M. Vidal-sétif, C. Rio, R. Mévrel, and E. Pilote, Retour d'expérience BT, Expertise ONERA, p.8552, 2003.

M. Leckie, S. Krämer, M. Rühle, and C. G. Levi, Thermochemical compatibility between alumina and ZrO2???GdO3/2 thermal barrier coatings, Acta Materialia, vol.53, issue.11, pp.3281-3292, 2005.
DOI : 10.1016/j.actamat.2005.03.035

R. Nicholls, R. G. Wellman, and M. J. Deakin, Erosion of thermal barrier coatings, Materials at High Temperatures, vol.343, issue.1, pp.2-207, 2003.
DOI : 10.1016/0043-1648(95)07157-1

«. Mévrel, Barrières thermiques pour aubages de turbines aéronautiques, Etat de l 'art et perspectives », La Recherche Aérospatiale, pp.5-6, 1996.

. L. Sata, S. Gibby, F. P. Spinner, L. Knudsen, and . Stone, 16 http://www.materials-unaxis.com 17 O. Lavigne The effect of Plutonium Content on the thermal Conductivity of (U,Pu)O 2 solid solutions Chapitre I Sélection d'un oxyde 23Elastic Constant-Porosity Relations for Polycrystalline Thoria, High temperature vaporizations of single oxides, pp.34-233, 1963.

L. Dole, O. Hunter, and C. J. Wooge, Elastic Properties of Monoclinic Hafnium Oxide at Room Temperature, Journal of the American Ceramic Society, vol.56, issue.4, pp.488-490, 1977.
DOI : 10.1016/0022-3115(76)90052-0

R. J. Lutique, V. V. Konings, J. Rondinella, T. Somers, and . Wiss, The thermal conductivity of Nd2Zr2O7 pyrochlore and the thermal behaviour of pyrochlore-based inert matrix fuel, Journal of Alloys and Compounds, vol.352, issue.1-2, pp.1-5, 2003.
DOI : 10.1016/S0925-8388(02)01113-1

M. Ondik and H. F. Mcmurdie, Phase Diagrams For Zirconium and Zirconia Systems, 1998.

S. Roth, Phase diagrams for ceramists, 1969.

T. Yamakasi and . Matsui, Structure & High Temperature Thermophysical Properties of Pyrochlore type oxide, Netsu Sokutei, vol.26, pp.82-91, 1999.

X. Wu, N. P. Wei, P. Padture, M. Klemens, E. Gell et al., Low-Thermal-Conductivity Rare-Earth Zirconates for Potential Thermal-Barrier-Coating Applications, Journal of the American Ceramic Society, vol.465, issue.10, pp.3031-3035, 2002.
DOI : 10.1111/j.1151-2916.2002.tb00574.x

G. Suresh, M. V. Seenivasan, P. S. Krishnaiah, and . Murti, Investigation of the thermal conductivity of selected compounds of lanthanum, samarium and europium, Journal of Alloys and Compounds, vol.269, issue.1-2, pp.9-12, 1998.
DOI : 10.1016/S0925-8388(97)00629-4

S. Murti and M. V. Krishnaiah, Study of the thermal diffusivity and thermal conductivity of zirconate, uranate and cerate of strontium, Materials Letters, vol.11, issue.1-2, p.63, 1991.
DOI : 10.1016/0167-577X(91)90191-8

V. Krishnaiah, P. Srirama-murthi, and C. K. Mathews, Thermal diffusivity and thermal conductivity studies on europium, gadolinium and lanthanum pyrohafnates, Thermochimica Acta, vol.140, pp.103-107, 1989.
DOI : 10.1016/0040-6031(89)87289-2

G. Levi, Emerging materials and processes for thermal barrier systems, Current Opinion in Solid State and Materials Science, pp.77-91, 2004.
DOI : 10.1016/j.cossms.2004.03.009

«. Fèvre, Etudes microstructurales d'oxydes désordonnés et modélisation de leurs propriétés thermiques, Thèse de doctorat Univ, 2003.

S. Roth, Phase Diagrams for Ceramists, 1975.

T. Hanajiri, T. Sato, S. Matsui, K. Yamanaka, T. Kurosaki et al., High Temperature Thermophysical Properties of Perovskite type oxide 53 http://www.mtixtl.com/subcat.asp?0=203 54 http://www.princesci.com Thermophysical properties of BaUO 3, Netsu Sokutei Journal of Nuclear Materials Journal of Alloys and Compounds, vol.26, issue.359, pp.92-99, 1999.

