8. Jolivet, De la solution à l'oxyde, InterEditions/CNRS Editions ed. J. Brinker, G. W. Scherer, Sol-Gel Science, the Physics and Chemistry of Sol-Gel Processing Swaddle, Coordination Chemistry Reviews, vol.110, pp.219-221, 1989.

J. D. Freunde, H. Klinowski, G. Hamdan, A. P. Engelhard, H. Kentgens et al., Solid State Nuclear Magnetic Resonance, Omegna, J.A.v. Bokhoven, and R. Prins, pp.355-3221, 1459.

H. L. Ocelli, S. Robson, H. Ueda, M. Murata, S. Koizumi et al., Manufacture of zeolites having a controlled particle sizes, ACS Symposium Tosheva and V.P. Valtchev, pp.2494-2513, 1012.

E. W. Olson, S. B. Sheppard, J. B. Mccullen, J. L. Higgins, H. W. Evans et al., The colloidal domains: xhere physics, chemistry, biology and technology meet, J. Am. Chem. Soc. Studies in Surface Science and Catalysis, vol.51, issue.114129, pp.209-218, 1992.

A. Chaumonnot, C. Coupé, P. Sanchez, C. Euzen, D. Boissière et al., Production of mesostructured aluminosilicates and their use., FR 04/06, Progress in Solid State Chemistry Advanced Functional Nanomaterials -from NanoscaleObjects to Nanostructered Inorganic and Hybrid Materials, pp.153-161, 2004.

A. Chaumonnot, C. Coupé, P. Sanchez, C. Euzen, D. Boissière et al., Matériaux mésostructurés à forte teneur en aluminium., FR 05.05, Chem. Mater, vol.678, issue.7818, pp.5238-5243, 2005.

S. Chaumonnot, C. Pega, C. Sanchez, D. Boissiere, and . Grosso, Process for preparation of spherical mesostructured organic/inorganic hybrid oxide particles with covalently bound acid, base and thiol functional groupsSpray-drying: a versatile route for the preparation of new acidic masostructured powders, Nanoporous Materials, pp.1301-1304, 2002.

I. Synthèse-des-matériaux-aluminosilicates and .. , 68 III.B.1 Obtention de solutions aluminosilicates atomisables, p.68

.. , ?. Irtf, A. , and É. , 72 III.B.2.i Composition à l'échelle, II.B.2 Composition des matériaux synthétisés, p.77

I. C. Influence-de-la-teneur-en-aluminium and .. , 103 III.C.6 Mécanisme de structuration ? rationalisation de l'influence des différents paramètres, 105 III.C.7 Influence du 111 III.C.8 Synthèse pauvre en, p.113

D. Avnir, D. Farin, and P. Pfeifer, Molecular fractal surfaces, Nature, vol.7, issue.5956, pp.261-263, 1984.
DOI : 10.1038/308261a0

M. Weckhuisen, In situ Spectroscopy of Catalysts, ChemInform, vol.36, issue.23, 2004.
DOI : 10.1002/chin.200523297

F. Xiao, Ordered Mesoporous Materials with Improved Stability and Catalytic Activity, Topics in Catalysis, vol.104, issue.1-2, pp.9-24, 2005.
DOI : 10.1007/s11244-005-3809-1

P. Panster and P. Kleinschmit, Shaped organosiloxanes contyaining sulfonate groups, a process for theire production and their use, 1994.

A. P. Panster, T. Jaenes, and . Goebel, Method of producing sulfonated organosilicon compounds and coresponding aqueous solutions, US5380791, 1995.

