S. D. Roughley, A. M. Jordan, . Med, . Chem, P. A. Bethel et al., Boronic acids : preparation and applications in organic synthesis and medicine, Tetrahedron J. Am. Chem. Soc. J. Am. Chem. Soc. Org. Process Res. Dev Angew. Chem. Int. Ed. Angew. Chem. Int. Ed. Angew. Chem. Int. Ed, vol.54, issue.43, pp.3451-3479, 1931.

G. R. Dick, E. M. Woerly, and M. D. Burke, A General Solution for the 2-Pyridyl Problem, Angewandte Chemie International Edition, vol.117, issue.11, pp.2667-2672, 2012.
DOI : 10.1002/anie.201108608

C. E. Tucker, J. Davidson, P. Knochel, S. Pereira, M. Srebnik et al., Mild and stereoselective hydroborations of functionalized alkynes and alkenes using pinacolborane, The Journal of Organic Chemistry, vol.57, issue.12, pp.3482-3485, 1992.
DOI : 10.1021/jo00038a044

M. Lysén, H. M. Hansen, M. Begtrup, and J. L. Kristensen, Synthesis of Substituted 2-Cyanoarylboronic Esters, The Journal of Organic Chemistry, vol.71, issue.6, pp.2518-2520, 2006.
DOI : 10.1021/jo052400g

O. Baron and P. Knochel, Preparation and Selective Reactions of Mixed Bimetallic Aromatic and Heteroaromatic Boron-Magnesium Reagents, Angewandte Chemie International Edition, vol.68, issue.20, pp.3133-3135, 2005.
DOI : 10.1002/anie.200462928

S. Darses and J. Genet, Potassium Organotrifluoroborates:?? New Perspectives in Organic Synthesis, Chemical Reviews, vol.108, issue.1, pp.288-325, 2008.
DOI : 10.1021/cr0509758

URL : https://hal.archives-ouvertes.fr/hal-00304302

G. A. Molander, B. Canturk, and L. E. Kennedy, Scope of the Suzuki???Miyaura Cross-Coupling Reactions of Potassium Heteroaryltrifluoroborates, The Journal of Organic Chemistry, vol.74, issue.3, pp.973-980, 2009.
DOI : 10.1021/jo802590b

E. Vedejs, R. W. Chapman, S. C. Fields, S. Lin, and M. R. Schrimpf, Conversion of Arylboronic Acids into Potassium Aryltrifluoroborates: Convenient Precursors of Arylboron Difluoride Lewis Acids, The Journal of Organic Chemistry, vol.60, issue.10, pp.3020-3027, 1995.
DOI : 10.1021/jo00115a016

A. J. Lennox and G. C. Lloyd-jones, Preparation of Organotrifluoroborate Salts: Precipitation-Driven Equilibrium under Non-Etching Conditions, Angewandte Chemie International Edition, vol.76, issue.37, pp.9385-9388, 2012.
DOI : 10.1002/anie.201203930

T. Mancilla, R. Contreras, and B. Wrackmeyer, New bicyclic organylboronic esters derived from iminodiacetic acids, Journal of Organometallic Chemistry, vol.307, issue.1, pp.1-6, 1986.
DOI : 10.1016/0022-328X(86)80169-3

S. J. Lee, K. C. Gray, J. S. Paek, and M. D. Burke, Simple, Efficient, and Modular Syntheses of Polyene Natural Products via Iterative Cross-Coupling, Journal of the American Chemical Society, vol.130, issue.2, pp.466-468, 2008.
DOI : 10.1021/ja078129x

E. P. Gillis and M. D. Burke, Multistep Synthesis of Complex Boronic Acids from Simple MIDA Boronates, Journal of the American Chemical Society, vol.130, issue.43, pp.14084-14085, 2008.
DOI : 10.1021/ja8063759

D. M. Knapp, E. P. Gillis, and M. D. Burke, A General Solution for Unstable Boronic Acids: Slow-Release Cross-Coupling from Air-Stable MIDA Boronates, Journal of the American Chemical Society, vol.131, issue.20, pp.6961-6963, 2009.
DOI : 10.1021/ja901416p

T. Ishiyama, M. Murata, N. Miyaura, T. Ishiyama, and H. Chen, Palladium(0)-Catalyzed Cross-Coupling Reaction of Alkoxydiboron with Haloarenes: A Direct Procedure for Arylboronic Esters, The Journal of Organic Chemistry, vol.60, issue.23, pp.7508-7510, 1995.
DOI : 10.1021/jo00128a024

M. Murata, S. Watanabe, Y. Masuda, P. V. Ramachandran, and J. S. Chandra, Novel Palladium(0)-Catalyzed Coupling Reaction of Dialkoxyborane with Aryl Halides:?? Convenient Synthetic Route to Arylboronates, The Journal of Organic Chemistry, vol.62, issue.19, pp.6458-6459, 1997.
DOI : 10.1021/jo970963p

M. Murata, T. Oyama, S. Watanabe, Y. Masuda, D. Guénard et al., Palladium-Catalyzed Borylation of Aryl Halides or Triflates with Dialkoxyborane:?? A Novel and Facile Synthetic Route to Arylboronates, The Journal of Organic Chemistry, vol.65, issue.1, pp.164-168, 2000.
DOI : 10.1021/jo991337q

C. Krämer, K. Zeitler, and T. J. Müller, First synthesis and electronic properties of (hetero)aryl bridged and directly linked redox active phenothiazinyl dyads and triads, Tetrahedron Letters, vol.42, issue.49, pp.8619-8624, 2001.
DOI : 10.1016/S0040-4039(01)01848-2

P. Broutin, I. ?er?a, M. Campaniello, F. Leroux, and F. Colobert, Palladium-Catalyzed Borylation of Phenyl Bromides and Application in One-Pot Suzuki???Miyaura Biphenyl Synthesis, Organic Letters, vol.6, issue.24, pp.4419-4422, 2004.
DOI : 10.1021/ol048303b

K. L. Billingsley, T. E. Barder, and S. L. Buchwald, Palladium-Catalyzed Borylation of Aryl Chlorides: Scope, Applications, and Computational Studies, Angewandte Chemie International Edition, vol.127, issue.28, pp.5359-5363, 2007.
DOI : 10.1002/anie.200701551

