
HAL Id: tel-00808651
https://theses.hal.science/tel-00808651

Submitted on 5 Apr 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Wireless Self-adaptive Ad hoc and Sensor Networks:
Energy Efficiency and Spatial Reuse

Ichrak Amdouni

To cite this version:
Ichrak Amdouni. Wireless Self-adaptive Ad hoc and Sensor Networks: Energy Efficiency and Spatial
Reuse. Networking and Internet Architecture [cs.NI]. Université Pierre et Marie Curie - Paris VI,
2013. English. �NNT : �. �tel-00808651�

https://theses.hal.science/tel-00808651
https://hal.archives-ouvertes.fr

THÈSE DE DOCTORAT DE

L’UNIVERSITÉ PIERRE ET MARIE CURIE

presented by

Ichrak Amdouni

to obain the degree of

DOCTEUR DE L’UNIVERSITÉ PIERRE ET MARIE CURIE

Discipline: Computer Science

Host Laboratory: Inria Rocquencourt

Date: 14 February 2013

Wireless Self-adaptive Ad hoc and Sensor Networks:

Energy Efficiency and Spatial Reuse

Thesis Advisor: Mrs. Pascale Minet

Thesis Co-Advisor: Mr. Cédric Adjih

Jury:

Mr. André-Luc Beylot Reviewer Professor, ENSEEIHT, France

Mrs. Isabelle Guérin Lassous Reviewer Professor, University of Lyon I, France

Mr. Tuan Dang Examiner Doctor, Engineer Research Expert, EDF, France

Mr. Michel Misson Examiner Professor, University of Clermont I, France

Mr. Guy Pujolle Examiner Professor, Pierre & Marie Curie University, France

Mrs. Leila Saidane Examiner Professor, ENSI, Manouba University, Tunisia

Acknowledgement

At the beginning of this acknowledgement, I take this opportunity to express my gratitude

to Mr. André-Luc Beylot and Mrs. Isabelle Guérin Lassous for having the willingness to

review my thesis. Also, my thanks go to the members of the jury for their presence and for

the interest they expressed in my research. So, I thank Mr. Tuan Dang, Mr. Michel Misson,

Mr. Guy Pujolle and Mrs. Leila Saidane.

This thesis is the completion of my PhD study at Inria, within the Hipercom project team,

where I benefited a lot from the inspiring and friendly atmospheres. I am very grateful to

many people who contributed directly or indirectly to my thesis. It is with big emotion that

I address these words to them while reliving many warm moments of my PhD.

I could not have imagined a better advisor than you Pascale! I sincerely thank you

for your continuous support, orientation and immense knowledge. Your perpetual energy

and enthusiasm in research had motivated me so much. I express my sincere gratitude for

you for having been always available to guide and advise me. Your encouragement and

personal guidance have provided a good basis for the present thesis. My goal is not to address

letters through this page, but I cannot avoid expressing my admiration regarding your high

responsibility and commitment towards me and towards all the tasks that you do. This gives

me power and confidence even in the most tiring moments in my research thesis. Thank

you for caring about me, my thesis, my publications and my future career. Thank you for

“holding” me during conferences, presentations and pleasant mission trips we had together :).

I have been very privileged to get to know and to collaborate with Cédric. I am lucky; my

thesis let me know a good researcher and a sympathetic person. Thank you Cédric for your

valuable help and advice. Let me salute your generosity and your willingness to help people

and share your immense knowledge with them. Thank you for having oriented and supported

me with patience and encouragements in times of new ideas and difficulties, for your great

sense of responsibility and professionalism. I admire your capacity of criticizing, giving sense

and value to ideas or projects of ideas: You say things differently, and this makes difference!

I owe my most sincere gratitude to you Cédric for any knowledge that I would have learned

from you; I will never forget the “noeud intermédiaire”, my first “lesson” :).

I am also happy for having collaborated with all of you Erwan Livolant, Ridha Soua and

Saoucène Mahfoudh. Also, to all people in the OCARI project and from whom I would have

learned something, I say thank you.

ii

I thank you Christine Anocq for your valuable help. You facilitate our administrative tasks

inside Inria and outside also, and this is great! I am also honored to have known many other

people in Hipercom. To all of them, I wish to say thank you for the nice atmosphere inside the

team: Amina Naimi, Anis Laouiti, Erwan Livolant, Nadjib Achir, Paul Muhlethaler. I also

thank Dominique Fortin for the interesting discussions with him. I say thank you to Richard

James, our english teacher for the interesting lessons and for having reviewed my first paper.

Special thanks to my dear friends and colleagues Ala Weslati, Hana Baccouch, Ines Khoufi,

Ridha Soua, Salman Malik and Saoucène Mahdoudh. I am grateful to all of you, for your

prayers, encouragements, support and for the fun moments I have shared with you. I want to

address my kind regards to many friends that I have known in Inria, for their nice company

and sincere friendship, thank you Ahmed Rebai, Amel Hamzaoui, Faten Nabli, Ibtihel Ben

Gharbiaa, Najmeddine Attia, Olfa Mzoughi, Skander Banaouas and Younes Bouchaala.

In particular, I am in debt to you Ines Ben Jemaa for your continuous support. I made you

share my thesis with all its good and bad details, and your sharing was of a great help for

me! I am grateful for this and for your generous affection even if I don’t speak so much and

even if I have not say it as it should be :). So, under big emotions, I say thank you and very

good luck!

Also, I in debt to my uncle and his family for having tried to fill the gap of my parents.

So thank you uncle Houcine, aunt Souad, Noura and Hamza.

This thesis would not have been possible without the support of my parents, my brothers,

and my lovely sister. Thank you for your infinite support, love and trust.

iii

To the soul of my brother Mohamed Ali

To my parents

To my brothers Atef, Mourad and Sami

To my sister Sarra

iv

v

Abstract

The need to maximize network lifetime in wireless ad hoc networks and especially in wireless

sensor networks requires the use of energy efficient algorithms and protocols. Motivated by

the fact that a node consumes the least energy when its radio is in sleep state, we achieve

energy efficiency by scheduling nodes activity. Nodes are assigned time slots during which

they can transmit and they can turn off their radio when they are neither transmitting nor

receiving. Compared to classical TDMA-based medium access scheme, spatial bandwidth use

is optimized: non interfering nodes are able to share the same time slots, collisions are avoided

and overhearing and interferences are reduced.

In our work about time slots assignment, two cases are studied. First, when nodes require

equal channel access, we use node coloring: Nodes having the same color do not interfere

and a color is mapped to a time slot. In this context, we proposed the coloring algorithm

OSERENA. Second, when nodes have heterogeneous traffic demands, we designed the traffic

aware time slot assignment algorithm TRASA. In this algorithm, any node is assigned a

number of slots proportional to its medium access time needs. We show that reducing the

number of colors for OSERENA and the number of slots for TRASA increases the amount of

energy saved and decreases data transmission delays.

Unlike the majority of previous works, we generalize the definition of node coloring and

slot allocation problems. Indeed, we set the maximum distance between two interfering nodes

as a parameter of these problems. We prove that they are NP-complete, making heuristic

approaches inevitable in practice.

In addition to the energy resource scarcity, wireless ad hoc and sensor networks have many

other constraints. A sensor is a tiny device with small amount of memory and storage space.

Also, these networks are prone to the unreliability of wireless communications. That is why,

a central directive of this thesis is to design self-adaptive solutions. This adaptivity concerns

many aspects such as the mission given by the application, the heterogeneity of node traffic

demands, the network density, the regularity of network topology, and the failure of wireless

links. More precisely, we made the following contributions: (1) Using a cross layer with

the application allows us to define two coloring modes: one adapted to general applications,

and the second to data gathering applications. We prove that this adaptation reduces the

coloring algorithm overhead. (2) TRASA is defined for data gathering applications while

adapting to the heterogeneous numbers of packets to transmit. It allocates to each node

vi

a medium access time proportional to its traffic demand. (3) OSERENA scales for dense

wireless networks; it uses a message whose size depends neither on the density nor on the

number of nodes. Furthermore, compared to an existing coloring algorithm called SERENA,

OSERENA reduces the amount of data stored by sensors. (4) We propose VCM, a coloring

solution for grid wireless networks. This solution profits from the regularity of this topology

and performs a periodic coloring by tiling a color pattern. (5) We enhance the robustness

of the known algorithm SERENA to support unreliable links in data gathering applications:

after topology changes, nodes can keep their initial colors without creating interferences.

All these algorithms and protocols have been implemented and simulated on configurations

of wireless networks. Furthermore, we participated in the OCARI project that targets wireless

sensor networks in industrial environments. We collaborated to implement and integrate

OSERENA in a real testbed of sensors coupled with a new version of the known energy

efficient routing protocol EOLSR adapted to data gathering applications.

vii

Contents

Acknowledgement ii

Abstract vi

Table of Contents viii

List of Figures ix

List of Tables x

1 Introduction 1

1.1 Introduction to Wireless Ad hoc and Sensor Networks 1

1.1.1 Overview . 1

1.1.2 Main Issues and Challenges in WSNs . 1

1.2 Problem Statement . 2

1.3 Methodology and Contributions of the Thesis 3

1.4 Manuscript Organization . 5

2 Energy Efficiency in Wireless Ad hoc and Sensor Networks 6

Introduction . 6

2.1 Energy Consumption in Wireless Sensor Networks 6

2.1.1 Architecture of a Sensor Node . 6

2.1.2 Characteristics of Energy Consumption 7

2.1.2.1 Sources of Energy Waste . 7

2.1.2.2 Energy Consumed by the Radio 8

2.2 Classification of Energy Efficient Techniques . 8

2.2.1 Energy Efficient Routing . 9

2.2.1.1 Data centric routing . 10

2.2.1.2 Hierarchical routing . 10

2.2.1.3 Geographic Routing . 12

2.2.1.4 Mobility-based Routing . 13

2.2.1.5 Energy-aware Route Selection 13

2.2.1.6 Concluding Remarks about Energy Efficient Routing Protocols 13

viii

2.2.2 Protocol Overhead Reduction . 14

2.2.3 Duty Cycle and Node Activity Scheduling 16

2.2.3.1 High Granularity . 16

2.2.3.2 Low Granularity . 17

2.3 Conclusion . 21

3 Graph Coloring and Node Activity Scheduling in Wireless Ad hoc and

Sensor Networks 22

Introduction . 22

3.1 State of the Art: Graph Coloring . 23

3.1.1 Vertex Coloring . 23

3.1.1.1 Bounds on the Chromatic Number 24

3.1.1.2 Overview about Existing Works 24

3.1.2 Edge Coloring . 25

3.1.2.1 Bounds on the Edge Chromatic Number 25

3.1.2.2 Overview about Existing Works 26

3.1.3 Applications of Graph Coloring in Networking 27

3.1.3.1 Frequency Allocation . 27

3.1.3.2 Time Slot Assignment . 27

3.2 Coloring for Node Activity Scheduling: Problem Formulation and Complexity . 28

3.2.1 Objectives and Design Choices . 28

3.2.1.1 Objectives . 28

3.2.1.2 Why a Slotted Contention-free Scheduling? 29

3.2.1.3 Why Graph Coloring? . 30

3.2.1.4 Edge or Vertex Coloring? . 31

3.2.2 The Definition of the h-hop Coloring Problem 33

3.2.2.1 Network Model . 33

3.2.2.2 Application Type . 33

3.2.2.3 Coloring Problem Definition 33

3.2.3 The NP-completeness of the Coloring Problem 35

3.3 Issues of Coloring Application in Real Wireless Environment 43

3.4 Adaptivity of SERENA to Data Gathering Applications and Wireless Commu-

nications Failures . 45

3.4.1 State of the Art: Presentation of SERENA Algorithm 45

3.4.1.1 Assumptions and Requirements of SERENA 45

3.4.1.2 Rules of SERENA . 47

3.4.2 Positioning of Our Contribution . 49

3.4.3 Adaptivity of SERENA Regarding the Application and Communication

Requirements . 50

ix

3.4.3.1 Strategic Mode of SERENA with Immediate Acknowledge-

ment and without Broadcast 50

3.4.3.2 Strategic Mode in SERENA with Immediate Acknowledge-

ment and Broadcast . 51

3.4.3.3 Simulation Results . 52

3.4.4 Adaptivity of SERENA to Node/Link Failure in Data Gathering Ap-

plications . 57

3.4.4.1 Problem and Methodology . 57

3.4.4.2 First Solution(Sol1): Tree coloring with one backup per parent 59

3.4.4.3 Second Solution(Sol2): Tree coloring with several backups per

parent . 60

3.4.4.4 Comparative Study . 60

3.5 Conclusion . 64

4 OSERENA: Optimized SchEduling RoutEr Node Activity in Dense Wire-

less Networks 65

Introduction . 65

4.1 Optimization Principles . 66

4.2 Presentation of OSERENA . 66

4.2.1 Assumptions . 66

4.2.2 The Color Message . 67

4.2.3 Rules of OSERENA . 69

4.3 The properties of OSERENA . 71

4.3.1 Correctness of OSERENA Coloring . 72

4.3.2 Equivalence of OSERENA to a Centralized Algorithm 73

4.3.3 Reduced Overhead . 73

4.3.3.1 Message Size . 73

4.3.3.2 Constraints for the Computation ofmax prio1 andmax prio2

Sizes . 74

4.3.3.3 Computation of the Optimal Size of max prio1 and max prio2 74

4.3.4 Convergence Time . 76

4.4 Performance Evaluation by Simulation . 77

4.4.1 Simulation Modules and Parameters . 77

4.4.2 Performance Results of OSERENA . 78

4.4.2.1 Number of Colors . 78

4.4.2.2 Number of Rounds . 79

4.4.2.3 Number of Messages Sent per Node 79

4.4.2.4 Number of Bytes Sent per Node 80

4.4.3 Comparison with SERENA . 81

4.4.3.1 Number of Colors . 81

x

4.4.3.2 Number of Rounds . 81

4.4.3.3 Number of Messages Sent per Node 82

4.4.3.4 Number of Bytes Sent per Node Per Round 82

4.5 Application to the OCARI project: Integration of OSERENA and EOLSR . . . 83

4.5.1 Overview about the OCARI Project . 84

4.5.1.1 Context and Goals . 84

4.5.1.2 OCARI Architecture . 85

4.5.1.3 OCARI Protocol Stack . 85

4.5.2 OSERENA in OCARI . 88

4.5.3 EOLSR for Data Gathering Applications in OCARI 88

4.5.3.1 EOND: Neighborhood Discovery 88

4.5.3.2 EOSTC: Data Gathering Tree Construction 89

4.5.4 Integration of OSERENA and EOLSR 90

4.5.4.1 Objectives . 90

4.5.4.2 Coloring Triggering . 91

4.5.4.3 Topology Changes . 91

4.5.5 Snapshots of Some Results of OCARI 92

4.6 Conclusion . 93

5 Optimal Periodic Node Coloring of Grid Wireless Ad hoc and Sensor Net-

works 95

Introduction . 95

5.1 Preliminary Results and Methodology . 96

5.2 Overview About the Proposed Method . 98

5.2.1 Notations, Definitions and Assumptions 98

5.2.2 Problem Statement . 99

5.2.3 Intuitive Idea and Overview . 100

5.3 Periodic Coloring . 101

5.4 Optimal Vector Search (OVS) . 102

5.4.1 Bounds on the Number of Colors in Periodic Colorings 102

5.4.1.1 Examples of Valid Generator Vectors 102

5.4.1.2 Lower Bound . 103

5.4.1.3 Upper Bound . 104

5.4.1.4 Asymptotic Number of Colors 104

5.4.2 Finding the Optimal Vectors . 105

5.4.2.1 Case R >
√
2 . 106

5.4.2.2 Case R ≤
√
2 . 106

5.5 VCM: Node Color Computation (NCC) . 107

5.5.1 Assigning Colors to Nodes . 107

5.5.1.1 Method NCC1 . 107

xi

5.5.1.2 Example of Bijection for NCC1 109

5.5.2 Computing the Number of Colors . 109

5.5.3 Example of Color Calculation . 109

5.6 VCM: Validity Check (VC) . 110

5.6.1 Method VC1: Verification around Origin 110

5.6.2 Method VC2: Verification in a Few Points 111

5.7 Complexity of VCM . 112

5.8 Summary: How to Apply VCM in Practice . 112

5.9 Coloring Results with VCM . 113

5.9.1 Examples of Vectors . 113

5.9.2 Comparison with Other Methods . 113

5.10 VCM in Real Wireless Networks . 114

6 Traffic Aware Time Slot Assignment in Data Gathering Applications 116

Introduction . 116

6.1 Adaptation of the Coloring to Traffic Demand 117

6.1.1 Solution 1: Larger Slots . 117

6.1.2 Solution 2: Heterogeneous Number of Granted Slots 118

6.1.3 Solution 3: Multiple Colorings . 118

6.2 State of the Art: Traffic Aware Time Slot Assignment 119

6.3 The Time Slot Assignment Problem . 122

6.3.1 Assumptions . 122

6.3.2 Problem Statement . 122

6.4 Complexity of TSA Problem . 123

6.5 Theoretical Bounds on the Number of Slots . 124

6.5.1 Additional Assumptions . 125

6.5.2 Number of Slots in Linear Networks . 125

6.5.3 Number of Slots in Multi-line Networks 126

6.5.4 Number of Slots in Tree Networks . 126

6.6 TRASA: TRaffic-Aware Time slot Assignment 126

6.6.1 Principles . 126

6.6.2 Algorithm Presentation . 127

6.6.3 Example of TRASA Slot Assignment . 128

6.6.4 Properties: Bounds on the Number of Slots 128

6.6.4.1 TRASA for Linear Networks 128

6.6.4.2 TRASA for Multi-line Networks 129

6.6.5 Performance Evaluation . 130

6.6.5.1 Comparison with the Optimal Results 130

6.6.5.2 Simulation Results . 131

6.7 Conclusion . 134

xii

7 Conclusion and Perspectives 135

7.1 Conclusion . 135

7.2 Perspectives . 136

List of Publications 139

Bibliography 141

A Mathematical Results Related to OSERENA Algorithm 153

A.1 Correctness of OSERENA . 153

A.1.1 Equivalence of OSERENA to a Centralized Algorithm 155

A.1.2 Convergence Time of OSERENA . 155

A.1.2.1 Estimation of an Upper Bound of P1 155

A.1.2.2 Estimation of an Upper Bound of P2 157

A.1.2.3 Estimation of an Upper Bound of P3 157

B Mathematical Results Related to VCM Method 158

B.1 Relation between Number of Hops and Actual Distance 158

B.2 Bounds on Distance and Number of Hops of Points on a Lattice 159

xiii

List of Figures

1.1 Overview about thesis problem and contributions. 3

3.1 Strategy of application of coloring for node activity scheduling. 29

3.2 An example of generated cycle. 30

3.3 Difference between vertex and edge coloring: concurrent transmissions. 32

3.4 Difference between vertex and edge coloring: number of colors. 32

3.5 Example of: (a) Graph G; (b) Transformed graph G′ for h = 5. 38

3.6 Transformed graph G′ of G for h = 6. 40

3.7 The graph G′ colored with (a) 5-hop coloring, (b) 6-hop coloring. 42

3.8 Tree built from G′: (a) h=5; (b) h=6. 43

3.9 Nodes having a color different than the color of the central node u in: (a) 1-hop

coloring R = 6; (b) 2-hop coloring R = 3 and (c) 3-hop coloring R = 2. 44

3.10 Example of SERENA 2-hop coloring applied to a tree with the corresponding

slot assignment. 49

3.11 Collision between nodes N and M having the same color with two-hop coloring

while supporting the immediate acknowledgement but not the broadcast. . . . 50

3.12 Collision between nodes N and M having the same color with two-hop coloring

while supporting the immediate acknowledgement and the broadcast. 51

3.13 Gain in number of colors between the general and the strategic coloring of a

data gathering tree(density=10). 53

3.14 Average number of conflicting neighbors per node in general 3hop coloring and

strategic tree coloring. 54

3.15 Comparison between the strategic and the general coloring of a tree. 55

3.16 Strategic coloring with and without a color order between the node and its

parent. 56

3.17 Comparison of the number of colors used in SERENA and TDMA-ASAP. . . . 56

3.18 Comparison of the number of rounds used in different variants of SERENA. . . 58

3.19 The set of conflicting nodes of the node A. 59

3.20 Percentage of the nodes without parent backup. 62

3.21 The number of colors used by Sol1 and Sol2. 63

3.22 Comparison of the number of rounds produced by Sol1 and Sol2. 63

3.23 Comparison of the number of sent messages used by Sol1 and Sol2. 64

xiv

4.1 Format of the Color message in OSERENA. 67

4.2 An example illustrating the role of the list implicit node colored list. 70

4.3 An example illustrating the role of rule R4. 70

4.4 A scenario where OSERENA can make more rounds than OSERENA. 75

4.5 Number of colors. 78

4.6 Number of rounds. 79

4.7 Average number of messages sent per node. 80

4.8 Average number of bytes sent per node. 80

4.9 Number of rounds for SERENA. 81

4.10 Average number of messages sent per node with SERENA and OSERENA. . . 82

4.11 Average number of bytes sent per node with SERENA and OSERENA. 83

4.12 Topology of OCARI network. 85

4.13 The OCARI stack as in December 2011. 86

4.14 OCARI global cycle. 86

4.15 Contribution of Inria in OCARI project: OPERA module (EOLSR and OS-

ERENA). 87

4.16 OCARI testbed. 92

4.17 Neighborhood discovery and tree Construction. 92

4.18 Tree stability and coloring. 93

4.19 Topology changes after we removed the node 15: tree is reconstructed thanks

to the periodic transmission of message STC. 93

5.1 Components of VCM . 100

5.2 Example of periodic 3-hop coloring (R=1) . 101

5.3 Selecting vectors for a near-hexagonal lattice 102

5.4 An example of coloring computation based on VCM-NCC1. 110

6.1 Example of a network colored via OSERENA. 117

6.2 Slot assignment based on Solution 1. 118

6.3 Slot assignment based on Solution 2. 118

6.4 Slot assignment based on Solution 3. 119

6.5 Taxonomy of time slot assignment techniques. 120

6.6 Example illustrating the TDMA cycle construction based on the coloring. . . . 124

6.7 Example illustrating the colors assignment based on the time slot assignment. . 125

6.8 Example of TDMA schedule obtained by TRASA. 128

6.9 Examples of tree and multi-line topologies . 131

6.10 The number of slots. 132

6.11 TRASA performance. 133

6.12 The number of iterations. 133

A.1 Possible zone for node v3. 156

xv

A.2 Computation of P1. 156

xvi

List of Tables

2.1 The power consumption of two radio plateforms in wireless sensor networks[2] . 8

2.2 Examples of energy efficient routing algorithms 14

2.3 Classification of scheduling algorithms . 20

3.1 Conflicting nodes for different application requirements in the general mode. . . 47

3.2 Conflicting nodes for different application requirements in the strategic mode. . 48

3.3 Comparison of coloring with/without backup 61

5.1 Number of colors and rounds obtained by OSERENA for various grids and

transmission ranges (‘C’ means colors, ‘R’ means rounds). 97

5.2 VCM vectors generating the optimal number of colors. 113

5.3 Number of colors obtained for 3-hop coloring. 114

xvii

Chapter 1

Introduction

1.1 Introduction to Wireless Ad hoc and Sensor Networks

1.1.1 Overview

A wireless ad hoc network is a collection of wireless nodes communicating with each other in

the absence of any infrastructure. These networks ensure collaborative computing and commu-

nications between devices of varied types and sizes (including personal computers, handhelds,

telephones, appliances, industrial equipments, etc), in various areas (like buildings, conference

rooms, industrial plants, etc). Wireless sensor networks (WSNs) have gained worldwide atten-

tion in recent years, particularly with the proliferation of Micro-Electro-Mechanical Systems

(MEMS)1 technology which has facilitated the development of smart sensors.

WSNs consist of a possibly large number of usually small and inexpensive nodes with

sensing computation and wireless communications capabilities. The role of sensor nodes is to

gather data from their surroundings and transmit them to a data sink node either directly or

via multihop routing. Data gathering is a typical application in these networks. Furthermore,

several applications are envisioned for WSNs like (1) military applications: tracking enemy

forces, information gathering in battlefields, attack detection, (2) environment monitoring:

habitat monitoring, animal tracking, forest fire detection, precision farming, (3) biomedical

applications: vital signs monitoring like blood glucose and blood pressure, (4) industrial

applications: process control, detection of liquid/gas leakage, factory automation, preventive

maintenance, workers safety monitoring.

1.1.2 Main Issues and Challenges in WSNs

WSNs are considered as a specific kind of wireless ad hoc networks. They share many char-

acteristics like wireless communications, interferences, autonomous deployment, etc.

However, WSNs differ from wireless ad hoc networks because sensors have limited capa-

bilities and tight resources. This makes protocols proposed for traditional wireless networks

1MEMS is the technology of very small devices.

1

not well suited to WSNs. Thus, research focusing in these networks faces many challenges:

• Energy efficiency: A major constraint in WSNs is that sensor nodes are battery

operated. Sensors utilize their batteries for communication and sensing. In case of

battery exhaustion, the sensors functionality completely halts, inevitably leading to the

interruption of the application. A second constraint is that sensors are usually deployed

unattended and in large numbers like in military applications or underwater monitoring

applications. As a consequence, it will be difficult to change or recharge batteries of

these sensors. Therefore, the key solution is to optimize the power consumption and to

maximize the network lifetime.

• Scalability and reduced overhead: Because of the low cost of sensors and the appli-

cation requirements, the number of nodes in a WSN can be very large, and in general,

sensors are densely deployed in the area of interest. Dense deployment enhances the

reliability and the accuracy of data, but usually implies high data and control traffic

exchanges. This is problematic because of two issues. First, sensor nodes have tight

memory and storage due to their miniaturization. For instance, the TMote Sky sensors

based on MSP340F1611 micro-controller have 10KB of RAM and 48KB of flash 2. Sec-

ond, the network bandwidth is very limited (250Kbps in IEEE 802.15.4 for example).

Thus, algorithm scalability is an important design criterion for sensor network applica-

tions: algorithms must optimize bandwidth use and the amount of control traffic stored

and exchanged.

• Adaptivity to dynamic environment: Environments in which ad hoc or sensor nodes

operate are very dynamic. This dynamicity involves: the node position (in the presence

of mobile sensors), frequent topology changes (because of hardware failure, depleted

batteries, intermittent radio interferences, environmental factors, or sensor mobility),

the data traffic (that can be uniform or heterogeneous, prioritized or not, sent to one

sink or to any destination). In such conditions, the network should self-adapt to these

time-varying conditions in order to guarantee the data delivery without increasing the

network overhead.

1.2 Problem Statement

Among the aforementioned challenges, we mainly address the energy and bandwidth efficiency

taking into account the following resource scarcity: energy, bandwidth, memory, in addition to

the reduced processing capabilities and unreliable wireless links. We focus more particularly

on the node activity scheduling problem, where nodes alternate active and sleeping

periods to save energy. Indeed, protocols and algorithms that operate on these networks must

2http://en.wikipedia.org/wiki/List of wireless sensor nodes.

2

use these resources very efficiently to be able to meet the user requirements, which differ

according to the considered application (e.g data collection in a sensor network).

In addition, these protocols must be self-adaptive as much as possible with regard to the

constraints imposed by their operating environment (type of the network topology, density,

unreliable radio links) and their application (types of communications used by the applica-

tion).

These objectives target both wireless ad hoc and sensor networks. However, because

WSNs are more constrained, they will be the focus of our work.

1.3 Methodology and Contributions of the Thesis

Figure 1.1 illustrates the problem, the strategy and the contributions of this thesis.

Figure 1.1: Overview about thesis problem and contributions.

To achieve energy efficiency, our approach is mainly based on node activity scheduling.

This approach uses the “duty cycle”. Thus, significant energy saving can be accomplished by

putting nodes in the sleep state as long as possible while achieving the application mission. In

this context, the solutions we propose can be implemented in the MAC layer on in an upper

layer. However, they imply a slotted medium access scheme that is contention-free. Indeed,

any node is allocated one or more time slots to transmit data. It is awake during the slots

3

allocated to its neighbors to receive data, and can sleep the remaining time to save energy.

To allocate time slots to nodes, we distinguish two cases:

1. First case: nodes require equal medium access times. Our solution is based on node

coloring: We color the network and assign time slots to nodes based on these colors. The

length of the activity period of the contention-free cycle is equal to one slot duration

multiplied by the number of colors. That is why, our goal is to reduce this number.

We developed two node coloring algorithms:

(a) OSERENA (Optimized SchEdule RoutEr Node Activity): OSERENA

presents one adaptivity aspect of our work as it is designed for dense wireless

networks and fits the small memory size of sensors. The size of the message used

depends neither on the size of the network nor on the density of nodes. Also, band-

width use is optimized: no bandwidth is lost in collisions and bandwidth sharing

between non interfering nodes is guaranteed.

(b) VCM (Vector based Coloring Method): This algorithm adapts to the regu-

larity of the grid topology by providing a periodic coloring based on the repetition

of a color pattern. VCM is optimal. Furthermore, we have proved that the adap-

tivity to the grid regularity makes VCM more efficient than OSERENA in terms

of number of colors.

In addition, we updated the known node coloring algorithm SERENA(SchEdule

RoutEr Node Activity): We enhance the robustness of this algorithm to tolerate

the parent change in data gathering trees. The objective is to avoid the appearance of

color conflicts after any node changes its parent. So, the idea is to perform a coloring

that anticipates the possible topology changes.

2. Second case: nodes require different medium access times. We proposed TRASA

(TRaffic Aware time Slot Assignment) to assign time slots to nodes. TRASA is

defined for data gathering applications. This algorithm is traffic aware: any node has a

number of slots proportional to its traffic demand.

In our work, we proved the NP-completeness of both coloring and time slot allocation

problems assuming that interferences are limited to h-hops where h > 1.

A big part of our work was done in the OCARI project that targets WSNs for industrial

environments. OSERENA was integrated in wireless sensors with a modified version of the

energy efficient routing protocol EOLSR. In this work, EOLSR is adapted to data gathering

applications: It builds energy efficient trees rooted at the data sink. We have also specified

communications between OSERENA and EOLSR: EOLSR collects topology information that

is given to OSERENA and triggers the node coloring by OSERENA. Both protocols have

been implemented and tested on a testbed of wireless sensors.

4

1.4 Manuscript Organization

This dissertation is structured as follows:

• Chapter 1 introduces the context and the motivations of our work and de-

scribes our main contributions.

• Chapter 2 reviews the energy efficient techniques used in wireless ad hoc and

sensor networks and provides a classification of them.

• Chapter 3 is centered on graph coloring for node activity scheduling. We

start by reviewing vertex and link coloring algorithms. Then, we describe the problem

statement and the design choices to solve this problem. We prove that the coloring

problem is NP-complete. In the second part of this chapter, we present an enhanced

version of the known algorithm SERENA that (1) adapts to different types of communi-

cations in data gathering applications, and (2) is more robust against unreliable wireless

communications.

• Chapter 4 describes OSERENA. We detail the rules and describe the properties

of this algorithm. Then, we present a performance evaluation of this algorithm by

simulation. The second part of this chapter deals with our contribution in the OCARI

project. We describe the context and goals of this project, its architecture and its main

components, in particular the routing protocol EOLSR. Some snapshots illustrating

OSERENA and EOLSR running and integrated with the other OCARI protocols are

given.

• Chapter 5 focuses on grid coloring. The aim of this chapter is to provide an

optimal periodic coloring, i.e a coloring based on a tiling of a color pattern. We first

give theoretical bounds on the number of colors as well as the optimal number of colors

needed to color an infinite grid. Then, we describe our proposed method VCM and

evaluate its performance by simulation on a wide range of grid networks.

• Chapter 6 describes our slot assignment algorithm TRASA. We start by formu-

lating the slot assignment problem in wireless ad hoc and sensor networks, and proving

its NP-completeness. Then, we present theoretical bounds on the optimal number of

slots for line, multiline and tree networks. We finally describe TRASA and evaluate its

performance regarding the total number of slots granted to nodes.

• Chapter 7 concludes this dissertation and introduces directions for further

researches.

5

Chapter 2

Energy Efficiency in Wireless Ad

hoc and Sensor Networks

Introduction

The energy conservation is a very challenging feature for both ad hoc and sensor networks

whenever nodes are battery operated. Indeed, in such a case, these batteries are impossible

or impractical to change or recharge. However, this issue is more present in WSNs because

they are supposed to work unattended for longer time than ad hoc networks and can be

deployed in harsh environment. Consequently, it is of major importance to develop dedicated

solutions that handle application requirements in an energy-saving manner, prolonging thus

the lifetime of the network. In this chapter, we address the energy conservation issue in

wireless ad hoc and sensor networks, focusing on solutions adapted to WSNs. We provide the

following classification of energy efficient techniques: (1) Routing, (2) Data reduction and (3)

Node activity scheduling.

2.1 Energy Consumption in Wireless Sensor Networks

This section aims at studying the energy consumption in wireless sensor networks from multi-

ple angles: in which operations the energy is consumed? Which is the most energy consuming

radio state? What are the sources of energy waste?

2.1.1 Architecture of a Sensor Node

A sensor network is a wireless network of usually tiny, inexpensive, spatially distributed

and radio-equipped sensors. These sensors are used for gathering information needed by

smart environments and are particularly useful in unattended situations where terrain, climate

and other environmental constraints make the deployment of wired/conventional networks a

difficult task. Each sensor node is mainly composed of four components:

6

1. Processing unit (including the micro-controller) is in general associated with a small

storage unit. It is responsible for managing and coordinating various activities of the

sensor node: data storage, generating messages, data processing, and collecting sensed

data, etc.

2. Communication unit (including the transceiver) is a radio device that can receive

and transmit information.

3. Sensing unitmeasures physical data of the parameter to be monitored like temperature

or pressure.

4. The power source supplies power to the node.

Each of the first three components consumes a specific amount of energy. This consumption

will be characterized in the following section.

2.1.2 Characteristics of Energy Consumption

Due to various limitations arising from their limited size, weight, and ad hoc method of

deployment, each sensor has a limited power. Hence, the power is a valuable resource that

should be saved to maintain the network functioning. As far as the energy consumption is

concerned, we observe that:

• A non negligible amount of energy is wasted in activities and radio states that are not

useful from the application point of view. Section 2.1.2.1 details these sources.

• The communication unit consumes a much higher energy than the processing unit.

Indeed, it has been shown that transmitting one bit may consume much higher than

executing a few thousands of instructions [1]. Moreover, Halgamuge et al. [3] developed

a model for energy consumption and performed simulations using hardware parameters

like those of Mica2 Motes. They found that the communication consumes 51% of the

total energy consumed by a node, while the processing consumed only 12%. For this

reason, we study the energy consumed in the different radio states in Section 2.1.2.2.

2.1.2.1 Sources of Energy Waste

The major sources of energy waste are:

1. Collision: When a node receives more than one packet at the same time, these packets

collide and should be re-transmitted. The packet retransmission causes loss of energy.

2. Idle listening: It happens when a node listens to an idle channel in anticipation of

possible arrival of packets. When no packet is received, the node consumes energy

because this idle listening.

7

3. Overhearing: It occurs when a node listens or overhears a packet thinking it may be

the intended receiver, although the packet is destined to another node.

4. Interference: It happens when a node receives a packet and can not decode it.

5. Control packet overhead: The presence of too many control packets in the network

such as beacons is another source of energy waste.

2.1.2.2 Energy Consumed by the Radio

The energy consumed by the communication unit varies with the radio state itself. Indeed,

the radio can be in the transmit, receive, idle, or sleep state.

Table 2.1: The power consumption of two radio plateforms in wireless sensor networks[2]

Platforms Transmission (mW) Reception/Idle (mW) Sleep (µW)

chipcon CC1000 19.8-80.1 22.2 0.6

chipcon CC2420 25.5-52.2 59.1 60

Table 2.1 presents reference values for energy consumption for two representative radio

interfaces widely used in existing wireless sensor platforms: Chipcon CC1000, and Chipcon

CC2420. Two observations can be drawn from this table:

• As the contrary one might think, the idle state is a non negligible energy consumption

source. It consumes as much as the receive state although it is not useful from the

application perspective. So, avoiding the idle state is a good solution to let sensors save

energy.

• The sleep state is the least energy consuming state. Thus, a sensor should sleep as much

as possible when it is not engaged in communication.

2.2 Classification of Energy Efficient Techniques

Minimizing the energy consumption has been a fertile research domain in the wireless ad hoc

and sensor networks. Many techniques has been proposed to answer this question. To build

our classification of these techniques, we are motivated by the following facts. First, sensor

nodes have to send sensed data and route them continuously. Reducing the overhead induced

by routing and by data and control message exchange is one of the techniques used to save

energy. Second, in accordance with comments on Table 2.1, we notice that the sleep/awake

scheduling reduces the energy wasted in the idle state by turning off radio when not in use.

Third, adjusting the transmission power of nodes allows them to reduce energy consumption.

8

Hence, a possible classification of energy efficient techniques is based on the four following

techniques:

1. Energy efficient routing: The focus of routing algorithms is to reduce the energy

consumed in wireless communications and to avoid routing data through nodes with

low residual energy. Examples of this class are [4, 10, 19].

2. Protocol overhead reduction: The focus of this category is to avoid data redundancy

and reduce the control message overhead. Examples of this class are given by [32, 44, 47].

3. Node activity scheduling: Called also the duty cycling, is the periodic wake-up

scheme that allows nodes to turn-off their radio and sleep when possible in order to save

energy. Examples of this class are illustrated by [52, 53, 57].

4. Adaptive transmission power: This class is referred also as topology control. Indeed,

nodes save energy by reducing their transmission power. Indeed, this allows nodes

to have less communication links and hence to reduce the MAC contention and the

overhead of computing the optimal routes to the sink. It allows also load balancing

between nodes. However, the challenge is to optimally adjust the transmission power

to ensure good tradeoff between energy consumption and connectivity. References for

this class of energy efficiency are given by [68, 69, 70, 71].

In our work, we adopt this classification. However, we just detail the three first ones since

we have integrated them in the design and implementation of our energy efficient solutions.

2.2.1 Energy Efficient Routing

Routing in WSNs is very challenging due to their specific characteristics that distinguish them

from wireless ad hoc networks. Routing protocols differ in the way they take into account

limited capacities of sensor nodes as well as the application and architecture requirements. For

instance, routing protocols should face the challenge of reducing the energy consumed in the

transmissions and to prolong the network lifetime. In this section, we provide a classification

of routing protocols as follows:

1. Data centric routing considers data attributes to avoid data redundancy and reduce

the number of transmissions.

2. Hierarchical routing distributes nodes into clusters which enhances scalability, favors

data aggregation and avoids nodes to communicate directly with a far sink in case of

data gathering applications for instance.

