. Werner, En effet, les épithélia barrières sont à l'interface entre la cavité interne de l'organisme et le milieu extérieur, ce qui leur confère des fonctions contradictoires de favoriser les échanges, de gaz ou de nutriments par exemple, tout en limitant le risque d'infection. Le contrôle de la réponse immunitaire épithéliale dépend donc également de l'état physiologique de ces tissus. Comme nous l'avons mentionné dans ce travail, la réponse immunitaire n'est en effet pas uniquement induite par l'infection, réponse épithéliale nécessite de considérer les relations étroites entre les diverses fonctions physiologiques des tissus, 2005.

. Samakovlis, La fonction de cette réponse immunitaire en absence d'infection est probablement de préserver l'organisme d'une infection dans certaines situations où ses épithélia sont fragilisés, 1991.

B. Abdelsadik, A. Roeder, T. Aggarwal, K. Rus, F. Vriesema-magnuson et al., Chronic activation of the epithelial immune system of the fruit fly's salivary glands has a negative effect on organismal growth and induces a peculiar set of target genes Rudra interrupts receptor signaling complexes to negatively regulate the IMD pathway, BMC genomics PLoS pathogens, vol.11, issue.4, 2008.

A. Basset, R. Khush, A. Braun, L. Gardan, F. Boccard et al., The phytopathogenic bacteria Erwinia carotovora infects Drosophila and activates an immune response, Proceedings of the National Academy of Sciences, vol.97, issue.7, pp.3376-3381, 2000.
DOI : 10.1073/pnas.97.7.3376

T. Becker, G. Loch, M. Beyer, I. Zinke, A. C. Aschenbrenner et al., FOXO-dependent regulation of innate immune homeostasis Beyond Drosophila: RNAi in vivo and functional genomics in insects, Nature Belles, X. Annual review of entomology, vol.463, issue.55, pp.369-373, 2010.

M. P. Belvin, A. , K. V. Bian, G. Xu, Y. Lu et al., Toll-Dorsal Pathway, Annual Review of Cell and Developmental Biology, vol.12, issue.1, pp.393-416, 1996.
DOI : 10.1146/annurev.cellbio.12.1.393

S. A. Blandin, R. Wang-sattler, M. Lamacchia, J. Gagneur, G. Lycett et al., Dissecting the Genetic Basis of Resistance to Malaria Parasites in Anopheles gambiae, Science, vol.326, issue.5949, pp.147-150, 2009.
DOI : 10.1126/science.1175241

H. Boman, Peptide Antibiotics and their Role in Innate Immunity, Annual Review of Immunology, vol.13, issue.1, 1995.
DOI : 10.1146/annurev.iy.13.040195.000425

H. G. Boman, I. Nilsson, and B. And-rasmuson, Inducible Antibacterial Defence System in Drosophila, Nature, vol.232, issue.5352, pp.232-235, 1972.
DOI : 10.1038/237232a0

7. Bou-aoun, D. Bouskra, C. Brezillon, M. Berard, C. Werts et al., Characterization of Tep genes during the innate immune response in Drosophila American fly meeting (Abstract book) Lymphoid tissue genesis induced by commensals through NOD1 regulates intestinal homeostasis, Nature, vol.456, pp.507-510, 2008.

A. Braun, J. A. Hoffmann, and M. Meister, Analysis of the Drosophila host defense in domino mutant larvae, which are devoid of hemocytes, Proceedings of the National Academy of Sciences of the United States of America 95, pp.14337-14342, 1998.
DOI : 10.1073/pnas.95.24.14337

N. Buchon, N. A. Broderick, M. Poidevin, S. Pradervand, and B. Lemaitre, Drosophila Intestinal Response to Bacterial Infection: Activation of Host Defense and Stem Cell Proliferation, Cell Host & Microbe, vol.5, issue.2, pp.200-211, 2009.
DOI : 10.1016/j.chom.2009.01.003

N. Buchon, M. Poidevin, H. M. Kwon, A. Guillou, V. Sottas et al., A single modular serine protease integrates signals from pattern-recognition receptors upstream of the Drosophila Toll pathway, Proceedings of the National Academy of Sciences of the United States of America, pp.12442-12447, 2009.
DOI : 10.1073/pnas.0901924106

