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General introduction 
The scale-down of CMOS technology has followed Moore’s law for around a half century, 

especially for the recent two decades, the doubling of transistors has continuously taken place 

every eighteen or twenty-four months. However, when CMOS is scaled into sub-100 nm 

regime, it has already shown short channel effects (SCEs), which limits the electrical 

performance of CMOS devices and circuits. When the micro processor unit (MPU) node 

shrinks to 16 nm expected in 2013, more problems may emerge. On one hand, quantum 

tunneling will result in large leakage, regardless of the adopted materials. On the other hand, 

higher resolution requirements in the lithography and plasma etching techniques prohibit the 

reliability of the fabricated devices. Therefore, new FET architectures should be proposed. 

The three-dimensional (3D) FET has been proposed ahead of time, i.e., Intel Corp. 

proposed the tri-gate FinFET in 2011 and adopted it in the 22 nm node CPU. Due to the 

wrapped gate of FinFET that could provide better electric field controlling, the leakage current 

has reduced one order of magnitude due to the coupling of the gates (work as a double-gate 

FET), in comparison with the 32 nm planar FET. This result has indicated the advantage of the 

3D FET, and a lot of other 3D FET structures have also been proposed, including the inverted-T 

channel FET, the Omega-gate FET, the Pi-gate FET, the four-gate FET, the Gate-All-Around 

(GAA) FET, and so forth. However, on one hand, due to the more complex process, these 

alternative 3D structures have not yet been adopted. On the other hand, including FinFET, 

these 3D structures are still limited by the lithography and plasma etching techniques. In 

addition, the high sidewall roughness observed from FinFET has been a common 

technological challenge for the 3D FETs. 

Another FET structure has been proposed by rotating the planar FET 90°, so-called 

“vertical FET”. On one hand, the channel length of this vertical structure is determined by the 

deposited layer thickness between source and drain, thus it is independent of the lithography 

technique. On the other hand, the ultra-short channel length could be obtained with a large 

channel width, which enables to increase the drive current. In addition, the vertical 

architecture also enables to realize a double-gate or multi-gate structure, which further 
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improves the electrical performance. Therefore, vertical FET is also a promising structure to 

pursure Moore’s law. 

In the laboratory of IETR, thin film technology has been well developed, with different 

thin film materials and deposition techniques. Especially for polycrystalline silicon (poly-Si), 

mature low pressure chemical vapor deposition (LPCVD) and solid phase crystallization 

(SPC) techniques have been adopted for low-temperature (T ≤ 600°C) thin film transistors 

(TFTs) fabrication. Therefore, our laboratory has proposed a vertical thin film transistor 

(VTFT) structure based on this low-temperature poly-Si technology. This thesis deals with the 

research on this special VTFT structure. The organization of this thesis is shown below: 

In the first chapter, the state of the art for the new FET structures will be introduced. 

Initially, the scale-down tedency of MOSFETs will be presented. Afterwards, the fabrication 

process of the lateral thin film transistors (LTFTs) will be given step by step, and the work 

principle of a MOSFET will also be presented based on the LTFT. Subsequently, different 3D 

structures, including FinFET, will be given. At the end of this chapter, vertical FET structure 

will also be proposed, with its advantages over the planar FET structure. 

In the second chapter, the VTFT structure will be proposed by rotating LTFT 90°. 

Different thin film materials and techniques adopted in the fabrication process will be detailed, 

especially for the low-tempertaure poly-Si technology. Afterwards, the fabrication process of 

the classical VTFTs will be presented in detail step by step. Static electrical measurements 

will be shown and analyzed, highlighting some problems related with the proposed VTFT 

architecture, and some solutions will also be given to improve the electrical properties by 

modifying some steps of the technological process. 

In the third chapter, a new VTFT structure will be proposed, in order to radically solve the 

problems in the classical VTFT structure. Initally, the theoretical analysis of this new structure 

will be presented. Subsequently, the fabrication process of the new VTFT structure will be 

shown step by step. The technological challenges of the new VTFTs will be given, and the 

electrical characteristics will be presented and analyzed, in comparison with the electrical 

properties of the classical VTFTs. Based on the analysis of the electrical characteristics of the 
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fabricated VTFTs, several attempts will be made to improve the electrical characteristics step 

by step. Moreover, P and N-type VTFTs will be fabricated, highlighting the feasibility of a 

CMOS-like VTFT. 

Finally, we will conclude the study on poly-Si VTFTs, and we will also present some 

perspectives for future work on our VTFTs. 
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I. Development and revolution of MOSFETs 

Since the first MOSFET was fabricated in 1960 by D. Kahng and M.M.Atalla of Bell 

Telephone Laboratory [1, 2], the semiconductor industry has undertaken a tremendous 

revolution based on CMOS circuits. The scale-down of the planar transistors has followed 

Moore’s law for around half century, especially for the recent two decades, the doubling of 

transistors has continuously taken place every eighteen or twenty-four months [3, 4]. However, 

the scale-down tendency will see its restriction when the micro processor unit (MPU) node 

shrinks to 16 nm expected in the 2013 timeframe of the International Technology Roadmap for 

Semiconductors (ITRS) shown in figure 1-1 [5]. This limitation is mainly due to two reasons: 

on one hand, quantum tunneling due to the short channel length would enlarge the leakage as 

well as serious short channel effects (SCEs), regardless of the adopted materials. On the other 

hand, the high resolution requirements in the lithography and plasma etching techniques 

prohibit reliable and mass production. Therefore, new FET architectures should be proposed 

and adopted in order to break through this limitation. 

 

Figure 1-1: Evolution of the MPU node provided by ITRS 2010, the 16 nm node was expected 
in 2013. 

Fortunately, the semiconductor industry has found the solution for overcoming the former 

challenge of leakage ahead of time, by adopting the new three-dimensional transistors (3D 

transistors), which enable to form wrapping gate structures. Intel Corp. announced its tri-gate 

FinFETs manufactured at 22 nm in 2011 [6, 7], which greatly improves the electrical 
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characteristics in comparison with its 32 nm planar transistors. FinFETs for 16 nm 

manufacturing process are also being developed by Intel, IBM, Samsung, Toshiba and other 

corporations [8 - 11]. 

Another concept of 3D FETs, the vertical MOSFETs has also been proposed by rotating the 

planar MOSFETs 90°, thus the channel length could be defined by a non-lithography method 

instead of improving the lateral resolution [12, 13], which would enable to simplify the process. 

In addition, for the vertical MOSFETs, the leakage could also be well-controlled by 

introduction of the multi-gate structure. In summary, vertical MOSFETs could be another 

classification of promising FETs to pursue the Moore’s law. 

Considering the thin film technology, thin film transistors have also been developed to 

pursue this scale-down trend. Not only the lateral thin film transistors (LTFTs) have been 

developed corresponding to the planar MOSFETs, but a lot of 3D thin film transistors have also 

been proposed, including vertical thin film transistors (VTFTs), which correspond to vertical 

MOSFETs. 

II. Lateral Thin Film Transistors (LTFTs) 

III.1 Introduction of LTFTs 

Before the description of different three-dimensional FETs, the basic principle of the 

MOSFETs should be presented by taking the traditional planar transistors as an example. As 

the wide usage of the thin film technology, the lateral thin film transistors (LTFTs) have been 

researched for about a half century [14-16]. In the microelectronics laboratory in IETR 

(Institut d'Electronique et des Télécommunications de Rennes), lateral thin film transistors 

(LTFTs) have also been fabricated and studied for over a decade [17, 18]. Based on the LTFTs 

technology, the prototype of the vertical thin film transistors (VTFTs) will be proposed. 

In this section, the simplified fabrication process of LTFTs is shown step by step. 

Afterwards, the basic working principle of transistor will be expressed by taking the LTFT as 

an example, and the typical transfer and output characteristics of the LTFT will also be 

analyzed. 
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III.2 Fabrication process of LTFTs 

In our laboratory, the fabrication of the LTFTs (N and P-type) is based on the fabrication 

process of the planar MOSFETs. For the planar MOSFETs, the source, drain and channel 

parts are formed in the monosilicon body, and the doping is achieved via high-temperature 

diffusion or ion implantation methods. 

In contrast, all the parts of the LTFTs are formed by using silicon thin film technology. 

Among the different silicon deposition techniques, LPCVD technique has been proved to 

have the largest grain size and the best reliability by involving the solid phase crystallization 

(SPC) technique. In addition, for LPCVD, the source and drain could be in situ doped by 

dopant injection during the deposition process. Therefore, this mature low-temperature 

LPCVD technology has been widely used for our LTFTs fabrication [19, 20]. Moreover, the 

process can be fully compatible with the glass substrates, as the maximum temperature can be 

limited to 600°C. Therefore, it enables the applications in the display field, such as the active 

matrix liquid crystal display (AMLCD), the active matrix organic light-emitting diode 

(AMOLED) [21 - 23], and so on. 

The fabrication of the LTFTs could be achieved either by a bilayer method, or by a 

monolayer way [24]. For the bilayer method, the source and drain heavily-doped layers 

(labeled as “N+”) are deposited after the definition of the active layer (labeled as “Undoped”) 

by an etching step (the two layers are not deposited at the same time), while for the monolayer 

method, the two layers are continuously deposited prior to the definition of the active layer, 

which can be shown in figure 1-2 (a) and figure 1-2 (b), respectively.  

     

Figure 1-2: Schematic view of (a) a bilayer LTFT, and (b) a monolayer LTFT [24]. 
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Note that, for the monolayer method, due to the continuous depositions of the two layers, 

the interfacial defect densities between the two layers are much less than the ones for the 

bilayer method. Therefore, the fabrication of the monolayer LTFTs will be described in detail 

with a four-mask process [25]. 

The fabrication process of the LTFTs begins with the deposition of the buffer oxide. After 

cleaning the substrates, a thick 500 nm silicon oxide layer is deposited by Atmospheric 

Pressure Chemical Vapor Deposition (APCVD) method. The LTFTs are fabricated on this 

buffer oxide layer, and thus the devices could also be isolated from each other. 

Afterwards, the polycrystalline silicon (poly-Si) layers are deposited by the Low Pressure 

Chemical Vapor Deposition (LPCVD) technique. After the deposition of a 150nm undoped 

poly-Si layer, another 150nm N-type highly-doped poly-Si layer is continuously formed by in 

situ doping using phosphine gas PH3 (while P-type poly-Si layer is formed by in situ doping 

using diborane gas B2H6). Due to the same processing flow of the N and P-type LTFT, the 

fabrication process of the N-type LTFT is taken as an example, and the schematic structure for 

the deposited layers is shown in figure 1-3: 

 

Figure 1-3: Schematic structure after the deposition of two poly-Si layers by LPCVD 
technique. “N+” stands for the N-type heavily-doped poly-Si layer, and “poly-Si” stands for 
the undoped poly-Si layer. 

After the deposition of the two poly-Si layers, the first mask is used and then the first 

reactive ion etching (RIE) is carried out to form poly-Si islands, as shown in figure 1-4. For 

each LTFT, source, drain and the active layer will be included in the same island, thus the size 

of one single LTFT is determined by the island dimension. 
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Figure 1-4: The first RIE step to form the poly-Si islands, whose dimensions would determine 
the sizes of the LTFTs. 

After the definition of the poly-Si islands, the second mask is used and a second RIE is 

carried out to etch the N-type heavily-doped poly-Si layer (labeled as “N+”) until reaching the 

interface between the heavily-doped poly-Si layer and undoped poly-Si layer (labeled as 

“Poly-Si”), and thus source and drain are formed for each LTFT, which is shown in figure 1-5: 

 

Figure 1-5: The second RIE is carried out to form source and drain of the LTFTs. 

Before the deposition of the gate oxide, a standard RCA cleaning is necessary in order to 

eliminate most of the impurities at the interface between the undoped poly-Si layer and the 

gate oxide, as the channel would be formed near this interface. Thus, RCA cleaning enables to 

improve the electrical characteristics of the fabricated LTFTs.  

After the RCA cleaning, a 100 nm SiO2 thin film layer is deposited by APCVD technique 

followed by a densification process at 600°C for at least 12 hours. Afterwards, a third mask is 

used and wet etching is carried out to make contact openings for source and drain. The final 

schematic structure after gate oxide deposition and wet etching is shown in figure 1-6: 
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Figure 1-6: Gate oxide deposition and wet etching to make contact openings. 

The final step is the formation of aluminum (Al) contacts for source, drain and gate. After 

the deposition of a 300 nm Al layer by Joule effect evaporation method, the source, drain and 

gate contacts are formed by wet etching using the fourth mask. The final schematic structure 

of the fabricated LTFTs is shown in figure 1-7: 

 

Figure 1-7: Schematic structure of the final LTFTs, the deposited Al is etched and the contacts 
are formed. 

As mentioned above, except for the fabrication of the N-type LTFTs, P-type LTFTs are 

also fabricated in our laboratory, and thus the P and N-type LTFTs could be complementarily 

arranged on the same substrate (so-called “CTFTs”), which corresponds to the CMOS 

technology [26]. Based on the CTFTs technology, the CTFT inverters are achieved, and other 

circuits based on LTFTs are also fabricated [27]. 

III.3 Basic working principle of LTFTs 

Corresponding to the classical MOSFET, the schematic of a single N-type normally-off 

LTFT using thin film technology is shown in figure 1-8. For the gate part, the multi-layer 

Al/SiO2/poly-Si also forms the Metal-Oxide-Semiconductor (MOS) structure, thus the 

working principle of the N-type normally-off LTFTs will be explained using the equivalent 



Chapter 1 Introduction 

12 

planar MOSFETs. 

 

Figure 1-8: Schematic view of the N-type normally-off LTFT. 

In order to simplify the explanation of the working principle, the three-dimension 

schematic for the gate part of the N-type normally-off LTFT is shown in figure 1-9, source 

and drain are at the left and right part of the undoped poly-Si (not shown in figure 1-9), and 

the channel will be formed in the area below the gate oxide and the gate metal contact. The 

important geometric parameters for the LTFT are listed below: 

- L: channel length, determined by the gate coverage length from source to drain; 

- W: channel width, determined by the gate coverage width perpendicular to the channel 

length L; 

- TOX: the thickness of the gate oxide layer; 

- Tsi: the thickness of the undoped poly-Si layer, determining the depletion type of the 

LTFT (full depletion or partial depletion). 

 

Figure 1-9: The MOS structure of a LTFT, the geometric parameters are shown. No channel is 
formed, thus the LTFT is at the off-state. 

For the N-type normally-off LTFT, when there’s no voltage applied at the gate part, i.e., 
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VGS = 0 V, the carriers below the gate oxide keep the charge neutral (shown in figure 1-9), 

and there is no electrons gathering to form the N-type inversion layer. Thus, the LTFT is at the 

off-state. 

When forward voltage is applied to the gate part of the N-type normally-off LTFT, i.e., 

VGS > 0 V, the electric field at the gate part would repel the positive carriers, i.e., the holes 

near the top of the undoped channel, and thus the electrons gather below the gate oxide. When 

increasing VGS to a value known as the threshold voltage VTH, i.e., VGS > VTH, the electrons 

would gather from the source side to the drain side, thus the channel is formed. When certain 

forward voltage VDS is applied between source and drain, the electrons from the source are 

attracted into the undoped poly-Si layer, then they pass through the channel, and finally they 

are captured by the drain. The schematically electronic circuit is shown in figure 1-10. When 

continuous voltages of VGS and VDS are applied, the electrons would continuously flow from 

source to drain, thus the LTFT is at the on-state. 

 

Figure 1-10: The electronic circuit of the LTFT, the channel is formed under the gate forward 
voltage VGS, and the LTFT is at the on-state. 

The typical transfer and output characteristics of the LTFT fabricated in our laboratory are 

shown in figure 1-11 (a) and figure 1-11 (b), respectively [28]. For the transfer curve, the 

drain is applied with certain voltage (VDS = 1 V in this case), the signed regions correspond to 

different states of the LTFT: 

① Gate is reverse-biased, thus the LTFT is blocked. The drain current is mainly due to the 

electron traps and the acceleration of the electrons under the source-drain voltage VDS. 
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② Drain current IDS reaches the minimum value, which shows the ohmic conduction of the 

whole active layer. 

③ The channel forms and the channel depth increases, which leads to the rapid and linear 

increase of IDS corresponding to the gate voltage VGS. 

④ The channel gradually reaches the maximum depth, thus the drain current IDS reaches the 

saturation, and the LTFT completely works at the on-state. 

 

Figure 1-11: (a) Typical Transfer characteristics, and (b) output characteristics of the LTFT 
fabricated in our laboratory [28]. 

From the transfer characteristics curve, the on/off-current ratio ION/IOFF could be 

calculated, where ION corresponds to the maximum value of IDS, and IOFF corresponds to the 

minimum point. For this example curve, ION is around 10-4 A while IOFF is lower than 10-11 A, 

thus a high ION/IOFF ratio of more than 107 is gained. 

For the LTFT, when the gate is applied with certain voltages higher than the threshold 
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voltage (VGS > VTH), the channel forms. And when the drain is also applied with the bias VDS, 

the electrons would flow from source to drain via the channel. The outpur characteristics 

describe the variations of the drain current IDS with the drain-source voltage VDS, which could 

be divided into three parts with the transition point of VDS (sat) = VGS - VTH: 

① The LTFT works in the linear region. When the drain voltage is low (VDS < VGS - VTH), the 

channel enables the electrons flow from the source to drain, and then the channel works as a 

resistor, while the drain current IDS increases linearly with the drain-source voltage VDS. With 

the further increase of the drain voltage VDS, the inversion layer gradually shrink at the drain 

side when the gate voltage VGS is fixed. 

② When the drain voltage is increased to a certain value (VDS (sat) = VGS - VTH), the inversion 

layer at the drain side disappears, which is called “pinch-off”, and the drain voltage is called 

“pinch-off voltage”. 

③ The LTFT works in the saturation region. When the drain voltage VDS exceeds the 

pinch-off voltage VDS (sat), the inversion layer would shrink thus the channel length reduces. 

However, at the end of the inversion layer, the voltage is kept as the VDS (sat), thus the drain 

current kept as the saturation current IDS (sat). 

By analyzing the transfer and output characteristics of the LTFT, the quality of the LTFT 

could be evaluated and the other electrical parameters, such as the threshold voltage VTH, the 

subthreshold slope S, the transconductance gm, and the field effect mobility μFE could also be 

deduced. The detailed calculation or deduction approaches for these parameters will be 

presented in chapter 2. 

III. Three-dimensional FETs: FinFETs and other alternative 

structures 

III.1 Introduction of FinFETs 

In order to satisfy the requirement of the shrinking device size while improving the 

electrical characteristics, one solution is to develop ultra-thin body silicon on insulator 

(UTB-SOI) MOSFETs, i.e., fully depleted MOSFETs (FDMOSFETs). A lot of research on 
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UTB-SOI MOSFETs has been carried out, and promising results have been obtained [29 - 33]. 

STMicro corp. has been pursuing a 14 nm UTB-SOI planar MOSFET, and IBM has also 

proposed a back-gate extremely-thin SOI (ET SOI) solution when using the extremely-thin 

silicon as the active layer [34]. However, the mass production of the ultrathin body (below 5 

nm) requires a high industrial cost. 

Another solution, the three-dimensional (3D) FETs have been fabricated and researched 

since the 80s of last century [35, 36]. Among these alternative structures, the FinFET has 

emerged as the most representative and promising three-dimensional (3D) FETs, whose 

development could be traced by the work of Hu Chenming group [37 - 43] in UC Berkeley 

and Taiwan Semiconductor Manufacturing Company (TSMC). What’s more important, the 

more mature technology and superior characteristics of FinFET over the planar MOSFET 

enable the semiconductor industry revolution, i.e., Intel Corp. announced the 3D FinFET for 

its CPU technology at 22 nm node in April 2011. The FinFET have been among the most 

attractive transistor structures for its excellent performance, and a lot of alternative 3D 

structures similar to FinFET have also been proposed and reported, including Ω-gate FETs, 

Π-gate FETs, four-gate FETs, gate-all-around (GAA) FETs [44 - 47] and so on. 

III.2 Basic working principles of FinFETs 

In fact, the 3D FinFET structure has been proposed based on the planar FET structure. 

