.. Description-et-État-d-'avancement-de-mon-Étude, L. Casteilla, and C. Dani, Adipose tissue-derived cells: from physiology to regenerative medicine, Diabetes Metab, vol.5232, issue.1, pp.393-401, 2006.

C. Rosen and M. Bouxsein, Mechanisms of Disease: is osteoporosis the obesity of bone?, Nature Clinical Practice Rheumatology, vol.102, issue.3, pp.35-43, 2006.
DOI : 10.1038/ncprheum0070

G. Fantuzzi, Adipose tissue, adipokines, and inflammation, Journal of Allergy and Clinical Immunology, vol.115, issue.5, pp.911-919, 2005.
DOI : 10.1016/j.jaci.2005.02.023

A. Krings, S. Rahman, and S. Huang, Bone marrow fat has brown adipose tissue characteristics, which are attenuated with aging and diabetes, Bone, vol.50, issue.2, pp.546-552, 2012.
DOI : 10.1016/j.bone.2011.06.016

J. Gimble, The function of adipocytes in the bone marrow stroma: an update, Bone, vol.19, issue.5, pp.304-312, 1990.
DOI : 10.1016/S8756-3282(96)00258-X

M. Tavassoli, Marrow adipose cells Ultrastructural and histochemical characterization, Arch Pathol, vol.98, pp.189-192, 1974.

M. Payne, H. Uhthoff, and G. Trudel, Anemia of immobility: Caused by adipocyte accumulation in bone marrow, Medical Hypotheses, vol.69, issue.4, pp.778-786, 2007.
DOI : 10.1016/j.mehy.2007.01.077

G. Travlos, Histopathology of Bone Marrow, Toxicologic Pathology, vol.12, issue.5, pp.566-598, 2006.
DOI : 10.1080/01926230600939856

C. Politis, A. Karamerou, and M. Block, Pathophysiologic aspects of the bone/marrow/fat relationship. Lab Management, pp.40-55, 1983.

W. Snyder, M. Cook, and E. Nasset, International Commission on radiological protection. Report of the task group on reference man, 1975.

R. Hartsock, E. Smith, and C. Petty, Normal Variations with Aging of the Amount of Hematopoietic Tissue in Bone Marrow from the Anterior Iliac Crest: A Study Made from 177 Cases of Sudden Death Examined by Necropsy, American Journal of Clinical Pathology, vol.43, issue.4, pp.326-331, 1965.
DOI : 10.1093/ajcp/43.4.326

A. Piney, The anatomy of the bone marrow: with special reference to the distribution of the red marrow, Brit Med J, vol.28, pp.792-795, 1922.

E. Neumann, Das Gesetz der Verbreitung des gelben und roten Markes in den Extremitätenknochen, Centralblatt für die Medicinischen Wissenschaften, vol.18, pp.321-323, 1882.

L. Weiss, The structure of bone marrow. Functional interrelationships of vascular and hematopoietic compartments in experimental hemolytic anemia: An electron microscopic study, Journal of Morphology, vol.5, issue.3, pp.467-538, 1965.
DOI : 10.1002/jmor.1051170308

D. Bruyn, P. Breen, P. Thomas, and T. , The microcirculation of the bone marrow, The Anatomical Record, vol.5, issue.1
DOI : 10.1002/ar.1091680105

J. Blebea, M. Houseni, and D. Torigian, Structural and Functional Imaging of Normal Bone Marrow and Evaluation of Its Age-Related Changes, Seminars in Nuclear Medicine, vol.37, issue.3, pp.185-194, 2007.
DOI : 10.1053/j.semnuclmed.2007.01.002

O. Gurevitch, S. Slavin, and A. Feldman, Conversion of red bone marrow into yellow ??? Cause and mechanisms, Medical Hypotheses, vol.69, issue.3, pp.531-536, 2007.
DOI : 10.1016/j.mehy.2007.01.052

O. Gurevitch, S. Slavin, and I. Resnick, Mesenchymal progenitor cells in red and yellow bone marrow, Folia Biol, vol.55, pp.27-34, 2009.

S. Hwang and D. Panicek, Magnetic resonance imaging of bone marrow in oncology, Part 1, Skeletal Radiology, vol.23, issue.10, pp.913-920, 2007.
DOI : 10.1007/s00256-007-0309-3

K. Dawson, S. Moore, and J. Rowland, Age-related marrow changes in the pelvis: MR and anatomic findings., Radiology, vol.183, issue.1, pp.47-51, 1992.
DOI : 10.1148/radiology.183.1.1549693

S. Moore and K. Dawson, Red and yellow marrow in the femur: age-related changes in appearance at MR imaging., Radiology, vol.175, issue.1, pp.219-223, 1990.
DOI : 10.1148/radiology.175.1.2315484

D. Bisschop, E. Luypaert, R. Louis, and O. , Fat fraction of lumbar bone marrow using in vivo proton nuclear magnetic resonance spectroscopy, Bone, vol.14, issue.2, pp.133-136, 1993.
DOI : 10.1016/8756-3282(93)90239-7

J. Justesen, K. Stenderup, and E. Ebbesen, Adipocyte tissue volume in bone marrow is increased with aging and in patients with osteoporosis, Biogerontology, vol.2, issue.3, pp.165-171, 2001.
DOI : 10.1023/A:1011513223894

G. Liney, C. Bernard, and D. Manton, Age, gender, and skeletal variation in bone marrow composition: A preliminary study at 3.0Tesla, Journal of Magnetic Resonance Imaging, vol.236, issue.3, pp.787-793, 2007.
DOI : 10.1002/jmri.21072

J. Griffith, D. Yeung, and G. Antonio, Vertebral Bone Mineral Density, Marrow Perfusion, and Fat Content in Healthy Men and Men with Osteoporosis: Dynamic Contrast-enhanced MR Imaging and MR Spectroscopy, Radiology, vol.236, issue.3, pp.945-951, 2005.
DOI : 10.1148/radiol.2363041425

J. Griffith, D. Yeung, and G. Antonio, Vertebral Marrow Fat Content and Diffusion and Perfusion Indexes in Women with Varying Bone Density: MR Evaluation, Radiology, vol.241, issue.3, pp.831-838, 2006.
DOI : 10.1148/radiol.2413051858

H. Kugel, C. Jung, and O. Schulte, Age??? and sex???specific differences in the 1H???spectrum of vertebral bone marrow, Journal of Magnetic Resonance Imaging, vol.13, issue.2, pp.263-268, 2001.
DOI : 10.1002/1522-2586(200102)13:2<263::AID-JMRI1038>3.3.CO;2-D

P. Meunier, J. Aaron, and C. Edouard, Osteoporosis and the replacement of cell populations of the marrow by adipose tissue. A quantitative study of 84 iliac bone biopsies

Y. Sheu and J. Cauley, The Role of Bone Marrow and Visceral Fat on Bone Metabolism, Current Osteoporosis Reports, vol.94, issue.6
DOI : 10.1007/s11914-011-0051-6

C. Rosen, C. Ackert-bicknell, and J. Rodriguez, Marrow Fat and the Bone Microenvironment: Developmental, Functional, and Pathological Implications, Critical Reviews??? in Eukaryotic Gene Expression, vol.19, issue.2, pp.109-124, 2009.
DOI : 10.1615/CritRevEukarGeneExpr.v19.i2.20

K. Ecklund, S. Vajapeyam, and H. Feldman, Bone marrow changes in adolescent girls with anorexia nervosa, Journal of Bone and Mineral Research, vol.6, issue.2, pp.298-304, 2010.
DOI : 10.1359/jbmr.090805

E. Abella, E. Feliu, and I. Granada, Bone Marrow Changes in Anorexia Nervosa Are Correlated With the Amount of Weight Loss and Not With Other Clinical Findings, American Journal of Clinical Pathology, vol.118, issue.4, pp.582-588, 2002.
DOI : 10.1309/2Y7X-YDXK-006B-XLT2

M. Bredella, P. Fazeli, and K. Miller, Increased Bone Marrow Fat in Anorexia Nervosa, The Journal of Clinical Endocrinology & Metabolism, vol.94, issue.6, pp.2129-2136, 2009.
DOI : 10.1210/jc.2008-2532

C. Rozman, J. Reverter, and E. Feliu, Variations of fat tissue fraction in abnormal human bone marrow depend both on size and number of adipocytes: a stereologic study, Blood, vol.76, pp.892-895, 1990.

