R. Abgrall and H. Deconinck, Special issue on Residual Distribution Schemes, Discontinuous Galerkin Schemes Multidimensional Schemes and Mesh Adaptation, Residual Distribution Schemes, Discontinuous Galerkin Schemes and Adaptation, pp.399-400, 2005.
DOI : 10.1016/j.compfluid.2004.03.001

R. Abgrall and M. Mezine, Construction of second order accurate monotone and stable residual distribution schemes for unsteady flow problems, Journal of Computational Physics, vol.188, issue.1, pp.16-55, 2003.
DOI : 10.1016/S0021-9991(03)00084-6

R. Abgrall and M. Mezine, Construction of second-order accurate monotone and stable residual distribution schemes for steady problems, Journal of Computational Physics, vol.195, issue.2, pp.474-507, 2004.
DOI : 10.1016/j.jcp.2003.09.022

T. Barth, M. Ohlberger-stein, R. De-borst, and T. J. Hughes, Finite Volume Methods: Foundation and Analysis, éditeurs : Encyclopedia of Computational Mechanics, 2004.
DOI : 10.1002/0470091355.ecm010

T. J. Barth and P. O. Frederickson, Higher order solution of the Euler equations on unstructured grids using quadratic reconstruction, 28th Aerospace Sciences Meeting, pp.1-12, 1990.
DOI : 10.2514/6.1990-13

T. J. Barth, Numerical methods for conservation laws on structured and unstructured meshes. Rapport technique, VKI Lectures Series, 2003.

G. K. Batchelor, An introduction in fluid dynamics, 2000.
DOI : 10.1017/CBO9780511800955

M. Ben-artzi and J. Falcovitz, Generalized Riemann problems in Computational Fluid Dynamics, 2003.
DOI : 10.1017/CBO9780511546785

M. Berger, M. J. Aftosmis, and S. M. Murman, Analysis of slope limiters on irregular grids. Rapport technique, 2005.

C. Berthon, Stability of the MUSCL Schemes for the Euler Equations, Communications in Mathematical Sciences, vol.3, issue.2, pp.133-157, 2005.
DOI : 10.4310/CMS.2005.v3.n2.a3

C. Berthon, Why the MUSCL???Hancock Scheme is L1-stable, Numerische Mathematik, vol.101, issue.2, pp.27-46, 2006.
DOI : 10.1007/s00211-006-0007-4

C. Berthon, Robustness of MUSCL schemes for 2D unstructured meshes, Journal of Computational Physics, vol.218, issue.2, pp.495-509, 2006.
DOI : 10.1016/j.jcp.2006.02.028

N. Bertier, Simulation des grandes échelles en aérothermique sur des maillages non structurés généraux, Thèse de doctorat, 2006.

F. Bouchut, Nonlinear stability of finite volume methods for hyperbolic conservation laws and well balanced schemes for sources, Frontiers in Mathematics. Birkhäuser, 2004.

F. Bouchut and C. Bourdarias, A MUSCL method satisfying all the numerical entropy inequalities, Mathematics of Computation, vol.65, issue.216, pp.1439-1461, 1996.
DOI : 10.1090/S0025-5718-96-00752-1

P. Brenner, Rapport de recherche non publié, 2008.

F. Brezzi, B. Cockburn, L. D. Marini, and E. Süli, Stabilization mechanisms in discontinuous Galerkin finite element methods, Discontinuous Galerkin Methods, pp.25-283293, 2006.
DOI : 10.1016/j.cma.2005.06.015

T. Buffard, Clain : Multi-slope MUSCL methods for unstructured meshes, 2008.

M. D. Buhmann and R. J. Fletcher:-m, Powell's work in univariate and multivariate approximation theory and his contribution to optimization. Rapport technique, pp.96-112, 1996.