Figure 1-12 (a) and figure 1-12 (b) show the planar FET structure and the bulk FinFET 

structure, respectively, while the SOI FinFET structure is shown in figure 1-12 (c). For planar 

transistor, source and drain are buried by the Shallow Trench Isolation (STI) layer, thus only 

the top surface could be used to form the gate structure. In contrast, for the FinFET (bulk or 

SOI FinFET), source and drain are extruded from the STI plane, thus the gate could be 

wrapped around the conducting channel that includes the top and two sides of the tall, narrow 

fin, which enables a better control of the channel. It has been proved that the special 

double-gate technology has greatly modulated the electric field region, that is, the coupling of 

the two electric field regions for the two gates has been beneficial for suppressing the leakage 

and the short channel effects (SCEs). 
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Figure 1-12: Schematic structure of (a) a planar FET, (b) a bulk FinFET, and (c) a SOI 
FinFET. 

In process, the difference between the bulk FinFET and the SOI FinFET, only lies in the 

definition of source and drain, i.e., for the bulk FinFET, a dry etching process should be 

undertaken on the silicon body in order to form the tall fin that is protrude from the other part 

of the body. In contrast, for a SOI FinFET, source and drain are formed in the bonded layer 

instead of the body, which enables a better isolation from the bulk silicon. Due to the same 

principle, the bulk FinFET fabricated by Intel Corp. will be presented as a representative of 

the SOI FinFET. 

III.3 Advantages of FinFETs and technological challenges 

The cross-sectional schematic views of the bulk FinFET gate part and the symmetric 

source/drain part are shown in figure 1-13 (a) and figure 1-13 (b), respectively, and the 

channel part of the fin is all surrounded by the oxide layer. For the electrical characteristics, it 

is shown that the tri-gate structure could control the current at three sides of the channel, thus 
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it enables to drive a higher current due to the larger total gate width. What’s more important, 

when the fin width is reduced to a certain value, the off-current IOFF could also be decreased 

due to the coupling of the two side gates (gate 1 and gate 3 in figure1-13 (a)), and the SCEs 

are also well supressed by better controlling the channel part via coupling the two side gates, 

which works like a double-gate FET [48, 49]. In summary, the fin part is critical for 

improving the electrical characteristics of the FinFET: on one hand, the fin height should be 

increased as it determines the gate width W of the two side gates (gate 1 and gate 3); on the 

other hand, the fin width should also be reduced in order to reduce the off-current IOFF. 

   

Figure 1-13: cross-sectional schematic view of the FinFET: (a) gate part, and (b) source/ drain 
part. 

Figure 1-14 shows the electrical characteristics of Intel’s 22 nm tri-gate bulk FinFET in 

comparison with its 32 nm planar transistor. As expected, the leakage current has reduced for 

one decade in comparison with the planar transistor, and the steeper sub-threshold slope S is 

obtained, as well as the reduced threshold voltage VTH. 

 

Figure 1-14: I - V measurement of Intel’s 22 nm tri-gate FinFET in comparison with its 32 nm 
planar transisitor [7]. 
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Even though much better characteristics have been gained, FinFET have some 

technological challenges in the fabrication processing. For example, due to the reduced 

feature size of defining the fin with a good alignment, the high requirement of the lithography 

tool is still needed, such as the extreme ultraviolet (EUV) lithography. In addition, the 

comparatively high roughness of the fin also affects the characteristics of the FinFET, as the 

inversed layer is just positioned near the two rough surfaces of the fin. In fact, this highly 

rough surface is a technological challenge that generally exists in the 3D FEFs, and for our 

vertical thin film transistors (VTFTs), it also undergoes such a disadvantage, which will be 

presented afterwards. 

III.4 Alternative three-dimensional structures 

Except the FinFET, a lot of other three-dimensional (3D) FETs have also been proposed, 

including the Inverted-T channel FET (ITFET) [50], the Omega-gate FET [51], the Pi-gate 

FET [52], the four-gate FET [53], the gate-all-around (GAA) FET [54], and so on. 

For the SOI FinFET, the corresponding cross-sectional gate structure is shown in figure 

1-15 (a). Except the technological challenges of the FinFET listed above, another processing 

problem for the SOI FinFET is the undercut of the buried oxide (BOX), which affects the 

mechanical stability due to the thin fin. 

  

Figure 1-15: cross-section view of the gate part for (a) the SOI FinFET, and (b) the inverted-T 
channel FET (ITFET).  

The concept of ITFET has been proposed to solve the undercuting problem. As shown in 

figure 1-15 (b), the ITFET can be seen as the combination of the FinFET (Fin part) and the 

planar FET (base part), the horizontal ultrathin base body prevents from the undercut of the 
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BOX. In addition, the ITFET also shows its advantage in the higher integration density for an 

array structure, as the space between two neighbored fins is filled with the base part, which 

funtions as a LTFT. 

For the FinFET, the wrapped gate covers the two sidewalls and the top of the fin, but there 

is no control of the channel at the bottom of the fin. Thus some aternative structures have 

been made to improve the gate control at the bottom of the channel, including the Pi-gate FET, 

the omega-gate FET, and the gate-all-around (GAA) FET. 

As mentioned above, FinFET always have the undercut of the burried oxide (BOX) under 

the fin. In fact, the undercut could also be utilized to make better gate control at the bottom of 

the fin by the overetching of the BOX. The Pi-gate FET is proposed by overetching the BOX, 

while the omega-gate FET is proposed by undercuting and overetching the BOX. The 

schematic structures of the Pi-gate FET and the omega-gate FET are shown in figure 1-16 (a) 

and figure 1-16 (b), respectively. The gate extension forms a virtual, field-induced gate 

electrode underneath the body that can block drain electric field from encroaching the bottom 

of the body. These gate structures are very effective in reducing SCEs. It is proved that for the 

improved gate structures, they could obtain the characteristics that are between the tri-gate 

transitor and the GAA FET, thus this two kinds of FETs are also called triple-plus gate 

structures [55]. 

  

Figure 1-16: Schematic structures of (a) Pi-gate FET, and (b) Omega-gate FET. 

The cross-sectional view of the gate part for the GAA FET is shown in figure 1-17. The 

four gates could enhance the control of the channel in comparison with the tri-gate FinFET, 

thus it enables to improve the electrical characteristics [54]. 
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Figure 1-17: Cross-sectional view of the gate part for the gate-all-around (GAA) strucuture. 

There’s another special four-gate FET, whose gate structure is shown in figure 1-18 (a). It 

is based on a double-gate FET (with the MOSFET gate 1 and gate 2), while the two junction 

gates (gate 3 and gate 4) have modulated the threshold voltages of the top gate and the back 

gate when the double-gate MOSFET is working.  

   

  

Figure 1-18: The schematic view of four-gate FET (a) with the top gate working, (b) with the 
double gate working, (c) the top gate threshold voltage VT1 and (d) the back gate threshold 
voltage VT2 modulated by different junction-gate voltages VJG. 

Figure 1-18 (a) and figure 1-18 (b) show different depletion regions when the back gate is 
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at off-state and on-state, respectively. When the back-gate is at on-state, the depletion region 

is narrowed when a back-gate bias VMG2 is applied, and the two gates are coupled. At this state, 

the two junction gates (gate 3 and gate 4) could modulate the potential distribution near the 

junction-gates, thus the threshold voltage VT1 of the top gate 1 and the inversed threshold 

voltage VT2 of the back gate 2 could also be modulated, which are shown in figure 1-18 (c) 

and figure 1-18 (d), respectively. With the increase of the junction gate voltage VJG= 

VJG3=VJG4, higher absolute value of VT1 or VT2 is obtained [53]. 

Note that, even though the alternative 3D structures have been researched to further 

improve the electrical characteristics, due to the most mature process, the FinFET is still the 

most popular 3D FET that has been adopted for applications. The advantages of these devices 

have shown the interest of 3D structure, especially in the better channel controlling in 

comparison with the planar structure. However, for these 3D devices, the current path is still 

parallel to the planar surface, which indicates that the channel length is still defined by 

lithography technque. These 3D devices also demostrate some other drawbacks that need to 

be solved, especially for the lateral relief of the etched sidewall, which is a general problem 

for 3D devices. And for our vertical TFTs (VTFTs), it is predictable that this drawback will 

also be unavoidable introduced. 

IV. Vertical transistors: vertical MOSFETs and vertical TFTs 

(VTFTs) 

IV.1 Introduction of vertical MOSFETs 

In many domains such as solar cells [56], ULSI devices [57] and random access memories 

(RAMs) [58], the prior motivation consists in obtaining a higher current density, which could 

be realized by reducing the channel length of the devices. As mentioned above, for the 

previous 3D devices, the channel length is limited by the resolution of the lithography 

technique. Vertical MOSFET is another type of MOSFET that source and drain are located 

top and bottom instead of on the same plane, with the channel (gate) vertically located 

between source and drain, as shown in figure 1-19. Therefore, the channel length of a vertical 
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MOSFET is determined by the thickness of the formed mesa, which is independent of the 

lithography technique, thus it enables to fabricate an ultra-short channel length. 

 

Figure 1-19: Schematic view of a vertical MOSFET. 

Vertical MOSFETs have been widely researched, Lothar Risch et al. have fabricated 

vertical MOSFETs using Molecular Beam Epitaxy (MBE) layers [59, 60], while J. Moers et al. 

use a Selective Epitaxial Growth (SEG) method to reduce gate to source/drain capacitances 

[61, 62]. Haitao Liu et al. have also fabricated a vertical MOSFET with an ultra-thin channel 

layer to provide a better gate control [63, 64]. In addition, delta doping is adopted by C.Fink 

group in order to obtain sharp channel profiles and thus better control of electric field [65, 66], 

while the Steve Hall group use a dielectric pocket as the junction stopper [67, 68]. 

According to the 3D MOSFETs mentioned above, such as the FinFET, ITFET, GAAFET 

and so forth, the wrapped gates enable better control of the channel. The 3D vertical 

MOSFETs are also proposed, known as the gate-all-around (GAA) vertical MOSFET [69]. 

Figure 1-20 (a) shows the 3D schematic view of the GAA vertical FET, with a wrapped 

gate around the whole channel. Sometimes, the channels are made up of silicon nanowires 

(SiNWs), which are well known as the SiNW-based GAA vertical FET [70], shown as the 

figure 1-20 (b). Just as the GAA planar FET, the GAA vertical FET could ensure the control 

of the channel part, with a better suppression of the SCEs.  
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Figure 1-20: Schematic view of the 3D Gate-all-around (GAA) vertical MOSFET, (a) the 
common GAA vertical FET, and (b) the SiNW-based GAA vertical FET. 

IV.2 Introduction of VTFTs 

Corresponding to the vertical MOSFETs, the vertical TFTs (VTFTs) have also been 

developed using thin film technology for over three decades. The VTFT could also be seen as 

rotating the LTFT 90°. As shown from figure 1-21 (a), for LTFT, source and drain are on the 

same plane that is parallel to the substrate, and the channel length L is determined by the 

lithography technique.  

    

Figure 1-21: Schematic view of (a) the N-type LTFT, and (b) the N-type VTFT, the two types 
of TFTs are compatible with the classical CMOS technology. 

As shown in figure 1-21 (b), VTFT is gained by rotating LTFT 90°, and source and drain 

are not on the same plane. Therefore, the channel length L could be precisely controlled by 

the deposition technique (undoped poly-Si thickness), and thus it enables an unltra-short 

channel length L beyond the resolution limitation of the lithography tools. This short channel 

length L enables a higher on-current ION, as well as a higher integration density of the devices, 

which are the main advantages of the VTFT [71, 72]. Note that, as it is shown in figure 1-21 
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(b), due to the etching of the three poly-Si layers’ stacking, it is easier to fabricate a 

double-gate VTFT, which further doubles the on-current ION. In addition, by narrowing the 

width of the etched mesa, the double-gate structure is more efficient in suppressing the short 

channel effects (SCEs) due to the coupling of the potential distributuon of the two gates. 

IV.2.1 Comparison between LTFTs and VTFTs 

As mentioned above, the vertical structure enables a short channel length L that is 

determined by the deposition technique instead of the lithography technique, and thus VTFT 

helps to increase the on-current ION, in comparison with its lateral conterpart. Figure 1-22 

shows a schematic cross-sectional view of the LTFT. The device dimension on the glass 

substrate is evaluted by the design rule λ. As it is shown in figure 1-22, for a LTFT with the 

minimin device dimension of 30λ2, the device length and width are 15λ and 2λ, respectively, 

while channel width/length ratio W/L = 2λ/2λ = 1. 

 

Figure 1-22: Schematic cross-sectional view of a LTFT, the device dimension is 15λ×2λ, 
while channel width and channel length ratio W/L = 2λ/2λ = 1. 

In contrast, for a VTFT with the same device dimension, the channel width and channel 

length ratio W/L could be much higher. Figure 1-23 shows the cross-sectional view and the 

top view of a VTFT, whose device length and width are 3λ and 10λ, respectively, which leads 

to a same device dimension of 30λ2. On one hand, due to the special 3D structure, the device 

length could be reduced to 3λ. As a result, the channel width W could be 2×6λ = 12λ, 

considering that there are two channels on the two sidewalls. On the other hand, due to the 

definition of the channel length L by the deposition technique, the channel length L could be 

shrinked to λ/3. As a result, the channel width length ratio W/L could be 12λ/(λ/3) = 36. In 
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theory, as the drive current is proportional to W/L, VTFT enables to increase the drive current 

about 40 times [73]. This increased drive current is the main advantage of VTFT in 

comparison with LTFT, which is beneficial for large-current applications. 

 

Figure 1-23: Schematic cross-sectional and top view of a VTFT, the device dimension is 
3λ×10λ, while channel width and channel length ratio W/L = 12λ/(λ/3) = 36. 

IV.2.2 State of the art for VTFTs 

VTFT has been researched over two decades. James D. Flummer group has fabricated a 

VTFT using the anisotropic As+ implanted source/drain, however, the dopant diffuses after a 

long-time annealing [74]. Tan Fulei et al. have fabricated VTFTs with a self-aligned offset, by 

adopting the inverted structure. However, the adopted high-temperature (T = 850°C) anneling 

method is not compatible with the glass substrates, while the Ni-silicide induced lateral 

crystallization technology (NSILC) involves more complex processes [75]. Tan Fulei et al. 

have also fabricated a novel VTFT using excimer-laser anneaing (ELA) method to form the 

active layer, the high-cost method is also a challenge for large-size glass substrate applications 

[76]. 

In our research work, another VTFT structure is proposed, with more gates arranged in 

parallel, as shown in figure 1-24 (a). On one hand, this multi-gate structure enables to further 

increase the on-current ION, as ION is proportional to the channel width/length ratio W/L. 
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Taking the VTFT in figure 1-22 (a) as an example, there are two teeth for this VTFT, thus 

there are four gates on the four sidewalls (four parallel channels), then the channel width W is 

four times of each channel width on the sidewall. In fact, this special 3D structure could 

enable much more teeth, as long as the tooth width is narrow enough, and this special 

multi-gate structure is also named “comb-shaped VTFT”. On the other hand, in the fabrication 

process, for all the thin films deposited in our laboratory, especially for the poly-Si layers 

deposited by LPCVD technique, the maximum temperature is 600°C, which is compatible 

with the glass substrates (for example, Corning 1737 glass substrates). The source and drain 

layers are in situ doped, and no additional diffusion or implantation step is required. Therefore, 

it facilitates the fabrication process, and the dopant diffusion problem is also avoided. In 

addition, this multi-gate structure also helps to increase the packing density, which is another 

advantage of the vertical structure. 

Figure 1-24 (b) shows the side view of the multi-gate VTFT, there is a partial etching step 

at the source side, so that the top and bottom heavily-doped layers could be accessed at the 

same time. In addition, the large overlap that passes through the undoped poly-Si is also 

observed. 

 

 

Figure 1-24: (a) 3D view, and (b) side view of the multi-gate VTFT. 
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V. Conclusion 

The scale-down tendency of the microelectronic devices follows Moore’s law, which 

proposes higher requirement in the lithography and etching techniques. In addition, the 

serious short channel effects (SCEs) also degrades the electrical property of the devices. 

Therefore, new device architecture is necessary to pursue Moore’s law. 

The gate engineering of the FETs, especially for the three-dimensional (3D) FETs, has 

shown its remarkable superiority in channel controlling. The 3D FinFET structure has been 

adopted in Intel’s 22 nm node CPU technology, which shows a reduced off-current IOFF as 

well as a decreased threshold voltage VTH. Other alternative structures have also been 

proposed, including inverted T-shaped FET (ITFET), Pi-gate FET, Omega-gate FET, 

Gate-all-around (GAA) FET, four-gate FET, and so on. The advantages of these devices show 

the interest of 3D structure, however, they also give evidence of some drawbacks that need to 

be solved. 

Vertical transistor (Vertical MOSFET or VTFT) is obtained by rotating the planar 

transistor (planar MOSFET or LTFT) 90°, and it could provide several advantages: 

1) Channel length is defined by the deposition technique instead of the lithography technique, 

thus it reduces the technological dependence on lithography; 

2) Ultra-short channel FET could be fabricated with a large channel width, which helps to 

increase the drive current; 

3) Higher packing density could be provided in comparison with its lateral counterpart. 

A lot of vertical MOSFETs and vertical TFTs (VTFTs) have been researched for more 

than three decades. In our laboratory, a new multi-gate VTFT is proposed, which further 

increases the drive current. A low-temperature fabrication process is employed, with the 

maximum temperature of 600°C, which is compatible with glass substrates. 

In chapter 2, this multi-gate VTFT will be introduced in detail. Initially, different 

techniques in the fabrication process will be given, especially the mature LPCVD and SPC 

techniques for poly-Si layers deposition will be presented in detail. After that, the fabrication 
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process of the VTFT will be presented step by step, and the first electrical characteristics will 

be demonstrated. Afterwards, some technological modifications on the structure will be 

proposed, the obtained electrical characteristics will be further analyzed and discussed in 

detail. 



 

 

 
 



Chapter 2 Related techniques, process flows, and electrical characteristics of the classical VTFTs 

 

 

 

 

 

 

 

 

 

Chapter 2 Related techniques, process flows, 
and electrical characteristics of the classical 

VTFTs 

 

 

 

 

 

 



Chapter 2 Related techniques, process flows, and electrical characteristics of the classical VTFTs 

32 

In the previous chapter, the basic structure and working principle of the LTFT have been 

presented, and the VTFT has also been proposed corresponding to the vertical MOSFET, by 

using thin film technology. In this chapter, we will detailedly describe the fabrication process 

of the classical VTFT structure, which is fabricated by rotating LTFT 90°. The fabrication 

process is based on polycrystalline silicon (poly-Si) thin film layers deposited by the low 

pressure chemical vapor deposition (LPCVD) technique, and the low-temperature (T ≤ 600°C) 

process enables to be compatible with glass substrates. This chapter initially describes the 

related materials and techniques adopted in the VTFT fabrication process, which have also 

been involved in the previous LTFT fabrication process. First, due to their importance in the 

fabrication of our classical VTFT, silicon layers deposited by LPCVD and annealed by solid 

phase crystallization (SPC) technique are especially described in detail. Then, other related 

materials and techniques are also introduced. Afterwards, the fabrication process flow of the 

classical VTFT with three poly-Si layers’ stacking structure is listed step by step. The key 

technological challenge for the classical VTFT structure is explained, and devices are 

electrically characterized and analyzed to highlight the drawbacks of the VTFT structure, for 

example, the parasitic channel and the large overlapping area. At the end of this chapter, some 

improvements to solve these problems are also presented. 

I.  Related materials and techniques in thin film technology 

In our laboratory, different thin film materials and deposition methods have been well 

developed and adopted on different substrates. The mature thin film deposition technologies 

of semiconductor, insulator, and metallic layers have been involved in the devices and circuits 

fabrication. The laboratory has great potential and ability in the deposition of thin films by 

using different techniques, such as LPCVD, plasma-enhanced chemical vapor deposition 

(PECVD), RF sputtering, thermal evaporation, and so on. Our laboratory also has the 

know-how in the technological fabrication of devices and circuits in the clean room, as well 

as the electrical characterization of the devices and circuits. 
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I.1 Introduction of different silicon structures: mono-Si, a-Si and poly-Si 

Silicon is the basic and fundamental material of the semiconductor industry, because of its 

interesting electrical properties, as well as its abundance on the earth. Silicon could be divided 

into three categories according to their different crystal structures: the monocrystalline silicon 

(mono-Si), amorphous silicon (a-Si), and the intermediate state, which is called 

polycrystalline silicon (poly-Si). 