3. Geographic routing exploits the geographic information to avoid redundant trans-

missions and turn off unnecessary nodes.

9

4. Mobility-based routing relies on mobile nodes that walk around nodes and collect

data from them. These nodes save energy because they only transmit to short range.

In the following, we detail these techniques.

2.2.1.1 Data centric routing

Data-centric routing protocols save energy by reducing the data redundancy. Indeed, data

can be aggregated and nodes are queried according to their data attributes or interests.

Indeed, aggregation is performed by intermediate nodes and in general does not assume a

specific routing structure. Supporting the aggregation in these routing protocols implies the

determination of the optimal aggregation period, that is the waiting time before forwarding

the aggregated packets. A small value increases the data transmissions and a high period

increases delays.

Two examples of algorithms of this category are SPIN [4] and Directed Diffusion [5] which

are designed to WSNs. In SPIN, any node u advertises its data to its 1-hop neighbors. These

neighbors request for these data if they do not possess them. Receiving this request, the node

u sends the data to the interested neighbors. This scheme of data negotiation prevents the

transmission of redundant packets unlike the classic flooding where each node repeats the

packet it received to all its neighbors except the sender one. Further, in SPIN-2, nodes with

a low energy threshold send neither requests nor data advertisements. However, this scheme

does not ensure end-to-end data delivery. In Directed Diffusion [5], the sink requests data

by broadcasting interests for named data. Nodes that have recorded some events matching

the requested interest reply by sending gradient messages. Thus, routes toward the sink are

established. Notice that since the routing is based on the data attributes, only good paths are

selected. Moreover, there is no need for maintaining global network topology and intermediate

nodes perform data aggregation. Consequently, energy is saved. However, this algorithm is

only suitable for data-driven applications. Another example of data-centric routing protocols

is the Rumor routing [6] that avoids the overhead induced by query flooding in Directed

Diffusion. In Rumor routing, as soon as an event occurs in a network region, sensing nodes

create some agents as event agents and propagate them along the network to build a list of

known events. When a query is generated, it can be sent on a random walk until it finds

a node that knows the path to the requested event instead of flooding the whole network.

Other data-centric routing protocols are COUGAR [7], CADR [8] and ACQUIRE [9].

2.2.1.2 Hierarchical routing

Hierarchical routing is based on a hierarchical routing structure of the network in which nodes

do not directly communicate with the sink but rather with other hierarchical nodes like the

cluster-heads.

In hierarchical routing, energy is mainly achieved by: (1) Data reduction thanks to data

aggregation performed by the hierarchical nodes, and (2) Short range communications. In

10

addition to energy saving, hierarchical routing enhances scalability. Based on the type of the

network topology, we distinguish the following classes for the hierarchical routing.

1. Cluster-based: In this case, nodes are classified into clusters. Each cluster has a cluster-

head which is selected among cluster members. Cluster-heads aggregate data from their

cluster members and transmit them towards the sink. This allows nodes to save energy

as they only communicate with their cluster-heads. However, if they are far from their

cluster-head, they may expend excessive energy in communication. The cluster-heads can

communicate with the sink directly via long range transmission or multi-hop transmission

through other cluster-heads.

In LEACH [10], any node selects the cluster-head from which it receives the strongest signal

strength. LEACH is energy efficient because: (1) a randomized rotation of cluster-heads is

used in order to spread energy usage over multiple nodes (2) cluster-heads aggregate data,

(3) nodes within a cluster are activated successively: if they are not transmitting they turn

off their radios, (4) few energy is consumed in radio communication because nodes com-

municate just with their cluster-heads, and only these cluster-heads send data to the base

station. An optimization of LEACH is given by Two-Level LEACH (TL-LEACH) [11],

where cluster-heads form two levels of data aggregators: the cluster heads from the first

level aggregate data from cluster-heads of the second level. A similar strategy is considered

in [33] where a hierarchy of clusters is defined: aggregators of level i aggregate data of ag-

gregators from level i−1. Compared to a single level of clusters, this hierarchical clustering

consumes less energy since the number of nodes that need to communicate with the base-

station is reduced. TEEN [14] also relies on two levels of clusters. TEEN is cluster-based

and data centric routing that reduces the data transmissions based on the sensed data

attributes. Indeed, nodes are allowed to transmit sensed data if the sensed value is beyond

a hard threshold HT, or if the change in this value is greater than a soft threshold ST.

Consequently, TEEN is not suitable for applications requiring periodic data transmissions.

APTEEN [15] is an extension of TEEN that adapts the periodicity or threshold values

according to user needs and application types. EECS [12], like LEACH, forms clusters

where a cluster-head is the node with the highest residual energy. Other examples of this

class are given by TSC [16] and [17].

2. Tree-based: In tree-based routing, sensor nodes are organized into a tree where any node

aggregates data sent by its children in this tree. The main issue is how to build an energy-

efficient tree. Kuo et al. [34] prove that constructing the minimum energy consuming tree is

NP-complete, and that Energy Cost(SPT) < 2 ∗Optimal Energy Cost, which means that

the Shortest Path Tree heuristic, SPT, is a 2-approximation of the problem. However, the

drawback is that nodes close to the sink will be selected by many nodes and hence consume

their energy quickly. To avoid this problem, other heuristics are considered like both the

distance to the sink and the residual energy as in [35, 36]. Eskandari et al. [37] consider

11

another parameter which is the sum of the residual energy of nodes along a path divided

by the path length. A second parameter is the distance to the sink. Further, each node

has a predetermined maximum number of children to balance energy consumption between

network nodes. Another example of this category is [38] where nodes are classified into

clusters, and cluster-heads are organized in a tree topology. Further, authors propose a

scheme where the sink dynamically adapts the data aggregation period according to the

past aggregation quality (number of packets that could be aggregated).

3. Chain-based: The key idea behind the chain-based aggregation is to organize the nodes

into a chain. Nodes in the chain aggregate packets and transmit them to a close neighbor

in the chain. An example of this category is PEGASIS [13]. PEGASIS avoids the overhead

of cluster construction and organizes nodes in a chain where any node receives from and

transmits to the closest neighbor. This results in small transmission distances for most of

the nodes and reduced power consumption for transmission. Further, nodes alternate to

be the head of the chain and transmit aggregated data to the sink. However, PEGASIS

introduces high delays for nodes at the end of the chain. CCPAR [39] divides the network

into clusters where nodes inside the cluster form a chain and transmit data along the chain

to their cluster-head. Cluster-heads are also organized in a chain, so they avoid communi-

cating directly to a far base station. The issue with chain-based clustering is the high data

transmission delays for nodes at the end of the chain.

4. Grid-based: Grid-based clustering has attracted a lot of attention because of its simplicity

and scalability. In grid-based clustering nodes are organized into grids and communicate

directly with a cluster-head. This cluster head is responsible for aggregating data and

routing them. An example of this category is GAF [19] which is also a geographic routing.

GAF is proposed for mobile ad hoc networks and can be used for WSNs too. GAF divides

the network into grids and conserves energy by turning off unnecessary nodes in each grid

cell. Indeed, only the node having the highest energy level in the grid cell is active for

a certain period and ensures routing. The protocols [40] and GROUP [41] belong to this

category.

2.2.1.3 Geographic Routing

Geographic or location-based routing protocols optimize the routing process using geographic

information. For instance, GEAR [18] propagates queries to the target region instead of

flooding the whole network like Directed Diffusion. Besides, intermediate nodes are chosen

based on their remaining energy and their distance to the target region. Other examples of

location-based protocols are DREAM [20], SPAN [21] and SPEED [22].

12

2.2.1.4 Mobility-based Routing

The key idea of these protocols is that nodes wait the passage of a mobile node and route

their messages toward it. Low-power nodes can save power since they have only to transmit

to a short range node. Besides, link errors are reduced. The main drawback of these protocols

is that they induce high delays. For instance, in [23], nodes transmit their data to a mobile

sink via a multi-hop communication. Consequently, there is a change in the set of nodes close

to the sink which are more likely subject to battery depletion. Thus, energy consumption

is balanced. Similarly, the work in [24] considers a mobile sink and evaluates the energy

dissipation for different mobility patterns. Some other approaches like [25] use mobile relays,

called the data MULES (Mobile Ubiquitous LAN Extension) which travel among nodes, pick

up data from them, buffer them, and deliver the data collected to access points.

2.2.1.5 Energy-aware Route Selection

In this category, route selection is based on energy criteria like the residual energy as in

REAR [26], [28] and [27]. However, the main drawback is that some intermediate nodes

are overused and thus may fail. Other protocols try to select the route that consumes the

minimum energy as in [29]. This technique may enhance the total power consumption of the

overall network but fails to prolong the lifetime of the nodes on the path of minimum energy.

That is why other schemes like EOLSR [30] and [31] take into account both criteria and select

routes that consume the lowest energy while using nodes with high residual energy.

2.2.1.6 Concluding Remarks about Energy Efficient Routing Protocols

Table 2.2 provides examples of routing protocols and explains how they achieve energy effi-

ciency.

From this table we notice that many routing protocols achieve energy efficiency by com-

bining many techniques. For instance, LEACH combines data aggregation with the sleep

mode. This strategy enhances the energy saving. Cumulating the benefits provided by sev-

eral techniques enhances the performance of the routing protocol. However, the issue is how

to keep low the overhead of the protocol. Data aggregation is a very suitable technique in

data gathering applications. Also, it is a natural strategy in hierarchical routing for instance

where clusters aggregate data from their cluster members. Increasing the data aggregation

period allows nodes to reduce the number of packets transmitted and hence save energy and

bandwidth, but this may result in higher data delivery delays. Hence, a tradeoff must be

found between the data delivery delays and the resources (bandwidth and energy) consumed.

Reducing the number of transmissions is highly related to data aggregation as it is evidently

its consequence. That is why, protocols that perform data fusion reduce the number of trans-

missions. Moreover, reducing the number of transmissions can also be achieved either by

reducing the number of transmitting nodes like in the geographic routing and in the opti-

mized flooding, or by reducing the number of data transmitted by avoiding data redundancy

13

Table 2.2: Examples of energy efficient routing algorithms

Routing algorithms How energy efficiency is achieved?

Class Examples Data ag-

gregation

Number

of trans-

missions

reduced

Nodes en-

ergy level

awareness

Sleep

mode

Data Centric SPIN [4] x x

SPIN-2 [4] x x x

Directed Dif-

fusion [5]

x x

Rumor [6] x x

Hierarchical LEACH [10] x x x x

PEGASIS [13] x x

TEEN [14] x x

APTEEN [15] x x

Geographic GEAR [18] x x

GAF [19] x x x

Mobility-

based

[23] x

[25] x

Energy-

aware route

selection

REAR[26] x

EOLSR [30] x x

for instance. This energy efficient feature is required whenever the allocated bandwidth is

small (which is usually the case in wireless ad hoc and sensor networks).

In our work, we extend the known energy efficient routing protocol EOLSR by adapting

it to data gathering applications. This routing considers energy level of intermediate nodes

and the cost of routes is energy-aware. Besides, we combine this routing with a node activity

scheduling scheme.

2.2.2 Protocol Overhead Reduction

In wireless ad hoc and sensor networks, the wireless communications consume much more

energy than local computation [32]. That is why many researches work at optimizing the

overhead of the protocols destined to these networks. And generally, this is achieved by

optimizing the overhead of the control message exchange (mainly the flooding process), and

by tuning the periodicity of the messages.

14

1. Flooding optimization: In classic flooding, called also “blind” flooding, any node should

retransmit a packet if it receives it for the first time. This scheme is not energy efficient

because of: (1) the redundant transmissions, indeed it is not obligatory that all nodes re-

transmit a packet to ensure the delivery to all nodes, (2) the presence of collisions. That is

why, many protocols rely on a subset of re-transmitting nodes selected according to specific

criteria.

Basically, two techniques are used to optimize flooding in wireless ad hoc networks. First,

a connected dominating set of nodes is built as in [42]. A dominating set DS of a graph

is a subset of nodes such that any node is either in DS or has a neighbor in DS. Further,

only nodes in the dominating set forward the broadcast message if it is received for the

first time. Notice that finding the minimum connected dominating set is NP-complete [43].

Second, other solutions rely on the construction of the Multi-Point Relays, MPR, as used

in OLSR [44]. Each node builds its minimum set of MPRs that allows it to reach all its

2-hop neighbors. The MPR flooding means that a node forwards a message if it receives

it for the first time from a node that selected it as MPR.

The drawback of the above mentioned solutions is the need to store 2-hop neighborhood

information at each node. The paper [45] compares different variants of flooding applied

to RPL (IPv6 Routing Protocol for Low power and Lossy Networks) routing protocol for

WSNs. One of the results of the comparison is that the MPR-based broadcast incurs the

highest delivery ratio and the lowest delays.

In the literature, we can find other solutions that do not require knowledge of the entire net-

work topology. For instance, in counter-based solutions [47], a node does not re-transmit

a packet if it overhears the same message from its neighbors for more than a prefixed

number of times. In a distance-based scheme [47], a node discards its retransmission if it

overhears a neighbor within a predetermined distance retransmitting the same message.

Other methods are based on gossiping [48] where a node forwards a packet with a specific

probability.

2. Adaptive control message periodicity: This category aims at avoiding the unnecessary

transmissions by tuning the periodicity of the control messages. Two famous techniques are

illustrated by the Trickle and the Fisheye algorithms. The trickle algorithm [49] is designed

for code propagation and maintenance in WSNs. It dynamically adjusts the transmission

rate depending on the freshness of the code the sensors have. Indeed, a node does not

send a packet if it recently overhears a similar information. The principle of the Fisheye

technique [50] is simple: a node exchanges routing information more frequently with its

nearer nodes, and less frequently with farther nodes. In [51], authors extend the OLSR

protocol with the Fisheye method to enable it to support large and dense networks.

15

2.2.3 Duty Cycle and Node Activity Scheduling

As the energy consumed in sleeping state is smaller than the energy consumed in any other

state, keeping sensor nodes in the sleep state is a good way to save energy. However, to

prevent network partition and message loss when some nodes are in the sleep state, node

activity scheduling is needed. We speak about the duty cycling which is presented in the

literature as the periodic wake-up scheme. The duty cycle means also the ratio of the

listening period length to the wake-up period length.

Depending on their vision of the network and the stack layer they focus on, these methods

approach the scheduling problem at high or low granularity:

1. High granularity: The scheduling problem is approached at a high level granularity:

the network is seen as a set of nodes cooperating to monitor a given area like in a

surveillance application for instance. Among these nodes, there are nodes that are

qualified redundant from an application point of view. These nodes are turned off while

non redundant nodes are needed to fulfil the application requirements. Consequently,

these protocols do not obligatory determine the schedule of each sensor itself but rather

determine the set of active nodes sufficient to perform application tasks. This set will

be active for a specific period that can be determined based on the residual energy of

the nodes for instance. The set of active nodes can be re-evaluated each activity period,

depending on the application requirements. This class of algorithms does not depend

on the medium access method and is implemented at an upper layer.

2. Low granularity: These solutions depend on the MAC layer and are in general inte-

grated in this layer. They deal with each non redundant node individually to schedule

its transmissions and receptions and allow it to sleep if it is neither transmitting nor

receiving. The activity of each node is re-evaluated at each time slot. In other words,

these methods determine for each time slot the set of nodes having to be active, and

the set of nodes that can sleep.

Notice that the first and second class of solutions can be used jointly: after having selected a

set of active nodes, these nodes are scheduled at the time slot level.

In the following, we detail these two classes. The second one is classified according to the

medium access: CSMA/CA, TDMA or hybrid.

2.2.3.1 High Granularity

The goal of these protocols is to build a set of active nodes, such that only nodes belonging

to this set must be active, all other nodes can sleep to keep their energy. In this type of

solutions, the number of deployed nodes is supposed to be higher than the minimum number

required to perform the monitoring activity (i.e nodes are redundant). Active node selection

16

is determined based on the problem requirements (e.g. area monitoring, network connectivity,

power efficiency).

In [52], Cardei and Du introduce a new energy saving method where the sensor nodes

are organized into a maximum number of disjoint sets. The sets are activated successively to

monitor the whole region while nodes in the other sets are in a low-energy sleep mode. The

problem of maximizing the number of these sets is NP-complete. However, this centralized

protocol assumes that all nodes are synchronized and does not take into account the real

node energy consumption. This work has been extended in [53], where a node can belong

to several sets to improve network lifetime. In [54], a distributed and localized solution is

proposed. It consists in selecting a connected dominating set of sensor nodes. Only the nodes

of this set are active. Each node has a priority that is given by its residual energy. A node

whose function is ensured by the dominating set can sleep if and only if: 1) the dominating

set is connected, 2) all its neighbors have at least one neighbor in this set, 3) all nodes in the

dominating set have a higher priority than itself. GAF [19] is an anergy-aware geographical

routing protocol. GAF distributes nodes into a virtual grid such that nodes in one cell are

equivalent from routing point of view. Indeed, based on its location provided by a GPS, each

node determines the cell it belongs to. Each node broadcasts how long it will be in the active

state. Its neighbors from the same cell use this information to schedule their sleep/awake

periods such that they sleep as long as the existence of an active node per cell in the virtual

grid is achieved. Notice that this routing scheme considers that all nodes belonging to the

same cell are equivalent. It is not often the case from the application point of view: the

final destination may be in the sleep state when another node wants to transmit data to it.

Another example is given by the PEAS [55] algorithm. Unlike [52], PEAS selects a set of

active nodes which stay in working state until they deplete their energy. Consequently, this

scheme allows the appearance of holes until another set of active nodes is constructed. In [56],

Cho et al. proposed ESP, a distributed node scheduling where each node switches from the

sleep to the active state if there is no active neighbors in vicinity, or if its sensing area is

greater than a predefined threshold. Further, an active node computes its working time based

on its remaining energy.

2.2.3.2 Low Granularity

The principles of these solutions is to allow a node to sleep, whenever it is neither transmit-

ting nor receiving. These solutions can be classified in three classes depending on the medium

access:

• CSMA/CA:

Many energy efficient CSMA/CA solutions use the RTS/CTS exchange preceding any

unicast data transmission. The goal is to enable the neighbors of the sender and the neigh-

bors of the receiver to sleep during the communication to avoid any wasteful idle listening

17

and overhearing problems. However, the RTS/CTS mechanism increases the overhead and

reduces the protocol efficiency. Hence, it is not adequate in case of short messages which

is usually the case in WSNs. Examples of solutions based on CSMA/CA are: S-MAC [57],

T-MAC [58], D-MAC [59], and OMAC [60].

For instance, the main goal of S-MAC is to reduce the energy consumption of WSNs, while

supporting good scalability and collision avoidance. S-MAC is based on sleep-listen scheme.

Each node prepares its activity schedule (the time of its next sleep) and exchanges it with its

1-hop neighbors. After receipt of such schedule from its 1-hop neighbors, each node deduces

when these neighbors will be awake, it updates its schedule such that it wakes up and listens

to them in order to receive data destined to it. However, it is possible that a node can not

adapt its schedule to one of its neighbors schedule because of a schedule loss for instance.

In this case, if this node wants to send data to one receiver, it must wait until this receiver

wakes up, which increases the network latency. To reduce energy consumption, nodes store

the duration needed for communications they are not involved in, and sleep for these du-

rations. These mechanisms require a phase of synchronization between nodes. Many other

variations of S-MAC have arisen such as T-MAC [58] with an adaptive duration of the active

period, D-MAC [59] that reduces network latency, O-MAC [60] that improves the throughput.

• TDMA:

TDMA based protocols allocate time slots to each node and schedule medium access based

on these slots. In general, energy efficiency is achieved by allowing nodes to sleep when they

are neither receiving nor transmitting and by avoiding collisions.

In TRAMA [61], only nodes having data to send contend for a slot. The node with

the highest priority in its neighborhood up to 2-hop wins the right to transmit in the slot

considered. Each node declares in advance its next schedule containing the list of its slots

and for each slot its receiver(s). The cost that TRAMA pays to support the adaptivity to the

traffic is its complexity. FLAMA [62] is an adaptation of TRAMA to WSNs supporting data

gathering applications. Its supports only the communications of a node with its parent and

its children in the data gathering tree.

FlexiTP [63] is a TDMA-based protocol in which a slot is assigned to one transmitter and

one receiver. All other nodes can sleep during this slot. Slots are assigned such that no nodes

that are 1-hop or 2-hop away transmit in the same slot. In this protocol, nodes build a tree

rooted at the data aggregation sink and run a neighbor discovery phase. The slot assignment

order is given by a deep-first search of the tree. A node selects the first available slot in its

neighborhood up to 2 hops and advertises its schedule. The exchange of this schedule allows

any node to determine the conflicting slots and select slot(s) to transmit, slots to receive data

from each child, and slots to receive from the parent. Medium access in the neighborhood

discovery and slot assignment phases is done according to CSMA/CA. An additional slot is

used for fault tolerance purposes. Indeed, FlexiTP supports link failure and node appearance

in the network by updating the slot schedule locally and disseminating the updated schedule

18

to nodes in interference range. Note that a node does not aggregate data from its children

before sending them to its parent. Which means that the transition between idle, transmit,

receive activities are frequent and increase with the network density. This may impact the

data gathering delays and the energy consumed by a node. This solution does not support

immediate acknowledgement. We speak about immediate acknowledgement when the

receiver uses the slot of the sender to transmit its acknowledgement.

Among the TDMA-based algorithms, there are algorithms that rely on the graph col-

oring theory to achieve an energy efficient scheduling. Indeed, the network is modeled as a

graph and the nodes or edges of this graph are colored. At the MAC layer, this coloring is

exploited as follows: a color is mapped to a time slot during which all nodes having this color

can transmit. Examples of these algorithms are TDMA-ASAP [64] and SERENA [67].

For instance, TDMA-ASAP is designed for data gathering applications but does not support

neither communications with broadcast nor immediate acknowledgement. It aims at provid-

ing spatial reuse, saving energy and decreasing the end-to-end delays. TDMA-ASAP colors

the data gathering tree and allows each node to sleep if it is neither transmitting nor receiv-

ing data. It consists in a centralized level-by-level node coloring algorithm and slot stealing

algorithm. It performs level by level coloring starting from the leaves such that any child is

scheduled before its parent. Authors presented also an enhancement to this coloring which

is the L-level coloring. Indeed, after each color c of each level l is assigned, the leaf nodes

from L lower levels (less deep levels than l) are assigned the same color c if they do not have

conflicts with any of the nodes in level l. The L-level coloring improves the end-to-end delays

but results in higher complexity scheduling. The slot stealing is used in case of light traffic

load in order to avoid empty slots to be unused and to adapt to various traffic conditions.

Any node listens for unused slots owned by any of its one-hop neighbors that has the same

parent. It can then steal any slot if the owner of this slot is not using it. Contention is used

to prevent collision between multiple stealers.

SERENA [67] (SchEdule RoutEr Node Activity) is a localized and decentralized node

activity scheduling based on node coloring. SERENA assigns colors to nodes in such a way

that the number of colors used is small and any two nodes having the same color can transmit

simultaneously without interfering. A node has to wake up in the slot of its color and the slots

of its 1-hop neighbors to receive data sent to it if any, and sleeps the remaining time. In the

following chapter, we are going to detail the principles and the properties of this algorithm and

enhance its performances regarding the application types and the wireless communications

failures.

• Hybrid:

Hybrid protocols use CSMA/CA as a baseline MAC scheme in low contention, and use

TDMA schedule to enhance contention resolution under heavy contention.

For instance, the goal of Z-MAC [65] is to optimize the bandwidth efficiency of the MAC

protocol. It is based on DRAND [66] which is a distributed randomized time slot scheduling

19

that ensures that no two nodes that are 1 or 2-hop away are assigned the same slot. After

DRAND slot assignment is achieved, ZMAC, unlike TDMA, allows any node to own additional

slots that are not used by any node within the 2-hop neighborhood of this node. Furthermore,

depending on the contention level in the network, any node performs a carrier sense and

transmits when the channel is clear. An owner of the slot has a higher priority than a non-

owner one. Any node must stay awake during the slots assigned to its neighbors in order to

be able to receive the message sent by one of them. From the energy point of view, nodes

are not allowed to sleep during the activity period because nodes are allowed to send during

any time slot. We can notice that Z-MAC, like TDMA-ASAP, does not allow an immediate

acknowledgement of unicast messages, while this acknowledgement is important in wireless

communication to confirm the correct reception of the packet.

To summarize, Table 2.3 presents a classification of the aforementioned scheduling al-

gorithms. To determine the classification criteria, we look for the properties of the methods

presented (distributed/centralized, probabilistic/deterministic, vertex/edge scheduling), types

of communication supported (unicast, broadcast, tree) and application supported (general,

data gathering). General application is an application where any node can communicate

with any other node.

Table 2.3: Classification of scheduling algorithms

central. determinist. vertex communication application

distrib. probabilist. edge unicast/tree/ supported

broadcast

TRAMA distrib. determin. edge unicast+broadcast general

FLAMA distrib. determin. edge unicast in a tree data gathering

ZMAC-DRAND distrib. random. vertex unicast+broadcast general

TDMA-ASAP central.* determin. vertex unicast in a tree data gathering

FlexiTP distrib. determin. edge unicast+broadcast data gathering

SERENA distrib. determin. vertex unicast*+broadcast data gathering

Legend: unicast*: unicast with immediate acknowledgement:

central*: only the centralized version is described in [64].

From this table, we notice that the algorithms vary depending on the type of the appli-

cation and communication supported. These parameters define the ability of the solution to

adapt to different types of applications. Besides, being aware of the application supported

is also of a major benefit. However, in the studied algorithms, there is no awareness of the

network topology characteristics: the density of nodes, the type of the topology, the memory

constraints of nodes, etc.

In our work, we take into account these features by proposing a scheduling method adapted

to both general and data gathering applications. The type of the topology (e.g grids), the

20

density of nodes and their memory constraints are also taken into account in our work (see

Chapters 4 and 5).

2.3 Conclusion

Energy efficiency has always been a major concern in wireless ad hoc networks and especially

in WSNs. Standards dedicated to these networks deal with this issue like IEEE 802.15.4 for

instance. In this chapter, we reviewed the energy conservation strategies and classified them.

The main focus of the remaining of this work is one of the techniques used to save energy

which is the scheduling of nodes activities. To apply it, we start by using the graph coloring

algorithm which is the subject of the next chapter.

21

Chapter 3

Graph Coloring and Node Activity

Scheduling in Wireless Ad hoc and

Sensor Networks

Introduction

Graph coloring is a famous optimization problem. It is a special kind of graph labeling and

consists in assigning colors to vertices or edges of a graph subject to some constraints. An

example of these constraints is the distance that prevents two adjacent vertices to share the

same color for instance. Graph coloring was proved to be particularly useful to a large number

of diverse fields, mainly networking. For instance, it is used in cellular networks to allocate

frequencies. Further, typically, vertex coloring is used for node scheduling and edge coloring

is used for link scheduling. In our work, we use the coloring to allocate time slots to nodes

and to schedule their activities. As we will prove, the advantages of the coloring are multiple:

It optimizes the network resources usage (energy, bandwidth, time,...).

This chapter contains 4 parts:

1. In Section 3.1, we present a state of the art about vertex and edge coloring and describe

two applications of the graph coloring in networking: frequency allocation and time slot

assignment.

2. In Section 3.2, we explain how the graph coloring is used to schedule the nodes activities.

Moreover, in the literature, it is usually assumed that the coloring should ensure that

a color of a node can only be used beyond its 2-hop neighborhood. In our study, we

generalize this assumption and define a h-hop coloring where h is a positive integer such

that at nodes sharing the same color are at least at h + 1 hops. We present also two

coloring modes depending on the application type: the general mode and the strategic

mode. We end this section by proving the NP-completeness of the coloring problem in

its two modes.

22

3. In Section 3.3, we discuss the main issues of applying the graph coloring in real wireless

environment.

4. In Section 3.4, we focus on the known coloring algorithm SERENA. We describe its rules

and then, we present an optimization of this algorithm by adapting it to the application

requirements and the wireless communications failures.

3.1 State of the Art: Graph Coloring

Graph coloring was firstly mentioned in 1852 by August De Morgan while he tried to color

a map with 4 colors such that no two adjacent countries have the same color. Nowadays,

applications of graph coloring are multiple and cover many domains. Depending on the el-

ements of the graph that are colored, we distinguish two types of coloring: vertex or node

coloring and edge coloring. In both types of coloring, the performance of the algorithm is

usually measured by (1) the number of colors used [64, 67] and (2) the running time [102].

In this section, we present a state of the art about vertex and edge coloring. We then detail

two of the applications of graph coloring in networking: frequency allocation and time slot

assignment.

For simplicity and clarity reasons, we adopt the following notations to present the vertex

and edge coloring methods.

• Let G be a graph with n vertices, ∆ is the degree of the graph1.

• Two vertices are said interfering if they are adjacent, that is neighbors.

• Two edges are said interfering if they are incident at the same vertex.

• Two vertices (respectively edges) are conflicting, if they have the same color although

they are interfering.

• A color conflict occurs if there are two conflicting vertices or edges.

• A coloring is said valid, if it does not contain any color conflict.

3.1.1 Vertex Coloring

Vertex (node) coloring consists in coloring each vertex of the graph such that two adjacent

vertices, that is vertices linked via an edge, have not the same color while minimizing the

number of colors used. Coloring a graph G with k colors is equivalent to partitioning the

vertices into k subsets where the nodes in one set are the nodes able to share the same

color. The smallest number of colors that can be used to color a graph G is the chromatic

1The degree of a graph is the maximum degree of its vertices. The degree of a vertex in the graph is the

number of edges incident to this vertex.

23

number of G, denoted χ. Finding the chromatic number of a graph has been shown NP-

complete in [43] for the general case, whereas graphs with maximum vertex degree less than

4, and bipartite graphs2 can be colored in a polynomial time.

3.1.1.1 Bounds on the Chromatic Number

Two trivial bounds for the chromatic number are given by 1 ≤ χ ≤ n for any graph. Indeed,

assigning distinct colors to distinct vertices always yields a valid coloring. Obviously, for a

complete graph3 χ = n. For a bipartite graph, only 2 colors are needed to color the graph.

Another bound is given by χ ≥ |V |
α where α is the independence number4 of G. Indeed,

let G be a graph colored with k colors and Vi is the set of nodes having the color i. Let

|V | = |V1| + |V2| + . . . + |Vk|. Hence, we have n = |V | ≤ αχ, and so χ ≥ |V |
α . Consider the

biggest clique 5 of size ω, then the vertices of the clique should have different colors as they

are all adjacent, so ω ≤ χ. Also, we have χ ≤ ∆+ 1 [72].

3.1.1.2 Overview about Existing Works

Vertex coloring has received a lot of attention from researchers. The first methods were

centralized like for instance [73, 74, 75]. Some methods are deterministic whereas others are

randomized where nodes select colors randomly. For example, in [73], an uncolored vertex

chooses randomly a color not already used by any neighbor. However, since two neighbors

can select the same color at the same time, a color conflict may occur and should be resolved.

Consequently, if any node discovers that any of its neighbors has chosen the same color, it

selects another one. This algorithm is simple and fast and runs in O(logn). However, it

does not use any mechanism to reduce the number of colors used so it produces ∆+ 1 colors.

Consequently more sophisticated mechanisms are required to optimize the number of colors

used.

As the coloring problem is NP-complete, heuristics and approximation algorithms

are applied. In [76], Brélaz presents Dsatur which is a centralized greedy algorithm. Dsatur

colors first the vertex with the highest number of already colored neighbor vertices. Similarly,

in DLF algorithm (Distributed Largest First) [77], each node is assigned a priority that

determines its coloring order. The priority of a vertex is equal to its degree, because it is

known that it is much better to color the vertices in a largest degree first order. Authors

show that the complexity of their algorithm is O(∆2 log n). A classic general heuristic is the

FirstFit [81] coloring algorithm that assigns the first available color to the uncolored node

with the highest priority.

2A bipartite graph is a graph whose vertices can be divided into two disjoint sets U and V such that every

edge connects a vertex in U to one in V ; that is, U and V are independent sets.
3A complete graph is a graph in which every pair of distinct vertices is connected by an edge.
4An independence number of a graph is the cardinality of the largest (vertex) independent set.
5A clique of a graph G is a subset of its vertices such that every two vertices in the subset are connected

by an edge.

24

Other algorithms use local search approaches [93, 94]. Local search heuristics operate in

a search space of solutions denoted S. For every solution s ∈ S, a neighborhood N(s) ⊂ S is

defined. A local search method starts at an initial solution, and then moves repeatedly from

the current solution to a neighbor solution in order to find better solutions, measured by an

appropriate objective function. The passage from one solution to the next solution is called a

move. The challenge for these methods is to determine the optimal neighborhood of a solution

and the optimal move. The most studied local search strategy is tabu search called TabuCOL

which was originally proposed by Glover [78]. It starts by generating an initial random solution

which contains typically color conflicts. Then, the heuristic iteratively modifies the color of a

vertex to decrease progressively the number of conflicts. Moreover, at each iteration, the move

that maximizes the cost function is performed. A specific number of last moves are stored

in order to avoid loops. Although these pure local search algorithms produce remarkable

results for small graphs, it is no longer the case with large random graphs [94]. By constraint,

an alternative that was used is the extraction of large independent sets (called also stable

sets)6 from the graph to obtain a smaller residual graph easier to color (see for instance

EXTRACOL that needs 2.5 hours to color 1000 nodes with a density of 5 in [94]).

A whole class of results expresses properties related to the worst-case performance

of approximation algorithms: they typically prove that, for any input graph of a given

family, the coloring obtained by a given algorithm uses at most α times the optimal number

of colors. Such an algorithm is denoted an α-approximation algorithm. The approximation

ratio of coloring algorithms that is defined as the ratio of the number of colors obtained

by the algorithm to the optimal number is of crucial interest. The reader can refer to [79] for

approximation ratio of coloring algorithms in grids, triangular lattices and hexagonal graphs.

Various approximation ratio are established depending on the priority, graph type and class

of algorithms [80].

3.1.2 Edge Coloring

Edge coloring of a graph is an assignment of colors to the edges of the graph such that

edges incident on the same vertex have different colors. Edge-coloring can be regarded as

vertex-coloring of line graph. Coloring the edges of a graph G with k colors is equivalent to

partitioning these edges into k subsets. The minimum number of colors for the edges of a given

graph is called the chromatic index of the graph or edge chromatic number denoted χ′.

Finding the edge chromatic number is not less complex than finding the chromatic number.

Edge coloring is also NP-complete [85].

3.1.2.1 Bounds on the Edge Chromatic Number

For any bipartite graphs, Konig [84] proved that ∆ colors are needed. If G is complete, then

if n is even then ∆ colors are needed, otherwise χ = ∆+1. For a general graph, it is obvious

6An independent set or stable set is a set of vertices in a graph, no two of which are adjacent.

25

that all edges incident to the same vertex must be assigned different colors, we have χ′ ≥ ∆,

where ∆ is the degree of the graph. Another trivial bound is χ′ ≤ 2∆− 1 because each edge

has at most 2∆ − 2 adjacent edges. Vizing’s theorem [82] states that the chromatic index

verifies: ∆ ≤ χ′ ≤ ∆ + 1. Shanon [83] proved that every graph can be edge-colored with at

most 3∆/2 colors.

3.1.2.2 Overview about Existing Works

Durand et al [85, 86] apply the edge coloring to schedule the data transfer between servers and

clients in bipartite graphs. The approach of color selection is distributed and randomized, and

is similar to the one proposed in vertex coloring in [73]: Each node randomly selects a color

for each of its edges and keeps this color if it is not used by any conflicting edge. If it is the

case, the node with the lowest degree has to change the color of this edge. Marathe et al [87]

propose a simple distributed algorithm where each edge has a palette of (1 + ǫ) ×∆ colors.

Each edge picks a color from this palette and checks if it does not conflict with the colors of the

neighboring edges. If it is the case, the color is kept and removed from the palette of available

colors. Otherwise, the edge performs a new attempt in the next round. As the edge coloring

problem is NP-complete, heuristics are used, especially for large graphs. Authors of [90]

compare the performances of different heuristics for edge coloring over standard benchmarks

(taken from a list of 119 graphs given at CP2002) for small graphs (< 500 nodes).

In [92], Huang and Tzeng propose another algorithm that colors the edges of planar

networks with ∆ + 4 colors, where ∆ ≥ 5. Their idea is to give each edge a priority and let

the higher-priority edges choose colors first.

There are algorithms that target graphs with unidirectional links. For instance, Herman

et al [88] use [87] to propose a randomized oriented edge coloring of a tree. The algorithm

includes the edge coloring of [87] as a first step, and then recolors edges randomly with proba-

bility p, and then assigns orientation to all edges to obtain a tree. Compared to [87], Herman

et al improve the time complexity from linear to O(polylog(n)). However, there is no guar-

antee that this coloring is conflict-free.

Regarding the applicability of the coloring to wireless ad hoc and sensor networks, the

aforementioned vertex and edge coloring algorithms cannot be used as they are.

First, the randomized coloring results in color conflicts. Conflict resolution has not a negli-

gible complexity. Second, the running time is usually not estimated because it depends on

the random initial colors. Although randomized solutions scale well with the network size,

determinism is still be a requirement for these networks especially under time and energy

constraints.

Third, most of the algorithms mentioned above are destined to general graphs. Although

there are works that target large graphs, few of them take into account specific properties of

the topology (nature of the links, the eventual heterogeneity of the node/link, etc). However,

26

we believe that such details are worth considering if we want to adapt the algorithm to a

specific application especially in networking. We will discuss in Section 3.3 which considera-

tions have to be taken into account by any coloring algorithm for wireless ad hoc and sensor

networks.

3.1.3 Applications of Graph Coloring in Networking

Many coloring algorithms have been designed to be used in wired and wireless networks

to make the medium access more efficient. In this section, we only present its two main

applications in networking: the time slot assignment and the frequency allocation.

3.1.3.1 Frequency Allocation

There has been extensive research on channel allocation particularly on base station fre-

quency/channel assignment in cellular networks. The fundamental problem of frequency as-

signment in cellular networks is to assign frequencies to base-stations so that every client is

served by some base-station. The graph coloring is used to solve this problem like for in-

stance [95]: each base station is assimilated to a vertex, and an edge links two base stations

if they are interfering. The goal is to minimize the number of assigned frequencies and hence

the number of colors since the available spectrum is limited and costly.

The frequency allocation problem arises also in wireless mesh networks [96] and WSNs [97].

The coloring is applied as follows: the radio transceivers are modeled as vertices and are linked

to other interfering units. A color corresponds to a frequency and two interfering nodes do

not share the same color. The main challenge of this coloring is to minimize the overall

network interference like in [96] which applies the graph coloring associated to the Tabu

search heuristic, and like [97] that targets the interference reduction in WSNs. Another goal

that was defined is the optimization of the spectrum use by allowing users to sense locally

available channels and utilize them opportunistically like in [98, 99].