P. Bulet, S. Cociancich, J. L. Dimarcq, J. Lambert, J. M. Reichhart et al., Insect immunity. Isolation from a coleopteran insect of a novel inducible antibacterial peptide and of new members of the insect defensin family, The Journal of biological chemistry J.J.M, vol.266, pp.24520-24525, 1991.
URL : https://hal.archives-ouvertes.fr/hal-00451508

M. Chamaillard, M. Hashimoto, Y. Horie, J. Masumoto, S. Qiu et al., The Drosophila parasitic wasps An essential role for NOD1 in host recognition of bacterial peptidoglycan containing diaminopimelic acid, Nature immunology, vol.4, pp.347-394, 2003.

B. Charroux, R. , and J. , Bacterial detection by Drosophila peptidoglycan recognition proteins Microbes and infection Elimination of plasmatocytes by targeted apoptosis reveals their role in multiple aspects of the Drosophila immune response, Proceedings of the National Academy of Sciences of the United States of America, pp.631-636, 2009.

V. R. Chintapalli, J. Wang, and J. A. Dow, Using FlyAtlas to identify better Drosophila melanogaster models of human disease, Nature Genetics, vol.38, issue.6, pp.715-720, 2007.
DOI : 10.1038/ng2049

K. M. Choe, T. Werner, S. Stoven, D. Hultmark, A. et al., Requirement for a Peptidoglycan Recognition Protein (PGRP) in Relish Activation and Antibacterial Immune Responses in Drosophila, Science, vol.296, issue.5566, pp.359-362, 2002.
DOI : 10.1126/science.1070216

M. J. Ngai and J. Handelsman, Breaching the great wall: peptidoglycan and microbial interactions, Nature reviews, vol.4, pp.710-716, 2006.

R. Cooney, J. Baker, O. Brain, B. Danis, T. Pichulik et al., NOD2 stimulation induces autophagy in dendritic cells influencing bacterial handling and antigen presentation, NOD2 stimulation induces autophagy in dendritic cells influencing bacterial handling and antigen presentation, pp.90-97, 2010.
DOI : 10.1038/nm.2069

C. Cox, M. Gilmore, S. J. Cronin, N. T. Nehme, S. Limmer et al., Native Microbial Colonization of Drosophila melanogaster and Its Use as a Model of Enterococcus faecalis Pathogenesis, Infection and Immunity, vol.75, issue.4, 1565.
DOI : 10.1128/IAI.01496-06

A. Defaye, I. Evans, M. Crozatier, W. Wood, B. Lemaitre et al., Genetic Ablation of <i>Drosophila</i> Phagocytes Reveals Their Contribution to Both Development and Resistance to Bacterial Infection, Journal of Innate Immunity, vol.1, issue.4, pp.322-334, 2009.
DOI : 10.1159/000210264

J. R. Delaney, S. Stoven, H. Uvell, K. V. Anderson, Y. Engstrom et al., Cooperative control of Drosophila immune responses by the JNK and NF-??B signaling pathways, The EMBO Journal, vol.3, issue.13, pp.3068-3077, 2006.
DOI : 10.1074/jbc.M506655200

M. Demerec, Biology of Drosophila, 1950.

L. Dethlefsen, M. Mcfall-ngai, and D. A. And-relman, An ecological and evolutionary perspective on human???microbe mutualism and disease, Nature, vol.44, issue.7164, pp.811-818, 2007.
DOI : 10.1038/nature06245

M. Dushay, B. Asling, and D. Hultmark, Origins of immunity: Relish, a compound Rel-like gene in the antibacterial defense of Drosophila., Proceedings of the National Academy of Sciences, vol.93, issue.19, pp.10343-10347, 1996.
DOI : 10.1073/pnas.93.19.10343

R. Dziarski, D. L. Gupta, V. Leclerc, I. Caldelari, and R. , The peptidoglycan recognition proteins (PGRPs) Genome biology 7, 232, El Chamy, J.M, 2006.

D. Ferrandon, J. L. Imler, J. A. Hoffmann, D. Ferrandon, A. C. Jung et al., Sensing infection in Drosophila: Toll and beyond A drosomycin-GFP reporter transgene reveals a local immune response in Drosophila that is not dependent on the Toll pathway The Drosophila systemic immune response: sensing and signalling during bacterial and fungal infections Nitric oxide contributes to induction of innate immune responses to gram-negative bacteria in Drosophila, Seminars in immunology Embo J Nat Rev Immunol Genes & Dev, vol.16, issue.17, pp.43-53, 1998.