C. Bambace, M. Telesca, and E. Zoico, Adiponectin gene expression and adipocyte diameter: a comparison between epicardial and subcutaneous adipose tissue in men, Cardiovascular Pathology, vol.20, issue.5
DOI : 10.1016/j.carpath.2010.07.005

S. Trubowitz and A. Bathija, Cell size and plamitate-1-14c turnover of rabbit marrow fat, Blood, vol.49, pp.599-605, 1977.

C. Rozman, E. Feliu, and L. Berga, Age-related variations of fat tissue fraction in normal human bone marrow depend both on size and number of adipocytes: a stereological study, Exp Hematol, vol.17, pp.34-37, 1989.

A. Shah, P. Patton, and D. Rajon, Adipocyte spatial distributions in bone marrow: implications for skeletal dosimetry models, J Nucl Med, vol.44, pp.774-783, 2003.

P. Bianco, M. Riminucci, and S. Gronthos, Bone Marrow Stromal Stem Cells: Nature, Biology, and Potential Applications, Stem Cells, vol.28, issue.3, pp.180-192, 2001.
DOI : 10.1634/stemcells.19-3-180

Y. Yoshiko, K. Oizumi, and T. Hasegawa, A subset of osteoblasts expressing high endogenous levels of PPARgamma switches fate to adipocytes in the rat calvaria cell culture model, PLoS One, vol.26, p.5, 2010.

J. Han, Y. Koh, and H. Moon, Adipose tissue is an extramedullary reservoir for functional hematopoietic stem and progenitor cells, Blood, vol.115, issue.5, pp.957-964, 2010.
DOI : 10.1182/blood-2009-05-219923

J. Zhang, C. Niu, and L. Ye, Identification of the haematopoietic stem cell niche and control of the niche size Wilson A, Trumpp A. Bone-marrow haematopoietic-stem-cell niches, Nature. Nat Rev Immunol, vol.4256, issue.43, pp.836-84193, 2003.

G. Duque, Bone and fat connection in aging bone, Current Opinion in Rheumatology, vol.20, issue.4, pp.429-434, 2008.
DOI : 10.1097/BOR.0b013e3283025e9c

T. Wren, S. Chung, and F. Dorey, Bone Marrow Fat Is Inversely Related to Cortical Bone in Young and Old Subjects, The Journal of Clinical Endocrinology & Metabolism, vol.96, issue.3, pp.782-786, 2011.
DOI : 10.1210/jc.2010-1922

P. Seale, B. Bjork, and W. Yang, PRDM16 controls a brown fat/skeletal muscle switch, Nature, vol.19, issue.7207, pp.961-967, 2008.
DOI : 10.1038/nature07182

W. Tang, D. Zeve, and J. Suh, White Fat Progenitor Cells Reside in the Adipose Vasculature, Science, vol.322, issue.5901, pp.583-586, 2008.
DOI : 10.1126/science.1156232

E. Calo, J. Quintero-estades, and P. Danielian, Rb regulates fate choice and lineage commitment in vivo, Nature, vol.455, issue.7310, pp.1110-1114, 2010.
DOI : 10.1038/nature09264

M. Pittenger, A. Mackay, and S. Beck, Multilineage Potential of Adult Human Mesenchymal Stem Cells, Science, vol.284, issue.5411, pp.143-147, 1999.
DOI : 10.1126/science.284.5411.143

Y. Jiang, B. Jahagirdar, and R. Reinhardt, Pluripotency of mesenchymal stem cells derived from adult marrow, Nature, vol.92, issue.6893, pp.41-49, 2002.
DOI : 10.1038/72753

F. Lin and M. Lane, CCAAT/enhancer binding protein alpha is sufficient to initiate the 3T3-L1 adipocyte differentiation program., Proceedings of the National Academy of Sciences, vol.91, issue.19, pp.8757-8761, 1994.
DOI : 10.1073/pnas.91.19.8757

Z. Wu, E. Rosen, and R. Brun, Cross-Regulation of C/EBP?? and PPAR?? Controls the Transcriptional Pathway of Adipogenesis and Insulin Sensitivity, Molecular Cell, vol.3, issue.2, pp.151-158, 1999.
DOI : 10.1016/S1097-2765(00)80306-8

W. Yeh, T. Li, and B. Bierer, Identification and characterization of an immunophilin expressed during the clonal expansion phase of adipocyte differentiation., Proceedings of the National Academy of Sciences, vol.92, issue.24
DOI : 10.1073/pnas.92.24.11081

J. Hamm, B. Park, and S. Farmer, A role for C/EBPbeta in regulating peroxisome proliferator-activated receptor gamma activity during adipogenesis in 3T3-L1 preadipocytes CCAAT/enhancer binding protein alpha (C/EBPalpha) is an important mediator of mouse C/EBPbeta protein isoform production, J Biol Chem. Hepatology, vol.27629, issue.55, pp.18464-18471597, 1999.

J. Gimble, C. Robinson, and X. Wu, Peroxisome proliferator-activated receptorgamma activation by thiazolidinediones induces adipogenesis in bone marrow stromal cells, Mol Pharmacol, vol.50, pp.1087-1094, 1996.

T. Akune, S. Ohba, and S. Kamekura, PPARgamma insufficiency enhances osteogenesis through osteoblast formation from bone marrow progenitors Divergent effects of selective peroxisome proliferator-activated receptor-gamma 2 ligands on adipocyte versus osteoblast differentiation, J Clin Invest. Endocrinology, vol.113143, issue.58, pp.846-8552376, 2002.

C. Ackert-bicknell, K. Shockley, and L. Horton, Strain-Specific Effects of Rosiglitazone on Bone Mass, Body Composition, and Serum Insulin-Like Growth Factor-I, Endocrinology, vol.150, issue.3, pp.1330-1340, 2009.
DOI : 10.1210/en.2008-0936

P. Ducy, R. Zhang, and V. Geoffroy, Osf2/Cbfa1: A Transcriptional Activator of Osteoblast Differentiation, Cell, vol.89, issue.5, pp.747-754, 1997.
DOI : 10.1016/S0092-8674(00)80257-3

C. Bruedigam, M. Eijken, and M. Koedam, A New Concept Underlying Stem Cell Lineage Skewing That Explains the Detrimental Effects of Thiazolidinediones on Bone, STEM CELLS, vol.28, pp.916-927, 2010.
DOI : 10.1002/stem.405

C. Bruedigam, M. Koedam, and H. Chiba, Evidence for multiple peroxisome proliferator-activated receptor ?? transcripts in bone: Fine-tuning by hormonal regulation and mRNA stability, FEBS Letters, vol.248, issue.11, pp.1618-1624, 2008.
DOI : 10.1016/j.febslet.2008.04.012

F. Syed, M. Oursler, and T. Hefferanm, Effects of estrogen therapy on bone marrow adipocytes in postmenopausal osteoporotic women Effect of estrogens on bone marrow adipogenesis and Sirt1 in aging C57BL/6J mice, Osteoporos Int. Biogerontology, vol.1910, pp.1323-1330747, 2008.