K. Yamanaka, T. Kurosaki, S. Matsuda, and . Kobayashi, Thermal properties of SrCeO3, Journal of Alloys and Compounds, vol.352, issue.1-2, pp.52-56, 2003.
DOI : 10.1016/S0925-8388(02)01133-7

L. Henry and G. G. Thompson, Thermal Expansion Match Between Molybdenum and oxides of the Perovskites and spinel types, Ceramic Bulletin, vol.55, pp.3-281, 1976.

. Fei, Thermal expansion " , in Mineral Physics and Crystallography, A Handbook of Physical Constants, AGU Reference, 1995.

. Yamanaka, Thermal and mechanical properties of SrHfO3, Journal of Alloys and Compounds, vol.381, issue.1-2, pp.295-300, 2004.
DOI : 10.1016/j.jallcom.2004.03.113

S. Matsuda, K. Yamanaka, S. Kurosaki, and . Kobayashi, High temperature phase transitions of SrZrO3, Journal of Alloys and Compounds, vol.351, issue.1-2, pp.43-46, 2003.
DOI : 10.1016/S0925-8388(02)01068-X

L. Henry and G. G. Thompson, Thermal Expansion Match Between Molybdenum and oxides of the Perovskites and spinel types, Ceramic Bulletin, vol.55, pp.3-281, 1976.

. Fei, Thermal expansion A Handbook of Physical Constants, AGU Reference The American Geophysical Union (1995) 72 Handbook of chemistry and physics Semi-empirical estimation of thermal expansion coefficients of perovskite-type oxides, Mineral Physics and Crystallography, pp.3-272, 1998.

G. Van-uitert, H. M. O-'bryan, M. E. Lines, H. J. Guggenheim, and G. Zydzik, Thermal expansion ??? An empirical correlation, Materials Research Bulletin, vol.12, issue.3, pp.261-268, 1977.
DOI : 10.1016/0025-5408(77)90143-X

M. Shirey, Low temperature synthesis of the microwave dielectric material, Barium Magnesium Tantalate (BMT), 2002.

G. Tolmer and . Desgardin, Low-temperature sintering and influence of the process on the dielectric properties of BZT, J. Am. Ceram. Soc, vol.80, pp.8-1981, 1997.

A. Bokov, N. P. Protsenko, and Z. G. Ye, Relationship between ionicity, ionic radii and order/disorder in complex perovskites, Journal of Physics and Chemistry of Solids, vol.61, issue.9, pp.1519-1527, 2000.
DOI : 10.1016/S0022-3697(00)00004-4

H. Lei, C. Amelinckx, and G. Van-tendeloo, 'Disordered' Ba(Mg 1/3 Ta 2/3 )O 3 and its ordering transition, Philosophical Magazine A, vol.82, issue.11, pp.2321-2332, 2002.
DOI : 10.1080/014186102760140577

J. Galasso and . Pyle, Ba(Ca 0.33 Ta 0.67 )O 3 , an ordered perovskite of the Ba(Sr 0.33 Ta 0.67 )O 3 type, pp.482-533, 1963.

L. and C. Catlow, Potential models for ionic oxides, J. phys. C : Solid State Phys, vol.18, p.1149, 1985.

W. Brinkman, H. Briels?, and . Verweij, Molecular dynamics simulations of yttria-stabilized zirconia, Chemical Physics Letters, vol.247, issue.4-6, p.386, 1995.
DOI : 10.1016/S0009-2614(95)01231-1

H. Tojo, T. Kawaji, and . Atake, Molecular dynamics study on lattice vibration and heat capacity of yttria-stabilized zirconia, Solid State Ionics, vol.118, issue.3-4, p.349, 1999.
DOI : 10.1016/S0167-2738(98)00424-X

H. Sawaguchi and . Ogawa, Simulated diffusion of oxide ions in YO1.5??????ZrO2 at high temperature, Solid State Ionics, vol.128, issue.1-4, p.183, 2000.
DOI : 10.1016/S0167-2738(99)00339-2

. Gale, Empirical potential derivation for ionic materials, Philosophical Magazine Part B, vol.18, issue.1, p.3, 1996.
DOI : 10.1063/1.460340

M. Harper and R. , Statistical Mechanics, 1976.

G. Evans and . Morris, Statistical Mechanics of Non Equilibrium Liquids, 1990.

Y. Motoyama, Y. Ichikawa, A. Hiwatari, and . Oe, Thermal conductivity of uranium dioxide by nonequilibrium molecular dynamics simulation, Physical Review B, vol.60, issue.1, p.292, 1999.
DOI : 10.1103/PhysRevB.60.292

