A. Aulehla and B. Herrmann, Segmentation in vertebrates: clock and gradient finally joined, Genes & Development, vol.18, issue.17, pp.2060-2067, 2004.
DOI : 10.1101/gad.1217404

A. Aulehla, C. Wehrle, B. Brand-saberi, R. Kemler, A. Gossler et al., Wnt3a Plays a Major Role in the Segmentation Clock Controlling Somitogenesis, Developmental Cell, vol.4, issue.3, pp.395-406, 2003.
DOI : 10.1016/S1534-5807(03)00055-8

I. Del-barco-barrantes, A. Elia, K. Wunnsch, H. De-angelis, M. Mak et al., Interaction between Notch signalling and Lunatic fringe during somite boundary formation in the mouse, Current Biology, vol.9, issue.9, pp.470-480, 1999.
DOI : 10.1016/S0960-9822(99)80212-7

Y. Bessho and R. Kageyama, Oscillations, clocks and segmentation, Current Opinion in Genetics & Development, vol.13, issue.4, pp.379-384, 2003.
DOI : 10.1016/S0959-437X(03)00083-2

Y. Bessho, H. Hirata, Y. Masamizu, and R. Kageyama, Periodic repression by the bHLH factor Hes7 is an essential mechanism for the somite segmentation clock, Genes & Development, vol.17, issue.12, pp.1451-1456, 2003.
DOI : 10.1101/gad.1092303

B. Christ, H. Jacob, and M. Jacob, Somitogenesis in the chick embryo. Determination of the segmentation direction, Verh Anat Ges, vol.68, pp.573-579, 1974.

R. Conlon, A. Reaume, and J. Rossant, Notch1 is required for the coordinate segmentation of somites, Development, vol.121, pp.1533-1545, 1995.

D. Corral, R. Storey, and K. , Opposing FGF and retinoid pathways: a signalling switch that controls differentiation and patterning onset in the extending vertebrate body axis, BioEssays, vol.212, issue.8, pp.857-869, 2004.
DOI : 10.1002/bies.20080

E. Deuchar and A. Burgess, Somite segmentation in amphibian embryos: is there a transmitted control mechanism?, J Embryol Exp Morphol, vol.17, pp.349-358, 1967.

J. Dubrulle, M. Mcgrew, and O. Pourquie, FGF Signaling Controls Somite Boundary Position and Regulates Segmentation Clock Control of Spatiotemporal Hox Gene Activation, Cell, vol.106, issue.2, pp.219-232, 2001.
DOI : 10.1016/S0092-8674(01)00437-8

Y. Evrard, Y. Lun, A. Aulehla, L. Gan, and R. Johnson, lunatic fringe is an essential mediator of somite segmentation and patterning, Nature, vol.394, pp.377-381, 1998.

J. Galceran, C. Sustmann, S. Hsu, S. Folberth, and R. Grosschedl, LEF1-mediated regulation of Delta-like1 links Wnt and Notch signaling in somitogenesis, Genes & Development, vol.18, issue.22, pp.2718-2723, 2004.
DOI : 10.1101/gad.1249504

T. Greco, S. Takada, M. Newhouse, J. Mcmahon, A. Mcmahon et al., Analysis of the vestigial tail mutation demonstrates that Wnt-3a gene dosage regulates mouse axial development., Genes & Development, vol.10, issue.3, pp.313-324, 1996.
DOI : 10.1101/gad.10.3.313

H. Hirata, Y. Bessho, H. Kokubu, Y. Masamizu, S. Yamada et al., Instability of Hes7 protein is crucial for the somite segmentation clock, Nature Genetics, vol.8, issue.7, pp.750-754, 2004.
DOI : 10.1093/emboj/19.20.5460

M. Hofmann, K. Schuster-gossler, M. Watabe-rudolph, A. Aulehla, B. Herrmann et al., WNT signaling, in synergy with T/TBX6, controls Notch signaling by regulating Dll1 expression in the presomitic mesoderm of mouse embryos, Genes & Development, vol.18, issue.22, pp.2712-2717, 2004.
DOI : 10.1101/gad.1248604

K. Horikawa, K. Ishimatsu, E. Yoshimoto, S. Kondo, and H. Takeda, Noise-resistant and synchronized oscillation of the segmentation clock, Nature, vol.36, issue.7094, pp.719-723, 2006.
DOI : 10.1038/nature04861

M. Hrabe-de-angelis, J. Mcintyre, and A. Gossler, Maintenance of somite borders in mice requires the Delta homologue Dll1, Nature, vol.386, issue.6626, pp.717-721, 1997.
DOI : 10.1038/386717a0

S. Huppert, M. Ilagan, D. Strooper, B. Kopan, and R. , Analysis of Notch Function in Presomitic Mesoderm Suggests a ??-Secretase-Independent Role for Presenilins in Somite Differentiation, Developmental Cell, vol.8, issue.5, pp.677-688, 2005.
DOI : 10.1016/j.devcel.2005.02.019

A. Ishikawa, S. Kitajima, Y. Takahashi, H. Kokubo, J. Kanno et al., Mouse Nkd1, a Wnt antagonist, exhibits oscillatory gene expression in the PSM under the control of Notch signaling, Mechanisms of Development, vol.121, issue.12, pp.1443-1453, 2004.
DOI : 10.1016/j.mod.2004.08.003

Y. Jiang, B. Aerne, L. Smithers, C. Haddon, D. Ish-horowicz et al., Notch signalling and the synchronization of the somite segmentation clock, Nature, vol.408, pp.475-479, 2000.

Y. Kawakami, Y. Raya, M. Raya, Y. Rodr?´guezrodr?´guez-esteban, C. et al., Retinoic acid signalling links leftright asymmetric patterning and bilaterally symmetric somitogenesis in the zebrafish embryo, Nature, 2005.

J. Lewis, Autoinhibition with Transcriptional Delay, Current Biology, vol.13, issue.16, pp.1398-1408, 2003.
DOI : 10.1016/S0960-9822(03)00534-7

P. Liu, M. Wakamiya, M. Shea, U. Albrecht, R. Behringer et al., Requirement for Wnt3 in vertebrate axis formation, Nat Genet, vol.22, pp.361-365, 1999.