Z. Lei, Z. Xiaoying, and L. Xingguo, Ovariectomy-associated changes in bone mineral density and bone marrow haematopoiesis in rats, International Journal of Experimental Pathology, vol.425, issue.5, pp.512-519, 2009.
DOI : 10.1111/j.1365-2613.2009.00661.x

N. Reim, B. Breig, and K. Stahr, Cortical Bone Loss in Androgen-Deficient Aged Male Rats Is Mainly Caused by Increased Endocortical Bone Remodeling, Journal of Bone and Mineral Research, vol.63, issue.5, pp.694-704, 2008.
DOI : 10.1359/jbmr.080202

M. Hamrick, D. Fera, M. Choi, and Y. , Injections of leptin into rat ventromedial hypothalamus increase adipocyte apoptosis in peripheral fat and in bone marrow, Cell and Tissue Research, vol.1, issue.Suppl 1, pp.133-141, 2007.
DOI : 10.1007/s00441-006-0312-3

J. Rodriguez, P. Astudillo, and S. Rios, Adipog??nesis y osteoporosis, Revista m??dica de Chile, vol.137, issue.6, pp.827-836, 2009.
DOI : 10.4067/S0034-98872009000600015

P. Astudillo, S. Rios, and L. Pastenes, Increased adipogenesis of osteoporotic human-mesenchymal stem cells (MSCs) characterizes by impaired leptin action, Journal of Cellular Biochemistry, vol.145, issue.4, pp.1054-1065, 2008.
DOI : 10.1002/jcb.21516

N. Thompson, D. Gill, and R. Davies, by a Mechanism Independent of the Type 1a Growth Hormone Secretagogue Receptor, Endocrinology, vol.145, issue.1, pp.234-242, 2004.
DOI : 10.1210/en.2003-0899

M. Devlin, A. Cloutier, and N. Thomas, Caloric restriction leads to high marrow adiposity and low bone mass in growing mice, Journal of Bone and Mineral Research, vol.60, issue.(3 Pt 1), pp.2078-2088, 2010.
DOI : 10.1002/jbmr.82

P. Aguiari, S. Leo, and B. Zavan, High glucose induces adipogenic differentiation of muscle-derived stem cells, Proceedings of the National Academy of Sciences, vol.105, issue.4, pp.1226-1231, 2008.
DOI : 10.1073/pnas.0711402105

Z. Zhong, L. Bai, and J. Chen, Advanced Oxidation Protein Products Inhibit Proliferation and Differentiation of Rat Osteoblast-like Cells <i>via</i> NF-&kappa;B Pathway, Cellular Physiology and Biochemistry, vol.24, issue.1-2, pp.105-114, 2009.
DOI : 10.1159/000227818

D. Lee, B. Lim, and Y. Lee, Effects of hydrogen peroxide (H2O2) on alkaline phosphatase activity and matrix mineralization of odontoblast and osteoblast cell lines, Cell Biology and Toxicology, vol.33, issue.1, pp.39-46, 2006.
DOI : 10.1007/s10565-006-0018-z

V. David, A. Martin, and M. Lafage-proust, Mechanical Loading Down-Regulates Peroxisome Proliferator-Activated Receptor ?? in Bone Marrow Stromal Cells and Favors Osteoblastogenesis at the Expense of Adipogenesis, Endocrinology, vol.148, issue.5, pp.2553-2562, 2007.
DOI : 10.1210/en.2006-1704

URL : https://hal.archives-ouvertes.fr/ujm-00271228

B. Sen, Z. Xie, and N. Case, Mechanical Strain Inhibits Adipogenesis in Mesenchymal Stem Cells by Stimulating a Durable ??-Catenin Signal, Endocrinology, vol.149, issue.12, pp.6065-6075, 2008.
DOI : 10.1210/en.2008-0687

D. Iorgi, N. Rosol, M. Mittelman, and S. , Reciprocal Relation between Marrow Adiposity and the Amount of Bone in the Axial and Appendicular Skeleton of Young Adults, The Journal of Clinical Endocrinology & Metabolism, vol.93, issue.6, pp.2281-2286, 2008.
DOI : 10.1210/jc.2007-2691

D. Zipori, The Stem State: Mesenchymal Plasticity as a Paradigm, Current Stem Cell Research & Therapy, vol.1, issue.1, pp.95-102, 2006.
DOI : 10.2174/157488806775269133

J. Minguell, A. Erices, P. Conget, A. Pino, S. Rios et al., Mesenchymal stem cells Concentration of adipogenic and proinflammatory cytokines in the bone marrow supernatant fluid of osteoporotic women, Exp Biol Med. J Bone Miner Res, vol.22625, issue.80, pp.507-520492, 2001.

J. Gimble, S. Zvonic, and Z. Floyd, Playing with bone and fat Lecka-Czernik B. Marrow fat metabolism is linked to the systemic energy metabolism, J Cell Biochem. Bone, vol.9850, issue.82, pp.251-266534, 2006.

O. Naveiras, V. Nardi, and P. Wenzel, Bone-marrow adipocytes as negative regulators of the haematopoietic microenvironment, Nature, vol.18, issue.7252, pp.259-263, 2009.
DOI : 10.1038/nature08099

Y. Omatsu, T. Sugiyama, and H. Kohara, The Essential Functions of Adipo-osteogenic Progenitors as the Hematopoietic Stem and Progenitor Cell Niche, Immunity, vol.33, issue.3, pp.387-399, 2010.
DOI : 10.1016/j.immuni.2010.08.017

T. Allen and T. Dexter, Exp Hematol. The essential cells of the hemopoietic microenvironment, pp.517-521, 1984.

J. Corre, V. Planat-benard, and J. Corberand, Human bone marrow adipocytes support complete myeloid and lymphoid differentiation from human CD34+ cells, British Journal of Haematology, vol.96, issue.3, pp.344-347, 2004.
DOI : 10.1016/j.bbrc.2003.10.010

G. Charrière, B. Cousin, and E. Arnaud, Preadipocyte conversion to macrophage. Evidence of plasticity Bone is a target for the antidiabetic compound rosiglitazone, J Biol Chem. Endocrinology, vol.278145, issue.88, pp.9850-9855401, 2003.

J. Justesen, L. Mosekilde, and M. Holmes, Mice Deficient in 11??-Hydroxysteroid Dehydrogenase Type 1 Lack Bone Marrow Adipocytes, but Maintain Normal Bone Formation, Endocrinology, vol.145, issue.4, pp.1916-1925, 2004.
DOI : 10.1210/en.2003-1427

K. Kelly, S. Tanaka, and R. Baron, Murine Bone Marrow Stromally Derived BMS2 Adipocytes Support Differentiation and Function of Osteoclast-Like Cells in Vitro, Endocrinology, vol.139, issue.4, pp.2092-2101, 1998.
DOI : 10.1210/en.139.4.2092

X. Jiang, D. Song, and B. Ye, Effect of intermittent administration of adiponectin on bone regeneration following mandibular osteodistraction in rabbits, 92. Nuttall ME, Gimble JM. Controlling the balance between osteoblastogenesis and adipogenesis and the consequent therapeutic implications, pp.1081-1085290, 2004.
DOI : 10.1002/jor.21355

M. Tran, T. Dang, and M. Berlan, Effects of catecholamines on free fatty acid release from bone marrow adipose tissue, J Lipid Res, vol.22, pp.1271-1276, 1981.