. Beeman, Some multistep methods for use in molecular dynamics calculations, Journal of Computational Physics, vol.20, issue.2, p.130, 1976.
DOI : 10.1016/0021-9991(76)90059-0

. Refson, Molecular dynamics simulation of solid n-butane, Physica B+C, vol.131, issue.1-3, p.256, 1985.
DOI : 10.1016/0378-4363(85)90158-5

N. R. Rao, J. Gopalakrishnan, and K. Vidyasagar, Superstructures, ordered defects and nonstoichiometry in metal oxides of perovskite and related structures, Indian J. Chem, p.365, 1984.

D. K. Vaidhyanathan, T. R. Agrawal, Y. Shrout, and . Fang, Microwave synthesis and sintering of Ba(Mg1/3Ta2/3)O3, Materials Letters, vol.42, issue.3, pp.207-211, 2000.
DOI : 10.1016/S0167-577X(99)00185-8

S. Guo, L. E. Bhalla, and . Cross, Ba(Mg 1/3 Ta 2/3 )O 3 single crystal fiber grown by the laser heated pedestal growth technique, Journal of Applied Physics, vol.75, pp.9-4704, 1994.

H. Lu and C. C. Tsai, Reaction kinetics, sintering characteristics, and ordering behavior of microwave dielectrics: Barium magnesium tantalate, Journal of Materials Research, vol.98, issue.05, pp.1219-1227, 1996.
DOI : 10.1063/1.357003

T. Hayashi, N. Saitou, H. Maruyama, K. Inaba, M. Kawamura et al., Thermal expansion coefficient of yttria stabilized zirconia for various yttria contents, Solid State Ionics, vol.176, issue.5-6, pp.613-619, 2005.
DOI : 10.1016/j.ssi.2004.08.021

H. Raghavan, R. B. Wang, W. D. Dinwiddie, M. J. Porter, and . Mayo, The effect of grain size, porosity and yttria content on the thermal conductivity of nanocrystalline zirconia, Scripta Materialia, vol.39, issue.8, pp.8-1119, 1998.
DOI : 10.1016/S1359-6462(98)00290-5

E. Youngblood, R. W. Rice, R. P. Ingel, N. Amatuni, and T. I. Malyutina, Thermal diffusivity of partially and fully stabilized (yttria) zirconia single crystals Chapitre III Détermination des propriétés thermiques 22 A Standard samples for dilatometry, J. Am. Ceram. Soc. High Temperatures ? High Pressures, vol.71, issue.8, pp.255-60, 1976.

J. P. Aldebert and . Traverse, ?Al2O3: A high-temperature expansion standard, High Temperatures ? High Pressures, vol.16, pp.127-135, 1984.

. Fitzer, Thermophysical properties of solid materials ? projet section 1b, AGARD, report n° 31, pp.38-606

S. Guo, L. E. Bhalla, and . Cross, Ba(Mg 1/3 Ta 2/3 )O 3 single crystal fiber grown by the laser heated pedestal growth technique, Journal of Applied Physics, vol.75, pp.9-4704, 1994.

T. Hayashi, N. Saitou, H. Maruyama, K. Inaba, M. Kawamura et al., Thermal expansion coefficient of yttria stabilized zirconia for various yttria contents, Solid State Ionics, vol.176, issue.5-6, pp.613-619, 2005.
DOI : 10.1016/j.ssi.2004.08.021

. Terblanche, Thermal-expansion coefficients of yttria-stabilized cubic zirconias, Journal of Applied Crystallography, vol.22, issue.3, pp.283-284, 1989.
DOI : 10.1107/S0021889888013937

«. Fèvre, Etudes microstructurales d'oxydes désordonnés et modélisation de leurs propriétés thermiques, Thèse de l'université Paris XI Orsay, 2003.

T. Hayashi, N. Saitou, H. Maruyama, K. Inaba, M. Kawamura et al., Thermal expansion coefficient of yttria stabilized zirconia for various yttria contents, Solid State Ionics, vol.176, issue.5-6, pp.613-619, 2005.
DOI : 10.1016/j.ssi.2004.08.021

W. Lufaso, (M = Mg, Ni, Zn; M??? = Nb, Ta) Perovskites, Chemistry of Materials, vol.16, issue.11, pp.2148-2156, 2004.
DOI : 10.1021/cm049831k

«. Braudeau, Transport de matière dans l'alumine », thèse de l, 1983.