K. L. Billingsley, S. L. Buchwald, T. Oda, and S. Watanabe, An Improved System for the Palladium-Catalyzed Borylation of Aryl Halides with Pinacol Borane, The Journal of Organic Chemistry, vol.73, issue.14, pp.5589-5591, 2008.
DOI : 10.1021/jo800727s

M. Murata, T. Oda, Y. Sogabe, H. Tone, T. Namikoshi et al., Palladium-catalyzed Borylation of Aryl Arenesulfonates with Dialkoxyboranes, Chemistry Letters, vol.40, issue.9, pp.962-963, 2011.
DOI : 10.1246/cl.2011.962

I. A. Mkhalid, J. H. Barnard, T. B. Marder, J. M. Murphy, and J. F. Hartwig, C???H Activation for the Construction of C???B Bonds, Chemical Reviews, vol.110, issue.2, pp.890-931, 2010.
DOI : 10.1021/cr900206p

T. E. Hurst, T. K. Macklin, M. Becker, E. Hartmann, W. Kügel et al., Metalation: Complementary Borylation of Aromatics and Heteroaromatics, Chemistry - A European Journal, vol.542, issue.615, pp.8155-8161, 2010.
DOI : 10.1002/chem.201000401

M. Murata, H. Odajima, S. Watanabe, and Y. Masuda, Aromatic C???H Borylation Catalyzed by Hydrotris(pyrazolyl)borate Complexes of Rhodium and Iridium, Bulletin of the Chemical Society of Japan, vol.79, issue.12, pp.1980-1982, 2006.
DOI : 10.1246/bcsj.79.1980

C. Moldoveanu, D. A. Wilson, C. J. Wilson, P. Corcoran, B. M. Rosen et al., (dppp)/dppf, Organic Letters, vol.11, issue.21, pp.4974-4977, 2009.
DOI : 10.1021/ol902155e

C. Moldoveanu, D. A. Wilson, C. J. Wilson, P. Leowanawat, A. Resmerita et al., -Based Mixed-Ligand Systems, The Journal of Organic Chemistry, vol.75, issue.16, pp.5438-5452, 2010.
DOI : 10.1021/jo101023t

URL : https://hal.archives-ouvertes.fr/halshs-00635852

C. M. So, C. P. Lau, and F. Y. Kwong, Easily Accessible and Highly Tunable Indolyl Phosphine Ligands for Suzuki???Miyaura Coupling of Aryl Chlorides, Organic Letters, vol.9, issue.15, pp.2795-2798, 2007.
DOI : 10.1021/ol070898y

W. D. Miller, A. H. Fray, J. T. Quatroche, and C. D. Sturgill, Suppression of a Palladium-Mediated Homocoupling in a Suzuki Cross-Coupling Reaction. Development of an Impurity Control Strategy Supporting Synthesis of LY451395, Organic Process Research & Development, vol.11, issue.3, pp.359-364, 2007.
DOI : 10.1021/op060180i

S. H. Rose and S. G. Shore, Boron Heterocycles. I. Preparation and Properties of 1,3,2-Dioxaborolane, Inorganic Chemistry, vol.1, issue.4, pp.744-748, 1962.
DOI : 10.1021/ic50004a006

D. J. Pasto, V. Balasubramaniyan, and P. W. Wojtkowski, Transfer reactions involving boron. XX. Disproportionation reactions of alkyl-, alkoxy-, and haloboranes, Inorganic Chemistry, vol.8, issue.3, pp.594-598, 1969.
DOI : 10.1021/ic50073a038

L. Shi, Y. Chu, P. Knochel, and H. Mayr, Relative Rates of Bromine???Magnesium Exchange Reactions in Substituted Bromobenzene Derivatives, Angewandte Chemie International Edition, vol.44, issue.1, pp.202-204, 2008.
DOI : 10.1002/anie.200704100

L. Shi, Y. Chu, P. Knochel, and H. Mayr, Kinetics of Bromine???Magnesium Exchange Reactions in Heteroaryl Bromides, Organic Letters, vol.11, issue.15, pp.3502-3505, 2009.
DOI : 10.1021/ol9013393

L. Shi, Y. Chu, P. Knochel, and H. Mayr, Kinetics of Bromine???Magnesium Exchange Reactions in Substituted Bromobenzenes, The Journal of Organic Chemistry, vol.74, issue.7, pp.2760-2764, 2009.
DOI : 10.1021/jo802770h

W. Tang, M. Sarvestani, X. Wei, L. J. Nummy, N. Patel et al., Formation of 2-Trifluoromethylphenyl Grignard Reagent via Magnesium???Halogen Exchange: Process Safety Evaluation and Concentration Effect, Organic Process Research & Development, vol.13, issue.6, pp.1426-1430, 2009.
DOI : 10.1021/op900040y

J. T. Reeves, M. Sarvestani, J. J. Song, Z. Tan, L. J. Nummy et al., Process Safety Evaluation of a Magnesium???Iodine Exchange Reaction, Organic Process Research & Development, vol.10, issue.6, pp.1258-1262, 2006.
DOI : 10.1021/op060145b

G. W. Stewart, K. M. Brands, S. E. Brewer, C. J. Cowden, A. J. Davies et al., Process Development and Large-Scale Synthesis of a c-Met Kinase Inhibitor, Organic Process Research & Development, vol.14, issue.4, pp.849-858, 2010.
DOI : 10.1021/op100101q

W. Li, D. P. Nelson, M. S. Jensen, R. S. Hoerrner, D. Cai et al., An Improved Protocol for the Preparation of 3-Pyridyl- and Some Arylboronic Acids, The Journal of Organic Chemistry, vol.67, issue.15, pp.5394-5397, 2002.
DOI : 10.1021/jo025792p

P. A. Bethel, A. D. Campbell, F. W. Goldberg, P. D. Kemmitt, and G. M. Lamont, Optimized scale up of 3-pyrimidinylpyrazolo[1,5-a]pyridine via Suzuki coupling; a general method of accessing a range of 3-(hetero)arylpyrazolo[1,5-a]pyridines, Tetrahedron, vol.68, issue.27-28, pp.5434-5444, 2012.
DOI : 10.1016/j.tet.2012.04.094

E. Demory, V. Blandin, J. Einhorn, and P. Y. Chavant, Noncryogenic Preparation of Functionalized Arylboronic Esters through a Magnesium???Iodine Exchange with in Situ Quench, Organic Process Research & Development, vol.15, issue.3, pp.710-716, 2011.
DOI : 10.1021/op2000089