L. S. Garver, J. Wu, and L. P. Wu, The peptidoglycan recognition protein PGRP-SC1a is essential for Toll signaling and phagocytosis of Staphylococcus aureus in Drosophila, Proceedings of the National Academy of Sciences of the United States of America, pp.660-665, 2006.
DOI : 10.1073/pnas.0506182103

P. Georgel, S. Naitza, C. Kappler, D. Ferrandon, D. Zachary et al., Drosophila Immune Deficiency (IMD) Is a Death Domain Protein that Activates Antibacterial Defense and Can Promote Apoptosis, Developmental Cell, vol.1, issue.4, pp.503-514, 2001.
DOI : 10.1016/S1534-5807(01)00059-4

N. Gill, M. Wlodarska, and B. B. Finlay, The future of mucosal immunology: studying an integrated system-wide organ, Nature Immunology, vol.69, issue.7, pp.558-560, 2010.
DOI : 10.1111/j.1365-2249.2008.03668.x

S. E. Girardin, I. G. Boneca, L. A. Carneiro, A. Antignac, M. Jehanno et al., Nod1 Detects a Unique Muropeptide from Gram-Negative Bacterial Peptidoglycan, Science, vol.300, issue.5625, pp.1584-1587, 2003.
DOI : 10.1126/science.1084677

S. E. Girardin, I. G. Boneca, J. Viala, M. Chamaillard, A. Labigne et al., Nod2 Is a General Sensor of Peptidoglycan through Muramyl Dipeptide (MDP) Detection, Journal of Biological Chemistry, vol.278, issue.11, pp.8869-8872, 2003.
DOI : 10.1074/jbc.C200651200

V. Gobert, M. Gottar, A. A. Matskevich, S. Rutschmann, J. Royet et al., Dual Activation of the Drosophila Toll Pathway by Two Pattern Recognition Receptors, Science, vol.302, issue.5653, pp.2126-2130, 2003.
DOI : 10.1126/science.1085432

URL : https://hal.archives-ouvertes.fr/hal-00311257

A. Goto, T. Yano, J. Terashima, S. Iwashita, Y. Oshima et al., Cooperative Regulation of the Induction of the Novel Antibacterial Listericin by Peptidoglycan Recognition Protein LE and the JAK-STAT Pathway, Journal of Biological Chemistry, vol.285, issue.21, pp.15731-15738, 2010.
DOI : 10.1074/jbc.M109.082115

M. Gottar, V. Gobert, A. A. Matskevich, J. M. Reichhart, C. Wang et al., Dual Detection of Fungal Infections in Drosophila via Recognition of Glucans and Sensing of Virulence Factors, Cell, vol.127, issue.7, pp.1425-1437, 2006.
DOI : 10.1016/j.cell.2006.10.046

M. Gottar, V. Gobert, T. Michel, M. Belvin, G. Duyk et al., The Drosophila immune response against Gram-negative bacteria is mediated by a peptidoglycan recognition protein, Nature, vol.416, issue.6881, pp.640-644, 2002.
DOI : 10.1038/nature734

URL : https://hal.archives-ouvertes.fr/hal-00311260

E. M. Ha, K. A. Lee, S. H. Park, S. H. Kim, H. J. Nam et al., Regulation of DUOX by the G??q-Phospholipase C??-Ca2+ Pathway in Drosophila Gut Immunity, Developmental Cell, vol.16, issue.3, pp.386-397, 2009.
DOI : 10.1016/j.devcel.2008.12.015

E. M. Ha, C. T. Oh, Y. S. Bae, L. , and W. J. , A Direct Role for Dual Oxidase in Drosophila Gut Immunity, Science, vol.310, issue.5749, pp.847-850, 2005.
DOI : 10.1126/science.1117311

E. M. Ha, C. T. Oh, J. H. Ryu, Y. S. Bae, S. W. Kang et al., An Antioxidant System Required for Host Protection against Gut Infection in Drosophila The Spiroplasma heritable bacterial endosymbiont of Drosophila, Developmental cell Haselkorn, T.S. Fly, vol.8, issue.4, pp.125-132, 2005.