S. Botolin, M. Faugere, and H. Malluche, Increased Bone Adiposity and Peroxisomal Proliferator-Activated Receptor-??2 Expression in Type I Diabetic Mice, Endocrinology, vol.146, issue.8, pp.3622-3631, 2005.
DOI : 10.1210/en.2004-1677

W. Shen, J. Chen, and M. Punyanitya, MRI-measured bone marrow adipose tissue is inversely related to DXA-measured bone mineral in Caucasian women, Osteoporosis International, vol.98, issue.5, pp.641-647, 2007.
DOI : 10.1007/s00198-006-0285-9

M. Misra and A. Klibanski, Anorexia nervosa and osteoporosis, Reviews in Endocrine and Metabolic Disorders, vol.89, issue.1-2, pp.91-99, 2006.
DOI : 10.1007/s11154-006-9005-1

K. Motyl and C. Rosen, Temperatures rising: brown fat and bone, Discov Med, vol.11, pp.179-185, 2011.

J. Gimble and M. Nuttall, Bone and Fat: Old Questions, New Insights, Endocrine, vol.23, issue.2-3, pp.183-188, 2004.
DOI : 10.1385/ENDO:23:2-3:183

K. Birsoy, Z. Chen, and J. Friedman, Transcriptional Regulation of Adipogenesis by KLF4, Cell Metabolism, vol.7, issue.4, pp.339-347, 2008.
DOI : 10.1016/j.cmet.2008.02.001

L. Liu, W. Shen, and M. Ueno, Characterization of age-related gene expression profiling in bone marrow and epididymal adipocytes, BMC Genomics, vol.25, issue.Suppl 2, p.212, 2011.
DOI : 10.1006/meth.2001.1262

G. Blake, J. Griffith, and D. Yeung, Effect of increasing vertebral marrow fat content on BMD measurement, T-Score status and fracture risk prediction by DXA, Bone, vol.44, issue.3, pp.495-501, 2009.
DOI : 10.1016/j.bone.2008.11.003

P. Laharrague, D. Larrouy, and A. Fontanilles, High expression of leptin by human bone marrow adipocytes in primary culture, Faseb J, vol.12, pp.747-752, 1998.
URL : https://hal.archives-ouvertes.fr/hal-00394132

D. Yeung, J. Griffith, and G. Antonio, Osteoporosis is associated with increased marrow fat content and decreased marrow fat unsaturation: A proton MR spectroscopy study, Journal of Magnetic Resonance Imaging, vol.6, issue.2, pp.279-285, 2005.
DOI : 10.1002/jmri.20367

C. Savopoulos, C. Dokos, and G. Kaiafa, Adipogenesis and osteoblastogenesis: trans-differentiation in the pathophysiology of bone disorders, Hippokratia, vol.15, pp.18-21, 2011.

P. Minaire, C. Edouard, and M. Arlot, Marrow changes in paraplegic patients, Calcified Tissue International, vol.35, issue.1, pp.338-340, 1984.
DOI : 10.1007/BF02405340

K. Pengde, P. Fuxing, and S. Bin, Lovastatin inhibits adipogenesis and prevents osteonecrosis in steroid-treated rabbits, Joint Bone Spine, vol.75, issue.6, pp.696-701, 2008.
DOI : 10.1016/j.jbspin.2007.12.008

J. Huang, R. Mulkern, and S. Grinspoon, Reduced intravertebral bone marrow fat in HIV-infected men, AIDS, vol.16, issue.9, pp.1265-1269, 2002.
DOI : 10.1097/00002030-200206140-00009

F. Wehrli, J. Hopkins, and S. Hwang, Cross-sectional Study of Osteopenia with Quantitative MR Imaging and Bone Densitometry, Radiology, vol.217, issue.2, pp.527-538, 2000.
DOI : 10.1148/radiology.217.2.r00nv20527

J. Griffith, D. Yeung, and P. Tsang, Compromised Bone Marrow Perfusion in Osteoporosis, Journal of Bone and Mineral Research, vol.75, issue.7, pp.1068-1075, 2008.
DOI : 10.1359/jbmr.080233

E. Moerman, K. Teng, and D. Lipschitz, Aging activates adipogenic and suppresses osteogenic programs in mesenchymal marrow stroma/stem cells: the role of PPAR-??2 transcription factor and TGF-??/BMP signaling pathways, Aging Cell, vol.92, issue.6, pp.379-389, 2004.
DOI : 10.1111/j.1474-9728.2004.00127.x

O. Lazarenko, S. Rzonca, and W. Hogue, Rosiglitazone Induces Decreases in Bone Mass and Strength that Are Reminiscent of Aged Bone, Endocrinology, vol.148, issue.6, pp.2669-2680, 2007.
DOI : 10.1210/en.2006-1587

B. Lecka-czernik and L. Suva, Resolving the Two "Bony" Faces of PPAR-gamma

M. Gasparrini, D. Rivas, and A. Elbaz, Differential expression of cytokines in subcutaneous and marrow fat of aging C57BL/6J mice, Experimental Gerontology, vol.44, issue.9, pp.613-618, 2009.
DOI : 10.1016/j.exger.2009.05.009

R. Burkhardt, G. Kettner, and W. Bohm, Changes in trabecular bone, hematopoiesis and bone marrow vessels in aplastic anemia, primary osteoporosis, and old age: A comparative histomorphometric study, Bone, vol.8, issue.3, pp.157-164, 1987.
DOI : 10.1016/8756-3282(87)90015-9

K. Demmler, P. Otte, and R. Bartl, Osteopenie, Markatrophie und Kapillarversorgung. Vergleichende Untersuchungen am menschlichen Beckenkamm und 1. Lendenwirbelk??rper, Zeitschrift f??r Orthop??die und Unfallchirurgie, vol.121, issue.03, pp.223-227, 1983.
DOI : 10.1055/s-2008-1051346

S. Verma, J. Rajaratnam, and J. Denton, Adipocytic proportion of bone marrow is inversely related to bone formation in osteoporosis, Journal of Clinical Pathology, vol.55, issue.9, pp.693-698, 2002.
DOI : 10.1136/jcp.55.9.693

L. Pei and P. Tontonoz, Fat???s loss is bone???s gain, Journal of Clinical Investigation, vol.113, issue.6, pp.805-806, 2004.
DOI : 10.1172/JCI21311

J. Rodriguez, P. Astudillo, and S. Rios, Involvement of Adipogenic Potential of Human Bone Marrow Mesenchymal Stem Cells (MSCs) in Osteoporosis, Current Stem Cell Research & Therapy, vol.3, issue.3, pp.208-218, 2008.
DOI : 10.2174/157488808785740325

R. Hess, A. Pino, and S. Rios, High affinity leptin receptors are present in human mesenchymal stem cells (MSCs) derived from control and osteoporotic donors, Journal of Cellular Biochemistry, vol.49, issue.1, pp.50-57, 2005.
DOI : 10.1002/jcb.20330

P. Bianco and P. Robey, Diseases of Bone and the Stromal Cell Lineage, Journal of Bone and Mineral Research, vol.101, issue.3, pp.336-341, 1999.
DOI : 10.1359/jbmr.1999.14.3.336

J. Rodriguez, L. Montecinos, and S. Rios, Mesenchymal stem cells from osteoporotic patients produce a type I collagen-deficient extracellular matrix favoring adipogenic differentiation, Journal of Cellular Biochemistry, vol.1490, issue.4, pp.557-565, 2000.
DOI : 10.1002/1097-4644(20001215)79:4<557::AID-JCB40>3.0.CO;2-H

I. Sekiya, B. Larson, and J. Vuoristo, Adipogenic Differentiation of Human Adult Stem Cells From Bone Marrow Stroma (MSCs), Journal of Bone and Mineral Research, vol.106, issue.2, pp.256-264, 2004.
DOI : 10.1359/JBMR.0301220

W. Qiu, T. Andersen, and J. Bollerslev, Patients With High Bone Mass Phenotype Exhibit Enhanced Osteoblast Differentiation and Inhibition of Adipogenesis of Human Mesenchymal Stem Cells, Journal of Bone and Mineral Research, vol.37, issue.11, pp.1720-1731, 2007.
DOI : 10.1359/jbmr.070721

A. Pino, J. Rodriguez, and S. Rios, Aromatase activity of human mesenchymal stem cells is stimulated by early differentiation, vitamin D and leptin, Journal of Endocrinology, vol.191, issue.3, pp.715-725, 2006.
DOI : 10.1677/joe.1.07026

M. Heim, O. Frank, and G. Kampmann, The Phytoestrogen Genistein Enhances Osteogenesis and Represses Adipogenic Differentiation of Human Primary Bone Marrow Stromal Cells, Endocrinology, vol.145, issue.2, pp.848-859, 2004.
DOI : 10.1210/en.2003-1014