S. Camarri, M. V. Salvetti, and B. Koobus, A low-diffusion MUSCL scheme for LES on unstructured grids, Computers & Fluids, vol.33, issue.9, pp.1101-1129, 2004.
DOI : 10.1016/j.compfluid.2003.10.002

URL : https://hal.archives-ouvertes.fr/hal-00372840

B. Cockburn, Devising discontinuous Galerkin methods for non-linear hyperbolic conservation laws, Journal of Computational and Applied Mathematics, vol.128, issue.1-2, pp.187-204, 2001.
DOI : 10.1016/S0377-0427(00)00512-4

B. Cockburn, G. Kanschat, and D. Schötzau, The local discontinuous Galerkin method for linearized incompressible fluid flow: a review, Computers & Fluids, vol.34, issue.4-5, pp.491-506, 2005.
DOI : 10.1016/j.compfluid.2003.08.005

B. Cockburn, S. Lin, and C. W. Shu, TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws III: One-dimensional systems, Journal of Computational Physics, vol.84, issue.1, pp.90-113, 1989.
DOI : 10.1016/0021-9991(89)90183-6

B. Cockburn and C. W. Shu, The Local Discontinuous Galerkin Method for Time-Dependent Convection-Diffusion Systems, SIAM Journal on Numerical Analysis, vol.35, issue.6, pp.2440-2463, 1998.
DOI : 10.1137/S0036142997316712

B. Cockburn and C. W. Shu, The Runge???Kutta Discontinuous Galerkin Method for Conservation Laws V, Journal of Computational Physics, vol.141, issue.2, pp.199-224, 1998.
DOI : 10.1006/jcph.1998.5892

B. Cockburn and C. W. Shu, Runge-Kutta Discontinuous Galerkin methods for convection-dominated problems, Journal of Scientific Computing, vol.16, issue.3, pp.173-261, 2001.
DOI : 10.1023/A:1012873910884

I. M. Cohen and P. K. , Kundu : Fluid mechanics, 2004.

P. M. Cohn, Classic Algebra, 2000.

P. Colella, Glimm???s Method for Gas Dynamics, SIAM Journal on Scientific and Statistical Computing, vol.3, issue.1, pp.76-110, 1982.
DOI : 10.1137/0903007

F. Coquel and P. G. Lefloch, An entropy satisfying MUSCL scheme for systems of conservation laws, Numerische Mathematik, vol.74, issue.1, pp.1-33, 1996.
DOI : 10.1007/s002110050205

F. Coquel and M. S. Liu, Stable and low diffusive hybrid upwind splitting methods. Dans Computational Fluid Dynamics 92, Proceedings of the European Computational Fluid Dynamics Conference Brussels, pp.9-16, 1992.

F. Coquel, Relaxation of Energy and Approximate Riemann Solvers for General Pressure Laws in Fluid Dynamics, SIAM Journal on Numerical Analysis, vol.35, issue.6, pp.2223-2249, 1998.
DOI : 10.1137/S0036142997318528

B. Courbet, Rapport de recherche Onera non publié, 2008.

J. Croisille, Villedieu : A kinetic flux-splitting scheme for hypersonic flows, Proceedings of the Thirteenth International Conference on Numerical Methods in Fluid Dynamics Thirteenth International Conference on Numerical Methods in Fluid Dynamics, pp.310-314, 1993.

L. Cueto-felgueroso, I. Colominas, J. Fe, and F. Navarrina, High-order finite volume schemes on unstructured grids using moving least-squares reconstruction. Application to shallow water dynamics, International Journal for Numerical Methods in Engineering, vol.194, issue.3, pp.295-331, 2006.
DOI : 10.1002/nme.1442

M. Delanaye, Polynomial Reconstruction Finite Volume Schemes for the Compressible Euler and Navier- Stokes Equations on Unstructured Adaptive Grids, Thèse de doctorat Faculté des Sciences Appliquées, 1996.