A. P. Hayward, J. Tsao, and S. P. Dinesh-kumar, Autophagy and plant innate immunity: Defense through degradation, Seminars in Cell & Developmental Biology, vol.20, issue.9, pp.1041-1047, 2009.
DOI : 10.1016/j.semcdb.2009.04.012

M. Hedengren, B. Asling, M. S. Dushay, I. Ando, S. Ekengren et al., Relish, a Central Factor in the Control of Humoral but Not Cellular Immunity in Drosophila, Molecular Cell, vol.4, issue.5, pp.827-837, 1999.
DOI : 10.1016/S1097-2765(00)80392-5

K. Hematy, C. Cherk, and S. Somerville, Host???pathogen warfare at the plant cell wall, Current Opinion in Plant Biology, vol.12, issue.4, pp.406-413, 2009.
DOI : 10.1016/j.pbi.2009.06.007

D. Hultmark, Drosophila immunity: paths and patterns, Current Opinion in Immunology, vol.15, issue.1, pp.12-19, 2003.
DOI : 10.1016/S0952-7915(02)00005-5

T. Huszar and J. L. Imler, Chapter 6 Drosophila Viruses and the Study of Antiviral Host???Defense, Advances in virus research, vol.72, pp.227-265, 2008.
DOI : 10.1016/S0065-3527(08)00406-5

J. L. Imler, P. Bulet, N. Inohara, Y. Ogura, A. Fontalba et al., Antimicrobial peptides in Drosophila: structures, activities and gene regulation Host recognition of bacterial muramyl dipeptide mediated through NOD2: implications for Crohn's disease New insights into Drosophila larval haemocyte functions through genome-wide analysis, Chem Immunol Allergy The Journal of biological chemistry Cell Microbiol, vol.86, issue.7, pp.1-21, 2003.

D. Lecreulx and S. E. Girardin, hPepT1 selectively transports muramyl dipeptide but not Nod1-activating muramyl peptides, Can J Physiol Pharmacol, vol.84, pp.1313-1319, 2006.

C. Janeway, Approaching the Asymptote? Evolution and Revolution in Immunology, Cold Spring Harbor Symposia on Quantitative Biology, vol.54, issue.0, pp.1-13, 1989.
DOI : 10.1101/SQB.1989.054.01.003

. Immunobiology, The immune system in health and disease

H. Jiang, E. , and B. A. , EGFR signaling regulates the proliferation of Drosophila adult midgut progenitors, Development, vol.136, issue.3, pp.483-493, 2009.
DOI : 10.1242/dev.026955

A. Junell, H. Uvell, M. M. Davis, E. Edlundh-rose, A. Antonsson et al., The POU Transcription Factor Drifter/Ventral veinless Regulates Expression of Drosophila Immune Defense Genes, Molecular and Cellular Biology, vol.30, issue.14, pp.3672-3684, 2010.
DOI : 10.1128/MCB.00223-10

T. Kaneko, T. Yano, K. Aggarwal, J. H. Lim, K. Ueda et al., PGRP-LC and PGRP-LE have essential yet distinct functions in the drosophila immune response to monomeric DAP-type peptidoglycan, Nature Immunology, vol.14, issue.7, pp.715-723, 2006.
DOI : 10.1038/ni1356

M. Kim, J. H. Lee, S. Y. Lee, E. Kim, C. et al., Caspar, a suppressor of antibacterial immunity in Drosophila, Proceedings of the National Academy of Sciences of the United States of America, pp.16358-16363, 2006.
DOI : 10.1073/pnas.0603238103

M. S. Kim, M. Byun, and B. H. Oh, Crystal structure of peptidoglycan recognition protein LB from Drosophila melanogaster, Nature Immunology, vol.4, issue.8, pp.787-793, 2003.
DOI : 10.1038/ni952

A. Kleino, H. Myllymaki, J. Kallio, L. M. Vanha-aho, K. Oksanen et al., Pirk Is a Negative Regulator of the Drosophila Imd Pathway, The Journal of Immunology, vol.180, issue.8, pp.5413-5422, 2008.
DOI : 10.4049/jimmunol.180.8.5413

H. Kono, C. J. Chen, F. Ontiveros, R. , and K. L. , Uric acid promotes an acute inflammatory response to sterile cell death in mice, Journal of Clinical Investigation, vol.120, issue.6, pp.1939-1949, 2007.
DOI : 10.1172/JCI40124DS1

A. Lauwers, L. Twyffels, R. Soin, C. Wauquier, V. Kruys et al., Post-transcriptional Regulation of Genes Encoding Antimicrobial Peptides in Drosophila Mosquito-based transmission blocking vaccines for interrupting Plasmodium development. Microbes and infection, The Journal of biological chemistry Institut Pasteur, vol.212, issue.10, pp.29-39, 2008.