A. Annexe and .. Rmn-?-Éléments-théoriques-et-compléments-expérimentaux, ii i) Interaction Zeemann : levée de dégénérescence en présence d'un champ magnétique. ii ii) Magnétisation de l'échantillon iii iii) Déstabilisation du système ? pulse radiofréquence Retour à l'équilibre -acquisition iii v) Interactions fondamentales internes à l'échantillon. vi i) Carte 2D HETCOR {1H}-13C (AV 300). vi ii) Spectres 13 C MAS (AV 300). vi v) Spectres 27 Al MAS (AV 400), vi iii) Spectres { 1 H}-13 C CP MAS (AV 300) viii vi) Carte 27 Al MQ-MAS (AV 400) ix viii) Carte 27 Al MQ-MAS (AV 400 ? échantillon déshydraté 017-12).... ix x) Spectres 1 H echo MAS et TRAPDOR (AV 750 ? échantillons déshydratés)...................................... ix A.3 RMN liquide 29 Si et 27, pp.27-400

C. Annexe and D. Drx, xvi C.1 Diffraction des rayons X

D. Annexe and .. Xviii-d.-1-théorie, xviii i) Théories de l'adsorption xviii ii) Les différents types d'isothermes xxi iv) Détermination de la taille des pores xxiii v) Concept d'isothermes standards : application à la détermination du volume microporeux. xxiv i) Conditions d'analyse, xxiv ii) exploitation des alpha-plot.. xxvi iv) Calcul de la dimension de surface

G. Annexe and G. Xxxiii, 1 Xérogels G-017-12 et G-023-12, Synthèse et caractérisation des matériaux non synthétisés par atomisation

. Le-massif-À, correspondant aux bandes de vibration caractéristiques des sites acides de Brönsted est décomposée, à l'aide du logiciel GRAMS, par 5 bandes de forme gaussienne définies par leur position (cm -1 ), leur largeur à mi-hauteur (cm -1 ) et leur hauteur telles que : 1650 ± 10 cm-1, pp.1680-1595

B. Fig, exemple d'un spectre de la région d'interaction de la lutidine avec la surface décomposé à l'aide du logiciel GRAMS xv La quantification des sites acides de Brönsted se fait par l

A. Lahousse, F. Aboulayt, J. Maugé, J. C. Bachelier, J. Lavalleu et al., Catalysis Today Adsorption, surface area and porosity, Références bibliographiques. [9]. D. Avnir, D. Farin, and P. Pfeifer, pp.283-374, 1916.

. Si-c, 1.d) Modifications in the aromatic frequencies (120-150 ppm) can be observed in the post-sulfonation spectrum (Fig. 1.e), which is similar to 10-EPS spectrum, the ethylphenylsulfonic material that was directly synthesized by use of the Cl- SPETMS precursor (Fig. 1.f) All of these spectroscopic features are characteristic of the sulfonation on the aromatic moieties. Similar NMR observations were found for R-Si/Si = 20% materials In both MP and PE-S materials, [S]/[Si] ratios evaluated by ICP elemental analysis are consistent with the [R-Si]/[Si] organosilane ratio of 10 % or 20 % introduced in the initial precursor solutions (Tab.1) This demonstrates i) that the aerosol synthesis allows a very good control of the functionalization ratio and ii) that sulfonation of PE groups was quantitative, leading to highly acidic powders, up to 2.44 mmol H + /g of silica (Tab.1 sample 20-PE-S) The oxidation of MP moieties can be optimized depending on the nature of the oxidant. Indeed, the [S]/[Si] ratio is preserved after the HNO 3 treatment whereas its decrease during H 2 O 2 treatment indicates that some thiols groups are lost during the H 2 O 2 treatment (Tab.1). However, it is not possible to conclude on which treatment should be prefered if only considering the proton exchange capacities (Tab. 1) It is noteworthy that our spray dried powders present, after oxidation of MP material proton exchange capacities (Tab. 1) higher than those previously reported for materials with comparable functionalization ratios but prepared by co-precipitation (and post-oxidation), This result may be explained by an enhanced accessibility of the organic functions, during post-treatments and/or titration steps, provided by the nanometer size of spherical particles generated by spray-drying. XRD patterns of 10% MP and PE functionalized materials (respectively Fig, pp.13-15