In mono-Si structure, the Si atoms regularly arrange in a long range order. For an ideal 

silicon crystal, the atoms arrange as the diamond structure, which follows the face-centered 

cubic Bravais lattice. The schematic tetrahedral arrangement of the silicon atoms in the 

diamond structure is shown in figure 2-1. For each bond of adjacent atoms, the interatomic 

distance is 2.35 Å, and the separation angle is 109°28′ between two bonds. 

 

Figure 2-1: Schematic tetrahedral arrangement of the silicon atoms. 

In a crystal, this kind of Si-Si bond induces electronic states, leading to the formation of 

the energy bands. The atomic distance between two atoms determines the width between the 

energy bands. The last energy level completely filled with electrons is called valence band 

(VB), and the next allowed energy level is called conduction band (CB). For Si, the energy 

gap Eg between the two energy levels is 1.12 eV. This low value enables electrons to easily 

transit from VB to CB. Among the three types of Si forms, mono-Si is an ideal semiconductor 

material that enables to get the best characteristics. However, the production of mono-Si 

needs the highest economic cost, which requires an extraction step by melting and 
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re-solidifying silicon. 

The a-Si is the non-crystalline form of silicon. However, it maintains some properties of 

the crystalline silicon (mono-Si). In fact, the interatomic distance of a-Si keeps at 2.35 Å, 

while normally every atom is connected with four adjacent atoms. However, for a-Si, the long 

range order of mono-Si is not present, and the atoms form a continuous random network. 

Sometimes the fourfold coordinated structure is not strictly followed, and some atoms present 

dangling bonds. These dangling bonds act as defects in the continuous random network, 

which act as localized states in the band gap. These localized states trap the carriers and thus 

modify the transport of the carriers, and thus it is expected that the electrical properties of a-Si 

seriously degrade in comparison with mono-Si. However, a-Si is much easier to be produced 

via a low-cost way. In our laboratory, a-Si can be deposited by LPCVD technique or by 

PECVD method. 

Poly-Si is a crystalline structure of silicon that is between mono-Si and a-Si. For poly-Si, 

the crystal lattices of the whole material is disordered, thus it contains a lot of small silicon 

crystals (crystallites or grains), with crystalline defects (grain boundaries) between two 

adjacent crystals. From this point of view, poly-Si can be considered as a combination of 

mono-Si (grains) and a-Si (grain boundaries), and its properties are determined by the two 

parts listed below: 

- The grain is characterized by its size and its crystalline quality. As poly-Si is a deposited 

structure, whose grain size cannot be comparable to the one of mono-Si, defects are 

inevitablely introduced. These defects could be dislocations or macles in the silicon 

crystals. For the dislocations, they result in the formation of dangling bonds. For the 

macles, if they end at the surfaces of the grains, they will just divide the grains into more, 

smaller crystallites. In contrast, if they end in the grains, they would also result in 

dangling bonds. The defect density determines the grain quality. 

- The grain boundary is characterized by its dimension (thickness) as well as its defect 

density. 
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The energy states distribution of poly-Si is shown below in figure 2-2. The band tail due 

to the disordered arrangement of the crystals, and the deep-level traps caused by dangling 

bonds, are shown in this figure. These defects degrade the electrical properties of poly-Si in 

comparison with mono-Si. 

 

Figure 2-2: Schematic model of poly-Si energy states distribution. 

Among the three silicon forms, poly-Si is an essential and fundamental material in the 

fabrication of the TFTs. On one hand, compared with mono-Si, poly-Si is much easier to be 

compatible with all kinds of substrates, such as glass substrates, plastic substrates and so on; 

on the other hand, in contrast with a-Si, the better crystalline structure of poly-Si enables to 

improve the electrical characteristics, especially the field effect mobility. Therefore, poly-Si is 

in fact more beneficial to be used in the display fields, such as the AMLCD (Active Matrix 

Liquid Crystal Display) and AMOLED (Active Matrix Organic Light-Emitting Diode). In 

summary, being the basic material of TFTs, poly-Si compromises the advantages of mono-Si 

and a-Si, thus it dominates the semiconductor thin film technology. 

For poly-Si thin film deposition, the widely-used techniques also include LPCVD and 

PECVD methods. For PECVD, the plasma of the reacting gas is generated by RF frequency 

between two electrodes. The energetic plasma dissociates the precursor molecules, and thus 

the dissociated molecules (such as silicon) are directly deposited on the sample surface, or 

react with each other to generate new thin film material (such as silicon nitride Si3N4) on the 
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sample. PECVD technique allows the deposition of materials at a very low temperature. For 

example, silicon could be deposited under 300°C by PECVD using silane (SiH4), disilane 

(Si2H6), or dichlorosilane (H2SiCl2) as the precursor gases. In fact, in our laboratory, LTFTs 

have been fabricated based on the low-temperature PECVD process, including the deposition 

of silicon by SiH4 (diluted in Argon and hydrogen gases), as well as the deposition of Si3N4 by 

SiH4 and Ammonia (NH3) precursor gases (diluted in nitrogen adjunction) [77]. Due to the 

low-temperature technique, PECVD leads to deposit poly-Si with a smaller grain size, 

so-called “microcrystalline silicon”, which degrades the electrical property, especially the 

drive current and field effect mobility. However, it enables the process to be compatible with 

flexible substrates, such as plastic substrates, which reveals its potential applications in 

soft-substrate display field [78, 79]. 

LPCVD is a widely used technique in microelectronic industry for poly-Si deposition. For 

LPCVD technique, there are two ways to deposit poly-Si layers. One way is called 

“as-deposited poly-Si”, which directly deposits poly-Si without a crystallization step. The 

deposition temperature is usually high to directly crystallize the deposited silicon, while the 

pressure is low. A typical as-deposited condition could be at the temperature of more than 

620°C with the reduced pressure between 120 - 350 mTorr, while the SiH4 gas flow rate is 50 

- 200 sccm, and the grain size is around 40 nm [80]. 

The other way is the deposition of a-Si by LPCVD followed by a crystallization step. The 

crystallization step could be variable, and in our laboratory, the combination of LPCVD at 

550°C and conventional thermal annealing at 600°C is the commonly used method that 

enables to obtain poly-Si with a large grain size [81]. The conventional thermal annealing is a 

kind of solid phase crystallization (SPC) technique, and it has been widely used for the 

fabrication of LTFTs, which have exhibited excellent electrical characteristics, especially for 

the high field effect mobility [82]. Therefore, for our VTFTs, the poly-Si thin film layers are 

also obtained by the combination of LPCVD and SPC techniques. 
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I.2 Poly-Si deposited by LPCVD technique 

I.2.1 LPCVD principle 

In our laboratory, the LPCVD technique has been studied for about two decades [83, 84], 

and it enables the thickness uniformity of the deposited poly-Si layers (the thickness 

difference is only about 5% for a large deposition area). The schematic view of the horizontal 

LPCVD system is shown in figure 2-3: 

 

Figure 2-3: Schematic view of a typical horizontal LPCVD system. 

In this horizontal LPCVD system, the pure precursor gas is injected into the high-vacuum 

reactor. Note that, the reactor is always kept under vacuum, even when loading and taking out 

the samples. The precursor gas (silane SiH4, disilane Si2H6 or dichlorosilane H2SiCl2) 

pyrolytically dissociates into Si atoms due to the high temperature in the reactor, and the 

decomposed silicon atoms deposit on the sample surface to form silicon thin films. In fact, the 

dissociation of the precursor gas and the deposition on the sample surface take place at the 

same time. There are two kinds of reactions during this process, one of which is called 

“homogeneous reaction”, which takes place between the gas atoms, while the other reaction is 

called “heterogeneous reaction”, which takes place between the gas atoms and the sample 

surface. In our laboratory, SiH4 is normally adopted as the precursor gas, and the main 

simplified reaction equation during the LPCVD process is: 

4 2( ) ( ) 2 ( ) ( .2 1)SiH g Si s H g eq    
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In fact, the chain reactions also take place during the process, which could be shown below 

as the equation 2-2 and the equation 2-3: 

4 2 2 ( .2 2)SiH SiH H eq    

2 2 2 1 2 4 ( .2 3)n n n nSiH Si H Si H eq      

In LPCVD process, the most important parameters are deposition temperature, partial 

pressure of the precursor gas, and the precursor gas flow, which greatly affect the morphology 

and the grain size of the deposited silicon. Sufficient precursor gas flow is required in order to 

continuously fill in the reactor and reach the surfaces of all the samples. The more important 

parameters during LPCVD process are the deposition temperature and the partial pressure of 

SiH4, the effects of the two parameters on the silicon state are shown in figure 2-4. 

 

Figure 2-4: Silicon structure deposited by LPCVD under different deposition temperatures 
and partial pressures of SiH4 precursor gas [85]. At 550°C and 90 Pa (0.675 Torr), the silicon 
is in amorphous state (V zone), while at 600°C and 90 Pa (0.675 Torr), the silicon is poly-Si 
(III <110> Textured zone). 

It shows that only at the temperature range between 550°C and 600°C with a higher 

pressure that is higher than 10-2 Torr, the deposited silicon is in the amorphous state. 

Otherwise, with a higher deposition temperature, or/and with a reduced partial pressure, the 
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deposited silicon is partially or totally crystallized, which corresponds to the state of 

as-deposited poly-Si. 

As mentioned above, for the LPCVD technique, the adopted deposition temperature is 

550°C, and the deposition pressure is set to be 90 Pa (0.675 Torr) using SiH4 as the precursor 

gas. The chosen deposition conditions are based on the fact that, Si deposited at 550°C (and 

crystallized at 600°C) enables to get the Raman spectrum that is closest to mono-Si, and the 

hall mobility is proved to have the highest value at this temperature [86], thus it enables to 

improve the electrical characteristics of the fabricated TFTs. At such a deposition condition, 

the corresponding deposition rates are about 5 nm/min, 3 nm/min, and 4 nm/min for undoped 

silicon, N-type heavily-doped silicon, and P-type heavily-doped silicon, respectively. 

However, at this condition, silicon is in the amorphous state, and then an additional 

crystallization step should be carried out to form poly-Si. 

In addition, for our VTFTs fabrication, Si2H6 precursor gas is also adopted to form the 

undoped active layer in one attempt. The corresponding dissociation equation of Si2H6 is 

shown as below: 

2 6 2( ) 2 ( ) 3 ( ) ( .2 4)Si H g Si s H g eq    

For poly-Si deposition using Si2H6 precursor gas, the deposition temperature is 475°C, 

while the pressure is 50 Pa, and the gas flow is 25 sccm. At these conditions, the formed silicon 

is at the amorphous state, and a crystallization step is also needed. For poly-Si deposited on the 

planar surface using Si2H6 as the precursor gas, it has been proved to have a larger grain size 

than the one using SiH4 as the precursor gas [87]. 

I.2.2 In situ doping for LPCVD 

In situ doping is an advantage of LPCVD technique. The in situ doping is realized by 

injecting the dopant gas of phosphine (PH3, for N-type doping) or diborane (B2H6, for P-type 

doping) with the precursor gas (SiH4 as an example) during the LPCVD process, thus 

additional steps, such as diffusion or ion implantation, are not needed. The PH3 and B2H6 
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gases decompose following the simplified reaction equations: 

3 2
3( ) ( ) ( ) ( .2 5)
2

PH g P s H g eq  
 

2 6 2( ) 2 ( ) 3 ( ) ( .2 6)B H g B s H g eq    

The deposition of a doped layer is performed by adopting the same conditions as the 

deposition of an undoped layer, for example, the same deposition temperature of 550°C as 

well as the same total pressure of 90 Pa when using SiH4 as the precursor gas. The different 

doping levels could be realized by adjusting the gas flows ratio between PH3 (B2H6) and SiH4. 

The PH3 dopant level ГP (or the B2H6 dopant level ГB) is defined by the following equation: 

( ) ( : ) )
( ) ( .2 73 2 6

4

PH B H

SiH
P B gas flow eq 




    

For N-type doping, the doping concentration can vary from 2·1016 cm-3 to 1020 cm-3, while 

the P-type doping concentration range is from 2·1016 cm-3 to 5·1019 cm-3. 

I.2.3 Crystallization 

As mentioned above, for the silicon deposited at 550°C and 90 Pa using the SiH4 

precursor gas, or at 475°C and 50 Pa using the Si2H6 precursor gas, the deposited silicon is 

mainly at the amorphous state. Thus a crystallization process is necessary in order to 

crystallize a-Si into poly-Si. 

The most commonly used crystallization methods include laser crystallization, rapid 

thermal annealing (RTA), metal-induced (lateral) crystallization (MILC or MIC), and 

conventional thermal annealing. For laser crystallization, silicon melts under high laser energy, 

thus it is called “liquid phase crystallization (LPC)”. The latter three crystallizations take 

place when silicon is in the solid phase, thus they are called “solid phase crystallization” 

(SPC). 
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I.2.3.1 Common crystallization methods 

Laser crystallization uses laser irradiation as the intense energy source. Due to the 

excitement of the laser, a limited surface of a-Si is heated, thus it could be adopted as a kind 

of selective crystallization method by precisely controlling the crystallization time. The 

adopted laser could be operated in the continuous wave mode, or in the pulsed mode. The 

laser source could be generated by He2, Xe2, ArF, KrF, and XeCl, which generate ultraviolet 

wavelength to excite a-Si surface. TFTs have been proved to have very large field effect 

mobilities by adopting the laser crystallization method [88, 89], which is due to the large grain 

size (about 1μm) of the formed poly-Si [90]. However, homogeneous crystallization using 

laser is a technological challenge. For the continuous laser, the sweep of the laser is necessary 

to crystallize the total surfaces of the sample, while for the pulsed laser, it is very difficult to 

obtain homogeneous crystallization. In addition, the expensive cost also limits its applications 

in mass production. 

RTA is an annealing method that uses a halogen lamp to generate the high temperature 

between 700°C and 800°C, and a-Si could be crystallized in a very short time. However, this 

method requires that the halogen lamp emission spectrum is consistent with the absorption 

spectrum of the silicon. At such a high temperature, the glass substrate may undergo 

deformation problem, which also limits the application of RTA [91]. In addition, the silicon 

layer also contains a lot of crystalline defects. The obtained mobility from this crystallization 

method is between 25 cm2/V.s and 28 cm2/V.s [92]. 

MILC and MIC are special crystallization ways that take place involving metal catalysts. 

When metal-silicon is at the temperature above the eutectic point, the silicon could be 

crystallized by the self-organization of metal-silicon droplet. Usually the eutectic points are 

much lower than the melting points of silicon and the metals separately, thus they enable a 

low-temperature crystallization of silicon. Taking Ni as an example, a thin layer of Ni (2 nm – 

5 nm) is deposited on the a-Si layer, then the sample is annealed at 500°C for several hours, 

and the nickel atoms diffuse to crystallize a-Si [93, 94]. These methods provide large grain 
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size with a reduced annealing temperature, however, due to the participation of metal catalysts, 

metallic impurities are unavoidable, which could greatly degrade the electrical properties of 

the obtained poly-Si [95]. 

I.2.3.2 Conventional thermal annealing 

In contrast, conventional thermal annealing avoids the different challenges and 

shortcomings of the crystallization methods listed above, thus it is the most common way for 

crystallization, and it is widely used in the industrial mass production. The samples are put in 

the reactor with the temperature range from 550°C to 650°C for an annealing period from 

several minutes to several hours. Usually, the samples could be put in the same reactor as the 

LPCVD. At such an intermediate temperature, the glass substrates usually don’t deform. This 

crystallization doesn’t involve any metal catalyst, thus the metallic impurities are also avoided. 

In addition, due to the uniform annealing for a large area, the homogeneous crystallization 

could be achieved. 

In our laboratory, it has been proved that thermal annealing at 570°C enables to have the 

best crystalline quality of poly-Si layer. However, due to the long crystallization time at 

570°C, the standard crystallization temperature is set at 600°C, while the reactor is under 

vacuum [81]. The crystallization time depends on the thickness of the deposited film as well 

as the doping level of the film. For a high thickness or a high doping level, a long 

crystallization time is required. Usually, the adopted crystallization time is more than 12 hours. 

Note that, the LTFT based on the combination of LPCVD at 550°C and SPC (conventional 

thermal annealing) at 600°C using SiH4 precursor gas, has been proved to have a high field 

effect mobility of more than 100 cm2/V·s for the poly-Si LTFT [24]. Therefore, for our VTFTs, 

they will also be fabricated based on this mature technique. 

I.3 Silicon nitride (Si3N4) films deposited by LPCVD technique 

By adopting the same LPCVD technique, silicon nitride (Si3N4) layers could also be 

deposited. Si3N4 is well known for its excellent mechanical property and diffusion barrier 
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property for water and ions, such as Na+, K+, H+, and it is also used as the gate insulator 

because of its high dielectric constant. However, in our laboratory, due to the temperature 

limitation of low-temperature process for VTFTs, the crystalline quality of Si3N4 deposited at 

600°C degrades (whose ideal deposition temperature is between 650°C and 850°C [96]), thus 

it is not suitable for the gate dielectric material in the low-temperature process. Nevertheless, 

Si3N4 deposited at 600°C could also be used as an insulating layer, and what’s more important, 

for reactive ion etching (RIE) using SF6 etchant, the low etching selectivity between poly-Si 

and Si3N4 enables to achieve the continuous sidewall for the new VTFTs fabrication, and thus 

it is beneficial for VTFT fabrication, which could be shown later. 

The deposition of Si3N4 by LPCVD uses SiH4 and Ammonia (NH3) as the precursor gases. 

The reaction follows the chemical equation 2-8: 

       4 3 3 4 23 4 12 ( .2 8)SiH g NH g Si N s H g eq     

The deposition conditions for Si3N4 in the low-temperature process are listed below: 

- Deposition temperature: 600°C; 

- Total pressure: 400 μbar (300 mTorr); 

- Gas flow: 50 sccm SiH4 and 50 sccm NH3 

Under these deposition conditions, the deposition rate of Si3N4 is about 15 nm/h, this low 

deposition rate is also a disadvantage for the process. 

I.4 Atmospheric Pressure Chemical Vapor Deposition (APCVD) technique 

For our VTFTs, SiO2 could be used as the buffer layer as well as the gate dielectric. 

APCVD is a widely-used low-temperature technique for SiO2 deposition. Taking SiH4 and O2 

precursor gases as an example, the main reaction equation during APCVD process is: 

4 2 2 2( ) ( ) ( ) 2 ( ) ( .2 9)SiH g O g SiO s H g eq     

Diluted silane (SiH4) and oxygen (O2) are introduced into the reactor with N2 as the gas 
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carrier, and thus SiO2 is deposited by APCVD with a SiH4/O2/N2 gas mixture. The standard 

deposition temperature is 420°C. At this deposition condition, SiO2 could show its higher 

insulating quality in comparison with Si3N4 deposited by LPCVD at 600°C, especially after a 

densification step at 600°C for more than 12 hours. In addition, SiO2 deposited by APCVD 

enables to get a much higher deposition rate of about 29 nm/min. Using APCVD technique, 

conformal deposition of SiO2 layers can be obtained, which is critical for VTFT fabrication. 

As illustrated in figure 2-5, the SiO2 thickness on the planar surface is almost the same as on 

the sidewall. 

  

Figure 2-5: The conformal deposition of SiO2 is shown, whereas the deposited aluminum 
shows a higher thickness on the planar surface than on the vertical sidewall. 

I.5 Joule effect evaporation of aluminum (Al) 

In the VTFT fabrication processes, aluminum (Al) is used to define source, drain, and gate 

electrodes. Joule effect evaporation is a common technique for Al deposition as well as other 

low melting-point metals, such as Au. The schematic view of the Joule effect evaporation 

system is shown below in figure 2-6. Al source is put on a tungsten boat (whose melting point 

is 3422°C), it is evaporated under high current-generated Joule heat and then deposited on the 

sample surface. Al source is made up of 99% Al and 1% silicon, the 1% silicon is necessary as 

it enables to make a better Al/silicon contact after the forming gas treatment, which helps to 

reduce the contact resistance. The deposition thickness of Al is measured by detecting the 

frequency variation of the crystal oscillator, as shown in figure 2-6. 
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Figure 2-6: Schematic view of Joule effect evaporation for Al deposition. 

In fact, the Al deposition shows a little anisotropy, the thickness on the planar surface is a 

little higher than on the sidewall, which is also shown in figure 2-5. Nevertheless, the thickness 

difference is not very serious, and when depositing a 400 nm Al layer on the planar surface, the 

thickness on the sidewall is also sufficient for the applied gate bias. 