B. Lemaitre, E. Kromer-metzger, L. Michaut, E. Nicolas, M. Meister et al., A recessive mutation, immune deficiency (imd), defines two distinct control pathways in the Drosophila host defense., Proceedings of the National Academy of Sciences, vol.92, issue.21, pp.9365-9469, 1995.
DOI : 10.1073/pnas.92.21.9465

B. Lemaitre, J. Reichhart, and J. Hoffmann, Drosophila host defense: Differential induction of antimicrobial peptide genes after infection by various classes of microorganisms, Proceedings of the National Academy of Sciences, vol.94, issue.26, pp.14614-14619, 1997.
DOI : 10.1073/pnas.94.26.14614

A. Roussel, Crystal structure of Drosophila PGRP-SD suggests binding to DAP-type but not lysine-type peptidoglycan, Molecular immunology, vol.45, pp.2521-2530, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00283365

F. Leulier, C. Parquet, S. Pili-floury, J. H. Ryu, M. Caroff et al., The Drosophila immune system detects bacteria through specific peptidoglycan recognition, Nature Immunology, vol.4, issue.5, pp.478-484, 2003.
DOI : 10.1038/ni922

E. A. Levashina, E. Langley, C. Green, D. Gubb, M. Ashburner et al., The Drosophila caspase Dredd is required to resist gram-negative bacterial infection Constitutive activation of tollmediated antifungal defense in serpin-deficient Drosophila, EMBO Rep Science, vol.1, issue.285, pp.353-358, 1999.

N. Lhocine, P. S. Ribeiro, N. Buchon, A. Wepf, R. Wilson et al., PIMS Modulates Immune Tolerance by Negatively Regulating Drosophila Innate Immune Signaling, Cell Host & Microbe, vol.4, issue.2, pp.147-158, 2008.
DOI : 10.1016/j.chom.2008.07.004

X. Li, S. Wang, J. Qi, S. F. Echtenkamp, R. Chatterjee et al., Zebrafish Peptidoglycan Recognition Proteins Are Bactericidal Amidases Essential for Defense against Bacterial Infections, Zebrafish Peptidoglycan Recognition Proteins Are Bactericidal Amidases Essential for Defense against Bacterial Infections, pp.518-529, 2007.
DOI : 10.1016/j.immuni.2007.07.020

P. Ligoxygakis, N. Pelte, C. Ji, V. Leclerc, B. Duvic et al., A serpin mutant links Toll activation to melanization in the host defence of Drosophila, The EMBO Journal, vol.21, issue.23, pp.6330-6337, 2002.
DOI : 10.1093/emboj/cdf661

X. Lu, M. Wang, J. Qi, H. Wang, X. Li et al., Peptidoglycan Recognition Proteins Are a New Class of Human Bactericidal Proteins, Journal of Biological Chemistry, vol.281, issue.9, pp.5895-5907, 2006.
DOI : 10.1074/jbc.M511631200

N. Marina-garcia, L. Franchi, Y. G. Kim, Y. Hu, D. E. Smith et al., The Drosophila peptidoglycan recognition protein PGRP-LF blocks PGRP-LC and IMD/JNK pathway activation Clathrin-and dynamin-dependent endocytic pathway regulates muramyl dipeptide internalization and NOD2 activation, Cell host & microbe J Immunol, vol.3, issue.182, pp.293-303, 2009.