A. Dhalenne, A. Revcolevschi, C. Gervais, and . Monty, « Etude de l'énergie intergranulaire et du transport de matière à haute température dans l'oxyde de nickel NiO, Annales de Chimie-Sciences des Matériaux, vol.4, pp.515-548, 1979.

W. Mullins, Grain Boundary grooving by volume diffusion, Transactions of the metallurgical society aime, 1960.

«. Philibert, Diffusion et transport de matière dans les solides, Monographies de Physique, Les Editions de Physique, 1985.

«. Jaunet, Autodiffusion superficielle du nickel par lissage de rayures », thèse de l'Université de paris, 1980.

R. Srinivasan and R. Trivedi, Theory of gtain boundary grooving under the combined action of the surface and volume diffusion mechanisms, Acta Mettalurgica, vol.21, 1973.

E. Klinger and . Rabkin, Effects of surface anisotropy on grain boundary grooving, Interface Science, vol.9, issue.1/2, pp.55-63, 2001.
DOI : 10.1023/A:1011270830969

J. H. Sachenko, W. Schneibel, and . Zhang, Effect of faceting on the thermal grain-boundary grooving of tungsten, Philosophical Magazine A, vol.90, issue.4, pp.4-815, 2002.
DOI : 10.1016/0927-0256(94)00073-L

H. Xin and . Wong, Grain-boundary grooving by surface diffusion with strong surface energy anisotropy, Acta Materialia, vol.51, issue.8, pp.2305-2317, 2002.
DOI : 10.1016/S1359-6454(03)00039-9

W. Mullins, Two???Dimensional Motion of Idealized Grain Boundaries, Journal of Applied Physics, vol.27, issue.8, p.900, 1956.
DOI : 10.1063/1.1722511

H. Zhang and . Wong, Coupled grooving and migration of inclined grain boundaries: regime I " et " Coupled grooving and migration of inclined grain boundaries: regime II, Acta Materiala, vol.50, 1983.

J. Readey and D. W. Readey, Sintering of ZrO2 in HCl Atmospheres, Journal of the American Ceramic Society, vol.65, issue.718, pp.580-582, 1986.
DOI : 10.1111/j.1151-2916.1986.tb04797.x

R. Azzopardi, Frittage de barriers thermiques déposées par évaporation. Evolution microstructurale et conductivité thermique », Rapports d'avancement ONERA RT 3, p.5293, 2002.

V. K. Lughi, D. R. Tolpygo, and . Clarke, Microstructural aspects of the sintering of thermal barrier coatings, Materials Science and Engineering: A, vol.368, issue.1-2, pp.368-212, 2004.
DOI : 10.1016/j.msea.2003.11.018

F. Renteria and B. Saruhan, Effect of ageing on microstructure changes in EB-PVD manufactured standard PYSZ top coat of thermal barrier coatings, Journal of the European Ceramic Society, vol.26, issue.12, pp.2249-2255, 2006.
DOI : 10.1016/j.jeurceramsoc.2005.04.027

C. F. Binnig, C. Quate, and . Gerber, Atomic Force Microscope, Physical Review Letters, vol.56, issue.9, pp.930-933, 1986.
DOI : 10.1103/PhysRevLett.56.930

T. Wolter, J. Bayer, and . Greschner, Micromachined silicon sensors for scanning force microscopy, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol.9, issue.2
DOI : 10.1116/1.585195

J. Keller, F. S. Franke, and L. Chang, STM-AFM and Standard Biological Objects, Proc. 2 nd International Reflection Workshop, 1992.

G. Scott, Phase relationships in the zirconia-yttria system, Journal of Materials Science, vol.2, issue.9, pp.1527-1535, 1975.
DOI : 10.1007/BF01031853

W. Ready and R. E. Jech, Energies and Grooving Kinetics of [001] Tilt Boundaries in Nickel Oxide, Journal of the American Ceramic Society, vol.49, issue.7, p.201, 1968.
DOI : 10.1088/0034-4885/27/1/305

F. Shackelford and W. D. Scott, Relative Energies of [1100] tilt boundaries in aluminium oxide, J. Am. Ceram. Soc, vol.47, p.570, 1964.

S. Nikolopoulos, F. Nazare, and . Thummler, Surface, grain boundary and interfacial energies in UO2 and UO2-Ni, Journal of Nuclear Materials, vol.71, issue.1, p.89, 1977.
DOI : 10.1016/0022-3115(77)90191-X