I.6 Reactive ion etching (RIE) for patterning 

Reactive ion etching (RIE) is one kind of widely-used plasma etching method, which 

combines physical and chemical effects and thus enables the rapid and anisotropic etching. 

The schematic diagram of the RIE reactor is shown in figure 2-7. The widely-used etchant 

gases are Sulfur hexafluoride (SF6) and Tetrafluoromethane (CF4), and other gases could also 

be added, such as oxygen (O2), Argon (Ar), and so on, in order to increase the etching rate or 

protect the etching surface [97, 98]. Taking SF6 as an example, RIE begins with the generation 

of plasma, the SF6 gas is ionized under RF electromagnetic field, and then the great amounts 

of generated F free radicals are attracted to the positively charged platter. The physical 

bombardment anisotropically hits the sample surface and creates a rough surface that 

accelerates the chemical erosion, while the chemical erosion removes the residue generated by 

the physical bombardment as well as encroaches the sample surface, which also helps to 

increase the bombardment rate in reverse. The two actions work together to ensure the 

anisotropic etching property as well as the higher etching speed. 
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Figure 2-7: Schematic diagram of the RIE reactor, the plasma is generated by RF generator 
under a low pressure. 

The related parameters for the RIE process are: 1) RF power W, which determines the 

intensity of the F free radicals, and thus affects the ion bombardment energy; 2) gas flow Γ, 

which determines the average stay time of the source gas in the reactor; 3) pressure P, which 

affects the particle collision and thus influences the anisotropy of the RIE. The effect of the 

RIE parameters on the sidewall profile would be discussed after the introduction of the 

process flow for the classical VTFT. 

II. Classical VTFT structure, process and technological 

challenges in the process 

As mentioned in chapter 1, the classical VTFT has been proposed by rotating the LTFT 

90°. For the initial trial, three shapes of classical VTFTs have been fabricated, i.e., the 

U-shaped VTFT [99], H-shaped VTFT [100], and comb-shaped VTFT [101], as shown in the 

schematic views of figure 2-8 (a), figure 2-8 (b), and figure 2-8 (c), respectively. Except for 

the short channel length L of the VTFT, the special comb shape enables to further increase the 

drive current, as it could provide more channels arranged in parallel. Therefore, the 

comb-shaped VTFT is chosen as the most representative VTFT among the three types of 

VTFTs. The process flow and electrical characteristics for the comb-shaped VTFT will be 

presented in detail, on behalf of all the three kinds of VTFTs. 
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Figure 2-8: Schematic views of (a) the U-shaped VTFT, (b) the H-shaped VTFT, and (c) the 
comb-shaped VTFT. 

II.1 Detailed process flow for the classical VTFT structure 

The three-dimensional (3D) view of the classical comb-shaped (multi-tooth) VTFT and its 

basic tooth structure are shown in the following figure 2-9 (a) and figure 2-9 (b), respectively. 

The VTFT is made of a source at the bottom, a drain on the top and an active layer in-between. 

The source and drain could be reversed, and usually we analyze the device characteristics by 

using a drain-on-top (DOT) structure. As we can see from the 3D view, it is necessary to form 

the basic teeth structure, and then extend the bottom heavily-doped layer in order to access to 

source and drain at the same time, thus two masks are needed. In addition, the other two 

masks are also required, one is for the contact openings after the gate oxide deposition, and 

the other one is used for the contacts definition after Al deposition. In summary, a four-mask 

process is needed to fabricate the 3D comb-shaped classical VTFT. The detailed process flow 

is listed below. Due to the higher doping level and better doping uniformity, N-type VTFTs 

are usually fabricated. The cross-sectional view of a tooth of figure 2-9 (b) shows the three 

poly-Si layers stacking. 
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Figure 2-9: The classical VTFT structure: (a) the 3D view of a two-tooth VTFT, and (b) the 
basic structure of a VTFT tooth. 

The process begins with a basic RCA cleaning for the mono-Si substrates (The detailed 

RCA cleaning step could be seen in Annex I. For other kinds of substrates, for instance, glass 

substrates, a basic cleaning is required using alcohol and acetone solutions). After cleaning 

the substrates, a thick layer of oxide (about 500 nm) is deposited by APCVD technique at 

420°C, which acts as a diffusion barrier in order to avoid the possible contamination of the 

layers by impurities from the substrates. In fact, the required minimum thickness of the buffer 

oxide layer is 200 nm, and the 500 nm oxide layer is a guarantee for the insulation. 

After the deposition of the buffer oxide layer, three poly-Si layers are deposited, i.e., 

N-type heavily-doped poly-Si layer, undoped poly-Si layer, and N-type heavily-doped poly-Si 

layer in sequence. In fact, for the undoped layer, it is a little doped due to the structural 

defects of the poly-Si material, thus it is also called non-intentionally doped (Nid) layers. 

After each layer’s deposition at 550°C, a subsequent SPC step is carried out at 600°C. The 

three layers’ thicknesses are 300 nm, 1 μm, and 300 nm, respectively, and the deposited layers 

are shown in figure 2-10. 
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Figure 2-10: The deposited layers for the classical VTFT. The buffer SiO2 is deposited by 
APCVD, while the three poly-Si layers are deposited by LPCVD technique, “N+” stands for 
the N-type heavily-doped poly-Si layer, while “Nid” stands for the undoped poly-Si layer. 

As mentioned above, the first mask will be used for the definition of the basic teeth 

configurations of the VTFT. After the first photolithography step (the detailed 

photolithography step is explained in Annex II), the three poly-Si layers are etched by a RIE 

step. Afterwards, the global comb-shaped geometry is obtained, with the top and side views 

shown in figure 2-11 (a) and figure 2-11 (b), respectively. As we can see from the top view, 

the three-tooth structure is evident. 

    

Figure 2-11: (a) Top view, and (b) side view of the comb-shaped VTFT configuration after the 
first RIE step. 

However, due to the special location of the source (drain) underneath the top two poly-Si 

layers, an extension of the source (drain) is necessary. As a result, another RIE process is 

required in order to etch the top two layers and reach the bottom layer. This partial etching is 

precisely controlled by the aid of the laser interferometer. The corresponding top and side 

views after the second RIE are shown in figure 2-12. From the side view, the source (drain) 

extension is observed. For a DOT structure, the top and bottom heavily-doped layers (labeled 

as N+) are defined as drain and source, respectively, the channel length of the device is 

determined only by the thickness of the undoped layer (labeled as Nid) between the two 
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layers, whose thickness is1 μm. 

   

Figure 2-12: (a) Top view, and (b) side view of the VTFT configuration after the second RIE. 

After the two RIE steps to define the tooth configuration as well as source and drain, 

another basic RCA cleaning is necessary before the deposition of the gate oxide. It is a critical 

step, which enables to eliminate most of the impurities on the interface of the channel, thus 

improve the electrical properties.  

Then, another APCVD process is performed to deposit a 100 nm gate oxide layer 

followed by a densification step at 600°C for over 12 hours in order to eliminate most of the 

defects in the gate oxide. Afterwards, a wet etching process of the gate oxide using the third 

mask is implemented to make contact openings for source and drain. The corresponding 

schematic views after the wet etching of gate oxide are shown in figure 2-13. Note that, after 

making the contact openings, the major part of the VTFT is covered by the gate oxide, 

including the sidewalls. 

   

Figure 2-13: (a) Top view, and (b) side view of the VTFT configuration after the gate oxide 
deposition and making contact openings. 

   Finally, a 400 nm Al layer is deposited by Joule effect evaporation, and then the fourth 

mask is used to define the electrodes by wet etching. The final structure of the VTFT is gained, 

which is shown in figure 2-14. As the gate electrode is perpendicular to source and drain, it 
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controls all the channels at the same time. In addition, the gate overlap with the source and 

drain is evident. Note that, the channel width is defined by the width of the gate electrode 

passing all the teeth. The top SEM view of the fabricated VTFT is shown in figure 2-14 (c), 

and the gate electrode passing through all the sidewalls is evidenced. 

  

 

Figure 2-14: (a) Top view, (b) side view of the final VTFT after etching the deposited Al, and 
(c) SEM image of the fabricated three-tooth VTFT. 

II.2 Technological challenges for the sidewalls formation – RIE parameters 

adjustment 

For the VTFT, the gates are located on the sidewalls of the teeth, as shown in the SEM 

image of figure 2-14 (c). Thus, it is critical and necessary to ensure the continuity and the 

smoothness of the sidewall. Several tests of the RIE are carried out, the different RIE 

parameters, i.e., the gas flow Г, the RF power W, and the partial pressure P are adjusted, and 

the optimized set of parameters will be adopted in the fabrication process. In our work, the 

adopted gas source for poly-Si etching is SF6. 

For the gas flow Г, as mentioned above, it determines the average stay time of the source 

gas in the reactor, thus it is predictable that the gas flow Г does not affect the sidewall 

morphology. For the RIE process of the classical VTFTs, the gas flow Г of SF6 is always set 
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to be 10 sccm. 

For the RF power W, it determines the intensity of the F free radicals, and thus affects the 

ion bombardment energy. As a result, higher W is needed to increase the anisotropy property 

of the RIE in order to form high-verticality sidewalls. 

For the pressure P, it affects the collisions between the F free radicals and the sample 

particles, thus it reflects the chemical encroachment of the F free radicals, which would lead 

to the isotropy property. 

In order to optimize the etching slope, SEM observations are presented for different 

powers W and pressures P in figure 2-15, and figure 2-16, respectively. As shown in figure 

2-15, for the same pressure P = 4 mTorr, when increasing the power W, the physical 

bombardment is more dominant, while the chemical erosion is weaker, which leads to the 

gradual elimination of the lateral overetching (the isotropic property).  

   

Figure 2-15: SEM images of sidewalls etched by different powers W: (a) W = 20 watt, (b) W 
= 30 watt, (c) W = 50 watt, pressure P = 4 mTorr, gas flow Г = 10 sccm. 

   

Figure 2-16: SEM images of sidewalls etched by different pressures P: (a) P = 1 mTorr, (b) P 
= 4 mTorr, (c) P = 10 mTorr, power W = 50 watt, gas flow Г = 10 sccm. 
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In contrast, for the same power W = 50 watt, when increasing the pressure P, the chemical 

erosion is more dominant, which leads to the gradual enlargement of the lateral overetching 

(the isotropic property), which could be shown in figure 2-16. In conclusion, when etching at 

a higher power W with the reduced pressure P, the anisotropy RIE profile of the poly-Si could 

be formed. 

III. Electrical characteristics and improvements on the classical 

VTFTs 

III.1 Electrical parameters deduction 

Transfer and output characteristics are two important indexes of the transistor’s electrical 

performance. The output characteristics could help to confirm the transistor property, while the 

transfer characteristics enable to obtain the on/off-current ratio ION/IOFF. There are also four 

other electrical parameters to describe the electrical properties of the transistor, i.e., the 

transconductance gm, the subthreshold slope S, the threshold voltage VTH, and the field effect 

mobility μFE. In theory, gm, S, and μFE are defined by the following equation 2-10, equation 2-11 

and equation 2-12, respectively: 
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where COX is the gate oxide capacitance per unit area. 

In fact, the four electrical parameters could also be obtained from the transfer characteristics. 

As shown in figure 2-17 (a), by plotting the drain current IDS as a function of gate voltage VGS in 
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the linear coordinate, the threshold voltage VTH could be deduced by the gate voltage VGS 

intercept value of the fit line for the linear portion. The transconductance gm and the 

subthreshold slope S could be deduced from the fit line of the IDS - VGS curve in the linear 

coordinate system, and in the semi-logarithm coordinate system, respectively, which are 

indicated in figure 2-17 (a) and figure 2-17 (b), respectively. Therefore, the transconductance 

gm corresponds to the slope of the fit line in the linear coordinate system, while the subthreshold 

slope S corresponds to the reciprocal of the slope for the fit line in the semi-logarithm 

coordinate system. After deducing the transconductance gm, the mobility μFE could also be 

calculated by using the equation 2-12. 

 

 

Figure 2-17: IDS-VGS curve (a) in the linear coordinate system, and (b) in the semi-logarithm 
coordinate system. The electrical parameters could be deduced from the two curves. 

III.2 Electrical characteristics of the first classical VTFTs 

After the fabrication of the classical VTFTs, the electrical measurements are carried out. 

The static current-voltage (I-V) measurements are achieved using a probe tester and an Agilent 
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Technologies B1500A semiconductor device analyzer, with the current measurement limitation 

of 0.1 fA. For the first VTFTs fabricated in our laboratory, among the three shapes of VTFTs, 

the stable electrical characteristics of the comb-shaped VTFTs are shown in figure 2-18. It 

shows an on/off-current ratio ION/IOFF of more than 102 for different source-drain voltages VDS 

of 0.1 V, 1.1 V, and 2.1 V. However, IOFF is rather high due to the large overlapping area AOV 

between source and drain, especially when using plastic masks for the first attempt with large 

design rule. Nevertheless, the feasibility of fabricating the classical VTFTs is proved. 

 

Figure 2-18: Typical transfer characteristics of the first classical VTFT, the high off-current 
IOFF is due to the large overlapping area and short channel length L. 

Drain-source 
Voltage VDS 

Threshold 
Voltage VTH 

Subthreshold 
Slope S 

Trans- 
conductance gm 

Mobility 
μFE 

2.1 V 1.51 V 3.82 V/dec 245 μS 6.14 cm2/V·s 

Table 2-1: The electrical parameters deduced from the transfer characteristics for the classical 
VTFTs, the drain voltage VDS = 2.1 V. 

Table 2-1 shows the other electrical parameters deduced from the transfer characteristics. 

The low mobility μFE of 6.14 cm2/V·s is observed, and the large subthreshold slope S = 3.82 

V/dec could be improved by reducing the gate oxide thickness Tox. 

III.3 Parasitic channel suppression for the classical VTFT structure 

As we could observe from the schematic side view of the classical VTFT shown in figure 

2-19, the top electrode covers all the three poly-Si layers and thus forms a parasitic channel 

due to the thin gate oxide layer. This parasitic channel has a great negative effect on the final 
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electrical properties of the fabricated VTFT, by providing a supplement current when the 

device is at the off-state that increases the off-current IOFF. Therefore, some work should be 

done to suppress the parasitic channel. 

 

Figure 2-19: Schematic side view of the classical VTFT, the parasitic channel is observed at 
the backside of the top electrode. 

III.3.1 Modification of the fabrication process 

In order to suppress the parasitic channel, after the two RIE steps to define the comb 

shape and form the source and drain regions, a thick oxide layer is deposited at the backside 

of three layers stacking before the gate oxide deposition, by utilizing one more mask. The 

resulted schematic views are shown in figure 2-20, and the thickness of the deposited oxide 

layer is 500 nm. 

    

Figure 2-20: (a) The top view, and (b) the side view of the improved structure for the classical 
VTFT, a 500nm oxide layer is deposited at the backside of the top electrode, which helps to 
suppress the parasitic channel after electrodes formation. 

Afterwards, the same steps as the original structure of the classical VTFT, including the 

gate oxide deposition, contact openings, Al deposition and electrodes formation, are carried 

out in sequence. The schematic images of the improved structure are shown in figure 2-21 (a) 

and figure 2-21 (b). Figure 2-21 (c) shows the SEM top view of the finally fabricated VTFT, 
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the four teeth are shown, and the thick oxide layer is also marked at the backside of the top 

electrode.  

Figure 2-21 (d) shows the SEM image of the sidewall after the gate oxide and Al 

depositions. As the formed sidewall is not strictly vertical, it is also called “quasi-vertical 

sidewall”. In fact, this quasi-vertical sidewall has been beneficial for the layers deposited on 

the sidewall, which guarantees a conformal deposition of the gate oxide layer and a 

continuous deposition of the Al layer on the sidewall, as shown in figure 2-21 (d). The only 

shortcoming of the quasi-vertical sidewall is a little increase of the channel length L due to the 

tilt angle of about 70°, which is in fact about a 6% increase (1/cos70° = 1.06) of the channel 

length L. 

   

       

Figure 2-21: (a) The schematic top view, (b) the schematic side view, (c) the SEM image of 
the improved four-tooth VTFT configuration, the 500 nm thick oxide layer at the backside of 
the top electrode (signed as drain) enables to suppress the parasitic channel, and (d) the SEM 
image of the sidewall after the gate oxide and Al layers’ deposition, the conformal SiO2 layer 
and the continuous Al layer on the sidewall are observed. 

III.3.2 Geometric definitions of the improved classical VTFT structure 

After the basic knowledge of the classical VTFTs rapidly fabricated by using the plastic 



Chapter 2 Related techniques, process flows, and electrical characteristics of the classical VTFTs 

58 

masks, a new set of glass masks (five masks) has been designed for the improved structure of 

the classical VTFT. Device dimensions have been shrinked due to the comparatively smaller 

design rule of the glass masks. In addition, in order to analyze the effects of the geometric 

parameters on the electrical properties of the classical VTFTs, different geometric parameters 

have been defined to describe the three-dimensional (3D) device configurations, which could 

be seen from the Annex III. In fact, different geometric parameters also help to verify the 

reproducibility and uniformity of the fabricated VTFTs. 

The layout of the masks are designed by the aid of the CADENCE VIRTUOSO software, 

and the four-tooth definitions for the improved classical VTFT (after parasitic channel 

suppression) are shown below in figure 2-22, with the key geometric parameters marked in 

the figure. From the mask design, the five-mask process flows of the improved classical 

VTFT could also be traced. 

 

Figure 2-22: The five-mask design of a four-tooth classical VTFT, different geometric 
parameters are marked in the figure. 

The key geometric parameters of the VTFTs are listed below: 

- Lt: the length of a tooth, which is fixed at the value of 60 μm. 



Chapter 2 Related techniques, process flows, and electrical characteristics of the classical VTFTs 

59 

- Nt: the teeth number, the optional values for Nt are 1, 2, 4, and for the device shown 

above, Nt = 4. 

- Wt: the width of a tooth, which has the alternative values of 10 μm and 20 μm. For the 

four-tooth device shown above, Wt = 20 μm. 

- Wc: single channel width, it is defined by the width of the gate electrode, as the on/off 

state is controlled by the gate electrode on the sidewalls. The optional values are set to be 

10 μm, 20 μm, and 30 μm in the designs, respectively, and for the chosen devices shown 

above, Wc = 30 μm. 

- W: the total channel width, which is defined by the formula W = 2NtWc, as there are two 

channels located on the two sidewalls of one tooth. 

There are also other geometric parameters marked in figure 2-22, such as the fixed values 

of 125 μm for the device width, 180 μm for the device length, and especially for the channel 

length L, it is determined by the thickness of the deposited layer between source and drain, i.e., 

the undoped (Nid) poly-Si layer. 

III.3.3 Electrical characteristics of the improved classical VTFT structure 

As mentioned above, by adding a thick SiO2 layer at the backside of drain, the parasitic 

channel is suppressed. The typical transfer characteristics of the four-tooth drain-on-top (DOT) 

classical VTFT are shown in figure 2-23 (a), with the drain-source voltage VDS as the 

independent variable (VDS = 0.1 V, 1 V). The gate leakage current is measured to be low 

enough (around 600 pA when VGS = 20V), so we can conclude the good coverage of the gate 

oxide on the sidewall. The high on-current ION of the VTFT is due to the larger channel 

width/length ratio W/L, in comparison with its lateral counterpart, which has been explained 

in chapter 1 [73], and the on-current ION of a VTFT increases in proportion to W/L. 

From the transfer curves, several electrical parameters are deduced (VDS = 1V) and shown 

in table 2-2. The low field effect mobility μFE of 4 cm2/V·s in comparison with the one 

obtained from LTFT (whose mobility μFE is more than 100 cm2/V·s), is mainly due to the high 

roughness of the sidewalls caused by the long-time RIE, the defects near the channels 
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dramatically degrade the electrical parameters for the poly-Si VTFT. Therefore, the mobility 

μFE could be enhanced by the modification of the sidewall roughness, either by a 

low-temperature wet oxidation and a subsequent HF dipping, or simply by a RCA cleaning 

way. Another factor that affects the electrical characteristics is the gate oxide thickness TOX. 

The high threshold voltage VTH = 8V and the high subthreshold slope S of 3.6 V/dec could be 

explained by the high gate oxide thickness TOX = 120 nm. 