P. Matzinger, Tolerance, Danger, and the Extended Family, Annual Review of Immunology, vol.12, issue.1, pp.991-1045, 1994.
DOI : 10.1146/annurev.iy.12.040194.005015

P. Matzinger, The Danger Model: A Renewed Sense of Self, Science, vol.296, issue.5566, pp.301-305, 2002.
DOI : 10.1126/science.1071059

M. Mcfall-ngai, S. V. Nyholm, and M. G. Castillo, The role of the immune system in the initiation and persistence of the Euprymna scolopes???Vibrio fischeri symbiosis, Seminars in Immunology, vol.22, issue.1, pp.48-53, 2010.
DOI : 10.1016/j.smim.2009.11.003

M. Meister, Blood cells of Drosophila: cell lineages and role in host defence, Current Opinion in Immunology, vol.16, issue.1, pp.10-15, 2004.
DOI : 10.1016/j.coi.2003.11.002

S. Meister, B. Agianian, F. Turlure, A. Relogio, I. Morlais et al., Anopheles gambiae PGRPLC-mediated defense against bacteria modulates infections with malaria parasites A scavenger function for a Drosophila peptidoglycan recognition protein PGRP-SB1: an N-acetylmuramoyl Lalanine amidase with antibacterial activity, PLoS pathogens The Journal of biological chemistry Biochem Biophys Res Commun, vol.5, issue.350, pp.7059-7064, 2003.

D. Mengin-lecreulx and B. Lemaitre, Structure and metabolism of peptidoglycan and molecular requirements allowing its detection by the <I>Drosophila</I> innate immune system, Journal of Endotoxin Research, vol.11, issue.2, pp.105-111, 2005.
DOI : 10.1179/096805105X35233

H. Mercot, C. , and S. , Wolbachia Infections in Drosophila Melanogaster and D. Simulans: Polymorphism and Levels of Cytoplasmic Incompatibility, Genetica, vol.120, issue.1-3, pp.51-59, 2004.
DOI : 10.1023/B:GENE.0000017629.31383.8f

URL : https://hal.archives-ouvertes.fr/hal-00427688

E. Meylan, K. Burns, K. Hofmann, V. Blancheteau, F. Martinon et al., RIP1 is an essential mediator of Toll-like receptor 3???induced NF-??B activation, Nature Immunology, vol.8, issue.5, pp.503-507, 2004.
DOI : 10.1084/jem.20011470

T. S. Miest, M. C. Bloch-qazi, L. A. Moreira, I. Iturbe-ormaetxe, J. A. Jeffery et al., Sick of mating: Sexual transmission of a pathogenic bacterium in Drosophila melanogaster. Fly 2, 2008.

N. T. Nehme, S. Liegeois, B. Kele, P. Giammarinaro, E. Pradel et al., A model of bacterial intestinal infections in Drosophila melanogaster Vector and parameters for targeted transgenic RNA interference in Drosophila melanogaster, PLoS pathogens Nature methods, vol.3, issue.5, pp.49-51, 2007.

O. Neill, S. L. Park, J. W. Kim, C. H. Kim, J. H. Je et al., Wolbachia on the bay -6th international Wolbachia conference Clustering of peptidoglycan recognition protein-SA is required for sensing lysine-type peptidoglycan in insects, Proceedings of the National Academy of Sciences of the United States of America, pp.6602-6607, 2007.

J. Peng, P. Zipperlen, and E. Kubli, Drosophila Sex-Peptide Stimulates Female Innate Immune System after Mating via the Toll and Imd Pathways, Current Biology, vol.15, issue.18, pp.1690-1694, 2005.
DOI : 10.1016/j.cub.2005.08.048

C. Persson, S. Oldenvi, H. Steiner, D. J. Girardin, S. E. Manfruelli et al., Peptidoglycan recognition protein LF: A negative regulator of Drosophila immunity, Ratnieks, F.L., and Carreck, N.L. Ecology. Clarity on honey bee collapse, pp.1309-1316, 1099.
DOI : 10.1016/j.ibmb.2007.08.003

Y. Romeo and B. Lemaitre, Drosophila Immunity, Methods in molecular biology, vol.415, pp.379-394, 2008.
DOI : 10.1007/978-1-59745-570-1_22

URL : https://hal.archives-ouvertes.fr/hal-00133466

J. Royet, J. Royet, and R. Dziarski, Are bacteria implicated in Drosophila antibacterial immunity ? (Oral communication) Conférence Jacques Monod -Insect Immunity in action Peptidoglycan recognition proteins: pleiotropic sensors and effectors of antimicrobial defences Cutting edge: the toll pathway is required for resistance to gram-positive bacterial infections in Drosophila, Nature reviews J Immunol, vol.5, issue.168, pp.264-277, 2002.