URL : https://hal.archives-ouvertes.fr/hal-00608953

M. Thiverny, C. Philouze, P. Y. Chavant, and V. Blandin, MiPNO, a new chiral cyclic nitrone for enantioselective amino acid synthesis: the cycloaddition approach, Org. Biomol. Chem., vol.37, issue.4, p.864, 2010.
DOI : 10.1039/B918612C

M. Thiverny, E. Demory, B. Baptiste, C. Philouze, P. Y. Chavant et al., Inexpensive, multigram-scale preparation of an enantiopure cyclic nitrone via resolution at the hydroxylamine stage, Tetrahedron: Asymmetry, vol.22, issue.12, pp.1266-1273, 2011.
DOI : 10.1016/j.tetasy.2011.07.002

URL : https://hal.archives-ouvertes.fr/hal-00638248

E. G. Janzen, Y. Zhang, and D. L. Haire, New 2-substituted pyrroline-N-oxides: An EPR solvent study of the radical spin adducts, Magnetic Resonance in Chemistry, vol.54, issue.12, pp.711-720, 1994.
DOI : 10.1002/mrc.1260321203

E. G. Janzen, Y. Zhang, and D. L. Haire, Synthesis of a Novel Nitrone, 2-Phenyl-5,5-dimethyl-1-pyrroline N-Oxide (nitronyl-13C), for Enhanced Radical Addend Recognition and Spin Adduct Persistence, Journal of the American Chemical Society, vol.116, issue.9, pp.3738-3743, 1994.
DOI : 10.1021/ja00088a009

J. Schleiss, P. Rollin, and A. Tatibouët, Palladium-Catalyzed Coupling Reactions of Thioimidate N-Oxides: Access to ??-Alkenyl- and ??-Aryl-Functionalized Cyclic Nitrones, Angewandte Chemie International Edition, vol.61, issue.3, pp.577-580, 2010.
DOI : 10.1002/anie.200905188

M. Thiverny, D. Farran, C. Philouze, V. Blandin, and P. Chavant, Totally diastereoselective addition of aryl Grignard reagents to the nitrone-based chiral glycine equivalent MiPNO, Tetrahedron: Asymmetry, vol.22, issue.12, pp.1274-1281, 2011.
DOI : 10.1016/j.tetasy.2011.07.022

URL : https://hal.archives-ouvertes.fr/hal-00638243

M. Thiverny, 1-oxy-2,3-dihydro-imidazol-4-ones : des intermédiaires et des cibles, 2010.

L. L. Dugan, T. S. Lin, and Y. He, Detection of Free Radicals by Microdialysis/Spin Trapping Epr Following Focal Cerebral Ischemia-Reperfusion and a Cautionary Note on the Stability of 5,5-Dimethyl-1-Pyrroline N-Oxide (DMPO), Free Radical Research, vol.138, issue.1, pp.27-32, 1995.
DOI : 10.3109/10715769509064016

J. Wang, J. A. Mccubbin, M. Jin, R. S. Laufer, Y. Mao et al., ]pyrazines, Organic Letters, vol.10, issue.14, pp.2923-2926, 2008.
DOI : 10.1021/ol800761r

D. García-cuadrado, A. A. Braga, F. Maseras, and A. M. Echavarren, Proton Abstraction Mechanism for the Palladium-Catalyzed Intramolecular Arylation, Journal of the American Chemical Society, vol.128, issue.4, pp.1066-1067, 2006.
DOI : 10.1021/ja056165v

D. García-cuadrado, P. De-mendoza, A. A. Braga, F. Maseras, and A. M. Echavarren, Proton-Abstraction Mechanism in the Palladium-Catalyzed Intramolecular Arylation:?? Substituent Effects, Journal of the American Chemical Society, vol.129, issue.21, pp.6880-6886, 2007.
DOI : 10.1021/ja071034a

Y. Tan, F. Barrios-landeros, and J. F. Hartwig, -Oxide: Evidence for Cooperative Catalysis between Two Distinct Palladium Centers, Journal of the American Chemical Society, vol.134, issue.8, pp.3683-3686, 2012.
DOI : 10.1021/ja2122156

URL : https://hal.archives-ouvertes.fr/hal-01058890

M. H. Pérez-temprano, J. A. Casares, and P. Espinet, Bimetallic Catalysis using Transition and Group???11 Metals: An Emerging Tool for C???C Coupling and Other Reactions, Chemistry - A European Journal, vol.17, issue.7, pp.1864-1884, 2012.
DOI : 10.1002/chem.201102888

D. Ornellas, S. E. Storr, T. J. Williams, T. G. Baumann, and C. , Direct C-H/C-X Coupling Methodologies Mediated by Pd/Cu or Cu: An Examination of the Synthetic Applications and Mechanistic Findings, Current Organic Synthesis, vol.8, issue.1, pp.79-101, 2011.
DOI : 10.2174/157017911794407656

T. E. Storr, C. G. Baumann, R. J. Thatcher, S. De-ornellas, A. C. Whitwood et al., Pd(0)/Cu(I)-Mediated Direct Arylation of 2???-Deoxyadenosines: Mechanistic Role of Cu(I) and Reactivity Comparisons with Related Purine Nucleosides, The Journal of Organic Chemistry, vol.74, issue.16, pp.5810-5821, 2009.
DOI : 10.1021/jo9012282

E. Demory, D. Farran, B. Baptiste, P. Y. Chavant, and V. Blandin, Fast Pd- and Pd/Cu-Catalyzed Direct C???H Arylation of Cyclic Nitrones. Application to the Synthesis of Enantiopure Quaternary ??-Amino Esters, The Journal of Organic Chemistry, vol.77, issue.18, pp.7901-7912, 2012.
DOI : 10.1021/jo301114k

URL : https://hal.archives-ouvertes.fr/hal-00748949

C. S. Yeung and V. M. Dong, Catalytic Dehydrogenative Cross-Coupling: Forming Carbon???Carbon Bonds by Oxidizing Two Carbon???Hydrogen Bonds, Chemical Reviews, vol.111, issue.3, pp.1215-1292, 2011.
DOI : 10.1021/cr100280d

P. Xi, F. Yang, S. Qin, D. Zhao, J. Lan et al., Palladium(II)-Catalyzed Oxidative C???H/C???H Cross-Coupling of Heteroarenes, Journal of the American Chemical Society, vol.132, issue.6, pp.1822-1824, 2010.
DOI : 10.1021/ja909807f