P. Heine, J. Taylor, and G. Iwamoto, Increased adipose tissue in male and female estrogen receptor-alpha knockout mice, Proceedings of the National Academy of Sciences, vol.97, issue.23, pp.12729-12734, 2000.
DOI : 10.1073/pnas.97.23.12729

M. Bredella, Perspective: the bone-fat connection, Skeletal Radiology, vol.47, issue.8, pp.729-731, 2010.
DOI : 10.1007/s00256-010-0936-y

S. Ito, N. Suzuki, and S. Kato, Glucocorticoids induce the differentiation of a mesenchymal progenitor cell line, ROB-C26 into adipocytes and osteoblasts, but fail to induce terminal osteoblast differentiation, Bone, vol.40, issue.1, pp.84-92, 2007.
DOI : 10.1016/j.bone.2006.07.012

W. Mayo-smith, D. Rosenthal, and M. Goodsitt, Intravertebral fat measurement with quantitative CT in patients with Cushing disease and anorexia nervosa., Radiology, vol.170, issue.3, pp.835-838, 1989.
DOI : 10.1148/radiology.170.3.2916039

G. Duque and D. Rivas, Alendronate Has an Anabolic Effect on Bone Through the Differentiation of Mesenchymal Stem Cells, Journal of Bone and Mineral Research, vol.22, issue.10, pp.1603-1611, 2007.
DOI : 10.1359/jbmr.070701

L. Fu, T. Tang, and Y. Miao, Stimulation of osteogenic differentiation and inhibition of adipogenic differentiation in bone marrow stromal cells by alendronate via ERK and JNK activation, Bone, vol.43, issue.1, pp.40-47, 2008.
DOI : 10.1016/j.bone.2008.03.008

N. Kulkarni, T. Wei, and A. Kumar, Changes in Osteoblast, Chondrocyte, and Adipocyte Lineages Mediate the Bone Anabolic Actions of PTH and Small Molecule GSK-3 Inhibitor, Journal of Cellular Biochemistry, vol.6, issue.6, pp.1504-1518, 2007.
DOI : 10.1002/jcb.21374

R. Wood, Vitamin D and adipogenesis: new molecular insights, Nutrition Reviews, vol.66, issue.1, pp.40-46, 2008.
DOI : 10.1111/j.1753-4887.2007.00004.x

URL : https://naldc.nal.usda.gov/naldc/download.xhtml?id=17952&content=PDF

G. Duque, M. Macoritto, and R. Kremer, OH)2D3 inhibits bone marrow adipogenesis in senescence accelerated mice (SAM-P/6) by decreasing the expression of peroxisome proliferator-activated receptor gamma 2 (PPARgamma2, Exp Gerontol, vol.139, pp.25333-338, 2004.

M. De-abreu, M. Wesselly, and C. Chung, Bone marrow MR imaging findings in disuse osteoporosis, Skeletal Radiology, vol.80, issue.8, pp.571-575, 2011.
DOI : 10.1007/s00256-010-1042-x

E. Mccarthy, The pathology of transient regional osteoporosis, Iowa Orthop J, vol.18, pp.35-42, 1998.

I. Legroux-gerot, J. Vignau, D. Herbomez, and M. , Evaluation of Bone Loss and Its Mechanisms in Anorexia Nervosa, Calcified Tissue International, vol.87, issue.3, pp.174-182, 2007.
DOI : 10.1007/s00223-007-9038-9

P. Mehler, B. Cleary, and J. Gaudiani, Osteoporosis in Anorexia Nervosa, Eating Disorders, vol.43, issue.2, pp.194-202, 2011.
DOI : 10.1002/eat.20010

A. Winston, A. Alwazeer, and M. Bankart, Screening for osteoporosis in anorexia nervosa: Prevalence and predictors of reduced bone mineral density, International Journal of Eating Disorders, vol.295, issue.3, pp.284-287, 2008.
DOI : 10.1002/eat.20501

T. Silber, Osteoporosis in anorexia nervosa, N Engl J Med, vol.312, pp.990-991, 1985.

C. Rosen, C. Ackert-bicknell, and M. Adamo, Congenic mice with low serum IGF-I have increased body fat, reduced bone mineral density, and an altered osteoblast differentiation program, Bone, vol.35, issue.5, pp.1046-1058, 2004.
DOI : 10.1016/j.bone.2004.07.008

C. Ackert-bicknell, S. Demissie, M. De-evsikova, and C. , PPARG by Dietary Fat Interaction Influences Bone Mass in Mice and Humans, Journal of Bone and Mineral Research, vol.74, issue.9, pp.1398-1408, 2008.
DOI : 10.1359/jbmr.080419

R. Cheung, C. Gray, and A. Boyde, Effects of ethanol on bone cells in vitro resulting in increased resorption, Bone, vol.16, issue.1, pp.143-147, 1995.
DOI : 10.1016/8756-3282(95)80025-L

K. Suh, S. Kim, and H. Roh, Decreased Osteogenic Differentiation of Mesenchymal Stem Cells in Alcohol-induced Osteonecrosis, Clinical Orthopaedics and Related Research, vol.410, issue.431, pp.220-225, 2005.
DOI : 10.1097/01.blo.0000150568.16133.3c

F. Wezeman and Z. Gong, Adipogenic Effect of Alcohol on Human Bone Marrow-Derived Mesenchymal Stem Cells, Alcoholism: Clinical & Experimental Research, vol.96, issue.7, pp.1091-1101, 2004.
DOI : 10.1016/8756-3282(86)90683-6

G. Maddalozzo, R. Turner, and C. Edwards, Alcohol alters whole body composition, inhibits bone formation, and increases bone marrow adiposity in rats, Osteoporosis International, vol.16, issue.3, pp.1529-1538, 2009.
DOI : 10.1007/s00198-009-0836-y

M. Ronis, K. Mercer, and J. Chen, Effects of Nutrition and Alcohol Consumption on Bone Loss, Current Osteoporosis Reports, vol.58, issue.2, pp.53-59, 2011.
DOI : 10.1007/s11914-011-0049-0

R. Turner, C. Rosen, and U. Iwaniec, Effects of alcohol on skeletal response to growth hormone in hypophysectomized rats, Bone, vol.46, issue.3, pp.806-812, 2010.
DOI : 10.1016/j.bone.2009.10.027

H. Mankin, Nontraumatic necrosis of bone (osteonecrosis), N Engl J Med, vol.326, pp.1473-1479, 1992.

K. Miyanishi, T. Yamamoto, and T. Irisa, Bone marrow fat cell enlargement and a rise in intraosseous pressure in steroid-treated rabbits with osteonecrosis, Bone, vol.30, issue.1, pp.185-190, 2002.
DOI : 10.1016/S8756-3282(01)00663-9

M. Kitajima, M. Shigematsu, and K. Ogawa, Effects of glucocorticoid on adipocyte size in human bone marrow, Medical Molecular Morphology, vol.50, issue.3, pp.150-156, 2007.
DOI : 10.1007/s00795-007-0367-6

V. Berg, B. Malghem, J. Lecouvet, and F. , Fat conversion of femoral marrow in glucocorticoid-treated patients: A cross-sectional and longitudinal study with magnetic resonance imaging, Arthritis & Rheumatism, vol.161, issue.7, pp.1405-1411, 1999.
DOI : 10.1002/1529-0131(199907)42:7<1405::AID-ANR14>3.0.CO;2-W

Y. Wang, Y. Li, and K. Mao, Alcohol-Induced Adipogenesis in Bone and Marrow: A Possible Mechanism for Osteonecrosis, Clinical Orthopaedics and Related Research, vol.410, pp.213-224, 2003.
DOI : 10.1097/01.blo.0000063602.67412.83

S. Ikemura, T. Yamamoto, and G. Motomura, Lipid metabolism abnormalities in alcohol-treated rabbits: a morphometric and haematologic study comparing high and low alcohol doses, International Journal of Experimental Pathology, vol.467, issue.4, pp.290-295, 2011.
DOI : 10.1111/j.1365-2613.2011.00773.x

Q. Cui, Y. Wang, and K. Saleh, Alcohol-induced adipogenesis in a cloned bonemarrow stem cell, J Bone Joint Surg Am, vol.883, pp.148-154, 2006.

