S. Mössbauer, .. De-rimo, .. De, S. De, and S. , 90 I-5-3-1) Spectre Mössbauer. 90 I-5-3-2) Spectre Mössbauer de RimO en présence. 92 I-5-3-3) Spectre Mössbauer de RimO en conditions réductrices, 94 I-5-3-4) Spectre Mössbauer de RimO en conditions réductrices et en présence, p.96

.. La-réaction, 97 I-6-2) Détection des sous-produits de la réaction 101 I-6-3) Cinétique de formation des sous-produits de la réaction, ., p.102

.. Etude-préliminaire-réalisée-sur-rimo, 114 II-1-1-1) Amélioration de la préparation de l’holo 115 II-1-1-3) Activité de l’holo, p.118

.. Etude-du-mécanisme-réactionnel-de-miab, .. De-miab, and .. Activité-catalytique-de-miab, 120 II-1-2-1) Amélioration de la préparation 120 II-1-2-2) Le test d’activité de 122 II-1-2-4) Activité de l’holo-MiaB en présence de séléniure, ) Cinétique des produits et sous-produits de la réaction en présence de séléniure. ............................... 124 II-1-2-6) Spectroscopie RPE de MiaB en présence de sulfure, p.125

H. Etude-spectroscopique, .. De-la-protéine-miab, H. Spectroscopie, and -. De-protéine-miab, 130 II-3-1) 130 II-3-2) Spectroscopie HYSCORE de la protéine MiaB- 132 II-3-3) Spectroscopie HYSCORE de l’holo-MiaB-3M en présence de sulfure, 133 II-3-4) Spectroscopie HYSCORE de la l’holo-MiaB-3M en présence de CH 3

R. Spectroscopie, X. En-bande, S. Hyscore-de-l’holo-miab-en-présence-de, and S. De, 135 II-3-6-1) Spectroscopie RPE de l’holo-MiaB en présence 135 II-3-6-2) Spectroscopie HYSCORE de l’holo-MiaB en présence de SAM et d’ARNt, p.136

E. Le-choix-de-la-souche, -. Coli-miab, and .. De-masse, 150 III-3-2) Analyse HPLC et spectrométrie, p.150

Y. Une-nouvelle-nomenclature-pour-les-familles-de-mttases and C. , 154 III-5-1) Surexpression de MtaB de B. subtilis et Cdkal1 de souris dans 155 III-5-2) Purification de MtaB de B. subtilis 156 III-5-3) Caractérisation spectroscopique par UV-visible et RPE de l’holo, 157 III-5-4) Test enzymatique in vitro de MtaB et e-MtaB, p.159

A. Ben-shem, L. Jenner, G. Yusupova, and M. Yusupov, Crystal Structure of the Eukaryotic Ribosome, Science, vol.330, issue.6008, pp.1203-1209, 2010.
DOI : 10.1126/science.1194294

J. Williamson, The Ribosome at Atomic Resolution, Cell, vol.139, issue.6, pp.1041-1043, 2009.
DOI : 10.1016/j.cell.2009.11.028

B. Schuwirth, M. Borovinskaya, C. Hau, W. Zhang, A. Vila-sanjurjo et al., Structures of the Bacterial Ribosome at 3.5 A Resolution, Science, vol.310, issue.5749, pp.827-834, 2005.
DOI : 10.1126/science.1117230

D. Kessler, Enzymatic activation of sulfur for incorporation into biomolecules in prokaryotes, FEMS Microbiology Reviews, vol.30, issue.6, pp.825-840, 2006.
DOI : 10.1111/j.1574-6976.2006.00036.x

S. Levy and A. Danchin, Phylogeny of metabolic pathways: O-acetylserine sulphydrylase A is homologous to the tryptophan synthase beta subunit, Molecular Microbiology, vol.44, issue.6, pp.777-783, 1988.
DOI : 10.1016/0378-1119(85)90120-9

S. Ignoul and J. Eggermont, CBS domains: structure, function, and pathology in human proteins, AJP: Cell Physiology, vol.289, issue.6, pp.1369-1378, 2005.
DOI : 10.1152/ajpcell.00282.2005