K. Van-den-abeele, C. Lacor, and Z. J. Wang, On the connection between the spectral volume and the spectral difference method, Journal of Computational Physics, vol.227, issue.2, pp.877-885, 2007.
DOI : 10.1016/j.jcp.2007.08.030

B. Despres, An Explicit A Priori Estimate for a Finite Volume Approximation of Linear Advection on Non-Cartesian Grids, SIAM Journal on Numerical Analysis, vol.42, issue.2, pp.484-504, 2004.
DOI : 10.1137/S0036142901394558

P. Deuflhard and F. Bornemann, Scientific Computing with Ordinary Differential Equations, 2002.
DOI : 10.1007/978-0-387-21582-2

R. Eymard, T. Gallouët, and R. Herbin, The finite volume method éditeurs : Handbook of Numerical Analysis, Ciarlet et J.L. Lions, vol.7, pp.715-1022, 2000.

N. Forestier, L. Jacquin, and P. Geffroy, The mixing layer over a deep cavity at high-subsonic speed, Journal of Fluid Mechanics, vol.475, pp.101-145, 2003.
DOI : 10.1017/S0022112002002537

G. P. Galdi, An Introduction to the Mathematical Theory of the Navier-Stokes Equations, 2001.

E. Godlewski and P. , Raviart : Numerical Approximation of Hyperbolic Systems of Conservation Laws, 2002.

G. H. Golub and C. F. , Van Loan : Matrix computations, 1996.

J. B. Goodman and R. Leveque, On the Accuracy of Stable Schemes for 2D Scalar Conservation Laws, Mathematics of Computation, vol.45, issue.171, pp.955-970, 1985.
DOI : 10.2307/2008046

S. Gottlieb, C. W. Shu, and E. Tadmor, Strong Stability-Preserving High-Order Time Discretization Methods, SIAM Review, vol.43, issue.1, pp.89-112, 2001.
DOI : 10.1137/S003614450036757X

F. Haider, B. Courbet, and J. Croisille, Stabilité du schéma volumes finis MUSCL sur maillage quelconque, 2008.

R. Harris, Z. J. Wang, and Y. Liu, Efficient quadrature-free high-order spectral volume method on unstructured grids: Theory and 2D implementation, Journal of Computational Physics, vol.227, issue.3, pp.1620-1642, 2008.
DOI : 10.1016/j.jcp.2007.09.012

A. Harten, High resolution schemes for hyperbolic conservation laws, Journal of Computational Physics, vol.49, issue.3, pp.357-393, 1983.
DOI : 10.1016/0021-9991(83)90136-5

A. Harten, Chakravarthy : Multidimensional ENO schemes for general geometries, 1991.

A. Harten and S. Osher, Uniformly High-Order Accurate Nonoscillatory Schemes. I, SIAM Journal on Numerical Analysis, vol.24, issue.2, pp.279-309, 1987.
DOI : 10.1137/0724022

URL : http://www.dtic.mil/get-tr-doc/pdf?AD=ADA158177

C. Hirsch, Numerical Computation of Internal and External Flows, 1988.

C. Hirsch, Numerical Computation of Internal and External Flows, 1988.

M. Holt, Review of Godunov methods, 1996.

R. A. Horn and C. R. Johnson, Matrix Analysis, 1985.

R. A. Horn and C. R. Johnson, Topics in Matrix Analysis, 1991.
DOI : 10.1017/CBO9780511840371

M. E. Hubbard, Multidimensional Slope Limiters for MUSCL-Type Finite Volume Schemes on Unstructured Grids, Journal of Computational Physics, vol.155, issue.1, pp.54-74, 1999.
DOI : 10.1006/jcph.1999.6329

A. Iske, On the structure of function spaces in optimal recovery of point functionals for ENO-schemes by radial basis functions, Numerische Mathematik, vol.74, issue.2, pp.177-201, 1996.
DOI : 10.1007/s002110050213

S. Khosla, P. J. Dionne, M. E. Lee, and C. E. Smith, Using fourth order spatial integration on unstructured meshes to reduce LES run time. Numéro AIAA 2008-782, 2008.