J. H. Ryu, S. H. Kim, H. Y. Lee, J. Y. Bai, Y. D. Nam et al., Innate Immune Homeostasis by the Homeobox Gene Caudal and Commensal-Gut Mutualism in Drosophila, Science, vol.319, issue.5864, pp.777-782, 2008.
DOI : 10.1126/science.1149357

J. H. Ryu, K. B. Nam, C. T. Oh, H. J. Nam, S. H. Kim et al., The Homeobox Gene Caudal Regulates Constitutive Local Expression of Antimicrobial Peptide Genes in Drosophila Epithelia, Molecular and Cellular Biology, vol.24, issue.1, pp.172-185, 2004.
DOI : 10.1128/MCB.24.1.172-185.2004

S. Saha, J. Qi, S. Wang, M. Wang, X. Li et al., PGLYRP-2 and Nod2 Are Both Required for Peptidoglycan-Induced Arthritis and Local Inflammation, Cell Host & Microbe, vol.5, issue.2, pp.137-150, 2009.
DOI : 10.1016/j.chom.2008.12.010

M. C. Saleh, M. Tassetto, R. P. Van-rij, B. Goic, V. Gausson et al., Antiviral immunity in Drosophila requires systemic RNA interference spread The andropin gene and its product, a male-specific antibacterial peptide in Drosphila melanogaster The andropin gene and its product, a male-specific antibacterial peptide in Drosophila melanogaster The Toll immune-regulated Drosophila protein Fondue is involved in hemolymph clotting and puparium formation, Nature EMBO J Embo J Dev Biol, vol.458, issue.295, pp.346-350, 1991.

C. Scherfer, H. Tang, Z. Kambris, N. Lhocine, C. Hashimoto et al., Drosophila Serpin-28D regulates hemolymph phenoloxidase activity and adult pigmentation Using Drosophila as a model insect, Dev Biol. Schneider, D. Nature Rev Genetics, vol.1, pp.218-225, 2000.

S. Shanbhag, S. Tripathi, A. M. Sidahmed, and B. Wilkie, Epithelial ultrastructure and cellular mechanisms of acid and base transport in the Drosophila midgut, Methods in molecular biology, pp.1731-1744, 2009.
DOI : 10.1242/jeb.029306

N. Silverman, R. Zhou, R. L. Erlich, M. Hunter, E. Bernstein et al., Immune Activation of NF-??B and JNK Requires Drosophila TAK1, Journal of Biological Chemistry, vol.278, issue.49, pp.48928-48934, 2003.
DOI : 10.1074/jbc.M304802200

C. R. Stenbak, J. H. Ryu, F. Leulier, S. Pili-floury, C. Parquet et al., Like will to like: abundances of closely related species can predict susceptibility to intestinal colonization by pathogenic and commensal bacteria, PLoS pathogens, vol.6, 2004.

A. Takehana, T. Katsuyama, T. Yano, Y. Oshima, H. Takada et al., Overexpression of a pattern-recognition receptor, peptidoglycan-recognition protein-LE, activates imd/relish-mediated antibacterial defense and the prophenoloxidase cascade in Drosophila larvae, Peptidoglycan molecular requirements allowing detection by the Drosophila immune deficiency pathway Proceedings of the National Academy of Sciences of the United States of America 99, pp.7339-7348, 2002.
DOI : 10.1073/pnas.212301199

A. Takehana, T. Yano, S. Mita, A. Kotani, Y. Oshima et al., Peptidoglycan recognition protein (PGRP)-LE and PGRP-LC act synergistically in Drosophila immunity Elie Metchnikoff (1845-1916): discoverer of phagocytosis Regulation and function of the melanization reaction in Drosophila, Embo J Singapore medical journal Fly, vol.23, issue.3, pp.4690-4700, 2004.