   

 

Figure 2-23: (a) Typical transfer characteristics, (b) symmetric transfer characteristics for DOT 
and SOT structures, (c) output characteristics of the classical VTFTs after the parasitic channel 
suppression, the inset in figure 2-23 (c) shows the strong kink effect when the drain voltage VDS 
is higher than 8.5V. 

VDS (V) VTH (V) S (V/dec) gm (μS) μFE (cm2/V·s) 

1 8 3.6 30 4 

Table 2-2: The electrical parameters deduced from the transfer characteristics. 

By reversing source and drain, the source-on-top (SOT) structure is gained. The similar 
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transfer characteristics of the SOT and DOT structures are obtained and shown in figure 2-23 

(b), which proves the symmetry in the structure, i.e., the similar interface between the 

heavily-doped layer (source/drain layer) and the Nid layer. 

The output characteristics of the four-tooth VTFT are shown in figure 2-23 (c). The 

saturation region is not observed because of the kink effect, which could be obviously shown 

in the inset of figure 2-23 (c), when the drain-source voltage VDS ≥ 8.5 V. The kink effect is 

due to the impact ionization at the drain end of the channel, as the short channel length L = 1 

μm leads to a high drain field when the device is operating in saturation. Thus the kink effect 

could be suppressed by depositing a higher channel length (undoped poly-Si layer thickness) 

or by introducing the drain field relief structures as the lightly doped drain (LDD) [102]. 

III.3.4 The effect of geometric parameters on the electrical characteristics 

For the classical VTFT, the total channel width W = 2NtWc, where Nt is the teeth number 

and Wc is the single channel width. Therefore, the on-current ION is proportional to the teeth 

number of Nt and the single channel width Wc:  
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Figure 2-24 (a) and 2-24 (b) show the relationship between the on-current ION and the 

geometric parameters, i.e., the single channel width Wc and the teeth number Nt. As expected, 

the two figures prove the linear variation of ION with the total channel width W, according to 

the equation 2-13, and they also validate the technological fabrication of the VTFT. As a 

result, the calculated on-current per unit channel width is about 1.37 μA/μm when the 

drain-source voltage VDS is 1 V. 

Figure 2-24 (c) shows the relationship between the on-current ION and the tooth width Wt, 

and it is observed that Wt does not affect the on-current ION, as the total channel width W and 

channel length L do not change. The abnormal value in figure 2-24 (c) (when the teeth width 
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is Wt = 10 µm, and the total channel width W = 80 µm) is due to the disabled teeth of the 

corresponding VTFT. 

   

 

Figure 2-24: The relationship between the on-current ION and the geometric parameters: (a) 
ION is proportional to the teeth number Nt, (b) ION is proportional to the single channel width 
Wc. The two relationships confirm the theoretical formula of on-current ION, and (c) ION is not 
affected by the teeth width Wt. 

The off-current, IOFF, appears too high that leads to an ION/IOFF ratio in the order of 103. 

Figure 2-25 shows the off-current IOFF as a function of drain–source total overlapping area 

AOV, 1.1 x 104 µm2 in the case of the four-tooth VTFT shown in figure 2-21 (c). The different 

data points correspond to the teeth number Nt = 1, 2 and 4, respectively. In the inset, the 

region enclosed in the dashed lines shows the total overlapping area AOV, which is made up of 

two parts: the total area of teeth, the source and drain common area. Therefore, AOV could be 

expressed by the following equation: 

( .2 14)OV S D t t S D t t tA A N A A N LW eq      
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where ASD is the common area of source and drain sides, i.e., the overlapping area out of 

the teeth (shown in the inset of figure 2-25), Nt is the teeth number, At is the area of a single 

tooth, while Lt and Wt stand for the tooth length and width, respectively. In our design, ASD is 

fixed at 8750 μm2, and Lt is fixed at 60 μm, while Wt is chosen to be 20 μm for analysis. 

 

Figure 2-25: The relationship between the off-current IOFF and the total overlapping area AOV: 
IOFF is proportional to AOV. For the same teeth number Nt, the off-current IOFF is also reduced 
by the increase of the single channel width Wc. The inset shows the schematic of the classical 
VTFT structure, the total overlapping area AOV is marked with the dashed lines. 

For a fixed value of the single channel width Wc, the variation of off-current IOFF with the 

overlapping area AOV is linear, which is due to the increase in the teeth number Nt according to 

the equation 2-14, therefore, IOFF is dependent on the teeth number Nt and thus the total area of 

teeth (NtAt). In fact, the large total overlapping area AOV drastically increases the total 

off-current IOFF by the leakage current flowing through the undoped poly-Si film. 

From the cross points of the straight lines corresponding to the common area ASD of source 

and drain sides (8750 μm2), the average off-current density per area unit is deduced to be 

around 8 pA/µm2. 

The third interesting result is that, for the VTFTs with the same teeth number Nt, while 

increasing the single channel width Wc, the off-current IOFF decreases. This may be due to the 

fact that, when the single channel width Wc increases, more part of the teeth is under the control 

of the gate reverse bias. In other words, as the current is not minimum at VGS = 0 V, the total 
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leakage current flowing in the channel region out of the gate is higher than the region that is 

under the gate contact. When the equivalent gate width increases, the complementary part 

decreases, thus the total leakage current reduces. 

As previously mentioned, the rather large overlapping area of the structure, in comparison 

with the small channel regions, degrades the electrical performances of the VTFT. Therefore, in 

order to avoid the large overlapping area between source and drain and thus reduce the 

off-current IOFF, the overlapping area ASD at the source and drain sides could be reduced in two 

different ways, 1) the larger contribution of the overlapping area (125 μm × 60 μm) at the drain 

side (shown in the inset of figure 2-25) could be suppressed by the introduction of a thick SiO2 

layer before the deposition of the top drain layer; 2) the overlapping area of 125 μm × 10 μm at 

the source side could also be reduced. In fact, the major part of the total overlapping area AOV 

could be eliminated. The improved classical VTFT structure and the corresponding 

characteristics are given below. 

III.4 Overlapping area reduction and corresponding characteristics 

III.4.1 Modification of the fabrication process 

As it is shown in the inset of figure 2-25, the drain side enclosed in the dashed rectangle 

occupies the major part of the overlapping area, which dominates the off-current IOFF. In order 

to eliminate this large drain overlapping area, a thick layer of SiO2 (400 nm) is deposited by 

APCVD technique and patterned by wet etching before the top heavily-doped layer deposition. 

Therefore, by aligning the drain side with this SiO2 region, the three polysilicon layers’ 

stacking at the drain side is eliminated by the introduction of the thick oxide layer, and thus 

the total overlapping area is reduced. In addition, the overlapping area at the source side could 

also be reduced until to the lithography limitation. The schematic and SEM images of the 

improved structure is shown in figure 2-26 (a) and 2-26 (b), respectively. 
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Figure 2-26: (a) Three-dimensional, and (b) SEM images of the two-tooth classical VTFT 
after the overlapping area reduction, the reduction is mainly obtained by the introduction of a 
thick oxide layer at the drain side. 

Note that, even the parasitic channel is suppressed at the backside of the drain due to the 

introduction of the thick oxide layer, the thick oxide deposition originally used for parasitic 

channel suppression before the gate oxide deposition should also be deposited as a guarantee. 

III.4.2 Electrical characteristics of the classical VTFT with reduced overlapping area 

As shown from figure 2-25, the large off-current IOFF is proportional to the overlapping 

area AOV between source and drain. After the reduction of the overlapping area at the drain 

side, the off-current IOFF should also be accordingly reduced. The remained overlapping area 

A’OV
 could also be divided into two parts, the source part area AS, and the teeth part area NtAt, 

which could be expressed by the following equation: 

' ( .2 15)OV S t t S t t tA A N A A N LW eq      

According to previous calculation, the off-current per unit area is 8 pA/µm2 (70 nA 

corresponding to 8750 µm2). Table 2-3 shows the drain currents comparison before and after 

the overlapping area reduction at the drain side, when there is no gate voltage applied on the 

VTFT, and drain-source voltage VDS = 1V. 

It is shown that the drain current has been reduced about 72 nA (IDS - I’DS) on average. 

However, considering the actual reduced area of about 8000 µm2 (ASD - AS) in the process, the 

reduced off-current IOFF is calculated to be about 64 nA. The larger reduction of drain-source 
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current IDS (without gate bias) in comparison with the reduction of off-current IOFF (with gate 

bias), is due to the fact that IOFF is not gained at VGS = 0 V, and the negative gate voltage VGS 

has suppressed the drain-source current IDS to some degree, as mentioned previously.  

Total overlapping  
area Aov (µm2) 

ASD+ 
1×60×10 

ASD+ 
2×60×10 

ASD+ 
4×60×10 

ASD+ 
1×60×20 

ASD+ 
2×60×20 

ASD+ 
4×60×20 

Total drain current  
IDS (nA) 

84.5 90 101 90 101 122 

Reduced overlapping 
 area A’ov (µm2) 

AS+ 
1×60×10 

AS+ 
2×60×10 

AS+ 
4×60×10 

AS+ 
1×60×20 

AS+ 
2×60×20 

AS+ 
4×60×20 

Reduced drain current 
I’DS (nA) 

12.7 18.3 27.8 18.3 28.6 49.9 

Table 2-3: Comparison of drain-source currents before and after the reduction of the 
overlapping area. 

This phenomenon could also be shown in figure 2-27, which demonstrates the comparison 

between the drain-source leakage currents IDS (without gate voltage) and the off-currents IOFF 

(with gate voltage). Except for the point of 107 nA, the other off-current data are less than the 

corresponding drain-source current IDS without gate voltage, which indicates the effect of the 

gate voltage VGS on the reduction of the off-current IOFF. 

 

Figure 2-27: Comparison between the drain-source current IDS (without gate voltage) and the 
off-current IOFF (with gate voltage), the gate voltage helps to suppress the drain current to 
some degree. 

After the overlapping area reduction using a thick oxide layer, the transfer characteristics 

of a classical VTFT is shown in figure 2-28. The ION/IOFF ratio almost reach 105, however, the 
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off-current IOFF is in the order of 10 nA when the drain-source voltage VDS = 1 V. This IOFF 

brought by the remained overlapping area A’OV should be further reduced. In addition, the 

reproducibility of the improved structure is rather bad because of the complex process 

(six-mask process). 

 

Figure 2-28: Transfer characteristics of the classical VTFT structure after the reduction of the 
large overlapping area, the off-current reduces that leads to an ION/IOFF ratio of almost 105. 

IV. Conclusion 

In this chapter, the basic process flow of the classical VTFT and the corresponding 

electrical characteristics are described. Initially, the related materials, deposition and dry 

etching methods used in the processes are introduced, including the LPCVD technique for 

poly-Si and Si3N4 deposition, APCVD technique for SiO2 deposition, Joule effect evaporation 

technique for Al deposition, and RIE technique for devices patterning. 

The widely-used material in thin film technology is poly-Si deposited by LPCVD 

technique, which shows the compromise between the crystalline quality and the deposition 

facility. By the a-Si deposition by LPCVD at 550°C and 90 Pa and then a crystallization step 

(SPC) at 600°C under vacuum, the obtained poly-Si could gain better structural quality, and 

this mature technique has been used in the LTFTs fabrication in our laboratory. Therefore, our 

VTFTs fabrication is also based on this SPC-involved technique. 

For the VTFTs fabrication, RIE technique is a critical step for the patterning of the basic 
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VTFT configuration, as the sidewall slope affects the conformal deposition of gate oxide and 

Al contacts and thus greatly influences the electrical characteristics. For the classical VTFTs, 

the optimized value is gained at RF power W = 50 watt, pressure P = 1 mTorr, and the SF6 gas 

flow Г = 10 sccm. 

The classical VTFT is obtained by rotating LTFT 90°. Initially, four plastic masks are 

employed to fabricate the VTFTs, and the first characteristics have been obtained. However, 

there is a parasitic channel at the backside of the device, and a new set of glass masks are 

introduced. After the elimination of the parasitic channel by depositing a thick oxide layer at 

the backside, the transfer characteristics and output characteristics have been measured. The 

on-current ION shows the linear relationship with the teeth number Nt and the single channel 

width Wc, i.e., ION is proportional to the total channel width W, as expected, while it is 

independent of the tooth width Wt. In a word, very good relationship between on-current ION 

and geometric parameters has been obtained. The off-current IOFF is proportional to the 

overlapping area AOV, and the calculated IOFF density is about 8 pA/μm2. 

Afterwards, the major part of the large overlapping area has been eliminated by the 

introduction of a thick oxide layer at the drain side (for a DOT structure), and the resulted 

ION/IOFF is in the order of 105. However, IOFF is still in the order of 10 nA for the drain-source 

voltage VDS = 1V due to the remained overlapping area, and the reproducibility is rather low 

due to the complex process. 

In the next chapter 3, a new VTFT structure will be proposed to totally eliminate the large 

overlapping area by introducing a barrier layer between source and drain. For the new 

structure, the sidewall profile is still very important, and a lot of work will be devoted to the 

formation of the sidewalls. In addition, some study on the barrier layers will also be made. 

After the adjustment of the sidewall profiles and the study on the barrier layers, the electrical 

characteristics of the new VTFTs will be measured, analyzed and discussed. In addition, 

different active layers of the new VTFTs will also be studied. Finally, the electrical properties 

of P and N-type VTFTs will also be shown.
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In chapter 2, the detailed process flow of the classical VTFTs has been described, and the 

corresponding electrical characteristics have also been analyzed. The results have highlighted 

the high off-current IOFF due to the large overlapping area, which degrades the electrical 

characteristics of the VTFTs and leads to a low ION/IOFF ratio in the order of 103. Even some 

efforts have been made to reduce the large overlapping area and the ION/IOFF almost reaches 105, 

this ratio cannot be further increased. In addition, the complex process also reduces the 

reproducibility of the improved classical VTFT. Therefore, the new VTFT structure should be 

proposed in order to improve the transistor properties with a high reproducibility. 

I.  Transition from the classical VTFT to the new VTFT 

I.1 Discussion on the classical and the new VTFTs 

For the classical VTFT, due to the high overlapping area between source and drain (as 

shown in figure 3-1 (a)), which leads to a high leakage current passing through the undoped 

poly-Si layer from source to drain, the ION/IOFF ratio is rather low. Even by introducing a thick 

oxide layer to eliminate the major part of the overlapping area, the resulted IOFF still exceeds 

10nA when drain-source voltage VDS = 1 V, while the reproducibility is rather low due to the 

complex process. New VTFTs structure should be proposed in order to overcome the two 

problems. 

Initially, we propose a structure that introduces a barrier layer not only at source and drain 

sides, but also at the major part of the teeth. Therefore, the total overlapping area is almost 

eliminated, and only a limited area for the active layer at the tooth part is allowed. The 

schematic view is shown in figure 3-1 (b), the active layer is just located at the two sides of the 

barrier layer in the tooth part, with a negligible area determined by the design rule λ. However, 

as the tooth width Wt has already reached the design rule limitation, further process on the tooth 

will increase the complexity of the fabrication process, and thus reduce the reproducibility of 

the devices. 

The other solution is that, by introducing a barrier layer that totally blocks the source and 
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drain regions (including the teeth part), the overlapping area between source and drain is totally 

eliminated. Different from the classical VTFT structure, the active layer is deposited after the 

formation of the source and drain layers. As shown in figure 3-1 (c), the active layers are just 

deposited on the sidewalls of the tooth, which further highlights the importance of the sidewall 

profiles, as the sidewall profiles would affect the crystallization of the undoped poly-Si active 

layer. Nevertheless, the large overlapping area can be eliminated, which helps to reduce the 

off-current IOFF. In addition, the complex process is also avoided, which should enable a better 

reproducibility. 

  

 

Figure 3-1: Schematic view of the tooth structure for (a) the classical VTFT, and (b) the 
improved classical VTFT, and (c) the new VTFT. 

I.2 Simulation of the two VTFT structures 

Prior to the fabrication process of the new VTFT, a simple two-dimensional (2D) 

simulation has been carried out, in order to theoretically analyze the electrical characteristics 

of the classical and the new VTFTs. The simulation is made by the aid of the software 

SILVACO, of which the module ATHENA is used to create the device structure, while the 

module ATLAS is adopted to apply appropriate material properties for each layer, set the 
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measurement conditions, and simulate the transfer characteristics of the VTFTs. Note that, the 

layers’ mobility properties are based on the mono-Si layer, and the test temperature is set to 

be 300 K. 

Figure 3-2 (a) shows the simulated structure of the classical VTFT, a large overlapping 

area between source and drain has been observed. For the heavily-doped poly-Si layers 

(source and drain, labeled as “N+ poly-Si”), the thicknesses are set to be 300 nm and 600 nm, 

respectively, and the doping level is set to be 1020 cm-3. For the undoped poly-Si layer (active 

layer), the thickness is set to be 1μm, the doping level is set to be 1016 cm-3, due to the 

non-intentionally doping (Nid) property caused by the poly-Si structural defects. For the new 

VTFT shown in figure 3-2 (b), the large overlapping area is eliminated by the barrier layer, 

and the undoped poly-Si active layer is deposited on the sidewall. The barrier layer is a 100 

nm SiO2 layer, while the active layer thickness is also set to be 100 nm, with the doping level 

of 1016 cm-3. For the heavily-doped poly-Si layers, the thicknesses are 300 nm and 600 nm, 

respectively, with the doping level of 1020 cm-2. The detailed program in ATLAS module is 

given in Annex IV. 

    

Figure 3-2: Simulated structure of (a) the classical VTFT, and (b) the new VTFT. The 
classical VTFT shows a large overlapping area between source and drain, while for the new 
VTFT, the overlapping area is suppressed by the barrier layer. “N+ poly-Si” stands for the 
N-type heavily-doped poly-Si. 

Figure 3-3 shows the simulated transfer characteristics of the two VTFT structures. It is 

shown that the on-currents of the two structures keep the same, while the off-current of the 

new VTFT decreases more than one order in comparison with the classical VTFT, which is 



Chapter 3 Process flows and electrical characteristics of the new VTFTs 

73 

due to the elimination of the large overlapping area. Even though we adopt 2D models for our 

3D structures, the trend of the reduced off-current IOFF should be the same, which 

theoretically validates the feasibility of the new VTFT in IOFF reduction. 

 

Figure 3-3: Simulated transfer characteristics comparison between the classical and the new 
VTFTs. The off-current IOFF has been reduced by the barrier layer. 

II. Structure, process, and key technique of the new VTFT 

structure 

II.1 Basic process flow of the new VTFT structure 

The simulation of the transfer characteristics for the two VTFT structures has validated 

the effective reduction of the off-current IOFF of the new VTFT, by introducing a barrier layer 

between source and drain. Therefore, the fabrication process of the new VTFT is carried out. 

The typical three-dimensional structure of the new VTFT is shown in figure 3-4. 

 

Figure 3-4: Three-dimensional view of the new VTFT structure, “N+ poly-Si” stands for the 
N-type heavily-doped poly-Si layer. 



Chapter 3 Process flows and electrical characteristics of the new VTFTs 

74 

From the 3D schematic structure, it is shown that there is a barrier layer between source 

and drain. Therefore, the large overlapping area between source and drain is blocked. The 

active layer is deposited on the sidewalls after the formation of the teeth, thus the sidewall 

profile is very important to the electrical characteristics. 

As mentioned in chapter 1, the classical VTFT structure could be seen as rotating the 

LTFT 90°. Note that, the corresponding LTFT is in fact a top-gate LTFT. For the tooth 

structure of this new VTFT structure, it is in fact evolved from the back-gate LTFT. Figure 3-5 

(a) shows the back-gate LTFT structure, and when rotating the back-gate LTFT 90° (the 

region enclosed in the dashed lines), the basic structure of the new VTFT is obtained, as 

shown in figure 3-5 (b). 

 

 

Figure 3-5: Schematic view of (a) the back-gate LTFT structure, and (b) the new VTFT 
structure. The new VTFT could be seen as rotating the back-gate LTFT 90°. 

In order to fabricate the new VTFT, a five-mask process is carried out. Initially the same 

steps as the classical VTFT structure, i.e., the basic cleaning and a 500 nm buffer SiO2 layer 

deposition by APCVD, are carried out. Afterwards, two heavily-doped poly-Si layers are 

deposited by LPCVD technique at 550°C with a barrier layer in-between. During the 

deposition steps, after each LPCVD deposition at 550°C and 90 Pa, a subsequent SPC step is 

performed at 600°C under vacuum. The schematically side view of the deposited layers’ 
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stacking is shown in figure 3-6: 

 

Figure 3-6: The deposition layers for the new VTFT, there is a barrier layer between two 
heavily-doped poly-Si layers deposited by LPCVD technique. 