C. E. Hartmann, P. J. Gross, M. Nieger, and S. Bräse, Towards an asymmetric synthesis of the bacterial peptide deformylase (PDF) inhibitor fumimycin, Organic & Biomolecular Chemistry, vol.41, issue.24, pp.5059-5062, 2009.
DOI : 10.1039/b916372g

P. J. Gross, F. Furche, M. Nieger, and S. Bräse, Asymmetric total synthesis of (+)-fumimycin via 1,2-addition to ketimines, 219) Gross, pp.9215-9217, 2010.
DOI : 10.1002/chem.201001036

L. Tebben and A. Studer, Nitroxides: Applications in Synthesis and in Polymer Chemistry, Angewandte Chemie International Edition, vol.43, issue.22, pp.5034-5068, 2011.
DOI : 10.1002/anie.201002547

F. Fache, E. Schulz, M. L. Tommasino, and M. Lemaire, Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis, Chemical Reviews, vol.100, issue.6, pp.2159-2232, 2000.
DOI : 10.1021/cr9902897

H. Nishiyama, N. J. Selander, and K. Szabó, Synthesis and use of bisoxazolinyl-phenyl pincers, Chemical Society Reviews, vol.68, issue.195, pp.1133-1141, 2007.
DOI : 10.1039/b605991k

E. Tsou, Y. Yeh, P. Liang, W. Cheng, O. Tamura et al., A convenient approach toward the synthesis of enantiopure isomers of DMDP and ADMDP, Tetrahedron, vol.65, issue.1, pp.93-100, 2009.
DOI : 10.1016/j.tet.2008.10.096

S. Murahashi, H. Mitsui, T. Shiota, T. Tsuda, and S. Watanabe, Tungstate-catalyzed oxidation of secondary amines to nitrones. .alpha.-Substitution of secondary amines via nitrones, The Journal of Organic Chemistry, vol.55, issue.6, pp.1736-1744, 1990.
DOI : 10.1021/jo00293a013

Y. Inouye, K. Takaya, and H. Kakisawa, -Oxides, Bulletin of the Chemical Society of Japan, vol.56, issue.11, pp.3541-3542, 1983.
DOI : 10.1246/bcsj.56.3541

URL : https://hal.archives-ouvertes.fr/hal-00891259

T. J. Watson, -Oxide (MDL 101002) Utilizing an Improved Pictet???Spengler Reaction, The Journal of Organic Chemistry, vol.63, issue.2, pp.406-407, 1998.
DOI : 10.1021/jo9718004

URL : https://hal.archives-ouvertes.fr/hal-00357722

C. Hoenke, T. Bouyssou, C. S. Tautermann, K. Rudolf, A. Schnapp et al., Use of 5-hydroxy-4H-benzo[1,4]oxazin-3-ones as ??2-adrenoceptor agonists, Bioorganic & Medicinal Chemistry Letters, vol.19, issue.23, pp.6640-6644, 2009.
DOI : 10.1016/j.bmcl.2009.10.013

M. J. Frisch, G. W. Trucks, and H. B. Schlegel, Gaussian 03, Revision B.04, Phys. Rev. B J. Chem. Phys, vol.37, issue.98, pp.785-789, 1988.

N. Godbout, D. R. Salahub, J. Andzelm, and E. Wimmer, Optimization of Gaussian-type basis sets for local spin density functional calculations. Part I. Boron through neon, optimization technique and validation, Canadian Journal of Chemistry, vol.70, issue.2, pp.560-571, 1992.
DOI : 10.1139/v92-079

T. B. Marder, . Chem, L. Commun-euzenat, D. Horhant, Y. Ribourdouille et al., For a related Cu-catalyzed borylation, see: (m) For a related Ni-catalyzed borylation with in situ prepared 5,5-dimethyl-1,3,2-dioxaborinane, see: (n), Arene C?H borylation has been recently reviewed: (r) Mkhalid, pp.261-2597, 1800.

J. T. Negri and . Lett, (7) Preparation of MPBH Under a well-ventilated fume hood (H 2 evolution), a 100 mL flask equipped with a Claisen distillation head was charged with 10% Pd/C (320 mg) and anhyd dioxane (10 mL) The flask was flushed with nitrogen and freshly distilled 2- methyl-2,4-pentanediol (50 mmol, 6.4 g) in dioxane (10 mL) was added. A solution of N,N-diethylaniline-borane (60 mmol, 9.78 g) in dioxane (10 mL) was added at 20 °C over 30 min. The reaction mixture was stirred for an additional, pp.2285-75, 2001.

J. P. Wolfe, R. A. Singer, B. H. Yang, and S. L. Buchwald, (10) Typical Procedure for the Borylation An oven-dried Schlenk vessel (or a 10 mL microwaves vial) was charged with Pd 2 (dba) 3 (2.3 mg, 2.5 mmol, described as 0.5% in Table 1) and CyJohnPhos (3.5 mg, 10 mmol, always 2 equiv/Pd) and placed under an atmosphere of Argon Anhydrous dioxane (0.6 mL), the aryl halide (0.5 mmol), Et 3 N (152 mg, 1.5 mmol) and MPBH (96 mg, 0.75 mmol) were introduced (solid aryl halides were added along with the other solid reagents). The reaction mixture was then heated at the indicated temperature until the aryl halide has been completely consumed as determined by gas chromatography . The reaction was allowed to cool to r.t., and filtered through a short pad of Celite (eluent Et 2 O) The eluate was concentrated and the crude material purified by flash chromatography on silica gel, subsequent borylations failed, p.9550, 1999.

A. Joncour, A. Decor, S. Thoret, A. Chiaroni, O. Baudoin et al., Biaryl Axis as a Stereochemical Relay for the Enantioselective Synthesis of Antimicrotubule Agents, Angewandte Chemie International Edition, vol.23, issue.25, pp.4149-2978, 2003.
DOI : 10.1002/anie.200600451

URL : https://hal.archives-ouvertes.fr/hal-00089127

G. Hollis, P. C. Liu, B. J. Metcalf, . Med, U. V. Chem-mentzel et al., (13) For related room-temperature Suzuki couplings, see: (a) Very recently, Murata et al. borylated aryl chlorides with both PinBH and MPBH in the presence of excess Bu 4 NI: See Supporting Information for a detailed table of these experiments The disproportionation of dialkoxyboranes yields trialkoxyboranes and BH 3 The reaction is influenced by phosphines and/ or metal species, Proc. Jpn. Acad, pp.3774-5807, 1678.