M. Maruhashi, T. Van-de-putte, D. Huylebroeck, H. Kondoh, and Y. Higashi, Involvement of SIP1 in positioning of somite boundaries in the mouse embryo, Developmental Dynamics, vol.72, issue.2, pp.332-338, 2005.
DOI : 10.1002/dvdy.20546

Y. Masamizu, T. Ohtsuka, Y. Takashima, H. Nagahara, Y. Takenaka et al., Real-time imaging of the somite segmentation clock: Revelation of unstable oscillators in the individual presomitic mesoderm cells, Proceedings of the National Academy of Sciences, vol.103, issue.5, pp.1313-1318, 2006.
DOI : 10.1073/pnas.0508658103

B. Menkes, S. Sandor, and S. Elias, Researches on the formation of axial organs of the chick embryo, IV. Rev Roum Embryol Cytol, vol.5, pp.131-137, 1968.

M. Nakaya, K. Biris, T. Tsukiyama, S. Jaime, J. Rawls et al., Wnt3alinks left-right determination with segmentation and anteroposterior axis elongation, Development, vol.132, issue.24, pp.5425-5436, 2005.
DOI : 10.1242/dev.02149

C. Oka, T. Nakano, A. Wakeham, J. De-la-pompa, C. Mori et al., Disruption of the mouse RBP-J kappa gene results in early embryonic death, Development, vol.121, pp.3291-3301, 1995.

D. Packard, Chick somite determination: The role of factors in young somites and the segmental plate, Journal of Experimental Zoology, vol.53, issue.2, pp.295-306, 1978.
DOI : 10.1002/jez.1402030212

I. Palmeirim, D. Henrique, D. Ish-horowicz, and . Pourquie´opourquie´o, Avian hairy Gene Expression Identifies a Molecular Clock Linked to Vertebrate Segmentation and Somitogenesis, Cell, vol.91, issue.5, pp.639-648, 1997.
DOI : 10.1016/S0092-8674(00)80451-1

I. Palmeirim, J. Dubrulle, D. Henrique, D. Ish-horowicz, and . Pourquie´opourquie´o, Uncoupling segmentation and somitogenesis in the chick presomitic mesoderm, Developmental Genetics, vol.387, issue.1, pp.77-85, 1998.
DOI : 10.1002/(SICI)1520-6408(1998)23:1<77::AID-DVG8>3.0.CO;2-3

C. Pittendrigh, ON TEMPERATURE INDEPENDENCE IN THE CLOCK SYSTEM CONTROLLING EMERGENCE TIME IN DROSOPHILA, Proceedings of the National Academy of Sciences, vol.40, issue.10, pp.1018-1029, 1954.
DOI : 10.1073/pnas.40.10.1018

O. Pourquie, Vertebrate Somitogenesis, Annual Review of Cell and Developmental Biology, vol.17, issue.1, pp.597-603, 2003.
DOI : 10.1146/annurev.cellbio.17.1.311

Y. Saga and H. Takeda, The making of the somite: molecular events in vertebrate segmentation, Nature Reviews Genetics, vol.2, issue.11, pp.835-845, 2001.
DOI : 10.1038/35098552

W. Satoh, T. Gotoh, Y. Tsunematsu, S. Aizawa, and A. Shimono, Sfrp1 and Sfrp2 regulate anteroposterior axis elongation and somite segmentation during mouse embryogenesis, Development, vol.133, issue.6, pp.989-999, 2006.
DOI : 10.1242/dev.02274

URL : http://dev.biologists.org/cgi/content/short/133/6/989

I. Sirbu and G. Duester, Retinoic-acid signalling in node ectoderm and posterior neural plate directs left???right patterning of somitic mesoderm, Nature Cell Biology, vol.125, issue.3, pp.271-277, 2006.
DOI : 10.1038/ncb1374

C. Stern, S. Fraser, R. Keynes, and D. Primmett, A cell lineage analysis of segmentation in the chick embryo, Development, vol.104, pp.231-244, 1988.

S. Takada, K. Stark, M. Shea, G. Vassileva, J. Mcmahon et al., Wnt-3a regulates somite and tailbud formation in the mouse embryo., Genes & Development, vol.8, issue.2, pp.174-189, 1994.
DOI : 10.1101/gad.8.2.174

P. Tam, The control of somitogenesis in mouse embryos, J.Embryol.Exp Morphol, vol.65, pp.103-128, 1981.

J. Vermot and O. Pourquie, Retinoic acid coordinates somitogenesis and left???right patterning in vertebrate embryos, ???Nature, vol.13, issue.7039, pp.215-220, 2005.
DOI : 10.1038/375787a0

J. Vermot, G. Llamas, J. Fraulob, V. Niederreither, K. Chambon et al., Retinoic Acid Controls the Bilateral Symmetry of Somite Formation in the Mouse Embryo, Science, vol.308, issue.5721, pp.563-566, 2005.
DOI : 10.1126/science.1108363

URL : https://hal.archives-ouvertes.fr/hal-00187818

T. Yamaguchi, K. Harpal, M. Henkemeyer, and J. Rossant, fgfr-1 is required for embryonic growth and mesodermal patterning during mouse gastrulation., Genes & Development, vol.8, issue.24, pp.3032-3044, 1994.
DOI : 10.1101/gad.8.24.3032

H. Yu, B. Jerchow, T. Sheu, B. Liu, F. Costantini et al., The role of Axin2 in calvarial morphogenesis and craniosynostosis, Development, vol.132, issue.8, pp.1995-2005, 2005.
DOI : 10.1242/dev.01786

N. Zhang and T. Gridley, Defects in somite formation in lunatic fringe-deficient mice, Nature, vol.394, pp.374-377, 1998.