3.1.3.2 Time Slot Assignment

Coloring is applied in time slot assignment mainly in wireless ad hoc and sensor networks.

The time slot allocation is usually associated to slotted contention-free medium access meth-

ods. It is used to allocate slots to nodes (respectively to links) to schedule the activities of

these nodes (respectively transmissions on these links). In general, edge coloring is used to

model the link scheduling problem [100, 101] while vertex coloring is used to model the node

activity scheduling problem [64, 67]. Indeed, any color is associated to one or more time slots

during which all nodes or links that share this color can be scheduled. In edge coloring, two

neighboring nodes can communicate during the color of the edge connecting them. Similarly,

in vertex coloring, a node is allowed to transmit only during the slots corresponding to its

color. Consequently, packet collisions are avoided. Further, the bandwidth usage is improved

27

thanks to parallel conflict-free transmissions.

In our work, we are interested in this kind of application of graph coloring as explained in

Section 3.2.

3.2 Coloring for Node Activity Scheduling: Problem Formu-

lation and Complexity

In this section, we formulate the node coloring problem and prove that it is NP-complete.

3.2.1 Objectives and Design Choices

3.2.1.1 Objectives

Given a wireless ad hoc or sensor network composed of a number of nodes, our aim is to

build a contention-free cycle of minimum length containing the time slots where each node

can transmit its messages. A good schedule is a schedule that allows nodes to save energy

by turning off their radio as long as possible. Also, to ensure an optimal spatial reuse, non

interfering nodes must be able to access the medium simultaneously. Of course, the applica-

tion tasks must be totally achieved. The schedule must be conflict-free: any two nodes that

interfere should not be scheduled simultaneously. Otherwise, the transmissions of both of

them will collide and the sent packets will be lost. For this purpose, we propose to use graph

coloring and build a slotted contention free schedule based on these colors. In the following,

we consider the special case of TDMA. However, what is said can be applied to any

slotted contention-free medium access. Figure 3.1 illustrates our methodology.

28

Figure 3.1: Strategy of application of coloring for node activity scheduling.

We now justify our design choices.

3.2.1.2 Why a Slotted Contention-free Scheduling?

This choice is motivated by the following:

• Medium access protocols that are contention-based protocols are clearly inadequate.

They suffer from collisions and non deterministic delays especially under heavy traffic

conditions.

• CSMA/CA based scheduling methods implies the use of the RTS/CTS exchange that

results in an overhead and reduces the protocol efficiency. It is not adequate in the case

of short messages which is usually the case in sensor networks.

• TDMA is a contention-free protocol where nodes share the same channel and time is

divided into time slots. Each node transmits data in its allocated slots. Slots are usually

organized in a cycle which is repeated periodically. Hence, it is obvious that the TDMA

protocol is well adapted to collision-free packet transmission with QoS support.

• Furthermore, the TDMA deterministic scheduling is energy efficient. It avoids collisions

that waste energy, does not need idle listening and allows low power devices to turn off

their radio in time slots not allocated to them and during the inactive period. Although

the use of TDMA requires synchronization between nodes, it is an efficient way of

mitigating the limitations of CSMA based networks.

29

For these reasons, we adopt the TDMA-based scheme with the cycle format depicted in

Figure 3.2.

Figure 3.2: An example of generated cycle.

Assuming a TDMA-based medium access, one trivial solution to schedule nodes is to grant

a time slot to each node. Then, each node has to be awake in the slots corresponding to its

neighbors that transmit message to it, and to sleep during the remaining time. This solution

has many drawbacks at many levels:

• Delays: The length of the activity period is equal to the number of nodes. This means

that in a network of 1000 nodes, any node accesses the medium each 1000 time slots,

which increases the end-to-end delays.

• Bandwidth: At any time slot, only one node is active. However, in a large network,

nodes can be far enough to be able to transmit simultaneously without interfering.

Otherwise, bandwidth is wasted.

• Fairness regarding nodes demand: In any application, nodes may have heteroge-

neous traffic demand. So, granting equal channel access to all nodes is not adequate.

In this thesis, we are guided by these remarks in order to enhance this basic TDMA scheme

by avoiding the aforementioned drawbacks.

3.2.1.3 Why Graph Coloring?

For us, to model the activity scheduling problem as described in Section 3.2.1, the graph

coloring is a natural and an immediate choice. Indeed, graph coloring has been used for many

scheduling applications where it proved its efficiency to model the problem treated.

Obviously, the trivial stack layer where the node activity scheduling is used is the MAC

layer since it manages the medium access. However, computing the schedule using the coloring

has the advantage of an implementation flexibility: It can be at the MAC layer or at an

upper layer. Consequently, in general, it avoids the coloring algorithm to deal with the MAC

parameters like the slot duration, the slot time bounds. This fact is true for any graph labeling

technique in fact. Moreover, it is easy to model a network by a graph and apply the vertex

coloring on it (see Figure 3.1). Firstly, the network is modeled as a graph where the vertices

represent the nodes and the edges represent the links of the network. The vertices are colored

30

with different colors. Second, two nodes share the same color if and only if they are not

interfering. Finally, each color is mapped to one or more different time slots.

The expected benefits of coloring are threefold:

• At the bandwidth level where no bandwidth is lost in collisions, the overhearing and the

interferences are reduced. Moreover, the use of the same color by several nodes ensures

the spatial reuse of the bandwidth.

• At the energy level where no energy wasted in collision. Furthermore, nodes can sleep

to save energy without loosing messages sent to them because of the schedule based on

colors.

• At the delay level where the end-to-end delays can be optimized by a smart coloring

ensuring data gathering in a single cycle.

The efficiency of a coloring algorithm is mainly measured by the number of colors.

Indeed, this parameter defines the length of the activity period in the TDMA cycle. So, the

smaller the number of colors is, the shorter the TDMA cycle is, and the smaller the end-to-end

delays are. Further, other criteria should be considered:

• The running time: The complexity of any algorithm is measured by its running time.

The coloring can be performed at the network deployment phase or as a maintenance

step. In both cases, it should be fast in order to enhance the reactivity of the network.

• The overhead: Reducing the size of the message exchanged and the size of the data

having to be stored is another goal. This allows the algorithm to adapt to ad hoc and

sensor networks which are characterized by the small storage and computing capacity.

3.2.1.4 Edge or Vertex Coloring?

Regarding the medium access scheduling, and ssuming a bijective mapping between colors

and time slots, the edge coloring is better than vertex coloring at the following levels [104]:

• The concurrent transmissions: The edge coloring can increase the concurrency of

transmissions. To have a conflict-free scheduling, two 1-hop or 2-hop nodes cannot

transmit at the same time slot. Consequently, a vertex coloring of the sample linear

network depicted in Figure 3.3 would not assign the same color to nodes B and C (in

this Figure, the integer next to the node (respectively to the edge) is the color of this

node (respectively the edge)). However, with edge coloring and assuming directional

links, links (C → D) and (B → A) are activated simultaneously, which means that

nodes B and C share the same time slot.

• The bandwidth: With vertex coloring, a slot assignment to nodes restricts each node

to transmit in at most one time slot in each TDMA cycle, irrespective of the number of

neighbors a node might have. However, in edge coloring, each node has one time slot

31

Figure 3.3: Difference between vertex and edge coloring: concurrent transmissions.

per neighbor in each cycle. Hence the bandwidth available to each node is proportional

to its number of neighbors.

• The energy conservation: When time slots are assigned to nodes, each neighbor of

the transmitting node has to switch to the receive state, irrespective of whether it is

the intended receiver or not. Consequently, nodes waste energy in receiving frames not

intended for them (overhearing). On the other hand, if each edge is assigned a slot, only

the intended receiver switches to the receive state.

However, the edge coloring is not adequate in many cases:

• Broadcast: When colors are assigned to edges, each node has to repeat a broadcast

messages as many times as the number of its outcoming links. This means that buffering

the message until it is transmitted to all the neighbors is required. Meanwhile, in vertex

coloring, all the neighbors of a node are active during the broadcast message transmission

and can hence receive their message successfully.

• Number of colors produced: As the number of edges of a network is higher than

the number of nodes, the running time of the coloring and the number of colors needed

are higher in edge coloring. Further, to favor concurrent transmissions a color of a link

corresponds to 2 time slots: one per each direction. Consequently, delays are increased.

For instance, the vertex coloring of the graph of Figure 3.4 uses 3 colors while the edge

coloring produces 4 colors.

Figure 3.4: Difference between vertex and edge coloring: number of colors.

In our work, broadcast message are used to manage the network and build the neighbor-

hood. For this reason, we choose the vertex coloring approach.

32

In the next sections, we introduce a formal definition of the coloring algorithm adapted

to time slot assignment in ad hoc and sensor networks.

3.2.2 The Definition of the h-hop Coloring Problem

3.2.2.1 Network Model

Given the network, let G(V,E) be the undirected graph representing the network topology.

Each vertex vi ∈ V represents a network node with i ∈ [1, n]. For any two vertices v1 and v2

in V , the edge (v1, v2) ∈ E if and only if the two nodes v1 and v2 are 1-hop neighbors.

Two nodes from this graph are said:

1. 1-hop neighbors if there is en edge linking them.

2. h-hop neighbors if the minimum path between them is composed of h links.

3.2.2.2 Application Type

Depending on the application type, we define two modes of coloring.

1. General mode: This mode is adapted to general applications, where the destination

of any unicast transmission can be any network node.

2. Strategic mode: This mode is adapted to data gathering applications, where a strate-

gic node called the sink collects data from sensors. Nodes are in general organized into a

tree rooted at this sink. The destination of any unicast transmission is either the parent

or a child of the node in the data gathering tree.

3.2.2.3 Coloring Problem Definition

For simplicity reasons, colors are represented by natural integers, starting with zero. Based

on the aforementioned model, we define the coloring problem as follows:

Definition 1. One-hop node coloring in the general mode of G consists in assigning

colors to nodes such that:

(i) two adjacent nodes have not the same color;

(ii) the number of colors used is minimized.

With regard to the general mode, the strategic mode requires an additional constraint 1.

Definition 2. One-hop node coloring in the strategic mode of G consists in assigning

colors to nodes such that:

(i) two adjacent nodes have not the same color;

(ii) the number of colors used is minimized;

Constraint 1. Any node must select a color strictly higher than the color taken by its parent

in the data gathering tree.

33

In the graph theory, usually, coloring problems only prevent the 1-hop neighbors from

sharing the same color, and allow other nodes to share it. However, in wireless networks, the

interferences exceed 1 hop and are usually assumed to be limited to 2 hops. In our work, we

will show that there are specific cases where even nodes lying at a distance higher than 2 must

have different colors. That is why, we generalize the study of the coloring problem and define

the h-hop coloring problem for any integer h ≥ 1. We can easily extend one-hop node coloring

to h-hop node coloring, for any integer h ≥ 1. h-hop node coloring is also called, in [103] for

instance, h-distance node coloring and 1-hop coloring of the hth power of the graph7 G.

Definition 3. h-hop node coloring in the general mode is assigning colors to nodes

such that:

(i) no two nodes that are k-hop away, 1 ≤ k ≤ h use the same color;

(ii) the number of colors used in minimized.

Similarly,

Definition 4. h-hop node coloring in the strategic mode is assigning colors to nodes

such that:

(i) no two nodes that are k-hop away, 1 ≤ k ≤ h use the same color;

(ii) the number of colors used in minimized.

Constraint 1. Any node must select a color strictly higher than the color taken by its parent

in the data gathering tree.

A 1-hop or h-hop coloring is said valid if it verifies the following definition:

Definition 5. For any integer h > 0, a h-hop node coloring in the general mode is said valid

if and only if any two nodes that are k-hop neighbors, with 1 ≤ k ≤ h have not the same color.

Definition 6. For any integer h > 0, a h-hop node coloring in the strategic mode is said

valid if and only if any two nodes that are k-hop neighbors, with 1 ≤ k ≤ h have not the

same color, and the color of any node is strictly higher than the color of its parent in the data

gathering tree.

This coloring is said optimal if:

Definition 7. A valid h-hop node coloring in the general mode (respectively in the strate-

gic mode) is said optimal if and only if no valid h-hop node coloring in the general mode

(respectively in the strategic mode) uses less colors than this coloring.

7The h
th power of a graph G is obtained by adding an edge between any two vertices at a distance h or

less.

34

3.2.3 The NP-completeness of the Coloring Problem

It has been proved in [43] that the 1-hop vertex coloring problem is NP-complete. In this

section, we will demonstrate that h-hop (h ≥ 1) vertex coloring problem in both general and

strategic modes is NP-complete.

Theorem 1. The decision problem of h-hop (h≥1) vertex coloring in both general and

strategic modes is NP-complete.

The coloring problems presented by Definition 3 and Definition 4 are two optimization

problems. To evaluate their complexity, we define their associated decision problem denoted

k-color h-hop coloring:

k-color h-hop coloring in the general mode: Can graph G be colored with k colors in

the general mode (k is a positive integer smaller than the vertex number), such that two nodes

that are p-hop neighbors with 1 ≤ p ≤ h have not the same color?

k-color h-hop coloring in the strategic mode: Can graph G be colored with k colors

in the strategic mode (k is a positive integer smaller than the vertex number), such that two

nodes that are p-hop neighbors with 1 ≤ p ≤ h have not the same color, and any node has a

color higher than the color of its parent in the data gathering tree?

Further, we denote k-color 1-hop coloring the decision problem of the 1-hop coloring

problem.

Our proof of Theorem 1 is done through the following steps.

• First, we prove the following lemma:

Lemma 1. The k-color h-hop coloring problem in both general and strategic modes for h ≥ 1

are in NP.

Proof: Given a h-hop coloring of G, h ≥ 1 we can check in polynomial time (O(nh), where

n is the number of nodes) that the coloring produced by a given h-hop coloring algorithm in

both general and strategic modes does not assign the same color to two nodes that are p-hop

neighbors with 1 ≤ p ≤ h, and that the total number of colors is k. Further, for the strategic

mode, the verification of the superiority of a color of a node relative to the color of its parent

(Constraint 1) is still time polynomial.

• Second, we define a reduction f of the k-color 1-hop vertex coloring problem that has been

shown NP-complete in [43], to a k′-color h-hop coloring problem in the general and strategic

modes, with k′ a positive integer smaller than the nodes number. This reduction should be

polynomial in time. Based on this reduction, we prove the two following equivalence:

Equivalence 1. A k′-color h-hop vertex coloring problem in the general mode has a solution

if and only if a k-color 1-hop vertex coloring problem has a solution.

35

Equivalence 2. A k′-color h-hop vertex coloring problem in the strategic mode has a solution

if and only if a k-color 1-hop vertex coloring problem has a solution.

In general, to demonstrate that a problem is NP-complete based on another problem that

is known to be NP-complete, the required reduction should allow us to show that we can find

a solution for the first problem if and only if we can find a solution for the second problem.

In our case, we should transform a graph G(V,E) into a graph G′ = (V ′, E′) and show that

finding a k-color 1-hop coloring of G(V,E) can lead to finding a k′-color h-hop coloring of

G′(V ′, E′) in the general mode and in the strategic mode separately, proving Equivalence 1,

and Equivalence 2.

To prove this, the construction must obey the following constraints.

Constraint 2. Any two nodes v1 and v2, 1-hop away in G must be at most h-hop away in

G′.

Thus, two nodes that are assigned different colors by 1-hop coloring of G are also assigned

different colors by a h-hop coloring of G′.

Constraint 3. Similarly, any two nodes v1 and v2, 2-hop away in G must be at least (h+1)-

hop away in G′.

Consequently, the reduction separates any two 1-hop neighbors vi and vj of the initial graph

G by a set of nodes such that the distance between them in the new graph G′ is at most h

hops. V ′ is obtained from V by adding new nodes. We denote V ′ = V ∪ V1. The definition

of these new nodes depends on h parity.

In order to simplify the determination of k′, the number of colors used for the h-hop coloring

of G′, we add a new constraint to the transformation:

Constraint 4. Any two nodes in V1 must be at most h-hop away. Moreover, any two nodes

u ∈ V and v ∈ V1 must be at most h-hop away.

Thus, in a h-hop coloring of G′, nodes in V1 have different colors. Similarly, no node in V can

reuse a color used by a node in V1.

The transformation proceeds as follows, depending on the parity of h:

36

• First case: h is odd: see the example for h = 5 in Figure 3.5.

◦ Definition of V ′

In this case, we first define h′ = (h− 1)/2 copies of V , denoted Ui and h′ bijective functions

fi, with i ∈ [1, h′]:

fi : V → Ui

v 7→ fi(v) = ui
We say that ui is the associated or correspondent node to v at level Ui. Now, we can define

the set V1 = ∪iUi ∪ {u0} and V ′ = V ∪ V1, ∀i ∈ [1, h′], where u0 is a new node introduced to

meet Constraint 4. Node u0 is a neighbor of all nodes in Uh′ .

◦ Definition of E′

To build the set E′, four types of links are introduced. We then have: E′ = E1∪E2∪E3∪E4

where:

• E1 = {(v, u1) such that v ∈ V and u1 = f1(v) ∈ U1}. Thus, each node v from the initial

graph G is linked to u1, its associated node from the set U1 (see links of type e1 in

Figure 3.5).

• E2 = ∪l∈[1,h′−1]

{

(ul, ul+1) such that ul ∈ Ul and ul+1 ∈ Ul+1 and f−1
l (ul) = f−1

l+1(ul+1)
}

.

Each node uj from Uj is linked to node uj+1 from Uj+1 associated with the same node

v ∈ V , that is f−1
j+1(uj+1) = v and f−1

j (uj) = v (see links of type e2).

• E3 =
{

(uh′ , vh′) such that uh′ and vh′ ∈ Uh′ and (f−1
h′ (uh′), f−1

h′ (vh′)) ∈ E
}

. Two nodes

uh′ and vh′ from Uh′ are linked to each other if their corresponding nodes in V are linked

in E (see links of type e3).

• E4 = {(u, u0) with u ∈ Uh′}. Finally, the nodes in Uh′ are linked to the conjunction

node u0, which was added to meet Constraint 4 (see links of type e4).

This construction is polynomial in time. An example of graphs G and G′ with h = 5 is

illustrated in Figure 3.5.

37

(a)

(b)

Figure 3.5: Example of: (a) Graph G; (b) Transformed graph G′ for h = 5.

• Second case: h is even: see the example of h = 6 in Figure 3.6.

To build the graph G′ when h is even, Constraints 2, 3 and 4 are considered. However, as the

number of links to introduce between nodes in the initial graph G depends on the number of

nodes to introduce between them, and thus, on h parity, the reduction is slightly modified.

◦ Definition of V ′

In this case, let h′ = h/2, we first define h′ − 1 copies of V , denoted Ui and h′ bijective

functions fi with i ∈ [1, h′ − 1]:

fi : V → Ui

v 7→ fi(v) = ui
and the bijective function fh′ :

fh′ : E → Uh′

e 7→ fh′(e) = uh′

We define the set Uh′ . To each couple of nodes (uh′−1, vh′−1) in Uh′−1, we associate a node

uh′ in Uh′ if and only if there is an edge between f−1
h′−1(uh′−1) and f−1

h′−1(vh′−1). Now, we can

define the set V1 = {u0} ∪i Ui, ∀i ∈ [1, h′], where u0 is a node introduced to model the data

gathering tree in G′.

38

◦ Definition of E′

To build the set E′, five types of links are introduced. We then have:

E′ = E1 ∪ E2 ∪ E3 ∪ E4 ∪ E5 where:

• E1 = {(v, u1) such that v ∈ V and u1 = f1(v) ∈ U1}. Thus, each node v from the initial

graph G is linked to u1, its associated node from the set U1 (see links of type e1 in

Figure 3.6).

• E2 = ∪l∈[1,h′−2]

{

(ul, ul+1) such that ul ∈ Ul and ul+1 ∈ Ul+1 and f−1
l (ul) = f−1

l+1(ul+1)
}

.

Each node uj from Uj is linked to node uj+1 from Uj+1 associated with the same node

v ∈ V (see links of type e2).

• E3 = { (uh′−1, uh′), (uh′ , vh′−1) } such that

{

uh′−1 and vh′−1 ∈ Uh′−1 and uh′ ∈ Uh′

and f−1
h′ (uh′) = (f−1

h′−1(uh′−1), f
−1
h′−1(vh′−1).

In other words, for each couple of nodes uh′−1 and vh′−1 in Uh′−1, we associate a node

uh′ ∈ Uh′ if and only if (f−1
h′−1(uh′−1), f

−1
h′−1(vh′−1)) ∈ E. We then link uh′ with uh′−1

and vh′−1 (see links of type e3).

• E4 = {(ui, uj) such that ui and uj ∈ Uh′ and i 6= j}. This means that the nodes in Uh′

form a complete graph (see links of type e4).

• E5 = {(ui, u0)∀ ui ∈ Uh′}. All nodes in Uh′ are linked to a node u0 (see links of type

e5).

This construction is polynomial in time. The transformed graph G′ for h = 6 of the initial

graph G depicted in Figure 3.5.a is illustrated in Figure 3.6.

39

Figure 3.6: Transformed graph G′ of G for h = 6.

We now show, that the k′-color h-hop vertex coloring problem in both general and strategic

modes, for any value of h ≥ 1 has a solution if and only if the k-color 1-hop vertex coloring

problem has a solution. We have the following Lemma:

Lemma 2. All nodes in G′ \G are at most (h− 1)-hop neighbors.

Proof: By construction of G′.

Lemma 3. To perform a h-hop coloring of the graph G′, the number of colors taken by nodes

in V1 is equal to m with m is equal to (h′ ·n)+1 if h is an odd number, and (h′−1) ·n+p+1

if h is an even number, where n is the number of nodes in G and p is the number of edges in

G.

Proof: From Lemma 2, all nodes in V1 are at most (h − 1)-hop neighbors. Hence, no color

can be reused with h-hop coloring (h ≥ 2) of G′. By construction of G′, the number of these

nodes is equal to (h′ · n) + 1 if h is an odd number, and (h′ − 1) · n + p + 1 if h is an even

number.

Lemma 4. Any color of a node in V computed by a h-hop coloring of G′ = (V ′, E′) cannot

be used by any node in V1.

40

Proof: Let us consider any node u ∈ V1 and any node v ∈ V . Let d(v, u) be the number of

hops between v and u. By construction, d(v, u) = d(v, f1(v)) + d(f1(v), u). From Lemma 2,

d(f1(v), u) ≤ h − 1 and since f1(v) is a neighbor of v, we get d(u, v) ≤ h. Hence, u and v

must use different colors with h-hop coloring of G′ for h ≥ 1.

To complete the proof of Theorem 1, we now prove the following Lemma:

Lemma 5. G(V,E) has a one-hop coloring with k colors if and only if G′(V ′, E′) has a h-hop

coloring in general mode with k′ colors, with h ≥ 2.

Proof: Given a 1-hop coloring of G with k colors, we want to show that there exists a h-hop

coloring of G′ with k′ colors as follows. According to Lemma 3, this h-hop coloring will use k

colors for nodes in V and m colors for nodes in V ′ \V with m is equal to (h′ ·n)+ 1 if h is an

odd number, and (h′ − 1) · n + p + 1 if h is an even number. From Lemma 4, colors used in

V cannot be reused in V ′ \ V . It follows that there exists a h-hop coloring of G′ with exactly

k′ = k +m colors.

Now, let us assume that we have a h-hop coloring of G′ with k′ colors and we want to

show that we can find a one-hop coloring of G with k colors. From Lemma 3, m colors are

needed for h-hop coloring of nodes in V ′ \ V . From Lemma 4, colors used in V cannot be

reused in V ′ \ V . Hence, k′ − m colors are used to color the nodes in V . Moreover, since

any two nodes v1 and v2 in V that are one-hop neighbors in G are h-hop neighbors in G′, by

construction of G′, we deduce that no two one-hop neighbors in G use the same color. Hence,

we can find a valid one-hop coloring of G with k = k′ −m colors.

Figure 3.7 illustrates this coloring for h = 5, and h = 6 based on the original graph in

Figure 3.5(a) (colors are the integers next to the node).

41

(a) (b)

Figure 3.7: The graph G′ colored with (a) 5-hop coloring, (b) 6-hop coloring.

Lemma 6. G(V,E) has a one-hop coloring with k colors if and only if G′(V ′, E′) has a h-hop

coloring in strategic mode with k′ colors, with h ≥ 1.

Proof: Given a one-hop coloring of G with k colors, we want to show that there exists a

h-hop coloring of G′ with k′ colors in strategic mode such that Constraint 1 defined in Section

3.2.2.3 is met, as follows.

We start by building a tree T rooted at node u0 from the graph G′. Nodes from V are the

leaves of this tree (see Figure 3.8 as an example). In the case h is odd, any node v in V has

as parent f1(v). Any node vl in Ul with l a positive integer such that 1 ≤ l ≤ h′ − 1 has as

parent the associated node from the level Ul+1. Any node in Uh′ has as parent the root u0.

In the case h is even, T has as root the node u0, any node v in V has as parent f1(v), and any

node in Ul with l a positive integer such that 1 ≤ l ≤ h′− 2 has as parent the associated node

in Ul+1. Finally, we link the nodes in Uh′−1 to the tree. With any node vi ∈ Uh′ (1 ≤ i ≤ p

where p is the number of edges in G) linking two nodes ui and uj in Uh′−1 we associate as its

child a node from the couple (ui, uj), such that this node has not yet a parent.

To color T , we start by coloring the node u0 the root of the tree. Then, we color nodes level

by level, to finally reach the original nodes in V . From Lemma 2 and Lemma 4, nodes in each

level do not reuse colors from lower levels. Hence, each child has a color strictly higher than

the color of its parent.

Figure 3.8 depicts the tree built from graph G′ for h = 5 and h = 6, where only tree links

are represented. The coloring of these graphs is similar to the one in Figure 3.7.

42

(a) (b)

Figure 3.8: Tree built from G′: (a) h=5; (b) h=6.

3.3 Issues of Coloring Application in Real Wireless Environ-

ment

As proved in Section 3.2.3, the coloring problem is NP-complete. In fact, its complexity comes

from the multitude of choices a node may have to select its color. Consequently, approximation

and heuristics are in general used to find good solutions. Moreover, adapting the graph

coloring to scheduling for wireless ad hoc and sensor networks implies further challenges, and

many considerations have to be taken into account. Indeed, there are considerations relative

to the wireless nature of the communications and others on the graph coloring problem itself.

All these details make the application of the coloring in wireless ad hoc and sensor networks

a difficult problem. In this section, we are going to list and discuss these issues.

• Interferences: To color any node, the first step is to determine its conflicting nodes,

that is the set of nodes that are not allowed to share its color. This is equivalent to

finding the value of the h parameter in the h-hop coloring problem, which itself implies

the definition of the interference model. Determining the set of conflicting nodes of any

node is crucial because: (1) If it includes less nodes than necessary the coloring will

allow conflicting nodes to have the same color and hence collisions may occur and (2)

If it includes more nodes than necessary, a color will be forbidden to a number of nodes

higher than necessary, and hence the total number of colors will be high. Consequently,

the set of the conflicting nodes must be finely chosen. We will prove that this set depends

on the type of the application and the communications supported.

• The transmission range: The wireless interferences are function of the transmission

range R. The value of R has to be taken into account in the coloring algorithm. Notice

43

also that while the 1-hop coloring seems to be easier than h-hop coloring for h > 1, it is

not sufficient to change the value of R to switch from 1-hop coloring to h-hop coloring

for h > 1. For instance, contrary to what one might think, 2-hop coloring of a graph

with R = 3 is not the same as the 1-hop coloring of the same graph with R = 6 = 3 ∗ 2.
Figure 3.9 illustrates this fact. The example is taken in grid topologies, where the

transmission range is expressed in grid step units. For any grid node u, Figure 3.9

depicts the nodes that cannot take the same color as u (which is the center of the grid

in the figure) in case of:

(a) 1-hop coloring with transmission range=6;

(b) 2-hop coloring with transmission range=3;

(c) 3-hop coloring with transmission range=2.

(a) (b) (c)

Figure 3.9: Nodes having a color different than the color of the central node u in: (a) 1-hop

coloring R = 6; (b) 2-hop coloring R = 3 and (c) 3-hop coloring R = 2.

These 3 sets are different, which means that 3-hop coloring of a grid with R = 2, is not

equivalent to 1-hop coloring of the power 3 of this graph with R = 6, not equivalent to

2-hop coloring of the grid with R = 3. More generally, we have the following remark:

Remark 1. For any graph G, for any transmission ranges R and R′ ≥ 1, for any

integer h and h′ > 0 such that R′ · h′ = R · h, h-hop coloring of G with transmission

range R is not equivalent to h′-hop coloring of G with transmission range R′.

This remark means that the coloring is a function of the values of h and R separately

not the product h ∗R.

• Unreliability of radio links: Wireless networks are characterized by the link breakage

and hence neighboring nodes departure. It can be easily shown that the breakage of a

link does not compromise the validity of a coloring as no additional links are created.

Whereas the creation of a new link may invalidate the coloring since nodes that were

not conflicting may be closer and may interfere. The creation of new links can result

44

from nodes mobility or late arrival. In our work, we will discuss how these impairments

are addressed by our coloring solutions (see Chapters 4 and 5).

• The limited resources of nodes: In ad hoc and sensor networks, nodes have limited

storage and computing capacity. So reducing the overhead of the developed solutions

is a real requirement. Also, as we mainly target the energy saving, our solutions must

have a small time and message overhead.

• The network and application properties: Intuitively, the type of the topology is not

a negligible parameter. We will show that being aware of the periodicity of the topology

like for instance a grid topology has a great help to obtain a more efficient coloring.

The application and the type of the communications contribute to the definition of the

conflicting nodes of any node.

In the next section, we will show the existing coloring algorithm SERENA adapts to some

of these issues, mainly: interferences, unreliably of radio links and application type.

3.4 Adaptivity of SERENA to Data Gathering Applications

and Wireless Communications Failures

In Chapter 2, we briefly described a scheduling algorithm based on vertex coloring called

SERENA [67] for SchEdule RoutEr Node Activity. This algorithm has been compared to

other algorithms like ZMAC in [65] and has proved its superiority at many levels. For this

reason, we focus in this section on SERENA and investigate in its adaptivity as follows. In

Section 3.4.1, we describe the rules of SERENA. In Section 3.4.3, we use a cross layer approach

with the application layer to adapt SERENA to data gathering applications using broadcast

and immediate acknowledgement. In Section 3.4.4, we address the unreliable characteristics

of wireless communications and show how to enhance the robustness of SERENA in the case

of tree communications.

3.4.1 State of the Art: Presentation of SERENA Algorithm

In this section, we will introduce the general context and assumptions considered by SERENA.

We will also present its requirements and its rules.

3.4.1.1 Assumptions and Requirements of SERENA

1. Ideal environment: SERENA considers an ideal environment defined as follows.

Definition 8. A wireless environment is said ideal if and only if the following assumptions

are verified:

• Assumption A0: All links are symmetric: if node u sees node v as a 1-hop neighbor,

then conversely node v sees node u as a 1-hop neighbor.

45

• Asssumption A1: All links are stable. More precisely, link creation during or after

the completion of the coloring algorithm is not taken into account.

• Assumption A2: Each node has a unique address in the network.

• Assumption A3: Any node does not prevent the correct receipt of any other node out

of its transmission range.

2. Applications and communications: SERENA algorithm is a generic algorithm since

it adapts to various application requirements and communication types. Indeed, SERENA

which can be implemented in the MAC layer or in an upper layer, establishes a cross layer

with the application layer and with the MAC layer. The key idea of cross layer [108] is

to exploit the dependencies and interactions between layers and allow them to cooperate

and exchange useful information to obtain performance gains. For instance, providing

knowledge about wireless channel conditions to routing, transport and application layers

allows to design more sophisticated protocols.

Accordingly, based on the type of the application, SERENA defines two functioning modes:

(1) general mode for general applications where any node can communicate with

any other node and (2) strategic mode adapted to data gathering applications.

Moreover, in both modes, nodes can broadcast data if needed and transmit an immediate

acknowledgement, that is the acknowledgement of a packet is sent in the same time

slot as the packet. In fact, various factors, like fading, interference, multi-path effects,

and collisions, lead to heavy loss rates on wireless links. Efficiently handling losses in

wireless environments is very important especially for critical applications that require

reliability. One way to improve end-to-end reliability in multi-hop paths is to employ hop-

by-hop retransmissions. Accordingly, the medium access handles the acknowledgements

that allow a sender node to verify if its message was successfully received. The immediate

acknowledgement has in addition the advantage of reducing delays. Indeed, contrary to the

deferred acknowledgement whose transmission can be delayed until the next slot granted

to the sender node, the immediate acknowledgement is suitable for low latency traffic. Its

implementation is simple, there is at most one packet whose acknowledgement is pending.

Besides, it saves resources by reducing latency to schedule a deferred acknowledgement

packet.

To summarize, SERENA meets the following requirements.

• Req1 (general communications): Any node can communicate in unicast mode with

any other node. This requirement aims at adapting to general applications.

• Req1’ (tree communications): Any node can communicate in unicast mode only with

its parent or its children in the data gathering tree.

• Req2 (immediate acknowledgement of unicast transmissions): The receiver uses the

slot of the sender to transmit its acknowledgement. Depending on the slot size, the

sender can use its slot to retransmit if needed.

46

• Req3 (broadcasts): Any node can broadcast information to its neighbors. Broadcast is

a real requirement especially for control messages like the Hello messages for instance.

In the following, we will describe how SERENA meets these requirements.

3.4.1.2 Rules of SERENA

1. Generic rules of SERENA

SERENA is a distributed and localized algorithm. It proceeds by iterations or rounds (a

round is an iteration where a node receives a message from each neighbor, processes it

and transmits its own message) where each node periodically transmits a Color message

to gather information useful for the coloring. Any node N proceeds as follows:

(a) N builds its set N (N), denoting the set of conflicting nodes. For instance, when we

speak about 2-hop coloring, N (N) contains all the neighbors up to 2 hops. In general,

it is the task of the routing protocol to provide SERENA with the knowledge of the

1-hop and 2-hop neighbors via a neighborhood discovery process.

(b) N computes its priority, denoted prio(N). The priority of any node determines its

coloring order.

(c) N colors itself according to its priority order in N (N). That is, an uncolored node

colors itself if it has a priority higher than any uncolored node in N (N).

The general rules of SERENA are identical whatever the constraints enforced by the con-

sidered application. However, this solution is able to take advantage of the particularities

of the application to obtain better performances. In other words, the application will pay

for its requirements and not for a superset of them. For instance, the adaptation of SER-

ENA to general an strategic applications implies a slight modification of its generic rules

as detailed in the next section.

2. SERENA rules for general and strategic applications

(a) Determining the set of conflicting nodes: It has been proved in [107] that this

set depends on the requirements previously expressed in Section 3.4.1.1. In Tables

3.1 and 3.2, we present the conflicting nodes of any node N for different requirements

(”ACK” stands for acknowledgement, ”imm.” stands for ”immediate”, and nodes M

and N are two conflicting nodes).

Without imm. ACK With imm. ACK

Without broadcast 1 and 2-hop neighbors 1 and 2 and 3-hop neigh-

bors

With broadcast 1 and 2-hop neighbors 1 and 2 and 3-hop neigh-

bors

Table 3.1: Conflicting nodes for different application requirements in the general mode.

47

Without imm. ACK With imm. ACK

Without broadcast

N and M have the same parent

M is 1-hop neighbor of the par-

ent of N

done in

N is 1-hop neighbor of the parent

of M

in this chapter

With broadcast 1 and 2 hop neighbors done in this chapter

Table 3.2: Conflicting nodes for different application requirements in the strategic mode.

These different types of coloring are aware about all types of collisions that may

occur in unicast, broadcast, or tree communications (see Table 1 and Table 2 in

[107]). Consequently, the proposed types of coloring are collision-free.

In our work, we will complete Table 3.2 by determining the required type of the

strategic coloring in case of broadcast and/or immediate acknowledgement support.

We will also evaluate the cost of supporting these features.

(b) Priority computation: The priority of any node N is equal to the size of:

• N (N) in case of general communications. Indeed, node N and any node in N (N)

cannot color themselves simultaneously. So, coloring the node with the highest

number of conflicting nodes avoids them to wait for a long time before being able

to select a color.

• Descendants(N) in case of tree communications. This choice tends to alleviate the

color constraints imposed to the descendants of the node and thus to reduce the

number of colors used.

Ties are broken by the smallest node address or identifier. The priority heuristic

choice is justified by simulation results published in [67, 105, 106].

(c) Color selection: Color selection is based on the following rules.

• Rule R1: any node N colors itself if and only if all nodes in N (N) having a higher

priority than N are already colored.

• Rule R2: node N takes:

– Rule R2.1: the smallest color unused in N (N) in case of general communications;

– Rule R2.2: the smallest color unused in N (N) and higher than the color of

its parent in case of tree-based communications. This rule has been introduced

to minimize the delay needed to collect data by the sink. To illustrate this,

consider the example in Figure 3.10. In this example, we assume that existing

radio links are only those belonging to the tree. The colors produced by SERENA

are presented by integers next to the node. Based on these colors, scheduling

medium access according to the decreasing order of colors allows each node to

aggregate the information received from its children before transmitting them to

48

Figure 3.10: Example of SERENA 2-hop coloring applied to a tree with the corresponding

slot assignment.

its parent. It is the case of the node C for instance that accesses the medium once

all its children (nodes G and F) have transmitted their packets. Consequently,

information from all nodes can reach the sink in a single cycle.

Remark 2. Based on SERENA colors, any node is awake in its slots and the

slots of its parent/children in the strategic mode and in the slots of its neighbors

in the general mode.

Remark 3. Notice that applying Rule R2.2 implies that each node needs to buffer

the packets received from its children. We assume that in our data gathering ap-

plication, sensors generate a periodic traffic of small size and that data can be

aggregated by any node and transmitted in a single time slot. This assumption

is realistic especially when intermediate nodes perform some operations like com-

puting the average value or the maximum value of the received data. However,

there are cases where aggregation is not possible due to the size of the gathered

data. This context will be studied in Chapter 6.

3.4.2 Positioning of Our Contribution

In this chapter, we focus on the strategic mode of SERENA and optimize it as follows:

1. In case of tree communications, we specify SERENA rules for the two versions: com-

munications supporting the immediate acknowledgement but not the broadcast, and

communications with both broadcast and immediate acknowledgement.

2. We evaluate the benefit of using the strategic mode of SERENA for data gathering

applications.

3. We compare different variants of SERENA depending on the communications supported.

4. So far, the proposed algorithm SERENA has assumed an ideal environment without

topology changes. However, in wireless networks, nodes may fail and links may be

broken, and hence topology may change. That is why, we adapt SERENA to such

phenomenon and enhance its robustness against topology changes.