1. , D. , J. =1h, and J. =. , 8 Hz); d C (100 MHz5; LRMS (ESI + ) m/z: 513 (21 M+Na) + ); Anal.: found, C61.26; H5.50; N5.73; C 26 H 28 N 2 O 9 requires C60); d C (100 MHz, CD 3 ) 2 SO) 8.03?8.02 (4H, m) J = 17.2 Hz), 3.61 (1H, d, J = 17.2 Hz), 2.64 (3H, s), 1.83 (1H, hept, J = 6.8 Hz)M+H) + )M+Na) + )2M+H) + )2M+Na) + ); Anal.: found, C60.60; H5.27, pp.97933269-97933270

J. Revuelta, S. Cicchi, A. Goti, A. Brandi, A. Brandi et al., was determined by chiral HPLC on a Daicel Chiralpak AD-RH column, 4.6 Â 100 mm, eluent acetonitrile/ References 1. Reviews: (a), Terpene derived nitrones: (c) Katagiri, pp.485-504, 1996.

S. Cicchi, F. Cardona, A. Brandi, M. Corsi, and A. Goti, Oxidation of hydroxylamines to nitrones catalyzed by (salen)Mn(III) complexes. Enantioselective synthesis of a protected cis-dihydroxypyrroline N-oxide with jacobsen catalyst, Tetrahedron Letters, vol.40, issue.10, pp.1989-1992, 1999.
DOI : 10.1016/S0040-4039(99)00098-2

W. Oppolzer, J. Deerberg, and O. Tamura, Diastereo- and Enantiocontrolled Synthesis of (-)-Allosedaminevia Cycloaddition of a Chiral Nitrone, Helvetica Chimica Acta, vol.87, issue.2, pp.554-560, 1994.
DOI : 10.1002/hlca.19940770217

M. Thiverny, C. Philouze, P. Y. Chavant, and V. Blandin, MiPNO, a new chiral cyclic nitrone for enantioselective amino acid synthesis: the cycloaddition approach, Org. Biomol. Chem., vol.37, issue.4, pp.864-872, 2010.
DOI : 10.1039/B918612C

M. Thiverny, D. Farran, C. Philouze, V. Blandin, and P. Chavant, Totally diastereoselective addition of aryl Grignard reagents to the nitrone-based chiral glycine equivalent MiPNO, Tetrahedron: Asymmetry, vol.22, issue.12, pp.1274-1281, 2011.
DOI : 10.1016/j.tetasy.2011.07.022

URL : https://hal.archives-ouvertes.fr/hal-00638243

R. Fitzi and D. Seebach, Enantiomer Separation of(R,S)-2-(tert-Butyl)-3-methyl-4-imidazolidinone, a Chiral Building Block for Amino Acid Synthesis, Angewandte Chemie International Edition in English, vol.25, issue.4, pp.345-346, 1986.
DOI : 10.1002/anie.198603451

O. N. Burchak, C. Philouze, P. Y. Chavant, S. Py, . Org et al., O-acylation of an enantioenriched hydroxylamine with (À)-camphanic acid chloride has been used to determine the stereochemistry of the major enantiomer (b) Serizawa, First example of this resolution strategy, pp.3021-3023, 2008.

D. Palling, W. P. Jencks, J. O. Fina, and N. J. Edwards, Nucleophilic reactivity toward acetyl chloride in water, Journal of the American Chemical Society, vol.106, issue.17, pp.4869-4876, 1973.
DOI : 10.1021/ja00329a040

E. Marcantoni, M. Petrini, and O. Polimanti, Oxidation of secondary amines to nitrones using urea-hydrogen peroxide complex (UHP) and metal catalysts, Tetrahedron Letters, vol.36, issue.20, pp.3561-3562, 1995.
DOI : 10.1016/0040-4039(95)00558-T

A. Heydari and S. Aslanzadeh, Oxidation of Primary Amines toN-Monoalkylhydroxylamines using Sodium Tungstate and Hydrogen Peroxide-Urea Complex, Advanced Synthesis & Catalysis, vol.51, issue.9, pp.1223-1225, 2005.
DOI : 10.1002/adsc.200505018

R. W. Feenstra, E. H. Stokkingreef, A. M. Reichwein, W. B. Lousberg, H. C. Ottenheijm et al., Oxidative preparation of optically active n-hydroxy-??-amino acid amides, Tetrahedron, vol.46, issue.5, pp.1745-1756, 1990.
DOI : 10.1016/S0040-4020(01)81979-7

A. Goti, L. Nannelli, R. W. Murray, K. Iyanar, J. Chen et al., O 2 or UHP and MTO as a catalyst leads to nitrones, Tetrahedron Lett. J. Org. Chem. Tetrahedron Lett, vol.37, issue.42, pp.6025-6028, 1996.

S. Murahashi, H. Mitsui, T. Shiota, T. Tsuda, and S. Watanabe, Tungstate-catalyzed oxidation of secondary amines to nitrones. .alpha.-Substitution of secondary amines via nitrones, The Journal of Organic Chemistry, vol.55, issue.6, pp.1736-1744, 1990.
DOI : 10.1021/jo00293a013

H. S. Wilkinson, G. J. Tanoury, S. A. Wald, and C. H. Senanayake, )-Formoterol, Organic Process Research & Development, vol.6, issue.2, pp.146-148, 2002.
DOI : 10.1021/op015504b

B. Balagam and D. E. Richardson, The Mechanism of Carbon Dioxide Catalysis in the Hydrogen Peroxide N-Oxidation of Amines, Inorganic Chemistry, vol.47, issue.3, pp.1173-1178, 2008.
DOI : 10.1021/ic701402h

S. Cicchi, M. Marradi, A. Goti, and A. Brandi, Manganese dioxide oxidation of hydroxylamines to nitrones, Tetrahedron Letters, vol.42, issue.37, pp.6503-6505, 2001.
DOI : 10.1016/S0040-4039(01)01222-9