H. Tang, Z. Kambris, B. Lemaitre, and C. Hashimoto, A Serpin that Regulates Immune Melanization in the Respiratory System of Drosophila, Developmental Cell, vol.15, issue.4, pp.617-626, 2008.
DOI : 10.1016/j.devcel.2008.08.017

S. Tauszig-delamasure, H. Bilak, M. Capovilla, J. A. Hoffmann, J. L. Imler et al., Drosophila MyD88 is required for the response to fungal and Gram-positive bacterial infections, Nature Immunology, vol.3, issue.1, pp.91-97, 2002.
DOI : 10.1038/ni747

J. V. Troll, E. H. Bent, N. Pacquette, A. M. Wier, W. E. Goldman et al., Scny targets IMD to prevent constitutive immune signaling Taming the symbiont for coexistence: a host PGRP neutralizes a bacterial symbiont toxin. Environmental microbiology How Drosophila combats microbial infection: a model to study innate immunity and hostpathogen interactions, Cell host & microbe Curr Op Microbiol, vol.6, issue.5, pp.309-320, 2002.

P. Tzou, S. Ohresser, D. Ferrandon, M. Capovilla, J. M. Reichhart et al., Tissue-Specific Inducible Expression of Antimicrobial Peptide Genes in Drosophila Surface Epithelia, Immunity, vol.13, issue.5, pp.737-748, 2000.
DOI : 10.1016/S1074-7613(00)00072-8

P. Tzou, J. M. Reichhart, and B. Lemaitre, Constitutive expression of a single antimicrobial peptide can restore wild-type resistance to infection in immuno-deficient Drosophila mutants, Proceedings of the National Academy of Sciences of the United States of America, pp.2152-2157, 2002.

H. Uvell and Y. Engstrom, A multilayered defense against infection: combinatorial control of insect immune genes, Trends in Genetics, vol.23, issue.7, pp.342-349, 2007.
DOI : 10.1016/j.tig.2007.05.003

S. Vidal, R. S. Khush, F. Leulier, P. Tzou, M. Nakamura et al., Mutations in the Drosophila dTAK1 gene reveal a conserved function for MAPKKKs in the control of rel/NF-kappaB-dependent innate immune responses, Genes & Development, vol.15, issue.15, pp.1900-1912, 2001.
DOI : 10.1101/gad.203301

N. Vodovar, M. Vinals, P. Liehl, A. Basset, J. Degrouard et al., Drosophila host defense after oral infection by an entomopathogenic Pseudomonas species, Proceedings of the National Academy of Sciences, vol.102, issue.32, pp.11414-11419, 2005.
DOI : 10.1073/pnas.0502240102

C. Wagner, K. Isermann, and T. Roeder, Infection induces a survival program and local remodeling in the airway epithelium of the fly, The FASEB Journal, vol.23, issue.7, pp.2045-2054, 2009.
DOI : 10.1096/fj.08-114223

J. Wang, Y. Wu, G. Yang, and S. Aksoy, Interactions between mutualist Wigglesworthia and tsetse peptidoglycan recognition protein (PGRP-LB) influence trypanosome transmission, Proceedings of the National Academy of Sciences of the United States of America, pp.12133-12138, 2009.
DOI : 10.1073/pnas.0901226106

Z. Wang, C. Wilhelmsson, P. Hyrsl, T. G. Loof, P. Dobes et al., Pathogen Entrapment by Transglutaminase???A Conserved Early Innate Immune Mechanism, PLoS Pathogens, vol.1, issue.2, 2009.
DOI : 10.1371/journal.ppat.1000763.s006

D. P. Welchman, S. Aksoy, F. Jiggins, and B. Lemaitre, Insect Immunity: From Pattern Recognition to Symbiont-Mediated Host Defense, Cell Host & Microbe, vol.6, issue.2, pp.107-114, 2009.
DOI : 10.1016/j.chom.2009.07.008

T. Werner, G. Liu, D. Kang, S. Ekengren, H. Steiner et al., A family of peptidoglycan recognition proteins in the fruit fly Drosophila melanogaster, Proceedings of the National Academy of Sciences of the United States of America, pp.13772-13777, 2000.
DOI : 10.1073/pnas.97.25.13772

Z. Xi, J. L. Ramirez, D. , G. Yano, T. Mita et al., The Aedes aegypti toll pathway controls dengue virus infection Autophagic control of listeria through intracellular innate immune recognition in drosophila Purification of a peptidoglycan recognition protein from hemolymph of the silkworm, PLoS pathogens Nature immunology The Journal of biological chemistry, vol.4, issue.271, pp.908-916, 1996.