49

3.4.3 Adaptivity of SERENA Regarding the Application and Communica-

tion Requirements

In this section, we focus on the strategic mode of SERENA supporting both the broadcast

and the immediate acknowledgement. We keep the same rules of SERENA and determine

the set of conflicting nodes of any node depending on the communications supported. The

questions we want to answer are: How SERENA is modified to be able to support these two

requirements while keeping the same generic rules? And what is the cost of supporting these

types of communications in terms of energy consumption and data delivery delays?

3.4.3.1 Strategic Mode of SERENA with Immediate Acknowledgement and with-

out Broadcast

For each node, at least a subset of its 2-hop neighbors are conflicting (as depicted in Ta-

ble 3.2) to ensure a collision free unicast communications. However, when the immediate

acknowledgement is supported, 2-hop coloring is no longer sufficient because collisions may

occur. The possible collisions in the case of 2-hop coloring are illustrated in Figure 3.11,

where nodes N and M are 2-hop away and are assigned the same color.

Figure 3.11: Collision between nodes N and M having the same color with two-hop coloring

while supporting the immediate acknowledgement but not the broadcast.

As a legend for Figure 3.11 (and also Figure 3.12), we use the following convention: the link

between a node and its parent is represented by a vertical plain line, the parent node being

represented over its child node. A dotted line represents a 1-hop neighbor link that is not a

parent link: it is either horizontal or diagonal. A single arrow represents the transmission of

a data frame, whereas a double arrow represents the transmission of an acknowledgement.

Cases 1 and 2 correspond to a conflict at node Q between a unicast transmission by N and

the acknowledgement of another unicast transmission originated from M . Consequently, for

data gathering applications with immediate acknowledgement, to color itself, N should have

a color different from:

• its 1-hop neighbors;

• its brothers;

50

• the 1-hop neighbors of its parent;

• the children of its 1-hop neighbors;

• the children of the one-hop neighbors of its parent: case 1 of Figure 3.11;

• the parents of the one-hop neighbors of its children: case 2 of Figure 3.11;

3.4.3.2 Strategic Mode in SERENA with Immediate Acknowledgement and Broad-

cast

Figure 3.12: Collision between nodes N and M having the same color with two-hop coloring

while supporting the immediate acknowledgement and the broadcast.

Broadcast communications (requirement Req3) requires a 2-hop coloring. Furthermore,

with both broadcast and immediate acknowledgement, a subset of the 3 hop neighbors may

conflict with the node as illustrated in Figure 3.12. Cases 3 and 4 correspond to a conflict

caused by the acknowledgement of a unicast transmission and a broadcast transmission, orig-

inated from M in case 3 and from N in case 4. Consequently, to support both the immediate

acknowledgement and the broadcast, conflicting neighbors of any node are:

• Set 1: its 1-hop and 2-hop neighbors;

• Set 2: the children of the 1-hop neighbors of its parent: case 1 of Figure 3.12;

• Set 3: the parents of the 1-hop neighbors of its children: case 2 of Figure 3.12;

• Set 4: the children of the 1-hop neighbors of its children: case 3 of Figure 3.12;

• Set 5: the parents of the 1-hop neighbors of its parent: case 4 of Figure 3.12.

51

To quantify the cost in terms of additional colors induced by the immediate acknowledge-

ment and the broadcast, we compare the following variants of SERENA:

• without immediate acknowledgement and without broadcast;

• without immediate acknowledgement and with broadcast;

• with immediate acknowledgement and without broadcast;

• with immediate acknowledgement and with broadcast.

Also, we present a comparison of SERENA with TDMA-ASAP [64].

3.4.3.3 Simulation Results

1. Simulation setup:

We developed a Java simulator. Wireless nodes are randomly deployed in a square network.

The parameters we vary in our simulations are the number of nodes and the density. The

transmission range is equal to 250m. For a given number of nodes and a given density, we

determine the network area where nodes are deployed. For a given number of nodes and

density value, we generate 10 random topologies. Hence, each result is the average of 10

simulation runs. We build a tree of minimum path length to the sink. We start by the

sink node. Any neighbor of the sink that has not a parent is linked to the sink node. We

repeat the process until all nodes except the sink have a parent. Notice that for topologies

with some disconnected nodes, we cannot build the tree. Such topology instance is not

considered in the simulations.

Concerning the neighborhood construction, we use the following definition:

Definition 9. 1-hop and h-hop neighborhood: Two nodes u and v are 1-hop neighbors

if and only if their distance is ≤ R, with R is the radio range.

For any integer h > 1, any two nodes u and v are h-hop neighbors if and only if u is

(h− 1)-hop away from a 1-hop node of v.

2. Cost and benefits of adaptivity to the application type:

As previously mentioned, the adaptivity of SERENA to the data gathering application

mainly concerns two steps of the algorithm: the determination of the conflicting nodes,

and the color selection (in particular the Rule R2.2 which obliges a node to select a color

higher than the color of its parent). In this section, we will discuss the cost and the benefits

of this adaptivity regarding these two steps.

(a) Determination of the conflicting nodes: Evidently, the size of the conflicting

nodes of any node impacts the number of colors, the number of rounds, and the number

of messages sent to achieve the coloring. To evaluate this impact, we compare the defined

strategic mode supporting the broadcast and the immediate acknowledgement (denoted

also SERENA tree coloring) with a general 3-hop coloring, where any node should have

52

a color different from the colors of its neighbors up to 3-hop. Notice that 3-hop coloring

of the data gathering tree produces a collision-free coloring of the tree because the set of

conflicting nodes of any node in tree communications supporting broadcast and immediate

acknowledgement is included in the 3-hop neighborhood of this node.

 20

 25

 30

 35

 40

50 100 150 200

A
v
e
ra

g
e

 N
u

m
b

e
r

o
f

c
o

lo
rs

Number of nodes

SERENA 3hop tree coloring
SERENA tree coloring

Figure 3.13: Gain in number of colors between the general and the strategic coloring of a data

gathering tree(density=10).

From Figure 3.13, we notice that SERENA achieves a benefit higher than 6% for the

density 10. In particular, this benefit exceeds 20% for 50 nodes. This result means also

that despite the application of Rule R2.2, the strategic mode uses a smaller number of

colors. Indeed, by restricting the set N (N), SERENA uses a smaller number of colors.

This is confirmed by Figure 3.14 that illustrates the average number of conflicting nodes

for any node. This number is higher in the general 3-hop coloring. The benefit in colors

is perceived by the user in terms of higher energy saving (a node is awake for a duration

equal to (1+the number of its neighbors) slots during each TDMA cycle), and also smaller

end-to-end data gathering delays.

We compare also the overhead induced by the general and the strategic coloring in terms

of number of rounds and average number of sent messages. The density is set to 10.

Figure 3.15 shows that 3-hop general coloring of the tree has higher overhead. For instance,

the average number of rounds increases from 83.7 to 109.6 for 100 nodes, and the average

number of sent messages increases from 20.1 to 28.6 for 100 nodes.

All these results highlight how much the cross layer with the application improves the

solution performance and reduces its overhead.

53

 0

 10

 20

 30

 40

 50

 60

 70

50 100 150 200

A
v
e

ra
g

e
 N

u
m

b
e

r
o

f
c
o

n
fl
ic

ts

Number of nodes

SERENA 3hop general coloring
SERENA with ack with broadcast

Figure 3.14: Average number of conflicting neighbors per node in general 3hop coloring and

strategic tree coloring.

(b) Color selection: With Rule R2.2, data collected from sensors will be aggregated

and forwarded to the sink in a single cycle. If this coloring rule was not introduced, the

time needed by a data originated from a sensor to reach the sink could reach a number

of cycles equal to the distance in hop number of this sensor to the sink. That would be

unacceptable especially for time-critical applications. This result means that it is better

to apply the strategic coloring mode in case of data gathering applications instead of

the general mode. There are simulation results published in [107] (see Figure 10 and

Figure 13 in this reference) that prove this benefit. Authors compared the end-to-end-

delays; Assuming a cycle of 4 seconds, the general 3-hop coloring results in average end-

to-end delays equal to 8.53 seconds, whereas in the strategic mode data reach the sink in

2.94 seconds.

This reduction in delays comes at a price which is an additional number of colors. To

evaluate this cost, we compare the number of colors used in SERENA in the strategic

mode while integrating or not the Rule R2.2 as illustrated in Figure 3.16. Notice that

in these two cases the number of rounds and the number of exchanged messages are the

same. Figure 3.16 shows that at worst, the percentage of additional colors is 18.6% for

100 nodes and density=10. This overhead is light regarding the benefit in terms of delays.

The number of additional colors increases with the number of nodes. Moreover, for 100

nodes with density=10, in average, 33.7 colors are needed for the 3-hop coloring of the

tree, 30.8 colors are needed for the strategic coloring integrating Rule R2.2, and 25.1 colors

are needed by the strategic coloring without integrating Rule R2.2. This means that the

most impacting factor on the number of colors is the interferences and not the support of

54

 40

 60

 80

 100

 120

 140

 160

 180

 200

50 100 150 200

A
v
e
ra

g
e
 N

u
m

b
e
r

o
f
ro

u
n
d
s

Number of nodes

SERENA 3hop tree coloring
SERENA tree coloring

(a) Number of rounds.

 16

 18

 20

 22

 24

 26

 28

 30

 32

 34

50 100 150 200

A
v
e
ra

g
e
 N

u
m

b
e
r

o
f
s
e
n
t
m

e
s
s
a
g
e
s
 p

e
r

n
o
d
e

Number of nodes

SERENA 3hop tree coloring
SERENA tree coloring

(b) Average number of sent messages.

Figure 3.15: Comparison between the strategic and the general coloring of a tree.

Rule R2.2. This is because the heuristic that we use (the priority of any node is equal to

the number of its descendants) tends to alleviate the impact of Rule R2.2 by favoring color

reuse. Meanwhile, when a node has more conflicting nodes as in the 3-hop coloring, color

reuse will evidently decrease, and hence the number of colors will increase.

3. Cost of adaptivity to the communication types and comparison with TDMA-

ASAP

In Figure 3.17, we compare the number of colors used for different variants of SERENA

depending on the types of communications supported. We also compare the performance of

SERENA with the algorithm TDMA-ASAP. TDMA-ASAP colors the tree, level by level,

starting with the farthest level from the sink (i.e. the reverse of SERENA). A node receives

a color strictly higher than the color of its parent. Two nodes having the same parent do

not share the same color. A parent and a child cannot have the same color. Moreover, a

node that is neighbor of the parent of another node does not share its color.

55

 0

 5

 10

 15

 20

 25

 30

 35

 40

50 100 150 200

A
v
e

ra
g

e
 N

u
m

b
e

r
o

f
c
o

lo
rs

Number of nodes

SERENA with ack with broadcast
SERENA with ack with broadcast without color order

Figure 3.16: Strategic coloring with and without a color order between the node and its

parent.

Figure 3.17: Comparison of the number of colors used in SERENA and TDMA-ASAP.

From Figure 3.17, we notice that SERENA without immediate acknowledgement and with-

out broadcast outperforms TDMA-ASAP in terms of number of colors. However, in these

two algorithms, any node has the same conflicting nodes. This proves that the heuristic

used by SERENA is more appropriate. Indeed, let us consider a tree where the root has n

56

children. Each child is a root of a subtree. Since any two children cannot have the same

color, each one will have a different color. Let u be the child with the largest number of

descendants. If u is the last node to be colored, it will be assigned a color at least equal

to n. And since the color of any node is higher than the color of its parent, descendants of

u will have colors higher than n. Moreover, the biggest subtree is likely to use the highest

number of colors, so there will be colors used only in this subtree. Consequently, the total

number of colors will increase. To avoid this, SERENA starts by coloring the node u.

TDMA-ASAP uses a number of colors smaller than the two variants of SERENA with im-

mediate acknowledgement. That is because TDMA-ASAP does not support the immediate

acknowledgement.

From Figure 3.17, we notice that the difference between the 4 SERENA variants is more

visible for large topologies. As expected, the support of both the immediate acknowledge-

ment and the broadcast is the most color consuming variant because it implies the highest

number of conflicts per node. For instance, for density=10 and 100 nodes, any node has in

average 33.3 conflicting neighbors in the variant ‘SERENA with ack with broadcast ’, 25.3

in the variant ‘SERENA with ack without broadcast ’ and 21.2 in the variant ‘SERENA

without ack without broadcast ’.

We also compare the average number of rounds required to color the network in the afore-

mentioned variants of SERENA. Figure 3.18 shows that adding a new requirement pro-

duces an additional number of rounds. For example, SERENA supporting the immediate

acknowledgement and the broadcast requires 83.7 rounds, while ‘SERENA without ack

without broadcast ’ requires 54.5 rounds. The variants supporting either the immediate ac-

knowledgement or the broadcast requires almost the same number of rounds. Notice that

this overhead is paid only when the coloring is performed.

3.4.4 Adaptivity of SERENA to Node/Link Failure in Data Gathering Ap-

plications

3.4.4.1 Problem and Methodology

In addition to the limited energy of a sensor node, wireless sensor networks are prone to

interferences, message losses, and node/link failures. In particular, in a data gathering tree,

when any node can no longer reach its parent because the parent or the link with this parent

has failed, the tree must be repaired. Any solution should address the following issues:

1. How to tolerate a maximum number of failures,

2. How to reduce the overhead induced by the tree repair,

3. How to minimize the delay needed to collect data through the repaired tree.

Upon neighborhood changes, routing protocols manage to repair routes to ensure data de-

livery. The issue is that color conflict may occur. Indeed, after any node u replaces its

57

Figure 3.18: Comparison of the number of rounds used in different variants of SERENA.

unreachable parent by a 1-hop neighbor, among its conflicting neighbors, Sets 1, 3, 4 re-

main unchanged, while Sets 2 and 5 are updated (see the definition of these sets in Section

3.4.3.2). Notice also that even if the coloring remains valid, it may be no longer optimized.

Indeed, Rule R2.2 may be no longer verified (see Section 3.4.1.2), hence data gathering delays

are increased. To cope with this issue, the trivial solution is to recolor the network. However,

the drawback is the induced overhead.

Recoloring the network in case of color conflicts is a potential solution that costs the

coloring overhead and the delay between color conflict detection and recoloring. Our aim is

to avoid this overhead by proactively determining potential substitute(s) of the parent in the

data gathering tree, called parent backup, and integrating it in the coloring. In other words,

we color the network such that when the parent is replaced by a predetermined backup, no

color conflict occurs and the initial coloring remains valid.

This solution can be integrated with a routing protocol based on redundant paths. In fact,

most of the existing multipath routing protocols were mainly developed to provide fault

tolerance at the network layer. In particular, mobile ad hoc networks where the nodes mobility

results in many topology changes require fault-tolerant routing protocols. In this category

we can cite for instance DBR2P [109] and AODV-BR [110]. For WSNs we can cite Braided

Multipath Routing Protocol [111].

We propose two solutions and compare them with SERENA. The benefit of these solutions

is the enhancement of the reliability and the efficiency of wireless communications. We will

show by simulation that the cost is the data delivery delays and the energy consumption.

58

3.4.4.2 First Solution(Sol1): Tree coloring with one backup per parent

Our first solution tolerates a single failure per parent, this failure can be the parent failure or

the failure of the link with this parent. Any node u has a single parent backup. This parent

backup is a 1-hop neighbor that belongs to a smaller tree level than the node considered,

assuming the root level is 0. This parent backup is denoted uncle. If the node that is unable

to reach its parent is unable to find an uncle, it will select a brother, that is a 1-hop neighbor

that belongs to the same tree level and has an identifier smaller than u. Notice that with

these constraints, any node has 0 or 1 backup and moreover, the tree repaired by the choice

of either the uncle or brother does not induce routing loops. As illustrated in Figure 3.19,

the set of conflicting nodes must contain Set 1, Set 2, Set 3, Set 4 and Set 5 and also:

• Set 6: the children of the 1-hop neighbors of the parent backup of u.

• Set 7: the parent of the 1-hop neighbors of the parent backup.

We apply Rule R2.2 and maintain an order between the color of a node and the color

of its parent. However, there is no order between the color of the node and the color of its

parent backup. Hence, the new coloring may be not delay optimized.

(a) Initial conflicting nodes. (b) Conflicting nodes added with backup.

Figure 3.19: The set of conflicting nodes of the node A.

59

3.4.4.3 Second Solution(Sol2): Tree coloring with several backups per parent

The second solution consists in 3-hop coloring where the set of conflicting nodes of each node

contains the nodes up to 3-hop. Consequently, a node has as potential parent backup all its

1-hop neighbors. The Rule R2.2 is taken into account with the initial parent. However, there

is no imposed order between the color of the node and the color of any of its parent backups.

Notice that applying this solution, routing loops are possible. However, we address this issue

by one of the two following hints:

• We assume that the routing protocol handles the loops with detection and resolution

techniques.

• Or, when a node chooses a parent backup, it chooses only a node that has a smaller

identifier.

3.4.4.4 Comparative Study

In this section, we present a table comparing the aforementioned two solutions with the basic

solution SERENA. We then present simulation results.

1. The trade-off reliability, data delivery delays and energy consumption

Table 3.3 compares the performances of the aforementioned solutions denoted respectively

Sol1 and Sol2. For Sol1 two variants are evaluated:

• With order: where the color of a node is greater than the color of its parent backup.

• Without order: when this order is not required.

Notice that for Sol2, it is impossible to define an order between the color of a node and its

parent backups which are in fact its 1-hop neighbors. So, Sol2 implies automatically that

no color order is imposed with regard to the backups.

From Table 3.3, we can draw the following conclusions.

(a) Sol2 guarantees the highest reliability whereas Sol1 tolerates only one failure per

parent. Moreover, as we will see, the number of colors is the highest because all 3-hop

neighbors of any node cannot share its color.

(b) The integration of Rule R2.2 allows to have optimal end-to-end delays as long as the

link with the parent is operational. Otherwise, each time there is an inversion between

the color of a node and the color of its new parent, an additional cycle is required,

since in this case the child accesses the medium after its new parent.

(c) Concerning the overhead, Sol2 induces higher storage overhead because a node stores

information about all its neighbors up to 3 hops. This results also in a higher number

of messages exchanged as we will show through the simulation results.

To conclude, we notice that the preference of a solution to another is a trade-off between

the tree reliability on the one hand and the delays and energy efficiency on the other hand.

60

Table 3.3: Comparison of coloring with/without backup

Sol1 : One backup Sol2 : many backups

SERENA without order with order without order with order

number

of failure

tolerated

in the tree

0 1 failure per parent as much as 1hop

neighbors

impossible

coloring

of the

repaired

tree

tree should

be recolored

still valid still valid impossible

delay optimal no longer opti-

mal: one addi-

tional cycle per

inversion in the

color order be-

tween the child

and its new par-

ent

optimal no longer opti-

mal: one addi-

tional cycle per

inversion in the

color order be-

tween the child

and its new par-

ent

impossible

overhead optimal light: a node stores the parent

backup information and replaces

the parent when needed

relatively im-

portant: the

node stores

information

about all its

3-hop neighbors

and changes the

parent when

needed.

impossible

2. Simulation results

(a) Simulation setup: We use the same Java simulator used in Section 3.4.3.3, and vary

the same parameters of the generated graphs: the number of nodes and the density. We

build a tree of minimum path length to the sink. For a given number of nodes and density

value, we generate 20 random topologies. Hence, each result is the average of 20 simulation

runs.

(b) The average number of nodes that fail to have a backup: In this section,

we focus on Sol1, where any node has 0 or 1 backup. Figure 3.20 illustrates the average

number of nodes that fail to have a parent backup for different configurations. This number

is small, it ranges from 1.8 to 10.6 for 25 and 81 nodes respectively. At worst, almost 14

61

among 81 nodes with density=8 fail to have a parent backup. As expected, the number

of nodes without backup is inversely proportional to the density and does not depend on

the size of the network. That is because the backup is chosen among the neighbors and

since we increase the number of nodes while increasing the area size, adding nodes does not

mean increasing the number of neighbors. Meanwhile, increasing the density allows nodes

to have more neighbors and then the probability to have a backup is higher. Figure 3.20

witnesses the fact that Sol1 is suitable for high density networks.

 0

 20

 40

 60

 80

 100

 20 30 40 50 60 70 80 90 100%
 o

f
a
v
g
 n

b
 o

f
n
o
d
e
s
 w

it
h
o
u
t
p
a
re

n
t
b
a
c
k
u
p

Number of nodes

density=8
density=10
density=12

Figure 3.20: Percentage of the nodes without parent backup.

(c) Comparison of the three solutions: In this section, the density of nodes is set to 10.

Regarding an algorithm of node activity scheduling, the total number of colors represents

the activity duration in the network. The smaller this number is the more energy efficient

is the solution, and the smaller the end-to-end delays are. That is why, the number of

colors is the main performance criteria.

As expected, Figure 3.21 shows that Sol2 induces the highest number of colors. Conse-

quently, Sol2 ensures the reliability of wireless communications at the detriment of both

data gathering delays and energy consumption.

62

Figure 3.21: The number of colors used by Sol1 and Sol2.

Also, as illustrated in Figures 3.22 and 3.23, Sol2 requires the highest number of rounds

and sent messages. This is explained by the fact that to color itself, any node collects

information about nodes that are at most 3 hops away from it. The propagation of this

information adds a time overhead for the solution and requires more messages.

Figure 3.22: Comparison of the number of rounds produced by Sol1 and Sol2.

63

Figure 3.23: Comparison of the number of sent messages used by Sol1 and Sol2.

Concerning Sol1, it generates almost the same number of colors and rounds as SERENA.

This is because in fact, this solution does not add a high number of conflicting nodes (nodes

depicted in Figure 3.19(b)). For instance, the average number of additional conflicting

nodes in SERENA+one backup compared to SERENA is 1 for 49 nodes with density 8.

Moreover, these nodes are a subset of the 3-hop neighbors, that is why Sol1 produces a

smaller number of colors than Sol2.

3.5 Conclusion

In this chapter, we formulated the coloring problem for the node activity scheduling in wire-

less ad hoc and sensor networks. This definition is generalized since it has as a parameter

the minimum distance between two interfering nodes. One of the results described in this

chapter is the proof of the NP-completeness of this problem. We proved that it is an efficient

way to schedule the nodes activity in these networks as it has many benefits especially at the

bandwidth and energy levels. We also discussed the issues of the applicability of the coloring

to real wireless environment. Our preliminary conclusion is that in order to have good per-

formance of the coloring algorithm, it should be aware of the characteristics of the network

and the application and to be able to adapt to them. This conclusion is confirmed by simu-

lation results of the adaptivity of SERENA to data gathering applications and to unreliable

wireless communications. In the next chapter, we will focus on another requirement which is

the support of dense networks. One of the difficulties that a coloring algorithm faces in such

environment, is the limited storage capacity of sensor nodes. We will see in the next chapter

how to address this problem.

64

Chapter 4

OSERENA: Optimized SchEduling

RoutEr Node Activity in Dense

Wireless Networks

Introduction

In the previous chapter, we presented SERENA and its optimization. In fact, this protocol was

designed to be integrated in a real platform of sensors, with MAC, network and application

protocols. However, to achieve this integration, we faced a practical problem: the memory

size of sensors is very limited and make the scaling a real challenge. This challenge is more

present in dense networks, where any node has many neighbors. Examples of dense WSNs are

given by smart dust [112] where microelectomechanical systems called MEMS can measure

temperature, vibration or luminosity.

This is the motivation behind the design of OSERENA, a new distributed 3-hop coloring

algorithm for general applications in dense wireless ad hoc and sensor networks. Compared

to SERENA, OSERENA considers a new message format and new processing rules. The

maximum size of this message is a constant and depends neither on the density nor on the size

of the network. Moreover, OSERENA does not require any node to store its 2-hop neighbors.

Hence, bandwidth is spared and the scaling is possible. Further, OSERENA produces the

same number of colors as SERENA and usually the same number of rounds.

This chapter contains 2 parts:

1. First part: Presentation of OSERENA. In Section 4.1, we present the principles that

OSERENA is based on to reduce the size of messages. Section 4.2 specifies OSERENA.

In Section 4.3, we present the properties of OSERENA and prove that it is equivalent

to the centralized algorithm First Fit. In Section 4.4, we study the performance of

OSERENA and compare it to SERENA.

2. Second part: Application to the OCARI project. We describe in Sections 4.5.2 and 4.5.3

65

our contribution to the OCARI project which consists in OSERENA and the routing

protocol EOLSR [30] and their integration in a testbed of sensors. In Section 4.5.5, we

give some results of OCARI.

4.1 Optimization Principles

As explained in Chapter 3, nodes in SERENA periodically exchange Color messages to color

themselves. This message includes the address, the priority and the color of 1) the node u

itself, 2) its 1-hop neighbors in N (u) (the set of its conflicting neighbors), as well as 3) its

2-hop neighbors in N (u). The data locally maintained by any wireless sensor include these

data as well as the priority and color of any neighbor up to 3-hop. Let us assume that the

2-hop neighbors of a node are the nodes in a disk of radius 2R where R is the transmission

range. Consequently, the average number of nodes in the neighborhood up to 2 hops is equal

to 4 · density, where density stands for the average number of nodes in the disk of radius R

(that is the average number of neighbors). Such an overhead can be unacceptable for wireless

sensors with limited storage and processing capabilities as well as low residual energy. That

is why, the key idea of OSERENA is to avoid the need to store the 2-hop neighbors. This is

achieved thanks to the following observations.

• It is necessary that any node u knows the highest priority taken by its uncolored neigh-

bors up to 3-hop in order to be able to color itself. Furthermore, in 3-hop coloring,

any node u must send information concerning itself, its 1-hop and 2-hop neighbors to

let its 1-hop neighbors know information about their 1-hop, 2-hop and 3-hop neighbors.

Hence, node u must send its priority, the highest priority taken by its uncolored 1-hop

neighbors as well as the highest priority taken by its uncolored 2-hop neighbors. We

will see in Section 4.3.3 how to compute the near optimal number of these priorities.

• Similarly for the choice of the color, node u must know the colors already used in its

neighborhood up to 3 hops. However, it does not matter for u to know which node up

to 3 hops has which color, but only which colors are taken by 1-hop, 2-hop and 3-hop

neighbors respectively. That is why, we use the fields bitmap1, bitmap2 and bitmap3

for the bitmaps of colors used at 1-hop, 2-hop and 3-hop neighborhood respectively.

In the next section, we will see how OSERENA takes advantage from these remarks to

optimize the size of the data stored and exchanged.

4.2 Presentation of OSERENA

4.2.1 Assumptions

We assume that we have an ideal wireless environment (see Definition 8 in Chapter 3).

This assumption is usually made by all coloring algorithms when applied to wireless networks.

66

Although we assume an ideal environment, we show that OSERENA tolerates message losses

(see Rule R6 in Section 4.2.3 and Property 2 in Section 4.3.1).

Definition 10. A 3-hop node coloring is said valid if and only if no two 1-hop, 2-hop or

3-hop nodes have the same color. The smaller the number of colors obtained, the better the

coloring algorithm.

4.2.2 The Color Message

Figure 4.1 depicts the Color message used by OSERENA.

Figure 4.1: Format of the Color message in OSERENA.

We now describe this message format.

• Each node has a priority that determines its order in the coloring. It is composed of two

values: the most important one is the integer prio, and the other one breaks ties, it is the

address of the node. For two nodes that have the same value of prio, the node with the

highest priority is the node with the smallest address.

• For any set X, we define the function maxi {X}, i ≥ 2, that provides the i highest values

in X:

maxi {X} =











∅, if X = ∅;
X, if X contains less than i elements;

{max {X} ,maxi−1 {X \max {X}}} , otherwise











67

If X is a set of priorities, we have the following property for i = 2. Let max2 {X} = (X1, X2),

where X1 = (p1, a1) and X2 = (p2, a2) then we have,

• p1 > pi ∀i 6= 1, and if ∃ Xj = (pj , aj) such that pj = p1 then we have a1 < aj .

• p2 > pj ∀j > 2, and if ∃ Xk = (pk, ak) such that pk = p2 then we have: a2 < ak.

• We define the field max prio1(u) as: max prio1(u) = max4 v uncolored∈1hop(u) priority(v),

where the set 1hop(u) denotes the 1-hop neighbors of the node u. In other words,max prio1(u)

is equal to:

• the four highest priorities of the uncolored 1-hop neighbors of u, if four such nodes exist;

• the priority of the only three (respectively two, respectively one) uncolored 1-hop neigh-

bors, if only three (respectively two, respectively one) such nodes exist;

• empty, denoted ∅, if none exists.

Notice that max prio1(u) can only contain nodes that are 1 hop away from u.

• Similarly, we define max prio2(u) = max3 v uncolored∈1hop(u) max prio1(v).

max prio2(u) contains the three highest priorities of the uncolored 1-hop neighbors of the

1-hop neighbors of u, if they exist.

Notice that max prio2(u) may contain the node u itself, 1 or 2-hop neighbors of u.

• The variablemax prio3(u) is defined as the highest priority of the uncolored 1-hop neighbors

of the 1-hop neighbors of the 1-hop neighbors of u.

max prio3(u) = max v∈1hop(u) max prio2(v).

Notice that max prio3(u) is locally maintained and may contain the node u itself, 1, 2 or

3-hop neighbors of u.

• The computation of max prio1(u), max prio2(u) and max prio3(u) is done from the

Color messages received during each round. The values computed for max prio1(u) and

max prio2(u) are inserted in the Color message sent by the node u.

• It follows that the Color message sent by any node u contains priority(u), max prio1(u)

and max prio2(u), as well as the color of u.

• To further reduce the Color message size, three bitmaps of colors are used. bitmap1(u)

(respectively bitmap2(u)) denotes the colors used by 1-hop neighbors (respectively by 2-hop

neighbors) of u.

68

4.2.3 Rules of OSERENA

In OSERENA, any node u proceeds as follows to color itself:

1. Node u characterizes the set N (u) of nodes that cannot have the same color as itself.

In 3-hop coloring, this set includes the neighbors up to 3 hops.

2. Node u computes its priority, denoted priority(u). This priority consists of two

components: the most important one is denoted prio(u). From simulation feedback, we have

noticed that the assignment of prio(u)=number of neighbors up to 2 hops outperforms the

assignment prio(u)=number of neighbors up to 3 hops from u, or a random assignment.

However, as OSERENA avoids the expensive computation of the list of neighbors up to 2

hops, OSERENA defines for any node u, prio(u) as the number of its neighbors + the sum of

the number of 1-hop neighbors of its 1-hop neighbors. This computation is done during the

initialization phase.

3. Concerning color selection, OSERENA applies the following rules.

Rule R’1: Any node u colors itself if and only if:

priority(u) = max {max prio1(u),max prio2(u),max prio3(u)} . (4.1)

Rule R’2: When a node u selects a color, it selects the smallest color unused in

bitmap1(u) ∪ bitmap2(u) ∪ bitmap3(u).

Notice that in addition, this color should not be used by heard nodes (nodes with which there

is no symmetric link). Indeed, any node stores information about the heard neighbors and

does not select the same color as them in order to avoid color conflicts.

The aim of rules R3 and R4 is to improve convergence time. The Color message

does not contain the whole list of colored 2-hop and 3-hop neighbors. However, any node

can deduce the recently colored nodes and stores them in a local data structure denoted

implicit node colored list whose size is equal to implicit node colored size. As we will see

later, the storage of this list accelerates the coloring convergence. To build this list, any node

u proceeds as follows:

Rule R3: When a node u receives the Color message from any neighbor node v, it compares

the current value of max prio1(v) (respectively max prio2(v)) with the previous one sent

by v, denoted previous max prio1(v) (respectively previous max prio2(v)). Any priority of

previous max prio1(v) (respectively previous max prio2(v)) higher than the highest value

of max prio1(v) (respectively max prio2(v)) corresponds to a recently colored node. This

node is then inserted in the list implicit node colored list.

The motivation behind the integration of Rule R3 is that naturally and because of the

different distances between any two nodes, nodes are not informed about the coloring of their

69

conflicting neighbors at the same time. So, among the information they receive, they should

consider the fresher information. The scenario in Figure 4.2 illustrates this.

Figure 4.2: An example illustrating the role of the list implicit node colored list.

Let assume that the node w is colored. It broadcasts a message to its 1-hop neighbors with

the selected color. Meanwhile, node v not informed yet, sends a message to u where the field

max prio2 contains the node w despite w is already colored. Consequently, if u considers the

information received from v as the most recent one and transmits it to its neighbors, coloring

will be delayed. Indeed, the node to be colored after w, will suppose this latter is uncolored

so does not color itself in the current round. Thus, u should discard the information received

from v and considers that w is colored (either directly if they are 1-hop neighbors, or via the

use of the implicit node colored list if they are 2-hop or 3-hop neighbors) like in the example.

That is why, OSERENA uses Rule R3 to allow nodes to store some colored neighbors.

In addition, as we have seen in the example of Figure 4.2, the node u discards the information

of the node v by removing the node w from the list max prio2 sent by v. However, not any

colored node can be discarded from max prio1 or max prio2. To illustrate this, consider the

scenario in Figure 4.3.

Figure 4.3: An example illustrating the role of rule R4.

In Figure 4.3, all nodes are colored except u1 and u4 that have the priorities 11 and 17

respectively. Node u2 is coloring itself at the current iteration. The node u1 receives two

Color messages from u2 and u5 containing the fields max prio1 and max prio2 depicted in

the figure. Consequently, u1 is aware about the color of u2 and discards it from max prio1

and max prio2 of u5. The problem is that u1 will conclude that it is its turn to color itself,

70

however, it is the turn of its 3-hop neighbor u4. This results in the violation of the coloring

order, and may cause color conflicts. In reality, nodes u2 and u5 would inform u1 about the

existence of the node u4 that has a higher priority if max prio1 and max prio2 could contain

more nodes. For this reason we adopt Rule R4. A node can be discarded from max prio1 or

max prio2 if there is still enough information to make right conclusions about colored nodes.

Rule R4: When a node computes max prio1, max prio2 and max prio3 from the values

received in the Color messages, it proceeds as follows:

• in the computation of max prio1, it discards any priority value corresponding to an

already colored node (that is a node that belongs to the list

implicit node colored list).

• in the computation of max prio2, it discards for any sender v, any priority value p

corresponding to an already colored node received in max prio1(v) if and only if:

1. either p is the highest priority in max prio1(v).

2. or p is the second highest priority in max prio1(v) and the third or fourth highest

priority in max prio1(v) is equal to ∅.

3. or p is the third highest priority in max prio1(v) and the fourth highest priority

in max prio1(v) is equal to ∅.

• in the computation of max prio3, it discards for any neighbor v, any priority value

corresponding to an already colored node received in max prio2(v) if and only if it is

the highest or the second highest priority in max prio2(v).

Rule R5 is related to the termination of the coloring algorithm.

Rule R5: Any node u stops sending its Colormessage as soon as it is colored,max prio1(u) =

∅ and it has received from all its 1-hop neighbors v a Color message with max prio1(v) =

max prio2(v) = ∅.

Rule R6 has been introduced to tolerate message losses and link failures.

Rule R6: If at a round r > 1 of the coloring algorithm, any node u that does not receive a

message from its 1-hop neighbor v, uses the information received from v at round r−1. After

n successive rounds, with n ≥ 2 without receiving a Color message from v, v is no longer

considered as a 1-hop neighbor of node u.

4.3 The properties of OSERENA

In this section, we will present the properties of OSERENA regarding: its correctness, the

equivalence to First Fit, the overhead and the convergence time. To study these properties,

71

we present some Lemmas that are proved in Appendix A.

4.3.1 Correctness of OSERENA Coloring

In this section we prove that in an ideal wireless environment, OSERENA provides a valid

3-hop node coloring avoiding collisions. Furthermore, we prove that this algorithm ends when

all nodes are colored.

Lemma 7. With OSERENA, any node u colors itself if and only if it has the highest priority

among all the uncolored nodes in N (u).

Lemma 8. With OSERENA, when node u colors itself, it knows all the colors taken in N (u)

with a higher priority.

Lemma 9. OSERENA coloring ends when all nodes are colored.

Lemma 10. In an ideal wireless network and in the absence of message loss and node failure,

all nodes color themselves with OSERENA and stop sending their Color message.

Property 1. OSERENA provides a valid 3-hop node coloring in any ideal wireless environ-

ment.

Proof: For 3-hop coloring, for any node u, the set N (u) contains by definition all nodes up

to 3-hop from u, assuming an ideal environment. From Lemma 7 (see Appendix A for the

proof), with 3-hop coloring, any node u can color itself if and only if no uncolored node in

N (u) has a priority higher than u.

According to rule R’1, the priority of u meets Equation 4.1. Moreover, since no two nodes

have the same priority, we cannot have a simultaneous coloring of two nodes up to 3-hop

away each other. According to Lemma 8 (see Appendix A), when coloring itself, any node

u knows all the colors taken by nodes in its N (u), so it selects the smallest color according

to rule R’2. Consequently, assuming an ideal wireless environment, no 2 nodes within 3-hop

neighborhood from each other take the same color. Which means that OSERENA provides

a valid coloring. With this coloring, nodes that belong to N (u) cannot create collisions with

data sent by u or an acknowledgement sent to u.

Property 2. A failure to receive a Color message from a 1-hop neighbor induces an additional

latency in network coloring and does not compromise the validity of coloring with OSERENA.

Proof: Deduced from rule R6.

72

4.3.2 Equivalence of OSERENA to a Centralized Algorithm

In this section, we compare the behavior of OSERENA with the well-known centralized First

Fit 3-hop node coloring [81]. First Fit coloring is a simple centralized coloring, called also

the greedy coloring. With First Fit 3-hop node coloring, nodes are sorted according to their

priority and are colored in that order. Any node u receives the smallest unused color in N (u).

In this Section, we prove that the colors granted to nodes by this algorithm and OSERENA

are the same.

Lemma 11. For any node u, for any given priority assignment, nodes ∈ N (u) color them-

selves in the same order with OSERENA and First Fit.

Property 3. For any topology, OSERENA provides the same coloring as a centralized First

Fit 3-hop node coloring algorithm using the same priority assignment.

Proof: For any topology, for any node u in this topology, the color of u is determined by

the colors already used in N (u) when u colors itself. According to Lemma 11 (see Appendix

A), all nodes in N (u) color themselves in the same order with OSERENA and First Fit.

Let u1 be the first node that colors itself in N (u). It takes the smallest available color in

N (u1). Let u2 be the first node that colors itself in N (u1), and so on. After a finite number

of iterations (at most equal to the number of nodes in the topology), we get a node uk+1 the

first node that colors itself in N (uk) and colors itself without being constrained by any other

node in OSERENA: uk+1 has the highest priority in N (uk+1). This node takes the color 0 in

OSERENA. With First Fit, since no node in N (uk+1) is already colored, uk+1 takes color 0.