After the deposition steps, the first photolithography and RIE steps are implemented, the 

comb shape is formed, with the same geometric dimensions as the previous VTFT. After the 

first dry etching, the schematic views are presented in figure 3-7 (a) and figure 3-7 (b): 

     

Figure 3-7: (a) Top view, and (b) side view of the new VTFT after the first RIE, the geometric 
dimension of the new VTFT is defined. 

Then, another photolithography and RIE steps are performed to form source and drain 

regions, and the channel length of the VTFT is determined by the thickness of the barrier 

layer between source and drain. Note that, for this partial etching, the etching uniformity 

should be carefully controlled by the aid of the laser interferometer. The consequent 

schematics are presented in figure 3-8 (a) and figure 3-8 (b): 

   

Figure 3-8: (a) Top view, and (b) side view of the new VTFT after the partial etching by the 
second RIE, source and drain regions could be accessed to. 
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Afterwards, an undoped poly-Si active layer is deposited by LPCVD technique under the 

same conditions and patterned by the third RIE process, which enables to form a channel on 

each sidewall, i.e., two channels for one tooth. Thus, the precise control of the etching 

endpoint for the Nid layer is essential in this etching step. The final structure after the third 

dry etching is presented in figure 3-9:  

   

Figure 3-9: (a) Top view, and (b) side view of the new VTFT after the third RIE of the 
deposited active layer, which enables to form the channels on the sidewalls, “Nid” stands for 
the undoped (non-intentionally doped) poly-Si active layer. 

After that, an essential RCA cleaning step is performed to eliminate the defects on the 

interface of the active layer, and thus improve the electrical characteristics of the fabricated 

devices. After the deposition of a gate oxide layer by APCVD at 420°C, another densification 

step at 600°C for 12 hours is carried out in order to eliminate most defects in the gate oxide 

layer. After making contact openings, the configuration of the fabricated device is shown in 

figure 3-10. 

  

Figure 3-10: (a) Top view, and (b) side view of the new VTFT after gate oxide deposition and 
contact openings. 

After a 400 nm Al layer deposited by Joule effect evaporation, the electrodes are defined 

by another wet etching step. The schematic views of the final fabricated new VTFT is 

presented in figure 3-11 (a) and figure 3-11 (b), and the corresponding SEM image for a 

four-tooth VTFT is also shown in figure 3-11 (c). The gate electrode also passes through all 
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the teeth at the same time, which demonstrates the multi-gate structure. 

  

 

Figure 3-11: (a) Schematic top view, (b) side view of the final VTFT configuration, and (c) 
SEM top view of the fabricated four-tooth VTFT. 

II.2 Geometric definition of the new VTFT 

Just the same as the classical VTFT structure, the new VTFTs are defined with different 

geometric dimensions. The layout of a four-tooth VTFT is listed below in figure 3-12, with 

the key geometric parameters marked in this figure. The key geometric parameters of the 

VTFTs are listed below: 

- Lt: the length of a tooth, which is fixed at the value of 60 μm. 

- Nt: the teeth number, the optional values for Nt are 1, 2, 4. 

- Wt: the width of a tooth, which has the alternative values of 10 μm and 20 μm. 

- Wc: the single channel width, the optional values are 10 μm, 20 μm, and 30 μm, 

respectively. Wc shows obvious difference between the classical and the new VTFTs. For 

the classical VTFT, it is defined by the width of the gate electrode. However, for this new 

design, it corresponds to the width of the active layer, as shown in figure 3-12. 
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- W: the total channel width, which is defined by the formula W = 2NtWc, as there are two 

channels located on the two sidewalls of one tooth. 

 

Figure 3-12: The five-mask design of a new VTFT with four teeth, different geometric 
parameters are marked in the figure. 

There are also other geometric parameters marked in figure 3-12, such as the fixed values 

of 125 μm for the device width, 180 μm for the device length, and especially for the channel 

length L, it is determined by the thickness of the barrier layer between source and drain. 

II.3 Key technique: barrier layer selection 

For the new VTFT structure, the selection of an appropriate barrier layer between source 

and drain is very important for the fabrication process, as it affects the formed sidewall profile 

due to the etching selectivity between different materials. Initially a 400 nm SiO2 layer is 

chosen as the barrier layer between source and drain, which is deposited by the APCVD 

technique. This high thickness is a guarantee for the isolation between source and drain. Much 

effort has been made to form appropriate sidewalls for the active layer and the gate oxide 

layer depositions, as shown in the SEM images of figure 3-13. 

For figure 3-13 (a), the two poly-Si layers are etched by SF6, while the 400 nm SiO2 layer 
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is patterned by wet etching. It shows a discontinuous profile after the wet etching of the SiO2 

layer. When etching the bottom poly-Si layer, the top poly-Si layer is overetched. In addition, 

when the bottom poly-Si layer is overetched, the SiO2 layer is not affected due to the high 

etching selectivity between poly-Si and SiO2 layers. It is impossible to apply this 

discontinuous profile to the fabrication process of the new VTFT, as the active layer needs to 

be conformally deposited on this sidewall. 

  

 

Figure 3-13: SEM images of different RIE tests for the poly-Si/400 nm SiO2/poly-Si 
sidewalls. (a) poly-Si layers are etched by SF6, SiO2 layer is patterned by wet etching, (b) all 
layers are etched by CF4, and (c) the top poly-Si layer are etched by SF6, while SiO2 and the 
bottom poly-Si layers are etched by CF4. 

Figure 3-13 (b) shows the sidewall profile when using CF4 to etch all the three layers. The 

etching profile is continuous, which is due to the low etching selectivity between poly-Si and 

SiO2 layers when using CF4 as the etchant. However, the photoresist has been totally etched 

because of the long etching time, which results in the partial etching of the top poly-Si layer 
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(the thickness of the three layers has been reduced from 1 μm to 850 nm). This overetching 

also prohibits the fabrication of the new VTFTs. 

Figure 3-13 (c) shows the profile formed by SF6 and CF4 etchants, SF6 is used to etch the 

top poly-Si layer, while CF4 is used to etch the 400 nm SiO2 and the bottom poly-Si layers. 

The formed sidewall is continuous, while the layers are not overetched, which is suitable for 

the fabrication of the new VTFT. However, this etching condition is more complex, while the 

total processing time is very long. 

From the three etching conditions, one conclusion could be drawn, that is, the high 

thickness of the SiO2 insulating layer leads to a long etching time, and thus prohibits from 

forming a continuous sidewall profile. Therefore, the thickness of the SiO2 insulating layer 

should be reduced. However, as the channel length L is determined by the thickness of the 

barrier layer between source and drain, the reduced channel length will result in serious SCEs. 

The solution for this problem consists in the adoption of a thick undoped poly-Si layer and 

a thin SiO2 layer as the barrier layer. The thick undoped poly-Si layer will guarantee a 

sufficient channel length L to minimize SCEs. The thickness of the undoped poly-Si layer is 

set to be 1 μm, in order to make sure that the channel length L is more than 1 μm. From 

previous experience of LTFT, for SiO2 deposited by APCVD at 420°C, the breakdown voltage 

VBD is about 0.5 V/nm. Therefore, the SiO2 layer thickness could be reduced to 100 nm (with 

the VBD of about 50 V), which is sufficient for ensuring the insulating property without 

breakdown. 

III. New VTFTs based on a 100 nm SiO2 insulating layer between 

source and drain 

For the classical VTFT structure, the high off-current IOFF is observed due to the large 

common overlapping area, which leads to a large leakage passing through the undoped 

polysilicon layer from source to drain. For the new design, by introducing an insulating layer 

between source and drain, the large drain-source leakage is reduced in theory.  
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The schematic top view of a four-tooth new VTFT is shown in figure 3-14 (a), the four 

teeth could provide eight channels arranged in parallel. For one tooth of the new VTFT 

structure, the schematic cross-sectional view is shown in figure 3-14 (b). For the first attempt, 

the combination of a 1 μm undoped poly-Si layer and a 100 nm SiO2 layer is adopted as the 

barrier layer. For both of the source and drain regions, the thicknesses of the heavily-doped 

poly-Si layers are 300 nm. Note that, source and drain are not in the same plan of this 

schematic view. The active layer thickness TAC is also 300 nm, and the gate oxide thickness 

TOX is 100 nm, while the deposited Al thickness is about 500 nm. The thick active layer, gate 

oxide layer, and Al layer, are adapted to guarantee a better coverage of the gate part on the 

sidewall for the first attempt. 

  

Figure 3-14: (a) The schematic top view of the new VTFT structure, (b) the schematic tooth 
structure for the new VTFT with a 100 nm SiO2 insulating layer. 

III.1 Technological challenge in the process - sidewall formation by RIE 

Prior to the fabrication process, it is critical to form the continuous sidewall as the active 

layer is just deposited on it. Different RIE tests have been carried out, shown in figure 3-15. 

The thicknesses of the N-type heavily-doped layers (labeled as “N+”) are 300 nm, while the 

undoped layer (labeled as “Nid”) thickness is 1 μm, and the SiO2 layer thickness is 100 nm. 

When etching at a low RF power (W = 20 watt, figure 3-15 (a) and figure 3-15 (b)), the 

etching rate is very low, and the long-time etching leads to the overetching of the photoresist. 

The resulted sidewall is so abrupt that it is hard to be applied for the VTFT fabrication. 

Therefore, the RF power should be increased. 



Chapter 3 Process flows and electrical characteristics of the new VTFTs 

82 

   

   

Figure 3-15: SEM image of the sidewalls by RIE under different etching conditions: (a) 20 
watt, 4 mTorr, no photoresist is remained after etching, and (b) 20 watt, 40 mTorr, no 
photoresist is remained after etching. These two conditions cannot be applied for fabrication 
due to the overetching of photoresist. (c) 50 watt, 40 mTorr, photoresist without hard baking, 
and (d) 50 watt, 10 mTorr, photoresist without hard baking. These two conditions cannot be 
applied for fabrication due to the large overetching of the sidewall. (e) 50 watt, 1 mTorr 
without hard baking, and (f) 50 watt, 1 mTorr with hard baking. These two conditions show 
better sidewalls, while the sidewall is more linear after hard baking of the photoresist. The SF6 
gas flow is always set to be 10 sccm. 

When etching at a high RF power (W = 50 watt, figure 3-15 (c), figure 3-15 (d), figure 

3-15 (e), and figure 3-15 (f)), the photoresist remains on top of the sidewall due to the short 

etching time. However, when etching at a high partial pressure (figure 3-15 (c) and figure 

3-15 (d)), the lateral overetching of the sidewall is very serious due to the isotropic chemical 

erosion. Therefore, these two conditions cannot be applied in the fabrication of the new 

VTFTs. When reducing the partial pressure P to 1 mTorr (figure 3-15 (e) and figure 3-15 (f)), 

the lateral overetching is drastically reduced, which is due to the fact that the chemical erosion 

effect is weakened when the partial pressure is reduced, and the physical bombardment 

dominates the etching process, thus the isotropy of the etching is enhanced. It also shows that 

the bottom heavily-doped layer is patterned by the photoresist as well as the 100 nm SiO2 
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layer, the latter being a hard mask. In addition, the better continuity of the sidewall profile is 

obtained with a hard baking step, as the hard baking enhances the stickiness of the photoresist 

to the sample surface. In summary, when etching at a higher RF power W with a reduced 

partial pressure P, we could obtain the best sidewall profile, especially when a hard baking 

step is performed for the photoresist. In our fabrication process, the adopted etching 

parameters are: RF power W = 50 watt, partial pressure P = 1 mTorr, SF6 gas flow Г =10 sccm, 

while the photoresist is hard baked. Even though the sidewall is continuous at this condition, 

there is still a change of slope at the SiO2 layer due to the etching selectivity. 

III.2 Electrical characteristics of the new structure with a 100 nm SiO2 

insulating layer 

The new VTFTs are fabricated using a five-mask process. Figure 3-16 shows the etched 

sidewall profile before the gate part deposition. It gives evidence of a continuous sidewall, 

which enables a good deposition of the active layer and the gate oxide layer. The channel 

length L approximately corresponds to the total thickness of the undoped poly-Si layer (1 μm) 

and the SiO2 layer (100 nm), that is, 1.1 μm, except for a 6% increase for the tilt angle of 70° 

(1/cos70° = 1.06). 

 

Figure 3-16: SEM image of the sidewall of the tooth after RIE. 

The transfer characteristics of the new VTFT structure are shown in figure 3-17 (a). Taking 

into account of the design that involves several teeth, the equivalent W/L ratio is about 220. The 

transfer characteristics show a higher ION/IOFF ratio that is about 3×104 at a lower drain-source 

voltage VDS = 100 mV. The inset of the figure 3-17 (a) shows the gate leakage current. It is 
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observed that the leakage current IGS is about 100 pA when the gate voltage VGS = 20 V, which 

indicates a good coverage of the gate oxide on the sidewall. This off-current IOFF is still too 

high, which is mainly due to the short channel length L of the device, where the current could 

easily pass the channel. In addition, the thick active layer also leads to a leakage current far 

away from the gate control, which also adds to the off-current IOFF. Therefore, in order to 

improve the gate control, the active layer thickness TAC and the gate oxide thickness TOX 

should be reduced. Figure 3-17 (b) demonstrates the output characteristics of the fabricated 

VTFT, which confirms a good field effect modulation. It also shows the kink effect when VDS 

≥ 7 V, which is due to the impact ionization at the drain end of the channel. This SCE could be 

suppressed by increasing the channel length L. 

 

 

Figure 3-17: Electrical characteristics of the new VTFT involving a 100 nm SiO2 barrier that 
limits the drain-source leakage current: (a) transfer characteristics, and (b) output 
characteristics. 

The first electrical characteristics confirmed the feasibility of such a device, the first aim of 
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increasing the ION/IOFF ratio is reached, as seen in figure 3-18, which compares the transfer 

characteristics of the classical (without the barrier layer) and the new VTFT (with the barrier 

layer). For the classical VTFT, the ION/IOFF ratio is in the order of 3×102, in contrast, the new 

VTFT shows an improvement on the ION/IOFF, which is in the order of 3×104, for the same 

drain-source voltage of VDS = 100 mV. These curves give evidence of the change in the IOFF 

current in comparison with the classical VTFT, which does not involve the barrier oxide layer 

between source and drain. The IOFF current significantly decreases (divided by more than 20), 

that was the first goal of this work, and the on-current ION enlarges 5 times. 

 

Figure 3-18: Typical transfer characteristics of the classical stacking structure ((a) without an 
oxide barrier) and the new structure ((b) with an oxide barrier). The first result shows a 
reduced off-current IOFF and an increased ION/IOFF ratio. 

The electrical parameters of the two VTFTs are deduced from the transfer curves, which 

are shown in table 3-1. It is shown that for the new VTFT with a barrier layer, all the electrical 

characteristics have been improved, especially for the reduced threshold voltage VTH and the 

increased mobility µFE. Therefore, the advantage of the new VTFT over the classical VTFT 

has also been shown. 

VTFT type VTH S gm µFE 

Classical VTFT 8 V 3.6 V/dec 2.7 μS 3.7 cm2/V·s 

The New VTFT 5.4 V 1.5 V/dec 8.9 μS 11.8 cm2/V·s 

Table 3-1: Electrical parameters for the classical and the new VTFTs with the same W/L ratio 
of 220, the parameters are deduced from the transfer curves. 
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III.3 Analysis of the field effect mobility 

Even though we have increased the field effect mobility µFE of the VTFT, the value of 

11.8 cm2/V·s is rather low in terms of a poly-Si TFT. As mentioned in chapter 2, for the 

poly-Si LTFT fabricated in IETR, µFE is more than 100 cm2/V·s [25]. Initially it is assumed 

that the low mobility is due to the access resistance RACC of the special comb structure. As 

shown in the top view of figure 3-19 (a), the access resistance RACC of source and drain 

regions is shown as the dashed arrows. Figure 3-19 (b) shows the corresponding schematic 

circuit diagram of a basic TFT, where RACC = RS + RD. 

       

Figure 3-19: (a) The top view of a VTFT, where the access resistance RACC is shown as the 
dashed arrows, and (b) the schematic circuit diagram of a basic TFT. 

Based on the schematic electrical diagram of a basic TFT, the drain-source resistance RDS 

could be expressed as the following equation: 

'
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From this equation, for the RDS-1/(VGS-VTH) relationship, X is the slope of the linear part, 

the access resistance RACC and the mobility µ’FE could be extracted. Note that, the extracted 

mobility µ’FE is the mobility after eliminating the access resistance RACC. Figure 3-20 shows 

the RDS-1/(VGS-VTH) curves for the classical and the new VTFTs, and table 3-2 shows the 

extracted RACC and µ’FE values from the two curves. For the classical VTFT, the RACC is rather 
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large, which has greatly affected the mobility, by comparing the mobilities before and after 

eliminating RACC (µFE and µ’FE). The large RACC is due to the fact that, except for the part 

under the gate control, the large overlapping area out of gate control provides the leakage 

passing through the undoped, resistive poly-Si layer. In contrast, for the new structure, due to 

the limited region of the active layer, where the current is more likely to pass the conductive 

heavily-doped layers (source and drain layers) instead of the undoped poly-Si layer between 

source and drain, the access resistance RACC is also reduced. Therefore, for the new VTFT, the 

mobility µFE is almost not affected by the access resistance RACC. 

 

Figure 3-20: The relationship of RDS and the 1/(VGS - VTH), the access resistances RACC and the 
mobilities µ’FE could be extracted. 

VTFT type RACC µFE with RACC µ’FE without RACC 

Classical VTFT 2140 Ω 3.7 cm2/V·s 11.3 cm2/V·s 

The New VTFT 56 Ω 11.8 cm2/V·s 12.9 cm2/V·s 

Table 3-2: The access resistance RACC and the mobility µ’FE deduced from the RDS-1/(VGS-VTH) 
curves, the mobility µFE deduced from the transfer curves is also shown. 

Therefore, for the new VTFT, the low mobility µFE is more likely to be affected by the 

active layer quality deposited on the sidewall. There are two possibilities, one possibility is 

that, as the crystallization of the channel layer starts from the interface between the sidewall 

and the deposited layer, the high roughness of the lateral relief for the sidewall caused by the 

dry etching could lead to the formation of a lot of seed sites, which result in the presence of 
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small grain sizes and more grain boundaries. As a result, these grain boundaries work as the 

defects in the active layer, which greatly affect the mobility µFE. The other possibility is that, 

as there is a change of the sidewall slope at the insulating layer (100 nm SiO2 layer in this 

process) due to the etching selectivity, the crystallization of the active layer could also be 

affected. In fact, the morphology of the active layer on the vertical sidewalls is still unknown, 

which needs to be further studied. In order to further increase the mobility µFE, the roughness 

of the sidewalls should also be reduced, which also helps to decrease the subthreshold slope S 

as well as the leakage current. 

III.4 Technological problem in the process – “shadow effect” in Al 

deposition 

Due to the special geometry of the VTFT, Al layer should be deposited on the vertical 

sidewall, and the thickness of the vertical sidewall could be more than 1 μm. Using Joule 

effect evaporation for Al deposition, a “shadow effect” can be resulted in due to this special 

deposition technique. As a result, sometimes, on one side of the sidewall, there is Al 

deposited on the sidewall, while for the other side, there is no Al deposited on the sidewall. A 

typical SEM image of the “shadow effect” is shown in figure 3-21. For gate electrode 

deposited by this method, the shadow effect will result in the disabled teeth that are out of 

gate control. 

    

Figure 3-21: (a) Al deposition on the two sidewalls, the left sidewall has a good Al coverage, 
while the right sidewall shows no Al deposited on the sidewall, (b) the enlarged image of the 
right sidewall, and “shadow effect” is obviously shown. 
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The solution lies in the reduction of the sidewall steepness, by adopting a quasi-vertical 

sidewall. In addition, the deposited thickness of Al should be increased in order to guarantee a 

sufficient Al thickness on the sidewall, due to the thinner Al thickness on the sidewall 

compared with the thickness on the planar surface. By different comparison tests for Al 

depositions, the continuous Al deposition on the sidewall has been obtained that enables the 

fabrication of the new VTFTs. 

IV. New VTFTs based on a 200 nm Si3N4 insulating layer between 

source and drain 

As mentioned above, for the new VTFTs using a 100 nm SiO2 insulating layer between 

source and drain, the change of the sidewall slope due to the etching selectivity between the 

poly-Si layers and the SiO2 layer, limits the electrical characteristics of the fabricated VTFT. 

