E. and «. Global, Market Outlook For Photovoltaics until 2016 », rap. tech., 2012

E. and «. Solar, Photovoltaics competing in the energy sector », rap. tech, pp.2011-2019

C. Fritts, « New form of selenium cell, with some remarkable electrical discoveries made by its use, Proc. Am. Assoc, pp.97-1883

D. Reynolds, G. Leies, L. Antes, and R. Marburger, Photovoltaic Effect in Cadmium Sulfide, Photovoltaic Effect in Cadmium Sulfide, pp.533-534
DOI : 10.1103/PhysRev.96.533

W. Shockley and H. J. Queisser, Junction Solar Cells, Journal of Applied Physics, vol.32, issue.3, pp.510-511, 1961.
DOI : 10.1063/1.1736034

C. M. Fella, A. R. Uhl, Y. E. Romanyuk, and A. N. Tiwari, « Cu2ZnSnSe4 absorbers processed from solution deposited metal salt precursors under different selenization conditions », physica status solidi, p.2012
DOI : 10.1002/pssa.201228003

G. M. Ilari, C. M. Fella, C. Ziegler, A. R. Uhl, Y. E. Romanyuk et al., solar cell absorbers spin-coated from amine-containing ether solutions, Solar Energy Materials and Solar Cells, pp.125-130
DOI : 10.1016/j.solmat.2012.05.004

S. Bag, O. Gunawan, T. Gokmen, Y. Zhu, T. K. Todorov et al., Low band gap liquid-processed CZTSe solar cell with 10.1% efficiency, 1% efficiency, pp.7060-2012
DOI : 10.1002/pip.1174

D. A. Barkhouse, O. Gunawan, T. Gokmen, T. K. Todorov, and D. B. Mitzi, « Device characteristics of a 10, 1% hydrazine-processed Cu2ZnSn(Se,S)4 solar cell Progress in Photovoltaics : Research and Applications, pp.6-11

G. I. Koleilat, L. Levina, H. Shukla, S. H. Myrskog, S. Hinds et al., Efficient, Stable Infrared Photovoltaics Based on Solution-Cast Colloidal Quantum Dots, Stable Infrared Photovoltaics Quantum Dots, pp.833-840, 2008.
DOI : 10.1021/nn800093v

W. Ma, S. L. Swisher, T. Ewers, J. Engel, V. E. Ferry et al., Photovoltaic Performance of Ultrasmall PbSe Quantum Dots, Photovoltaic performance of ultrasmall PbSe quantum dots. », pp.8140-8147
DOI : 10.1021/nn202786g

X. Wang, G. I. Koleilat, J. Tang, H. Liu, I. J. Kramer et al., Tandem colloidal quantum dot solar cells employing a graded recombination layer, Nature Photonics, vol.24, issue.8, pp.480-484
DOI : 10.1038/nphoton.2011.123

R. Rossetti and L. Brus, Electron-hole recombination emission as a probe of surface chemistry in aqueous cadmium sulfide colloids, The Journal of Physical Chemistry, vol.86, issue.23, pp.4470-4472
DOI : 10.1021/j100220a003

R. Rossetti, S. Nakahara, and L. E. Brus, Quantum size effects in the redox potentials, resonance Raman spectra, and electronic spectra of CdS crystallites in aqueous solution, The Journal of Chemical Physics, vol.79, issue.2, pp.1086-1088, 1983.
DOI : 10.1063/1.445834

L. E. Brus, Electron???electron and electron???hole interactions in small semiconductor crystallites: The size dependence of the lowest excited electronic state, The Journal of Chemical Physics, vol.80, issue.9, pp.4403-4417, 1984.
DOI : 10.1063/1.447218

L. Brus, Electronic wave functions in semiconductor clusters: experiment and theory, The Journal of Physical Chemistry, vol.90, issue.12, pp.2555-2560
DOI : 10.1021/j100403a003

P. Reiss and F. Chandezon, « Nanocristaux semi-conducteurs fluorescents, pp.1-15, 2004.

S. L. Cumberland, K. M. Hanif, A. Javier, G. A. Khitrov, G. F. Strouse et al., Inorganic Clusters as Single-Source Precursors for Preparation of CdSe, ZnSe, and CdSe/ZnS Nanomaterials, Inorganic Clusters as Single-Source Precursors for Preparation of CdSe, ZnSe, and CdSe/ZnS Nanomaterials, pp.1576-1584, 2002.
DOI : 10.1021/cm010709k

W. W. Yu, Y. A. Wang, and X. Peng, Formation and Stability of Size-, Shape-, and Structure-Controlled CdTe Nanocrystals:?? Ligand Effects on Monomers and Nanocrystals, Formation and Stability of Size-, Shape-, and Structure- Controlled CdTe Nanocrystals : Ligand Effects on Monomers and Nanocrystals, pp.4300-4308
DOI : 10.1021/cm034729t

A. Delattre, S. Pouget, J. Jacquot, Y. Samson, and P. Reiss, « Stable colloidal solutions of high-temperature-annealed L10 FePt nanoparticles, pp.932-938, 2010.

M. Delalande, M. J. Guinel, L. F. Allard, A. Delattre, R. Le-bris et al., Ordering of Ultrasmall FePt Nanoparticles Revealed by TEM In Situ Annealing, L 1 0 Ordering of Ultrasmall FePt Nanoparticles Revealed by TEM In Situ Annealing, pp.6866-6872
DOI : 10.1021/jp300037r

P. Reiss, Semiconductor Nanocrystal Quantum Dots, 2008.

S. Tamang, Synthèse et fonctionalisation des nanocristauxémettantnanocristauxémettant dans le proche infrarouge pour l'imagerie biologique, Thèse de doctorat, pp.45-46, 2011.

F. Wang and X. Liu, « Recent advances in the chemistry of lanthanide-doped upconversion nanocrystals . », Chemical Society reviews, pp.976-89, 2009.

R. Chandler, A. Houtepen, J. Nelson, and D. Vanmaekelbergh, Electron transport in quantum dot solids: Monte Carlo simulations of the effects of shell filling, Coulomb repulsions, and site disorder, Physical Review B, vol.75, issue.8, 2007.
DOI : 10.1103/PhysRevB.75.085325

P. Guyot-sionnest, Electrical Transport in Colloidal Quantum Dot Films, Electrical Transport in Colloidal Quantum Dot Films, pp.1169-1175
DOI : 10.1021/jz300048y

S. Kim, G. Medeiros-ribeiro, D. A. Ohlberg, R. S. Williams, and J. R. Heath, Individual and Collective Electronic Properties of Ag Nanocrystals, Individual and Collective Electronic Properties of Ag Nanocrystals, pp.10341-10347
DOI : 10.1021/jp991952y

S. Connolly, S. Fullam, B. Korgel, D. Fitzmaurice, and . Time, Time-Resolved Small-Angle X-ray Scattering Studies of Nanocrystal Superlattice Self-Assembly, Journal of the American Chemical Society, vol.120, issue.12, pp.2969-2970, 1998.
DOI : 10.1021/ja974273e

A. Dong, J. Chen, P. M. Vora, J. M. Kikkawa, and C. B. Murray, Binary nanocrystal superlattice membranes self-assembled at the liquid???air interface, Nature, vol.124, issue.7305, pp.474-481
DOI : 10.1038/nature09188

S. Narayanan, J. Wang, and X. Lin, « Dynamical Self-Assembly of Nanocrystal Superlattices during Colloidal Droplet Evaporation by in situ Small Angle X-Ray Scattering, Physical Review Letters, vol.93