Nodes in N (uk+1) with a priority higher than or equal to priority(uk) are colored according

to their priority order with OSERENA and First Fit. Consequently, they receive the same

colors. We apply the same reasoning to node uk and nodes in N (uk) with a priority higher

than or equal to priority(uk−1), going back up to node u1 and finally node u that receives

the same color with OSERENA and First Fit, because the same colors are already assigned

in N (u).

This property is very important because the colors of the nodes can be easily predicted.

Hence, it is easier to check the correctness of the implementation of OSERENA.

4.3.3 Reduced Overhead

Compared to SERENA, OSERENA does not require the need to store the 2-hop neighbors.

Further, the size of the message is considerably reduced which saves bandwidth. In this

section, we show that the size of the Color message impacts the running time and we determine

its optimal size.

4.3.3.1 Message Size

Assuming the near optimal size of max prio1 and max prio2 determined later on (see Lemma

12), we can compute the maximum size of the message Color.

73

Property 4. With the setting in bytes of Size max prio1 = 4 and Size max prio2 = 3,

OSERENA uses a Color message whose size is at most 4 + 8 · (size address + size prio) +

size color + size bitmap1 + size bitmap2 bytes.

Proof: This is deduced from the Color message format, where the 8 factor is the maximum

size of priority + max prio1 + max prio2, and size address, size prio and size color are

respectively the size in bytes of the address and the fields Prio and Color.

4.3.3.2 Constraints for the Computation of max prio1 and max prio2 Sizes

Decreasing the size of max prio1 and max prio2 may delay coloring. Hence, the optimal size

of max prio1 and max prio2 is a trade-off between bandwidth consumption and convergence

time of the coloring algorithm.

The simplest solution would be to maintain only one priority formax prio1 andmax prio2.

This would not suffice to color any wireless network with the same number of rounds as SER-

ENA. Indeed, a node v, 2 hops away from node u colored at round r would not know at round

r + 2 that it has the highest priority. Hence, MORE THAN ONE highest priority at respec-

tively 1-hop and 2-hop must be maintained and sent. Moreover, this solution does not allow

to remove already colored nodes in the computation of max prio1, max prio2 and max prio3

which may delay coloring. That is why, several priorities are maintained in max prio1 and

max prio2. The question is how many? To be able to discard one value corresponding to an

already colored node and sent by neighbor v in max prio2(v) implies that v sends at least

2 values in max prio2(v). To be able to compute the 2 highest values in max prio2(v) and

discard one value, node u must receive at least 3 values in max prio1(u). Hence, the minimum

sizes are Size max prio1 = 3 and Size max prio2 = 2.

Unfortunately, we can still exhibit scenarios with this minimum setting, where only the

first address inmax prio2 is discarded if already colored, producing a number of rounds higher

than SERENA. In simulations, we identified a scenario with 100 nodes uniformly distributed

with a density of 20 that need 175 rounds to be colored in OSERENA instead of 134 rounds

with SERENA. That is why, we select Size max prio1 = 4 and Size max prio2 = 3.

4.3.3.3 Computation of the Optimal Size of max prio1 and max prio2

In this Section, we use the most adopted model in wireless sensor networks: the unit disk

graph model [113]. Hence:

• Nodes are deployed in the 2-dimensional plane.

• A uniform transmission range R is defined.

• A node receives a transmission from another node, if and only if, its distance is lower

than R.

74

• There are neither message losses nor node failures.

This model is widely employed for the study of ad hoc and sensor networks. Clearly, this

model is a simplification of reality since (1) packet losses are possible, and (2) nodes can have

different transmission ranges. Indeed, even if nodes are homogeneous, this model does not

account for the presence of obstacles which might obstruct the signal propagation. However,

this model is simple enough to promote theoretical results. Thus, we still use it to model

the wireless ad hoc and sensor networks. Furthermore, in some calculation in this Section

and also in Section 4.3.4 (but not the simulations), we also make the following approximation:

Assumption (approximation) A4: Any node at a distance between R and hR is a h-hop

neighbor (e.g. a node at distance between R and 2R from another node, is assumed to be at

2 hops).

The assumption is valid asymptotically when the density converges towards infinity. For

a more detailed exploration of the exact relationship between number of hops and distance,

see for instance [114].

Lemma 12. With the setting Size max prio1 = 4 and Size max prio2 = 3 and rules R3

and R4, OSERENA colors any node u in the same round as SERENA, except when three

nodes 2 hops away from u, but 4 hops away from each other are coloring simultaneously just

before u.

Figure 4.4: A scenario where OSERENA can make more rounds than OSERENA.

Proof: We first identify this scenario illustrated by Figure 4.4 (C(u,r) is the circle centered

at node u and of radius r) and then compute its probability in the next section. When three

nodes two-hop away from u, and 4-hop away from each other are coloring simultaneously

just before u, node u is not allowed by rule R3 to discard three of them in the received

max prio2(v), hence the coloring of node u is delayed. We can show that this scenario is the

only one that will delay u coloring. On the one hand, two one-hop neighbors of u are not

75

allowed to color simultaneously, because they are at most two-hop away. On the other hand,

a one-hop and a two-hop neighbor of u are not allowed to color simultaneously, because they

are at most three-hop away. It results that the only case of simultaneous colorings in N (u)

involves nodes that are 2 hops away from u and 4 hops away from each other.

Lemma 13. The setting Size max prio1 = 5 and Size max prio2 = 4 provides the same

number of rounds as SERENA.

Proof: With the setting, Size max prio1 = 5 and Size max prio2 = 4, it is no longer possible

to have a bad scenario where four nodes two-hop away from u, but 4-hop away from each

other are coloring simultaneously. We prove it by contradiction. Let u be any node. We

assume that the four nodes v1, v2, v3 and v4 that are 4-hop away from each other and 2-hop

away from u are coloring themselves simultaneously. We notice that the distance between

these four nodes is maximized when they belong to the circle centered at u and of radius 2R

and are diametrally opposed. We can compute the distance of two adjacent points denoted

v1 and v2, we then have d(v1, v2)
2 = d(v1, u)

2 + d(u, v2)
2 = 4R2 + 4R2 = 8R2 (assuming

approximation A4). Hence d(v1, v2) = 2
√
2R < 3R: which means that v1 and v2 are 3-hop

neighbors which contradicts our assumption.

That is why in the following, we take Size max prio1 = 4 and Size max prio2 = 3

leading to a smaller bandwidth use.

4.3.4 Convergence Time

As shown in the previous section, the selected setting of the size of max prio1 and max prio2

provides the same number of rounds as SERENA, except when the bad scenario depicted in

Figure 4.4 occurs.

Remark 4. Notice that even in this case, the total number of rounds required by OSERENA

can still be equal to the total number of rounds required by SERENA. The occurrence of the

bad scenario is a necessary but not sufficient condition to increase the number of rounds with

OSERENA.

To conclude, the scenario where one node u is colored with a delay in OSERENA compared

to SERENA happens if the following events occur:

• E1: ∃ v1, v2 and v3, three nodes that are 2-hop away from u and 4-hop away from each

other.

• E2: these three nodes v1, v2 and v3 have a priority higher than u.

• E3: v1, v2 and v3 are colored simultaneously.

We assume the unit disk graph model including assumption A4. We adopt the following

notations. Let d(u, v) denote the euclidian distance between nodes u and v. Let P denote

76

the probability that the bad scenario occurs. We want to estimate an upper bound of this

probability. Let Pi denote the probability that the event Ei occurs, with i ∈ [1, 3]. We have:

P ≤
3
∏

i=1

Pi.

For any node u, let D(u,R) (respectively C(u,R)) denote the disk (respectively the circle)

centered at u of radius R. Let A \B denote the set containing exactly the elements of A but

not those of B.

The computation of upper bounds of probabilities P1 and P2 is done geometrically. Details

of the computation of P1, P2 and P3 are given in Appendix A. Using these results we have

the following property:

Property 5. The probability of occurrence of the bad scenario on a given node u is upper

bounded by 27
64(1− 3

4M+1) · (14 −
√

4−2
√
3

2Π), where M is the number of nodes to 1-hop away from

u.

Proof: Since P ≤ ∏3
i=1 Pi, we get P ≤ 27

64(1− 3
4M+1) · (14 −

√
4−2

√
3

2Π).

A numeric evaluation of the bound yields: P ≤ 0.0564∗(1− 3
4M+1). Notice that (1− 3

4M+1) ≤ 1,

which leads to P ≤ 0.0564.

4.4 Performance Evaluation by Simulation

We now evaluate the performance of OSERENA by simulation using the C language for

various WSNs.

4.4.1 Simulation Modules and Parameters

We consider various wireless network configurations where the number of nodes varies from

50 to 200 and the average number of neighbors per node, called density, varies from 8 to 30.

We check the connectivity of all the topologies generated by our random topology generator.

Three modules are simulated:

• The OSERENA Module in charge of coloring the wireless network.

• The SERENA Module is used as a reference for a comparative performance evaluation.

• The Neighborhood Discovery Module in charge of detecting the creation of new links,

testing their symmetry and detecting their breakdown. This is done by means of peri-

odic exchanges of Hello messages. The Hello message contains the list of addresses of

heard/symmetric nodes. Consequently, OSERENA that performs 3-hop coloring con-

siders the following definitions:

77

– Two nodes u and v are 1-hop neighbors if there is a symmetric link between them.

– Two nodes u and v are 2-hop neighbors if there is a node w that is a neighbor of

both of them.

– Two nodes u and v are 3-hop neighbors if there is a node w that is a 2-hop neighbor

of one of them.

We evaluate the number of colors used, the number of rounds needed to color the whole

network, the average number of Color messages sent per node as well as the average size of

these messages. Each result is the average of 10 simulations.

4.4.2 Performance Results of OSERENA

4.4.2.1 Number of Colors

The number of colors depends on network topology. First, we want to evaluate the impact of

node density and node number on the number of colors used by OSERENA.

Figure 4.5: Number of colors.

Figure 4.5 shows that the number of colors strongly depends on the density of nodes and

much less on the number of nodes. Intuitively, the reason is that the color selected by a

node, depends only on its 3-hop neighborhood, hence is related to the number of the 3-hop

neighbors (which is itself directly proportional to the density).

Furthermore, the size of the 3-hop neighborhood is not related to the number of nodes in

the network, hence this last parameter has less impact.

78

4.4.2.2 Number of Rounds

To measure the time complexity of OSERENA, we evaluate the number of rounds needed to

color the whole network. More precisely, what is the impact of node density and node number

on the number of rounds?

Figure 4.6: Number of rounds.

In Figure 4.6, we observe that the number of rounds depends more on the number of nodes

in the network than on density. There is one natural explanation of this observation that the

number of nodes has an impact on the number of rounds (and much less on the number of

colors, see previous section): in OSERENA, every node u must wait until all the nodes in

N (u) having higher priority than itself color themselves. Recursively, each node in this set

should do the same. This is likely to lead to waiting “chains” and such chains are longer in

larger networks. This of course contributes to coloring delay.

4.4.2.3 Number of Messages Sent per Node

To compute the overhead induced by OSERENA, we first evaluate the average number of

messages sent per node for various network configurations, pointing out the influence of node

density and node number. As illustrated in Figure 4.7, the average number of messages is close

to the number of rounds (depicted in Figure 4.6). This is expected since every node sends

one message per round until a stopping condition is fulfilled (rule R5): in the simulations, for

most nodes, most of the time, rule R5 is not verified.

79

Figure 4.7: Average number of messages sent per node.

4.4.2.4 Number of Bytes Sent per Node

Another expression of the message overhead is given by the average number of bytes sent

per node for various network configurations. What is the impact of node density and node

number on the number of bytes exchanged during the coloring?

 0

 50

 100

 0 5 10 15 20 25 30

a
v
e

ra
g

e
 n

u
m

b
e

r
o

f
b

y
te

s
 s

e
n

t
p

e
r

n
o

d
e

density

OSERENA #nodes=100
OSERENA #nodes=150
OSERENA #nodes=200

Figure 4.8: Average number of bytes sent per node.

From Figure 4.8, the number of bytes sent per node per round is almost independant

80

from the number of nodes, whereas density has a limited, but direct impact. This is a direct

consequence of the structure of the Color message, which includes 2 bitmaps of colors of the

1-hop and 2-hop neighborhood, which increases linearily with density (e.g. 2 additional bits

in message, per additional color in the 3-hop neighborhood).

4.4.3 Comparison with SERENA

We now compare the performances obtained by OSERENA with those of SERENA. OSER-

ENA ensures that nodes get the same colors as with SERENA. The open question is at which

expense?

4.4.3.1 Number of Colors

Simulation results are compliant with the expected behavior of OSERENA: any node receives

the same color with SERENA and OSERENA.

4.4.3.2 Number of Rounds

Simulation results show that OSERENA needs the same number of rounds as SERENA in all

the network topologies tested as shown in Figure 4.6 and Figure 4.9.

Figure 4.9: Number of rounds for SERENA.

The reason is that the scenario where OSERENA requires more rounds than SERENA on

one node has a low occurrence probability (see Section 4.3.4). Moreover, the occurrence of

81

this scenario on one node does not automatically increase the total number of rounds for the

coloring of the whole network.

4.4.3.3 Number of Messages Sent per Node

Simulation results show that the average number of messages sent per node is the same with

SERENA and OSERENA for various network configurations.

Figure 4.10: Average number of messages sent per node with SERENA and OSERENA.

4.4.3.4 Number of Bytes Sent per Node Per Round

Figure 4.11 depicts the average number of bytes sent per node per round with SERENA and

OSERENA. It points out the benefit brought by the optimization of OSERENA: the size of

the Color messages is much smaller.

82

Figure 4.11: Average number of bytes sent per node with SERENA and OSERENA.

In SERENA, a Color message includes information for each node in its entire 3-hop

neighborhood (address, priority, color): several bytes per node in the 3-hop neighborhood. In

OSERENA, only a small fixed subset of priorities and addresses of these nodes are exchanged,

and only 2 bits per color are required.

Notice that for wireless sensor networks based on the standard IEEE 802.15.4, the maxi-

mum packet size is 127 bytes. Hence SERENA messages are problematic even at the lowest

density (and would have probably to be fragmented in several packets). On the contrary,

OSERENA fits within this limit until high densities. The proof is that we integrated OSER-

ENA with routing and MAC protocols in a testbed of sensors having 8 K bytes of RAM in

the OCARI project. The description of this project is the subject of the remaining of this

chapter.

4.5 Application to the OCARI project: Integration of OSER-

ENA and EOLSR

One of the characteristics of my thesis is that it is close to the industrial field. Indeed, an

important part of my work is integrated in the OCARI1 project which provides a communica-

tion protocol for industrial WSNs. Hence, our research faces real challenges and requirements.

OCARI started in 2006 and when I joined the project in 2009, there were many nice adopted

solutions constituting the OCARI protocol stack. However, optimizing these solutions and

adding new features with the objective to integrate them in a real industrial network remained

1http://en.wikipedia.org/wiki/OCARI

83

a real challenge. Concerning our contribution in this project, our objective was mainly maxi-

mizing the network lifetime and efficiently routing data. Consequently, we integrated the node

activity scheduling based on node coloring via OSERENA and energy efficient routing based

on EOLSR in a testbed of sensors. In this section, we give an overview about the project and

describe some results.

4.5.1 Overview about the OCARI Project

4.5.1.1 Context and Goals

OCARI stands for “Optimization of Communication for Ad hoc Reliable Industrial networks”.

It is a project made of industrial partners like EDF, DCNS and TELIT and academic partners

like LIMOS, LATTIS, LRI and Inria. OCARI project tends to contribute to the emergence of

an open and proven standard designed for industrial WSNs. Examples of targeted applications

are: monitoring of industrial equipments or civil engineering infrastructure, health monitoring

of people working in hard conditions, predictive maintenance and environmental monitoring

to detect pollution in industrial plants.

Such applications have the following requirements with regards to wireless communica-

tions:

1. Energy efficiency: Network lifetime maximization for battery-operated routers;

2. Spectrum efficiency in time and space;

3. Time-constrained communications (bounded delays and predictable data delivery time);

4. Support of micro-mobility of sensors;

5. Scalability and self-healing.

84

4.5.1.2 OCARI Architecture

Figure 4.12: Topology of OCARI network.

An OCARI network is a mesh topology organized in a cluster of cells (see Figure 4.12). The

cluster is managed by the cluster coordinator, called the CPAN. The CPAN is responsible

for network address assignment, network access control, etc. It is also a gateway with the

industrial facility backbone. Each cell has a star topology including a cell coordinator and its

end device nodes. The cell coordinator is in charge of coordinating its end device nodes and

routing their data packets. Indeed, end devices are reduced function devices (RFDs), have

limited resources (energy, memory...) and can only communicate with the cell coordinator.

As depicted in Figure 4.12, the OCARI network can contain mobile sinks or data mules which

can be monitor operators equipped with a PDA (Personal Digital Assistant) and collecting

data from close sensors.

4.5.1.3 OCARI Protocol Stack

Figure 4.13 illustrates the OCARI stack layer as in December 2011:

1. OCARI is based on the IEEE 802.15.4 physical layer like many existing industrial stan-

dards. Also, the application is based on ZigBee specification.

2. The medium access protocol, called MaCARI, guarantees a deterministic medium access

85

Figure 4.13: The OCARI stack as in December 2011.

for time-constrained applications. It ensures also energy efficiency and differentiation of

services. MaCARI relies on a global cycle composed of three periods as illustrated in Figure

4.14.

Figure 4.14: OCARI global cycle.

• [T0, T1]: A synchronization period characterized by a beacon cascading: each cell

coordinator sequentially repeats the beacon received from its parent in the tree.

• [T1, T2]: It is a period where time constrained traffic is relayed. During this period,

each coordinator is allocated a time interval to collect data from its end-devices on

the one hand and forward data to its parent on the other hand.

• [T2, T3]: This period corresponds to the unconstrained time traffic. As we will explain

86

hereafter, EOLSR is used to route data between coordinators and OSERENA is used

to schedule the nodes activity.

• [T3, T0]: Inactivity period for all nodes. This period is optional.

3. At the network layer, the software OPERA “OPtimized Energy efficient Routing and node

Activity scheduling” provides an adaptive multi-hop routing supporting micro-mobility and

enables spatiotemporal reuse of channel capacity. Indeed, OPERA consists in OSERENA

and EOLSR that we will detail in Section 4.5.3. This module consists our main contribution

in this project. I collaborated to the implementation of the OPERA module.

(a) OSERENA computes the colors of the nodes and also the total number of colors

max color. The total number of colors allows MaCARI to dimension the cycle. Be-

sides, each color computed by OSERENA corresponds to a time slot where nodes

having this color can transmit.

(b) EOLSR ensures neighborhood discovery and route construction. Indeed, EOLSR

builds a routing tree rooted at the data sink. Selected routes have the smallest

energy cost. EOLSR consists in two modules: “EOND” responsible of neighborhood

discovery and “EOSTC” responsible for routing tree construction.

Figure 4.15: Contribution of Inria in OCARI project: OPERA module (EOLSR and OSER-

ENA).

4. OCARI stack contains a module which estimates the residual energy of each node. This

information is used by EOLSR for route selection.

In the next section, we will present our design choices for OSERENA in OCARI project.

87

4.5.2 OSERENA in OCARI

The coloring that we propose in OCARI is an hybrid version of OSERENA. Indeed, we

propose 3-hop coloring as defined in the general mode, integrating rules of strategic mode:

Each node has a color that is (1) different than all its neighbors up to 3 hops and (2) greater

than the colors of its parent in the data gathering tree.

This combination has many benefits. First, it allows a higher flexibility of supported

communications (3-hop coloring enables unicast, broadcast and immediate acknowledgement).

Second, as we have explained in Chapter 3, with 3-hop coloring, any node is able to replace

its parent by any 1-hop neighbor if its parent is no longer reachable, without invalidating the

coloring. As we will describe in the next section, EOLSR allows any node to have a parent

and a parent backup to reach the tree root. Third, the strategic mode rule obliging a node

to have a color greater than the color of its parent significantly reduces the end-to-end delays

and ensures freshness and time consistency of collected data.

4.5.3 EOLSR for Data Gathering Applications in OCARI

In OCARI, the routing protocol EOLSR routes time unconstrained traffic in data gathering

applications. It builds a routing tree rooted at the sink (the CPAN). EOLSR is an energy

efficient extension of OLSR [44]. Compared to the version presented in [30], this version is

simplified as follows:

1. To enhance scaling, any node does not store its 2-hop neighbors. Consequently, routing

is no longer based on MPRs (MultiPoint Relays).

2. Given that maintaining a route toward any other network node is expensive in terms of

energy, storage and bandwidth, EOLSR maintains on each node only a route per sink.

3. Route selection takes into account the energy level of each node.

4. A new message is introduced (Tree Status message described in Section 4.5.4.2) to inform

the tree root about the stability of the links in the tree. This information is used by the

CPAN to trigger the coloring.

In this Section, we will describe all these features. We do not give details on the specifi-

cations, they are internal to the OCARI project.

4.5.3.1 EOND: Neighborhood Discovery

In EOLSR like in OLSR, the neighborhood discovery is done via the exchange of the messages

Hello. In EOLSR, we enrich the Hello messages by information relative to the energy level of

the node. This information is used to compute the energy cost of routes. Consequently, any

node has knowledge about: (1) its 1-hop neighbors, (2) the type of the links with these neigh-

bors (symmetric, asymmetric) and (3) the energy level of these neighbors. Notice here that

88

unlike OLSR, EOLSR does not require the storage of the 2-hop neighbors. This optimization

is adopted to fit the limited storage capacity of sensor nodes.

4.5.3.2 EOSTC: Data Gathering Tree Construction

1. Cost of routes and route selection

In EOLSR, the cost of the route takes into account not only the length of the path,

but also its energy cost:

Cost(path) =
h

∑

i=1

Cost(transmission by the ith node on the path) (4.2)

Where h is the number of hops in this path.

The energy consumed by any transmission of the ith node, Ni, in the path takes into

account the energy dissipated by the sender and the energy consumed by all the n

receivers of this packet:

Cost(transmission of Ni) = Etransmit(i) + n ∗ Ereceive (4.3)

Moreover, to select a route, we take into account the residual energy of each node

represented by its energy class. Thus, each node determines its energy class that may

vary in time. To belong to one class, the energy level of each node should be between

two specific thresholds relative to this class. We define 3 classes of energy:

(a) Class High: Class of nodes that do not have any energy constraint, like nodes on

sector for instance.

(b) Class Medium: Class of nodes on batteries and having enough energy.

(c) Class Low: Class of nodes on battery having a low residual energy.

In order to maximize the network lifetime, route selection is based on the following rules:

• Any node from class Low is chosen as a next hop if and only if there is no other

option.

• Any node prefers routes composed of nodes of the class High provided that the

number of hops is not prohibitive compared to a route using nodes of the class

Medium.

To compute the energy dissipated in a transmission, we define:

• n1: the number of neighbors from the class High.

• n2: the number of neighbors from the class Medium.

• n2: the number of neighbors from the class Low.

89

We define also three coefficients: αHigh, αMedium, αLow, with 1 ≤ αHigh < αMedium <

αLow.

We define the cost of a transmission of any node Ni based on its energy class denoted

“class” and the energy class of its neighbors. From Equation (4.3), we have:

Cost(transmission of Ni) = Etransmit ∗ αclass

+ (n1 ∗ αHigh

+ n2 ∗ αMedium

+ n3 ∗ αLow) ∗ Ereceive.

This equality allows any node to compute the cost of a route by adding the costs of

different transmissions on the path applying Equation 4.2. The routes construction is

done via the messages STC as we will explain in the next section.

2. Message STC

Routes advertisement and selection is done via the transmission of the messages STC

(Strategic Tree Construction). Each strategic node (data collector) periodically gener-

ates a message STC containing its address and a tree sequence number to identify the

tree. Nodes receiving the messages and choosing the transmitter as a parent in the tree,

update the route cost in the message and transmit it (update the cost by adding to the

value received in this message, the cost of a transmission of the node itself). Any node

without a parent receiving a message STC selects the message transmitter as a next

hop to the sink node. Moreover, any node can change its parent if it receives a message

with a lower cost. Like that, EOLSR adapts to topology changes. In addition to route

construction, the STC messages allow nodes to choose a parent backup. Indeed, if a

node has a parent and receives a message STC from a 1-hop neighbor, it locally stores

the STC transmitter as a parent backup. This parent backup should provide the second

smallest cost after the parent. Consequently, if the parent is no longer reachable, the

node is not obliged to wait for the next STC generated by the root, it can rather replace

the parent by the parent backup if of course this latter is a valid neighbor.

4.5.4 Integration of OSERENA and EOLSR

4.5.4.1 Objectives

In OCARI, EOLSR provides information to OSERENA for:

1. Coloring triggering (see Section 4.5.4.2): EOLSR monitors a specific condition to

allow OSERENA to start coloring using the message Tree Status.

90

2. Topology information (see Section 4.5.4.2): EOLSR builds the neighborhood tables

used by OSERENA.

3. Topology changes (see Section 4.5.4.3): EOLSR informs OSERENA about the topol-

ogy changes using the messages Tree Status.

4.5.4.2 Coloring Triggering

OSERENA starts automatically when the CPAN verifies that the topology is stable. This

avoids recoloring in case of late start-up of a node for instance. It is the responsibility of

EOLSR to notify the links stability to the CPAN.

1. In each node, EOLSR monitors a local topology stability condition that is defined

by: (1) having a parent in the routing tree and (2) absence of neighborhood changes

(node disappearance or appearance) for a predefined time interval.

2. Each EOLSR node having verified the local stability condition and received a Tree

Status(stable) from all its children generates a Tree Status(stable) and transmits it to

its parent.

3. At the same time, OPERA copies the topology database from EOLSR to OSERENA.

This database contains: the 1-hop neighbors, the parent and the children in the routing

tree, the number of descendants of the node in the tree that constitutes the priority of

the node in OSERENA, the identification of the tree (address of the root and sequence

number of the tree).

4. When the CPAN receives a Tree Status(stable) from all its children, it deduces that the

topology is stable and can trigger the coloring.

4.5.4.3 Topology Changes

While running, EOLSR informs OSERENA about:

1. Neighborhood, parent or children changes: This information allows OSERENA to up-

date its neighborhood table. For instance, it avoids a node to wait for a dead neighbor

to color itself.

2. Instability of the tree: In addition to notifying the stability of the topology to the

CPAN, Tree Status messages are transmitted to the CPAN when any node detects an

instability state of the tree (Tree Status(unstable) in case of appearance of new neighbor,

new parent, etc). This information is useful for the CPAN that can decide to recolor

the network for instance.

91

4.5.5 Snapshots of Some Results of OCARI

The last event of OCARI was a meeting in December 2011 that brought together many

industrials and academics. In this meeting, Inria, Limos and Telit performed a demonstration

and proved the industrial feasibility of the OCARI solution by integrating all the OCARI

components on the TELIT ZE51 card, based on a RF CC24202 with 8 Kbytes of RAM.

Figure 4.16 illustrates the testbed used.

Figure 4.16: OCARI testbed.

We consider a topology reference where nodes form a grid topology. To visualize some

snapshots of OCARI running on sensors, I use a tool developed in the team that is able to

monitor and to show the running algorithms (messages exchanged, topology, colors, etc).

(a) Nodes exchange Hello Messages and detect sym-

metric links (double arrow).

(b) The sink generates a message STC that is for-

warded by nodes when they select a parent. On the

right, we see the tree topology. The sink node is the

node 16.

Figure 4.17: Neighborhood discovery and tree Construction.

2http://docs.tinyos.net/tinywiki/index.php/CC2420

92

(a) Tree Stability: nodes detecting that the stability

condition is verified start sending Tree Status(stable)

messages.

(b) All nodes exchange Color messages and select col-

ors.

Figure 4.18: Tree stability and coloring.

Figure 4.19: Topology changes after we removed the node 15: tree is reconstructed thanks to

the periodic transmission of message STC.

4.6 Conclusion

In this chapter, we presented a new node coloring algorithm adapted to dense wireless networks

that fits the limited capacity storage of sensors and the limited bandwidth. In the next chapter,

we will focus on another adaptivity aspect in coloring algorithms which is the adaptivity to

the topology type. We also described the OCARI project. One of the characteristics of

OCARI that distinguishes it from protocols such as ZigBee, WirelessHART and Isa100.11a is

its energy resource management thanks to OSERENA and EOLSR. The goal of the OCARI

Alliance is to promote an open standard safe and validated for highly constrained industrial

93

environments. We wish the OCARI solution to be (i) largely used to increase the size of the

user group, (ii) built by several manufacturers to ensure the diversity of supply sources and

(iii) be a sustainable and reliable solution.

94

Chapter 5

Optimal Periodic Node Coloring of

Grid Wireless Ad hoc and Sensor

Networks

Introduction

In the previous chapters, we studied different aspects of the adaptivity of the coloring al-

gorithms we proposed: adaptivity to application requirements, to unreliable wireless com-

munications and to dense wireless networks. In this chapter, we propose a coloring method

adapted to a specific type of topologies which is the grid. The motivations behind the focus

on this kind of topology are multiple.

Indeed, the grid organization is easy to deploy and is efficient in terms of coverage, con-

nectivity and management. For instance, a grid topology is one of the best methods to ensure

sensor coverage for surveillance [115, 116]. In [117], authors proved that the grid deployment

provides an optimal coverage compared to random and tri-hexagon1 deployments. Also, in

[118], it was shown that a network with regular topology yields the best average bit-error-rate

performance. Grid deployment helps to collect measurements with a uniform spatial sampling

such as for instance in precision agriculture and irrigation as in [119]. When physical phe-

nomena are numerically modeled, measurements from a grid pattern may be a direct input or

directly compared to the output of equations solved with the finite element method on a grid

— without requiring additional sensor localization and numerical measurement interpolation.

From research point of view, compared to random topologies, working on grids relatively helps

to obtain interesting results, especially theoretical results. For this reason, in addition to the

aforementioned characteristics of these topologies, studying these topologies is gaining more

and more focus by the research community regarding many thematics like the localization

and the network coverage [116]. As an example of a famous project, we can cite the project

1In a tri-hexagonal tiling, there are two triangles and two hexagons alternating on each vertex.

http://en.wikipedia.org/wiki/Trihexagonal tiling

95

SenSlab2 that deploys an experimental testbed where sensors are disposed in a 3D grid. Given

such grid topologies, the question is: What is the method to color grids while minimizing the

number of colors used?

To answer this question, we start by applying OSERENA algorithm to grids with various

sizes and transmission ranges (in Section 5.1). This step allows us to make some observations

useful to efficiently color grids. Indeed, we notice that designing periodic coloring based on the

repetition of a color pattern leads to good performance. In [120], we determined color patterns

that are able to color grids for specific transmission ranges. In this chapter, we generalize this

study and propose a method called VCM (Vector-based Coloring Method) able to provide

the optimal coloring for any grid with any transmission range. VCM is composed of three

components (a) Optimal Vector Search, (b) Node Color Computation and (c) Validity Check.

We also conduct a theoretical study and determine optimal bounds on the number of colors

needed to color an infinite grid.

The remaining of this chapter is organized as follows. In Section 5.2, we present the

problem statement and an overview about the proposed solution. Section 5.3 defines the

periodic coloring and describes its principles. Sections from 5.4 to 5.6 present the different

components of VCM. In Section 5.9, we present simulation results and compare VCM to

OSERENA. In Section 5.10, we discuss the applicability of VCM in real wireless ad hoc and

sensor networks.

5.1 Preliminary Results and Methodology

Our objective is to color a grid with a minimum number of colors. To realise this goal, we

started by applying OSERENA to a sample of grids with various sizes and transmission ranges.

We considered 3-hop coloring and set the node priority to one of the following heuristics: the

position of the node in the line or random. Simulation results of the number of colors and

the number of rounds are summarized in Table 5.1. The optimal number of colors (‘Optim’

column) is given for comparison. The reader can refer to [122] for the proof of the optimal

number of colors needed to color some grids with various transmission ranges. The grid

step is the distance between one node and its successor/predecessor in a line/column. The

transmission range is expressed as r times the grid step with r being a rational. The number of

nodes ranges from 100 to 900. The density is computed as the average number of neighbors per

node (i.e. average number of nodes in radio range of a sender). It varies from 3 to 25. ‘Prio1’

means that there is only one criterion used for node priority assignment: either the position

of the node in the grid line, or a random number. ‘Prio2’ means that two criteria are used:

first the number of nodes up to 2-hop and second either the position of the node in the grid

line or a random number. Notice that identical results have been obtained when considering

the column instead of the line in the grid. Results are the average over 10 simulation runs.

From this table, we can draw the following observations:

2http://www.senslab.info/

96

Table 5.1: Number of colors and rounds obtained by OSERENA for various grids and trans-

mission ranges (‘C’ means colors, ‘R’ means rounds).

Radio Grid Dens. Optim Prio1 Prio2

range size line random line random

1 10x10 3.6 8C 8C 13.8C 8C 11.8C

58R 67.4R 54R 77.8R

20x20 3.8 8C 8C 15.4C 8C 14.8C

118R 82.4R 114R 110R

30x30 3.87 8C 8C 15.4C 8C 15.4C

178R 93R 174R 116.6R

1.5 10x10 6.84 16C 16C 23.6C 16C 19.4C

67R 94.8R 65R 107.6R

20x20 7.41 16C 16C 27.6C 16C 26.6C

137R 144.6R 134R 166.6R

30x30 7.6 16C 16C 28.4C 16C 27.8C

207R 169.2R 204R 195.4R

2 10x10 10.04 25C 30C 33.8C 30C 28.2C

85R 136.4R 123R 121.8R

20x20 11.01 25C 33C 41.8C 33C 36.4C

175R 236.6R 174R 282.4R

30x30 11.34 25C 33C 44.4C 34C 42.8C

265R 278R 264R 376.6R

2.5 10x10 15.8 45C 52C 50.8C 49C 42.33C

94R 176.8R 105R 146.17R

20x20 17.85 45C 54C 66.8C 54C 64.8C

194R 348.2R 197R 359.8R

30x30 18.56 45C 55C 74C 58C 73.6C

294R 422.2R 297R 440.8R

3 10x10 21.16 68C 70C 68C 71C 67.6C

112R 193R 116R 197.8R

20x20 24.49 68C 80C 93.4C 79C 93C

232R 449.4R 231R 451.4R

30x30 25.64 68C 83C 107.8C 81C 107.8C

352R 601.2R 351R 601.4R

1. The number or colors increases with the grid size. For instance, for a transmission

range=3, we have 70 colors for 10x10 grid and 83 colors for 30x30 grid. This result

is expected and is compatible with previous results of OSERENA applied to random

topologies. However, given the regularity of the grid topology, we wonder if we can

avoid the dependence of the number of colors on the size of the grid.

2. Mostly, we observe that no priority assignment tested provides the optimal number of

colors for any grid size and any radio range. For random priority assignment and a

30x30 grid with transmission range equal to 1, we have 15.4 colors while the optimal

97

number is 8.

3. For a 30x30 grid and transmission range equal to 1, the optimal number of colors is

reached when the priority is given by the line position. This makes us think that the

regularity of the grid must be taken into account.

These results prompt the following questions: Does a priority assignment exist in grid

topologies such that the number of colors does not depend on the number of nodes but only

on the radio range? Is it possible to take advantage of the regularity of the grid to design

a h-hop coloring algorithm able to find the optimal number of colors for any grid with any

transmission range value? Moreover, does a periodic color pattern that can tile the whole

topology for a given radio range, exist? What is the optimal number of colors? Is the optimal

number of color reached by periodic colorings?

To answer these questions, our methodology is to determine an optimal coloring of the

grid. This coloring should be periodic, that is based on the repetition of a periodic coloring

pattern. Section 5.2 provides an overview about the proposed method.

5.2 Overview About the Proposed Method

5.2.1 Notations, Definitions and Assumptions

In the remaining of this chapter, we reason in a space of dimension 2 and use the following

notations:

• ~UV denotes a vector of extremities the nodes U and V .

• For any point W , let w be the vector such that ~OW = w and O is the origin of the plan.

• | ~UV | denotes the norm, or length of the vector ~UV and d(U, V) the euclidean distance

between nodes U and V .

• det(~UV1, ~UV2) is the determinant of the two vectors.

• ~UV1 · ~UV2 denotes the scalar product of the vectors.

• Λ(~UV1, ~UV2) denotes the lattice
3 having as a basis the vectors (~UV1, ~UV2). We call ~UV1

and ~UV2 the basis (or generator) vectors. P(~UV1, ~UV2) is the fundamental parallelotope

associated to Λ(UV1, UV2). In 2 dimensions, P is a parallelogram. Moreover, the number

of nodes in P(~UV1, ~UV2) called lattice determinant is given by det(~UV1, ~UV2). These

notations and definitions are adopted from [124]. We also denote PU (~UV1, ~UV2) the

fundamental parallelotope translated at node U .

3Generally speaking, a lattice is a graph that exhibits a regular tiling. In our case we consider point lattice

(points represent the network nodes) that is a periodic arrangement of discrete points. Two-dimensional

examples are the square and the hexagonal lattices.

98

• For x, y in Z
2, with y 6= 0, we denote “x modulo y” the integer z in {0, 1, . . . |y| − 1}

such that we have x ≡ z(mod|y|).

Moreover, the following definitions and assumptions are used:

• Nodes: The nodes are disposed in a grid. Without loss of generality we assume that

the grid step is 1, hence the set of nodes is identified with Z
2.

• Neighborhood: R denotes the radio range and is a real number ≥ 1. We adopt

the unit disk model assuming that any two nodes U and V communicate directly in

both directions if and only if their euclidean distance is less than R. Hence, the set of

neighbors of a node U is: N (U) ,
{

V ∈ Z
2 | 0 < d(U, V) ≤ R

}

.

• Coloring: A coloring φ is a mapping from the nodes Z
2 to a set of colors, identified

with the set of integers {1, . . . k}, with k a positive integer.

• Valid Coloring: A coloring is said to be a valid h-hop coloring, with h an integer ≥ 1,

when all nodes that are less than or equal to h-hop away are assigned different colors.

• Periodic Coloring: A coloring is denoted “periodic” if there exists two vectors v1 and

v2 such that for any color c all the nodes having this color form a lattice generated by

vectors v1 and v2. In this work, we consider a “strict” definition of periodicity because

colors might otherwise be periodically repeated with a pattern generating more than a

single lattice for instance.

• Reduced vectors: We call reduced vectors of a lattice, the vectors obtained by ap-

plying the Gauss lattice reduction on these vectors. Indeed, for any pair of vectors u1,

u2 generating a lattice Λ(u1, u2), the Gauss lattice reduction algorithm provides two

reduced vectors v1, v2 generating exactly the same lattice and verifying the System (5.1)

{

|v1| ≤ |v2|
2|v1 · v2| ≤ |v1|2

(5.1)

See for instance [121] for more details.