Therefore, another attempt by using Si3N4 as the insulating layer is also carried out, which is 

deposited at 600°C by LPCVD technique. In this process, the thicknesses of the poly-Si layers 

in the stacking are the same as the one using SiO2 as the insulating layer, while the adopted 

thickness of the Si3N4 insulating layer is 200 nm. The choice of adopting a 200 nm Si3N4 

insulating layer, in comparison with a 100 nm SiO2 insulating layer, is to keep the nearly 

same capacitance, considering the different relative dielectric constants (3.9 for SiO2, and 7.5 

for Si3N4). The other consideration for a thicker Si3N4 layer lies in the guarantee of the 

insulating properties for the Si3N4 layer deposited at 600°C, whose ideal deposition 

temperature is between 650°C to 850°C [96]. The adopted active layer thickness TAC is 300 

nm, which is the same value as the previous structure using a SiO2 insulating layer. The 

schematic tooth structure is shown in figure 3-22, the barrier layer between source and drain 

is made up of a 1μm undoped poly-Si layer and a 200 nm Si3N4 layer. The channel length L is 

the total thickness of the undoped poly-Si layer and the Si3N4 insulating layer, which is 1.2 

μm, except for a little increase due to the tilt angle. The channel length L of this VTFT is 

comparable to the previous VTFT with a 100 nm SiO2 insulating layer. 
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Figure 3-22: Schematic tooth structure for the new VTFT with a 200 nm Si3N4 insulating 
layer. 

IV.1) Technological challenges in the process – sidewall formation by RIE 

Just the same as the fabrication process of VTFTs with a 100 nm SiO2 insulating layer, 

different etching tests for a sidewall with a 200 nm Si3N4 insulating layer are also carried out 

prior to the fabrication process, shown in figure 3-23. Comparing figure 3-23 (a) and 3-23 (d), 

when etching at the same partial pressure of 10 mTorr, the higher RF power leads to a better 

sidewall due to that the increase of the physical bombardment reduces the lateral overetching. 

The same trend is obtained from figure 3-23 (b) to figure 3-23 (e), that is, for the etching at a 

higher RF power W, when increasing the partial pressure P of the etching gas, the chemical 

erosion is more obvious, which leads to a more serious lateral overetching under the photoresist. 

All these conclusions are the same as the previous tests for the VTFT with the 100 nm SiO2 

insulating layer. Figure 3-23 (b) (W = 50 watt, P = 1 mTorr) shows the best sidewall, the quite 

vertical profile is obtained, even though there is a transition between the poly-Si layers and the 

Si3N4 layer due to the etching selectivity of the two materials. Therefore, in our fabrication 

process, the adopted parameters are RF power W = 50 watt, partial pressure P = 1 mTorr, while 

SF6 gas flow Г = 10 sccm. 

   



Chapter 3 Process flows and electrical characteristics of the new VTFTs 

91 

   

Figure 3-23: SEM image of the sidewalls by RIE under different etching conditions: (a) 30 
watt, 10 mTorr; (b) 50 watt, 1 mTorr; (c) 50 watt, 4 mTorr; (d) 50 watt, 10 mTorr; (e) 50 watt 40 
mTorr. For the conditions of (a), (d), (e), they cannot be applied for the VTFTs fabrication due 
to the large lateral overetching. For the conditions of (b) and (c), the former shows a much 
better sidewall. The SF6 gas flow is always set to be 10 sccm. 

IV.2) Electrical characteristics in comparison with the VTFTs with a SiO2 

insulating layer 

The new VTFTs are still fabricated via a five-mask process. Figure 3-24 shows a more 

linear sidewall than the one with a SiO2 insulating layer, which is due to the lower etching 

selectivity between poly-Si and LPCVD Si3N4. 

 

Figure 3-24: SEM image of the etched sidewall for the new VTFT with a 200 nm Si3N4 
insulating layer. 

The electrical characteristics of the fabricated VTFT based on the 200 nm Si3N4 insulating 

layer are shown in figure 3-25. Figure 3-25 (a) shows the transfer characteristics before and 

after the forming gas treatment, the adopted drain-source voltage VDS is 100 mV, the channel 

width/length ratio W/L is 200 for the total channel width W = 240 μm, and the active layer 

thickness TAC equals to 300 nm. From the transfer curves, an ION/IOFF ratio of almost 105 is 
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gained before the forming gas treatment. However, after the forming gas treatment, the 

off-current IOFF has increased about two orders of magnitude, which reduces the ION/IOFF ratio 

to be in the order of 103. The instability of the electrical characteristics confirms the poor 

insulating properties of Si3N4 deposited by LPCVD at 600°C. Figure 3-25 (b) shows the 

output characteristics of the VTFT, the field effect modulation is observed, while the kink 

effect is still shown. However, this VTFT shows better saturation in comparison with the 

VTFT with a SiO2 insulating layer, and the kink effect is observed until when the drain 

voltage VDS is higher than 10 V. 

  

Figure 3-25: (a) Transfer characteristics before and after forming gas, an ION/IOFF ratio of 
almost 105 is shown before the forming gas treatment, and (b) output characteristics of the new 
VTFT structure, better saturation is obtained. 

Figure 3-26 shows the electrical characteristics comparison between the new VTFT 

structures (the VTFT with the SiO2 insulating layer and the one with the Si3N4 insulating layer), 

when the drain voltage VDS = 100 mV. For the two structures, they show the same ION/IOFF ratio 

of almost 105 for the same W/L ratio of 200. However, for the VTFT with the Si3N4 insulating 

layer, ION reduces 3 times as well as IOFF. 



Chapter 3 Process flows and electrical characteristics of the new VTFTs 

93 

 

Figure 3-26: Transfer characteristics comparison between the new VTFTs with different 
insulating layers. 

Different electrical parameters for the two VTFTs are deduced and shown in table 3-3. Still 

due to the high roughness of the sidewall caused by the RIE process, the low mobility μFE and 

high subthreshold slope S are observed, as the active layer is just deposited on the sidewalls. In 

addition, the crystallization quality of the deposited polysilicon active layer on the sidewall is 

still unknown. Nevertheless, all electrical parameters have already shown a much better 

electrical property for the VTFT with a 100 nm SiO2 insulating layer, especially for the higher 

field effect mobility μFE, and a lower threshold slope VTH. The worse parameters for the Si3N4 

insulating layer, should be due to the worse insulating quality of the Si3N4 layer deposited by 

LPCVD at 600°C. Note that, the thickness of the Si3N4 insulating layer has already been twice 

of the SiO2 insulating layer, which further indicates the worse insulating quality of the Si3N4 

limited by the low-temperature process. Therefore, for the new VTFTs fabricated afterwards, 

the SiO2 insulating layer will always be adopted. 

Insulating layer S (V/dec) VTH (V) gm (μS) μFE (cm2/V·s) 

100 nm SiO2 1.5 5.2 9.2 12.2 

200 nm Si3N4 1.64 8.5 1.7 2.3 

Table 3-3: Electrical parameters comparison between the two VTFTs with different insulating 
layers, when VDS = 100 mV. 
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IV.3) The effect of geometric parameters on the electrical characteristics 

For this process, better reproducibility of the fabricated VTFTs has been obtained, by 

avoiding the Al deposition problem of the previous process. Therefore, for the new VTFTs, the 

relationships between the electrical characteristics and the geometric parameters could also 

been obtained. Figure 3-27 (a) and 3-27 (b) show the relationships of the on-current ION with the 

teeth number Nt and the single channel width Wc, respectively. As expected, the on-current ION 

is proportional to the teeth number Nt, as ION is related with the channel numbers (there are two 

channels for each tooth). In contrast, ION is independent of the single channel width Wc. This is 

assumed that for the new VTFT, the efficient single channel width W’c is less than Wc, the 

current path is more likely to be determined by W’c instead by Wc, as shown in figure 3-27 (c). 

For VTFTs with different single channel width Wc, the efficient single channel width W’c is 

almost the same. 

  

 

Figure 3-27: On-current ION relationship with (a) teeth number Nt, (b) single channel width Wc. 
The on-current is proportional to Nt, while it is independent of Wc, and (c) the efficient current 
path for the new VTFT, where the efficient single channel width W’c is marked. 
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The off-current IOFF relationships with the teeth number Nt and the single channel width Wc 

are shown in figure 3-28. As expected, IOFF is proportional to Nt as well as Wc, which is due to 

that IOFF is directly related with the active layer area. Further study about the effect of 

geometric parameters on the electrical characteristics will be given in detail afterwards.  

  

Figure 3-28: (a) Off-current IOFF relationship with teeth number Nt, and (b) Off-current IOFF 
relationship with single channel width Wc. 

V. New VTFTs with different active layers 

Based on the experience of the previous processes, several conclusions and improvements 

could be made: 

1) For the same active layer thickness TAC of 300 nm, VTFT fabricated with a 100 nm SiO2 

insulating layer by APCVD at 420°C shows better electrical characteristics than the one 

fabricated with a 200 nm Si3N4 insulating layer by LPCVD at 600°C, thus VTFTs will always 

be fabricated using a SiO2 insulating layer. 

2) From the SEM observation, APCVD is a conformal deposition, of which a 70 nm SiO2 layer 

should be enough for gate oxide utilization. 

3) Considering the risk of overetching the top and bottom heavily-doped poly-Si layers when 

etching the active layer, which could also reduce the reproducibility of the fabrication process, 

the thickness of the top and bottom heavily-doped layers should be increased. 

For the new VTFT, the active layer is deposited after the formation of the sidewall, thus 

different active layers could be obtained with the nearly same sidewall profile in the same run. 
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Therefore, this new structure provides a flexible way to improve the electrical characteristics by 

adopting different active layers, which is another advantage of the new structure. On one hand, 

the different active layer thicknesses may affect the VTFT characteristics. On the other hand, 

the active layer deposited from SiH4 precursor gas is always adopted, while the active layer 

deposited from Si2H6 precursor gas has never been tried. For LTFTs, the poly-Si deposited from 

Si2H6 precursor gas has been proved to have a large grain size than the one from SiH4 precursor 

gas, which is beneficial for the electrical characteristics [86]. In this process, different active 

layer thicknesses TAC using SiH4 precursor gas are attempted (225 nm, 150 nm, 100 nm), and a 

150 nm active layer using Si2H6 precursor gas is also tried. The VTFT structure is still based on 

a 100 nm SiO2 insulating layer, as shown in figure 3-14 (b). Note that, the gate oxide thickness 

TOX has reduced to 70 nm, while the thickness of the top and bottom heavily-doped poly-Si 

layers has increased to 400 nm and 600 nm, respectively. 

Figure 3-29 shows the transfer characteristics for different active layers. For different active 

layer thickness TAC, nearly the same ratio of more than 105 is obtained for a drain-source 

voltage VDS = 100 mV, which is higher than the ratio obtained from the first process when the 

active layer thickness is 300 nm (the corresponding ratio is about 3×104). This indicates the 

efficient increase of the ION/IOFF ratio by reducing the active layer thickness. Table 3-4 shows 

the electrical parameters deduced from the transfer characteristics of different active layers. For 

VTFTs using SiH4 precursor gas, when increasing the active layer thickness TAC, the lower 

threshold voltage VTH, and the higher field effect mobility μFE are obtained, which is due to the 

larger crystal sizes of the active layer deposited on the sidewall when increasing the active layer 

thickness TAC. For VTFTs deposited from different precursor gases (SiH4 and Si2H6), all 

electrical parameters show the advantage of SiH4 precursor gas over Si2H6 precursor gas, which 

is contrary to the previous conclusions based on the poly-Si LTFTs in reference [86]. 
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Figure 3-29: Transfer characteristics for different active layers. 

Active layer S (V/dec) gm (μS) VTH (V) μFE (cm2/V·s) ION/IOFF 
SiH4 225 nm 1.3 1.2 3.9 13.2 1.74×105 
SiH4 150 nm 1.3 1.0 4.4 11.5 1.98×105 
SiH4 100 nm 1.2 0.8 5 9.2 2.11×105 
Si2H6 150 nm 1.8 0.9 7.6 10.5 1.32×105 

Table 3-4: Electrical parameters of VTFTs with different active layers. 

Figure 3-30 (a) - (c) shows the relationships of on-current ION, off-current IOFF, and 

on/off-current ratio ION/IOFF with different active layers. For ION and IOFF, they show the same 

trend, that is, both ION and IOFF increase with the active layer thickness TAC. It is due to that 

when TAC increases, the grain size of the poly-Si crystallized on the sidewall should also enlarge, 

which helps to increase ION. In addition, IOFF decreases with the reduction of the active layer 

thickness TAC, which is due to the better gate control when reducing TAC, as the active layer part 

far away from the gate control is decreased. Figure 3-30 (c) shows that it is efficient to increase 

ION/IOFF by reducing the active layer thickness TAC. From the three figures, the VTFT based on 

the active layer deposited from Si2H6 precursor gas shows a lower ION and a higher IOFF in 

comparison with their counterpart VTFT, whose active layer is deposited from SiH4 precursor 

gas, and thus the VTFT from Si2H6 precursor gas obtain a lower ION/IOFF ratio. It is also contrary 

to the previous conclusions based on the poly-Si LTFTs [86]. The crystallization mechanism on 

the vertical sidewall is still unknown, and we could only conclude that the poly-Si quality 

crystallized on the sidewall from Si2H6 precursor gas is not so ideal in comparison with SiH4 
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precursor gas. 

  

 

Figure 3-30: (a) On-current ION, (b) off-current IOFF, and (c) ION/IOFF relationships with 
different active layers. 

From the analysis shown above, with the increase of the active layer thickness TAC, ION/IOFF 

ratio reduces a little, while the field effect mobility μFE increases a little. Nevertheless, the 

nearly same ION/IOFF ratio of more than 105 and field effect mobility μFE in the order of 10 

cm2/V·s have been obtained. However, the VTFTs with an active layer thickness of 100 nm tend 

to degrade. Therefore, the active layer thickness TAC of 150 nm is adopted for the new VTFTs 

fabrications afterwards, as a compromise between the ION/IOFF ratio and the mobility μFE. 

VI. P and N-type VTFTs 

Due to the advantage of the in situ doping during the LPCVD process, P and N-type VTFTs 

could be easily fabricated in the same run, just by adopting different dopant gases (PH3 or B2H6) 

for source and drain regions. In order to have a basic study on the electrical characteristics of P 

and N-type VTFTs, P and N-type VTFTs have been fabricated, based on the previous study on 
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the VTFTS. The active layer thickness has been chosen as 150 nm, and the other geometric 

dimensions are the same as the previous process. The schematic view of a basic tooth (P and 

N-type) is shown in figure 3-31: 

 

Figure 3-31: Schematic view of a basic tooth for the N(P)-type VTFT, a 100 nm SiO2 insulating 
layer is adopted, the top and bottom heavily-doped layers are 400 nm and 600 nm, respectively, 
the active layer thickness TAC is 150 nm, while the gate oxide thickness TOX is 70 nm. 

VI.1 Electrical characteristics of P and N-type VTFTs 

The typical transfer characteristics of the P and N-type VTFTs are shown in figure 3-32 (a), 

with the same W/L = 80 μm/1.1 μm. The ION/IOFF ratio of about 105 is obtained for both P and 

N-type VTFTs, and the two types of VTFTs also show symmetric ION and IOFF, which 

demonstrates the feasibility for CMOS-like VTFT circuit applications as inverters or oscillators. 

For VDS = 100 mV, the deduced electrical parameters are listed below in table 3-5. The same 

subthreshold slope S of 1.5 V/dec is obtained for both P and N-type VTFTs. For P-type VTFT, 

the field effect mobility μFE = 4.2 cm2/V.s, while the threshold voltage VTH = -15 V. For N-type 

VTFT, μFE = 7.5 cm2/V.s, while VTH = 9.8V. Note that, for P and N-type VTFTs, the off-currents 

are obtained when gate voltage VGS are about -3 V instead of 0 V, this is due to that the 

non-intentionally doped (Nid) active layer is lightly N-type doped (polysilicon structural 

defects), which reduces VTH for N-type VTFT while increasing VTH for P-type VTFT. The low 

mobility μFE and high threshold slope S are due to the high roughness of the sidewalls caused by 

the long-time RIE. In fact, for this process, a lower field effect mobility μFE = 7.5 cm2/V·s and a 

higher threshold voltage VTH = 9.8 V have been obtained, in comparison with the previous 

process on the study of different active layer layers (whose field effect mobility μFE = 11.5 
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cm2/V·s, and threshold voltage VTH = 4.4 V). This could be due to the higher roughness of the 

sidewall in this process, in comparison with the previous one. In addition, the morphology of 

poly-Si active layer crystallized on the sidewalls is still unknown, which may also affect the 

electrical parameters. Nevertheless, in the same process, the symmetric electrical 

characteristics have been shown. 

 

 

Figure 3-32: (a) Transfer characteristics of the P and N-type VTFTs, (b) transfer characteristics 
for source-on-top (SOT) and drain-on-top (DOT) structure, and (c) output characteristics of the 
P and N-type VTFTs. 

VTFT type S (V/dec) VTH (V) gm (μS) μFE (cm2/V·s) 
P-type 1.9 -15 1.5 4.2 
N-type 1.9 9.8 2.7 7.5 

Table 3-5: Electrical parameters of P and N-type VTFTs. 

Figure 3-32 (b) shows the similar transfer characteristics of the source-on-top (SOT) and 

the drain-on-top (DOT), which indicates the symmetry in the structure, especially the similar 

interface between the heavily-doped layer (source/drain layer) and the undoped active layer. 

Figure 3-32 (c) shows the output characteristics of the fabricated VTFTs, the kink effect 

prohibits the saturation of the drain current, which could be suppressed by increasing the 
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channel length L and improving the crystalline quality of the active layer on the sidewalls. 

Nevertheless, the feasibility of the complementary VTFTs has been demonstrated, which 

enables CMOS-like applications as inverters or oscillators. 

VI.2 The Effect of geometric parameters on the electrical characteristics 

VI.2.1 P-type VTFT 

For P-type VTFTs, the electrical characteristics are analyzed in function of different 

dimensions. For the on-current ION, the relationships of ION with different geometric parameters 

are shown in figure 3-33. From figure 3-33 (a), ION shows a linear relationship with the teeth 

number Nt as ION is directly related with the channel numbers (there are two channels for each 

tooth). From figure 3-33 (b), it is shown that ION is independent of the single channel width Wc. 

These two relationships are same as the previous VTFT structure with a 200 nm Si3N4 

insulating layer. Figure 3-33 (c) demonstrates that ION increases a little with the tooth width Wt, 

however, the influence of Wt could be neglectable. 

   

 

Figure 3-33: The relationships of ION with different geometric parameters: (a) ION is 
proportional to the teeth number Nt, (b) ION is proportional to the single channel width Wc, and 
(c) ION increase a little with the tooth width Wt. 
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Figure 3-34 gives the relationships between the off-current IOFF and the geometric 

parameters. From figure 3-34 (a) and 3-34 (b), IOFF shows a strictly linear relationship with the 

teeth number Nt as well as the single channel width Wc, which confirms that the off-current IOFF 

is directly related with the active layer region. From figure 3-34 (c), IOFF is independent of the 

tooth width Wt, which highlights that IOFF is just brought by the active layer part between source 

and drain, while the active layer on top of the tooth doesn’t have any effect on IOFF. 

  

 

Figure 3-34: The relationships of IOFF with different geometric parameters: (a) IOFF is 
proportional to the teeth number Nt, (b) IOFF is in proportion to the single channel width Wc, and 
(c) IOFF is independent of the tooth width Wt. 

VI.2.2 N-type VTFT 

For the N-type VTFT, the effect of geometric parameters on the on-current ION is also 

obtained, shown in figure 3-35. The same relationships have been obtained, ION is proportional 

to the teeth number Nt, while it doesn’t change with the single channel width Wc. In addition, 

ION increases a little with the tooth width Wt. 
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Figure 3-35: The relationship between the on-current ION and the geometric parameters: (a) ION 
is in proportion to the teeth number Nt, (b) ION is independent of the single channel width Wc, 
and (c) ION increases a little with the tooth width Wt. 