I. Palmeirim, D. Henrique, D. Ish-horowicz, and O. Pourquié, Avian hairy Gene Expression Identifies a Molecular Clock Linked to Vertebrate Segmentation and Somitogenesis, Cell, vol.91, issue.5, pp.639-648, 1997.
DOI : 10.1016/S0092-8674(00)80451-1

A. Aulehla, Wnt3a Plays a Major Role in the Segmentation Clock Controlling Somitogenesis, Developmental Cell, vol.4, issue.3, pp.395-406, 2003.
DOI : 10.1016/S1534-5807(03)00055-8

M. L. Dequeant, A Complex Oscillating Network of Signaling Genes Underlies the Mouse Segmentation Clock, Science, vol.314, issue.5805, pp.1595-1598, 2006.
DOI : 10.1126/science.1133141

M. A. Nakaya, Wnt3alinks left-right determination with segmentation and anteroposterior axis elongation, Development, vol.132, issue.24, pp.5425-5436, 2005.
DOI : 10.1242/dev.02149

W. Satoh, T. Gotoh, Y. Tsunematsu, S. Aizawa, and A. Shimono, Sfrp1 and Sfrp2 regulate anteroposterior axis elongation and somite segmentation during mouse embryogenesis, Development, vol.133, issue.6, pp.989-999, 2006.
DOI : 10.1242/dev.02274

URL : http://dev.biologists.org/cgi/content/short/133/6/989

J. Dubrulle, M. J. Mcgrew, and O. Pourquie, FGF Signaling Controls Somite Boundary Position and Regulates Segmentation Clock Control of Spatiotemporal Hox Gene Activation, Cell, vol.106, issue.2, pp.219-232, 2001.
DOI : 10.1016/S0092-8674(01)00437-8

R. Diez-del-corral, Opposing FGF and Retinoid Pathways Control Ventral Neural Pattern, Neuronal Differentiation, and Segmentation during Body Axis Extension, Neuron, vol.40, issue.1, pp.65-79, 2003.
DOI : 10.1016/S0896-6273(03)00565-8

Y. Saga, N. Hata, H. Koseki, and M. M. Taketo, Mesp2: a novel mouse gene expressed in the presegmented mesoderm and essential for segmentation initiation., Genes & Development, vol.11, issue.14, pp.1827-1839, 1997.
DOI : 10.1101/gad.11.14.1827

M. Morimoto, Y. Takahashi, M. Endo, and Y. Saga, The Mesp2 transcription factor establishes segmental borders by suppressing Notch activity, Nature, vol.128, issue.7040, pp.354-359, 2005.
DOI : 10.1038/nbt0102-87

B. Lustig, Negative Feedback Loop of Wnt Signaling through Upregulation of Conductin/Axin2 in Colorectal and Liver Tumors, Molecular and Cellular Biology, vol.22, issue.4, pp.1184-1193, 2002.
DOI : 10.1128/MCB.22.4.1184-1193.2002

E. H. Jho, Wnt/??-Catenin/Tcf Signaling Induces the Transcription of Axin2, a Negative Regulator of the Signaling Pathway, Molecular and Cellular Biology, vol.22, issue.4, pp.1172-1183, 2002.
DOI : 10.1128/MCB.22.4.1172-1183.2002

V. Brault, Inactivation of the ?-catenin gene by Wnt1-Cre-mediated deletion results in dramatic brain malformation and failure of craniofacial development, Development, vol.128, pp.1253-1264, 2001.
URL : https://hal.archives-ouvertes.fr/hal-00095511

M. D. Gordon and R. Nusse, Wnt Signaling: Multiple Pathways, Multiple Receptors, and Multiple Transcription Factors, Journal of Biological Chemistry, vol.281, issue.32, pp.22429-22433, 2006.
DOI : 10.1074/jbc.R600015200

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.419.8965

S. Maretto, Mapping Wnt/??-catenin signaling during mouse development and in colorectal tumors, Proc. Natl Acad. Sci. USA, pp.3299-3304, 2003.
DOI : 10.1073/pnas.0434590100

P. H. White, D. R. Farkas, E. E. Mcfadden, and D. L. Chapman, Defective somite patterning in mouse embryos with reduced levels of Tbx6, Development, vol.130, issue.8, pp.1681-1690, 2003.
DOI : 10.1242/dev.00367

L. Wittler, Expression of Msgn1 in the presomitic mesoderm is controlled by synergism of WNT signalling and Tbx6, EMBO reports, vol.126, issue.8, pp.784-789, 2007.
DOI : 10.1006/dbio.1997.8502

M. Hofmann, WNT signaling, in synergy with T/TBX6, controls Notch signaling by regulating Dll1 expression in the presomitic mesoderm of mouse embryos, Genes & Development, vol.18, issue.22, pp.2712-2717, 2004.
DOI : 10.1101/gad.1248604

J. Galceran, C. Sustmann, S. C. Hsu, S. Folberth, and R. Grosschedl, LEF1-mediated regulation of Delta-like1 links Wnt and Notch signaling in somitogenesis, Genes & Development, vol.18, issue.22, pp.2718-2723, 2004.
DOI : 10.1101/gad.1249504

H. Roehl and C. Nusslein-volhard, Zebrafish pea3 and erm are general targets of FGF8 signaling, Current Biology, vol.11, issue.7, pp.503-507, 2001.
DOI : 10.1016/S0960-9822(01)00143-9

R. Burgess, A. Rawls, D. Brown, A. Bradley, and E. N. Olson, Requirement of the paraxis gene for somite formation and musculoskeletal patterning, Nature, vol.384, issue.6609, pp.570-573, 1996.
DOI : 10.1038/384570a0

K. Niederreither, V. Subbarayan, P. Dolle, and P. Chambon, Embryonic retinoic acid synthesis is essential for early mouse post-implantation development, Nature Genetics, vol.21, issue.4, pp.444-448, 1999.
DOI : 10.1038/7788

Y. Nakajima, M. Morimoto, Y. Takahashi, H. Koseki, and Y. Saga, Identification of Epha4 enhancer required for segmental expression and the regulation by Mesp2, Development, vol.133, issue.13, pp.2517-2525, 2006.
DOI : 10.1242/dev.02422

Y. Bessho, G. Miyoshi, R. Sakata, and R. Kageyama, Hes7: a bHLH-type repressor gene regulated by Notch and expressed in the presomitic mesoderm, Genes to Cells, vol.269, issue.2, pp.175-185, 2001.
DOI : 10.1038/28625

A. V. Morales, Y. Yasuda, and D. Ish-horowicz, Periodic Lunatic fringe Expression Is Controlled during Segmentation by a Cyclic Transcriptional Enhancer Responsive to Notch Signaling, Developmental Cell, vol.3, issue.1, pp.63-74, 2002.
DOI : 10.1016/S1534-5807(02)00211-3

S. E. Cole, J. M. Levorse, S. M. Tilghman, and T. Vogt, Clock Regulatory Elements Control Cyclic Expression of Lunatic fringe during Somitogenesis, Developmental Cell, vol.3, issue.1, pp.75-84, 2002.
DOI : 10.1016/S1534-5807(02)00212-5

A. Sawada, MAPK signalling is a crucial positional cue in somite boundary formation, Development, vol.128, pp.4873-4880, 2001.