5.2.2 Problem Statement

Our general goal is the following: Find a valid h-hop coloring of nodes of the infinite grid Z
2,

with a minimized number of colors for h ≥ 1. Because the set of colorings of Z2 is infinite,

in this chapter we restrict ourselves to colorings exhibiting a periodic color pattern (following

the definition of periodic coloring of section 5.2.1).

Problem Statement: Find one of the valid periodic h-hop colorings with the

minimum number of colors for h ≥ 1.

99

5.2.3 Intuitive Idea and Overview

To answer the problem statement, we propose the method VCM. The intuitive idea of the

method is as follows: As the grid topology presents a regularity in terms of node position,

VCM produces a similar regularity in terms of colors and generates a color pattern that can be

periodically reproduced to color the whole grid. Our aim is to find such a color pattern that

minimizes the number of colors used. More precisely, given a colored node U , we determine

where its color can be reproduced. The method starts by the choice of two vectors ~UV1 and

~UV2 such that V1 and V2 use the same color as U . Of course, the vectors ~UV1, ~UV2 must

provide a valid h-hop coloring. The color pattern is given by the set of colors in the finite

parallelogram P(~UV1, ~UV2) translated at U . Hence, the color of U is repeated also at any

node W where ~UW is a linear combination of ~UV1 and ~UV2. Consequently, as illustrated in

Figure 5.1, VCM is composed of the following components:

Figure 5.1: Components of VCM

C1. VCM-OVS An algorithm to search for optimal generator vectors, that is, yielding the

minimum number of colors. Indeed, we limit the set of candidate vectors to find the vectors

providing the optimal number of colors.

C2. VCM-NCC A periodic coloring based on two generator vectors. This component

determines the color of any node.

C3. VCM-VC An algorithm to check the validity of the periodic coloring: VCM incorporates

two methods to verify the validity of the coloring for a given couple of generator vectors.

In Sections 5.4 to 5.6 we detail the components of VCM.

100

5.3 Periodic Coloring

Figure 5.2 presents an example of a periodic 3-hop coloring of a 10×10 grid with a transmission

range R = 1¡ and two generator vectors ~UV1 and ~UV2 (see [123] for more examples). The

basic principles of the periodic coloring are:

P1. (Generator vectors) The two vectors ~UV1 and ~UV2, if linearly independent, generate

the parallelogram P(~UV1, ~UV2) of the color pattern.

P2. (Parallelogram color unicity) Inside P(~UV1, ~UV2), there is no color reuse.

Figure 5.2: Example of periodic 3-hop coloring (R=1)

P3. (Lattice color repetition) Because the periodic coloring is obtained by repeating

the color pattern, the nodes W such that ~UW is a linear combination of ~UV1 and ~UV2

have the same color as U . More precisely, the set of nodes W having the same color as U

forms a lattice of Z2 with generator vectors ~UV1 and ~UV2: the vector ~UW can be written as

~UW = α ~UV1 + β ~UV2 with α and β in Z
2.

P4. (Coordinate-based color computation) The grid can be seen as a tiling with the

pattern PU (~UV1, ~UV2). Thus, each node W belongs to its own parallelogram and has coordi-

nates relative to this parallelogram. Consequently, W has the same color as any node having

the same coordinates in its own parallelogram.

To be applied to a wireless ad hoc and sensor network, these principles have to be enhanced.

For instance, since nodes having the same color can simultaneously access the wireless medium,

validity of the coloring must be verified. Hence, we search valid vectors (i.e. vectors generating

valid coloring). Moreover, to ensure an efficient usage of the bandwidth, the number of colors

used should be minimized. These criteria are taken into account in our work and progressively

introduced in the paper.

In the following we detail the components of VCM.

101

5.4 Optimal Vector Search (OVS)

To achieve an optimal spatial reuse, the coloring algorithm should minimize the number of

colors used. For VCM, this number is entirely defined by the two generator vectors describing

the periodic tiling (see property P3). Hence, our aim is to judiciously choose these vectors in

order to reduce the number of colors used to color a grid.

However, by default, the infinite lattice Z
2 is a possible set for candidate vectors. So, to

reduce the size of the set of candidate vectors, our approach takes advantage of two hints:

1. We determine upper and lower bounds on the number of colors needed in a h-hop coloring

of the grid, for h ≥ 1.

2. Because for any couple of initial generator vectors, reduced vectors always exist, it is

sufficient to search for some optimal vectors in the space of reduced vectors defined by Sys-

tem (5.1).

This is used to restrict the search space as we will see in Section 5.4.2.

5.4.1 Bounds on the Number of Colors in Periodic Colorings

In this section, we prove that the number of colors of optimal coloring when R → ∞ is

asymptotically
√
3
2 h2R2 + O(R). We first start with two examples of construction of valid

generator vectors, that are used to determine the bounds on the number of colors and to limit

the vectors search space.

5.4.1.1 Examples of Valid Generator Vectors

• Near hexagonal generator vectors

Here, we detail how to construct two valid vectors ~UV1 and ~UV2 which provide an approx-

imation of an hexagonal lattice (when R is large). Figure 5.3 illustrates how some points V1

and V2 are constructed starting from some reference point U .

Figure 5.3: Selecting vectors for a near-hexagonal lattice

102

• Starting from the point U , the line with an angle π
3 with the horizontal line is considered,

and its intersection with the circle of radius hR yields the point B.

• Next, let V2 be the closest point of B on the grid having larger coordinates x2 and y2

than B.

• Then V1 with coordinates (x1, y1) is selected with (x1, y1) = (2x2, 0).

Notice that by construction x1 is greater than hR and we have a valid choice of vectors

~UV1 and ~UV2.

• Square generator vectors

An alternate, simpler, choice of vectors is to compute the integer λ = ⌊hR⌋ + 1, (this

symbol denotes the integer part of hR) and select the vectors with coordinates u′1 = (λ, 0)

and u′2 = (0, λ). They generate a square lattice.

5.4.1.2 Lower Bound

For the lower bound on the number of colors, we have the following theorem that is valid for

any coloring (not just periodic coloring):

Theorem 2. The number of colors required to color an infinite grid with R >
√
2 is at least

√
3
2 h2(R−

√
2)2.

Proof: Consider any h-hop coloring of the grid. Consider a fixed color c and now let Sc

be the set of nodes having this color. We first establish a lower bound of the distance of

nodes in Sc. Let us define ρ = (R−
√
2)h. Consider two nodes A,B of Sc. By contradiction:

if their distance verifies d(A,B) ≤ ρ, they would be at most h-hop away, contradicting the

definition of a h-hop coloring (see Lemma 17 in Appendix B). Therefore, all nodes of Sc are

at a distance at least ρ from each other.

Now consider the set of circles C of radius 1
2ρ and whose centers are the nodes of Sc. The

fact that any two nodes of Sc are distant of more than ρ, implies that none of the circles in

C overlap. Hence C is a circle packing by definition. From the Thue-Tóth theorem [125, 126]

establishing that the hexagonal circle packing is the densest packing, with a density of π√
12
,

we deduce that C must have a lower or equal packing density. This implies an upper bound

of the density of set Sc of centers of the disks of 1
(ρ/2)2

√
12
.

Because each color yields a set of nodes with at most this density, it follows a lower bound

of the number of colors that is the inverse of this quantity, hence the theorem.

103

5.4.1.3 Upper Bound

For an upper bound, we have the following theorem:

Theorem 3. The number of colors required to color an infinite grid is at most
√
3
2 h2R2 +

2hR+ (2 + hR)
√
2.

Proof: This number is obtained from the near hexagonal vectors constructed in Sec-

tion 5.4.1.1, which thus yields an upper bound.

Denote (γ, δ) the coordinates of ~BV2 from Section 5.4.1.1. By construction: 0 ≤ γ ≤ 1

and 0 ≤ δ ≤ 1, hence: | ~BV2| ≤
√
2. Moreover,

| ~AV1| = 2x2 − hR

= 2(hR cos(
π

3
) + γ)− hR, with γ ≤ 1

≤ 2

Consequently, we can write nc, the number of colors in the associated coloring as:

nc = det(~UV1, ~UV2)

= det(~UA, ~UB) + det(~AV1, ~UB) + det(~UV1, ~BV2)

≤ det(~UA, ~UB) + | ~AV1|| ~UB|+ | ~UV1|| ~BV2|

As we have | ~AV1| ≤ 2, | ~BV2| ≤
√
2 and | ~UV1| = hR+ 2, we get:

nc ≤
√
3

2
h2R2 + 2hR+ (hR+ 2)

√
2.

Thus the theorem.

Remark 5. The number of colors of the construction of square generator vectors, proposed

in previous section, is higher than for the near hexagonal vectors. It is h2R2(1+O(1
R)), hence

the vectors cannot yield the tight bound, but the vectors are used later in Section 5.4.2.2 for

an alternate upper bound.

5.4.1.4 Asymptotic Number of Colors

Theorem 4. The number of colors nc(R) of an optimal periodic h-hop coloring for a fixed h

verifies:

nc(R) =

√
3

2
h2R2(1 +O(

1

R
))

when R → ∞.

Proof: Combining the lower bound and the upper bound of the two theorems yields the

result.

Corollary 1. Theorem 4 is true even considering periodic and non periodic coloring.

104

Proof: A periodic coloring is a special case of general coloring (including periodic and non

periodic). Hence, the optimal number of colors in general coloring is less than or equal to nc.

Corollary 2. VCM is asymptotically optimal even considering all possible valid colorings.

In other terms VCM is an (1 + g(R))-approximation of the optimal coloring of the grid with

some g verifying g(R) → 0 when R → ∞.

Proof: VCM will find vectors with better or equal performance than those in Theorem 3.

Indeed, in the worst case, the generator vectors for the near-hexagonal lattice will be selected

by VCM.

5.4.2 Finding the Optimal Vectors

In this section, we show how to limit the set of candidate vectors. Let u1 and u2 be two

candidate vectors and θ be the angle between them. We search l1min, l1max (respectively

l2min, l2max) the lower and upper bounds of the length of u1 (respectively u2).

• Considering a h-hop coloring, the vectors u1 and u2 must be valid. According to Lemma 17

from Appendix B, we have:

|u1| > (R−
√
2) h and |u2| > (R−

√
2) h. (5.2)

• As previously said, in order to reduce the set of candidate generator vectors, we reduce

the size of these vectors by using the lattice reduction algorithm of Gauss. A consequence of

Gauss property (System 5.1) is that: | cos θ| ≤ 1
2 , hence:

| sin θ| ≥
√
3

2
. (5.3)

• As shown in Theorem 2,

det(u1, u2) ≤ Sh =
√
3
2 h2R2 + 2hR+ (2 + hR)

√
2.

It results: |u1||u2|| sin θ| ≤ Sh. Using Inequality 5.3, we get:

√
3

2
|u1||u2| ≤ |u1||u2|| sin θ| ≤ Sh (5.4)

And as |u1| ≤ |u2|, from 5.4 we have:

√
3

2
|u1|2 ≤ Sh. (5.5)

We now distinguish the cases where R >
√
2 and R ≤

√
2

105

5.4.2.1 Case R >
√
2

Using 5.2, from 5.5 we get:
√
3

2
|u1|(R−

√
2)h <

√
3

2
|u1|2 ≤ Sh. (5.6)

And using 5.2 in 5.4: √
3

2
|u2|(R−

√
2)h < Sh. (5.7)

To summarize, the two generator vectors should verify for R >
√
2:

l1min < |u1| ≤ l1max and l2min < |u2| < l2max (5.8)

with:






































l1min = h(R−
√
2)

l1max =

√

2√
3
Sh

l2min = h(R−
√
2)

l2max =
2√
3

Sh

h(R−
√
2)

(5.9)

In practice, to compute the two generator vectors, we determine the upper and the lower

bounds of the coordinates of u1, and u2 using the System (5.9). Notice that we can search

the vectors in the half plane (y ≥ 0), because if u1 and u2 are generator vectors, then their

symmetric vectors with respect to (y = 0) axis are also generator vectors. Consequently, we

have:

{

−l1max ≤ x1 ≤ l1max

0 ≤ y1 ≤ l1max

(5.10)

and
{

−l2max ≤ x2 ≤ l2max

0 ≤ y2 ≤ l2max

(5.11)

5.4.2.2 Case R ≤
√
2

We set l1min = 0. In addition, we can use the bound implied by the square generator vectors

as proposed in Remark 5. Let Ss = (hR+1)2, which replaces Sh for the computation of l1max.

Then, instead of a fixed bounds for l1max and l2max, we propose a bound depending on u1,

by using (5.4) we have: l2max = 2
√
3Ss

3|u1| , and because |u2| ≥ |u1| we have: l2min = |u1|. Hence:










0 < |u1| ≤ hR+ 1

|u1| ≤ |u2| ≤
2
√
3(hR+ 1)2

3|u1|
(5.12)

106

To find the optimal vectors, we define the Method OVS.

Method OVS:

1. The first step is to search S1 the initial set of generator vectors u1 and u2. S1 is the set

of vectors having as coordinates the integers (x1, y1) and (x2, y2) verifying System (5.10) and

System (5.11) if R >
√
2 or otherwise System (5.12).

2. Now, the set S1 should be filtered to keep only reduced and valid vectors. Indeed, for each

couple of vectors (u1, u2) in S1, we should verify:

2.1. (u1, u2) are reduced, that is they verify System (5.1).

2.2. to check the validity of the coloring, we use one of the methods that will be explained in

Section 5.6. Indeed, two cases are possible:

2.2.1 if R >
√
2 apply VC2.

2.2.2. otherwise, apply VC1.

3. After the step 2, we obtain the set of valid reduced vectors. Now, the optimal vectors are

then the vectors having the smallest absolute value of their determinant.

Notice that the search of the optimal vectors can be performed by a central unit that will

then disseminate these two vectors to all nodes. It is also possible that each node in the grid

computes the two generator vectors.

5.5 VCM: Node Color Computation (NCC)

5.5.1 Assigning Colors to Nodes

The node color computation (NCC) component of the VCM method takes as parameters

two generator vectors u1,u2 (computed as in Section 5.4). Let (x1, y1) and (x2, y2) be their

coordinates and let d = det(u1, u2). Here, we only provide one method VCM-NCC1, we can

find another method in [127]. An example of computation is provided in Section 5.5.3.

5.5.1.1 Method NCC1

Method VCM-NCC 1: VCM assigns the color of a point W based on its coordinates w =

(x, y) by computing first the integer quantities c1(w), c2(w) as in System (5.13),

{

c1(w) = (xy2 − yx2) modulo d

c2(w) = (−xy1 + yx1) modulo d
(5.13)

and then using a bijective mapping between the couple (c1, c2) and a color ∈
{0, 1, 2, . . . |d| − 1}.

Remark 6. In the remaining of this report, we will assume that d > 0 without loss of

generality: indeed, if d < 0, it is sufficient to use the vectors (−u1, u2) instead of (u1, u2) and

the results are similar ; notice that c1(w, u1, u2) = c1(−w,−u1, u2), etc. (hence change of sign

of u1 is equivalent to an origin symmetry of the coloring). This avoids minor technicalities

107

on the definition of the modulo, integer part, fractional part, when numbers are negative (for

which definitions are not universal).

Property 6. With the previous coloring VCM-NCC1, it is indeed possible to define a bijection

from (c1(w), c2(w)) to {0, 1, 2, . . . |d| − 1}. Moreover, the coloring verifies principles P3 and

P4 defined in Section 5.3.

Proof: We assume that d > 0 without loss of generality (see Remark 6). We need to prove

that the set
{

(c1(w), c2(w)) | w ∈ Z
2
}

has cardinality d and that the set of nodes with the

same color is exactly the lattice Λ(u1, u2) translated at w.

Let W be a grid point of coordinates w = (x, y). Performing a change of vector basis in

R
2 from {(1, 0), (0, 1)} to {u1, u2}, the new coordinates (α, β) ∈ R

2 of W in Λ(u1, u2) verify

w = αu1 + βu2 and










α =
det(w, u2)

d

β =
det(u1, w)

d

(5.14)

with d = det(u1, u2).

Let α′ and β′ be the integer parts of α, β, i.e., α′ = ⌊α⌋ and β′ = ⌊β⌋. For arbitrary

nonzero integers λ, µ, with also µ > 0, we have the identity: λ
µ = ⌊λµ⌋+

λ modulo µ
µ . Thus, 5.14

becomes:










α = α′ +
det(w, u2) modulo d

d
= α′ +

c1(w)

d

β = β′ +
det(u1, w) modulo d

d
= β′ +

c2(w)

d

(5.15)

Let W ′ the point with coordinates w′ = (α′, β′). W ′ is on the lattice since α′, β′ are integers,

and observe that W is in fact inside the parallelogram of the lattice Λ(u1, u2) placed at node

W ′ (i.e. inside the parallelogram defined by the 4 points of the lattice: w′, w′ + u1, w
′ + u2,

w′ + u1 + u2). Then (5.15) means simply that (c1(w)
d , c2(w)

d) are the coordinates of W relative

to this parallelogram (with the basis vectors u1, u2).

Since there is a bijection between the set of coordinates of nodes in a parallelogram of

Λ(u1, u2) and the nodes themselves; and since (c1(w)
d , c2(w)

d) are these coordinates, we have

the two properties: 1) there are exactly d possible values of (c1, c2) (because there are exactly

d nodes in the parallelogram), and 2) no two nodes inside the parallelogram have the same

values c1, c2 since these are their coordinates, relative to one vertex of the parallelogram.

Lemma 14. With the color computation given by System 5.13, the color of the node U is

repeated at nodes W with coordinates verifying: w = αu1 + βu2, for some (α, β) ∈ Z
2.

Proof: Actually, by construction, the color of a node is given by its coordinates relative to

the parallelogram it belongs to. Hence, the color of any node U is reused at nodes W , such

that ~UW = αu1 + βu2 for all (α, β) ∈ Z
2, which have the same relative coordinates.

We deduce that VCM-NCC 1 provides a coloring that is really consistent with the princi-

ples of the periodic coloring as described in Section 5.3.

108

5.5.1.2 Example of Bijection for NCC1

A bijection between
{

(c1(w), c2(w)) | w ∈ Z
2
}

and the set of colors {0, 1, . . . , d− 1} can be

constructed by computing the values of (c1(w), c2(w)) for any node in P(u1, u2) in a list,

sorting the list by lexicographical order and finally, setting the color associated with a couple

(c1(w), c2(w)) to be its index in the sorted list minus 1.

Example: if (0, 0) appears as the 1st item of the sorted list [as it can be proved it will], the

color assigned to that couple is 0. Then, for instance, for the point W of coordinates w = u1,

we have (c1(w), c2(w)) = (0, 0) and therefore the color assigned to W is 0.

Note that, from a pure implementation point of view, it may be difficult to enumerate

exactly the points of P(u1, u2), but then, instead, it is sufficient to enumerate all the nodes

in a superset, the bounding box of P(u1, u2), itself computed from its four vertices O = (0, 0),

O+ u1, O+ u2 and O+ u1 + u2. Computing the set of values (c1(w), c2(w)) for the points in

the bounding box, will yield all possible values for any w ∈ Z
2.

5.5.2 Computing the Number of Colors

The number of colors used in a periodic h-hop coloring is given by the next Property.

Property 7. For any node U , the color pattern defined by the two generator vectors u1 and

u2 meeting the aforementioned principles contains exactly |x1y2 − x2y1| colors where (x1, y1)

and (x2, y2) are the coordinates of u1 and u2.

Proof: By definition, no two nodes within the parallelogram defined by u1 and u2 use the

same color. Hence the number of colors is equal to the number of nodes in this parallelogram.

Moreover, as we said, the number of nodes in P(u1, u2), called lattice determinant, is equal

to the absolute value of det(u1, u2) [124]. Hence the property.

5.5.3 Example of Color Calculation

In this section, we illustrate the color calculation, using the following example (see Figure

5.4):

• R=3 and h=2;

• The OVS method determines the optimal vectors which are u1 = (6,−1) and u2 = (3, 5);

• Consider the node w = (5, 3), we want to determine its color.

Applying VCM-NCC 1 with the generator vectors u1, u2, we get:

• Number of colors = 33;

• (c1(w, u1, u2), c2(w, u1, u2)) = (16, 23)

• Using the example bijection of Section 5.5.1.2; c1(w), c2(w) is the 17
th value in the sorted

list of possible values, hence color(w) = 16.

109

Figure 5.4: An example of coloring computation based on VCM-NCC1.

5.6 VCM: Validity Check (VC)

As defined previously, a h-hop coloring algorithm is valid if and only if no two nodes that are

at less than or equal to h-hop from each other use the same color. The node color computation

algorithm of VCM (described in Section 5.5) takes as input two generator vectors u1, and u2,

and gives the color of each node. In this section, we will assume that such two vectors are

given and fixed, and we present two methods for checking beforehand whether the coloring

induced by these vectors is a valid coloring.

5.6.1 Method VC1: Verification around Origin

Method VC1: For each nodeW in the h-hop neighborhood of the origin nodeO, we compute

the color of this node based on the given generator vectors u1 and u2. If W has the same color

as O, then we conclude that the vectors u1 and u2 do not provide a valid coloring. Otherwise,

if the color of O is not repeated at any point W in its h-hop neighborhood, then the coloring

is valid.

The idea of Method VC1 is based on the following fact proved in this section: if there is

a color conflict between any two nodes V1 and V2 in Λ(u1, u2) (V1 and V2 have the same color

despite they are at less than or equal to h hops), there will be a color conflict in the h-hop

neighborhood of the origin O.

We set d = det(u1, u2).

Lemma 15. If two nodes V1 and V2 with coordinates v1, v2 in Z
2 have the same color, then

the color of the origin node is repeated at the node W of coordinates v2 − v1.

110

Proof: The functions c1, c2 computed from System 5.13 are actually linear modulo d. That

is, if W is the node with coordinates v1 − v2, and w is the vector of nodes extremities the

origin and W , we get: c1(W) = c1(V1)− c1(V2) modulo d. Hence, if c1(V1) = c1(V2) we have

c1(W) = c1(O). This is true also for c2, hence the lemma.

Theorem 5. If none of the nodes inside the h-hop neighborhood of the origin node O = (0, 0)

has the same color as O itself, then the coloring is valid.

Proof: By contradiction: assume that the coloring is invalid, which implies that two nodes

V1, V2 at less than or equal to h hops have the same color. Then from Lemma 15, the node

W such as ~OW = ~V1V2 has the same color as O. Notice that the distance in terms of hop

number between O and W is the same as the distance between V1 and V2. Hence we have

found a color conflict between O and a node W which is at less than h hops from O. Hence

the theorem.

Theorem 5 proves that Method VC1 is a correct method for checking whether two gener-

ator vectors yield a valid h-hop coloring.

5.6.2 Method VC2: Verification in a Few Points

Method VC1 requires Θ(R2) verifications when R → ∞. In the following, we propose

Method VC2, usable when R >
√
2 and requiring only a bounded number of verifications.

Method VC2 performs a check on a few nodes on the lattice Λ(u1, u2) to guarantee that the

h-hop coloring associated to u1, u2 is valid. This method is based on Gauss lattice reduc-

tion [121]: u1 and u2 should be first reduced, and hence verify System (5.1).

Method VC2: The nodes with the same color as the origin are on the lattice Λ(u1, u2): this

method verifies that these nodes are at least (h+ 1)-away from O, in which case the coloring

is valid. However, not all grid nodes need to be checked. It is sufficient to check only nodes

W in Λ(u1, u2) with coordinates α, β on the basis {u1, u2}, such that |α| and |β| < µ(R), with

µ(R) = 2
√
3R

3(R−
√
2)
. The coloring is valid if and only if these nodes are strictly more than h hops

from the origin node.

This method is based on the following theorem.

Theorem 6. For R >
√
2, the coloring provided by two reduced vectors u1, u2 is valid if and

only if:

for all α, β integers verifying |α| < µ(R), and |β| < µ(R), the node with coordinates (α, β)

on the basis {u1, u2} is at strictly more than h hops from the origin node O, where µ(R) =
2
√
3R

3(R−
√
2)
.

Proof: The property comes from the fact that the points on the lattice Λ(u1, u2) are “far”

from the origin node, because the vectors u1, u2 are reduced.

Indeed, Lemma 20 (see Appendix B) means that any node on the lattice with coordinates

111

αu1 + βu2, with |α| or |β| ≥ µ(R) can reuse the color of the origin node O because they

are at strictly more that h-hop from O (provided that the points of coordinates u1 or u2 are

themselves strictly more than h-hop away from O). Hence, to check the validity of the coloring

provided by VCM, it is necessary and sufficient to check that for all |α| and |β| < µ(R), nodes

of coordinates α, β in the lattice Λ(u1, u2) are strictly more than h hops away from the

origin of the lattice. This check includes checking the validity of u1 and u2 themselves (cases

(α, β) = (1, 0) and (α, β) = (0, 1))

Notice that for dense grids (R → ∞), µ → 1.15 This small bound reduces the set of nodes

to be checked in order to verify the validity of the coloring for given vector candidates.

In fact for R > 3
√
2

3−
√
3
, that is for R > 3.3461, we have µ < 2, hence only 4 points need to

be checked (considering symmetries): u1 (with α = 1, β = 0), u2 (with α = 0, β = 1), u1 + u2

(with α = 1, β = 1), u1 − u2 (with α = 1, β = −1).

However, Method VC1 is applicable for any radio range R, whereas Method VC2 requires

(R >
√
2).

5.7 Complexity of VCM

We can now evaluate the complexity of VCM that lies in the generator vectors computation

and in their validity check.

Theorem 7. Depending on VC method, VCM complexity is in Θ(R6) for Method VC1 and

Θ(R4) for Method VC2.

Proof: The vector search space is in Θ(R2) for each vector. The time complexity of the

validity check is in Θ(R2) for Method VC1 and Θ(1) for Method VC2. The theorem follows.

Since Method VC2 can be used as soon as R >
√
2, we deduce:

Corollary 3. VCM complexity is Θ(R4)

5.8 Summary: How to Apply VCM in Practice

In practice, to apply VCM, we start from a set of sensor nodes arranged as a two-dimensional

lattice (identified by their integer coordinates). The input of the algorithm are R and h.

Then, each node proceeds as follows:

1. Find the optimal valid vectors u1 and u2 using the Method OVS.

2. Each node computes its color using for instance the bijection defined in Section 5.5.1.2.

2.1. It computes the values (c1, c2) for each grid node in P(u1, u2) using System (5.13).

Sorting the set of the values (c1, c2) yields an example of mapping between every possible

value of (c1, c2) and a unique integer in [0, |d| − 1].

2.2. Knowing its coordinates in the grid, each node deduces its two components c1 and c2

112

according to System (5.13) and then its color from the previous mapping.

We can notice that VCM allows each node to know its color in a single round.

5.9 Coloring Results with VCM

5.9.1 Examples of Vectors

Table 5.2: VCM vectors generating the optimal number of colors.

Radio 2-hop coloring 3-hop coloring

range v1 v2 colors v1 v2 colors

1 (2,1) (-1,2) 5* (2,2) (-2,2) 8*

1.5 (-3,0) (0,3) 9* (4,0) (0,4) 16*

2 (3,2) (-2,3) 13* (4,3) (-3,4) 25*

2.5 (4,3) (-1,5) 23* (5,5) (-7,2) 45*

3 (5,3) (-1,6) 33* (7,5) (-8,4) 68*

3.5 (5,4) (-6,3) 39* (8,5) (-8,5) 80*

4 (7,3) (-6,5) 53* (8,8) (-11,3) 112*

4.5 (9,2) (-6,7) 75* (13,3) (-9,10) 157*

5 (9,4) (-1,10) 94* (14,4) (3,15) 198*

5.5 (9,6) (-1,11) 105* (16,0) (8,14) 224*

6 (11,4) (-9,8) 124* (17,4) (-12,13) 269*

6.5 (13,1) (-7,11) 150* (-19,0) (9,17) 323*

7 (10,9) (-4,13) 166* (15,13) (-19, 7) 352*

Table 5.2 gives for different radio ranges two vectors v1 and v2 generating the optimal

periodic pattern as well as the minimal number of colors obtained by a periodic pattern, for

both a 2-hop coloring and a 3-hop coloring. The ‘*’ symbol highlights the optimality of the

number of colors used.

We observe that 2-hop coloring of the grid with radio range R = 3 is not equivalent to

3-hop coloring of a grid with R = 2 in terms of the number of colors (33 vs. 25). We conclude

that the optimal number of colors is not determined only by the product h ∗R, but also the

values of h and R taken separately.

5.9.2 Comparison with Other Methods

Table 5.3 depicts the simulation results obtained with VCM for various grids. The method

is compared to OSERENA algorithm using line/column as priority assignment heuristics.

Results are given for 3-hop coloring. For high radio range values, the number of nodes should

be high enough to allow the reproduction of the color pattern.

We observe that VCM provides an optimal 3-hop coloring, for any radio range. This is

not true for any other priority assignment tested. Moreover, the number of colors does not

113

Table 5.3: Number of colors obtained for 3-hop coloring.

Radio Grid size Colors

range VCM OSERENA

(line/column)

1 10x10 8* 8

20x20 8* 8

30x30 8* 8

1.5 10x10 16* 16*

20x20 16* 16*

30x30 16* 16*

2 10x10 25* 30

20x20 25* 33

30x30 25* 33

3 20x20 68* 80

30x30 68* 83

3.5 20x20 80* 91

30x30 80* 91

depend on the grid size, provided that the grid size is high enough to allow the repetition of

the color pattern defined by the generator vectors.

5.10 VCM in Real Wireless Networks

So far, VCM has been described for grid topology since this topology is used by real applica-

tions. Notice however, that wireless communication may differ from what is expected by the

theory that often uses simplified models: radio links may be asymmetric, a radio link may ex-

ist even if the remote node is at a distance higher than the transmission range R or conversely

not exist even if the remote node is in the theoretical radio range. However, notice that a

valid h-hop coloring for a given R, is also a valid h-hop coloring for R′ < R (although likely

non-optimal). That is why, the first step in VCM is to select R such that two nodes that are

at a distance greater than R are not neighbors (maybe using measurements or neighborhood

detection).

Now, another real aspect in wireless ad hoc and sensor networks is the late arrival (mobility

or in case of late start-up) and disappearance of nodes (a node is out of battery for instance).

What is the impact of such impairments on VCM? We distinguish two categories:

1. Radio links disappearance: in this case, VCM always provides a valid coloring. The peri-

odic coloring may still be optimal, as long as the percentage of missing radio links is below a

given threshold L1.

2. Radio links appearance: in this case, nodes that should not be neighbors (or heard nodes

in case of asymmetric links) are. As a consequence, nodes having the same color may interfere

114

because of these additional radio links. The periodic coloring provided by VCM may still be

perfectly acceptable by the application as long as the percentage of additional radio links is

below a given threshold L2.

As a further work, we will evaluate the thresholds L1 and L2 and study how random topologies

can be mapped onto grids.

Notice that SERENA and OSERENA rely on the routing protocol to know the real neigh-

bors of any node and do not require the use of the same radio range for all network nodes.

Conclusion

In this chapter, we have presented a new method called VCM, the Vector-Based Coloring

Method, able to provide an optimal periodic h-hop coloring of any grid, with h an integer

≥ 1, for any radio range R. This method is easy to use: a single round is needed. It suffices

to compute the two generator vectors. Knowing its coordinates within the grid, each node

deduces its color from a simple computation. We have shown that this h-hop node coloring

is optimal in terms of colors and rounds. We determined also an upper and a lower bound

for the number of colors needed to color an infinite grid. VCM provides the optimal number

of colors compared to all possible coloring including non periodic ones. Finally, we discussed

how to apply VCM in real wireless networks. As future directions, we plan to extend VCM

to random topologies. Our methodology encompasses the following steps: (1) coloring grids

with holes, (2) coloring grids of cells, (3) using the first two steps, we map random topologies

on grids and we color them with the optimized number of colors.

115

Chapter 6

Traffic Aware Time Slot Assignment

in Data Gathering Applications

Introduction

A typical application in WSNs is data gathering. Sensor nodes are deployed in the region of

interest to periodically collect and report sensed data to a sink node. To achieve this many-

to-one communication, sensor nodes form a data gathering tree rooted at the sink. Nodes

have different traffic demands. For instance, nodes close to the sink forward more data than

leaf nodes in the data gathering tree. This is the “funneling effect” [128]. Consequently, nodes

may need heterogeneous numbers of time slots. Indeed, two cases are possible.

1. First case: Nodes can aggregate data received from their children and are able to transmit

their aggregated data in a single time slot. Consequently, all nodes need the same number

of slots.

2. Second case: Data aggregation is not possible. We speak about raw-data convergecast

because every packet is forwarded individually. Intermediate nodes in a data gathering tree

simply apply the store and forward strategy, without processing the received packets. This

may happen when for instance (a) the traffic demand is high, (b) the packets size is high,

(c) or when nodes are supposed to transmit each packet individually without processing it.

In this case, traditional TDMA-based MAC protocols tend to grant nodes equal channel

access. This may lead to congestion, packet loss, and inefficient use of the bandwidth.

Consequently, channel access should be proportional to the sensor demand.

In this chapter, we work under the assumptions of the second case to deal with the Time

Slot Assignment problem, denoted TSA regarding the application requirements. Our aim is to

build an efficient TDMA schedule of minimum length. We propose TRASA, TRaffic Aware

Slot Assignment algorithm for WSNs. Assuming a sensor network where each node has a

specific number of packets to transmit to its parent in the data gathering tree, TRASA assigns

each node a number of slots proportional to its traffic demand, and schedules its activity.

Moreover, TRASA allows the allocation of slots to nodes with heterogeneous demands (i.e

116

different numbers of packets that a node has to transmit like sensors of different types).

Consequently, the algorithm addresses the funneling effect and ensures a fair medium access.

We start this chapter by discussing the applicability of the coloring in case of heterogeneous

needs of medium access time in Section 6.1. In Section 6.2, we give a state of the art about

traffic aware time slot assignment methods in data gathering applications. Then, we define

in Section 6.3 the TSA problem and prove its NP-completeness in Section 6.4. In Section

6.5, we determine theoretical bounds on the optimal TDMA cycle length. In Section 6.6, we

describe TRASA algorithm and present an evaluation of its performance.

6.1 Adaptation of the Coloring to Traffic Demand

So far, we have studied the scheduling algorithm when nodes can aggregate data, and we have

proved that the coloring technique is an efficient method to build a TDMA schedule. The

basic idea is to sort colors determined by the strategic mode of OSERENA according to the

decreasing order, and for each color, we schedule nodes having this color. The question now is,

based on these colors, how time slots can be efficiently assigned to nodes having heterogeneous

traffic demands and when this demand may vary in time? We discuss 3 intuitive solutions and

compare their performance on the network of Figure 6.1 where each node generates only one

packet and has to forward packets of its children (integers in this figure represent the colors).

Figure 6.1: Example of a network colored via OSERENA.

6.1.1 Solution 1: Larger Slots

The first intuitive solution is to build a TDMA cycle of c superslots, where c is the total number

of colors. Besides, each superslot is composed of s slots where s is the highest traffic demand

of nodes scheduled during any superslot. Applying this solution to network of Figure 6.1,

node D has the highest subtree size (4 descendants), so what we need is a superslot of 5 slots.

The corresponding slot assignment is given by Figure 6.2 and contains 25 slots.

117

Figure 6.2: Slot assignment based on Solution 1.

We notice also that only 15 slots are busy among the 25 slots. This means that such

a solution does not ensure an optimal bandwidth use, especially when few nodes have high

traffic demand.

6.1.2 Solution 2: Heterogeneous Number of Granted Slots

A first enhancement of the first solution is to have superslots with heterogeneous sizes. Each

superslot contains a number of slots equal to the highest traffic demand of nodes scheduled

during this superslot. This leads to the scheduling depicted in Figure 6.3.

Figure 6.3: Slot assignment based on Solution 2.

This solution produces 15 slots which are all busy. This constitutes an enhancement of

Solution 1 but still not sufficient as this solution does not provide an optimal spatial reuse of

the bandwidth.

6.1.3 Solution 3: Multiple Colorings

In this solution, while there are nodes having packets to transmit, we repeat the following

operations: (1) color the nodes having data to transmit and sort these colors according to the

decreasing order, (2) match each color to one slot, (3) schedule nodes in these slots.

Applying this algorithm on the example of Figure 6.1 gives the scheduling of Figure 6.4.

118

Figure 6.4: Slot assignment based on Solution 3.

This solution produces 15 slots like Solution 2. Notice that the slots allocated to a node

are not contiguous. However, the drawback is the induced overhead of recoloring the network.

There are k coloring where k is the highest slot demand in the network.

Moreover, we compare Solution 2 and Solution 3 for the case where nodes have 1 or more

initial packets to transmit: [B:3,C:1,D:1,E:1,F:2,G:1,H:1,I:2,J:2,K:1,L:1,M:1,N:1,O:2].

Results are: 22 slots for Solution 2, and 23 slots for Solution 3. This difference can be ne-

glected. However, as nodes in Solution 3 has non contiguous slots, realizing a duty cycle

implies that they should perform more than awake/sleep switch like in Solution 1.

From the above study, we can draw the following remarks. A color is assigned to all

non interfering nodes, regardless the heterogeneity in their traffic demand. For instance, two

nodes with packet demand respectively 10 and 2 are scheduled simultaneously. Thus, in 8

slots, there is only one transmitter. That is why, mapping a color to one or multiple slots

usually may lead to slot underuse. Moreover, when the traffic varies in time, the coloring

must be updated. For these reasons, we do not perform coloring, and we design a time slot

assignment algorithm that is aware about the traffic. We first give a state of the art about

these algorithms.

6.2 State of the Art: Traffic Aware Time Slot Assignment

Despite the existence of a variety of scheduling schemes, few of them allocate a number of

slots proportional to node demand. In this section, we present a state of the art of existing

schemes classified depending on their awareness of the traffic demand. This classification is

illustrated in Figure 6.5.

◦ Protocols that do not depend on the traffic demand, or assume that nodes

aggregate all the data they have to transmit in a single time slot:

With these protocols, any node receives exactly one slot. It is the class of scheduling algorithms

already presented in Chapter 2.

◦ Traffic aware protocols:

In these protocols, the number of slots received by a node depends on its traffic demand. We

119

Figure 6.5: Taxonomy of time slot assignment techniques.

present some examples of TSA algorithms classified according to their main objective. Notice

that one algorithm may satisfy more than one objective.

1) Maximizing throughput of received data at the sink:

In [128], Gahng et al. presented Funneling-MAC to mitigate the funneling effect and boosting

application fidelity in WSNs. Funneling-MAC is hybrid, TDMA is used within a small number

of hops from the sink (called the intensity region), and CSMA/CA is used elsewhere. The

sink is responsible of the scheduling of the nodes in this intensity region. Funneling-MAC

allows the slot reuse between nodes distant more than 2 hops away.