J. Chen, X. Ye, and C. B. Murray, Systematic Electron Crystallographic Studies of Self-Assembled Binary Nanocrystal Superlattices, ACS Nano, vol.4, issue.4, pp.2374-81, 2010.
DOI : 10.1021/nn1003259

M. I. Bodnarchuk, M. V. Kovalenko, S. Pichler, G. Fritz-popovski, G. Hesser et al., Large-Area Ordered Superlattices from Magnetic Wu??stite/Cobalt Ferrite Core/Shell Nanocrystals by Doctor Blade Casting, ACS Nano, vol.4, issue.1, pp.423-454, 2010.
DOI : 10.1021/nn901284f

S. Pichler, M. I. Bodnarchuk, M. V. Kovalenko, M. Yarema, G. Springholz et al., Evaluation of Ordering in Single-Component and Binary Nanocrystal Superlattices by Analysis of Their Autocorrelation Functions, ACS Nano, vol.5, issue.3, pp.1703-1715
DOI : 10.1021/nn200265e

E. V. Shevchenko, D. V. Talapin, S. O-'brien, and C. B. Murray, Nanoparticle Superlattices:?? An Example of Semiconductor???Metal Metamaterials, Journal of the American Chemical Society, vol.127, issue.24, pp.8741-8748, 2005.
DOI : 10.1021/ja050510z

K. Overgaag, W. Evers, B. De-nijs, R. Koole, J. Meeldijk et al., Binary Superlattices of PbSe and CdSe Nanocrystals, Binary superlattices of PbSe and CdSe nanocrystals. », pp.7833-7838, 2008.
DOI : 10.1021/ja802932m

Z. Chen, J. Moore, G. Radtke, H. Sirringhaus, and S. O-'brien, Binary Nanoparticle Superlattices in the Semiconductor???Semiconductor System:?? CdTe and CdSe, Journal of the American Chemical Society, vol.129, issue.50, pp.15702-15711
DOI : 10.1021/ja076698z

C. Lu, Z. Chen, and S. O-'brien, Optimized Conditions for the Self-Organization of CdSe-Au and CdSe-CdSe Binary Nanoparticle Superlattices, Chemistry of Materials, vol.20, issue.11, pp.3594-3600, 2008.
DOI : 10.1021/cm703117v

W. H. Evers, B. De-nijs, L. Filion, S. Castillo, M. Dijkstra et al., « Entropy-driven formation of binary semiconductor-nanocrystal superlattices. », Nano letters, pp.4235-4276

B. O. Dabbousi, C. B. Murray, M. F. Rubner, and M. G. Bawendi, Langmuir-Blodgett Manipulation of Size-Selected CdSe Nanocrystallites, Langmuir-Blodgett Manipulation of Size-Selected CdSe Nanocrystallites, pp.216-219
DOI : 10.1021/cm00038a020

F. Remacle, K. C. Beverly, J. R. Heath, and R. D. Levine, Gating the Conductivity of Arrays of Metallic Quantum Dots, Gating the Conductivity of Arrays of Metallic Quantum Dots, pp.13892-13901
DOI : 10.1021/jp036357h

G. M. Lowman, S. L. Nelson, S. M. Graves, G. F. Strouse, and S. K. Buratto, Polyelectrolyte???Quantum Dot Multilayer Films Fabricated by Combined Layer-by-Layer Assembly and Langmuir???Schaefer Deposition, Langmuir, vol.20, issue.6, pp.2057-2059, 2004.
DOI : 10.1021/la035863v

E. Talgorn, E. Moysidou, R. D. Abellon, T. J. Savenije, A. Goossens et al., Highly Photoconductive CdSe Quantum-Dot Films: Influence of Capping Molecules and Film Preparation Procedure, The Journal of Physical Chemistry C, vol.114, issue.8, pp.3441-3447
DOI : 10.1021/jp9109546

D. Yu, C. Wang, and P. Guyot-sionnest, n-Type Conducting CdSe Nanocrystal Solids, Science, vol.300, issue.5623, pp.1277-80, 2003.
DOI : 10.1126/science.1084424

D. V. Talapin and C. B. Murray, PbSe Nanocrystal Solids for n- and p-Channel Thin Film Field-Effect Transistors, Science, vol.310, issue.5745, pp.86-95
DOI : 10.1126/science.1116703

M. V. Kovalenko, M. Scheele, and D. V. Talapin, Colloidal Nanocrystals with Molecular Metal Chalcogenide Surface Ligands, Science, vol.324, issue.5933, pp.1417-1437, 2009.
DOI : 10.1126/science.1170524

A. Nag, M. V. Kovalenko, J. Lee, W. Liu, B. Spokoyny et al., as Surface Ligands, OH-, and NH2-as surface ligands. », pp.10612-10632
DOI : 10.1021/ja2029415

A. T. Fafarman, W. Koh, B. T. Diroll, D. K. Kim, D. Ko et al., Thiocyanate-Capped Nanocrystal Colloids: Vibrational Reporter of Surface Chemistry and Solution-Based Route to Enhanced Coupling in Nanocrystal Solids, Journal of the American Chemical Society, vol.133, issue.39, pp.15753-61
DOI : 10.1021/ja206303g

J. Choi, A. T. Fafarman, S. J. Oh, D. Ko, D. K. Kim et al., Bandlike Transport in Strongly Coupled and Doped Quantum Dot Solids: A Route to High-Performance Thin-Film Electronics, Nano Letters, vol.12, issue.5, pp.2631-2639
DOI : 10.1021/nl301104z

E. Cassette, T. Pons, C. Bouet, M. Helle, L. Bezdetnaya et al., Synthesis and Characterization of Near-Infrared Cu???In???Se/ZnS Core/Shell Quantum Dots for In vivo Imaging, Synthesis and Characterization of Near-Infrared CuInSe/ZnS Core/Shell Quantum Dots for In vivo Imaging, pp.6117-6124
DOI : 10.1021/cm101881b

URL : https://hal.archives-ouvertes.fr/hal-00548762

J. Park, C. Dvoracek, K. H. Lee, J. F. Galloway, H. C. Bhang et al., CuInSe/ZnS Core/Shell NIR Quantum Dots for Biomedical Imaging, Small, vol.1, issue.22, pp.3148-52
DOI : 10.1002/smll.201101558

J. Wang, Y. Wang, F. Cao, Y. Guo, and L. Wan, Nanocrystals and Their Application in High-Performance Organic???Inorganic Hybrid Photodetectors, Journal of the American Chemical Society, vol.132, issue.35, pp.12218-12239
DOI : 10.1021/ja1057955

S. L. Castro, S. G. Bailey, R. P. Raffaelle, K. K. Banger, and A. F. Hepp, ) via Low-Temperature Pyrolysis of Molecular Single-Source Precursors, Nanocrystalline Chalcopyrite Materials (CuInS 2 and CuInSe 2 ) via Low-Temperature Pyrolysis of Molecular Single-Source Precursors, pp.3142-3147
DOI : 10.1021/cm034161o

L. E. Brus, Electron???electron and electron???hole interactions in small semiconductor crystallites: The size dependence of the lowest excited electronic state, The Journal of Chemical Physics, vol.80, issue.9, pp.4403-4417, 1984.
DOI : 10.1063/1.447218

L. Brus, Electronic wave functions in semiconductor clusters: experiment and theory, The Journal of Physical Chemistry, vol.90, issue.12, pp.2555-2560
DOI : 10.1021/j100403a003

S. Trasatti, The absolute electrode potential: an explanatory note (Recommendations 1986), Pure and Applied Chemistry, vol.58, issue.7, pp.955-966, 1986.
DOI : 10.1351/pac198658070955