M. C. Delfini, J. Dubrulle, P. Malapert, J. Chal, and O. Pourquie, Control of the segmentation process by graded MAPK/ERK activation in the chick embryo, Proc. Natl Acad. Sci. USA, pp.11343-11348, 2005.
DOI : 10.1073/pnas.0502933102

M. Morkel, ??-Catenin regulates Cripto- and Wnt3-dependent gene expression programs in mouse axis and mesoderm formation, Development, vol.130, issue.25, pp.6283-6294, 2003.
DOI : 10.1242/dev.00859

Y. Niwa, The Initiation and Propagation of Hes7 Oscillation Are Cooperatively Regulated by Fgf and Notch Signaling in the Somite Segmentation Clock, Developmental Cell, vol.13, issue.2, pp.298-304, 2007.
DOI : 10.1016/j.devcel.2007.07.013

M. B. Wahl, C. Deng, M. Lewandoski, and O. Pourquie, FGF signaling acts upstream of the NOTCH and WNT signaling pathways to control segmentation clock oscillations in mouse somitogenesis, Development, vol.134, issue.22, pp.4033-4041, 2007.
DOI : 10.1242/dev.009167

A. Hecht and R. Kemler, Curbing the nuclear activities of ??-catenin, EMBO reports, vol.4, issue.1, pp.24-28, 2000.
DOI : 10.1093/embo-reports/kvd012

S. Wang and K. A. Jones, CK2 Controls the Recruitment of Wnt Regulators to Target Genes In Vivo, Current Biology, vol.16, issue.22, pp.2239-2244, 2006.
DOI : 10.1016/j.cub.2006.09.034

Y. Masamizu, Real-time imaging of the somite segmentation clock: Revelation of unstable oscillators in the individual presomitic mesoderm cells, Proc. Natl Acad. Sci. USA 103, pp.1313-1318, 2006.
DOI : 10.1073/pnas.0508658103

T. Nagai, A variant of yellow fluorescent protein with fast and efficient maturation for cell-biological applications, Nature Biotechnology, vol.20, issue.1, pp.87-90, 2002.
DOI : 10.1038/nbt0102-87

E. A. Jones, Dynamic in vivo imaging of postimplantation mammalian embryos using whole embryo culture, genesis, vol.220, issue.4, pp.228-235, 2002.
DOI : 10.1002/gene.10162

R. 1. Yoon, J. K. Moon, R. T. Wold, and B. , The bHLH Class Protein pMesogenin1 Can Specify Paraxial Mesoderm Phenotypes, Developmental Biology, vol.222, issue.2, pp.376-391, 2000.
DOI : 10.1006/dbio.2000.9717

D. L. Chapman, I. Agulnik, S. Hancock, L. M. Silver, and V. Papaioannou, Tbx6,a Mouse T-Box Gene Implicated in Paraxial Mesoderm Formation at Gastrulation, Developmental Biology, vol.180, issue.2, pp.534-542, 1996.
DOI : 10.1006/dbio.1996.0326

A. Chotteau-lelievre, X. Desbiens, H. Pelczar, P. A. Defossez, and Y. De-launoit, Differential expression patterns of the PEA3 group transcription factors through murine embryonic development, Oncogene, vol.15, issue.8, pp.937-952, 1997.
DOI : 10.1038/sj.onc.1201261

P. H. Crossley and G. Martin, The mouse Fgf8 gene encodes a family of polypeptides and is expressed in regions that direct outgrowth and patterning in the developing embryo, Development, vol.121, pp.439-451, 1995.

M. Hrabe-de-angelis, J. Mcintyre, and A. Gossler, Maintenance of somite borders in mice requires the Delta homologue Dll1, Nature, vol.386, issue.6626, pp.717-721, 1997.
DOI : 10.1038/386717a0

R. Burgess, A. Rawls, D. Brown, A. Bradley, and E. N. Olson, Requirement of the paraxis gene for somite formation and musculoskeletal patterning, Nature, vol.384, issue.6609, pp.570-573, 1996.
DOI : 10.1038/384570a0

K. Niederreither, P. Mccaffery, U. C. Drager, P. Chambon, and P. Dolle, Restricted expression and retinoic acid-induced downregulation of the retinaldehyde dehydrogenase type 2 (RALDH-2) gene during mouse development, Mechanisms of Development, vol.62, issue.1, pp.67-78, 1997.
DOI : 10.1016/S0925-4773(96)00653-3

A. Mansouri, Paired-related murine homeobox gene expressed in the developing sclerotome, kidney, and nervous system, Developmental Dynamics, vol.48, issue.1, pp.53-65, 1997.
DOI : 10.1002/(SICI)1097-0177(199709)210:1<53::AID-AJA6>3.0.CO;2-0

A. Aulehla and R. L. Johnson, Dynamic Expression oflunatic fringeSuggests a Link betweennotchSignaling and an Autonomous Cellular Oscillator Driving Somite Segmentation, Developmental Biology, vol.207, issue.1, pp.49-61, 1999.
DOI : 10.1006/dbio.1998.9164

M. L. Dequeant, A complex oscillating network of signaling genes underlies the mouse segmentation clock Mesp2: a novel mouse gene expressed in the presegmented mesoderm and essential for segmentation initiation, Science Genes Dev, vol.314, issue.11, pp.1595-1598, 1997.

J. A. Belo, Cerberus-like is a secreted factor with neuralizing activity expressed in the anterior primitive endoderm of the mouse gastrula, Mechanisms of Development, vol.68, issue.1-2, pp.45-57, 1997.
DOI : 10.1016/S0925-4773(97)00125-1

M. Maruhashi, T. Van-de-putte, D. Huylebroeck, H. Kondoh, and Y. Higashi, Involvement of SIP1 in positioning of somite boundaries in the mouse embryo, Developmental Dynamics, vol.72, issue.2, pp.332-338, 2005.
DOI : 10.1002/dvdy.20546

N. Harada, Intestinal polyposis in mice with a dominant stable mutation of the beta -catenin gene, The EMBO Journal, vol.18, issue.21, pp.5931-5942, 1999.
DOI : 10.1093/emboj/18.21.5931

V. Brault, Inactivation of the beta-catenin gene by Wnt1-Cre-mediated deletion results in dramatic brain malformation and failure of craniofacial development, Development, vol.128, pp.1253-1264, 2001.
URL : https://hal.archives-ouvertes.fr/hal-00095511