C. T. Kresge, M. E. Leonowicz, W. J. Roth, J. C. Vartuli, and J. S. Beck, Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism, Nature, vol.359, issue.6397, p.710, 1992.
DOI : 10.1038/359710a0

A. Sayari and S. Hamoudi, Periodic Mesoporous Silica-Based Organic???Inorganic Nanocomposite Materials, Chemistry of Materials, vol.13, issue.10, p.3151, 2001.
DOI : 10.1021/cm011039l

G. J. Soler-illia, C. Sanchez, B. Lebeau, and J. Patarin, Chemical Strategies To Design Textured Materials:?? from Microporous and Mesoporous Oxides to Nanonetworks and Hierarchical Structures, Chemical Reviews, vol.102, issue.11, p.4093, 2002.
DOI : 10.1021/cr0200062

S. A. Bagshaw, E. Prouzet, and T. Pinnavaia, Templating of Mesoporous Molecular Sieves by Nonionic Polyethylene Oxide Surfactants, Science, vol.269, issue.5228, p.1242, 1995.
DOI : 10.1126/science.269.5228.1242

E. Prouzet, F. Cot, G. Nabias, A. Larbot, P. Kooyman et al., Assembly of Mesoporous Silica Molecular Sieves Based on Nonionic Ethoxylated Sorbitan Esters as Structure Directors, Chemistry of Materials, vol.11, issue.6, p.1498, 1999.
DOI : 10.1021/cm9810281

H. Wang, Y. Liu, and T. Pinnavaia, Highly Acidic Mesostructured Aluminosilicates Assembled from Surfactant-Mediated Zeolite Hydrolysis Products, The Journal of Physical Chemistry B, vol.110, issue.10, p.4524, 2006.
DOI : 10.1021/jp056688p

D. Margolese, J. A. Melero, S. C. Christiansen, B. F. Chmelka, and G. D. Stucky, Direct Syntheses of Ordered SBA-15 Mesoporous Silica Containing Sulfonic Acid Groups, Chemistry of Materials, vol.12, issue.8, p.2448, 2000.
DOI : 10.1021/cm0010304

M. H. Lim, C. F. Blanford, and A. Stein, Synthesis of Ordered Microporous Silicates with Organosulfur Surface Groups and Their Applications as Solid Acid Catalysts, Chemistry of Materials, vol.10, issue.2, p.467, 1998.
DOI : 10.1021/cm970713p

S. Mikhailenko, D. Desplantier-giscard, C. Danumah, and S. Kaliaguine, Solid electrolyte properties of sulfonic acid functionalized mesostructured porous silica, Microporous and Mesoporous Materials, vol.52, issue.1, p.29, 2002.
DOI : 10.1016/S1387-1811(02)00275-5

J. A. Melero, G. D. Stucky, R. Van-grieken, and G. Morales, Direct syntheses of ordered SBA-15 mesoporous materials containing arenesulfonic acid groups, Journal of Materials Chemistry, vol.12, issue.6, p.1664, 2002.
DOI : 10.1039/b110598c

C. J. Brinker, Y. Lu, A. Sellinger, and H. Fan, Evaporation-Induced Self-Assembly: Nanostructures Made Easy, Advanced Materials, vol.11, issue.7, p.579, 1999.
DOI : 10.1002/(SICI)1521-4095(199905)11:7<579::AID-ADMA579>3.0.CO;2-R

D. Grosso, G. Illia, E. L. Crepaldi, B. Charleux, and C. Sanchez, Nanocrystalline Transition-Metal Oxide Spheres with Controlled Multi-Scale Porosity, Advanced Functional Materials, vol.13, issue.1, p.37, 2003.
DOI : 10.1002/adfm.200390002