The main goal of TreeMAC [131] is to achieve high throughput in real-time high-data-rate

WSNs. In TreeMAC, the TDMA cycle in divided into frames, and each frame is composed of

3 slots. Slots are assigned from the root to the leaves: each node assigns slots to its children

such that they do not have the same frame. This is not suitable for large-scale networks.

Further, this algorithm allows a slot reuse between nodes belonging to the same tree branch,

but not between the subtrees. Each node has a pseudo-level equal to its distance to the

sink minus 1 modulo 3. Hence, the number of slots is equal to 3(N − 1), where N is the

number of nodes. TreeMAC achieves at least one-third of the optimum throughput assuming

reliable links. From energy point of view, authors show that TreeMAC outperforms CSMA

and Funneling-MAC [128]. However, nodes in TreeMAC are assigned disjoint time slots for

transmission. This means that if the node can sleep between its transmitting slots, it should

awake up many times to transmit and receive data. The transitions between radio states are

energy-consuming, so should be reduced.

2) Minimizing latency:

ROMAC [132] is a localized MAC protocol that targets data reliability and timeliness in sen-

sor networks. Like TreeMAC, ROMAC divides the TDMA cycle into frames, each frame being

composed of three slots, and allocates slots to nodes proportionally to their traffic demand.

120

Compared to TreeMAC, ROMAC is more localized: Each node can locally determine its

frame and its time slots without relying on its parent like in TreeMAC. The frame node with

identifier i transmits its own data in the frame i, and transmits the packets of any node j in

its subtree in the jth frame. Unlike TreeMAC and Funneling-MAC, ROMAC automatically

adapts to routes changes, any node updates its set of frames every TDMA cycle. Conse-

quently, ROMAC achieves lower delivery latency than these two protocols as the network size

increases.

3) Minimizing schedule length:

Incel et al. [133] aimed at reducing the delays of data collection by minimizing the schedule

length. They studied scheduling nodes where each node generates a packet at the beginning

of the TDMA frame. In this work, only tree interference links are considered. Authors proved

that the lower bound on the schedule length is given by: (1) the maximum node degree when

packet aggregation at each intermediate node is considered, and (2) max(2nk − 1, N) where

nk is the maximum number of descendants of the sink children, otherwise. For this second

case, authors proposed Local-TimeSlotAssigment algorithm in which the sink schedules an

edge having the highest remaining number of packets. Furthermore, any parent node with an

empty buffer selects one child whose buffer is not empty at random respecting tree interfering

links. Consequently, they ensure parallel transmissions among multiple branches of the tree,

and keep the sink busy in receiving packets. In [130], authors proposed algorithms based on

coloring. Two centralized solutions are described. First, in the node-based scheduling, any

slot is shared between nodes with the same color and any other node that does not conflict

with them. Second, in the level-based scheduling, conflicts are defined between levels: the

same color is assigned to two levels if they do not contain any couple of conflicting nodes.

For each color, non conflicting nodes from the levels having this color share the same slot.

Besides other nodes that do not conflict with already scheduled nodes are scheduled simulta-

neously. This algorithm suffers from the energy waste because of the radio switches between

active/sleep states.

4) Minimizing the energy consumption:

In [134], Turau et al. proposed SPR, to schedule each path in the routing tree separately.

Indeed, SPR considers the routing tree as an overlay of the paths from each leaf to the sink.

The slots assigned to any node are the union of its slots in each path. Hence, the spatial

reuse of time slots is restricted to a common path, which makes SPR not efficient in terms of

schedule length for networks where the average number of children is high. Another example

in this category is given in [135] where the energy efficiency is achieved by reducing the num-

ber of switches between the active and sleep states.

In most applications, there is not always a single objective, but often multiple and some-

times conflicting objectives. Some examples include minimizing communication cost and

delay, minimizing energy consumption and completion time of data collection, maximizing

capacity and minimizing energy, etc. Scheduling algorithms need to address the optimal

121

trade-offs in satisfying these conflicting objectives. In our work, the primary goal is minimiz-

ing the schedule length. Other performance criteria are also taken into account. In the next

section, we will present a formal definition of the TSA problem.

6.3 The Time Slot Assignment Problem

In this section, we define the Time Slot Assignment problem, denoted TSA.

6.3.1 Assumptions

◦ A1. Data gathering applications and sink tree: In data gathering applications, a

node, called sink or gateway, is in charge of collecting data sent by all other nodes. Hence,

the typical traffic pattern is many-to-one routing and leads to a spanning tree T rooted at

the sink node.

◦ A2. Application data: In each data gathering cycle, each node except the sink has its

own data to transmit to its parent in addition to the data received from its children. Some

nodes (for example, the children of the sink), need more than one slot to transmit their data.

◦ A3. Time slot: The time slot duration must allow the transmission of at least one packet.

◦ A4. Conflicting nodes: Two nodes are said conflicting if and only if they cannot transmit

in the same time slot. For any given node u, the set of nodes conflicting with u is an input

for the time slot assignment problem.

◦ A5. No message loss and no node failure.

6.3.2 Problem Statement

The time slot assignment problem, TSA, under the assumptions introduced in Section 6.3.1,

consists in assigning slots to network nodes, such that no two conflicting nodes are scheduled

in the same slot while minimizing the schedule length. Besides, this scheduling must ensure

that each node transmits towards the sink, both its own packets and the packets generated

in its subtree. To summarize, our aim is to build a minimal valid scheduling.

Definition 11 (Valid scheduling). A scheduling is said valid if and only if:

• any node is assigned a number of slots sufficient to transmit all its traffic.

• any node is assigned a slot if and only if it has data to transmit during this slot.

• any two conflicting nodes do not transmit in the same time slot.

Definition 12 (Minimal scheduling). A valid scheduling is said minimal if and only if no

other valid scheduling has a smaller number of time slots.

In our work, we target the minimization of the number of slots in the TDMA cycle

as a primary goal because it contributes to improve the network performances. First, the

122

maximum packet delay being equal to one TDMA cycle, reducing the TDMA cycle duration

helps to meet the time constraints of packets delivery. This property is crucial for applications

with strong time constraints. Second, the throughput measured at the sink is the number of

slots granted to the children of the sink to send their packets divided by the TDMA cycle

duration in slots and multiplied by the network capacity. Decreasing the TDMA cycle by a

factor multiplies the throughput by the same factor. Third, given a TDMA cycle composed

of activity and inactivity periods, minimizing the schedule length reduces the activity period

of nodes and allows them to save more energy.

6.4 Complexity of TSA Problem

It has been proved in [129] and [130] that the TSA problem is NP-complete. In this chapter,

we generalize the study and prove that the h TSA problem is NP-complete for any positive

integer h. The problem h TSA is defined as follows.

Definition 13. h TSA consists in assigning time slots to nodes such that no two nodes that

are less than or equal to h hops away are scheduled simultaneously, while minimizing the

number of slots used.

Theorem 8. The h TSA problem, for any positive integer h ≥ 1 is NP-complete.

Proof: The decision problem of h TSA is given by: Can nodes in a graph G be assigned S

time slots (S is a positive integer) during which they can transmit their data to a sink node,

such that any two nodes that are p-hop away, with 1 ≤ p ≤ h, are not assigned the same time

slot?

To prove that the decision problem of h TSA is NP-complete, we use the knowledge that

the h-hop coloring problem in the strategic mode is NP-complete (proved in Chapter 3). We

note h Color this problem and recall that it is defined as: coloring a graph with the smallest

number of colors (a color is represented by an integer) such that any two nodes that are p-hop

away with 1 ≤ p ≤ h, do not have the same color. In addition, the color assigned to any node

is smaller than the color assigned to its parent in the data gathering tree.

We need to prove that finding a solution to h TSA is equivalent to finding a solution to h Color.

Let G be a connected, undirected graph, and T its spanning tree. Notice that the con-

struction of T can be done in polynomial time, so it does not add a high complexity. Each

node u in G has traffic demand du. Let CG be a coloring of G solving the h Color problem

and using the colors c1, c2, . . . , cmax. Let Ni be the set of nodes having the color ci. We can

build a slot assignment for nodes in G as follows. We sort the colors by decreasing order. For

each color ci, we add to the cycle a number of slots equal to the maximum traffic demand of

nodes in Ni, denoted maxdi. Then, nodes in Ni are scheduled during these slots, each one

has a number of slots equal to its traffic demand. Consequently:

123

1. This scheduling is conflict-free, nodes that are scheduled simultaneously have the same

color, and hence do not interfere.

2. The scheduling allows each node to transmit all the data it has since it is assigned a

contiguous number of slots equal to its demand. Besides, this scheduling ensures that

each parent node accesses the medium after all its children, because it has a higher color

than them, and slots are assigned to nodes having the smallest colors first.

3. The number of slots used is equal to S =
∑cmax

i=1 maxdi.

Figure 6.6 illustrates the proof. Figure 6.6(a) is an example of a colored tree, and Figure

6.6(b) is the corresponding time slot assignment.

(a) Example of colored tree. (b) The corresponding time slot assignment.

Figure 6.6: Example illustrating the TDMA cycle construction based on the coloring.

Inversely, given a scheduling of nodes in G, composed of S slots, we need to color the graph

respecting the principles of the h Color problem. We denote Ss = s1, s2, . . . , ss the sequence

of slots such that during each slot si at least one node is scheduled for the last time in the

TDMA cycle (like circled nodes in Figure 6.7). Then, for each slot si in Ss we assign the color

i to all uncolored nodes scheduled for the last time in si. Consequently, we get a number of

colors bounded by the number of slots. The same color is assigned to nodes scheduled in the

same slot, so the coloring is collision-free. Further, since the last slot of each parent cannot

be scheduled before the last slot of any of its children, each parent has a color greater than

the color of its children.

Hence the theorem.

6.5 Theoretical Bounds on the Number of Slots

In this section, we focus on theoretical lower bounds of cycle length. As we will see, these

bounds allow us to measure the distance between the number of slots in TRASA and the

optimal number of slots. We focus on three different topologies: linear, multi-linear and

tree. The two first ones are special topologies of the third one and are representative of WSNs

124

(a) The node schedule. (b) The corresponding colored tree.

Figure 6.7: Example illustrating the colors assignment based on the time slot assignment.

deployed in confined areas such as the airplane fuselage (linear) or mines with several galleries

(multi-linear).

6.5.1 Additional Assumptions

For simplicity reasons, we assume that in each time slot the transmitter sends only a single

packet. Nodes are randomly deployed in the 2-dimensional plane. Two nodes u and v are

1-hop neighbors if and only if their distance is lower than or equal to the transmission range

R. For any integer h > 1, any two nodes u and v are h-hop neighbors if and only if u is

(h− 1)-hop away from a 1-hop node of v.

In this chapter, we consider that interferences are limited to 2 hops. Consequently, we assume

that any two nodes u and v within 2-hop neighborhood from each other do not transmit in

the same time slot. Based on this assumption, we can define the label of a node.

Definition 14 (Node label). For any network node u different from the sink, we define

label(u) = (distance(u,sink)-1) modulo 3.

In line networks, the assigned labels (starting by the sink child) are respectively 0,1,2,0,1,2,etc.

It follows that only nodes having the same label can be assigned the same slot.

6.5.2 Number of Slots in Linear Networks

Theorem 9. In linear networks, a lower bound on the number of slots is Max(N−1, 3N−6),

where N is the number of nodes including the sink.

Proof: Consider a linear network with N ≥ 1 nodes, where u0 is the sink node and any

node ui is at a distance i < N from the sink. It is clear that for N = 1, 2 or 3 the theorem

is true. Now let us assume N ≥ 4. Assuming each node needs one slot to transmit its own

data, the sink needs N − 1 slots to receive data from all nodes. Besides, let u1, u2 and u3

the three closest nodes to the sink. No two nodes among these three nodes can transmit data

simultaneously. Consequently, the number of slots occupied by these nodes is the sum of the

number of packets they have to transmit, that is (N − 1) + (N − 2) + (N − 3). Hence the

theorem.

125

6.5.3 Number of Slots in Multi-line Networks

Theorem 10. In multi-line networks, a lower bound on the number of slots is Max(N − 1,

3nk − 3), where N is the number of nodes including the sink, and nk is the maximum number

of nodes in a line starting with a child of the sink (this child is not included).

Proof: The sink requires N−1 time slots to receive all the packets generated in the network.

Moreover, from Theorem 9, at least 3(nk + 1) − 6 = 3nk − 3 slots are required to transmit

data to the sink. Hence the theorem.

6.5.4 Number of Slots in Tree Networks

Theorem 11. In tree networks, a lower bound on the number of slots is Max(N −1, 2nk−1,

3nj − 3), where N is the number of nodes including the sink, nk is the maximum number of

nodes in a subtree rooted at a child of the sink and nj is the maximum depth of nodes.

Proof: The sink requires N−1 time slots to receive all the packets generated in the network.

Moreover, let us consider uk the child of the sink with the highest number of descendants.

Let nk − 1 be this number. At least nk slots are needed by uk to transmit its packets and at

least nk − 1 slots are needed by uk to receive the packets from its children. Since all these

transmissions are sequential, at least 2nk − 1 slots are needed. If now we consider the longest

line in the network. Let nj be the depth of the deepest node. According to Theorem 9, at

least 3nj − 3 slots are needed. Hence, the number of slots is at least max(N − 1, 2nk − 1,

3nj − 3).

6.6 TRASA: TRaffic-Aware Time slot Assignment

The main objective of TRASA algorithm is to achieve a time minimal scheduling while en-

suring a fair medium access where any node is granted a number of slots proportional to its

packet demand.

6.6.1 Principles

TRASA is based on the following rules:

1. Any node has a priority and a set of conflicting nodes.

2. Nodes compete for the current time slot if and only if they have data to transmit.

3. For any slot, the first scheduled node is the node having the highest priority among all

the nodes having data to transmit.

4. Any node can be scheduled in any time slot if it does not interfere with nodes already

scheduled in this slot.

126

6.6.2 Algorithm Presentation

In this section, we present a centralized version of TRASA given by Algorithm 1.

Algorithm 1 TRASA algorithm.

1: Input: a spanning tree T , where each node u has du packets to transmit and a set of

conflicting nodes Conflict(u).

2: Output: The scheduling of nodes in the TDMA cycle

3: t = 1 /* current time slot */

4: while
∑

u du do

5: N = List of nodes having data to transmit sorted according to their priority

6: u = node with the highest priority in N

7: if ”oneSlot” then

8: nbSlot = 1

9: end if

10: if ”manySlots” then

11: nbSlot = du

12: end if

13: while N 6= ∅ do

14: u=node with the highest priority in N

15: nbAssignSlot = min(du, nbSlot)

16: assign slots t to t+ nbAssignSlot− 1 to node u

17: du -= nbAssignSlot

18: dparent(u) += nbAssignSlot

19: N = N \ ({u} ∪ Conflict(u))

20: end while

21: t+ = nbSlot

22: end while

The algorithm iterates over N the set of nodes having data to transmit and sorted accord-

ing to their priority. In each iteration, the algorithm determines the set of nodes scheduled

in the current time slot starting at t, and the number of slots allocated to each of them. The

node u with the highest priority is scheduled first (line 6). Further, any other node in the

sorted set N is given the same time slot if and only if it does not conflict with nodes already

scheduled in this slot (see the while loop of line 13). TRASA ends when all packets generated

in the network are transmitted to the sink.

Two versions of TRASA are simulated. Indeed, at any iteration, when a node is scheduled,

it is allocated either:

◦ only one time slot: this version is denoted oneSlot ;

◦ as many time slots as required by the node with the highest priority: this version is denoted

127

manySlots. Intuitively, the manySlots version allows a node to transmit its packets succes-

sively, avoiding the energy and time wasted in switching between the sleep and the awake

states.

Concerning the definition of the priority, we evaluate TRASA for two heuristics:

◦ prio=descNb: The priority of any node is given by its number of descendants. Intuitively,

a node with a high number of descendants will have a high number of packets to transmit.

◦ prio=remPckt*parentDem: remPckt means the number of packets the node has in its buffer

at the current iteration. parentDem is the total number of packets the parent of the node has

to receive in a cycle. The idea behind this heuristic is to reduce the number of buffered packets

by favoring nodes having packets to transmit to a parent with a high number of descendants.

6.6.3 Example of TRASA Slot Assignment

Figure 6.8 illustrates an example of TRASA coloring applied on the tree depicted in Fig-

ure 6.8(a). Both manySlots and oneSlot version are applied. We notice that, for this example,

the number of time slots is the same for both versions.

(a) Example of a graph. (b) TRASA manySlots version. (c) TRASA oneSlot version.

Figure 6.8: Example of TDMA schedule obtained by TRASA.

6.6.4 Properties: Bounds on the Number of Slots

In this section, we present the theoretical properties of TRASA with prio = descNb, assuming

that:

A6. Each source node generates exactly one packet per TDMA cycle.

A7. For any node u, the only nodes conflicting with u are its parent, its children, its grand-

parent, its brothers and its grandchildren.

6.6.4.1 TRASA for Linear Networks

Property 8. Applied to a linear network of N nodes, TRASA schedules these nodes according

to the following sequence of labels: (010)-(210)*. That is: (1) All nodes with label 0 are

scheduled simultaneously, followed by all nodes with label 1, etc. (2) The sequence (210) is

repeated a number of times equal to N div 3, where div is the integer division operator.

128

Proof: In TRASA, nodes are scheduled in the order of their number of descendants. Hence,

all nodes with label 0 do not conflict according to assumptions A2, they are assigned the

first time slot. Then, nodes with label 1 have the second highest priority and still have their

own packet to transmit, they are assigned the second time slot and transmit their packet to

their parent which has the label 0 by definition. Consequently, nodes with label 0 have a

packet to transmit, they will occupy the next time slot. After that, nodes with label 2 have

the highest priority among nodes having data to transmit, they are scheduled in the fourth

slot. After this transmission, the parents of these nodes, which have label 1 have a packet

to transmit, since they have the highest priority, they occupy the fifth time slot. Then, their

parents having label 0 have a packet to transmit, since they have the highest priority, they

occupy the sixth time slot. In that way, data progress towards the sink. This last sequence

210 is repeated until all nodes have transmitted all the data they have. It is clear that the

sequence 210 is repeated a number of times equal to the number of nodes with label 2 and

hence to N div 3.

Theorem 12. TRASA ensures a time optimal scheduling using Max(N − 1, 3N − 6) slots

for any linear network of N nodes.

Proof: Consider a linear network of N nodes, where u1, u2, u3 are the three closest nodes to

the sink u0. From property 8, each time slot is occupied by one of these nodes. Consequently,

any other node ui can be scheduled with one of these nodes depending on its label. It means

that the number of slots in the TDMA cycle is equal to the number of slots required by u1,

u2 and u3 which is (N −1)+(N −2)+(N −3) = 3N −6. We have proved in Theorem 9, that

any valid scheduling requires at least Max(N − 1, 3N − 6) slots. As a consequence, TRASA

that reaches this lower bound is optimal for linear networks.

6.6.4.2 TRASA for Multi-line Networks

Property 9. For any multiline network, let ui be the child of the sink with the highest number

of descendants denoted ni, TRASA requires at least Max(N − 1, 3ni − 3) slots if there is no

other child of the sink with the same number of descendants ni and Max(N − 1, 3ni − 2)

otherwise.

Proof: Let ui be the child of the sink with the highest number of descendants denoted ni. Let

uj be the child of the sink with the second highest number of descendants denoted nj . Since

nodes ui and uj are ‘brothers’ and ui has a priority higher than uj , ui will occupy the first slot

in parallel with any descendant of ui having label 0 and any descendant of uj having label 1.

The second slot will be assigned to any descendant of ui having label 1 and any descendant of

uj with label 0, etc. It results that the TDMA cycle has the label sequence (010)-(210)* for

the descendants of ui and the label sequence (102)-(012)* for the descendants of uj . Similarly

to Property 8, the sequence (012) relative to uj is repeated nj div 3 times. Consequently:

◦ If the two branches contain the same number of nodes, the node uj will send its last packet

129

after the node ui and hence, one additional slot to 3nj − 3 is required.

◦ If ni > nj , all descendants of uj will be able to share slots with those used by the descendants

of ui.

Theorem 13. Applied to a multi-line network, the number of slots n used by TRASA verifies:

n ≥ Max(3nk − 3, N − 1), where N is the total number of nodes including the sink and nk is

the highest number of descendants of the sink children.

Proof: Assuming each node has only one packet to transmit and hence requires one time

slot, at least N − 1 slots are needed by the sink to receive data from these nodes. From

Theorem 12, if we consider the child of the sink with the highest number of descendants nk,

3(nk + 1)− 6 slots are needed to schedule nodes on this branch.

Notice here that since the children of the sink cannot share the same slot, the cycle length is

strictly higher than this bound in some scenarios as explained in Property 9.

6.6.5 Performance Evaluation

6.6.5.1 Comparison with the Optimal Results

In [136], we worked with colleagues who provided a formulation of TSA problem as an Integer

Linear Programming (ILP) optimization problem. Then, based on the proposed model, they

obtained an optimal time slot assignment using the GLPK solver (GNU Linear Programming

Kit) [137]. However, for small problem sizes (few nodes, each source generates a single packet),

results are obtained within an acceptable duration of time. Nevertheless, when the WSN

becomes large and even for moderate network sizes (e.g. 30 nodes) and simple topologies (e.g

multiline networks), the time required to compute the optimal solution can reach one day.

Figure 6.9 illustrates the number of slots and the maximum size of buffers obtained by

the model and TRASA with its two heuristics prio=descNb and prio=remPckt*parentDem.

The caption of each subfigure follows the pattern {Sa} {SbBb} {ScBc}, where Sa stands for

the optimal number of slots, Sb and Bb (Sc and Bc respectively) are the number of slots

and the maximum number of buffers obtained by TRASA with prio = descNb (prio =

remPckt∗parentDem respectively). Notice that the TRASA algorithm provides the optimal

number of slots in all these topologies.

Besides, for tree topologies, we have proved in Theorem 11 that the lower bound on the

number of slots is the maximum of three terms. For each of them, we can find a topology such

that TRASA reaches this term. Hence, TRASA is optimal on these topologies. For example,

with a branch factor of 3 and 20 nodes, we get 2nk − 1= 2*11-1=21 slots, which is optimal

according to Theorem 11. For 50 nodes and a branch factor of 3, we get 49=N − 1 slots,

which is optimal according to Theorem 11. For 10 nodes where a sink child is the head of a

line with 4 nodes and the other sink child has 3 children, TRASA achieves the optimal value

by reaching the lower bound of 3nj − 3= 3*5-3=12 slots.

130

(a) {S10} {S10B2} {S10B2} (b) {S9} {S9B2} {S9B2}

(c)

{S13} {S13B3} {S13B3}

(d) {S13} {S13B3} {S13B2}

Figure 6.9: Examples of tree and multi-line topologies

6.6.5.2 Simulation Results

We developed a Java based simulation tool and performed simulations with the two versions

and two heuristics of TRASA. We compare the TRASA performance with a slot assignment

where the priority is given by the number of remaining packets, denoted remPckt (i.e the

number of packets present in the buffer of the node considered). We generate random graphs

deployed in a given area (100mx100m), where the number of nodes ranges from 20 to 100. We

build trees where the maximum number of children is 3. Unlike the previous section where

the only existing links are those in the tree, we assume that a link exists between two nodes

if and only if their distance is less than or equal to the radio range (30m). Consequently,

additional links to the tree links are considered. In the following, each result is an average of

20 runs for small topologies and 50 runs for large topologies.

We first evaluate the total number of slots for the two heuristics of TRASA (see Fig-

ure 6.10). Both heuristics of TRASA give the same number of slots, and outperform the

heuristic remPckt. This result justifies the heuristic remPckt ∗ parentDem that takes into

account not only the number of remaining packets but also the number of packets received

by the parent. Further, the slot number is not impacted by the number of slots assigned to

any node in each iteration: OneSlot and manySlots versions of TRASA use almost the same

131

Figure 6.10: The number of slots.

schedule length.

Simulation results show that OneSlot+remPckt∗parentDem ensures the smallest buffer

size as illustrated in Figure 6.11(a) which is explained by the pipeline effect favored by this

heuristic. The opposite of one might think, assigning the highest priority to a node having

the highest number of remaining packets does not accelerate the buffer release, as illustrated

by the result of manySlots + remPckt. We define the average data delivery delay as the

average number of slots that one packet takes to reach the sink once it is transmitted by

its source. Figure 6.11(b) shows that TRASA achieves the smallest delays for the heuristic

manySlots+descNb. This is explained by the fact that if the priority is given by the number

of descendants, nodes close to the sink have the highest priority, and hence the probability

that the sink receives data in a time slot is high, which reduces the data gathering delays.

In addition to maximizing the sleep duration, reducing the radio state switches contributes

also in energy saving as these switches are energy consuming. Figure 6.11(c) shows that, as

expected, the manySlots version allows to reduce the number of radio state switches since

nodes are allowed to send their packets in consecutive time slots.

132

(a) Maximum buffer size. (b) Average delay.

(c) Number of radio switches.

Figure 6.11: TRASA performance.

Figure 6.12: The number of iterations.

133

Similarly, the number of iterations is reduced with the manySlots version as illustrated

in Figure 6.12.

6.7 Conclusion

In this chapter, we focused on data gathering applications which are a typical type of ap-

plications supported by WSNs. Assuming a slotted medium access, we investigated the raw

convergecast problem looking for a minimal schedule length. A smaller schedule length im-

proves the end-to-end delays and reduces the energy consumption. We proved that the h-TSA

problem is NP-complete. We focus more particularly on specific topologies such as linear or

multi-linear which are well adapted to confined environments and compute lower bounds for

the time slot assignment problem. We proposed a traffic aware time slot assignment algorithm

called TRASA. We proved that TRASA is optimal for linear topologies. Furthermore, apply-

ing TRASA to particular different tree topologies, we show that the optimal schedule length

is reached. TRASA heuristics outperform solutions only based on the number of remaining

packets. As a perspective for this work, it is judicious to dynamically adapt the schedule of

nodes to occasional traffic demands, that is when some or many nodes require more time slots

for a specific number of cycles. Another perspective would be to design a distributed version

of TRASA.

134

Chapter 7

Conclusion and Perspectives

7.1 Conclusion

Sensor networks offer a powerful combination of distributed sensing, computing and communi-

cation. They support countless applications and, at the same time, pose numerous challenges

due to their peculiarities. Primary issue is the power scarcity to which battery-operated sen-

sors are typically subject. Thus, optimizing energy consumption and bandwidth use

constituted the main objectives of our work. Realizing these objectives required overcoming

practical problems that we faced in the OCARI project.

Among the many techniques identified in the literature, we focused on node activity

scheduling that allocates time slot to nodes. Energy efficiency is achieved by avoiding colli-

sions and allowing nodes to sleep as long as possible. To achieve this objective, the adopted

strategy in our work is to design auto-adaptive protocols and algorithms. Indeed, to

obtain high performance degree, any designed protocol cannot neglect the type of the appli-

cation, the unreliable nature of wireless links, etc. In our work, this adaptivity that can be

obtained by cross layer concerns:

• The type of the application and communications supported. To schedule the

nodes activities, we use the graph coloring technique where a color is shared between non

interfering nodes and mapped to a time slot. We define two modes of coloring: the first

for the general applications and the second for data gathering applications. We proved

that being aware of the types of communications is very beneficial: algorithms pay only

what the application needs. More precisely, a careful study of possible interference cases

taking into account the types of communications supported allows us to improve the

parallelism in the transmissions. Thus, less colors are needed and data transmission

delays may be decreased.

• The density of nodes. Scalability of protocols running on dense WSNs is challenging

because of the limited memory and bandwidth. To cope with it, we designed OSER-

ENA, a scheduling algorithm based on node coloring and adapted to dense networks.

135

OSERENA is scalable as it uses a message whose size depends neither on the density

nor on the number of nodes.

• The interferences and the unreliability are characteristics of wireless communi-

cations. In our work, interference cases regarding the communications supported are

finely determined. That is why, the coloring problem definition is generalized and has as

parameter the maximum distance between two interfering nodes. This makes our work

more general than previous works which made the assumption: interferences are limited

to 2 hops. Besides, to deal with the unreliable wireless links, we adapted the known

coloring algorithm SERENA to such environments and enhanced its robustness in case

of data gathering applications. Therefore, after topology changes, nodes can keep their

initial colors without creating interferences: the coloring remains valid.

• The regularity of the network topology. Focusing on grid topologies, we deter-

mined bounds on the optimal number of colors. Furthermore, we developed a coloring

method VCM that takes advantage of the regularity of these topologies to have an

optimal periodic coloring.

• The type of the traffic. Nodes do not have the same traffic to transmit. For instance,

nodes close to the sink have much more traffic to relay than others. We generalized our

study considering that nodes require different numbers of slots. As the best of our

knowledge, few research papers adopt this assumption. The contribution was the traffic

aware time slot assignment TRASA that grants to each node a medium access time

proportional to its demand.

7.2 Perspectives

With regard to the contributions of this thesis, we can identify the following perspectives:

1. Adapting OSERENA and TRASA to occasional traffic demands of nodes. This oc-

casional demand may occur if two possible scenarios: (1) alarms that are in general

prioritized, but should not prevent the transmissions of periodic traffic, (2) when traffic

periodicities are longer than the whole cycle length.

2. Adapting OSERENA and TRASA to multichannel assignment protocols. Multichannel

communication mitigates interferences, jamming and congestion. It also increases the

network throughput. In addition, the current generation of wireless sensor motes pro-

vides multiple channels available for use. For instance, Micaz motes can communicate

on multiple frequencies as specified in the IEEE 802.15.4 standard. So, how to extend

the results of our thesis to fit this context? We can consider two possible problems:

• First problem: How to allocate frequencies to wireless sensors? We can use OSER-

ENA in case of homogeneous traffic demand or via TRASA otherwise. Intuitively,

136

this adaptation would be straightforward: Each frequency is mapped to one time

slot and nodes having the same color transmit at the same frequency.

However, the difficulties are: (1) one channel can be preferred to another because

of interferences external to the sensor network, (2) we have a predetermined num-

ber of channels, while the TDMA cycle in the slot allocation problem can be not

strictly defined by the application. Thus the challenging objective is: given a num-

ber of channels, efficiently schedule nodes on these channels while maximizing the

network throughput for instance.

• Second problem: How to schedule transmissions of wireless sensors whose trans-

mission frequencies are already assigned? We could adapt TRASA and OSERENA

to allocate time slots to these nodes. Any node should be able to receive data from

its neighbors that transmit in another frequencies. So, how to schedule this node

activity?

3. Exploiting results of coloring grids in random topologies coloring. This work is in

progress and the methodology followed starts by adapting VCM to coloring grids of

cells. More precisely, a cell is assimilated to one grid node in VCM. Then, we design a

method to color the nodes inside one cell.

4. Extending the energy efficient routing protocol EOLSR. This protocol was designed for

data gathering applications, where routes are built from any node to a sink node. We

plan to extend this work as follows:

• Allow any node to communicate with any other node. A specific case can be consid-

ered where the sink can communicate in point-to-point with any “pollable node”.

• Supporting multiple sinks. Having multiple sinks can be imposed by the application

in to cases: first, when sensed data are of different types for example; second, to

enhance robustness.

5. For the OCARI project, we could improve the adaptivity of OSERENA and EOLSR,

mainly by tuning control messages periodicity according to the applications requirements

and the wireless sensors capacities.

137

138

List of Publications

International Journals

1. Ichrak Amdouni, Pascale Minet, Cédric Adjih, OSERENA: a Coloring Algorithm Opti-

mized for Dense Wireless Networks, to appear in the International Journal of Networked

and Distributed Computing, IJNDC 2012.

2. Saoucène Mahfoudh, Pascale Minet, Ichrak Amdouni, Energy Efficient Routing and

Node Activity Scheduling in the OCARI Wireless Sensor Network, Journal Future In-

ternet vol. 2, pp. 308-340, August 2010.

3. Saoucène Mahfoudh, Gerard Chalhoub, Pascale Minet, Michel Misson, Ichrak Amdouni,

Node Coloring and Color Conflict Detection in Wireless Sensor Networks. Journal

Future Internet, vol. 2, pp. 469-504, October 2010.

International conferences

1. Cédric Adjih, Ichrak Amdouni, Pascale Minet, VCM: The Vector-Based Coloring Method

for Grid Wireless Ad Hoc and Sensor Networks, MSWIM 2012, Paphos, Cyprus, Octo-

ber 21-25, 2012.

2. Ichrak Amdouni, Ridha Soua, Erwan Livolant, Pascale Minet, Delay Optimized Time

slot Assignment for Data Gathering Applications in wireless Sensor Networks, ICWCUCA

2012, Clermont-Ferrand, France, August 28-30, 2012.

3. Ichrak Amdouni, Pascale Minet, TRASA: TRaffic Aware Slot Assignment Algorithm in

Wireless Sensor Networks, ICCIT 2012, Hammamet, Tunisia, June 26-28, 2012.

4. Ichrak Amdouni, Pascale Minet, Cédric Adjih, Node coloring in wireless networks: com-

plexity results and grid coloring, WMNC 2011, Toulouse, France, October 26-28, 2011.

Research Reports

1. Ichrak Amdouni, Cédric Adjih, Pascale Minet, On the coloring of Grid Wireless Sensor

Networks: the Vector-Based Coloring Method, Inria Research Report 7756, October

2011.

139

2. Ichrak Amdouni, Pascale Minet, Cédric Adjih, Oserena an Optimized Coloring Algo-

rithm for Dense or Large Scale Wireless Networks, Inria Research Report 7785, Novem-

ber 2011.

3. Ichrak Amdouni, Pascale Minet, Cédric Adjih, Node coloring for dense wireless sensor

networks, Inria Research Report 7588, March 2011.

140

Bibliography

[1] Anastasi G.; Conti M.; Di Francesco M.; Passarella A., Energy conservation in wireless

sensor networks: a survey, Journal Ad Hoc Networks, vol. 7, pp. 537-568, May 2009.

[2] Xing G.; Sha M.; Hackmann G.; Klues K.; Chipara O.; Lu C., Towards unified radio

power management for wireless sensor networks, Journal Wireless Communications

and Mobile Computing, vol. 9, pp. 313-323, 2009.

[3] An estimation of sensor energy consumption, Journal Progress In Electromagnetics

Research, vol. 12, pp. 259-295, 2009.

[4] Heinzelman W.R.; Kulik J.; Balakrishnan H., Adaptive protocols for information dis-

semination in wireless sensor networks, The 5th ACM/IEEE conference on Mobile

computing and networking, MobiCom’99, Seattle, Washington, United States, Au-

gust 1999.

[5] Intanagonwiwat C.; Govindan R.; Estrin D.; Heidemann J., Silva F., Directed diffu-

sion for wireless sensor networking, Journal IEEE/ACM Transactions on Networking

(TON) archive, vol. 11, pp. 2-16, February 2003.

[6] Braginsky D.; Estrin D., Rumor routing algorthim for sensor networks, 1st ACM

international workshop on Wireless sensor networks and applications, WSNA’02, At-

lanta, Georgia, USA, September 2002.

[7] Yong Y.; Gehrke J., The cougar approach to in-network query processing in sensor

networks, SIGMOD, vol. 31, pp. 9-18, September 2002.

[8] Chu M.; Haussecker H.; Zhao F., Scalable information-driven sensor querying and

routing for ad hoc heterogeneous sensor networks, International Journal of High Per-

formance Computing Applications, vol. 16, 2002.

[9] Sadagopan N.; Krishnamachari B.; Helmy A., The ACQUIRE Mechanism for Ef-

ficient Querying in Sensor Networks, In IEEE International Workshop on Sensor

Network Protocols and Applications, SNPA03, Anchorage, AK, May 2003.

[10] Heinzelman W.; Chandrakasan A.; Balakrishnan H.; Energy-efficient communica-

tion protocol for wireless sensor networks, International Conference System Sciences,

Hawaii, January 2000.

141

[11] Loscri V.; Morabito G.; Marano S., A Two-Level Hierarchy for Low-Energy Adaptive

Clustering Hierarchy, The IEEE 62nd Semi-annual Vehicular Technology Conference,

Dallas, Texas, USA, September 2005.

[12] Ye M.; Li C.; Chen G.; Wu J.; Ye M., EECS: An energy efficient clustering scheme

in wireless sensor networks, The IEEE International Performance Computing and

Communications Conference, IPCCC 2005, Phoenix, Arizona, April 2005.

[13] Lindsey S.; Raghavendra C.S., PEGASIS: power efficient gathering in sensor infor-

mation systems, The IEEE Aerospace Conference, Big Sky, Montana, March 2002.

[14] Manjeshwar A.; Dharma P. A., TEEN: A Routing Protocol for Enhanced Efficiency in

Wireless Sensor Networks, The 15th International Parallel & Distributed Processing

Symposium, IPDPS ’01, Washington, DC, USA, April 2001.

[15] Manjeshwar A.; Dharma P. A., APTEEN: A Hybrid Protocol for Efficient Routing

and Comprehensive Information Retrieval in Wireless Sensor Networks, The 16th In-

ternational Parallel and Distributed Processing Symposium, IPDPS’02, Washington,

DC, USA, April 2002.

[16] Gautam N.; Lee W.; and Pyun J., Track-sector clustering for energy efficient routing

in wireless sensor networks. The 9th IEEE International Conference on Computer

and Information Technology, Xiamen, China, October 2009.

[17] Ming L.; Jiannong C.; Guihai C.; Xiaomin W., An Energy-Aware Routing Protocol

in Wireless Sensor Networks, Sensors 2009, vol. 9, pp. 445-462, January 2009.

[18] Yu Y.; Govindan R.; Estrin D., Geographical and Energy Aware Routing: A Recursive

Data Dissemination Protocol for Wireless Sensor Networks, UCLA Computer Science

Department UCLA-CSD TR-01-0023, May 2001.

[19] Xu Y.; Heidemann J.; Estrin D., Geography-informed Energy Conservation for Ad-

hoc Routing, ACM MOBICOM 2001, Rome, Italy, July 2001.

[20] Basagni S.; Chlamtac I.; Syrotiuk V.; Woodward B., A Distance routing effect algo-

rithm for mobility (DREAM), MobiCom 1998, TX, USA, October 1998.

[21] Chen B.; Jamieson K.; Balakrishnan H.; Morris R., SPAN: an energy-efficient co-

ordination algorithm for topology maintenance in ad hoc wireless networks, Mobi-

Com 2001, Rome, Italy, July 2001.

[22] Hea T.; Stankovica J.A.; Lub C.; Abdelzahera T., SPEED: A Stateless Protocol

for Real-Time Communication in Sensor Networks, International Conference on Dis-

tributed Computing Systems, ICDCS 2003, Providence, Rhode Island, USA, May

2003.