A. O. Perantoni, Inactivation of FGF8 in early mesoderm reveals an essential role in kidney development, Development, vol.132, issue.17, pp.3859-3871, 2005.
DOI : 10.1242/dev.01945

S. Maretto, Mapping Wnt/??-catenin signaling during mouse development and in colorectal tumors, Proceedings of the National Academy of Sciences, vol.100, issue.6, pp.3299-3304, 2003.
DOI : 10.1073/pnas.0434590100

X. Xu, W. Qiao, C. Li, and C. Deng, Generation of Fgfr1 conditional knockout mice, genesis, vol.32, issue.2, pp.85-86, 2002.
DOI : 10.1002/gene.10028.abs

X. Li, Generation of Destabilized Green Fluorescent Protein as a Transcription Reporter, Journal of Biological Chemistry, vol.273, issue.52, pp.34970-34975, 1998.
DOI : 10.1074/jbc.273.52.34970

A. Aulehla, J. , and R. L. , Dynamic Expression oflunatic fringeSuggests a Link betweennotchSignaling and an Autonomous Cellular Oscillator Driving Somite Segmentation, Developmental Biology, vol.207, issue.1, pp.49-61, 1999.
DOI : 10.1006/dbio.1998.9164

Y. Bessho, H. Hirata, Y. Masamizu, and R. Kageyama, Periodic repression by the bHLH factor Hes7 is an essential mechanism for the somite segmentation clock, Genes & Development, vol.17, issue.12, 2003.
DOI : 10.1101/gad.1092303

A. Borycki, A. M. Brown, E. , and C. P. , Shh and Wnt signaling pathways converge to control Gli gene activation in avian somites, Development, vol.127, pp.2075-2087, 2000.

A. G. Borycki, L. Mendham, E. , and C. , Control of somite patterning by Sonic hedgehog and its downstream signal response genes, Development, vol.125, pp.777-790, 1998.

B. Brand-saberi, C. Ebensperger, J. Wilting, R. Balling, C. et al., The ventralizing effect of the notochord on somite differentiation in chick embryos, Anatomy and Embryology, vol.188, issue.3, pp.239-245, 1993.
DOI : 10.1007/BF00188215

M. Bronner-fraser, Analysis of the early stages of trunk neural crest migration in avian embryos using monoclonal antibody HNK-1, Developmental Biology, vol.115, issue.1, pp.44-55, 1986.
DOI : 10.1016/0012-1606(86)90226-5

R. Burgess, A. Rawls, D. Brown, A. Bradley, and E. N. Olson, Requirement of the paraxis gene for somite formation and musculoskeletal patterning, Nature, vol.384, issue.6609, pp.570-573, 1996.
DOI : 10.1038/384570a0

B. Christ, R. Huang, and M. Scaal, Amniote somite derivatives, Developmental Dynamics, vol.194, issue.9, pp.2382-2396, 2007.
DOI : 10.1002/dvdy.21189

B. Christ, H. J. Jacob, J. , and M. , Somitogenesis in the chick embryo. Determination of the segmentation direction, pp.573-579, 1974.

B. Christ and C. P. Ordahl, Early stages of chick somite development, Anatomy and Embryology, vol.188, issue.5, pp.381-396, 1995.
DOI : 10.1007/BF00304424

D. L. Cockroft, A comparative and historical review of culture methods for vertebrates, Int J Dev Biol, vol.41, pp.127-137, 1997.

S. E. Cole, J. M. Levorse, S. M. Tilghman, and T. F. Vogt, Clock Regulatory Elements Control Cyclic Expression of Lunatic fringe during Somitogenesis, Developmental Cell, vol.3, issue.1, pp.75-84, 2002.
DOI : 10.1016/S1534-5807(02)00212-5

J. Cooke, Control of somite number during morphogenesis of a vertebrate, Xenopus laevis, Nature, vol.18, issue.5497, pp.196-199, 1975.
DOI : 10.1038/254196a0

J. Cooke, The Problem of Periodic Patterns in Embryos, Philosophical Transactions of the Royal Society B: Biological Sciences, vol.295, issue.1078, pp.509-524, 1981.
DOI : 10.1098/rstb.1981.0157

J. Cooke and E. C. Zeeman, A clock and wavefront model for control of the number of repeated structures during animal morphogenesis, Journal of Theoretical Biology, vol.58, issue.2, pp.455-476, 1976.
DOI : 10.1016/S0022-5193(76)80131-2

K. M. Correia and R. A. Conlon, Surface ectoderm is necessary for the morphogenesis of somites, Mechanisms of Development, vol.91, issue.1-2, pp.19-30, 2000.
DOI : 10.1016/S0925-4773(99)00260-9

J. K. Dale, P. Malapert, J. Chal, G. Vilhais-neto, M. Maroto et al., Oscillations of the Snail Genes in the Presomitic Mesoderm Coordinate Segmental Patterning and Morphogenesis in Vertebrate Somitogenesis, Developmental Cell, vol.10, issue.3, pp.355-366, 2006.
DOI : 10.1016/j.devcel.2006.02.011

M. C. Delfini, J. Dubrulle, P. Malapert, J. Chal, and O. Pourquie, Control of the segmentation process by graded MAPK/ERK activation in the chick embryo, Proceedings of the National Academy of Sciences, vol.102, issue.32, pp.11343-11348, 2005.
DOI : 10.1073/pnas.0502933102

W. Denk and K. Svoboda, Photon Upmanship: Why Multiphoton Imaging Is More than a Gimmick, Neuron, vol.18, issue.3, pp.351-357, 1997.
DOI : 10.1016/S0896-6273(00)81237-4

URL : http://doi.org/10.1016/s0896-6273(00)81237-4

M. L. Dequeant, E. Glynn, K. Gaudenz, M. Wahl, J. Chen et al., A Complex Oscillating Network of Signaling Genes Underlies the Mouse Segmentation Clock, Science, vol.314, issue.5805, pp.1595-1598, 2006.
DOI : 10.1126/science.1133141

R. Diez-del-corral, I. Olivera-martinez, A. Goriely, E. Gale, M. Maden et al., Opposing FGF and Retinoid Pathways Control Ventral Neural Pattern, Neuronal Differentiation, and Segmentation during Body Axis Extension, Neuron, vol.40, issue.1, pp.65-79, 2003.
DOI : 10.1016/S0896-6273(03)00565-8

J. Dubrulle, M. J. Mcgrew, and O. Pourquie, FGF Signaling Controls Somite Boundary Position and Regulates Segmentation Clock Control of Spatiotemporal Hox Gene Activation, Cell, vol.106, issue.2, pp.219-232, 2001.
DOI : 10.1016/S0092-8674(01)00437-8

J. Dubrulle and O. Pourquie, fgf8 mRNA decay establishes a gradient that couples axial elongation to patterning in the vertebrate embryo, Nature, vol.427, issue.6973, pp.419-422, 2004.
DOI : 10.1038/nature02216

Y. A. Evrard, Y. Lun, A. Aulehla, L. Gan, J. et al., lunatic fringe is an essential mediator of somite segmentation and patterning, Nature, vol.394, pp.377-381, 1998.