J. Jones, . Jr, S. Ramirez, and S. Doty, The Pathophysiologic Role of Fat in Dysbaric Osteonecrosis, Clinical Orthopaedics and Related Research, vol.&NA;, issue.296, pp.256-264, 1993.
DOI : 10.1097/00003086-199311000-00042

G. Penel, V. Pansini, and G. Falgayrac, Bone and marrow fat interactions in osteonecrosis of the femoral head. Osteoporosis International, 2012.

H. Kim and J. Herring, Pathophysiology, Classifications, and Natural History of Perthes Disease, Orthopedic Clinics of North America, vol.42, issue.3, pp.285-295, 2011.
DOI : 10.1016/j.ocl.2011.04.007

O. Jensen and J. Lauritzen, Legg-Calve-Perthes' disease. Morphological studies in two cases examined at necropsy, J Bone Joint Surg Br, vol.58, pp.332-338, 1976.

G. Eckerwall, P. Hochbergs, and K. Simesen, Metaphyseal Histology and Magnetic Resonance Imaging in Legg-Calv??-Perthes Disease, Journal of Pediatric Orthopaedics, vol.17, issue.5, pp.659-662, 1997.
DOI : 10.1097/00004694-199709000-00016

B. Lecka-czernik, Bone Loss in Diabetes: Use of Antidiabetic Thiazolidinediones and Secondary Osteoporosis, Current Osteoporosis Reports, vol.32, issue.4, pp.178-184, 2010.
DOI : 10.1007/s11914-010-0027-y

F. De-paula, M. Horowitz, and C. Rosen, Novel insights into the relationship between diabetes and osteoporosis, Diabetes/Metabolism Research and Reviews, vol.2, issue.5, pp.622-630, 2010.
DOI : 10.1002/dmrr.1135

S. Huang, M. Kaw, and M. Harris, Decreased osteoclastogenesis and high bone mass in mice with impaired insulin clearance due to liver-specific inactivation to CEACAM1, Bone, vol.46, issue.4, pp.1138-1145, 2010.
DOI : 10.1016/j.bone.2009.12.020

J. Cao, Effects of obesity on bone metabolism, Journal of Orthopaedic Surgery and Research, vol.6, issue.1, p.30, 2011.
DOI : 10.1016/S8756-3282(02)00864-5

K. Kyle, T. Willett, and L. Baggio, Chemical or Genetic Reduction of DPP-4 Activity on Bone Quality in Mice, Endocrinology, vol.152, issue.2, pp.457-467, 2011.
DOI : 10.1210/en.2010-1098

F. Fruhwald, S. Fruhwald, and P. Hajek, Fokale Fetteinschl??sse im Knochenmark der Wirbels??ule - MR-Befunde, R??Fo - Fortschritte auf dem Gebiet der R??ntgenstrahlen und der bildgebenden Verfahren, vol.148, issue.01, pp.75-78, 1988.
DOI : 10.1055/s-2008-1048150

W. Park, K. Suh, and J. Kim, Decreased osteogenic differentiation of mesenchymal stem cells and reduced bone mineral density in patients with adolescent idiopathic scoliosis, European Spine Journal, vol.17, issue.12, pp.1920-1926, 2009.
DOI : 10.1007/s00586-009-1129-z

C. Rosen and A. Klibanski, Bone, Fat, and Body Composition: Evolving Concepts in the Pathogenesis of Osteoporosis, The American Journal of Medicine, vol.122, issue.5, pp.409-414, 2009.
DOI : 10.1016/j.amjmed.2008.11.027

P. Hardouin, E. Biver, and V. Pansini, Are marrow adipocytes involved in pathology ? Osteoporosis international, 2012.

D. Donohue, R. Reiff, and M. Hanson, Quantitative Measurement of the Erythrocytic and Granulocytic Cells of the Marrow and Blood1, Journal of Clinical Investigation, vol.37, issue.11, pp.1571-1576, 1958.
DOI : 10.1172/JCI103750

C. Dresch, A. Faille, and O. Poirier, The cellular composition of the granulocyte series in the normal human bone marrow according to the volume of the sample, Journal of Clinical Pathology, vol.27, issue.2, pp.106-108, 1974.
DOI : 10.1136/jcp.27.2.106

D. Rivas, W. Li, and R. Akter, Accelerated Features of Age-Related Bone Loss in Zmpste24 Metalloproteinase-Deficient Mice, The Journals of Gerontology Series A: Biological Sciences and Medical Sciences, vol.64, issue.10, pp.1015-1024, 2009.
DOI : 10.1093/gerona/glp089

J. Reverter, E. Feliu, and C. Climent, Stereological Study of Human Bone Marrow Adipocytes, Pathology - Research and Practice, vol.189, issue.10, pp.1215-1220, 1993.
DOI : 10.1016/S0344-0338(11)80846-0

T. Takaku, D. Malide, and J. Chen, Hematopoiesis in 3 dimensions: human and murine bone marrow architecture visualized by confocal microscopy, Blood, vol.116, issue.15, pp.41-55, 2010.
DOI : 10.1182/blood-2010-02-268466

D. Chappard, N. Josselin, and C. Rougé-maillart, Bone microarchitecture in males with corticosteroid-induced osteoporosis, Osteoporosis International, vol.12, issue.1, pp.487-494, 2007.
DOI : 10.1007/s00198-006-0278-8

P. Tothill and A. Avenell, Errors in dual-energy X-ray absorptiometry of the lumbar spine owing to fat distribution and soft tissue thickness during weight change, The British Journal of Radiology, vol.67, issue.793, pp.71-75, 1994.
DOI : 10.1259/0007-1285-67-793-71

M. Goodsitt and D. Rosenthal, Quantitative Computed Tomography Scanning for Measurement of Bone and Bone Marrow Fat Content, Investigative Radiology, vol.22, issue.10, pp.799-810, 1987.
DOI : 10.1097/00004424-198710000-00006

J. Kuiper, C. Van-kuijk, and J. Grashuis, Accuracy and the influence of marrow fat on quantitative CT and dual-energy X-ray absorptiometry measurements of the femoral neck in vitro, Osteoporosis International, vol.9, issue.1, pp.25-30, 1996.
DOI : 10.1007/BF01626534

G. Mariani, N. Molea, L. Civita, and L. , Scintigraphic findings on99mTc-MDP,99mTc-sestamibi and99mTc-HMPAO images in Gaucher's disease, European Journal of Nuclear Medicine, vol.22, issue.4, pp.466-470, 1996.
DOI : 10.1007/BF01247378

D. Rosenthal, N. Barton, and K. Mckusick, Quantitative imaging of Gaucher disease., Radiology, vol.185, issue.3, pp.841-845, 1992.
DOI : 10.1148/radiology.185.3.1438773

J. Vogler, . Rd, and W. Murphy, Bone marrow imaging., Radiology, vol.168, issue.3, pp.679-693, 1988.
DOI : 10.1148/radiology.168.3.3043546

V. Berg, B. Malghem, J. Lecouvet, and F. , Magnetic resonance imaging of the normal bone marrow, Skeletal Radiology, vol.27, issue.9, pp.471-483, 1998.
DOI : 10.1007/s002560050423

R. Constable, R. Smith, and J. Gore, Signal-to-Noise and Contrast in Fast Spin Echo (FSE) and Inversion Recovery FSE Imaging, Journal of Computer Assisted Tomography, vol.16, issue.1, pp.41-47, 1992.
DOI : 10.1097/00004728-199201000-00008

S. Mirowitz, Fast scanning and fat-suppression MR imaging of musculoskeletal disorders., American Journal of Roentgenology, vol.161, issue.6, pp.1147-1157, 1993.
DOI : 10.2214/ajr.161.6.8249717