K. Sakai, R. Sakurai, A. Yuzawa, and N. Hirayama, Practical continuous resolution of ??-amino-??-caprolactam by diastereomeric salt formation using a single resolving agent with a solvent switch method, Tetrahedron: Asymmetry, vol.14, issue.23, pp.3713-3718, 2003.
DOI : 10.1016/j.tetasy.2003.09.047

A. Zakrassov, V. Shteiman, Y. Sheynin, M. Botoshansky, M. Kapon et al., Crystal Structures and Magnetic Properties of Nitronyl Nitroxide Radicals, Helvetica Chimica Acta, vol.86, issue.4, pp.1234-1245, 2003.
DOI : 10.1002/hlca.200390106

D. Bardelang, A. Rockenbauer, H. Karoui, J. Finet, I. Biskupska et al., Inclusion complexes of EMPO derivatives with 2,6-di-O-methyl-??-cyclodextrin: synthesis, NMR and EPR investigations for enhanced superoxide detection, Org. Biomol. Chem., vol.123, issue.15, pp.2874-2884, 2006.
DOI : 10.1039/B606062E

URL : https://hal.archives-ouvertes.fr/hal-00092125

M. H. Abraham, L. Honcharove, S. A. Rocco, W. E. Acree, and . Jr, The lipophilicity and hydrogen bond strength of pyridine-N-oxides and protonated pyridine-N-oxides, New Journal of Chemistry, vol.329, issue.4, pp.930-936, 2011.
DOI : 10.1039/c0nj00893a

H. Yang and Y. Chen, Stereochemical effects in mass spectrometry XIII???Determination of absolute configuration by fast atom bombardment mass spectrometry, Organic Mass Spectrometry, vol.89, issue.6, pp.736-740, 1992.
DOI : 10.1002/oms.1210270616

A. J. Duisenberg, Indexing in single-crystal diffractometry with an obstinate list of reflections, Journal of Applied Crystallography, vol.25, issue.2, pp.92-96, 1992.
DOI : 10.1107/S0021889891010634

A. J. Duisenberg and L. M. Kroon-batenburg, -14, Journal of Applied Crystallography, vol.36, issue.2, pp.220-229, 2003.
DOI : 10.1107/S0021889802022628

L. Palatinus and G. Chapuis, ??? a computer program for the solution of crystal structures by charge flipping in arbitrary dimensions, Journal of Applied Crystallography, vol.40, issue.4, pp.786-790, 2007.
DOI : 10.1107/S0021889807029238

O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. Howard, and H. Puschmann, : a complete structure solution, refinement and analysis program, Journal of Applied Crystallography, vol.42, issue.2, pp.339-341, 2009.
DOI : 10.1107/S0021889808042726

A. Altomare, G. Cascarano, C. Giacovazzo, and A. Guagliardi, 92, Journal of Applied Crystallography, vol.26, issue.3, pp.343-350, 1993.
DOI : 10.1107/S0021889892010331

J. Dd, 35 (s, 3H), 1.33 (s, 3H), 1.32 (d, J = 6.2, 3H) 13 C NMR ? 136, p.55

J. =. Dd, 9 and 1138 (s, 3H), 1.36 (s, 3H), 1.33 (d, J = 6.2, 3H) 13 C NMR ? 138, 65.7 (CH) 11 B NMR ? 26.9. LRMS (EI) m/z: 236, p.61

. Suzuki, (trifluoromethyl )-1,1 0 -biphenyl 5. A dry, nitrogen-flushed 10-mL flask equipped with a magnetic stirrer and a septum was charged with 4-bromo-2-nitrotoluene (216 mg, 1 mmol, pp.3-408

. Supporting-information, Copies of NMR spectra for all new compounds; 1 H, 11 B (and 19 F) NMR spectra of the crude products for 3a and 3i; 1 H NMR spectra of the crude product for the borylation of 2m (Table 2, entry 3) This material is available free of charge via the Internet at http://pubs.acs.org. ' AUTHOR INFORMATION Corresponding Author Telephone: (þ)33 476635796. Fax: (þ)33 476635983. E-mail: Pierre-Yves.Chavant@ujf-grenoble.fr. ' ACKNOWLEDGMENT We are grateful to Universit e Joseph Fourier and the CNRS for financial support, We thank Laure Jullien, Rodolphe Gu eret, and Dr. Bernard Brasme for Mass Spectrometry analysis and Dr

J. Poisson, . Dcm, D. G. Hall, E. Chen, H. Schlecht et al., Boronic Acids: Preparation and Applications in Organic Synthesis and Medicine Borylation of arenes with pinacolborane or bis(pinacolato)diboron: (a) For a recent review, see:(c) Mkhalid, I. A. I Borylation of aryl halides with tetraoxydiboron reagents, Science Chem. Rev. J. Org. Chem, vol.287, issue.60, pp.305-308, 1995.

. For, P. Merino, T. Tejero, K. L. Billingsley, T. E. Barder et al., In e-EROS Encyclopedia of Reagents for Organic Synthesis See also:(d), Angew. Chem., Int. Ed. Angew. Chem., Int. Ed, vol.10, issue.46, pp.2-7164, 1940.

. Am, . Chem, N. Soc-miyaura, S. Watanabe, Y. Masuda et al., Nevertheless, applicability on a large scale remains hampered by the access to the tetraoxydiboron reagents themselves:(f) Ishiyama, Organic Syntheses Borylation of aryl halides with dialkoxyborane reagents: Pd catalysis, Ni:(c) Morgan, A. B.; Jurs, J. L.; Tour, J. M. J. Appl. Polym, pp.17701-17703, 1997.

. Lett, For bibliography, see: (e) Moldoveanu, pp.2597-2600, 2008.

B. M. Rosen and V. Percec, and references therein, and references therein. See also:(g) Doux, pp.5438-5452, 2010.

C. D. Sturgill, S. Huang, T. B. Petersen, and B. H. Lipshutz, 5) Recent examples. Organolithium reagents: (a, Org. Process Res. Dev. J. Am. Chem. Soc, vol.11, issue.132, pp.359-364, 2007.

. Chem, Aryl Grignard reagent:(c) Gerbino, pp.2155-2161, 2009.

S. D. Mandolesi, H. Schmalz, J. C. Podest-a, D. E. Cladingboel, and W. Dohle, For a 1.5-mol scale synthesis of an arylboronic acid via an organomagnesium species, see:(d) For a review, see: (a) Knochel, Eur. J. Org. Chem. Org. Process Res. Dev, vol.4, issue.6, pp.3964-3972, 2000.