N. Awano, M. Wada, H. Mori, S. Nakamori, and H. Takagi, Identification and Functional Analysis of Escherichia coli Cysteine Desulfhydrases, Applied and Environmental Microbiology, vol.71, issue.7, pp.4149-4152, 2005.
DOI : 10.1128/AEM.71.7.4149-4152.2005

C. Szabo, Hydrogen sulphide and its therapeutic potential, Nature Reviews Drug Discovery, vol.76, issue.11, pp.917-935, 2007.
DOI : 10.1038/nrd2425

H. Beinert, Iron-sulfur proteins: ancient structures, still full of surprises, Journal of Biological Inorganic Chemistry, vol.5, issue.1, pp.2-15, 2000.
DOI : 10.1007/s007750050002

M. Fontecave and S. Ollagnier-de-choudens, Iron???sulfur cluster biosynthesis in bacteria: Mechanisms of cluster assembly and transfer, Archives of Biochemistry and Biophysics, vol.474, issue.2, pp.226-237, 1995.
DOI : 10.1016/j.abb.2007.12.014

J. Peters, W. Lanzilotta, B. Lemon, and L. Seefeldt, X-ray Crystal Structure of the Fe-Only Hydrogenase (CpI) from Clostridium pasteurianum to 1.8 Angstrom Resolution, Science, vol.282, issue.5395, pp.1853-1858, 1998.
DOI : 10.1126/science.282.5395.1853

S. Dementin, V. Belle, P. Bertrand, B. Guigliarelli, G. Adryanczyk-perrier et al., Changing the Ligation of the Distal [4Fe4S] Cluster in NiFe Hydrogenase Impairs Inter- and Intramolecular Electron Transfers, Journal of the American Chemical Society, vol.128, issue.15, pp.5209-5218, 2006.
DOI : 10.1021/ja060233b

URL : https://hal.archives-ouvertes.fr/hal-00336048

B. Martins, H. Dobbek, I. Cinkaya, W. Buckel, and A. Messerschmidt, Crystal structure of 4-hydroxybutyryl-CoA dehydratase: Radical catalysis involving a [4Fe-4S] cluster and flavin, Proceedings of the National Academy of Sciences, vol.101, issue.44, pp.15645-15649, 2004.
DOI : 10.1073/pnas.0403952101

H. Beinert, R. Holm, and . Munck, Iron-Sulfur Clusters: Nature's Modular, Multipurpose Structures, Science, vol.277, issue.5326, pp.653-659, 1997.
DOI : 10.1126/science.277.5326.653

T. Lee, S. Agarwalla, and R. Stroud, Crystal Structure of RumA, an Iron-Sulfur Cluster Containing E. coli Ribosomal RNA 5-Methyluridine Methyltransferase, Structure, vol.12, issue.3, pp.397-407, 2004.
DOI : 10.1016/j.str.2004.02.009

T. Lee, S. Agarwalla, and R. Stroud, A Unique RNA Fold in the RumA-RNA-Cofactor Ternary Complex Contributes to Substrate Selectivity and Enzymatic Function, Cell, vol.120, issue.5, pp.599-611, 2005.
DOI : 10.1016/j.cell.2004.12.037

H. Beinert, M. Kennedy, and C. Stout, Aconitase as Iron???Sulfur Protein, Enzyme, and Iron-Regulatory Protein, Chemical Reviews, vol.96, issue.7, pp.2335-2373, 1996.
DOI : 10.1021/cr950040z

J. Kim, D. Darley, and W. Buckel, 2-Hydroxyisocaproyl-CoA dehydratase and its activator from Clostridium difficile, FEBS Journal, vol.197, issue.2, pp.550-561, 2005.
DOI : 10.1111/j.1742-4658.2004.04498.x

E. Mueller, Trafficking in persulfides: delivering sulfur in biosynthetic pathways, Nature Chemical Biology, vol.279, issue.4, pp.185-194, 2006.
DOI : 10.1038/nchembio779

E. Mueller, P. Palenchar, and C. Buck, The Role of the Cysteine Residues of ThiI in the Generation of 4-Thiouridine in tRNA, Journal of Biological Chemistry, vol.276, issue.36, pp.33588-33595, 2001.
DOI : 10.1074/jbc.M104067200