J. Feller, A. Schneider, K. Schuster-gossler, and A. Gossler, Noncyclic Notch activity in the presomitic mesoderm demonstrates uncoupling of somite compartmentalization and boundary formation, Genes & Development, vol.22, issue.16, pp.2166-2171, 2008.
DOI : 10.1101/gad.480408

H. Forsberg, F. Crozet, and N. A. Brown, Waves of mouse Lunatic fringe expression, in four-hour cycles at two-hour intervals, precede somite boundary formation, Current Biology, vol.8, issue.18, pp.1027-1030, 1998.
DOI : 10.1016/S0960-9822(07)00424-1

M. Gajewski, D. Sieger, B. Alt, C. Leve, S. Hans et al., Anterior and posterior waves of cyclic her1 gene expression are differentially regulated in the presomitic mesoderm of zebrafish, Development, vol.130, issue.18, pp.4269-4278, 2003.
DOI : 10.1242/dev.00627

F. Giudicelli, E. M. Ozbudak, G. J. Wright, L. , and J. , Setting the Tempo in Development: An Investigation of the Zebrafish Somite Clock Mechanism, PLoS Biology, vol.13, issue.6, p.150, 2007.
DOI : 10.1371/journal.pbio.0050150.g009

A. Goldbeter, D. Gonze, and O. Pourquie, Sharp developmental thresholds defined through bistability by antagonistic gradients of retinoic acid and FGF signaling, Developmental Dynamics, vol.6, issue.6, pp.1495-1508, 2007.
DOI : 10.1002/dvdy.21193

C. Gomez, E. M. Ozbudak, J. Wunderlich, D. Baumann, J. Lewis et al., Control of segment number in vertebrate embryos, Nature, vol.375, issue.7202, 2008.
DOI : 10.1038/nature07020

V. Hilgers, O. Pourquie, and J. Dubrulle, In vivo analysis of mRNA stability using the Tet-Off system in the chicken embryo, Developmental Biology, vol.284, issue.2, pp.292-300, 2005.
DOI : 10.1016/j.ydbio.2005.05.021

H. Hirata, Y. Bessho, H. Kokubu, Y. Masamizu, S. Yamada et al., Instability of Hes7 protein is crucial for the somite segmentation clock, Nature Genetics, vol.8, issue.7, pp.750-754, 2004.
DOI : 10.1093/emboj/19.20.5460

S. A. Holley, R. Geisler, and C. Nusslein-volhard, Control of her1 expression during zebrafish somitogenesis by a delta-dependent oscillator and an independent wavefront activity, Genes Dev, vol.14, pp.1678-1690, 2000.

S. A. Holley, D. Julich, G. J. Rauch, R. Geisler, and C. Nusslein-volhard, her1 and the notch pathway function within the oscillator mechanism that regulates zebrafish somitogenesis, Development, vol.129, pp.1175-1183, 2002.

K. Horikawa, K. Ishimatsu, E. Yoshimoto, S. Kondo, and H. Takeda, Noise-resistant and synchronized oscillation of the segmentation clock, Nature, vol.36, issue.7094, pp.719-723, 2006.
DOI : 10.1038/nature04861

R. Huang, Q. Zhi, A. Neubüser, T. S. Müller, B. Brand-saberi et al., Function of Somite and Somitocoele Cells in the Formation of the Vertebral Motion Segment in Avian Embryos, Cells Tissues Organs, vol.155, issue.4, pp.231-241, 1996.
DOI : 10.1159/000147811

M. Jacob, B. Christ, J. , and H. J. , Regional determination of the paraxial mesoderm in young chick embryos, pp.263-269, 1975.

Y. J. Jiang, B. L. Aerne, L. Smithers, C. Haddon, D. Ish-horowicz et al., Notch signalling and the synchronization of the somite segmentation clock, Nature, vol.408, pp.475-479, 2000.

E. A. Jones, D. Crotty, P. M. Kulesa, C. W. Waters, M. H. Baron et al., Dynamic in vivo imaging of postimplantation mammalian embryos using whole embryo culture, genesis, vol.220, issue.4, pp.228-235, 2002.
DOI : 10.1002/gene.10162

C. Jouve, I. Palmeirim, D. Henrique, J. Beckers, A. Gossler et al., Notch signalling is required for cyclic expression of the hairy-like gene HES1 in the presomitic mesoderm, Development, vol.127, pp.1421-1429, 2000.

D. Julich, H. Lim, C. Round, J. Nicolaije, C. Schroeder et al., beamter/deltaC and the role of Notch ligands in the zebrafish somite segmentation, hindbrain neurogenesis and hypochord differentiation, Developmental Biology, vol.286, issue.2, pp.391-404, 2005.
DOI : 10.1016/j.ydbio.2005.06.040

R. J. Keynes and C. D. Stern, Segmentation in the vertebrate nervous system, Nature, vol.7, issue.5980, pp.786-789, 1984.
DOI : 10.1038/310786a0

R. J. Keynes and C. D. Stern, Mechanisms of vertebrate segmentation, Development, vol.103, pp.413-429, 1988.

M. Kieny, A. Mauger, and P. Sengel, Early regionalization of the somitic mesoderm as studied by the development of the axial skeleton of the chick embryo, Developmental Biology, vol.28, issue.1, pp.142-161, 1972.
DOI : 10.1016/0012-1606(72)90133-9

M. Kmita and D. Duboule, Organizing Axes in Time and Space; 25 Years of Colinear Tinkering, Science, vol.301, issue.5631, pp.331-333, 2003.
DOI : 10.1126/science.1085753

M. Leitges, L. Neidhardt, B. Haenig, B. G. Herrmann, and A. Kispert, The paired homeobox gene uncx4.1 specifies pedicles, transverse processes and proximal ribs of the vertebral column, Process Citation]. Development, pp.2259-2267, 2000.