C. M. Cardona, W. Li, A. E. Kaifer, D. Stockdale, and G. C. Bazan, « Electrochemical considerations for determining absolute frontier orbital energy levels of conjugated polymers for solar cell applications. », Advanced materials, pp.2367-71

K. Knight, The crystal structures of CuInSe2 and CuInTe2, The crystal structures of CuInSe 2 and CuInTe 2, pp.161-167
DOI : 10.1016/0025-5408(92)90209-I

D. K. Suri, K. C. Nagpal, and G. K. Chadha, solid solutions, Journal of Applied Crystallography, vol.22, issue.6, pp.578-583
DOI : 10.1107/S0021889889008289

G. D. Scholes, Controlling the Optical Properties of Inorganic Nanoparticles, Controlling the Optical Properties of Inorganic Nanoparticles, pp.1157-1172, 2008.
DOI : 10.1002/adfm.200800151

C. B. Murray, D. J. Norris, and M. G. Bawendi, Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites, Journal of the American Chemical Society, vol.115, issue.19, pp.8706-8715
DOI : 10.1021/ja00072a025

J. Yang, E. H. Sargent, S. O. Kelley, and J. Y. Ying, A general phase-transfer protocol for metal ions and its application in nanocrystal synthesis, Nature Materials, vol.3, issue.8, pp.683-692, 2009.
DOI : 10.1038/nmat2490

J. J. Loferski, Theoretical Considerations Governing the Choice of the Optimum Semiconductor for Photovoltaic Solar Energy Conversion, Journal of Applied Physics, vol.27, issue.7, pp.777-1956
DOI : 10.1063/1.1722483

J. M. Luther, M. Law, Q. Song, C. L. Perkins, M. C. Beard et al., Structural, Optical, and Electrical Properties of Self-Assembled Films of PbSe Nanocrystals Treated with 1,2-Ethanedithiol, ACS Nano, vol.2, issue.2, pp.271-80, 2008.
DOI : 10.1021/nn7003348

X. Wang, G. I. Koleilat, J. Tang, H. Liu, I. J. Kramer et al., Tandem colloidal quantum dot solar cells employing a graded recombination layer, Nature Photonics, vol.24, issue.8, pp.480-484
DOI : 10.1038/nphoton.2011.123

S. M. Willis, C. Cheng, H. E. Assender, and A. A. Watt, « The Transitional Heterojunction Behavior of PbS, ZnO Colloidal Quantum Dot Solar Cells. », Nano letters, vol.12, pp.1522-1528

K. Ramakrishna-reddy, N. Koteswara-reddy, and R. Miles, Photovoltaic properties of SnS based solar cells, Solar Energy Materials and Solar Cells, pp.3041-3046
DOI : 10.1016/j.solmat.2006.06.012

O. E. Ogah, G. Zoppi, I. Forbes, and R. Miles, Thin films of tin sulphide for use in thin film solar cell devices, Thin Solid Films, vol.517, issue.7, pp.2485-2488
DOI : 10.1016/j.tsf.2008.11.023

R. W. Miles, O. E. Ogah, and G. , Thermally evaporated thin films of SnS for application in solar cell devices, Thin Solid Films, vol.517, issue.17, pp.4702-4705
DOI : 10.1016/j.tsf.2009.03.003

O. E. Ogah, K. R. Reddy, G. Zoppi, I. Forbes, and R. W. Miles, Annealing studies and electrical properties of SnS-based solar cells, Thin Solid Films, vol.519, issue.21, pp.7425-7428
DOI : 10.1016/j.tsf.2010.12.235

M. Nassary and . Temperature, Temperature dependence of the electrical conductivity, Hall effect and thermoelectric power of SnS single crystals, Journal of Alloys and Compounds, vol.398, issue.1-2, pp.21-25, 2005.
DOI : 10.1016/j.jallcom.2005.02.025

S. G. Hickey, C. Waurisch, and B. , Size and Shape Control of Colloidally Synthesized IV???VI Nanoparticulate Tin(II) Sulfide, Journal of the American Chemical Society, vol.130, issue.45, pp.14978-80, 2008.
DOI : 10.1021/ja8048755

Y. Xu, N. Al-salim, C. W. Bumby, and R. D. Tilley, Synthesis of SnS Quantum Dots, Synthesis of SnS quantum dots. », pp.15990-15991
DOI : 10.1021/ja906804f

H. Liu, Y. Liu, Z. Wang, and P. He, Facile synthesis of monodisperse, size-tunable SnS nanoparticles potentially for solar cell energy conversion, Nanotechnology, vol.21, issue.10, pp.105707-105749, 2010.
DOI : 10.1088/0957-4484/21/10/105707

J. M. Pietryga, D. J. Werder, D. J. Williams, J. L. Casson, R. D. Schaller et al., Utilizing the Lability of Lead Selenide to Produce Heterostructured Nanocrystals with Bright, Stable Infrared Emission, Journal of the American Chemical Society, vol.130, issue.14, pp.4879-85, 2008.
DOI : 10.1021/ja710437r

S. Deka, K. Miszta, D. Dorfs, A. Genovese, G. Bertoni et al., Octapod-Shaped Colloidal Nanocrystals of Cadmium Chalcogenides via ???One-Pot??? Cation Exchange and Seeded Growth, Nano Letters, vol.10, issue.9, pp.3770-3776
DOI : 10.1021/nl102539a

S. Tamang, Synthèse et fonctionalisation des nanocristauxémettantnanocristauxémettant dans le proche infrarouge pour l'imagerie biologique, Thèse de doctorat, pp.45-46, 2011.

S. Tamang, G. Beaune, I. Texier, and P. Reiss, Aqueous Phase Transfer of InP/ZnS Nanocrystals Conserving Fluorescence and High Colloidal Stability, ACS Nano, vol.5, issue.12, pp.9392-402
DOI : 10.1021/nn203598c

W. Ojo, S. Xu, F. Delpech, C. Nayral, and B. Chaudret, Room-Temperature Synthesis of Air-Stable and Size-Tunable Luminescent ZnS-Coated Cd3P2 Nanocrystals with High Quantum Yields, Angewandte Chemie International Edition, vol.101, issue.3, pp.738-779
DOI : 10.1002/anie.201104864

J. Bragagnolo, A. Barnett, J. Phillips, R. Hall, A. Rothwarf et al., The design and fabrication of thin-film CdS/Cu<inf>2</inf>S cells of 9.15-percent conversion efficiency, IEEE Transactions on Electron Devices, vol.27, issue.4, pp.645-651, 1980.
DOI : 10.1109/T-ED.1980.19917

M. B. Sigman, A. Ghezelbash, T. Hanrath, A. E. Saunders, F. Lee et al., S Nanorods, Nanodisks, and Nanoplatelets, Solventless synthesis of monodisperse Cu 2 S nanorods, nanodisks, and nanoplatelets. », pp.16050-16057
DOI : 10.1021/ja037688a

T. H. Larsen, M. Sigman, A. Ghezelbash, R. C. Doty, and B. A. , Solventless Synthesis of Copper Sulfide Nanorods by Thermolysis of a Single Source Thiolate-Derived Precursor, Journal of the American Chemical Society, vol.125, issue.19, pp.5638-5647
DOI : 10.1021/ja0342087

Z. Zhuang, Q. Peng, B. Zhang, and Y. Li, S Nanocrystals and Their Assembly into a Superlattice, Journal of the American Chemical Society, vol.130, issue.32, pp.10482-10485
DOI : 10.1021/ja803644g

