M. Abramowitz and I. A. , Stegun ? Handbook of Mathematical Functions, 1965.

Y. Achdou and Y. A. , Kuznetsov ? Algorithms for a non conforming domain decomposition method, 1994.

Y. Achdou and O. Pironneau, A Fast Solver for Navier???Stokes Equations in the Laminar Regime Using Mortar Finite Element and Boundary Element Methods, SIAM Journal on Numerical Analysis, vol.32, issue.4, 1993.
DOI : 10.1137/0732046

S. Agmon, A. Douglis, and L. , Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions II, Communications on Pure and Applied Mathematics, vol.18, issue.1, pp.35-92, 1964.
DOI : 10.1002/cpa.3160170104

M. Amara and M. A. Moussaoui, Approximation de coe¢ cients de singularité, C.R. Acad. Sciences Paris, vol.313, issue.1, pp.335-338, 1991.

M. Azaïez, C. Bernardi, M. Dauge, and Y. , Maday? Spectral Methods for Axisymetric Domains, Series in Applied Matimatics". 3, GauthierVillars et North- Holland, 1999.

I. Babu?ka and ?. , The finite element method with Lagrangian multipliers, Numerische Mathematik, vol.12, issue.3, pp.179-192, 1973.
DOI : 10.1007/BF01436561

K. Bellalouna and ?. D. Résolution-d-'e, P par la méthode spectrale sur un réseau de cylindres, Thèse de l'université Pierre et Marie Curie, 2007.

Z. Belhachmi and ?. , Méthodes d'éléments spectraux avec joints pour la résolution de problèmes d'ordre quatre, Thèse de l'université Pierre et Marie Curie, 1994.

F. and B. Belgacem, The Mortar finite element method with Lagrange multipliers, Numerische Mathematik, vol.84, issue.2, pp.173-197, 1999.
DOI : 10.1007/s002110050468

F. and B. Belgacem, Discrét :satson 3D non conformes par méthode de décomposition de domaine des éléments avec joints : analyse mathématique et mise en oeuvre pour le problème de Poisson, Thèse de l'université Pierre et Marie Curie, 1993.

Z. Belhachmi, C. Bernardi, and S. , Weighted Cl??ment operator and application to the finite element discretization of the axisymmetric Stokes problem, Numerische Mathematik, vol.4, issue.1, pp.217-247, 2006.
DOI : 10.1007/s00211-006-0039-9

Z. Belhachmi, C. Bernardi, S. Deparis, and F. , A TRUNCATED FOURIER/FINITE ELEMENT DISCRETIZATION OF THE STOKES EQUATIONS IN AN AXISYMMETRIC DOMAIN, Mathematical Models and Methods in Applied Sciences, vol.16, issue.02, pp.233-263, 2006.
DOI : 10.1142/S0218202506001133

C. Bernardi, M. Dauge, and M. , Azaïez ? Numerical Analysis and Spectral Methods in Axisymetric Problems. Laboratoire d'Analyse Numérique

C. Bernardi, M. Dauge, and Y. , Maday ? Polynomials in Sobolev Spaces and Application to the Mortar Spectral Element Method

C. Bernardi, M. Dauge, and Y. , Maday ? Polynomials in weighted Sobolev spaces : basics and trace liftings, Internai Report 92039, Laboratoire d'Analyse Numérique, 1992.

C. Bernardi and . Debit, Maday ? Couplage de méthodes spectrales et d'éléments ?nis : premiers résultats, C.R. Acad. Sc. Paris, vol.305, issue.1, pp.353-356, 1987.

C. Bernardi, Y. Maday, and A. , Patera ? A new non conforming approch to domain de-composition : the mortar element method Non lienar Partial Di¤erential Equations and their Aplications, 1992.

C. Bernardi and Y. , Maday? Spectral Methods, Handbook of Numerical Analysis, pp.13-51, 1994.

C. Bernardi and Y. , Maday ? Spectral Methods, Handbook of Numerical Analysis, pp.209-485, 1996.

C. Bernardi and Y. , Maday ? Polynomial approximation of some singular functions, Applicable Analysis : an International Journal, vol.42, pp.769-829, 1991.

C. Bernardi and Y. , Properties of Some Weighted Sobolev Spaces and Application to Spectral Approximations, SIAM Journal on Numerical Analysis, vol.26, issue.4, pp.769-829, 1989.
DOI : 10.1137/0726045

S. Bertoluzza, S. Falletta, and V. Perrier, The Mortar Method in the Wavelet Context, ESAIM: Mathematical Modelling and Numerical Analysis, vol.35, issue.4, pp.647-673, 2001.
DOI : 10.1051/m2an:2001131

C. Bernardi, Y. Maday, and F. Rapetti, Basics and some applications of the mortar element method, GAMM ?Gesellschaft fur Angewandte Mathematik und Mechanik, pp.97-123, 2005.
DOI : 10.1002/gamm.201490020

URL : https://hal.archives-ouvertes.fr/hal-00020560

J. Boland and R. , Stability of Finite Elements under Divergence Constraints, SIAM Journal on Numerical Analysis, vol.20, issue.4, pp.722-731, 1983.
DOI : 10.1137/0720048

H. Brezis, Analyse fonctionnelle : Théorie et applications, 1983.

F. Brezzi, On the existence, uniqueness and approximation of saddle-point problems arising from Lagrange multîpliers, R.A.I.R.O. Anal. Numer, pp.8-10, 1974.

N. Chor? and ?. , Traitement de singularités géométriques par méthode d'éléments spectraux avec joints, Thèse de l'université Pierre et Marie Curie, 1998.

M. Costabel and M. , Construction of Corner Singularities for Agmon-Douglis-Nirenberg Elliptic Systems, Mathematische Nachrichten, vol.24, issue.3, pp.209-237, 1993.
DOI : 10.1002/mana.19931620117

N. Debit, La méthode des éléments à joints dans le cas du couplage des méthodes spectrales et méthodes déléments ?nis : Résolution des équations de Navier-Stokes, Thèse de l'université Pierre et Marie Curie, 1992.

V. Girault and P. , Raviart ? Finite Element Methods for the Navier-Stokes Equations, Theory and Algorithms, 1986.

V. A. Kozlov, V. G. Maz-'ya, and C. , Schwab ? On singularities of solutions of the Dirichlet problem of hydrodynamics near the vertex of a cône, J. Reine Angew. Math, pp.456-65, 1994.

C. A. Mavriplis, Y. Maday, and A. , Patera ? Non conforming mortar element method : Application to spectral discretisations, Proceedings of the second international symposium on domain de composition methods for P.D.E, SIAM, Philadelphia, 1988.

G. J. Fix and G. Strang, ? An analysis of the ?nite element, 1973.

R. Temam and ?. , Navier Stokes Equations: Theory and Numerical Analysis, Journal of Applied Mechanics, vol.45, issue.2, 1977.
DOI : 10.1115/1.3424338