X. Li, X. Zhao, Y. Fang, X. Jiang, T. Duong et al., Generation of Destabilized Green Fluorescent Protein as a Transcription Reporter, Journal of Biological Chemistry, vol.273, issue.52, pp.34970-34975, 1998.
DOI : 10.1074/jbc.273.52.34970

Y. Li, U. Fenger, C. Niehrs, and N. Pollet, Cyclic expression of esr9 gene in Xenopus presomitic mesoderm, Differentiation, vol.71, issue.1, pp.83-89, 2003.
DOI : 10.1046/j.1432-0436.2003.700608.x

Y. Masamizu, T. Ohtsuka, Y. Takashima, H. Nagahara, Y. Takenaka et al., Real-time imaging of the somite segmentation clock: Revelation of unstable oscillators in the individual presomitic mesoderm cells, Proceedings of the National Academy of Sciences, vol.103, issue.5, pp.1313-1318, 2006.
DOI : 10.1073/pnas.0508658103

M. J. Mcgrew, J. K. Dale, S. Fraboulet, and O. Pourquie, The lunatic Fringe gene is a target of the molecular clock linked to somite segmentation in avian embryos, Current Biology, vol.8, issue.17, pp.979-982, 1998.
DOI : 10.1016/S0960-9822(98)70401-4

D. C. Mcintyre, S. Rakshit, A. R. Yallowitz, L. Loken, L. Jeannotte et al., Hox patterning of the vertebrate rib cage, Development, vol.134, issue.16, pp.2981-2989, 2007.
DOI : 10.1242/dev.007567

H. Meinhardt, Models of biological pattern formation, 1982.

H. Meinhardt, Models of Segmentation, Somites in Developing Embryos, pp.179-191, 1986.
DOI : 10.1007/978-1-4899-2013-3_14

B. Menkes, S. Sandor, E. , and S. , Researches on the formation of axial organs of the chick embryo, IV. Rev Roum Embryol Cytol, vol.5, pp.131-137, 1968.

A. V. Morales, Y. Yasuda, and D. Ish-horowicz, Periodic Lunatic fringe Expression Is Controlled during Segmentation by a Cyclic Transcriptional Enhancer Responsive to Notch Signaling, Developmental Cell, vol.3, issue.1, pp.63-74, 2002.
DOI : 10.1016/S1534-5807(02)00211-3

M. Morimoto, Y. Takahashi, M. Endo, and Y. Saga, The Mesp2 transcription factor establishes segmental borders by suppressing Notch activity, Nature, vol.128, issue.7040, pp.354-359, 2005.
DOI : 10.1038/nbt0102-87

T. Nagai, K. Ibata, E. S. Park, M. Kubota, K. Mikoshiba et al., A variant of yellow fluorescent protein with fast and efficient maturation for cell-biological applications, Nature Biotechnology, vol.20, issue.1, pp.87-90, 2002.
DOI : 10.1038/nbt0102-87

M. A. Nakaya, K. Biris, T. Tsukiyama, S. Jaime, J. A. Rawls et al., Wnt3alinks left-right determination with segmentation and anteroposterior axis elongation, Development, vol.132, issue.24, pp.5425-5436, 2005.
DOI : 10.1242/dev.02149

D. A. New, DEVELOPMENT OF RAT EMBRYOS CULTURED IN BLOOD SERA, Reproduction, vol.12, issue.3, pp.509-524, 1966.
DOI : 10.1530/jrf.0.0120509

D. A. New, P. T. Coppola, C. , and D. L. , Comparison of growth in vitro and in vivo of post-implantation rat embryos, J Embryol Exp Morphol, vol.36, pp.133-144, 1976.

D. A. New, P. T. Coppola, C. , and D. L. , Improved development of head-fold rat embryos in culture resulting from low oxygen and modifications of the culture serum, Reproduction, vol.48, issue.1, pp.219-222, 1976.
DOI : 10.1530/jrf.0.0480219

A. C. Oates and R. K. Ho, Hairy/E(spl)-related (Her) genes are central components of the segmentation oscillator and display redundancy with the Delta/Notch signaling pathway in the formation of anterior segmental boundaries in the zebrafish, Development, vol.129, pp.2929-2946, 2002.

C. P. Ordahl, Myogenic lineages within the developing somite, pp.165-176, 1993.

E. M. Ozbudak, L. , and J. , Notch Signalling Synchronizes the Zebrafish Segmentation Clock but Is Not Needed To Create Somite Boundaries, PLoS Genetics, vol.90, issue.2, p.15, 2008.
DOI : 10.1371/journal.pgen.0040015.sd001

D. S. Packard, Chick somite determination: The role of factors in young somites and the segmental plate, Journal of Experimental Zoology, vol.53, issue.2, pp.295-306, 1978.
DOI : 10.1002/jez.1402030212

I. Palmeirim, D. Henrique, D. Ish-horowicz, and O. Pourquié, Avian hairy Gene Expression Identifies a Molecular Clock Linked to Vertebrate Segmentation and Somitogenesis, Cell, vol.91, issue.5, pp.639-648, 1997.
DOI : 10.1016/S0092-8674(00)80451-1

O. Pourquie, The vertebrate segmentation clock, Journal of Anatomy, vol.394, issue.1-2, pp.169-175, 2001.
DOI : 10.1046/j.1469-7580.2001.19910169.x

O. Pourquie, M. Coltey, C. Breant, L. Douarin, and N. M. , Control of somite patterning by signals from the lateral plate., Proceedings of the National Academy of Sciences, vol.92, issue.8, pp.3219-3223, 1995.
DOI : 10.1073/pnas.92.8.3219

O. Pourquie, C. M. Fan, M. Coltey, E. Hirsinger, Y. Watanabe et al., Lateral and Axial Signals Involved in Avian Somite Patterning: A Role for BMP4, Cell, vol.84, issue.3, pp.461-471, 1996.
DOI : 10.1016/S0092-8674(00)81291-X

O. Pourquie, T. , and P. P. , A Nomenclature for Prospective Somites and Phases of Cyclic Gene Expression in the Presomitic Mesoderm, Developmental Cell, vol.1, issue.5, pp.619-620, 2001.
DOI : 10.1016/S1534-5807(01)00082-X

R. Remak, Untersuchungen über die entwicklung der Wirbeltiere, 1850.

M. Rickmann, J. W. Fawcett, and R. J. Keynes, The migration of neural crest cells and the growth of motor axons through the rostral half of the chick somite, JEmbryolExpMorphol, vol.90, pp.437-455, 1985.