W. Han, L. Yi, N. Zhao, A. Tang, M. Gao et al., Synthesis and Shape-Tailoring of Copper Sulfide/Indium Sulfide-Based Nanocrystals, Journal of the American Chemical Society, vol.130, issue.39, pp.13152-61, 2008.
DOI : 10.1021/ja8046393

X. Du, M. Mo, R. Zheng, S. Lim, Y. Meng et al., Shape-Controlled Synthesis and Assembly of Copper Sulfide Nanoparticles, Shape-Controlled Synthesis and Assembly of Copper Sulfide Nanoparticles, pp.2032-2035, 2008.
DOI : 10.1021/cg701145q

S. Choi, K. An, E. Kim, J. H. Yu, J. H. Kim et al., Simple and Generalized Synthesis of Semiconducting Metal Sulfide Nanocrystals, Simple and Generalized Synthesis of Semiconducting Metal Sulfide Nanocrystals, pp.1645-1649, 2009.
DOI : 10.1002/adfm.200800832

L. Jiang, Y. Zhu, and . Cu, Cu2S nanostructures prepared by Cu-cysteine precursor templated route, Materials Letters, vol.63, issue.22, pp.1935-1938
DOI : 10.1016/j.matlet.2009.06.005

A. Tang, S. Qu, K. Li, Y. Hou, F. Teng et al., One-pot synthesis and self-assembly of colloidal copper(I) sulfide nanocrystals, Nanotechnology, vol.21, issue.28, pp.285602-2010
DOI : 10.1088/0957-4484/21/28/285602

M. Lotfipour, T. Machani, D. P. Rossi, and K. E. Plass, ??-Chalcocite Nanoparticle Synthesis and Stability, Chemistry of Materials, vol.23, issue.12, pp.3032-3038
DOI : 10.1021/cm1031656

J. Gao, Q. Li, H. Zhao, L. Li, C. Liu et al., O and CuS Hollow Spheres and Their Optical Limiting Properties, Chemistry of Materials, vol.20, issue.19, pp.6263-6269
DOI : 10.1021/cm801407q

Y. Zhao, H. Pan, Y. Lou, X. Qiu, J. Zhu et al., S Nanocrystals: Optical and Structural Properties of Copper-Deficient Copper(I) Sulfides, Journal of the American Chemical Society, vol.131, issue.12, pp.4253-61, 2009.
DOI : 10.1021/ja805655b

J. Taylor, T. Kippeny, and S. J. Rosenthal, « Surface Stoichiometry of CdSe Nanocrystals Determined by Rutherford Backscattering Spectroscopy, Journal of Cluster Science, vol.12, issue.4, pp.571-582, 2001.
DOI : 10.1023/A:1014246315331

Y. C. Zhang, Z. N. Du, K. W. Li, and M. Zhang, Size-controlled hydrothermal synthesis of SnS2 nanoparticles with high performance in visible light-driven photocatalytic degradation of aqueous methyl orange, Separation and Purification Technology, vol.81, issue.1, pp.101-107
DOI : 10.1016/j.seppur.2011.07.016

Y. C. Zhang, J. Li, M. Zhang, and D. D. Dionysiou, « Size-tunable hydrothermal synthesis of SnS 2 nanocrystals with high performance in visible light-driven photocatalytic reduction of aqueous Cr(VI). », Environmental science & technology, pp.9324-9355

R. Lucena, F. Fresno, and J. C. Conesa, Hydrothermally synthesized nanocrystalline tin disulphide as visible light-active photocatalyst: Spectral response and stability, Applied Catalysis A: General, vol.415, issue.416, pp.415-416
DOI : 10.1016/j.apcata.2011.12.012

X. Gou, J. Chen, and P. Shen, Synthesis, characterization and application of SnSx (x=1, 2) nanoparticles, Materials Chemistry and Physics, vol.93, issue.2-3, pp.557-566, 2005.
DOI : 10.1016/j.matchemphys.2005.04.008

G. B. Dubrovskii, Crystal structure and electronic spectrum of SnS2, Crystal structure and electronic spectrum of SnS 2, pp.1557-1562
DOI : 10.1134/1.1130598

H. Zhong, G. Yang, H. Song, Q. Liao, H. Cui et al., « Vertically Aligned Graphene-Like SnS 2 Ultrathin Nanosheet Arrays : Excellent Energy Storage, Catalysis, Photoconduction , and Field-Emitting Performances, The Journal of Physical Chemistry C, vol.116, p.120413163714000, 2012.

D. Ma, H. Zhou, J. Zhang, and Y. Qian, Controlled synthesis and possible formation mechanism of leaf-shaped SnS2 nanocrystals, Materials Chemistry and Physics, vol.111, issue.2-3, pp.391-395, 2008.
DOI : 10.1016/j.matchemphys.2008.04.035

J. Yang, Q. Tian, Z. Chen, X. Xu, and L. Zha, Synthesis and characterization of tin disulfide hexagonal nanoflakes via solvothermal decomposition, Materials Letters, vol.67, issue.1, pp.32-34
DOI : 10.1016/j.matlet.2011.09.044

R. L. Mössbauer, Kernresonanzabsorption von Gammastrahlung in Ir191, Kernresonanzabsorption von Gammastrahlung in Ir 191, pp.538-539, 1958.
DOI : 10.1007/BF00632050

R. L. Mössbauer, Recoilless Nuclear Resonance Absorption of Gamma Radiation: A new principle yields gamma lines of extreme narrowness for measurements of unprecedented accuracy, Recoilless Nuclear Resonance Absorption of Gamma Radiation, pp.731-738, 1962.
DOI : 10.1126/science.137.3532.731

P. Gütlich, E. Bill, and A. X. Trautwein, Mössbauer Spectroscopy and Transition Metal Chemistry, pp.2011-59

S. G. Hickey, C. Waurisch, B. Rellinghaus, and A. Eychmüller, Size and Shape Control of Colloidally Synthesized IV???VI Nanoparticulate Tin(II) Sulfide, Journal of the American Chemical Society, vol.130, issue.45, pp.14978-80, 2008.
DOI : 10.1021/ja8048755

H. Liu, Y. Liu, Z. Wang, and P. He, Facile synthesis of monodisperse, size-tunable SnS nanoparticles potentially for solar cell energy conversion, Nanotechnology, vol.21, issue.10, pp.105707-2010
DOI : 10.1088/0957-4484/21/10/105707

M. Nassary, Temperature dependence of the electrical conductivity, Hall effect and thermoelectric power of SnS single crystals, Journal of Alloys and Compounds, vol.398, issue.1-2, pp.21-25
DOI : 10.1016/j.jallcom.2005.02.025

C. Nayral, T. Ould-ely, A. Maisonnat, B. Chaudret, P. Fau et al., A Novel Mechanism for the Synthesis of Tin / Tin Oxide Nanoparticles of Low Size Dispersion and of Nanostructured SnO2 for the Sensitive Layers of Gas Sensors, Advanced Materials, vol.11, issue.1, pp.61-63
DOI : 10.1002/(SICI)1521-4095(199901)11:1<61::AID-ADMA61>3.0.CO;2-U

C. Nayral, E. Viala, P. Fau, F. Senocq, J. C. Jumas et al., Synthesis of Tin and Tin Oxide Nanoparticles of Low Size Dispersity for Application in Gas Sensing, Chemistry, vol.75, issue.25, pp.4082-90, 2000.
DOI : 10.1002/1521-3765(20001117)6:22<4082::AID-CHEM4082>3.0.CO;2-S

C. Nayral, E. Viala, V. Collì-ere, P. Fau, F. Senocq et al., Synthesis and use of a novel SnO2 nanomaterial for gas sensing, Applied Surface Science, vol.164, issue.1-4, pp.219-226
DOI : 10.1016/S0169-4332(00)00340-8

Y. S. Avadhut, J. Weber, E. Hammarberg, C. Feldmann, I. Schellenberg et al., :F Nanoparticles by High-Resolution Solid-State NMR, Study on the Defect Structure of SnO 2 :F Nanoparticles by High-Resolution Solid-State NMR, pp.1526-1538
DOI : 10.1021/cm103286t

P. Lippens, M??ssbauer isomer shifts in complex tin chalcogenides, Physical Review B, vol.60, issue.7, pp.4576-4586, 1999.
DOI : 10.1103/PhysRevB.60.4576

M. Protì-ere and P. Reiss, Amine-induced growth of an In 2 O 3 shell on colloidal InP nanocrystals, Chemical Communications, issue.23, pp.2417-2437, 2007.