G. Sebag and S. Moore, Effect of trabecular bone on the appearance of marrow in gradient-echo imaging of the appendicular skeleton., Radiology, vol.174, issue.3, pp.855-859, 1990.
DOI : 10.1148/radiology.174.3.2305069

A. Blum, D. Roch, and D. Loeuille, L?????d??me m??dullaire : d??finition, valeur diagnostique et pronostique, Journal de Radiologie, vol.90, issue.12, pp.1789-1811, 2009.
DOI : 10.1016/S0221-0363(09)73586-3

C. Levine, M. Schweitzer, and S. Ehrlich, Pelvic marrow in adults, Skeletal Radiology, vol.19, issue.5, pp.343-347, 1994.
DOI : 10.1007/BF02416990

A. Deutsch, J. Mink, and F. Rosenfelt, Incidental detection of hematopoietic hyperplasia on routine knee MR imaging, American Journal of Roentgenology, vol.152, issue.2, pp.333-336, 1989.
DOI : 10.2214/ajr.152.2.333

A. Saifuddin, K. Bann, and J. Ridgway, Bone marrow blood supply in gadolinium-enhanced magnetic resonance imaging, Skeletal Radiology, vol.23, issue.6, pp.455-457, 1994.
DOI : 10.1007/BF00204608

R. Breger, A. Williams, and D. Daniels, Contrast enhancement in spinal MR imaging, American Journal of Roentgenology, vol.153, issue.2, pp.387-391, 1989.
DOI : 10.2214/ajr.153.2.387

W. Dixon, Simple proton spectroscopic imaging., Radiology, vol.153, issue.1, pp.189-194, 1984.
DOI : 10.1148/radiology.153.1.6089263

J. Pichardo, R. Milner, and W. Bolch, MRI Measurement of Bone Marrow Cellularity for Radiation Dosimetry, Journal of Nuclear Medicine, vol.52, issue.9, pp.1482-1489, 2011.
DOI : 10.2967/jnumed.111.087957

J. Machann, N. Stefan, and F. Schick, 1H MR spectroscopy of skeletal muscle, liver and bone marrow, European Journal of Radiology, vol.67, issue.2, pp.275-284, 2008.
DOI : 10.1016/j.ejrad.2008.02.032

V. Govindaraju, K. Young, and A. Maudsley, Proton NMR chemical shifts and coupling constants for brain metabolites, NMR in Biomedicine, vol.18, issue.3, pp.129-153, 2000.
DOI : 10.1002/1099-1492(200005)13:3<129::AID-NBM619>3.0.CO;2-V

B. Ross and S. Bluml, Magnetic resonance spectroscopy of the human brain, The Anatomical Record, vol.8, issue.2, pp.54-84, 2001.
DOI : 10.1002/ar.1058

T. Isobe, A. Matsumura, and I. Anno, Quantification of cerebral metabolites in glioma patients with proton MR spectroscopy using T2 relaxation time correction, Magnetic Resonance Imaging, vol.20, issue.4, pp.343-349, 2002.
DOI : 10.1016/S0730-725X(02)00500-3

M. Maas, C. Hollak, and E. Akkerman, Quantification of Skeletal Involvement in Adults with Type I Gaucher's Disease: Fat Fraction Measured by Dixon Quantitative Chemical Shift Imaging as a Valid Parameter, American Journal of Roentgenology, vol.179, issue.4, pp.961-965, 2002.
DOI : 10.2214/ajr.179.4.1790961

G. Falgayrac, B. Cortet, and O. Devos, Comparison of Two-Dimensional Fast Raman Imaging versus Point-by-Point Acquisition Mode for Human Bone Characterization, Analytical Chemistry, 2012.
DOI : 10.1021/ac301758y

URL : https://hal.archives-ouvertes.fr/hal-00763626

J. Griffith, D. Yeung, and S. Chow, H spectroscopy of bone marrow, Journal of Magnetic Resonance Imaging, vol.160, issue.6, pp.1438-1442, 2009.
DOI : 10.1002/jmri.21765

D. Yeung, S. Lam, and J. Griffith, Analysis of bone marrow fatty acid composition using high-resolution proton NMR spectroscopy, Chemistry and Physics of Lipids, vol.151, issue.2, pp.103-109, 2008.
DOI : 10.1016/j.chemphyslip.2007.10.006

G. Hamilton, M. Middleton, and M. Bydder, Effect of PRESS and STEAM sequences on magnetic resonance spectroscopic liver fat quantification, Journal of Magnetic Resonance Imaging, vol.1, issue.1, pp.145-152, 2009.
DOI : 10.1002/jmri.21809

D. Schellinger, C. Lin, and H. Hatipoglu, Potential value of vertebral proton MR spectroscopy in determining bone weakness, AJNR Am J Neuroradiol, vol.22, pp.1620-1627, 2001.

D. Bluemke, M. Petri, and E. Zerhouni, Femoral head perfusion and composition: MR imaging and spectroscopic evaluation of patients with systemic lupus erythematosus and at risk for avascular necrosis., Radiology, vol.197, issue.2, pp.433-438, 1995.
DOI : 10.1148/radiology.197.2.7480688

C. Hou, T. Shih, and C. Liu, Proton MR spectroscopy of the femoral head???Evaluation of patients at risk for avascular necrosis, Journal of Magnetic Resonance Imaging, vol.14, issue.2, pp.409-417, 2006.
DOI : 10.1002/jmri.20653

J. Ren, I. Dimitrov, and A. Sherry, Composition of adipose tissue and marrow fat in humans by 1H NMR at 7 Tesla, The Journal of Lipid Research, vol.49, issue.9, pp.2055-2062, 2008.
DOI : 10.1194/jlr.D800010-JLR200

G. Dooms, M. Fisher, and H. Hricak, Bone marrow imaging: magnetic resonance studies related to age and sex., Radiology, vol.155, issue.2, pp.429-432, 1985.
DOI : 10.1148/radiology.155.2.3983394

A. Naressi, C. Couturier, and J. Devos, Java-based graphical user interface for the MRUI quantitation package, Magma: Magnetic Resonance Materials in Physics, Biology, and Medicine, vol.6, issue.2-3, pp.141-152, 2001.
DOI : 10.1007/BF02668096

J. Fleiss, The design and analysis of clinical experiments, 1986.
DOI : 10.1002/9781118032923

J. Griffith, D. Yeung, and J. Leung, Prediction of bone loss in elderly female subjects by MR perfusion imaging and spectroscopy, European Radiology, vol.97, issue.6, pp.1160-1169, 2011.
DOI : 10.1007/s00330-010-2054-6

M. Bredella, P. Fazelli, and K. Miller, Increased Bone Marrow Fat in Anorexia Nervosa, The Journal of Clinical Endocrinology & Metabolism, vol.94, issue.6, pp.2129-2136, 2009.
DOI : 10.1210/jc.2008-2532

M. Kitajima, M. Shigematsu, and K. Ogawa, Effects of glucocorticoid on adipocyte size in human bone marrow, Medical Molecular Morphology, vol.50, issue.3, pp.150-156, 2007.
DOI : 10.1007/s00795-007-0367-6

C. Ricci, M. Cova, and Y. Kang, Normal age-related patterns of cellular and fatty bone marrow distribution in the axial skeleton: MR imaging study., Radiology, vol.177, issue.1, pp.83-88, 1990.
DOI : 10.1148/radiology.177.1.2399343

S. Moore and K. Dawson, Red and yellow marrow in the femur: age-related changes in appearance at MR imaging., Radiology, vol.175, issue.1, pp.219-223, 1990.
DOI : 10.1148/radiology.175.1.2315484

K. Dawson, S. Moore, and J. Rowland, Age-related marrow changes in the pelvis: MR and anatomic findings., Radiology, vol.183, issue.1, pp.47-51, 1992.
DOI : 10.1148/radiology.183.1.1549693