C. Boissiere, L. Nicole, C. Gervais, F. Babonneau, M. Antonietti et al., Nanocrystalline Mesoporous ??-Alumina Powders ???UPMC1 Material??? Gathers Thermal and Chemical Stability with High Surface Area, Chemistry of Materials, vol.18, issue.22, p.5238, 2006.
DOI : 10.1021/cm061489j

URL : https://hal.archives-ouvertes.fr/hal-00115229

M. T. Bore, R. F. Marzke, T. L. Ward, and A. K. Datye, Aerosol synthesized mesoporous silica containing high loading of alumina and zirconia, Journal of Materials Chemistry, vol.13, issue.47, p.5022, 2005.
DOI : 10.1039/b503103f

S. Parambadath, M. Chidambaram, and A. P. Singh, Synthesis, characterization and catalytic properties of benzyl sulphonic acid functionalized Zr-TMS catalysts, Catalysis Today, vol.97, issue.4, p.233, 2004.
DOI : 10.1016/j.cattod.2004.07.007

R. Badley and W. T. Ford, Silica-bound sulfonic acid catalysts, The Journal of Organic Chemistry, vol.54, issue.23, p.5437, 1989.
DOI : 10.1021/jo00284a014

X. Ji, Q. Hu, J. E. Hampsey, X. Qiu, L. Gao et al., Synthesis and Characterization of Functionalized Mesoporous Silica by Aerosol-Assisted Self-Assembly, Chemistry of Materials, vol.18, issue.9, p.2265, 2006.
DOI : 10.1021/cm052764p

L. Nicole, C. Boissiere, D. Grosso, A. Quach, and C. Sanchez, Mesostructured hybrid organic???inorganic thin films, Journal of Materials Chemistry, vol.42, issue.45, p.3598, 2005.
DOI : 10.1039/b506072a

URL : https://hal.archives-ouvertes.fr/hal-00022641

C. Morterra, G. Cerrato, and G. Meligrana, Revisiting the Use of 2,6-Dimethylpyridine Adsorption as a Probe for the Acidic Properties of Metal Oxides, Langmuir, vol.17, issue.22, p.7053, 2001.
DOI : 10.1021/la010707e

C. Crépeau, V. Montouillout, A. Vimont, L. Mariey, T. Cseri et al., Nature, Structure and Strength of the Acidic Sites of Amorphous Silica Alumina:?? An IR and NMR Study, The Journal of Physical Chemistry B, vol.110, issue.31, p.15172, 2006.
DOI : 10.1021/jp062252d

D. R. Neuville, R. Cormier, and D. Massiot, Al environment in tectosilicate and peraluminous glasses: A 27Al MQ-MAS NMR, Raman, and XANES investigation, Geochimica et Cosmochimica Acta, vol.68, issue.24, p.5071, 2004.
DOI : 10.1016/j.gca.2004.05.048

URL : https://hal.archives-ouvertes.fr/hal-00086586

D. Massiot, F. Fayon, M. Capron, I. King, S. Le-calvé et al., Modelling one- and two-dimensional solid-state NMR spectra, Magnetic Resonance in Chemistry, vol.320, issue.1, p.70, 2002.
DOI : 10.1002/mrc.984

B. V. Elsevier, All rights reserved

T. Pore, . And, . Of, . Aluminosilicates, . Made et al., DESIGN OF NEW CATALYSTS References 1, J. Am. Chem. Soc, vol.114, p.10834, 1992.

A. Corma, From Microporous to Mesoporous Molecular Sieve Materials and Their Use in Catalysis, Chemical Reviews, vol.97, issue.6, p.2373, 1997.
DOI : 10.1021/cr960406n

G. J. Soler-illia, C. Sanchez, B. Lebeau, and J. Patarin, Chemical Strategies To Design Textured Materials:?? from Microporous and Mesoporous Oxides to Nanonetworks and Hierarchical Structures, Chemical Reviews, vol.102, issue.11, p.4093, 2002.
DOI : 10.1021/cr0200062