M. Delalande, P. R. Marcoux, P. Reiss, and Y. Samson, Core???shell structure of chemically synthesised FePt nanoparticles: a comparative study, J. Mater. Chem., vol.128, issue.16, pp.1579-67, 2007.
DOI : 10.1039/B614209E

M. Kovalenko and W. Heiss, SnTe Nanocrystals:?? A New Example of Narrow-Gap Semiconductor Quantum Dots, Journal of the American Chemical Society, vol.129, issue.37, pp.11354-11359
DOI : 10.1021/ja074481z

W. J. Baumgardner, J. J. Choi, Y. Lim, and T. Hanrath, SnSe Nanocrystals: Synthesis, Structure, Optical Properties, and Surface Chemistry, Journal of the American Chemical Society, vol.132, issue.28, pp.9519-9540
DOI : 10.1021/ja1013745

D. R. Lyde, CRC Handbook of Chemistry and Physics

A. De-kergommeaux, J. Faure-vincent, A. Pron, R. De-bettignies, B. Malaman et al., Sn???M??ssbauer Spectroscopy, Journal of the American Chemical Society, vol.134, issue.28, pp.11659-11666
DOI : 10.1021/ja3033313

.. Réalisation-de-films-mincesàmincesà-base-de-nanocristaux, 83 4.2.1 Dépôt par drop-casting

. Bibliographie, Xia, « Shape-controlled synthesis of gold and silver nanoparticles, Science, vol.298, pp.2176-2185

A. Pandet and P. Guyot-sionnest, Slow Electron Cooling in Colloidal Quantum Dots, Slow Electron Cooling in Colloidal, pp.929-932, 2008.
DOI : 10.1126/science.1159832

D. Yu, C. Wang, and P. Guyot-sionnest, n-Type Conducting CdSe Nanocrystal Solids, Science, vol.300, issue.5623, pp.1277-80, 2003.
DOI : 10.1126/science.1084424

C. B. Murray, S. Sun, H. Doyle, and T. Bettley, ChemInform Abstract: Monodisperse 3d Transition-Metal (Co, Ni, Fe) Nanoparticles and Their Assembly into Nanoparticle Superlattices., ChemInform, vol.26, issue.16, pp.985-76, 2001.
DOI : 10.1002/chin.200216240

I. Gur, N. A. Fromer, M. L. Geier, and A. P. , Air-Stable All-Inorganic Nanocrystal Solar Cells Processed from Solution, Science, vol.310, issue.5747, pp.462-467
DOI : 10.1126/science.1117908

D. V. Talapin and C. B. Murray, PbSe Nanocrystal Solids for n- and p-Channel Thin Film Field-Effect Transistors, Science, vol.310, issue.5745, pp.86-95
DOI : 10.1126/science.1116703

J. M. Caruge, J. E. Halpert, V. Wood, V. Bulovi´cbulovi´c, and M. G. Bawendi, Colloidal quantum-dot light-emitting diodes with metal-oxide charge transport layers, Nature Photonics, vol.125, issue.4, pp.247-250, 2008.
DOI : 10.1038/nphoton.2008.34

M. Kuno, J. K. Lee, B. O. Dabbousi, F. V. Mikulec, and M. G. Bawendi, The band edge luminescence of surface modified CdSe nanocrystallites: Probing the luminescing state, The band edge luminescence of surface modified CdSe nanocrystallites : Probing the luminescing state, p.9869, 1997.
DOI : 10.1063/1.473875

B. A. Ridley, All-Inorganic Field Effect Transistors Fabricated by Printing, Science, vol.286, issue.5440, pp.746-749
DOI : 10.1126/science.286.5440.746

M. Drndic, M. V. Jarosz, N. Y. Morgan, M. A. Kastner, and M. G. Bawendi, Transport properties of annealed CdSe colloidal nanocrystal solids, Transport properties of annealed CdSe colloidal nanocrystal solids, p.7498, 2002.
DOI : 10.1063/1.1523148

B. L. Cushing, V. L. Kolesnichenko, and C. J. Connor, Recent Advances in the Liquid-Phase Syntheses of Inorganic Nanoparticles, Chemical Reviews, vol.104, issue.9, pp.3893-946
DOI : 10.1021/cr030027b

C. Burda, X. Chen, R. Narayanan, and M. A. , El-Sayed, « Chemistry and properties of nanocrystals of different shapes. », Chemical reviews, pp.1025-102, 2005.

M. Green, The nature of quantum dot capping ligands, Journal of Materials Chemistry, vol.7, issue.5, pp.5797-2010
DOI : 10.1039/c0jm00007h

W. W. Yu, Y. A. Wang, and X. Peng, Formation and Stability of Size-, Shape-, and Structure-Controlled CdTe Nanocrystals:?? Ligand Effects on Monomers and Nanocrystals, Formation and Stability of Size-, Shape-, and Structure- Controlled CdTe Nanocrystals : Ligand Effects on Monomers and Nanocrystals, pp.4300-4308, 2003.
DOI : 10.1021/cm034729t

M. J. Hostetler, A. C. Templeton, and R. W. Murray, Dynamics of Place-Exchange Reactions on Monolayer-Protected Gold Cluster Molecules, Langmuir, vol.15, issue.11, pp.3782-3789
DOI : 10.1021/la981598f

E. E. Foos, A. W. Snow, M. E. Twigg, and M. G. Ancona, Thiol-Terminated Di-, Tri-, and Tetraethylene Oxide Functionalized Gold Nanoparticles:?? A Water-Soluble, Charge-Neutral Cluster, Chemistry of Materials, vol.14, issue.5, pp.2401-2408, 2002.
DOI : 10.1021/cm020007a

N. Gaponik, D. V. Talapin, A. L. Rogach, A. Eychmüller, and H. Weller, Efficient Phase Transfer of Luminescent Thiol-Capped Nanocrystals:?? From Water to Nonpolar Organic Solvents, Nano Letters, vol.2, issue.8, pp.803-806, 2002.
DOI : 10.1021/nl025662w

C. B. Murray, D. J. Norris, and M. G. Bawendi, Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites, Journal of the American Chemical Society, vol.115, issue.19, pp.8706-8715
DOI : 10.1021/ja00072a025

N. Greenham and X. Peng, Charge separation and transport in conjugated-polymer/semiconductor-nanocrystal composites studied by photoluminescence quenching and photoconductivity, Physical Review B, vol.54, issue.24, pp.17628-17637
DOI : 10.1103/PhysRevB.54.17628

M. Brust, D. J. Schiffrin, D. Bethell, and C. J. Kiely, Novel gold-dithiol nano-networks with non-metallic electronic properties, Advanced Materials, vol.115, issue.9, pp.795-797
DOI : 10.1002/adma.19950070907