A. N. Kolmogorov, Dissipation of Energy in the Locally Isotropic Turbulence, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.434, issue.1890, pp.15-17, 1991.
DOI : 10.1098/rspa.1991.0076

D. Kröner, B. G. Chichester, and . Teubner, Numerical Schemes for Conservation Laws, 1997.

F. Lafon and S. Osher, High order filtering methods for approximating hyperbolic systems of conservation laws, Journal of Computational Physics, vol.96, issue.1, pp.110-142, 1991.
DOI : 10.1016/0021-9991(91)90268-P

L. Larchevêque, Simulation des grandes échelles de l'écoulement au-dessus d'une cavité, Thèse de doctorat, 2003.

L. Larchevêque, P. Sagaut, and I. Mary, Large-eddy simulation of a compressible flow past a deep cavity, Physics of Fluids, vol.15, issue.1, pp.193-210, 2003.
DOI : 10.1063/1.1522379

A. Leonard, Energy Cascade in Large-Eddy Simulations of Turbulent Fluid Flows, Adv. Geophys, vol.18, issue.A, pp.237-248, 1974.
DOI : 10.1016/S0065-2687(08)60464-1

N. Leterrier, Discrétisation spatiale en maillage non structuré général, Thèse de doctorat, 2003.

J. Randall, LeVeque : Finite Volume Methods for Hyperbolic Problems, 2002.

Y. Liu, M. Vinokur, and Z. J. Wang, Spectral (finite) volume method for conservation laws on unstructured grids V: Extension to three-dimensional systems, Journal of Computational Physics, vol.212, issue.2, pp.454-472, 2006.
DOI : 10.1016/j.jcp.2005.06.024

N. Lupoglazoff, G. Rahier, and F. Vuillot, Application of the Cedre unstructured flow solver to jet noise computations, First European Conference for Aerospace Sciences (EUCASS), 2005.

D. Mavriplis, Revisiting the Least-Squares Procedure for Gradient Reconstruction on Unstructured Meshes, 16th AIAA Computational Fluid Dynamics Conference, 2003.
DOI : 10.2514/6.2003-3986

J. Montagné, Etude de schémas numeriques décentrés en dynamique des gaz bidimensionnelle, La Recherche Aerospatiale, vol.5, pp.323-338, 1984.

J. Montagné, H. Yee, and M. Vinokur, Comparative study of high-resolution shock-capturing schemes for a real gas, Proceeding of the 7.th GAMM Conf, 1987.
DOI : 10.2514/3.10269

J. , V. Neumann, and R. D. , Richtmyer : A method for the numerical calculation of hydrodynamic shocks, Journal of Applied Physics, vol.21, issue.3, pp.232-237, 1950.

P. J. O-'rourke and M. S. Sahota, A Variable Explicit/Implicit Numerical Method for Calculating Advection on Unstructured Meshes, Journal of Computational Physics, vol.143, issue.2, pp.312-345, 1998.
DOI : 10.1006/jcph.1998.5903

S. Osher and F. Solomon, Upwind difference schemes for hyperbolic systems of conservation laws, Mathematics of Computation, vol.38, issue.158, pp.339-374, 1982.
DOI : 10.1090/S0025-5718-1982-0645656-0

B. Perthame and Y. , A Variant of Van Leer's Method for Multidimensional Systems of Conservation Laws, Journal of Computational Physics, vol.112, issue.2, pp.370-381, 1994.
DOI : 10.1006/jcph.1994.1107

W. H. Reed and T. R. , Hill : Triangular mesh methods for the neutron transport equation, 1973.

M. Ricchiuto, N. Villedieu, R. Abgrall, and H. Deconinck, On uniformly high-order accurate residual distribution schemes for advection???diffusion, Proceedings of the Third International Conference on Advanced Computational Methods in Engineering Proceedings of the Third International Conference on Advanced Computational Methods in Engineering, pp.547-556, 2005.
DOI : 10.1016/j.cam.2006.03.059

URL : https://hal.archives-ouvertes.fr/inria-00403700

P. L. Roe, Approximate Riemann solvers, parameter vectors, and difference schemes, Journal of Computational Physics, vol.43, issue.2, pp.357-372, 1981.
DOI : 10.1016/0021-9991(81)90128-5

P. Sagaut, Large Eddy Simulation for Incompressible Flows, 2002.

J. M. Seiner, M. K. Ponton, B. J. Jansen, and N. T. Lagen, The effects of temperature on supersonic jet noise emission, pp.92-94, 1992.