142

[23] Luo J.; Hubaux J.P., Joint mobility and routing for lifetime elongation in wireless

sensor networks, The 24th IEEE INFOCOM, Miami, USA, March 2005.

[24] Chatzigiannakis I.; Kinalis A.; Nikoletseas S., Sink mobility protocols for data collec-

tion in wireless sensor networks, The 4th ACM international workshop on Mobility

management and wireless access, MobiWac’06, Terromolinos, Spain, October 2006.

[25] Shah R.C; Roy S.; Jain S., Data MULEs: modeling and analysis of a three-tier

architecture for sparse sensor networks, Journal Ad Hoc Networks, vol. 1, pp. 30-41,

May 2003.

[26] Kee-Young S.; Junkeun S.; JinWon K.; Misun Y.; Pyeong S.M., REAR: Reliable

Energy Aware Routing Protocol for Wireless Sensor Networks, The 9th International

Conference on Advanced Communication Technology, February 2007.

[27] Chandane M.M; Bhirud S.G; Bonde S.V, Distributed Energy Aware Routing Protocol

for Wireless Sensor Network, Journal of Computer Applications, vol. 34, pp. 6-11,

November 2011.

[28] Senouci S. M.; Pujolle G., Energy efficient routing in wireless ad hoc networks, 2004

IEEE International Conference on Communications ICC’04, Paris, France, June 2004.

[29] Scott K.; Bambos N., Routing and Channel Assignment for Low Power Transmission

in PCS, the 5th IEEE International Conference on Universal Personal Communica-

tions, Cambridge, MA, USA, September 1996.

[30] Mahfoudh S.; Minet P., Eolsr: an Energy Efficient Routing Protocol in Wireless Ad

Hoc and Sensor Networks, Journal of Interconnection Networks JOIN’08, vol. 9, pp.

389-408, December 2008.

[31] Jain S.; Kaushik P.; Jyoti S., Energy Efficient Maximum Lifetime routing for wireless

Sensor Network, Journal Of Advanced Smart Sensor Network Systems, IJASSN, vol.

2, January 2012.

[32] Wang W.S.; O’Keeffe R.; Wang N.; Hayes M.; O’Flynn B.; O’Mathuna C., Practical

wireless sensor networks power consumption metrics for building energy management

applications, The 23rd European Conference Forum Bauinformatik 2011, Construc-

tion Informatics, Cork, Ireland, September 2011.

[33] Chen Y.P.; Liestman A.L.; Jiangchuan L., Energy-Efficient Data Aggregation Hier-

archy for Wireless Sensor Networks, The 2nd International Conference on Quality

of Service in Heterogeneous Wired/Wireless Networks, Lake Buena Vista, FL, USA,

August 2005.

143

[34] Kuo T.W.; Tsai M.J., On the construction of data aggregation tree with minimum

energy cost in wireless sensor networks: NP-completeness and approximation algo-

rithms, INFOCOM 2012, Orlando, Florida USA, March 2012.

[35] Ding M.; Cheng X.; Xue G., Aggregation Tree Construction in Sensor Networks, The

58th IEEE Vehicular Technology Conference, Orlando, Florida, USA, October 2003.

[36] Lee M.; Wong V.W.S., An Energy-Aware Spanning Tree Algorithm for data aggrega-

tion in wireless sensor networks, IEEE PacRim 2005, Victoria, BC, Canada, August

2005.

[37] Eskandari Z.; Yaghmaee M.H.; Mohajerzadeh, A.H., Energy Efficient Spanning Tree

for Data Aggregation in Wireless Sensor Networks, The 17th International Conference

on Computer Communications and Networks, ICCCN’08, St Thomas U.S. Virgin

Islands, August 2008.

[38] Fei H.; Xiaojun C.; Carter M., Optimized Scheduling for Data Aggregation in Wireless

Sensor Networks, The International Conference on Information Technology: Coding

and Computing, ITCC’05, Las Vegas, Nevada, USA, April 2005.

[39] Majumder K.; Sarkar S.K., Clustered Chain based Power Aware Routing (CCPAR)

Scheme for Wireless Sensor Networks, International Journal on Computer Science

and Engineering, IJCSE, vol. 2, pp. 2953-2963, 2010.

[40] Zhuang Y.; Pan J.; Wu G., Energy-Optimal Grid-Based Clustering in Wireless Mi-

crosensor Networks, IEEE ICDCS Workshop on Wireless Ad hoc and Sensor Net-

working (WWASN), 2009. The 29th IEEE International Conference on Distributed

Computing Systems Workshops, ICDCSW’09, Montreal, Quebec, Canada, June 2009.

[41] Yu L.; Wang N.; Zhang W.; Zheng W., GROUP: A Grid-Clustering Routing Protocol

for Wireless Sensor Networks, Wireless Communications, Networking and Mobile

Computing, WiCOM’06, Wuhan City, China, September 2006.

[42] Wu J.; and Li H., On calculating connected dominating set for efficient routing in

ad hoc wireless networks, The 3rd workshop on Discrete algorithms and methods

for mobile computing and communications, DIALM’99, Seattle, Washington, United

State, August 1999.

[43] Garey M.R.; Johnson D. S., Computers and Intractability: A Guide to the Theory of

NP-Completeness, W. H. Freeman & Co. 1979.

[44] Adjih C.; Clausen T.; Jacquet P.; Laouiti A.; Minet P.; Muhlethaler P.; Qayyum A.;

Viennot L., Optimized Link State Routing Protocol, RFC 3626, IETF, October 2003.

144

[45] Clausen T; Herberg U., Comparative study of RPL-enabled optimized broadcast in

Wireless Sensor Networks, The 6th Conference on Intelligent Sensors, Sensor Net-

works and Information Processing, ISSIP, Brisbane, Australia, December 2010.

[46] Winter T.; Thubert P.; Brandt A.; Hui J.; Kelsey R.; Levis P.; Pister K.;, Struik R.;

Vasseur JP.; Alexander R., RPL: IPv6 Routing Protocol for Low power and Lossy

Networks, RC 6550, IETF, June 2010.

[47] Sze-Yao N.; Yu-Chee T.; Yuh-Shyan C.; Sheu, Jang-Ping, The Broadcast Storm

Problem in a Mobile Ad Hoc Network, The 5th annual ACM/IEEE international

conference on Mobile computing and networking, MobiCom ’99, Seattle, Washington,

United States, August 1999.

[48] Haa Z.; Halpern J.Y.; Li L., Gossip-Based Ad Hoc Routing, Journal of IEEE/ACM

Transactions on Networking (TON), vol. 14, pp. 479-491, June 2009.

[49] Levis P.; Clausen T.; Hui J.; Gnawalli O.; Ko J., The Trickle Algorithm, RFC 6206,

MARS 2011., http://tools.ietf.org/html/rfc6206

[50] Pei G.; Gerla M.; Chen T.W., Fisheye state routing in mobile ad hoc networks, The

ICDCS Workshops, Taipei, Taiwan, April 2000.

[51] Nguyen D.; Minet P., Scalability of the OLSR Protocol with the Fish Eye Extension,

The 6th international Conference on Networking, ICN’07, Sainte-Luce, Martinique,

April 2007.

[52] Cardei M.; Du D., Improving wireless sensor network lifetime through power aware

organization, ACM Journal of Wireless Networks, May 2005.

[53] Cardei M.; Thai M.; Li Y.; Wu W., Energy-efficient target coverage in wireless sensor

networks, IEEE INFOCOM 2005, Miami, Florida, March 2005.

[54] Carle J.; Simplot-Ryl D., Energy-Efficient Area Monitoring for Sensor Networks,

Computer, vol. 37, pp. 40-46, February, 2004.

[55] Ye F.; Zhong G.; Lu S.; Zhang L., A Robust Energy Conserving Protocol for Long-

lived Sensor Networks, The 23rd International Conference on Distributed Computing

Systems, ICDCS’03, Providence, RI, USA, May 2003.

[56] Cho J.; Kim G.; Kwon T.; Choi Y., A Distributed Node Scheduling Protocol Consid-

ering Sensing Coverage in Wireless Sensor Networks, The 65th Vehicular Technology

Conference, VTC’07, Dublin, Ireland, April 2007.

[57] Ye W.; Heidmann J.; Estrin D., An Energy-Efficient MAC Protocol for Wireless

Sensor Networks, IEEE INFOCOM, New York, USA, June 2002.

145

[58] Dam T. V.; Langendoen K., An adaptive energy-efficient MAC protocol for wireless

sensor networks, ACM SenSys’03, November 2003.

[59] Lu G.; Krishnamachari B.; Raghavendra C., An Adaptive Energy-Efficient and

Low-Latency MAC for Data Gathering in Wireless Sensor Networks, Parallel and

Distributed Processing Symposium, April 2004.

[60] Lu G.; Krishnamachari B.; Raghavendra C., O-MAC: An Organized Energy-Aware

MAC Protocol for Wireless Sensor Networks, IEEE ICC, Glasgow, UK, June 2007.

[61] Rajendran V.; Obraczka K.; Garcia-Luna-Aceves J.J., Energy-efficient, collision-free

medium access control for wireless sensor networks, Sensys’03, Los Angeles, California

November 2003.

[62] Rajendran V.; Garcia-Luna-Aceves J.J.; Obraczka K., Energy-efficient, application-

aware medium access for sensor networks, IEEE MASS 2005, Washington, November

2005.

[63] Winnie L.L.; Amitava D.; Rachel C.O., FlexiTP: A Flexible Schedule-Based TDMA

Protocol for Fault-Tolerant and Energy-Efficient Wireless Sensor Networks, IEEE

Transactions on Parallel and Distributed Systems, vol. 19, pp. 851-864, June 2008.

[64] Gobriel S.; Mosse D.; Cleric R., TDMA-ASAP: sensor network TDMA scheduling

with adaptive slot stealing and parallelism, ICDCS 2009, Montreal, Canada, June

2009.

[65] Rhee I.; Warrier I.; Aia M.; Min J., Z-MAC: a hybrid MAC for wireless sensor

networks, SenSys’05, San Diego, California, November 2005.

[66] Rhee I.; Warrier A.; Xu L., Randomized dining philosophers to TDMA scheduling in

wireless sensor networks, Technical Report TR-2005-21, Dept of Computer Science,

North Carolina State University, April 2005.

[67] Minet P.; Mahfoudh S., SERENA: SchEduling RoutEr Nodes Activity in wireless ad

hoc and sensor networks, IWCMC 2008, IEEE International Wireless Communica-

tions and Mobile Computing Conference, Crete Island, Greece, August 2008.

[68] Ingelrest F.; Simplot-Ryl D.; Stojmenovic I., Optimal Transmission Radius for En-

ergy Efficient Broadcasting Protocols in Ad Hoc and Sensor Networks, In IEEE Trans-

actions on Parallel and Distributed Systems, vol. 17, pp. 536-547, June 2006.

[69] De-yun G.; Lin-juan Z.; Hwang-cheng W., Energy saving with node sleep and power

control mechanisms for wireless sensor networks, The Journal of China Universities

of Posts and Telecommunications, vol. 18, pp. 49-59, February 2011.

146

[70] Correia L. H.A.; Macedo D.F.; Dos Santos A.L.; Loureiro A.A.F.; Nogueira J.M.S.,

Transmission power control techniques for wireless sensor networks, In journal Com-

puter Networks, vol. 51, pp. 4765-4779, December 2007.

[71] Zayane M. A.; Dhaou R.; Beylot A.L., Routing and Power Adaptation for Mostly-on

Wireless Sensor Network Applications, IFIP Wireless Days, Dublin, Ireland, Novem-

ber 21-23, 2012.

[72] West D. B., Introduction to Graph Theory, 2nd edition Prentice Hall, 2001.

[73] Johansson O., Simple distributed (∆+1) -coloring of graphs, Information processing

Letters, 70, 1999.

[74] Finoccho I.; Panconesi A.; Silvestri R., Experimental analysis of simple distributed

vertex coloring algorithms, SODA 2002, San francisco, California, January 2002.

[75] Busch C.; Magdon-Ismail M.; Sivrikaya F.; Yener B., Contention-free MAC protocols

for wireless sensor networks, DISC 2004, Amsterdam, Netherlands, October 2004.

[76] Brelaz D., New methods to color the vertices of a graph, Communications of the

ACM, 22(4), 1979.

[77] Hansen J.; Kubale M.; Kuszner L.; Nadolski A., Distributed largest-first algorithm

for graph coloring, EURO-PAR 2004, Dresden, Germany, August 2004.

[78] Glover F., Tabu search-part I, ORSA Journal on Computing, vol. 1, pp. 190-205,

1989.

[79] Bermond J.C.; Havet F.;Huc F.; Linhares-Sales C., Improper colouring of weighted

grid and hexagonal graphs, Discrete Mathematics, Algorithms and Applications, vol.

2, pp. 395-411, 2010.

[80] Cargiannis I.; Fishkin A.; Kaklamanis C.; Papaioannou E., A tight bound for online

coloring of disk graphs, Theoretical Computer Science, 2007.

[81] Kierstead H. A.; Qin J., Coloring interval graphs with First-Fit, Discrete Math,

vol. 144, pp. 47-57, September 1995.

[82] Vizing V., On an estimate of the chromatic class of a p-graph, Diskret. Analiz., vol. 3,

pp. 23-30, 1964.

[83] Shanon C.E, A theorem on coloring the lines of a network, Journal Maths. Physics,

vol. 28, pp. 148-151, 1949.

[84] http://en.wikipedia.org/wiki/Edge_coloring.

147

[85] Durand D.; Jain R.; Tseytlin D., Distributed Scheduling Algorithms to Improve the

Performance of Parallel Data Transfers, Proc. IPPPS’94 Workshop on Input/Output

in Parallel Computer Systems, April 1994.

[86] Durand D.; Jain R.; Tseytlin D., Applying Randomized Edge Coloring Algorithms to

Distributed Communication: An Experimental Study., ACM Symposium of Parallel

Algorithms and Architectures, 1995.

[87] Marathe M. V.; Panconesi A.; Risinger L.D., An Experimental Study of a Simple,

Distributed Edge-Coloring Algorithm, ACM Journal of Experimental Algorithmics,

vol. 9, 2004.

[88] Herman T.; Pemmaraju S.; Pirwani, I., Oriented Edge Colorings and Link Scheduling

in Sensor Networks, The 1st International Conference on Communication System

Software and Middleware, Comsware’06, Delhi, India, January 2006.

[89] Cheng M.; Yin L., Transmission Scheduling in Sensor Networks via Directed Edge

Coloring, The International Conference on Communications, ICC’07, Glasgow, Scot-

land, 2007.

[90] Hilgemeier M.; Drechsler N.; Drechsler R., Fast heuristics for the edge coloring of

large graphs, Euromicro Symposium on Digital system design, DSD’03, IEEE com-

puter Society, 2003.

[91] Avanthay C.; Hertz A.; Zufferey N., A variable neighborhood search for graph color-

ing, Journal European Journal of Operational Research, vol. 151, pp. 379-388, 2003.

[92] Tzeng C.H.; Jehn-Ruey J.; Shing-Tsaan H., A self-stabilizing (∆+ 4)-edge-coloring

algorithm for planar graphs in anonymous uniform systems, Journal Information Pro-

cessing Letters, vol. 101, pp. 168-173, February 2007.

[93] Galinier P.; Hertz A., A survey of local search methods for graph coloring, Computers

& Operations Research, vol. 3, pp. 2547-2562, September 2006.

[94] Wu Q.; Hao J.K;, Coloring large graphs based on independent set extraction, to

appear in Computers and Operations Research, Elsevier, 2011.

[95] Even G.; Lotker Z.; Ron D.; Smorodinsky S., Conflict-Free Colorings of Simple

Geometric Regions with Applications to Frequency Assignment in Cellular Networks,

SIAM J. Comput, vol. 33, pp 94-136, 2004.

[96] Subramanian A.P.; Gupta H.; Das S.R., Minimum Interference Channel Assignment

in Multi-Radio Wireless Mesh Network, The 4th Annual IEEE Communications So-

ciety Conference on Mesh and Ad Hoc Communications and Networks SECON’07,

San Diego, California, USA, June 2007.

148

[97] Chowdhury K.R.; Chanda P.; Agrawal D.P.; Zeng Q.A., DCA- A Distributed Channel

Allocation Scheme for Wireless Sensor Networks, The 16th International Symposium

on Personal, Indoor and Mobile Radio Communications, PIMRC’05, Berlin, Germany,

September 2005.

[98] Wang W.; Liu X., List-coloring based channel allocation for open-spectrum wireless

networks, The 62nd Vehicular Technology Conference, VTC’05, Dallas, Texas, USA,

September 2005.

[99] Zheng H.; Peng C., Collaboration and fairness in opportunistic spectrum access, IEEE

International Conference on Communications, ICC’05, Seoul Korea, March 2005.

[100] Gandham S.; Dawande M.; Prakash R., Link scheduling in sensor networks: dis-

tributed edge coloring revisited, The 24th Annual Joint Conference of the IEEE Com-

puter and Communications Societies, INFOCOM’05, Miami, March 2005.

[101] Cheng M.; Yin L., Transmission Scheduling in Sensor Networks via Directed Edge

Coloring, IEEE International Conference on Communications, ICC’07, Glasgow, Scot-

land, June 2007.

[102] Schneider J.; Wattenhofer R., Coloring unstructured wireless multi-hop networks,

The 28th ACM symposium on Principles of distributed computing, PODC’09, USA,

2009.

[103] Fertin G.; Godard E.; Raspaud A., Acyclic and k-distance coloring of the grid Journal

Information Processing Letters, vol. 87, pp. 51-58, July 2003.

[104] Mahfoudh S.; Minet P.; Amdouni I., Energy Efficient Routing and Node Activity

Scheduling in the OCARI Wireless Sensor Network, Journal Future Internet, vol. 2,

pp. 308-340, September 2010.

[105] Brelaz D., New methods to color the vertices of a graph, Commun. ACM, pp. 251–256,

1979.

[106] Hansen J.; Kubale, M.; Kuszner, L.; Nadolski, A. Distributed largest-first algorithm

for graph coloring. In Proceedings of EURO-PAR 2004, Pisa, Italy, August 2004.

[107] Mahfoudh S.; Chalhoub G.; Minet P.; Misson M.; Amdouni I., Node Coloring and

Color Conflict Detection in Wireless Sensor Networks, Journal Future Internet 2010,

vol. 2, pp. 469-504, October 2010.

[108] Melodia T.; Vuran C. M.; Pompili D., The State of the Art in Cross-layer Design for

Wireless Sensor Networks, The Second international conference on Wireless Systems

and Network Architectures in Next Generation Internet, EURO-NGI’05, Villa Vigoni.

Italy, July 2005.

149

[109] Wang Y.H.; Chao C.F., Dynamic backup routes routing protocol for mobile ad hoc

networks, Journal Information Sciences, vol. 176, pp. 161-185, January 2006.

[110] Lee S.J.; Gerla M., AODV-BR: Backup Routing in Ad hoc Networks, Wireless Com-

munications and Networking Conference, WCNC’02, Chicago, USA, September 2000.

[111] Ganesan, D.; Govindan, R.; Shenker, S.; Estrin, D. Highly-Resilient, Energy-Efficient

Multipath Routing in Wireless Sensor Networks, Journal Mobile Computing and Com-

munications Review, vol. 5, pp. 11-25, October 2001.

[112] Hsu V.S; Kahn J.M; Pister K.S, Wireless communications for smart Dust, Elec-

tronics Research Laboratory Technical Memorandum Number M98/2, University of

California, Berkely, January 1998.

[113] Clark B.; Colbourn C.; Johnson D., Unit disk graphs, Discrete Mathematics, vol. 86,

December 1990.

[114] Xiaoyuan T.; Guoqiang M.; Anderson B.D.O., On the Probability of K-hop Con-

nection in Wireless Sensor Networks, IEEE Communications Letters, vol. 11, pp.

662-664, August 2007.

[115] Baumgartner T.; Fekete S.P.; Kamphans T.; Kröller A., Pagel M., Hallway Moni-

toring: Distributed Data Processing with Wireless Sensor Networks, REALWSN, De-

cember 2010.

[116] Chakrabarty K.; Iyengar S. S.; Qi H. R. and Cho E., Grid Coverage for Surveillance

and Target Location in Distributed Sensor Networks, IEEE Transactions on Comput-

ers, vol. 51, pp. 1448-1453, 2002.

[117] Poe W.Y.; Schmitt J.S., Node deployment in large wireless sensor networks: coverage,

energy consumption, and worst-case delay, Asian Internet Engineering Conference

(AINTEC’09), Thailand, November 2009.

[118] Panichpapiboon S.; Ferrari G.; Tonguz O.K., Sensor networks with random versus

uniform topology: MAC and interference considerations, 59th Vehicular Technology

Conference (VTC’04), May 2004.

[119] McCulloch J.; Mccarthy P.; Siddeswara M. G.; Wei, P.; Hugo D.; Terhorst, A., Wire-

less sensor network deployment for water use efficiency in irrigation, Proc. of the

workshop on Real-world wireless sensor networks, March 2008.

[120] Amdouni I.; Minet P.; Adjih C., Node coloring in wireless networks: complexity results

and grid coloring, WMNC 2011, Toulouse, France, October 26-28, 2011.

[121] Vallée,B.; Vera A., Lattice reduction in two dimensions: analyses under realistic prob-

abilistic models, DMTCS’07, January 2007.

150

[122] Amdouni, I.; Minet, P.; Adjih, C., Node coloring for dense wireless sensor networks,

INRIA Research Report 7588, Paris-Rocquencourt, France, March 2011.

[123] Vector-Based Coloring Method page,

http://hipercom.inria.fr/SensorNet/VCM/, INRIA, 2011.

[124] Wubben D.; Seethaler D.; Jaldén J.; Matz G., Lattice Reduction, A survey with

applications in wireless communications, IEEE Signal Processing Magazine, vol. 29,

May 2011.

[125] Thue A., Über die dichteste Zusammenstellung von kongruenten Kreisen in einer

Ebene, Norske Vid. Selsk. Skr. pp. 1-9, 1910.

[126] Tóth L.F.; Über die dichteste Kugellagerung, Math. Z. vol. 48, pp. 676-684, 1943.

[127] Amdouni I.; Adjih C.; Minet P., On the Coloring of Grid Wireless Sensor Networks:

the Vector-Based Coloring Method, Inria Research Report, RR-7756, September 2011.

[128] Ahn G.S.; Miluzzo E.; Campbell A. T.; Hong S.G.; Cuomo F., Funneling-mac: A

localized, sink-oriented mac for boosting fidelity in sensor networks, The 4th ACM

Conference on Embedded Networked Sensor Systems (SenSys 2006), Boulder, CO,

USA, November 2006.

[129] Choi H.; Wang J.; Hughes E. Scheduling for information gathering on sensor network,

Wireless Networks, 2009.

[130] Ergen S.C.; Varaiya P., TDMA scheduling algorithms for wireless sensor networks,

Wireless Networks, May 2010.

[131] Song W. Z.; Huang R.; Shirazi B.; LaHusen R., TreeMAC: Localized TDMA MAC

Protocol for Real-time High-data-rate Sensor Networks, Journal of Pervasive and Mo-

bile Computing, Percom’09, vol. 5, pp. 750-765, December 2009.

[132] Huang R., SongW.Z., Xu M., Shiraz B., Localized QoS-Aware Media Access Control in

High-Fidelity Data Center Sensing Networks, The 1st International Green Computing

Conference, IGCC’10, Chicago, USA, August 2010.

[133] Incel D.O.; Ghosh A.; Krishnamachari B.; Chintalapudi K., Fast data collection in

treebased wireless sensor networks, IEEE Transactions on Mobile Computing, vol. 1,

pp. 86-99, January 2009.

[134] Turau V.; Weyer C.; Renner C., Efficient Slot Assignment for the Many-to-One Rout-

ing Pattern in Sensor Networks, The 1st International Workshop on Sensor Network

Engineering, IWSNE’08, Santorini Island, Greece, June 2008.

151

[135] Mao J.; Wu Z.; Wu X., A TDMA scheduling scheme for many-to-one communica-

tions in wireless sensor networks. Computer Communications. vol. 30, pp. 863-872,

February 2007.

[136] Amdouni I.; Soua R.; Livolant E.; Minet P., Delay Optimized Time Slot Assignment

for Data Gathering Applications in Wireless Sensor Networks, Third International

Conference on Wireless Communications in Unusual and Confined Areas, Clermont-

ferrand, France, August 28-30, 2012.

[137] http://www.gnu.org/software/glpk/

152

Appendix A

Mathematical Results Related to

OSERENA Algorithm

In this Annex, we group mathematical results that are useful to prove the properties of

OSERENA, the coloring algorithm presented in Chapter 4.

A.1 Correctness of OSERENA

Lemma 7. With OSERENA, any node u colors itself if and only if it has the highest priority

among all the uncolored nodes in N (u).

Proof: Let us show that if any node u is coloring itself, then it has the highest priority among

the uncolored nodes up to 3-hop. According to the Rule R’1, if u is coloring itself then we

have from the following Equation:

priority(u) = max(max prio1(u),max prio2(u),max prio3(u)).

From this equation, we have:

(1) priority(u) ≥ max(max prio1(u)) leads to the fact that no uncolored one-hop neighbor

has a priority higher than u.

(2) priority(u) ≥ max(max prio2(u)). Hence, no uncolored two-hop neighbor has a priority

higher than u, otherwise we would have the following contradiction:

priority(u) ≥ max(max prio2(u)) > priority(u).

(3) priority(u) ≥ max prio3(u). Hence, no uncolored three-hop neighbor in N (u) has a

priority higher than u, otherwise we would have the following contradiction: priority(u) ≥
max prio3(u) > priority(u).

Hence, node u has the highest priority among the uncolored nodes in N (u).

Conversely, if node u has the highest priority among its uncolored neighbors up to 3 hops,

then:

• all its uncolored one-hop neighbors have a smaller priority. Hence, for any v uncolored

one-hop neighbor of u, we have priority(v) < priority(u). Hence,

153

max(max prio1(u)) = max v∈1hop(u)(priority(v) for v uncolored) < priority(u);

• all its uncolored two-hop neighbors have a smaller priority. Let us consider w the node

with the highest priority inmax prio2(u). It denotes the highest priority of an uncolored

node w that is one-hop neighbor of v, itself one-hop neighbor of u. Consequently, we

have the following cases:

– node w is the node u itself and has priority priority(u);

– node w is a one-hop or two-hop neighbor of node u. In which case, we have by

assumption: priority(w) < priority(u).

Hence, max(max prio2(u)) = priority(u).

• and all its uncolored three-hop neighbors in N (u) have a smaller priority. By definition,

max prio3(u) is the maximum priority of uncolored nodes q that are one-hop neighbors

of w, itself one-hop neighbor of v, one-hop neighbor of u. Consequently, we have the

following cases:

– node q is the node u itself and has priority priority(u);

– node q is a one-hop, two-hop or three-hop neighbor of node u. In which case, we

have by assumption: priority(q) < priority(u).

Hence, max prio3(u) = priority(u).

Finally, priority(u) = max(max prio1(u),max prio2(u),max prio3(u)).

Hence, node u is coloring itself with OSERENA.

Lemma 8. With OSERENA, when node u colors itself, it knows all the colors taken in N (u)

with a higher priority.

Proof: The exchange of Color messages allows any node u to know any uncolored node in

N (u) having a higher priority than itself. Node u also knows the colors of already colored

nodes in N (u) by means of bitmap1, bitmap2 and bitmap3. Thus, when u colors itself, it

takes the smallest color unused in these bitmaps, and hence unused in N (u).

Lemma 9 OSERENA coloring ends when all nodes are colored.

Proof: Rule R5 defines when any node should stop sending color messages. Here we prove that

with this rule, OSERENA ends when all nodes are colored. If u is colored andmax prio1(u) =

∅, then node u and all its one-hop neighbors are colored. Moreover, if node u receives a Color

message from any one-hop neighbor v with max prio1(v) = max prio2(v) = ∅, it means that

all the one-hop neighbors of v and all the one-hop neighbors of its one-hop neighbors are

already colored. Hence, all nodes up to three-hop from u and belonging to N (u) are colored.

The coloring algorithm ends when node u as well as all its 1-hop, 2-hop and 3-hop neighbors

are colored.

154

Lemma 10. In a wireless network meeting assumptions A0, A1, A2 and A3 in the absence

of message loss and node failure, all nodes color themselves with OSERENA and stop sending

their Color message.

Proof: Let us consider any node u. The nodes in N (u) color themselves according to their

priority. As soon as u becomes the uncolored node with the highest priority, it colors itself

according to rules R’1 and R’2. From Lemma 9, OSERENA ends when all nodes are colored.

Hence, it is useless for u to send its Color message insofar as any information contained in

its message is already known by its one-hop, two-hop and three-hop neighbors in N (u) and

these nodes are already colored.

A.1.1 Equivalence of OSERENA to a Centralized Algorithm

Lemma 11. For any node u, for any given priority assignment, nodes ∈ N (u) color themselves

in the same order with OSERENA and First Fit.

Proof: Let us consider any node u that is coloring itself in OSERENA. According to Lemma 8,

we have:

• any node v ∈ N (u) such that priority(v) > priority(u) is already colored in OSERENA,

otherwise u could not color itself now;

• any node v ∈ N (u) such that priority(v) < priority(u) is not colored in OSERENA,

because it is constrained by node u that is not yet colored.

Hence, in N (u) the coloring order in OSERENA is compliant with the priority order that is

by definition followed by First Fit. In conclusion, both coloring algorithms follow the priority

order to color nodes in a given neighborhood N (u).

A.1.2 Convergence Time of OSERENA

In this section, we compute the probability P1, P2 and P3 of the occurrence of the events

leading to coloring delays. Recall that these events are:

• E1: ∃ v1, v2 and v3, three nodes that are 2-hop away from u and 4-hop away from each

other.

• E2: these three nodes v1, v2 and v3 have a priority higher than u.

• E3: v1, v2 and v3 are colored simultaneously.

A.1.2.1 Estimation of an Upper Bound of P1

On Figure A.1, a bound of P1 corresponds to the probability for v3 to belong to the hatched

area.

155

Figure A.1: Possible zone for node v3.

The computation of the probability P1 is illustrated in Figure A.2.

Figure A.2: Computation of P1.

Nodes vi, for i ∈ [1, 3], should belong to D(u, 2R) \ D(u,R) and should be at a distance

belonging to]3R, 4R] from each other. To maximize the number of possible nodes v3, we take

v1 ∈ C(u, 2R). The choice of v1 done, we increase the number of possible nodes v3 by taking

v2 ∈ C(u, 2R)∩ C(v1, 3R), approximating 3R+ ε by 3R. We make v1 and v2 closer increasing

again the possibilities for v3 by transforming the triangle (v1, u, v2) in a right triangle. We

then have d(v1, v2) = 2R
√
2 computed as the hypotenuse in the triangle (u, v1, v2). We now

select v3 that belongs to D(u, 2R) \ D(u,R) \ D(v1, 2R
√
2) \ D(v2, 2R

√
2), corresponding to

the hatched area depicted in Figure A.1. We compute SP the surface of this area.

156

We notice that we have SP ≤ SD − 2ST − SC , where SD is the surface of the disk quarter

D(u, 2R), ST is the surface of the triangle formed by s, u and v3 and SC the surface of the

square (s, s1, u, s2) whose diagonal is y. We first compute d(u, q) in the right triangle (u, q, v3).

We get 2R2 + d(u, q)2 = 22R2. Hence, d(u, q) = R
√
2. In the isocel triangle (v1, v2, s), we

compute d(q, t. We have: (d(s, t))2 + 2R2 = 8R2. Since d(s, t) = d(s, u) + d(u, q), we get

d(s, u) = d(s, t)− d(u, q) = (
√
6−

√
2)R. We then get:

SD = ΠR2 and SC = y2/2 = (4− 2
√
3)R2.

ST = (
√

4− 2
√
3− 2 +

√
3)R2.

We deduce SP = (Π− 2
√

4− 2
√
3)R2.

Hence, P1 =
number of favorable cases
number of possible cases = SP

4ΠR2 .

Finally, we get P1 =
1
4 −

√
4−2

√
3

2Π .

A.1.2.2 Estimation of an Upper Bound of P2

For any node u, let us compute P2 the probability of event E2: there exists three nodes

two-hop away from u with a priority higher than u. This event E2 can be considered as the

intersection of two events E21 and E22, where E21 means that there exists three nodes in

D(u, 2R) with a priority higher than u. Event E22 means that three nodes in D(u, 2R) do

not belong to D(u,R). We do not have event E21 if and only if in D(u, 2R), 1) u has the

highest probability, or 2) u has the second highest probability or 3) u has the third highest

probability. Let M denote the number of nodes that are exactly one-hop away from u. The

average number of nodes in D(u, 2R) is equal to 4M + 1. We compute P21 the probability of

event E21. We have P21 = 1− 3
4M+1 .

We can now compute P22 the probability of event E22. We get P22=probability that none

of these three nodes in D(u, 2R) belong to D(u,R). Since the nodes are independent, we

get P22 = (1 − ΠR2

4ΠR2)
3 = (3/4)3. Since events E21 and events E22 are independent, we get

P2 = P21 · P22, leading to P2 =
27
64(1− 3

4M+1).

A.1.2.3 Estimation of an Upper Bound of P3

For any node u, we select the last three nodes v1, v2 and v3, two-hop away from u that color

themselves just before u. We want to compute P3 the probability that event E3 occurs that

is: these three nodes color themselves simultaneously. We can bound P3 by 1.

157

Appendix B

Mathematical Results Related to

VCM Method

In this annex, we group mathematical results and grid properties that are useful to study

the validity and the optimality of VCM, the coloring method presented in Chapter 5. These

results can be applied to VCM, or any other algorithm.

B.1 Relation between Number of Hops and Actual Distance

Results in this section are inequalities, establishing links between number of hops and actual

distance.

Lemma 16. For any point V of R2, there exists a node V ′ of the grid Z
2 such that d(V, V ′) ≤√

2/2.

Proof: In the worst case, the node V occupies the center of a grid cell. It is at equal distance

of two grid nodes that are diagonally opposed. Hence, its distance to one of them is equal to√
2/2.

Lemma 17. For any transmission range R >
√
2, for any grid node U , any node V that

meets d(U, V) ≤ (R−
√
2)h is at most h-hop away from U .

Proof: We consider the h − 1 points of R2 that allow us to divide the segment [U, V] in h

equal parts.

Let Wi be these nodes, with i ∈ [1, h− 1].

For any i ∈ [1, h−1], let W ′
i the grid point the closest to Wi. For simplicity reason, we denote

W ′
0 = U and W ′

h = V . We have d(U, V) ≤ ∑h−1
i=0 d(W ′

i ,W
′
i+1).

We have d(W ′
i ,W

′
i+1) ≤ d(W ′

i ,Wi) + d(Wi,Wi+1) + d(Wi+1,W
′
i+1). According to Lemma 16,

we have d(Wi,W
′
i) ≤

√
2/2. Hence, we get d(W ′

i ,W
′
i+1) ≤

√
2+d(Wi,Wi+1). By construction,

d(Wi,Wi+1) = d(U, V)/h.

If d(U, V) ≤ (R −
√
2)h, then d(W ′

i ,W
′
i+1) ≤ R. Hence, nodes Wi for i ∈ {1, 2, . . . , h− 1}

constitute a h-hop path between U and V .

158

Lemma 18. For any transmission range R, for any two grid nodes U and V , in h-hop

coloring, if d(U, V) > hR then U and V are at least (h+ 1)-hop away.

Proof: By contradiction assume that, U and V are h-hop away or less. Let Wi be the k − 1

nodes constituting the k-hop path between U and V , with k ≤ h. Let W1 = U , and Wh = V .

Since nodes Wi are 1-hop neighbors, we have:

| ~UV | = |
h
∑

i=1

~WiWi+1| ≤
h
∑

i=1

d(Wi,Wi+1) ≤ hR.

Hence the contradiction.

Let U , V be two points of Z2 and define H(U, V) as the number of hops between U and V

(it is an integer). For any R > 0 (some inequalities are trivially true when R ≤
√
2), the

lemma 17 and lemma 18 can be summarized as:

d(U, V) ≤ (R−
√
2)h =⇒ H(U, V) ≤ h (B.1)

d(U, V) > (h− 1)R =⇒ H(U, V) ≥ h (B.2)

H(U, V) ≥ h =⇒ d(U, V) > (R−
√
2)(h− 1) (B.3)

H(U, V) ≤ h =⇒ d(U, V) ≤ hR (B.4)

B.2 Bounds on Distance and Number of Hops of Points on a

Lattice

Lemma 19. If u1 and u2 are reduced generator vectors of a lattice Λ(u1, u2), with |u1| ≤ |u2|,
then for any vector w such that w = αu1 + βu2, and α, β ∈ Z

2, we have |w| ≥ 3
4α

2|u1|2, and
|w| ≥ 3

4β
2|u1|2.

Proof: Let W the node of coordinates (α, β). We have:

| ~UW |2 = α2|u1|2 + β2|u2|2 + 2αβ (u1 · u2)

≥ α2|u1|2 + β2|u2|2 − 2|α||β| |u1 · u2|.

Since u1 and u2 are reduced vectors, we can use the property given in the System 5.1, we

get:

| ~UW |2 ≥ α2|u1|2 + β2|u1|2 + |α||β||u1|2. Hence,
| ~UW |2 ≥ ((|α| − |β|)2 + |α||β|)|u1|2.

Notice that this quantity does not change if we change the sign of α or of β. Thus, we assume

(α ≥ 0), (β ≥ 0), and let f(α, β) = (α− β)2 + αβ.

By a change of variable β = α
2 + λ, we get:

f(α, β) = 3
4α

2 + λ2 ≥ 3
4α

2. Similarly, we have f(α, β) ≥ 3
4β

2. Hence the lemma.

159

Lemma 20. Consider any transmission range R >
√
2, two reduced generator vectors u1 and

u2 of the lattice Λ(u1, u2), and a node W with ~UW = αu1 + βu2 for some α and β in Z.

Assume also that the point V1 such that ~UV1 = u1 is at strictly more than h hops from U .

Then:

if |α| ≥ µ(R) or |β| ≥ µ(R) where µ(R) = 2
√
3R

3(R−
√
2)
, we have: W is strictly more than h hops

away from U .

Proof: Since u1 and u2 are reduced, we can apply Lemma 19 and obtain:

| ~UW |2 ≥ f(α, β)|u1|2

≥ 3

4
α2|u1|2, and as α ≥ µ(R)

≥ 3

4
(

2
√
3R

3(R−
√
2)
)2|u1|2

≥ (
R

R−
√
2
)2|u1|2

Since the point V1 is strictly more than h-hop away from U , the lemma 17 implies by contra-

diction that |u1| = | ~UV1| > (R−
√
2)h. It follows that:

| ~UW |2 > R2h2

Applying Lemma 18, we obtain the result.

160

161