J. E. Katari, V. L. Colvin, and A. P. , X-ray Photoelectron Spectroscopy of CdSe Nanocrystals with Applications to Studies of the Nanocrystal Surface, The Journal of Physical Chemistry, vol.98, issue.15, pp.4109-4117, 1994.
DOI : 10.1021/j100066a034

K. Overgaag, P. Liljeroth, B. Grandidier, and D. Vanmaekelbergh, Scanning Tunneling Spectroscopy of Individual PbSe Quantum Dots and Molecular Aggregates Stabilized in an Inert Nanocrystal Matrix, ACS Nano, vol.2, issue.3, pp.600-606
DOI : 10.1021/nn7003876

URL : https://hal.archives-ouvertes.fr/hal-00357383

I. Swart, Z. Sun, D. Vanmaekelbergh, and P. Liljeroth, Hole-Induced Electron Transport through Core???Shell Quantum Dots: A Direct Measurement of the Electron???Hole Interaction, Nano Letters, vol.10, issue.5, pp.1931-1936, 2010.
DOI : 10.1021/nl100949a

M. Brust, D. Bethell, C. J. Kiely, and D. J. Schiffrin, Self-Assembled Gold Nanoparticle Thin Films with Nonmetallic Optical and Electronic Properties, Langmuir, vol.14, issue.19, pp.5425-5429
DOI : 10.1021/la980557g

M. V. Kovalenko, M. Scheele, and D. V. Talapin, Colloidal Nanocrystals with Molecular Metal Chalcogenide Surface Ligands, Science, vol.324, issue.5933, pp.1417-1437, 2009.
DOI : 10.1126/science.1170524

E. J. Klem, H. Shukla, S. Hinds, D. D. Macneil, L. Levina et al., Impact of dithiol treatment and air annealing on the conductivity, mobility, and hole density in PbS colloidal quantum dot solids, Impact of dithiol treatment and air annealing on the conductivity, mobility, and hole density in PbS colloidal quantum dot solids, p.212105, 2008.
DOI : 10.1063/1.2917800

A. De-kergommeaux, A. Fiore, J. Faure-vincent, F. Chandezon, A. Pron et al., Highly conductive CuInSe2 nanocrystals with inorganic surface ligands, Highly conductive CuInSe2 nanocrystals with inorganic surface ligands, pp.877-882
DOI : 10.1016/j.matchemphys.2012.08.014

M. G. Panthani, V. Akhavan, B. Goodfellow, J. P. Schmidtke, L. Dunn et al., -x))Se2 (CIGS) nanocrystal " inks " for printable photovoltaics. », Synthesis of CulnS2, CulnSe2, and Cu, pp.16770-16777

Q. Guo, S. Kim, M. Kar, and W. Shafarman, Nanocrystal and Nanoring Inks for Low-Cost Solar Cells, Nano Letters, vol.8, issue.9, pp.2982-2987, 2008.
DOI : 10.1021/nl802042g

X. M. Lin, H. M. Jaeger, C. M. Sorensen, and K. J. Klabunde, Formation of Long-Range-Ordered Nanocrystal Superlattices on Silicon Nitride Substrates, The Journal of Physical Chemistry B, vol.105, issue.17, pp.3353-3357, 2001.
DOI : 10.1021/jp0102062

Z. Chen, J. Moore, G. Radtke, H. Sirringhaus, and S. O-'brien, Binary Nanoparticle Superlattices in the Semiconductor???Semiconductor System:?? CdTe and CdSe, Journal of the American Chemical Society, vol.129, issue.50, pp.15702-15711
DOI : 10.1021/ja076698z

E. V. Shevchenko, D. V. Talapin, C. B. Murray, and S. O-'brien, Structural Characterization of Self-Assembled Multifunctional Binary Nanoparticle Superlattices, Journal of the American Chemical Society, vol.128, issue.11, pp.3620-3657, 2006.
DOI : 10.1021/ja0564261

G. Decher, J. Hong, and J. Schmitt, Buildup of ultrathin multilayer films by a self-assembly process: III. Consecutively alternating adsorption of anionic and cationic polyelectrolytes on charged surfaces, Thin Solid Films, vol.210, issue.211, pp.831-835, 1992.
DOI : 10.1016/0040-6090(92)90417-A

Y. Lvov, G. Decher, H. Moehwald, and . Assembly, Assembly, structural characterization, and thermal behavior of layer-by-layer deposited ultrathin films of poly(vinyl sulfate) and poly(allylamine), Langmuir, vol.9, issue.2, pp.481-486
DOI : 10.1021/la00026a020

G. Decher, Fuzzy Nanoassemblies: Toward Layered Polymeric Multicomposites, Fuzzy Nanoassemblies : Toward Layered Polymeric Multicomposites, pp.1232-1237
DOI : 10.1126/science.277.5330.1232

Y. Lu, R. Ganguli, C. A. Drewien, M. T. Anderson, C. J. Brinker et al., « Continuous formation of supported cubic and hexagonal mesoporous films by sol-gel dip-coating, pp.364-368

J. M. Luther, M. Law, Q. Song, C. L. Perkins, M. C. Beard et al., Structural, Optical, and Electrical Properties of Self-Assembled Films of PbSe Nanocrystals Treated with 1,2-Ethanedithiol, ACS Nano, vol.2, issue.2, pp.271-80, 2008.
DOI : 10.1021/nn7003348

J. Gao, C. Perkins, J. Luther, M. Hanna, H. Chen et al., n-Type Transition Metal Oxide as a Hole Extraction Layer in PbS Quantum Dot Solar Cells, Nano Letters, vol.11, issue.8, pp.3263-3266
DOI : 10.1021/nl2015729

D. Meyerhofer, Characteristics of resist films produced by spinning, Journal of Applied Physics, vol.49, issue.7, pp.3993-1978
DOI : 10.1063/1.325357

P. C. Sukanek, Dependence of Film Thickness on Speed in Spin Coating, Dependence of Film Thickness on Speed in Spin Coating, p.1712
DOI : 10.1149/1.2085860

S. M. Critchley, M. R. Willis, M. J. Cook, J. Mcmurdo, and Y. Maruyama, Deposition of ordered phthalocyanine films by spin coating, Deposition of ordered phthalocyanine films by spin coating, p.157, 1992.
DOI : 10.1039/jm9920200157

G. C. Bryant, M. J. Cook, C. Ruggiero, T. G. Ryan, A. J. Thorne et al., Structural study of spin coated and LB films of monomeric and oligomeric phthalocyanines, Thin Solid Films, vol.243, issue.1-2, pp.316-324, 1994.
DOI : 10.1016/0040-6090(93)04074-3

P. C. Sukanek, ???Anomalous??? Speed Dependence in Polyimide Spin Coating, Journal of The Electrochemical Society, vol.144, issue.11, pp.3959-1997
DOI : 10.1149/1.1838118

A. Hassan, A. Nabok, A. Ray, A. Lucke, K. Smith et al., Thin films of calix-4-resorcinarene deposited by spin coating and Langmuir???Blodgett techniques: determination of film parameters by surface plasmon resonance, Materials Science and Engineering: C, vol.8, issue.9, pp.251-255
DOI : 10.1016/S0928-4931(99)00014-4

A. Hassan, A. Ray, A. Nabok, and S. Panigrahi, Surface plasmon resonance studies on spin coated films of azobenzene-substituted calix-4-resorcinarene molecules, IEE Proceedings -Science, Measurement and Technology, p.137, 2000.
DOI : 10.1049/ip-smt:20000371

P. Jiang and M. J. Mcfarland, Large-Scale Fabrication of Wafer-Size Colloidal Crystals, Macroporous Polymers and Nanocomposites by Spin-Coating, Journal of the American Chemical Society, vol.126, issue.42, pp.13778-86
DOI : 10.1021/ja0470923

S. Coe-sullivan, J. S. Steckel, W. Woo, M. G. Bawendi, V. Bulovi´cbulovi´c et al., Large-Area Ordered Quantum-Dot Monolayers via Phase Separation During Spin-Casting, Advanced Functional Materials, vol.1, issue.7, pp.1117-1124
DOI : 10.1002/adfm.200400468

P. Jiang, T. Prasad, M. J. Mcfarland, and V. L. Colvin, Two-dimensional nonclose-packed colloidal crystals formed by spincoating, Applied Physics Letters, vol.89, issue.1, pp.11908-2006
DOI : 10.1063/1.2218832

S. Berson, Synthèse, caractérisation et nanostructuration de dérivés du polythiophène pour des applications en cellules photovolta¨?quesphotovolta¨?ques organiques, Thèse doctorat, p.86, 2007.