C. W. Shu, G. Erlebacher, T. A. Zang, D. Whitaker, and S. Osher, High-order ENO schemes applied to two- and three-dimensional compressible flow, Applied Numerical Mathematics, vol.9, issue.1, pp.45-71, 1992.
DOI : 10.1016/0168-9274(92)90066-M

C. W. Shu and S. Osher, Efficient implementation of essentially non-oscillatory shock-capturing schemes, Journal of Computational Physics, vol.77, issue.2, pp.439-471, 1988.
DOI : 10.1016/0021-9991(88)90177-5

C. W. Shu and S. Osher, Efficient implementation of essentially non-oscillatory shock-capturing schemes, II, Journal of Computational Physics, vol.83, issue.1, pp.32-78, 1989.
DOI : 10.1016/0021-9991(89)90222-2

T. Sonar, Optimal recovery using thin plate splines in finite volume methods for the numerical solution of hyperbolic conservation laws, IMA Journal of Numerical Analysis, vol.16, issue.4, pp.549-581, 1996.
DOI : 10.1093/imanum/16.4.549

T. Sonar, On the construction of essentially non-oscillatory finite volume approximations to hyperbolic conservation laws on general triangulations: polynomial recovery, accuracy and stencil selection, Computer Methods in Applied Mechanics and Engineering, vol.140, issue.1-2, pp.157-181, 1997.
DOI : 10.1016/S0045-7825(96)01060-2

T. Sonar, On Families of Pointwise Optimal Finite Volume ENO Approximations, SIAM Journal on Numerical Analysis, vol.35, issue.6, pp.2350-2369, 1998.
DOI : 10.1137/S0036142997316013

Y. Sun, Z. J. Wang, and Y. Liu, Spectral (finite) volume method for conservation laws on unstructured grids VI: Extension to viscous flow, Journal of Computational Physics, vol.215, issue.1, pp.41-58, 2006.
DOI : 10.1016/j.jcp.2005.10.019

A. Suresh, Positivity-Preserving Schemes in Multidimensions, SIAM Journal on Scientific Computing, vol.22, issue.4, pp.1184-1198, 2000.
DOI : 10.1137/S1064827599360443

P. K. Sweby, High Resolution Schemes Using Flux Limiters for Hyperbolic Conservation Laws, SIAM Journal on Numerical Analysis, vol.21, issue.5, pp.995-1011, 1984.
DOI : 10.1137/0721062

E. Tadmor, Approximate solutions of nonlinear conservation laws Quarteroni, éditeur : Advanced Numerical Approximation of Nonlinear Hyperbolic Equations, Lecture Notes in Mathematics, 1997.

R. Temam, Navier Stokes Equations: Theory and Numerical Analysis, Journal of Applied Mechanics, vol.45, issue.2, 2001.
DOI : 10.1115/1.3424338

B. Van-leer, Towards the ultimate conservative difference scheme I. The quest of monotonicity, Third International Conference on Numerical Methods in Fluid Mechanics, pp.163-168, 1973.
DOI : 10.1007/BFb0118673

B. Van-leer, Towards the ultimate conservative difference scheme. II. Monotonicity and conservation combined in a second-order scheme, Journal of Computational Physics, vol.14, issue.4, pp.361-370, 1974.
DOI : 10.1016/0021-9991(74)90019-9

B. Van-leer, Towards the ultimate conservative difference scheme III. Upstream-centered finite-difference schemes for ideal compressible flow, Journal of Computational Physics, vol.23, issue.3, pp.263-275, 1977.
DOI : 10.1016/0021-9991(77)90094-8