R. Kambampati and C. Lauhon, Evidence for the Transfer of Sulfane Sulfur from IscS to ThiI during the in Vitro Biosynthesis of 4-Thiouridine in Escherichia coli tRNA, Journal of Biological Chemistry, vol.275, issue.15, pp.10727-10730, 2000.
DOI : 10.1074/jbc.275.15.10727

G. Cantoni, Biological Methylation: Selected Aspects, Annual Review of Biochemistry, vol.44, issue.1, pp.435-451, 1975.
DOI : 10.1146/annurev.bi.44.070175.002251

M. Fontecave, M. Atta, and E. Mulliez, S-adenosylmethionine: nothing goes to waste, Trends in Biochemical Sciences, vol.29, issue.5, pp.243-249, 2004.
DOI : 10.1016/j.tibs.2004.03.007

S. Booker, Anaerobic functionalization of unactivated C???H bonds, Current Opinion in Chemical Biology, vol.13, issue.1, pp.58-73, 2009.
DOI : 10.1016/j.cbpa.2009.02.036

H. Sofia, G. Chen, B. Hetzler, J. Reyes-spindola, and N. Miller, Radical SAM, a novel protein superfamily linking unresolved steps in familiar biosynthetic pathways with radical mechanisms: functional characterization using new analysis and information visualization methods, Nucleic Acids Research, vol.29, issue.5, pp.1097-1106, 2001.
DOI : 10.1093/nar/29.5.1097

S. Mcglynn, E. Boyd, E. Shepard, R. Lange, R. Gerlach et al., Identification and Characterization of a Novel Member of the Radical AdoMet Enzyme Superfamily and Implications for the Biosynthesis of the Hmd Hydrogenase Active Site Cofactor, Journal of Bacteriology, vol.192, issue.2, pp.595-598, 2010.
DOI : 10.1128/JB.01125-09

P. Hanzelmann and H. Schindelin, Crystal structure of the S-adenosylmethionine-dependent enzyme MoaA and its implications for molybdenum cofactor deficiency in humans, Proceedings of the National Academy of Sciences, vol.101, issue.35, pp.12870-12875, 2004.
DOI : 10.1073/pnas.0404624101

T. Grove, J. Ahlum, P. Sharma, C. Krebs, S. Booker et al., A Consensus Mechanism for Radical SAM-Dependent Dehydrogenation? BtrN Contains Two [4Fe-4S] Clusters, Vitamins and Hormones -Advances in Research and Applications, pp.3783-3785, 2001.
DOI : 10.1021/bi9022126

F. Berkovitch, Y. Nicolet, J. Wan, J. Jarrett, and C. Drennan, Crystal Structure of Biotin Synthase, an S-Adenosylmethionine-Dependent Radical Enzyme, Science, vol.303, issue.5654, pp.76-79, 2004.
DOI : 10.1126/science.1088493

N. Nesbitt, C. Baleanu-gogonea, R. Cicchillo, K. Goodson, D. Iwig et al., Expression, purification, and physical characterization of Escherichia coli lipoyl(octanoyl)transferase, Protein Expression and Purification, vol.39, issue.2, pp.269-282, 2005.
DOI : 10.1016/j.pep.2004.10.021

S. Booker, R. Cicchillo, and T. Grove, Self-sacrifice in radical S-adenosylmethionine proteins, Current Opinion in Chemical Biology, vol.11, issue.5, pp.543-552, 2007.
DOI : 10.1016/j.cbpa.2007.08.028

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2637762

H. Grosjean, K. Nicoghosian, E. Haumont, D. Soll, and R. Cedergren, tRNAs, Nucleic Acids Research, vol.13, issue.15, pp.5697-5706, 1985.
DOI : 10.1093/nar/13.15.5697

J. Ericson and G. Bjork, Pleiotropic effects induced by modification deficiency next to the anticodon of tRNA from Salmonella typhimurium LT2., Journal of Bacteriology, vol.166, issue.3, pp.1013-1021, 1986.
DOI : 10.1128/jb.166.3.1013-1021.1986

F. Pierrel, G. Bjork, M. Fontecave, and M. Atta, Enzymatic Modification of tRNAs, Journal of Biological Chemistry, vol.277, issue.16, pp.13367-13370, 2002.
DOI : 10.1074/jbc.C100609200