V. Berg, B. Lecouvet, F. Moysan, and P. , MR assessment of red marrow distribution and composition in the proximal femur: correlation with clinical and laboratory parameters, Skeletal Radiology, vol.26, issue.10, pp.589-596, 1997.
DOI : 10.1007/s002560050291

V. Berg, B. Malghem, J. Lecouvet, and F. , Magnetic resonance imaging of normal bone marrow, European Radiology, vol.8, issue.8, pp.1327-1334, 1998.
DOI : 10.1007/s003300050547

D. Mitchell, V. Rao, and M. Dalinka, Hematopoietic and fatty bone marrow distribution in the normal and ischemic hip: new observations with 1.5-T MR imaging., Radiology, vol.161, issue.1, pp.199-202, 1986.
DOI : 10.1148/radiology.161.1.3763867

X. Li, D. Kuo, and A. Schafer, Quantification of vertebral bone marrow fat content using 3 tesla MR spectroscopy: Reproducibility, vertebral variation, and applications in osteoporosis, Journal of Magnetic Resonance Imaging, vol.49, issue.4, pp.974-979, 2011.
DOI : 10.1002/jmri.22489

F. Shellock, E. Morris, and A. Deutsch, Hematopoietic bone marrow hyperplasia: high prevalence on MR images of the knee in asymptomatic marathon runners., American Journal of Roentgenology, vol.158, issue.2, pp.335-338, 1992.
DOI : 10.2214/ajr.158.2.1729795

T. Poulton, W. Murphy, and J. Duerk, Bone marrow reconversion in adults who are smokers: MR Imaging findings., American Journal of Roentgenology, vol.161, issue.6, pp.1217-1221, 1993.
DOI : 10.2214/ajr.161.6.8249729

V. Pansini, A. Monnet, and J. Salleron, H MR spectroscopy of hip bone marrow at 3 tesla, Journal of Magnetic Resonance Imaging, vol.22, issue.6
DOI : 10.1002/jmri.23783

R. Hartsock, E. Smith, and C. Petty, Normal Variations with Aging of the Amount of Hematopoietic Tissue in Bone Marrow from the Anterior Iliac Crest: A Study Made from 177 Cases of Sudden Death Examined by Necropsy, American Journal of Clinical Pathology, vol.43, issue.4, pp.326-331, 1965.
DOI : 10.1093/ajcp/43.4.326

J. Griffith, D. Yeung, and H. Ma, Bone marrow fat content in the elderly: A reversal of sex difference seen in younger subjects, Journal of Magnetic Resonance Imaging, vol.32, issue.1, pp.225-230, 2012.
DOI : 10.1002/jmri.23619

K. Koo, R. Dussault, and P. Kaplan, Fatty Marrow Conversion of the Proximal Femoral Metaphysis in Osteonecrotic Hips, Clinical Orthopaedics and Related Research, vol.361, pp.159-167, 1999.
DOI : 10.1097/00003086-199904000-00021

K. Koo, R. Dussault, and P. Kaplan, Age-related marrow conversion in the proximal metaphysis of the femur: evaluation with T1-weighted MR imaging., Radiology, vol.206, issue.3, pp.745-748, 1998.
DOI : 10.1148/radiology.206.3.9494495

V. Berg, B. Gilon, R. Malghem, and J. , Correlation between baseline femoral neck marrow status and the development of femoral head osteonecrosis in corticosteroid-treated patients: A longitudinal study by MR imaging, European Journal of Radiology, vol.58, issue.3, pp.444-449, 2006.
DOI : 10.1016/j.ejrad.2006.01.009

J. Zawin and D. Jaramillo, Conversion of bone marrow in the humerus, sternum, and clavicle: changes with age on MR images., Radiology, vol.188, issue.1, pp.159-164, 1993.
DOI : 10.1148/radiology.188.1.8511291

V. Berg, B. Lecouvet, F. Malghem, and J. , Sex-related Difference in Marrow Conversion in the Proximal Femur: Does It Exist?, Radiology, vol.209, issue.2, pp.587-588, 1998.
DOI : 10.1148/radiology.209.2.587-b

D. Schellinger, C. Lin, and D. Fertikh, Normal Lumbar Vertebrae: Anatomic, Age, and Sex Variance in Subjects at Proton MR Spectroscopy???Initial Experience, Radiology, vol.215, issue.3, pp.910-916, 2000.
DOI : 10.1148/radiology.215.3.r00jn42910

E. Biver, C. Salliot, and C. Combescure, Influence of Adipokines and Ghrelin on Bone Mineral Density and Fracture Risk: A Systematic Review and Meta-Analysis, The Journal of Clinical Endocrinology & Metabolism, vol.96, issue.9, pp.2703-2713, 2011.
DOI : 10.1210/jc.2011-0047

M. Toth, A. Tchernof, and C. Sites, Menopause-Related Changes in Body Fat Distribution, Annals of the New York Academy of Sciences, vol.24, issue.1, pp.502-506, 2000.
DOI : 10.1111/j.1749-6632.2000.tb06506.x

K. Blouin, A. Boivin, and A. Tchernof, Androgens and body fat distribution, The Journal of Steroid Biochemistry and Molecular Biology, vol.108, issue.3-5, pp.272-280, 2008.
DOI : 10.1016/j.jsbmb.2007.09.001

T. Kabata, T. Maeda, and K. Tanaka, Hemi-Resurfacing versus Total Resurfacing for Osteonecrosis of the Femoral Head, Journal of Orthopaedic Surgery, vol.91, issue.7, pp.177-180, 2011.
DOI : 10.1177/230949901101900209

G. Tan, P. Kang, and F. Pei, Glucocorticoids affect the metabolism of bone marrow stromal cells and lead to osteonecrosis of the femoral head: a review, Chin Med J (Engl), vol.125, pp.134-139, 2012.

R. Levasseur, Mechanisms of osteonecrosis, Joint Bone Spine, vol.75, issue.6, pp.639-642, 2008.
DOI : 10.1016/j.jbspin.2008.10.001

G. Motomura, T. Yamamoto, and K. Miyanishi, Bone marrow fat-cell enlargement in early steroid-induced osteonecrosis???a histomorphometric study of autopsy cases, Pathology - Research and Practice, vol.200, issue.11-12
DOI : 10.1016/j.prp.2004.10.003

K. Sakamoto, M. Osaki, and A. Hozumi, Simvastatin suppresses dexamethasone-induced secretion of plasminogen activator inhibitor-1 in human bone marrow adipocytes, BMC Musculoskeletal Disorders, vol.13, issue.1, p.82, 2011.
DOI : 10.1038/oby.2005.74

G. Lee and M. Steinberg, Are we evaluating osteonecrosis adequately ? Int Orthop, p.2012

R. Ficat, Idiopathic bone necrosis of the femoral head. Early diagnosis and treatment, J Bone Joint Surg Br, vol.67, pp.3-9, 1985.

S. Grinspoon, E. Thomas, and S. Pitts, Prevalence and Predictive Factors for Regional Osteopenia in Women with Anorexia Nervosa, Annals of Internal Medicine, vol.133, issue.10, pp.790-794, 2000.
DOI : 10.7326/0003-4819-133-10-200011210-00011

B. Cortet, C. Chauveau, and J. Vignau, Relationship between bone and fat in anorexia nervosa. Osteoporosis International, 2012.

V. Berg, B. Malghem, J. Devuyst, and O. , Anorexia nervosa: correlation between MR appearance of bone marrow and severity of disease., Radiology, vol.193, issue.3, pp.859-864, 1994.
DOI : 10.1148/radiology.193.3.7972838

F. Geiser, P. Murtz, and G. Lutterbey, Magnetic Resonance Spectroscopic and Relaxometric Determination of Bone Marrow Changes in Anorexia Nervosa, Psychosomatic Medicine, vol.63, issue.4, pp.631-637, 2001.
DOI : 10.1097/00006842-200107000-00016