. Chem, . Int, and . Ed, See for instance, pp.1701-1703, 1998.

J. T. Reeves, M. Sarvestani, J. J. Song, Z. Tan, L. J. Nummy et al., Process Safety Evaluation of a Magnesium???Iodine Exchange Reaction, Organic Process Research & Development TECHNICAL NOTE, pp.1258-1262, 2006.
DOI : 10.1021/op060145b

N. Patel, B. Narayanan, D. Byrne, H. Lee, N. K. Yee et al., (10) Lithium-halogen exchange, Org. Process Res. Dev. J. Org. Chem. J, vol.13, issue.67, pp.1426-1430, 2002.

C. S. Wise, T. D. Krizan, and J. C. Martin, See also, for directed ortho metalation, Org. Process Res. Dev. J. Am. Chem, vol.14, pp.849-858, 2010.

T. Oda, S. Watanabe, and T. Oda, The " in situ quench " of an aryl Grignard reagent, prepared by magnesium-iodine exchange with phenylmagnesium chloride, with trimethyl borate at low temperature (-60 °C) gave poorer results (<10% yield in boronic acid) than a " sequential quenching, Tetrahedron Lett, vol.46, issue.12, pp.4453-4455, 2005.

S. Watanabe and . Masuda, (13) (a) PraveenGanesh, PraveenGanesh, N.; Demory, E.; Gamon, pp.213-218, 2008.

V. Blandin, P. Y. Chavant, P. Synlett-chavant, and P. Y. Chavant, In e-EROS Encyclopaedia of Reagents for Organic Synthesis, PraveenGanesh, N. 41002/047084289X.rn01065. (14) See also: (a) PraveenGanesh, N.; d'Hondt, pp.2403-24062, 2008.

. Org and . Chem, (b) PraveenGanesh, N.; de Candia, C, vol.72, pp.4510-4514, 2007.

C. Mehrotra, R. C. Srivastava, G. Hoffmann, R. W. Metternich, and R. Lanz, For instance: hexylene glycol 99%, 500 g, Aldrich, h29.80; pinacol 98%, 500 g, Aldrich, h394.60 (17) MPBO i Pr was originally prepared from MPBOEt and propan- 2-ol (ref 16) More recently (Suginome MPBO i Pr was prepared from triisopropyl borate and hexylene glycol following the procedure for the pinacol derivative described, 18) Reaction conditions: aryl iodide MPBO i Pr, pp.2447-2454, 1962.

. Licl, leading to MPB i Pr occurred instantaneously in the absence of the aryl iodide

Y. Chu, P. Knochel, H. Mayr, . Org, and . Lett, (22) Regarding the difference in reactivity between ArI and ArBr, see in particular ref 6b and references therein. (23) (a) Sapountzis, I.; Knochel, P, Angew. Chem., Int. Ed, vol.11, issue.41, pp.3502-3505, 2002.

P. J. Knochel, A. Org-krasovskiy, F. Straub, P. Knochel, and H. Hart, For the preparation of the dimagnesium reagent from pdiiodobenzene , see: (25) Formation of an aryne from o-halo magnesium species at room temperature, and even at -78 °C, has been hypothesized, Chem. Angew. Chem., Int. Ed, vol.70, issue.45, pp.2445-2454, 2005.

K. Harada, C. F. Du, T. Ghosh, H. Hart, D. G. Hall et al., Formation of 2-halo arylmagnesium species via magnesium-iodine exchange before addition of a trialkylborate was performed at low temperature: -78 °C:(c) Baron, J. Org. Chem. J. Org. Chem O.; Knochel, P. Angew. Chem., Int. Ed. J. Org. Chem, vol.50, issue.71, pp.3104-3110, 1985.

D. G. Drueckhammer, The 2-iodo- phenylmagnesium species is stable for 30 min at -20°C:(h) Cvengros (26) The Suzuki-Miyaura coupling was performed according to Buchwald's procedure, Chem. Commun. J.; Stolz, D.; Togni, A. Synthesis J. R, pp.2995-2997, 2006.

S. L. Buchwald and F. Fischer, using 1.5 equiv of boronic ester. Interestingly, 0.3 equiv of unreacted arylboronic ester were recovered after chromatography, indicating that a lower excess could have been used, Chem. Soc. C.; Havinga, E. Recl. Trav. Chim. Pays-Bas, vol.127, issue.93, pp.4685-4696, 1974.

M. D. Burke, . Org, and . Lett, See in particular refs 6a and 21c. (29) It is worth noting that anisyl halides are among the best substrates for all variants of Pd-catalyzed-borylation (which is fast and high-yielding with electron-rich substrates) (30) On small laboratory scales, a slight excess (10 mol %) of MPBO i Pr 1 should be kept so that accidental excess of isopropylmagnesium halide will be trapped by 1. (31) PinBO i Pr (5) is commercially available (for instance: 2-iso- propoxy-4, pp.2314-23175, 2010.

J. =. Td, 13 C NMR (75 MHz, CDCl 3 ): ? 162, 46?7.40 3H), 3.08 (s, 3H), 2.40 (qq, J = 7.1, 6.8, 1H), 1.74 (s, 3H), 1.07, pp.852-856, 1996.

J. =. Td, An analytical sample was obtained by recrystallization from tert-butyl methyl ether Mp: 97?98 °C. 1 H NMR (400 MHz, mmol) and methyl 2-bromobenzoate (240 mg, 1.1 mmol): 1 h; white solid (281 mg CDCl 3 ): ? 7.95 (dd, J = 7.8, 1.1, 1H), 7.80 (dd, J = 7.8, 1.0, 1H) 1H), 1.74 (s, 3H), 1.08 (d, J = 7, pp.61-3375, 1127.