B. Van-leer, Towards the ultimate conservative difference scheme. IV. A new approach to numerical convection, Journal of Computational Physics, vol.23, issue.3, pp.276-299, 1977.
DOI : 10.1016/0021-9991(77)90095-X

B. Van-leer, Towards the ultimate conservative difference scheme. V. A second-order sequel to Godunov's method, Journal of Computational Physics, vol.32, issue.1, pp.101-136, 1979.
DOI : 10.1016/0021-9991(79)90145-1

R. S. Varga, Ger?gorin and His Circles, 2004.
DOI : 10.1007/978-3-642-17798-9

B. Vreman, Direct and large-eddy simulation of the compressible turbulent mixing layer, Thèse de doctorat, 1995.

B. Vreman, B. Geurts, and H. Kuerten, A priori tests of large eddy simulation of the compressible plane mixing layer, Journal of Engineering Mathematics, vol.2, issue.4, pp.299-327, 1995.
DOI : 10.1007/BF00042759

N. J. Walkington, Quadrature on simplices of arbitrary dimension. Rapport technique 00-CNA-023, 2000.

Z. J. Wang, Spectral (Finite) Volume Method for Conservation Laws on Unstructured Grids. Basic Formulation, Journal of Computational Physics, vol.178, issue.1, pp.210-251, 2002.
DOI : 10.1006/jcph.2002.7041

Z. J. Wang and Y. Liu, Spectral (Finite) Volume Method for Conservation Laws on Unstructured Grids, Journal of Computational Physics, vol.179, issue.2, pp.665-697, 2002.
DOI : 10.1006/jcph.2002.7082

Z. J. Wang, L. Zhang, and Y. Liu, Spectral (finite) volume method for conservation laws on unstructured grids IV: extension to two-dimensional systems, Journal of Computational Physics, vol.194, issue.2, pp.716-741, 2004.
DOI : 10.1016/j.jcp.2003.09.012

Z. J. Wang and Y. Liu, Extension of the spectral volume method to high-order boundary representation, Journal of Computational Physics, vol.211, issue.1, pp.154-178, 2006.
DOI : 10.1016/j.jcp.2005.05.022

R. F. Warming and B. J. Hyett, The modified equation approach to the stability and accuracy analysis of finite-difference methods, Journal of Computational Physics, vol.14, issue.2, pp.159-179, 1974.
DOI : 10.1016/0021-9991(74)90011-4

H. Wendland, Scattered Data Approximation, 2004.
DOI : 10.1017/CBO9780511617539

H. Wendland, On the Convergence of a General Class of Finite Volume Methods, SIAM Journal on Numerical Analysis, vol.43, issue.3, pp.987-1002, 2005.
DOI : 10.1137/040612993

P. Woodward and P. Colella, The numerical simulation of two-dimensional fluid flow with strong shocks, Journal of Computational Physics, vol.54, issue.1, pp.115-173, 1984.
DOI : 10.1016/0021-9991(84)90142-6

H. C. Yee, R. F. Warming, and A. Harten, On a class of TVD schemes for gas dynamic calculations, Proc. of the sixth international symposium on computing methods in applied sciences and engineering, VI, pp.491-492, 1985.

H. C. Yee, R. F. Warming, A. Harten, R. L. Lee, R. L. Sani et al., Application of TVD schemes for the Euler and gas dynamics éditeurs : Large-scale computations in fluid mechanics, Fifteenth Summer Seminar on Applied Mathematics, pp.85-48201, 1983.

H. Q. Yee, Upwind and symmetric shock capturing schemes. Rapport technique 89464, NASA-technical Memorandum, 1987.

. Discrétisation-en-maillage-non-structuré-général and L. L. Applications, objectif est d'améliorer la stabilité et la précision de la discrétisation spatiale de type volumes finis sur des maillages non structurés. L'intérêt réside dans l'application croissante des volumes finis à la simulation des grandes échelles (LES) qui exige une discrétisation précise, autre objectif est le développement d'algorithmes permettant de reconstruire les polynômes de degré élevé en maillage non structuré sur de petits voisinages (stencils)