular weight, solvent quality and temperature, Journal of Polymer Science Part B: Polymer Physics, vol.36, issue.5, pp.743-753, 1998.
DOI : 10.1002/(SICI)1099-0488(19980415)36:5<743::AID-POLB2>3.0.CO;2-M

K. Lewandowska, Comparative studies of rheological properties of polyacrylamide and partially hydrolyzed polyacrylamide solutions, Journal of Applied Polymer Science, vol.37, issue.4, pp.2235-2241, 2007.
DOI : 10.1002/app.25247

K. C. Tam and C. Tiu, Role of ionic species and valency on the steady shear behavior of partially hydrolyzed polyacrylamide solutions, Colloid & Polymer Science, vol.28, issue.10, pp.911-920, 1990.
DOI : 10.1007/BF01469369

K. C. Tam and C. Tiu, Role of ionic species and valency on the viscoelastic properties of partially hydrolyzed polyacrylamide solutions, Colloid & Polymer Science, vol.12, issue.5, pp.516-522, 1994.
DOI : 10.1007/BF00653215

P. Oswald and M. S. Jean, Rhéophysique : Ou comment coule la matière. Échelles (Paris). Belin, 2005.

W. Kuhn, Uber die gestalt fadenförminger moleküle in losungen, Kolloidzeitschrift, vol.2, p.68, 1934.

P. J. Flory, The Configuration of Real Polymer Chains, The Journal of Chemical Physics, vol.17, issue.3, p.303, 1949.
DOI : 10.1063/1.1747243

P. G. De-gennes, Reptation of a Polymer Chain in the Presence of Fixed Obstacles, The Journal of Chemical Physics, vol.55, issue.2, p.572, 1971.
DOI : 10.1063/1.1675789

P. E. Rouse, A theory of the linear viscoelastic properties of dilute solutions of coilong polymers, Journal of Chemical Physics, vol.21, 1953.

S. F. Edwards, Statistical mechanics with topological constraints: I, Proceedings of the Physical Society, p.91, 1967.
DOI : 10.1088/0370-1328/91/3/301

A. V. Dobrynin and M. Rubinstein, Theory of polyelectrolytes in solutions and at surfaces. Progress in Polymer Science, pp.1049-1118, 2005.

P. G. De-gennes, P. Pincus, F. Brochard, and R. M. Velasco, Remarks on polyelectrolyte conformation, Journal de Physique, vol.37, issue.12, pp.1461-1476, 1976.
DOI : 10.1051/jphys:0197600370120146100

URL : https://hal.archives-ouvertes.fr/jpa-00208549

M. Reiner, Deformation and flow, 1949.

M. M. Cross, Rheology of non-Newtonian fluids: A new flow equation for pseudoplastic systems, Journal of Colloid Science, vol.20, issue.5, pp.417-437, 1965.
DOI : 10.1016/0095-8522(65)90022-X

B. Rabinowitsch, Über die viskosität und elastizität von solen, Zeitschrift für physikalische Chemie, pp.1-26, 1929.

J. C. Crocker and D. G. Grier, Methods of Digital Video Microscopy for Colloidal Studies, Journal of Colloid and Interface Science, vol.179, issue.1, pp.298-310, 1996.
DOI : 10.1006/jcis.1996.0217

Y. Viero, Q. He, and A. Bancaud, Hydrodynamic Manipulation of DNA in Nanopost Arrays: Unhooking Dynamics and Size Separation, Small, vol.31, issue.24, pp.3508-3518, 2011.
DOI : 10.1002/smll.201101345

S. Gerashchenko and V. Steinberg, Statistics of Tumbling of a Single Polymer Molecule in Shear Flow, Physical Review Letters, vol.96, issue.3, 2006.
DOI : 10.1103/PhysRevLett.96.038304

H. Fay, Films lubrifiants supramoléculaires organisés : de la microstructure aux propriétés tribologiques, 2011.

H. Fay, O. Mondain-monval, V. Ponsinet, J. Cayer-barrioz, D. Mazuyer et al., On the correlation between model lubricant structure and its tribological behaviour, AIP Conference Proceedings, vol.1353, pp.1782-1788, 2011.
DOI : 10.1063/1.3589774

S. Hollinger, Comportement d'un lubrifiant aqueux dans un contact à très hautes pressions Application au tréfilage de fils d'acier laitonnés, 1999.

D. Roux, F. Nallet, and O. Diat, Rheology of Lyotropic Lamellar Phases, Europhysics Letters (EPL), vol.24, issue.1, p.53, 1994.
DOI : 10.1209/0295-5075/24/1/009

C. Drummond, J. Israelachvili, and P. Richetti, Friction between two weakly adhering boundary lubricated surfaces in water, Physical Review E, vol.67, issue.6, pp.1-16, 2003.
DOI : 10.1103/PhysRevE.67.066110

N. Portecop, Etude du comportement rhéologique de fluides complexes à haut taux de cisaillement, pp.2011-00820571, 2013.