F. Pierrel, H. Hernandez, M. Johnson, M. Fontecave, and M. Atta, MiaB Protein from Thermotoga maritima: CHARACTERIZATION OF AN EXTREMELY THERMOPHILIC tRNA-METHYLTHIOTRANSFERASE, Journal of Biological Chemistry, vol.278, issue.32, pp.29515-29524, 2003.
DOI : 10.1074/jbc.M301518200

F. Pierrel, T. Douki, M. Fontecave, and M. Atta, MiaB Protein Is a Bifunctional Radical-S-Adenosylmethionine Enzyme Involved in Thiolation and Methylation of tRNA, Journal of Biological Chemistry, vol.279, issue.46, pp.47555-47563, 2004.
DOI : 10.1074/jbc.M408562200

J. &. Kowalak and K. Walsh, ??-Methylthio-aspartic acid: Identification of a novel posttranslational modification in ribosomal protein S12 from escherichia coli, Protein Science, vol.66, issue.8, pp.1625-1632, 1996.
DOI : 10.1002/pro.5560050816

B. Anton, L. Saleh, J. Benner, E. Raleigh, S. Kasif et al., RimO, a MiaB-like enzyme, methylthiolates the universally conserved Asp88 residue of ribosomal protein S12 in Escherichia coli, Proceedings of the National Academy of Sciences, vol.105, issue.6, pp.1826-1831, 2008.
DOI : 10.1073/pnas.0708608105

D. Reddy, P. Crain, C. Edmonds, R. Gupta, T. Hashizume et al., Structure determination of two new amino acid-containing derivatives of adenosine from tRNA of thermophilic bacteria and archaea, Nucleic Acids Research, vol.20, issue.21, pp.5607-5615, 1992.
DOI : 10.1093/nar/20.21.5607

B. Vold and C. Green, Expression in Escherichia coli of Bacillus subtilis tRNA genes from a promoter within the tRNA gene region., Journal of Bacteriology, vol.166, issue.1, pp.306-312, 1986.
DOI : 10.1128/jb.166.1.306-312.1986

B. Vold, D. Keith, M. Buck, J. Mccloskey, and H. Pang, 168: structural analysis, Nucleic Acids Research, vol.10, issue.10, pp.3125-3132, 1982.
DOI : 10.1093/nar/10.10.3125

W. Kaelin, W. Krek, W. Sellers, J. Decaprio, F. Ajchenbaum et al., Expression cloning of a cDNA encoding a retinoblastoma-binding protein with E2F-like properties, Cell, vol.70, issue.2, pp.351-364, 1992.
DOI : 10.1016/0092-8674(92)90108-O

P. Joseph, J. Fantino, M. Herbaud, F. Denizot, M. Yang et al., Fems Microbiology Letters, Molecular Biology Reports, vol.205, issue.37, pp.91-97, 2001.

F. Studier and B. Moffatt, Use of bacteriophage T7 RNA polymerase to direct selective high-level expression of cloned genes, Journal of Molecular Biology, vol.189, issue.1, pp.113-130, 1986.
DOI : 10.1016/0022-2836(86)90385-2

H. Beinert, Semi-micro methods for analysis of labile sulfide and of labile sulfide plus sulfane sulfur in unusually stable iron-sulfur proteins, Analytical Biochemistry, vol.131, issue.2, pp.373-378, 1983.
DOI : 10.1016/0003-2697(83)90186-0

J. Then and H. Truper, Sulfide oxidation in Ectothiorhodospira abdelmalekii. Evidence for the catalytic role of cytochrome c-551, Archives of Microbiology, vol.30, issue.4, pp.254-258, 1983.
DOI : 10.1007/BF00413477

C. Gehrke and K. Kuo, Ribonucleoside analysis by reversed-phase high-performance liquid chromatography, Journal of Chromatography A, vol.471, pp.3-36, 1989.
DOI : 10.1016/S0021-9673(00)94152-9

S. Gambarelli, E. Mulliez, and M. Fontecave, Iron???Sulfur Clusters in ???Radical SAM??? Enzymes: Spectroscopy and Coordination, Biol Magn Reson, vol.29, pp.53-75, 2010.
DOI : 10.1007/978-1-4419-1139-1_4