K. W. Johnston, A. G. Pattantyus-abraham, J. P. Clifford, S. H. Myrskog, D. D. Macneil et al., Schottky-quantum dot photovoltaics for efficient infrared power conversion, Applied Physics Letters, vol.92, issue.15, p.151115, 2008.
DOI : 10.1063/1.2912340

G. I. Koleilat, L. Levina, H. Shukla, S. H. Myrskog, S. Hinds et al., Efficient, Stable Infrared Photovoltaics Based on Solution-Cast Colloidal Quantum Dots, Stable Infrared Photovoltaics Quantum Dots, pp.833-840, 2008.
DOI : 10.1021/nn800093v

Y. Wu, C. Wadia, W. Ma, B. Sadtler, and A. P. , Synthesis and Photovoltaic Application of Copper(I) Sulfide Nanocrystals, Nano Letters, vol.8, issue.8, pp.2551-2555, 2008.
DOI : 10.1021/nl801817d

K. Leschkies, T. Beatty, M. Kang, and D. Norris, Solar Cells Based on Junctions between Colloidal PbSe Nanocrystals and Thin ZnO Films, ACS Nano, vol.3, issue.11, pp.3638-3686
DOI : 10.1021/nn901139d

J. D. Olson, Y. W. Rodriguez, L. D. Yang, G. B. Alers, and S. Carter, CdTe Schottky diodes from colloidal nanocrystals, CdTe Schottky diodes from colloidal nanocrystals, pp.242103-2010
DOI : 10.1063/1.3440384

J. Gao, J. M. Luther, O. E. Semonin, R. J. Ellingson, A. J. Nozik et al., Characteristics in Heterojunction ZnO/PbS Quantum Dot Solar Cells, Quantum Dot Size Dependent J-V Characteristics in Heterojunction, pp.1002-1008
DOI : 10.1021/nl103814g

X. Wang, G. I. Koleilat, J. Tang, H. Liu, I. J. Kramer et al., Tandem colloidal quantum dot solar cells employing a graded recombination layer, Nature Photonics, vol.24, issue.8, pp.480-484
DOI : 10.1038/nphoton.2011.123

S. M. Willis, C. Cheng, H. E. Assender, and A. A. Watt, « The Transitional Heterojunction Behavior of PbS, ZnO Colloidal Quantum Dot Solar Cells. », Nano letters, vol.12, pp.1522-1528

R. E. Mistler and . Tape, The basic process for meeting the needs of the electronics industry, American Ceramic Society Bulletin, vol.69, issue.6, pp.1022-1026, 1990.

A. T. Keramik and . Review, aqueous tape casting of ceramic powders, », Materials Science, vol.202, pp.206-217, 1995.

M. Kaelin, D. Rudmann, and A. Tiwari, « Low cost processing of CIGS thin film solar cells », Solar Energy, pp.749-756

M. Kaelin, D. Rudmann, F. Kurdesau, H. Zogg, T. Meyer et al., Low-cost CIGS solar cells by paste coating and selenization, Thin Solid Films, vol.480, issue.481, pp.480-481, 2005.
DOI : 10.1016/j.tsf.2004.11.007

P. Schilinsky, C. Waldauf, and C. Brabec, Performance Analysis of Printed Bulk Heterojunction Solar Cells, Advanced Functional Materials, vol.99, issue.452, pp.1669-1672
DOI : 10.1002/adfm.200500581

T. Rauch, M. Böberl, S. F. Tedde, J. Fürst, M. V. Kovalenko et al., Near-infrared imaging with quantum-dot-sensitized organic photodiodes, Nature Photonics, vol.34, issue.6, pp.332-336, 2009.
DOI : 10.1038/nphoton.2009.72

M. I. Bodnarchuk, M. V. Kovalenko, S. Pichler, G. Fritz-popovski, G. Hesser et al., Large-Area Ordered Superlattices from Magnetic Wu??stite/Cobalt Ferrite Core/Shell Nanocrystals by Doctor Blade Casting, ACS Nano, vol.4, issue.1, pp.423-454, 2010.
DOI : 10.1021/nn901284f

H. Yang and P. Jiang, « Large-scale colloidal self-assembly by doctor blade coating. », Langmuir : the, ACS journal of surfaces and colloids, vol.26, pp.13173-82

S. Le-rayonnement, 98 5.1.2 Contact ohmique, p.99

N. Aschcroft and N. Mermin, Solid State Physics, 1975.

J. Ponpon, Semiconducteurs, Bases physiques, composants et matériaux, 2008.

M. Grundmann, The Physics of Semiconductors

M. Labrune, Silicon surface passivation and epitaxial growth on c-Si by low temperature plasma processes for high efficiency solar cells, Thèse doctorat, pp.2011-100
URL : https://hal.archives-ouvertes.fr/pastel-00611652

S. Sadewasser, P. Jelinek, C. Fang, O. Custance, Y. Yamada et al., New Insights on Atomic-Resolution Frequency-Modulation Kelvin-Probe Force-Microscopy Imaging of Semiconductors, Physical Review Letters, vol.103, issue.26, 2009.
DOI : 10.1103/PhysRevLett.103.266103

E. Spadafora, Investigations of model organic materials and photovoltaic devices using noncontact atomic force microscopy and Kelvin probe force microscopy, Thèse doctorat, pp.2011-103

J. M. Luther, M. Law, Q. Song, C. L. Perkins, M. C. Beard et al., Structural, Optical, and Electrical Properties of Self-Assembled Films of PbSe Nanocrystals Treated with 1,2-Ethanedithiol, ACS Nano, vol.2, issue.2, pp.271-80, 2008.
DOI : 10.1021/nn7003348

Y. Wu, C. Wadia, W. Ma, B. Sadtler, and A. P. , Synthesis and Photovoltaic Application of Copper(I) Sulfide Nanocrystals, Nano Letters, vol.8, issue.8, pp.2551-2556, 2008.
DOI : 10.1021/nl801817d

Q. Guo, S. Kim, M. Kar, and W. Shafarman, Nanocrystal and Nanoring Inks for Low-Cost Solar Cells, Nano Letters, vol.8, issue.9, pp.2982-2987, 2008.
DOI : 10.1021/nl802042g

M. Law, J. M. Luther, Q. Song, B. K. Hughes, C. L. Perkins et al., Structural, Optical, and Electrical Properties of PbSe Nanocrystal Solids Treated Thermally or with Simple Amines, Journal of the American Chemical Society, vol.130, issue.18, pp.5974-85, 2008.
DOI : 10.1021/ja800040c