P. Rifes, L. Carvalho, C. Lopes, R. P. Andrade, G. Rodrigues et al., Redefining the role of ectoderm in somitogenesis: a player in the formation of the fibronectin matrix of presomitic mesoderm, Development, vol.134, issue.17, pp.3155-3165, 2007.
DOI : 10.1242/dev.003665

Y. Saga and H. Takeda, The making of the somite: molecular events in vertebrate segmentation, Nature Reviews Genetics, vol.2, issue.11, pp.835-845, 2001.
DOI : 10.1038/35098552

W. Satoh, T. Gotoh, Y. Tsunematsu, S. Aizawa, and A. Shimono, Sfrp1 and Sfrp2 regulate anteroposterior axis elongation and somite segmentation during mouse embryogenesis, Development, vol.133, issue.6, pp.989-999, 2006.
DOI : 10.1242/dev.02274

URL : http://dev.biologists.org/cgi/content/short/133/6/989

W. Satoh, M. Matsuyama, H. Takemura, S. Aizawa, and A. Shimono, Sfrp1, Sfrp2, and Sfrp5 regulate the Wnt/??-catenin and the planar cell polarity pathways during early trunk formation in mouse, genesis, vol.90, issue.2, pp.92-103, 2008.
DOI : 10.1002/dvg.20369

. Fgf, MAPK signalling is a crucial positional cue in somite boundary formation, Development, vol.128, pp.4873-4880

T. H. Shepard, T. Tanimura, and H. W. Park, Glucose absorption and utilization by rat embryos, Int J Dev Biol, vol.41, pp.307-314, 1997.

E. T. Shifley, K. M. Vanhorn, A. Perez-balaguer, J. D. Franklin, M. Weinstein et al., Oscillatory lunatic fringe activity is crucial for segmentation of the anterior but not posterior skeleton, Development, vol.135, issue.5, pp.899-908, 2008.
DOI : 10.1242/dev.006742

D. Sieger, D. Tautz, and M. Gajewski, her11 is involved in the somitogenesis clock in zebrafish, Development Genes and Evolution, vol.214, issue.8, pp.393-406, 2004.
DOI : 10.1007/s00427-004-0427-z

J. Sierra, T. Yoshida, C. A. Joazeiro, and K. A. Jones, The APC tumor suppressor counteracts beta-catenin activation and H3K4 methylation at Wnt target genes, Genes & Development, vol.20, issue.5, pp.586-600, 2006.
DOI : 10.1101/gad.1385806

J. M. Squirrell, D. L. Wokosin, J. G. White, and B. D. Bavister, Long-term twophoton fluorescence imaging of mammalian embryos without compromising viability, 1999.

R. Suriben, D. A. Fisher, C. , and B. N. , in the somitogenesis clock of mice, Developmental Dynamics, vol.394, issue.11, pp.3177-3183, 2006.
DOI : 10.1002/dvdy.20968

H. Suzuki, D. N. Watkins, K. W. Jair, K. E. Schuebel, S. D. Markowitz et al., Epigenetic inactivation of SFRP genes allows constitutive WNT signaling in colorectal cancer, Nature Genetics, vol.36, issue.4, pp.417-422, 2004.
DOI : 10.1038/ng1330

Y. Takahashi, T. Inoue, A. Gossler, and Y. Saga, Feedback loops comprising Dll1, Dll3 and Mesp2, and differential involvement of Psen1 are essential for rostrocaudal patterning of somites, Development, vol.130, issue.18, pp.4259-4268, 2003.
DOI : 10.1242/dev.00629

Y. Takahashi, Y. Yasuhiko, S. Kitajima, J. Kanno, and Y. Saga, Appropriate suppression of Notch signaling by Mesp factors is essential for stripe pattern formation leading to segment boundary formation, Developmental Biology, vol.304, issue.2, pp.593-603, 2007.
DOI : 10.1016/j.ydbio.2007.01.007

P. P. Tam, The control of somitogenesis in mouse embryos, JEmbryolExpMorphol, vol.65, pp.103-128, 1981.

P. P. Tam and S. S. Tan, The somitogenetic potential of cells in the primitive streak and the tail bud of the organogenesis-stage mouse embryo, Development, vol.115, pp.703-715, 1992.

A. M. Turing, The Chemical Basis of Morphogenesis, Philosophical Transactions of the Royal Society B: Biological Sciences, vol.237, issue.641, pp.37-72, 1952.
DOI : 10.1098/rstb.1952.0012

M. B. Wahl, C. Deng, M. Lewandoski, and O. Pourquie, FGF signaling acts upstream of the NOTCH and WNT signaling pathways to control segmentation clock oscillations in mouse somitogenesis, Development, vol.134, issue.22, pp.4033-4041, 2007.
DOI : 10.1242/dev.009167

S. Wang and K. A. Jones, CK2 Controls the Recruitment of Wnt Regulators to Target Genes In Vivo, Current Biology, vol.16, issue.22, pp.2239-2244, 2006.
DOI : 10.1016/j.cub.2006.09.034

D. M. Wellik and M. R. Capecchi, Hox10 and Hox11 Genes Are Required to Globally Pattern the Mammalian Skeleton, Science, vol.301, issue.5631, pp.363-367, 2003.
DOI : 10.1126/science.1085672

K. Willert and K. A. Jones, Wnt signaling: is the party in the nucleus?, Genes & Development, vol.20, issue.11, pp.1394-1404, 2006.
DOI : 10.1101/gad.1424006

L. Wolpert, R. Beddington, T. Jessell, P. Lawrence, E. Meyerowitz et al., Principles of Development, 2003.

N. Zhang and T. Gridley, Defects in somite formation in lunatic fringe-deficient mice, Nature, vol.394, pp.374-377, 1998.

A. M. Zubiaga, J. G. Belasco, and M. E. Greenberg, The nonamer UUAUUUAUU is the key AU-rich sequence motif that mediates mRNA degradation., Molecular and Cellular Biology, vol.15, issue.4, pp.2219-2230, 1995.
DOI : 10.1128/MCB.15.4.2219