URL : https://hal.archives-ouvertes.fr/hal-01262193

V. Anantharaman, E. Koonin, and L. Aravind, TRAM, a predicted RNA-binding domain, common to tRNA uracil methylation and adenine thiolation enzymes, FEMS Microbiology Letters, vol.197, issue.2, pp.215-221, 2001.
DOI : 10.1111/j.1574-6968.2001.tb10606.x

J. Vey, Y. J. Li, M. Broderick, W. Broderick, J. Drennan et al., Structural basis for glycyl radical formation by pyruvate formate-lyase activating enzyme, Proceedings of the National Academy of Sciences, vol.105, issue.42, pp.16137-16141, 2008.
DOI : 10.1073/pnas.0806640105

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2571006

E. Walters, R. Garcia-serres, G. Jameson, D. Glauser, F. Bourquin et al., ] Cluster Chemistry in Ferredoxin:Thioredoxin Reductase:?? Implications for the Catalytic Mechanism, Journal of the American Chemical Society, vol.127, issue.26, pp.9612-9624, 2005.
DOI : 10.1021/ja051909q

J. Yang, S. Naik, D. Ortillo, R. Garcia-serres, M. Li et al., State, Biochemistry, vol.48, issue.39, pp.9234-9241, 2009.
DOI : 10.1021/bi9010286

URL : https://hal.archives-ouvertes.fr/hal-00772757

Y. Nicolet, J. Rubach, M. Posewitz, A. P. Mathevon, C. Atta et al., X-ray Structure of the [FeFe]-Hydrogenase Maturase HydE from Thermotoga maritima, Journal of Biological Chemistry, vol.283, issue.27, pp.18861-18872, 2003.
DOI : 10.1074/jbc.M801161200

B. Lepore, F. Ruzicka, P. Frey, and D. Ringe, The x-ray crystal structure of lysine-2,3-aminomutase from Clostridium subterminale, Proceedings of the National Academy of Sciences, vol.102, issue.39, pp.13819-13824, 2005.
DOI : 10.1073/pnas.0505726102

R. Cicchillo and S. Booker, :?? Both Sulfur Atoms in Lipoic Acid are Contributed by the Same Lipoyl Synthase Polypeptide, Journal of the American Chemical Society, vol.127, issue.9, pp.2860-2861, 2005.
DOI : 10.1021/ja042428u

J. Hioe and H. Zipse, Radicals in enzymatic catalysis???a thermodynamic perspective, Faraday Discuss., vol.39, pp.301-313, 2010.
DOI : 10.1039/B907121K

S. Chimnaronk, F. Forouhar, J. Sakai, M. Yao, C. Tron et al., -Isopentenyladenosine at the tRNA Anticodon, Biochemistry, vol.48, issue.23, pp.5057-5065, 2009.
DOI : 10.1021/bi900337d

N. Mccrate, M. Varner, K. Kim, and M. Nagan, Molecular dynamics simulations of human Formula: the role of modified bases in mRNA recognition, Nucleic Acids Research, vol.34, issue.19, pp.5361-5368, 2006.
DOI : 10.1093/nar/gkl580

B. Anton, S. Russell, J. Vertrees, S. Kasif, and E. Raleigh, Functional characterization of the YmcB and YqeV tRNA methylthiotransferases of Bacillus subtilis, Nucleic Acids Research, vol.38, issue.18, pp.6195-6205, 2010.
DOI : 10.1093/nar/gkq364

D. Agarwal, S. Gregory, &. O-'connor, and M. , Error-Prone and Error-Restrictive Mutations Affecting Ribosomal Protein S12, Journal of Molecular Biology, vol.410, issue.1, pp.1-9
DOI : 10.1016/j.jmb.2011.04.068

J. Dunkle, L. Wang, M. Feldman, A. Pulk, V. Chen et al., Structures of the Bacterial Ribosome in Classical and Hybrid States of tRNA Binding, Science, vol.332, issue.6032, pp.981-984
DOI : 10.1126/science.1202692

A. Kornberg, Ten commandments of enzymology, amended, Trends in Biochemical Sciences, vol.28, issue.10, pp.515-517, 2003.
DOI : 10.1016/j.tibs.2003.08.007