. Mhz, ? C?D ), 1701, 1542, 1265. HRMS (ESI + ): m/z calcd for C 8 H 14 DN 2 O 2 + 172.119 08; found 172 Kinetic Isotope Effect Experiments. Two experiments were conducted separately, one with nitrone 1 (1 mmol) and one with the deuterated analogue d-1 (1 mmol) Both reactions were performed according to general procedure A, using 4-bromotoluene 6 and PdCl, pp.48-86

A. Initio and C. , These calculations were performed using the same functional and basis set as Gorelsky and Fagnou 26 in order to have comparable data and accordingly a fruitful discussion Density functional theory (DFT) calculations were performed using the Gaussian 03 program. 42 The structures of all species were optimized at the B3LYP exchange-correlation (XC) level 43,44 using the mixed double-/triple-? basis set (DZVP 45 on Pd and TZVP 46 on all other atoms). Tight SCF convergence criteria (10 ?8 au) were used for all calculations. Harmonic frequency calculations with the analytic evaluation of force gradients were used to determine the nature of the stationary points i.e. minima and transition states

. Ml, After evaporation under reduced pressure, an equimolar mixture of amino acid hydrochloride 14 and methylamine hydrochloride was obtained, which was directly used in the next step. Esterification. The mixture of amino acid hydrochloride 14 and methylamine hydrochloride was dissolved in MeOH (10 mL) Thionyl chloride (1.5 mL) was added at room temperature without cooling, and then the reaction mixture was heated for 3 h at reflux. The solvent was removed under reduced pressure, and ethyl acetate (10 mL) was added. The organic layer was washed with a saturated aqueous solution of Na 2 CO 3 (10 mL), dried over anhydrous MgSO 4 , filtered, and evaporated under reduced pressure. The crude product was purified by column chromatography (silica gel, eluent cyclohexane) to yield the amino ester 12. (R)-Methyl 2-Amino-2-p-tolylpropanoate (12a). The title compound was prepared according to the general procedure from 7a (1.136 g, 4.4 mmol): yellow oil (560 mg; 66%), The reaction mixture was heated for the indicated time at 160 °C MeOH)). 1 H NMR

J. =. Mhzd, 33 (s, 3H), 1.68 (s, 3H) 13 C NMR (101 MHz CDCl 3 ): ? 176 HRMS (ESI + ): m/z calcd for C 11 H 16 NO 2 + 194117 56; found 194.117 48. Characterization Data for Intermediates. (2S,5R)-1-Hydroxy-2- isopropyl-2,3,5-trimethyl-5-p-tolyl-imidazolidin-4-one (11a): pale yellow solid. 1 H NMR (400 MHz, ), 7.16 (d, J = 8.0, 2H), 4.37 (s, 1H), 2.81 (s, 3H), p.70

J. =d and J. =. , HRMS (ESI + ): m/z calcd for C 10 H 14 NO 3 + 196096 82; found 196.096 74 Characterization Data for Intermediates. (2S,5R)-1-Hydroxy-2- isopropyl-5-(4-methoxyphenyl)-2,3,5-trimethylimidazolidin-4-one (11b): yellow solid. 1 H NMR (400 MHz CDCl 3 ): ? 7 CDCl 3 ): ? 172.3, 158): yellow oil. 1 H NMR (400 MHz(pyridin-3-yl)propanoate (12k) The title compound was prepared according to the general procedure from 7k (1.018 g, 4.1 mmol): yellow oil (317 mg, 43%), MeOH). 1 H NMR (400 MHz 13 C NMR (101 MHz 2H), 4.46 (s, 1H), 3.79 (s, 3H), 2.81 (s, 3H), 1.90 (hept, J = 6.7, 1H), 1.70 (s, 3H), 1.56 (s, 3H), 1.10 (d, J = 6.8, 3H), 0.84 (d, J = 6.6, 3H). 13 C NMR (101 MHz 3H), 2.79 (s, 3H), 1.84 (hept, J = 6.7, 1H), 1.78 (broad s, 1H), 1.63 (s, 3H), 1.46 (s, 3H), 0.96 (d, J = 6.7, 3H), 0.54 (d, J = 6.7, 3H). 13 C NMR (101 MHzhydroxyphenyl)propanoic acid hydrochloride (14b). 1 H NMR (400 MHz, D 2 O): ? 7.02 (d, J = 8.8, 2H), 6.57 (d, J = 8.8, 2H), 1.59 (s, 3H). 13 C NMR (101 MHz, D 2 O): ? 173.1). 13 C NMR (101 MHz, CDCl 3 ): ? 175, p.697070885285277372

S. Pinet, Y. Gimbert, P. Y. Chavant, . J. Eur, . Org et al., MiPNO: abbreviation for 2-isopropyl-1,2-dimethyl-5-oxo-2,5- dihydro-1H-imidazole 3-oxide, J. Organomet. Chem. Tetrahedron: Asymmetry Tetrahedron: Asymmetry Philouze, C.; Chavant, P. Y.; Blandin, V. Org. Biomol. Chem. Tetrahedron, vol.10, issue.88, pp.3021-2447, 2005.

W. Zhang, H. Org-feuer, M. Lafrance, and K. Fagnou, (13) Grigor'ev, I. A, Nitrile Oxides, Nitrones, and Nitronates in Organic Synthesis, p.16496, 1872.

A. C. Whitwood, I. J. Fairlamb, . Org, O. Chem-daugulis, L. Campeau et al., PdCl 2 (PPh 3 ) 2 can also be used, J. Am. Chem. Soc. J. Am. Chem. Soc. J. Org. Chem. J. Chem. Soc, vol.74, issue.420, pp.5810-12404, 1959.

G. Adams, D. F. Ohlweiler, D. A. Hay, . Bioorg, . Med et al., (21) Data for the crystal structures of compounds 7d, 9b, and 10a have been deposited at the Cambridge Crystallographic Data Centre (reference nos. CCDC 871602, 871603 and 871604, respectively) (22) Voinov, M. A.; Grigor'ev, I. A (23) See ref 9a and footnote 15 of ref 8f. (24) Reaction of 1,2-dibromobenzene with 1 equiv of (S)-1 led in 1.5 h to a ca. 4/1/5 ratio of bis-nitrone 7i, monobromo mononitrone product 7i?/ and 1,2-dibromobenzene; operating at 100 °C with excess o-dibromobenzene did not change the product distribution, We gratefully acknowledge one of the reviewers for fruitful comments on XPhos. (26) Sun, H.-Y.; Gorelsky, S. I, pp.406-297, 1105.

M. Beilstein, J. Org-tautermann, C. S. Rudolf, and K. , (36) Data for the crystal structure of compound 11a have been deposited at the Cambridge Crystallographic Data Centre (reference no. CCDC 871605) (37) Other unhindered Grignard reagents (EtMgCl, vinylMgBr) react with analogous yields and high stereoselectivities. We are currently investigating the scope and limitations of such additions, 38) See the Supporting Information. (39), pp.1833-2431, 1570.