M. G. Panthani, V. Akhavan, B. Goodfellow, J. P. Schmidtke, L. Dunn et al., (CIGS) Nanocrystal ???Inks??? for Printable Photovoltaics, Synthesis of CulnS 2 , CulnSe 2 , and Cu(In x Ga 1?x )Se 2 (CIGS) nanocrystal " inks " for printable photovoltaics. », pp.16770-16777
DOI : 10.1021/ja805845q

M. , A. Haleem, and M. Ichimura, « Experimental determination of band offsets at the SnS/CdS and SnS/InS x O y heterojunctions, Journal of Applied Physics, vol.107, issue.3, pp.34507-2010

R. Mastria, A. Rizzo, C. Nobile, S. Kumar, G. Maruccio et al., Improved photovoltaic performances by post-deposition acidic treatments on tetrapod shaped colloidal nanocrystal solids, Nanotechnology, vol.23, issue.30, p.305403
DOI : 10.1088/0957-4484/23/30/305403

M. Haase, H. Weller, and A. Henglein, Photochemistry and radiation chemistry of colloidal semiconductors. 23. Electron storage on zinc oxide particles and size quantization, The Journal of Physical Chemistry, vol.92, issue.2, pp.482-487, 1988.
DOI : 10.1021/j100313a047

C. Pacholski, A. Kornowski, and H. Weller, Self-Assembly of ZnO: From Nanodots to Nanorods, Angewandte Chemie International Edition, vol.113, issue.7, pp.1188-91, 2002.
DOI : 10.1002/1521-3773(20020402)41:7<1188::AID-ANIE1188>3.0.CO;2-5

W. Beek, M. Wienk, and R. Janssen, Efficient Hybrid Solar Cells from Zinc Oxide Nanoparticles and a Conjugated Polymer, Advanced Materials, pp.1009-1013, 2004.
DOI : 10.1002/adma.200306659

S. K. Hau, H. Yip, N. S. Baek, J. Zou, K. O. Malley et al., Air-stable inverted flexible polymer solar cells using zinc oxide nanoparticles as an electron selective layer, Applied Physics Letters, vol.92, issue.25, p.253301, 2008.
DOI : 10.1063/1.2945281

A. Montage and E. , 118 A.2 Formules chimiques des ligands utilisés, 118 A.2.2 Ligands utilisés pour l'´ echange de ligands . . . . . . . . . . . . . . . . . . . . . . . 119

. Le-complexe-de-cyanurate-est-formé-en-mélangeant-et-chauffant-l-'acide-cyanurique-et-l-'hydrazine-monohydrate, Pour ce faire, dans un ballon de 500 mL sur lequel on branche un reflux, 12,9 g d'acide cyanurique sont introduits On ajoute 300 mL d'eau distillée ainsi que 5 mL d'hydrazine monohydrate . Le mélange est ensuite chaufféchaufféà reflux pendant 1h30à1h30à 120 ? C. A la fin du reflux, la poudre blanche (acide cyanurique) s'estcompì etement solubilisée et la solution est totalement transparente. 5 mL d'hydrazine monohydrate sont ajoutés et le mélange est refroidi dans un bain de glace. Après 1h30 dans le bain de glace (pour précipiter la totalité), la solution est filtréè a travers un Büchner. La poudre blanche récupérée est lavée avec 10 mL d'´ ethanol, puis 10 mL de diethylether afin de sécher le produit

M. G. Panthani, V. Akhavan, B. Goodfellow, J. P. Schmidtke, L. Dunn et al., (CIGS) Nanocrystal ???Inks??? for Printable Photovoltaics, Synthesis of CulnS 2 , CulnSe 2 , and Cu(In x Ga 1?x )Se 2 (CIGS) nanocrystal " inks " for printable photovoltaics. », pp.16770-16777
DOI : 10.1021/ja805845q

B. Koo, R. N. Patel, and B. A. , Nanocrystals with Trigonal Pyramidal Shape, Journal of the American Chemical Society, vol.131, issue.9, pp.3134-3139
DOI : 10.1021/ja8080605

J. Yang, E. H. Sargent, S. O. Kelley, and J. Y. Ying, A general phase-transfer protocol for metal ions and its application in nanocrystal synthesis, Nature Materials, vol.3, issue.8, pp.683-692, 2009.
DOI : 10.1038/nmat2490

S. G. Hickey, C. Waurisch, and B. , Size and Shape Control of Colloidally Synthesized IV???VI Nanoparticulate Tin(II) Sulfide, Journal of the American Chemical Society, vol.130, issue.45, pp.14978-80, 2008.
DOI : 10.1021/ja8048755

H. Liu, Y. Liu, Z. Wang, and P. He, Facile synthesis of monodisperse, size-tunable SnS nanoparticles potentially for solar cell energy conversion, Nanotechnology, vol.21, issue.10, pp.105707-105749, 2010.
DOI : 10.1088/0957-4484/21/10/105707

W. J. Baumgardner, J. J. Choi, Y. Lim, and T. Hanrath, SnSe Nanocrystals: Synthesis, Structure, Optical Properties, and Surface Chemistry, Journal of the American Chemical Society, vol.132, issue.28, pp.9519-9540
DOI : 10.1021/ja1013745

M. Kovalenko and W. Heiss, SnTe Nanocrystals:?? A New Example of Narrow-Gap Semiconductor Quantum Dots, Journal of the American Chemical Society, vol.129, issue.37, pp.11354-11359
DOI : 10.1021/ja074481z

L. Carbone, C. Nobile, M. De-giorgi, F. D. Sala, G. Morello et al., Synthesis and Micrometer-Scale Assembly of Colloidal CdSe/CdS Nanorods Prepared by a Seeded Growth Approach, Nano Letters, vol.7, issue.10, pp.2942-50, 2007.
DOI : 10.1021/nl0717661

B. Sommaire and .. Tem-/-stem, 136 B.2 Préparation des substrats pour les rayons X 136 B.3 Préparation des substrats pour l, p.138

. La-mesure-s-'organise-generalement-comme-ceci, ´ electrolyte (pointe de spatule de ferrocène) On réalise 3 cycles de C/V puis un cycle de DPV, cela permet de situer le potentiel du couple Fe + /Fe. -Changement d'´ electrolyte. -Mesure du premier film de NCs : 3 cycles de C/V + 1 cycle de DPV (en réduction généralement, dépend de la position des niveauxélectroniquesniveauxélectroniques). -Mesure dudeuxì eme film de NCs : 3 cycles de C/V + 1 cycle de DPV. -Mesure dutroisì eme film de NCs : 3 cycles de C/V + 1 cycle de DPV, Mesure duquatrì eme film de NCs : 3 cycles de C/V + 1 cycle de DPV. -Mesure ducinquì eme film de NCs : 3

D. Sommaire, A. 5. Le-rayonnement-dit-de, and .. , 146 D.2.1 Le Watt crète 146 D.2.3 Calcul de la part du solaire dans l'´ energie mondiale, p.147

. Sachant, ´ energié electrique consommée en France par an est de 490 tWh en 2010, cela constitue : Pourcentage = 125,4 490 * 100 = 25,6 % Conclusion : Si toutes les cellules solaires installées dans le monde produisaient de l'´ electricité que pour la France

J. Antoine-de-kergommeaux, R. Faure-vincent, A. De-bettignies, B. Pron, P. Malaman et al., « Surface oxidation of tin chalcogenide nanocrystals revealed by 119 Sn Mössbauer spectroscopy, Journal of the American Chemical Society, issue.28, pp.134-11659, 2012.

J. Antoine-de-kergommeaux, R. Faure-vincent, A. De-bettignies, B. Pron, P. Malaman et al., Aix-en-Provence, France « CuInSe 2 and SnS nanocrystals with inorganic surface ligands for solution processed solar cells, Photovoltaic Technical Conference, 2011.