As well, IOFF is proportional to the teeth number Nt and the single channel width Wc, shown 

in figure 3-36 (a) and figure 3-36 (b). However, IOFF increases a little with the tooth width Wt, as 

shown in figure 3-36 (c). However, the increase could be neglected. 
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Figure 3-36: The relationship between the off-current IOFF and the geometric parameters: (a) 
IOFF is proportional to the teeth number Nt, (b) IOFF is proportional to the single channel width 
Wc, and (c) IOFF increases a little with the tooth width Wt. 

VI.2.3 The effect of geometric parameters on the ION/IOFF ratio 

By combining the analysis of on-current ION and off-current IOFF, we could conclude that, 

for a fixed tooth width Wt, the ION/IOFF ratio follows the equation: 
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Which means that for the new VTFTs, the ION/IOFF ratio could be increased by reducing the 

single channel width Wc, thus a narrow single channel width Wc is required, which is 

approximate to the design rule. This also indicates a reduction of tooth length, which is fixed at 

60 μm for the current mask definitions. In contrast, the teeth number Nt doesn’t affect the final 

ION/IOFF ratio, as expected, even though the higher teeth number Nt enables to provide a higher 

ION, which is the major advantage of our VTFTs. In addition, the ION/IOFF ratio is not affected by 

the tooth width Wt. 

VII. Conclusion 

In this chapter, the fabrication process of the new VTFTs has been introduced, and their 

electrical characteristics have also been analyzed. The new VTFTs have greatly reduced the 

off-current IOFF as the large overlapping area for the classical VTFTs have been suppressed. The 

five-mask process is introduced in the fabrication process, and different geometric parameters 
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have been defined, including the teeth number Nt, the single channel width Wc, and the tooth 

width Wt. 

The new VTFT structure is based on the introduction of an insulating layer between source 

and drain, while the active layer is locally located on the sidewall. The 100 nm SiO2 and 200 nm 

Si3N4 insulating layers are adopted as the insulating layer between source and drain. For the 

same active layer thickness TAC of 300 nm, the SiO2 insulating layer enables to realize better 

electrical characteristics and higher stability for the VTFT, in comparison with the Si3N4 

insulating layer. This is due to the worse insulating quality of Si3N4 deposited by LPCVD at 

600°C. Therefore, the SiO2 insulating layer will always be adopted in the fabrication process of 

the new VTFTs. 

For the VTFTs with a 100 nm SiO2 insulating layer, for different active layer thicknesses 

TAC, stable ION/IOFF ratios in the order of 105 have been obtained. When reducing TAC, ION/IOFF 

ratio increases a little while the field effect mobility μFE reduces a little, VTFTs with TAC = 150 

nm have obtained the compromise between ION/IOFF ratio and field effect mobility μFE. The 

active layer deposited from Si2H6 precursor gas has also been attempted, however, it shows a 

worse electrical property in comparison with the one deposited from SiH4 precursor gas. 

For the new VTFTs with a 100 nm SiO2 insulating layer and an active layer thickness TAC of 

150 nm, the P and N-type VTFTs have been fabricated in the same run. The symmetric transfer 

characteristics have been obtained, which demonstrates the feasibility of the COMS-like VTFT 

applications, such as inverters or oscillators. 

The effect of the geometric parameters on the electrical characteristics has also been studied, 

and several conclusions have been drawn: 

1) For the on-current ION, it is proportional to the teeth number Nt, while it is independent of the 

single channel width Wc. In addition, ION increases a little with the tooth width Wt. 

2) For the off-current IOFF, it is proportional to the teeth number Nt as well as the single channel 

width Wc, while it is independent of the tooth width Wt. 
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3) For the ION/IOFF, for a fixed tooth width Wt, ION/IOFF is in reverse proportion to the single 

channel width Wc, thus a narrow single channel width Wc that is approximate to the design rule 

is required in order to get a higher ION/IOFF ratio. 

Even though we have fabricated VTFTs with a stable ION/IOFF ratio in the order of 105, the 

field effect mobility μFE is still low in terms of a poly-Si TFT, this is mainly due to that the 

rough vertical sidewalls have affected the crystallization of poly-Si. Indeed, we still do not 

know the crystallization of poly-Si on the vertical sidewall, and further work will be on the 

roughness reduction of the sidewall, as well as the study on the crystallization mechanism of the 

poly-Si on the vertical sidewall. 
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Conclusion 

The object of this work was to develop vertical thin film transistors (VTFTs) based on the 

low-temperature (T≤600°C) polycrystalline silicon technology. 

The classical VTFTs were fabricated by rotating lateral thin film transistors (LTFTs) 90°. 

Initially, four plastic masks were adopted to fabricate VTFTs. The feasibility of the classical 

VTFTs fabrication had been proved, and the electrical performance was promising, however, 

VTFT structure needed to be improved. After analyzing the VTFT structure, a parasitic 

channel was found at the backside of the top electrode, which may affect the electrical 

performance. Therefore, a thick SiO2 layer was introduced at the backside, in order to 

suppress the parasitic channel. 

A new set of five glass masks was employed for the fabrication of VTFTs. Different 

geometric parameters were defined, in order to validate the reproducibility of the VTFTs, as 

well as to study the effect of geometric parameters on the electrical performance. 

After fabricating VTFTs, the electrical characteristics were analyzed. The on/off-current 

ratio ION/IOFF of 103 was obtained. On-current ION has confirmed the theoretical formula, and 

it was strictly proportional to the geometric parameters. Off-current IOFF was proportional to 

the overlapping area AOV between source and drain, and the large overlapping area greatly 

degraded ION/IOFF ratio. 

The analysis of the electrical characteristics had led to a feedback on the technological 

process. A thick SiO2 layer was introduced to eliminate the major part of the overlapping area. 

As expected, a higher ION/IOFF ratio almost in the order of 105 was obtained. However, IOFF 

was still high and the reproducibility was rather low. 

Therefore, a new VTFT structure was proposed. Source and drain were entirely isolated 

by a barrier layer, and the active layer was deposited after the formation of the sidewall. 

Therefore, this new structure totally eliminated the overlapping area AOV. The key points for 

the new VTFTs are shown below: 
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- The sidewalls formation was a technological challenge due to the etching selectivity 

between the poly-Si layer and the insulating layer. 

- The insulating layer between source and drain was important for the electrical 

characteristics. The adopted insulating materials were SiO2 deposited by APCVD at 

420°C, and Si3N4 deposited by LPCVD at 600°C. 

- The different active layer thicknesses TAC may also affect ION and IOFF. 

The process for the new structure adopted a 100 nm SiO2 insulating layer or a 200 nm 

Si3N4 insulating layer, which validated the feasibility of the new VTFT fabrication, and a 

promising ION/IOFF ratio of almost 105 was obtained. VTFTs with a SiO2 insulating layer had 

better electrical characteristics and stability over VTFTs with a Si3N4 insulating layer, which 

was due to the poor insulating properties of Si3N4 deposited by LPCVD at 600°C. Therefore, 

SiO2 insulating layers were always adopted for the new VTFTs fabrication. 

The influence of geometric parameters on the electrical characteristics was analyzed. IOFF 

was proportional to the geometric parameters, while ION was only proportional to the teeth 

number Nt. ION/IOFF ratio was in reverse proportion to Wc. 

VTFTs with different active layer thicknesses TAC were also studied. When reducing TAC 

(225 nm, 150 nm, 100 nm), the very stable ION/IOFF ratios of more than 105 (with only a little 

increase) were always obtained, while the field effect mobility μFE reduced a little. 

P and N-type VTFTs were also fabricated with an active layer thickness of 150 nm, the 

symmetric electrical characteristics revealed the feasibility of CMOS-like VTFT applications 

as inverters or oscillators. 

The low field effect mobility μFE was always obtained, which may be due to the high 

roughness of the etched sidewall, and the crystallization of the active layer on the vertical 

sidewall. 

Perspectives 

As it is shown from the conclusion part, the new VTFTs have great advantages over the 
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classical VTFTs. Therefore, future work will be focused on the new VTFT structure. There 

are several problems and improvements to be addressed for the new VTFT structure: 

- The relationship of the geometric parameters and the ION/IOFF ratio has shown that, a 

higher ION/IOFF ratio is obtained with a smaller single channel width Wc. Therefore, in 

order to further increase the ION/IOFF ratio, a new mask is required with the reduced single 

channel width Wc approximate to the design rule. 

- For 3D FETs, the high roughness of the sidewalls is a common problem, and the new 

VTFT structure also undergoes this problem. By taking different reactive ion etching 

(RIE) tests based on SF6 etchant, the sidewall profiles of the new VTFTs have been 

optimized. However, due to the etching selectivity between different materials, there is 

still a transition on the sidewall, which may have an influence on the electrical 

performances as the active layer is just deposited on the sidewall. Therefore, one solution 

could be attempting to reduce the insulating layer thickness, in order to form a smoother 

sidewall. Another solution could be the further study of the RIE by adopting different 

etchants (CF4 as an example) and different additives (for example O2, Ar). In addition, it 

is also necessary to choose an appropriate insulating material between source and drain, 

whose etching rate is approximate to the one of poly-Si. 

- So far, even though we have got the first conclusion for the relationship between the 

active layer thickness TAC and the electrical characteristics, the crystallization mechanism 

of the active layer on the vertical sidewall is still unknown. In fact, it is very difficult to 

make the measurements on the vertical sidewall. The crystalline morphology of the active 

layer greatly affects the electrical characteristics, especially the field effect mobility μFE. 

Therefore, except to search an appropriate way for measuring the crystallization on the 

sidewall in order to optimize the crystallization, other crystallization methods could also 

be attempted to realize a better crystallization. For example, the metal-induced lateral 

crystallization (MILC) method could be adopted for the active layer crystallization on the 

vertical sidewall. 

- Except for the VTFTs fabrication, another transistor called “vertical tunneling field effect 
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transistor (vertical TFET)” could also be fabricated, which theoretically enables to reduce 

the leakage current. Due to the special vertical structure, the same masks could be 

adopted, and the only difference of the vertical TFET from the VTFT, lies in the different 

doping types for source and drain layers. 
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Annex I  RCA cleaning 

Needed solutions: 

NH4OH: Ammonia solution, to eliminate organic impurities 

H2O2: Hydrogen peroxide, to form a thin oxide layer that includes the impurities 

HCl: Hydrochloric acid, to eliminate the metallic impurities 

HF: Hydrogen fluoride, to eliminate the oxide layer that includes the impurities 

 

Cleaning Steps: 

a. SC1: 

Content:                H2O (5) + NH4OH (0.25) + H2O2 (1) 
Volume (cm3):             200        10          40 
Adding Temperature (°C):   room      room        70 (cleaning temperature) 
Cleaning time (minutes):   10      (put samples in the solution at 70°C after H2O2 adding) 

Clean in the de-ionized water for 3, 3, 4 minutes 

b. SC2: 

Content:                 H2O (5) + HCl (1) + H2O2 (1) 
Volume (cm3):              200      40      40 
Adding Temperature (°C):    room    room    80 (cleaning temperature) 
Cleaning time (minutes):    10     (put samples in the solution at 80°C after H2O2 adding) 

Clean in the de-ionized water for 3, 3, 4 minutes 

C. HF:                 2% desoxydation HF 

Content:                 H2O (25) + HF (1) 
Volume (cm3):              400       16 
Adding temperature:        room     room 
Cleaning time (seconds):   10 - 20   (observe the hydrophobic phenomenon) 

Clean in the de-ionized water for 3, 3, 4 minutes 

Note: 

If there’s a deposition process just after the RCA cleaning step, it is better to take the cleaning 
step C (diluted HF) just before the deposition process. 
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Annex II  Photolithography 

The total photolithography steps include pre-baking, spin coating of photoresist, soft 
baking, exposure, developing, cleaning, microscope observation, and hard baking. 

a) Pre-baking: 
Baking temperature: >100°C; 
Baking time: >5 minutes 

b) Spin-coating: 
Photoresist type: SHIPLEY MICROPOSIT S1818; 
Spin-coating speed: 4000 rpm; 
Spin-coating acceleration: 5000 rpm/s; 
Spin-coating time: 30 seconds; 
Photoresist thickness: 1.8 μm 

c) Soft baking: 
Baking temperature: 100°C; 
Baking time: 1.5 minutes 

d) Exposure: 
Operation machine: Karl Suss MA6 mask aligner; 
Lithographic resolution: 0.5μm; 
Exposure type: I-line (365 nm); 
Exposure time: 55 seconds 

e) Developing: 
Developer: MICROPOSIT DEV; 
Developing time: 40 - 50 seconds 

f) De-ionized water cleaning: 
Cleaning Time: 3minutes, 3minutes, and 4 minutes 

g) Microscope observation 
Check the photolithography quality 

h) Hard baking: 
Baking temperature: 120°C; 
Baking time: 1.5 minutes 
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Annex III  Masks design 

VTFTs are defined with different geometric parameters, including the single channel width 
Wc, the teeth number Nt, and the tooth width Wt. The three geometric parameters are signed in 
the following figure III-1. 

      

Figure III-1: Masks designs for (a) classical VTFT structure, and (b) the new VTFT structure. 

For one cell, the different geometries are defined below in the table III-1. 

(Wc=10μm, 
Nt=1, 

Wt=10μm) 

(Wc=10μm, 
Nt=1, 

Wt=10μm) 

(Wc=10μm, 
Nt=2, 

Wt=10μm) 

(Wc=10μm, 
Nt=2, 

Wt=10μm) 

(Wc=10μm, 
Nt=4, 

Wt=10μm) 

(Wc=10μm, 
Nt=4, 

Wt=10μm) 
(Wc=20μm, 

Nt=1, 
Wt=10μm) 

(Wc=20μm, 
Nt=1, 

Wt=10μm) 

(Wc=20μm, 
Nt=2, 

Wt=10μm) 

(Wc=20μm, 
Nt=2, 

Wt=10μm) 

(Wc=20μm, 
Nt=4, 

Wt=10μm) 

(Wc=20μm, 
Nt=4, 

Wt=10μm) 
(Wc=30μm, 

Nt=1, 
Wt=10μm) 

(Wc=30μm, 
Nt=1, 

Wt=10μm) 

(Wc=30μm, 
Nt=2, 

Wt=10μm) 

(Wc=30μm, 
Nt=2, 

Wt=10μm) 

(Wc=30μm, 
Nt=4, 

Wt=10μm) 

(Wc=30μm, 
Nt=4, 

Wt=10μm) 
(Wc=10μm, 

Nt=1, 
Wt=20μm) 

(Wc=10μm, 
Nt=1, 

Wt=20μm) 

(Wc=10μm, 
Nt=2, 

Wt=20μm) 

(Wc=10μm, 
Nt=2, 

Wt=20μm) 

(Wc=10μm, 
Nt=4, 

Wt=20μm) 

(Wc=10μm, 
Nt=4, 

Wt=20μm) 
(Wc=20μm, 

Nt=1, 
Wt=20μm) 

(Wc=20μm, 
Nt=1, 

Wt=20μm) 

(Wc=20μm, 
Nt=2, 

Wt=20μm) 

(Wc=20μm, 
Nt=2, 

Wt=20μm) 

(Wc=20μm, 
Nt=4, 

Wt=20μm) 

(Wc=20μm, 
Nt=4, 

Wt=20μm) 
(Wc=30μm, 

Nt=1, 
Wt=20μm) 

(Wc=30μm, 
Nt=1, 

Wt=20μm) 

(Wc=30μm, 
Nt=2, 

Wt=20μm) 

(Wc=30μm, 
Nt=2, 

Wt=20μm) 

(Wc=30μm, 
Nt=4, 

Wt=20μm) 

(Wc=30μm, 
Nt=4, 

Wt=20μm) 

Table III-1: Different geometric definitions in a cell. 
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Annex IV  ATLAS simulation program 

The program of the ATLAS simulation for the VTFT transfer characteristics is shown 
below: 

 
 
go atlas 
 
mesh infile=vtft.str 
material material=polysiliconf.conmun=munpoly.lib nc=7e19 
 
defect nta=1.12e21 ntd=4e20 wta=0.025 wtd=0.05 nga=5.e16 ngd=1.5e18 ega=0.4  
egd=0.4 wga=0.1 wgd=0.1 sigtae=1e-16 sigtah=1e-14 sigtde=1e-14 sigtdh=1e-16  
siggae=1e-16 siggah=1e-14 siggde=1e-14 siggdh=1e-16 
 
impact an1=7.5e5 an2=7.5e5 ap1=6.71e5 ap2=1.582e6 bn1=1.130e6 bn2=1.230e6 
bp1=1.693e6 bp2=2.036e6 betan=1 betap=1 egran=4e5 
 
models conmob consrh bbt.kl fermi incomplete ioniz numcarre=2 temperature=300 
method newton itlimit=25 trap atrap=0.5 maxtrap=4 autonr nrcriterion=0.1 
tol.time=0.005 dt.min=1e-15 
 
solve init 
 
solve name=drain vdrain=1 outfil=init1 
log outf=vtftnzone.log 
solve name=gate vgate=0 vfinal=-10 vstep=-2.0 
 
output e.field j.electron j.hole j.conduc j.total ex.field jx.electron jx.hole 
jx.conduc jx.total ey.field jy.electron jy.hole jy.conduc jy.total flowlines 
e.mobility h.mobility qss e.temp h.temp charge recomb val.band con.band qfn qfp 
j.disp photogen impact 
 
save outf=vtft.str 
 
load infile=init1 
log outf=vtftpzone.log 
solve name=gate vgate=0 vfinal=20 vstep=2 

 

quit



 

 

 



 

 

Résumé 
Ce travail porte sur le développement de transistors en couches minces verticaux (VTFTs), 

du procédé de fabrication à l'analyse des caractéristiques électriques. Les transistors sont 
réalisés à partir de silicium polycristallin déposé et cristallisé en utilisant une technologie basse 
température (T ≤ 600°C). La première étape de ce travail consiste à la fabrication et la 
caractérisation de VTFTs obtenus par rotation de 90° des transistors à couches minces latéraux 
(LTFTs). La faisabilité technologique de VTFTs est alors validée, et un rapport ION/IOFF 
d'environ 103 est obtenu. L’analyse des résultats de caractérisation électrique a mis en évidence 
que ce fort courant à l’état bloquant IOFF est principalement dû à la grande zone de 
recouvrement entre source et drain. La deuxième étape du travail réside dans la suppression 
partielle de cette zone de recouvrement qui aboutit à un rapport ION/IOFF proche de 105. Dans la 
troisième partie de ce travail, une nouvelle architecture de transistors verticaux est proposée, 
qui élimine totalement la zone de recouvrement. Les effets de différents paramètres sont étudiés, 
notamment l'influence de l'épaisseur de la couche active, de la couche d'isolation, et de la 
dimension géométrique. Les transistors optimisés mettent en évidence un rapport ION/IOFF 
supérieur à 105 avec une réduction du courant à l’état bloquant, une grande stabilité et une 
bonne reproductibilité du procédé technologique. Des transistors verticaux de type P et N ont 
également été réalisés. Ils ont montré des caractéristiques électriques symétriques, qui les 
rendent utilisables dans des applications similaires à la technologie CMOS. 

Mots clés: transistors couches minces verticaux, silicium polycristallin, dépôt chimique en 
phase vapeur à basse pression, gravure plasma 

Abstract 
This work deals with the development of vertical thin film transistors (VTFTs) via the 

fabrication processes and the analysis of the electrical characteristics. The low-temperature (T ≤ 
600°C) polycrystalline silicon technology is adopted in the fabrication processes. The first step 
of the work consists in the fabrication and characterization of VTFTs obtained by rotating the 
lateral thin film transistors (LTFTs) 90°. The feasibility of VTFTs fabrication is validated with 
an ION/IOFF ratio of about 103, and it is analyzed that the large overlapping area between source 
and drain leads to a large off-current IOFF. The second step of the work lies in the partial 
suppression of the large overlapping area, and therefore, an ION/IOFF ratio of almost 105 is 
obtained. The third step of the work deals with the proposal of a new VTFT structure that 
absolutely eliminates the overlapping area. Different improvements have been made on this 
new VTFT structure, especially by optimization of the following parameters: the active layer 
thickness, type and thickness of the barrier layer, and the geometric dimension. The optimized 
transistor highlights an ION/IOFF ratio of higher than 105 with a reduced off-current IOFF, high 
stability and good reproducibility. P and N-type VTFTs have also been fabricated and showed 
symmetrical electrical characteristics, thus they are suitable for CMOS-like VTFT applications. 

Key words: vertical thin film transistors (VTFTs), polycrystalline silicon, low pressure 
chemical vapor deposition (LPCVD), plasma etching 

 


